max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
vanila_rnn.py
spencerpomme/torchlight
0
12796851
""" Minimal character-level Vanilla RNN model. Written b_y <NAME> (@karpathy) BSD License """ import numpy as np import unicodedata import string import codecs # data I/O data = codecs.open('data/potter.txt', 'r', encoding='utf8', errors='ignore').read() fake = codecs.open('data/output.txt', 'w', encoding='utf8') chars = list(set(data)) data_size = len(data) # vocab_size = len(chars) print(f'data has {data_size} characters,{vocab_size} unique.') # data has 1109177 characters,80 unique. char_to_ix = { ch:i for i,ch in enumerate(chars) } ix_to_char = { i:ch for i,ch in enumerate(chars) } print(char_to_ix) print(ix_to_char) # hyperparameters hidden_size = 256 # size of hidden layer of neurons seq_length = 128 # number of steps to unroll the RNN for learning_rate = 1e-1 # model parameters W_xh = np.random.randn(hidden_size, vocab_size) * 0.01 # weight: input to hidden W_hh = np.random.randn(hidden_size, hidden_size) * 0.01 # weight: hidden to hidden W_hy = np.random.randn(vocab_size, hidden_size) * 0.01 # weight: hidden to output b_h = np.zeros((hidden_size, 1)) # hidden bias b_y = np.zeros((vocab_size, 1)) # output bias def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters ) def lossFun(inputs, targets, hprev): """ inputs,targets are both list of integers indicating which unique character. inputs: a seq_length size list hprev is (H x 1) array of initial hidden state returns the loss, gradients on model parameters, and last hidden state """ xs, hs, ys, ps = {}, {}, {}, {} # sx[t] = ys[t] = ps[t] size = vocab_size x 1 hs[-1] = np.copy(hprev) # hs[t] size = hidden_size * 1 loss = 0 # xs: input line; ys: output line; hs: hidden states, multiple of them, # even the weights are reused, the states are different from each other. # forward pass for t in range(len(inputs)): xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation xs[t][inputs[t]] = 1 # inputs[t] is a index number, xs[t] is a vector hs[t] = np.tanh(np.dot(W_xh, xs[t]) + np.dot(W_hh, hs[t-1]) + b_h) # hidden state ys[t] = np.dot(W_hy, hs[t]) + b_y # unnormalized log probabilities for next chars ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # (normalized) probabilities for next chars loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss) print(f'loss: {loss}') # print(f'xs:{len(xs[t])}->{xs[t]}\n hs:{len(hs[t])}->{hs[t]}\n ys:{len(ys[t])}->{ys[t]}\n ps:{len(ps[t])}->{ps[t]}') # backward pass: compute gradients going backwards dW_xh = np.zeros_like(W_xh) # gradient of W_xh, same shape as W_xh dW_hh = np.zeros_like(W_hh) # gradient of W_hh, same shape as W_hh dW_hy = np.zeros_like(W_hy) # gradient of W_hy, same shape as W_hy db_h = np.zeros_like(b_h) # gradient of b_h, same shape as b_h db_y = np.zeros_like(b_y) # gradient of b_y, same shape as b_y dhnext = np.zeros_like(hs[0]) for t in reversed(range(len(inputs))): dy = np.copy(ps[t]) dy[targets[t]] -= 1 # backprop into y. see http://cs231n.github.io/neural-networks-case-study/#grad if confused here dW_hy += np.dot(dy, hs[t].T) db_y += dy dh = np.dot(W_hy.T, dy) + dhnext # backprop into h dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity db_h += dhraw dW_xh += np.dot(dhraw, xs[t].T) dW_hh += np.dot(dhraw, hs[t-1].T) dhnext = np.dot(W_hh.T, dhraw) for dparam in [dW_xh, dW_hh, dW_hy, db_h, db_y]: np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients return loss, dW_xh, dW_hh, dW_hy, db_h, db_y, hs[len(inputs)-1] def sample(h, seed_ix, n): """ sample a sequence of integers from the model h is memory state, seed_ix is seed letter for first time step i.e. do predictions :) """ x = np.zeros((vocab_size, 1)) x[seed_ix] = 1 ixes = [] for t in range(n): h = np.tanh(np.dot(W_xh, x) + np.dot(W_hh, h) + b_h) y = np.dot(W_hy, h) + b_y p = np.exp(y) / np.sum(np.exp(y)) ix = np.random.choice(range(vocab_size), p=p.ravel()) x = np.zeros((vocab_size, 1)) x[ix] = 1 ixes.append(ix) return ixes n, p = 0, 0 mW_xh, mW_hh, mW_hy = np.zeros_like(W_xh), np.zeros_like(W_hh), np.zeros_like(W_hy) mb_h, mb_y = np.zeros_like(b_h), np.zeros_like(b_y) # memory variables for Adagrad smooth_loss = -np.log(1.0 / vocab_size) * seq_length # loss at iteration 0 while True: try: # prepare inputs (we're sweeping from left to right in steps seq_length long) if p + seq_length + 1 >= len(data) or n == 0: hprev = np.zeros((hidden_size,1)) # reset RNN memory p = 0 # go from start of data inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]] # sample from the model now and then if n % 100 == 0: sample_ix = sample(hprev, inputs[0], 200) txt = ''.join(ix_to_char[ix] for ix in sample_ix) print('----\n %s \n----' % (txt, )) # forward seq_length characters through the net and fetch gradient loss, dW_xh, dW_hh, dW_hy, db_h, db_y, hprev = lossFun(inputs, targets, hprev) smooth_loss = smooth_loss * 0.999 + loss * 0.001 if n % 100 == 0: print(f'iter{n}, loss: {smooth_loss}') # print progress # perform parameter update with Adagrad for param, dparam, mem in zip([W_xh, W_hh, W_hy, b_h, b_y], [dW_xh, dW_hh, dW_hy, db_h, db_y], [mW_xh, mW_hh, mW_hy, mb_h, mb_y]): mem += dparam * dparam param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update p += seq_length # move data pointer n += 1 # iteration counter except KeyboardInterrupt: sample_ix = sample(hprev, inputs[0], data_size) txt = ''.join(ix_to_char[ix] for ix in sample_ix) fake.write(txt) break fake.close()
3.125
3
GeneralOutputAnalysis_FLYCOP/Utilities/FitnessRanks.py
ivanmm25/FLYCOPtools
1
12796852
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Feb 21 21:20:59 2021 @author: <NAME> """ """ OUTPUT ANALYSIS AFTER FLYCOP (UTILITIES) DESCRIPTION ORGANIZATION OF FITNESS RANKS & ASSOCIATED STATS DESCRIPTION Series of functions to define and process fitness ranks (utility for scripts related to Statistical Analysis). - obtain_fitness_rank - stats_description - describe_fitness_ranks: combination of the last two functions INDIVIDUAL COMPARATIVE ANALYSIS (FLYCOP run) Define fitness ranks for the Individual Comparative Analysis (FLYCOP run, input parameters) - organize_fitness_ranks EXTRACT INPUT PARAMETERS FOR A FLYCOP run (configuration) as a single str line - extract_ratios ANALYSIS OF BIOMASS LOSS - when_death_starts (when this effect is first registered in a given simulation) EXPECTED INPUT - Dataframe: dataframe to be processed - rank_limits_set: tuple with a series of inner tuples (fitness rank intervals) - rank_limits: smaller tuple (fitness rank individual interval) - ref_colum: reference column to extract the fraction of the dataframe. Default :'fitness' - frac_dataframe: fraction of a particular dataframe - descr_columns: columns to be described with 'Pandas' statistical description (method .describe()) - string_line_config. Example: -8.0,0.3,-12.0,0.05 OUTPUT See each particular function NOTE THAT: Script in development (...) """ # import re # import pandas as pd # import os.path # ----------------------------------------------------------------------------- # ORGANIZATION OF FITNESS RANKS & ASSOCIATED STATS DESCRIPTION # ----------------------------------------------------------------------------- # RETURNS FRACTION OF INTEREST (fitness rank, all columns) OF THE DATAFRAME # For a fitness interval, retrieves all related information (rest of the parameters) def obtain_fitness_rank(rank_limits, dataframe, ref_colum): frac_dataframe = dataframe[dataframe[ref_colum] < rank_limits[1]] # Higher limit final_frac_dataframe = frac_dataframe[frac_dataframe[ref_colum] > rank_limits[0]] # Lower limit return final_frac_dataframe # STATISTICAL DESCRIPTION for the selected fitness rank, columns selected # descr_columns are those columns (parameters) for which the statistical description is required def stats_description(frac_dataframe, descr_columns): stat_description = frac_dataframe[descr_columns].describe() return stat_description # COMBINES THE TWO LAST FUNCTIONS # 1. Obtains every single fitness rank # 2. Makes the subsequent statistical description def describe_fitness_ranks(rank_limits_set, dataframe, descr_columns, ref_column): # 'SAVE STATS' version, if wanted to be stored in a file """ filename = "stats_description.txt" # Which name? with open(filename, "w") as stats_file: for rank_limits_tuple in rank_limits_set: fitness_rank = obtain_fitness_rank(rank_limits_tuple, dataframe, ref_column) stat_descr = stats_description(fitness_rank, descr_columns) stats_file.write(stat_descr+"\n") """ # 'PRINT' version for rank_limits_tuple in rank_limits_set: fitness_rank = obtain_fitness_rank(rank_limits_tuple, dataframe, ref_column) stat_descr = stats_description(fitness_rank, descr_columns) print(f"{ref_column} rank: {rank_limits_tuple[0]}-{rank_limits_tuple[1]}") print(stat_descr) print() # LIMITACIONES # ------------ # Limitación: el primero de los rangos, hay que pasarle un límite superior más alto que el mejor de los fitness # Limitación: ¿cómo haríamos cálculos individuales de un único parámetro estadístico? Véase mean(), median() (individualmente) # AUTOMATIZAR # ------------------------------- # Set con tuplas para los rangos # NUEVA IDEA: llevar análisis estadístico a archivo para posterior 'ComparativeAnalysis' entre configuraciones # Array 3D # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # INDIVIDUAL COMPARATIVE ANALYSIS (FLYCOP run) # ----------------------------------------------------------------------------- # DEFINE FITNESS RANKS (new column 'FitRank') for the Individual Comparative Analysis within each FLYCOP run # Utility required for further comparison of parameter ratios of each fitness rank in FLYCOP output tables def organize_fitness_ranks(dataframe, rank_limits_set, ref_column): for row in dataframe.itertuples(): # row[0] = Index Number ref_variable = dataframe.loc[row[0], ref_column] for i in range(1, len(rank_limits_set)+1): rank_tuple = rank_limits_set[i-1] if rank_tuple[0] < ref_variable < rank_tuple[1]: dataframe.loc[row[0], "FitRank"] = int(i) break elif ref_variable == 0: ConfigError = dataframe.loc[row[0] , "ZeroDivisionError"] if ConfigError == 0: dataframe.loc[row[0] , "FitRank"] = 0 else: dataframe.loc[row[0] , "FitRank"] = -1 return dataframe # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # INDIVIDUAL COMPARATIVE ANALYSIS (FLYCOP run) # ----------------------------------------------------------------------------- # DEFINE RANKS (new column) for the Individual Comparative Analysis within each FLYCOP run # The ranks are defined based on the desired 'ref_column' in the given dataframe # 'New_column' contains the categorical classification of values, depending on the established ranks # Instead of a number, the fitness interval itself def organize_ranks(dataframe, rank_limits_set, ref_column, new_column): for row in dataframe.itertuples(): # row[0] = Index Number ref_variable = dataframe.loc[row[0], ref_column] for i in range(1, len(rank_limits_set)+1): rank_tuple = rank_limits_set[i-1] if rank_tuple[0] < ref_variable < rank_tuple[1]: dataframe.loc[row[0], new_column] = str(rank_tuple) break return dataframe # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # EXTRACT RATIOS OF INPUT PARAMETERS FOR FLYCOP run (configuration) as a single str line # ----------------------------------------------------------------------------- # Currently: specific to E.coli_iEC1364-P.putida_KT2440 configuration: # Sucrose/ fructose uptake rates ratio # E.coli/ P.putida KT initial biomass ratio # EXAMPLE: -8.0,0.3,-12.0,0.05 def extract_ratios(string_line_config): list_line = string_line_config.split(",") sucr_ur = float(list_line[0]) frc_ur = float(list_line[2]) uptake_ratio = round(sucr_ur/frc_ur, 3) Ec_init = float(list_line[1]) KT_init = float(list_line[3]) initbiomass_ratio = round(Ec_init/KT_init, 3) return uptake_ratio, initbiomass_ratio # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # EXTRACT RATIOS OF INPUT PARAMETERS FOR FLYCOP run (configuration) as a single str line # ----------------------------------------------------------------------------- # Currently: specific to E.coli_iEC1364-P.putida_KT2440 configuration, with NP_uptake rates # Sucrose/ fructose uptake rates ratio # E.coli/ P.putida KT initial biomass ratio # NH4 uptake ratio (E.coli/P.putida) # Pi uptake ratio (E.coli/P.putida) # EXAMPLE: -4.0,0.15,-18.0,0.05,-6.0,-10.0,-0.2,-0.25 def extract_ratios_NP(string_line_config): list_line = string_line_config.split(",") sucr_ur = float(list_line[0]) frc_ur = float(list_line[2]) uptake_ratio = round(sucr_ur/frc_ur, 3) Ec_init = float(list_line[1]) KT_init = float(list_line[3]) initbiomass_ratio = round(Ec_init/KT_init, 3) NH4_Ec = float(list_line[4]) NH4_KT = float(list_line[5]) NH4_Ec_KT = round(NH4_Ec/NH4_KT, 3) # Pi_Ec = float(list_line[6]) # Pi_KT = float(list_line[7]) # Pi_Ec_KT = round(Pi_Ec/Pi_KT, 3) return uptake_ratio, initbiomass_ratio, NH4_Ec_KT # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # EXTRACT INPUT PARAMETERS FOR FLYCOP run (configuration) as a single str line # ----------------------------------------------------------------------------- # Currently: specific to E.coli_iEC1364-P.putida_KT2440 configuration, with NP_uptake rates # EXAMPLE: -4.0,0.15,-18.0,0.05,-6.0,-10.0,-0.2,-0.25 def extract_baseConfig_NP(string_line_config): list_line = string_line_config.split(",") sucr_ur = float(list_line[0]) frc_ur = float(list_line[3]) Ec_init = float(list_line[1]) # Ec_init_glyc = float(list_line[2]) KT_init = float(list_line[4]) NH4_Ec = float(list_line[5]) NH4_KT = float(list_line[6]) # Pi_Ec = float(list_line[6]) # Pi_KT = float(list_line[7]) return sucr_ur, frc_ur, Ec_init, KT_init, NH4_Ec, NH4_KT # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # FUNCTION TO: obtain the initial cycle for death effect, from the dataframe where it has previously registered # INPUT: dataframe where to operate (pandas dataframe) # OUTPUT: same dataframe with new column: # 'DT_cycles_init': cycle when dead effect starts # NOTE THAT: "NoDeadTracking" means there is no death effect, thus the value for 'DT_cycles_init' is 0. # If the mean for the death effect (initial cycle) was computed, all configurations would be taken into # account (in the denominator) and those with no biomass loss would "sum 0" (to the numerator) # TO-DO: further implementation / reorganization of code lines # ----------------------------------------------------------------------------- def when_death_starts(dataframe): dataframe["DT_cycles_init"] = 0 for row in dataframe.itertuples(): DT_cycles = dataframe.loc[row[0], "DT_cycles"].split("-") DT_cycles_init = DT_cycles[0] if DT_cycles_init != "NoDeadTracking": dataframe.loc[row[0], "DT_cycles_init"] = int(DT_cycles_init) return dataframe # -----------------------------------------------------------------------------
3
3
core/tests/test_trezor.crypto.hashlib.sha3_512.py
Kayuii/trezor-crypto
0
12796853
<gh_stars>0 from common import * from trezor.crypto import hashlib class TestCryptoSha3_512(unittest.TestCase): # vectors from http://www.di-mgt.com.au/sha_testvectors.html vectors = [ (b'', 'a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26'), (b'abc', 'b751850b1a57168a5693cd924b6b096e08f621827444f70d884f5d0240d2712e10e116e9192af3c91a7ec57647e3934057340b4cf408d5a56592f8274eec53f0'), (b'abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq', '04a371e84ecfb5b8b77cb48610fca8182dd457ce6f326a0fd3d7ec2f1e91636dee691fbe0c985302ba1b0d8dc78c086346b533b49c030d99a27daf1139d6e75e'), (b'abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu', 'afebb2ef542e6579c50cad06d2e578f9f8dd6881d7dc824d26360feebf18a4fa73e3261122948efcfd492e74e82e2189ed0fb440d187f382270cb455f21dd185'), ] vectors_keccak = [ (b'', '<KEY>'), (b'abc', '18587dc2ea106b9a1563e32b3312421ca164c7f1f07bc922a9c83d77cea3a1e5d0c69910739025372dc14ac9642629379540c17e2a65b19d77aa511a9d00bb96'), (b'<KEY>', '<KEY>'), (b'abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu', 'ac2fb35251825d3aa48468a9948c0a91b8256f6d97d8fa4160faff2dd9dfcc24f3f1db7a983dad13d53439ccac0b37e24037e7b95f80f59f37a2f683c4ba4682'), ] def test_digest(self): for b, d in self.vectors: self.assertEqual(hashlib.sha3_512(b).digest(), unhexlify(d)) def test_digest_keccak(self): for b, d in self.vectors_keccak: self.assertEqual(hashlib.sha3_512(b, keccak=True).digest(), unhexlify(d)) def test_update(self): for b, d in self.vectors: x = hashlib.sha3_512() x.update(b) self.assertEqual(x.digest(), unhexlify(d)) x = hashlib.sha3_512() for i in range(1000000): x.update(b'a') self.assertEqual(x.digest(), unhexlify('3c3a876da14034ab60627c077bb98f7e120a2a5370212dffb3385a18d4f38859ed311d0a9d5141ce9cc5c66ee689b266a8aa18ace8282a0e0db596c90b0a7b87')) ''' x = hashlib.sha3_512() for i in range(16777216): x.update(b'abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmno') self.assertEqual(x.digest(), unhexlify('235ffd53504ef836a1342b488f483b396eabbfe642cf78ee0d31feec788b23d0d18d5c339550dd5958a500d4b95363da1b5fa18affc1bab2292dc63b7d85097c')) ''' def test_update_keccak(self): for b, d in self.vectors_keccak: x = hashlib.sha3_512(keccak=True) x.update(b) self.assertEqual(x.digest(), unhexlify(d)) def test_digest_multi(self): x = hashlib.sha3_512() d0 = x.digest() d1 = x.digest() d2 = x.digest() self.assertEqual(d0, d1) self.assertEqual(d0, d2) def test_digest_multi_keccak(self): x = hashlib.sha3_512(keccak=True) d0 = x.digest() d1 = x.digest() d2 = x.digest() self.assertEqual(d0, d1) self.assertEqual(d0, d2) if __name__ == '__main__': unittest.main()
2.375
2
bot/bot_manager.py
NgLamVN/HiBot
0
12796854
<reponame>NgLamVN/HiBot<gh_stars>0 from discord.ext import commands from bot_constant import bot_constant from command_handler import command_handler from bot_listener import bot_listener class bot_manager: def __init__(self): self.bot = commands.Bot(command_prefix=bot_constant.bot_prefix, description=bot_constant.bot_description) self.command_handler = command_handler(self.bot) self.bot.add_cog(self.command_handler) self.bot_listener = bot_listener() self.bot.add_cog(self.bot_listener) self.start_bot() def start_bot(self) -> None: self.bot.run(bot_constant.bot_token) def get_command_handler(self) -> command_handler: return self.command_handler def get_bot_listener(self) -> bot_listener: return self.bot_listener def get_bot(self) -> commands.Bot: return self.bot
2.359375
2
statistics_check.py
bugo99iot/airbnb_k_nearest
9
12796855
<filename>statistics_check.py<gh_stars>1-10 import pandas as pd import numpy as np from scipy.spatial import distance import sys import json import math columns = ["price", "room_type", "accommodates", "bedrooms", "bathrooms", "beds", "number_of_reviews", "latitude", "longitude", "review_scores_value"] #load cities' information with open('cities_dictionary.json') as json_data: cities_dict = json.load(json_data) del cities_dict['EXAMPLE'] #choose the city city = "ATHENS" #upload data try: city_listings = pd.read_csv("DATA/raw/" + city + "_listings.csv") except Exception: if city == "HONG KONG": city = "HK" city_listings = pd.read_csv("DATA/raw/" + city + "_listings.csv") city = "HONG KONG" if city == "LOS ANGELES": city = "LA" city_listings = pd.read_csv("DATA/raw/" + city + "_listings.csv") city = "LOS ANGELES" if city == "SAN FRANCISCO": city = "SF" city_listings = pd.read_csv("DATA/raw/" + city + "_listings.csv") city = "SAN FRANCISCO" #select relevant columns from the data city_listings = city_listings[columns] #drop room types that are not well formatted TF = (city_listings["room_type"] == "Entire home/apt") | (city_listings["room_type"] == "Private room") city_listings = city_listings[TF] #drop NaN rows, which means we mostly drop items which have no reviews city_listings = city_listings.dropna() #shuffle city_listings = city_listings.sample(frac=1,random_state=0) #remove unwanted sharacters city_listings['price'] = city_listings.price.str.replace("\$|,",'').astype(float) #set private room type to 0 and entire home/apt to 1 city_listings['room_type'].replace("Private room", 0.0,inplace=True) city_listings['room_type'].replace("Entire home/apt", 1.0,inplace=True) mean_price = city_listings["price"].mean() split_value = int(round(float(city_listings.shape[0])*75/100)) #we use 75% of the dataset as train, 25% as test train_set = city_listings.iloc[:split_value] test_set = city_listings.iloc[split_value:] print test_set.head(5) #we normalise for items in columns[1:]: mean = city_listings[items].mean() std = np.std(city_listings[items]) N_items = "N_"+items city_listings[N_items] = (city_listings[items] - mean) / std N_columns = ["price", "N_room_type", "N_accommodates", "N_bedrooms", "N_bathrooms", "N_beds", "N_number_of_reviews", "N_latitude", "N_longitude", "N_review_scores_value"] #drop old columns normal_city_listings = city_listings[N_columns] train_set = normal_city_listings.iloc[:2888] test_set = normal_city_listings.iloc[2888:] #choose columns you want to take into account for the purpose of calculating the price feature_cols = ["N_room_type", "N_accommodates", "N_bedrooms", "N_bathrooms", "N_beds", "N_latitude", "N_longitude", "N_review_scores_value", "N_number_of_reviews"] train_set_f = train_set[feature_cols] test_set_f = test_set[feature_cols] standard_deviation = 0 k = 5 aces = 0 differences_squared = [] precision = 0.30 for index, rows in test_set_f.iterrows(): distance_series = train_set_f.apply(lambda row: distance.euclidean(rows, row), axis=1) train_set = train_set.assign(distance=distance_series) train_set.sort_values("distance", inplace=True) knn = train_set.iloc[:k] predicted_price = knn["price"].mean() predicted_price = predicted_price.item() real_price = test_set.loc[[index], :]["price"] real_price = real_price.item() differences_squared.append((predicted_price - real_price)**2) if predicted_price/real_price < 1 + precision and predicted_price/real_price > 1 - precision: aces += 1 del train_set["distance"] average_deviation = sum(differences_squared) / float(len(differences_squared)) print "Aces: ", aces rmse = (average_deviation)**0.5 print "Rmse: ", rmse, "for a price mean: ", mean_price acespercent = float(aces)/float(test_set.shape[0]) print "Accuracy %:", acespercent, "with a precision: ", precision
3.203125
3
13975.py
WaiNaat/BOJ-Python
0
12796856
import sys input = sys.stdin.readline import heapq as hq # input t = int(input()) for _ in range(t): chapter = int(input()) pages = list(map(int, input().split())) # process ''' 각 장이 섞여도 됨. >> 힙에서 제일 작은 거 두 개 합치고 다시 넣음. ''' sol = 0 hq.heapify(pages) for _ in range(chapter - 1): cost = hq.heappop(pages) + hq.heappop(pages) sol += cost hq.heappush(pages, cost) # output print(sol)
3.0625
3
pypesto/result/optimize.py
m-philipps/pyPESTO
0
12796857
"""Optimization result.""" import warnings from collections import Counter from copy import deepcopy from typing import Sequence, Union import numpy as np import pandas as pd from ..objective import History from ..problem import Problem from ..util import assign_clusters, delete_nan_inf OptimizationResult = Union['OptimizerResult', 'OptimizeResult'] class OptimizerResult(dict): """ The result of an optimizer run. Used as a standardized return value to map from the individual result objects returned by the employed optimizers to the format understood by pypesto. Can be used like a dict. Attributes ---------- id: Id of the optimizer run. Usually the start index. x: The best found parameters. fval: The best found function value, `fun(x)`. grad: The gradient at `x`. hess: The Hessian at `x`. res: The residuals at `x`. sres: The residual sensitivities at `x`. n_fval Number of function evaluations. n_grad: Number of gradient evaluations. n_hess: Number of Hessian evaluations. n_res: Number of residuals evaluations. n_sres: Number of residual sensitivity evaluations. x0: The starting parameters. fval0: The starting function value, `fun(x0)`. history: Objective history. exitflag: The exitflag of the optimizer. time: Execution time. message: str Textual comment on the optimization result. optimizer: str The optimizer used for optimization. Notes ----- Any field not supported by the optimizer is filled with None. """ def __init__( self, id: str = None, x: np.ndarray = None, fval: float = None, grad: np.ndarray = None, hess: np.ndarray = None, res: np.ndarray = None, sres: np.ndarray = None, n_fval: int = None, n_grad: int = None, n_hess: int = None, n_res: int = None, n_sres: int = None, x0: np.ndarray = None, fval0: float = None, history: History = None, exitflag: int = None, time: float = None, message: str = None, optimizer: str = None, ): super().__init__() self.id = id self.x: np.ndarray = np.array(x) if x is not None else None self.fval: float = fval self.grad: np.ndarray = np.array(grad) if grad is not None else None self.hess: np.ndarray = np.array(hess) if hess is not None else None self.res: np.ndarray = np.array(res) if res is not None else None self.sres: np.ndarray = np.array(sres) if sres is not None else None self.n_fval: int = n_fval self.n_grad: int = n_grad self.n_hess: int = n_hess self.n_res: int = n_res self.n_sres: int = n_sres self.x0: np.ndarray = np.array(x0) if x0 is not None else None self.fval0: float = fval0 self.history: History = history self.exitflag: int = exitflag self.time: float = time self.message: str = message self.optimizer = optimizer def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def summary(self): """Get summary of the object.""" message = ( "### Optimizer Result \n\n" f"* optimizer used: {self.optimizer} \n" f"* message: {self.message} \n" f"* number of evaluations: {self.n_fval} \n" f"* time taken to optimize: {self.time} \n" f"* startpoint: {self.x0} \n" f"* endpoint: {self.x} \n" ) # add fval, gradient, hessian, res, sres if available if self.fval is not None: message += f"* final objective value: {self.fval} \n" if self.grad is not None: message += f"* final gradient value: {self.grad} \n" if self.hess is not None: message += f"* final hessian value: {self.hess} \n" if self.res is not None: message += f"* final residual value: {self.res} \n" if self.sres is not None: message += f"* final residual sensitivity: {self.sres} \n" return message def update_to_full(self, problem: Problem) -> None: """ Update values to full vectors/matrices. Parameters ---------- problem: problem which contains info about how to convert to full vectors or matrices """ self.x = problem.get_full_vector(self.x, problem.x_fixed_vals) self.grad = problem.get_full_vector(self.grad) self.hess = problem.get_full_matrix(self.hess) self.x0 = problem.get_full_vector(self.x0, problem.x_fixed_vals) class OptimizeResult: """Result of the :py:func:`pypesto.optimize.minimize` function.""" def __init__(self): self.list = [] def __deepcopy__(self, memo): other = OptimizeResult() other.list = deepcopy(self.list) return other def __getattr__(self, key): """Define `optimize_result.key`.""" try: return [res[key] for res in self.list] except KeyError: raise AttributeError(key) def __getitem__(self, index): """Define `optimize_result[i]` to access the i-th result.""" try: return self.list[index] except IndexError: raise IndexError( f"{index} out of range for optimize result of " f"length {len(self.list)}." ) def __len__(self): return len(self.list) def summary(self): """Get summary of the object.""" # perform clustering for better information clust, clustsize = assign_clusters(delete_nan_inf(self.fval)[1]) counter_message = '\n'.join( ["\tCount\tMessage"] + [ f"\t{count}\t{message}" for message, count in Counter(self.message).most_common() ] ) times_message = ( f'\n\tMean execution time: {np.mean(self.time)}s\n' f'\tMaximum execution time: {np.max(self.time)}s,' f'\tid={self[np.argmax(self.time)].id}\n' f'\tMinimum execution time: {np.min(self.time)}s,\t' f'id={self[np.argmin(self.time)].id}' ) summary = ( "## Optimization Result \n\n" f"* number of starts: {len(self)} \n" f"* execution time summary: {times_message}\n" f"* summary of optimizer messages:\n{counter_message}\n" f"* best value found (approximately) {clustsize[0]} time(s) \n" f"* number of plateaus found: " f"{1 + max(clust) - sum(clustsize == 1)} \n" f"* best value: {self[0]['fval']}, " f"worst value: {self[-1]['fval']} \n\n" f"A summary of the best run:\n\n{self[0].summary()}" ) return summary def append( self, optimize_result: OptimizationResult, sort: bool = True, prefix: str = '', ): """ Append an OptimizerResult or an OptimizeResult to the result object. Parameters ---------- optimize_result: The result of one or more (local) optimizer run. sort: Boolean used so we only sort once when appending an optimize_result. prefix: The IDs for all appended results will be prefixed with this. """ current_ids = set(self.id) if isinstance(optimize_result, OptimizeResult): new_ids = [ prefix + identifier for identifier in optimize_result.id if identifier is not None ] if current_ids.isdisjoint(new_ids) and new_ids: raise ValueError( "Some id's you want to merge coincide with " "the existing id's. Please use an " "appropriate prefix such as 'run_2_'." ) for optimizer_result in optimize_result.list: self.append(optimizer_result, sort=False, prefix=prefix) elif isinstance(optimize_result, OptimizerResult): # if id is None, append without checking for duplicate ids if optimize_result.id is None: self.list.append(optimize_result) else: new_id = prefix + optimize_result.id if new_id in current_ids: raise ValueError( "The id you want to merge coincides with " "the existing id's. Please use an " "appropriate prefix such as 'run_2_'." ) optimize_result.id = new_id self.list.append(optimize_result) if sort: self.sort() def sort(self): """Sort the optimizer results by function value fval (ascending).""" def get_fval(res): return res.fval if not np.isnan(res.fval) else np.inf self.list = sorted(self.list, key=get_fval) def as_dataframe(self, keys=None) -> pd.DataFrame: """ Get as pandas DataFrame. If keys is a list, return only the specified values, otherwise all. """ lst = self.as_list(keys) df = pd.DataFrame(lst) return df def as_list(self, keys=None) -> Sequence: """ Get as list. If keys is a list, return only the specified values. Parameters ---------- keys: list(str), optional Labels of the field to extract. """ lst = self.list if keys is not None: lst = [{key: res[key] for key in keys} for res in lst] return lst def get_for_key(self, key) -> list: """Extract the list of values for the specified key as a list.""" warnings.warn( "get_for_key() is deprecated in favour of " "optimize_result['key'] and will be removed in future " "releases." ) return [res[key] for res in self.list]
2.9375
3
lecture_dl_21_examples/002_cifar10/01_dataset_test.py
Daniel1586/Initiative_tensorflow_tutorials
1
12796858
<filename>lecture_dl_21_examples/002_cifar10/01_dataset_test.py<gh_stars>1-10 #!/usr/bin/python # -*- coding: utf-8 -*- import os import tensorflow as tf if not os.path.exists('example_pic'): os.makedirs('example_pic/') with tf.Session() as sess: filename = ['A.jpg', 'B.jpg', 'C.jpg'] # string_input_producer会产生一个文件名队列,shuffle=False不打乱数据顺序,num_epochs训练周期 filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=5) # reader从文件名队列中读数据,对应的方法是reader.read--输出文件名(key)和该文件内容(value) reader = tf.WholeFileReader() key, value = reader.read(filename_queue) # tf.train.string_input_producer定义了一个epoch变量(num_epochs不为None),要对它进行初始化 tf.local_variables_initializer().run() # 使用start_queue_runners之后,才会真正把tensor推入到文件名队列 threads = tf.train.start_queue_runners(sess=sess) i = 0 while True: i += 1 image_data = sess.run(value) with open('example_pic/test_%d.jpg' % i, 'wb') as f: f.write(image_data) # 程序最后会抛出一个OutOfRangeError,这是epoch跑完,队列关闭的标志
2.625
3
tests/test_q0505.py
mirzadm/ctci-5th-py
0
12796859
<filename>tests/test_q0505.py """Unit tests for q0505.py.""" import unittest from src.q0505 import count_unequal_bits class TestCountUnequalBits(unittest.TestCase): def test_count_unequal_bits(self): self.assertRaises(ValueError, count_unequal_bits, -1, 1) self.assertEqual(count_unequal_bits(0b0, 0b0), 0) self.assertEqual(count_unequal_bits(0b1, 0b1), 0) self.assertEqual(count_unequal_bits(0b01, 0b10), 2) self.assertEqual(count_unequal_bits(0b001, 0b110), 3) if __name__ == '__main__': unittest.main()
2.5
2
mafComparator/comparatorSummarizer.py
dadidange/mafTools
0
12796860
<gh_stars>0 #!/usr/bin/env python """ comparatorSummarizer.py dent earl, dearl (a) soe ucsc edu 22 November 2011 Simple utility to summarize output of mafComparator for use with alignathon competetition. """ # Note: Actually belongs to https://github.com/dentearl/mwgAlignAnalysis # but was moved in here for convenience ################################################## # Copyright (C) 2009-2011 by # <NAME> (<EMAIL>, <EMAIL>) # ... and other members of the Reconstruction Team of <NAME>'s # lab (BME Dept. UCSC) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ################################################## import xml.etree.ElementTree as ET import xml.parsers.expat from optparse import OptionParser import os class ComparisonPair: def __init__(self, speciesA, speciesB): assert(speciesA is not None) assert(speciesB is not None) self.species = set([speciesA, speciesB]) self.truePosA = 0 # with respect to the A->B comparison self.truePosB = 0 # with respect to the B->A comparison self.falsePos = 0 self.falseNeg = 0 # region numbers are for comparisons using .bed files self.truePosRegionA = 0 # wrt A->B self.truePosRegionB = 0 # wrt B->A self.falsePosRegion = 0 self.falseNegRegion = 0 self.truePosRegionOutsideA = 0 # wrt A->B self.truePosRegionOutsideB = 0 # wrt B->A self.falsePosRegionOutside = 0 self.falseNegRegionOutside = 0 self.precision = None self.recall = None self.precisionRegion = None self.recallRegion = None self.precisionRegionOutside = None self.recallRegionOutside = None names = list(self.species) names = sorted(names, key = lambda x: x[3:]) # ignore the "sim" part of the name self.niceNames = '-'.join(names) if len(names) == 1: self.niceNames = 'self-%s' % names[0] def calcPrecision(self): # Precision is calculated as # TP_B / (TP_B + FP) # We use the TP_B since FP comes from the B->A comparison if (self.truePosB + self.falsePos) == 0: self.precision = float('nan') else: self.precision = float(self.truePosB) / (self.truePosB + self.falsePos) if (self.truePosRegionB + self.falsePosRegion) == 0: self.precisionRegion = float('nan') else: self.precisionRegion = float(self.truePosRegionB) / (self.truePosRegionB + self.falsePosRegion) if (self.truePosRegionOutsideB + self.falsePosRegionOutside) == 0: self.precisionRegionOutside = float('nan') else: self.precisionRegionOutside = (float(self.truePosRegionOutsideB) / (self.truePosRegionOutsideB + self.falsePosRegionOutside)) def calcRecall(self): # Recall is calculated as # TP_A / (TP_A + FN) # We use the TP_A since FN comes from the A->B comparison if (self.truePosA + self.falseNeg) == 0: self.recall = float('nan') else: self.recall = float(self.truePosA) / (self.truePosA + self.falseNeg) if (self.truePosRegionA + self.falseNegRegion) == 0: self.recallRegion = float('nan') else: self.recallRegion = float(self.truePosRegionA) / (self.truePosRegionA + self.falseNegRegion) if (self.truePosRegionOutsideA + self.falseNegRegionOutside) == 0: self.recallRegionOutside = float('nan') else: self.recallRegionOutside = (float(self.truePosRegionOutsideA) / (self.truePosRegionOutsideA + self.falseNegRegionOutside)) def initOptions(parser): parser.add_option('--xml', dest = 'xml', help = 'location of mafComparator output xml to summarize.') def checkOptions(options, args, parser): if options.xml is None: parser.error('specify --xml') if not os.path.exists(options.xml): parser.error('--xml %s does not exist' % options.xml) def addPairData(pairs, homTests, falsePosMode = False): """ given the dict `pairs' and a part of the xml tree `homTests', addPairData() walks the tree to add data to the pairs dict. falsePosMode vs truePosMode: the first homology test in the mafComparator output is A->B and the results of this comparison will be truePositives(A) and falseNegatives(A). the second homology test in the mC output is B->A and the results of this comparison will be truePositives(B) and falsePositives(B) (this is falsePosMode). """ hpTests = homTests.find('homologyPairTests') tests = hpTests.findall('homologyTest') for t in tests: seqA = t.attrib['sequenceA'].split('.')[0] seqB = t.attrib['sequenceB'].split('.')[0] if seqA == 'self' or seqB == 'self': continue if seqA == seqB: pass # do not compare a genome to itself # continue if t.attrib['sequenceA'] == 'aggregate' or t.attrib['sequenceB'] == 'aggregate': # ignore the aggregate sequences continue p = findPair(seqA, seqB, pairs) if p is None: p = ComparisonPair(seqA, seqB) pairs['%s-%s' % (seqA, seqB)] = p if falsePosMode: # the second homology test in the xml, B->A p.truePosB += int(t.find('aggregateResults').find('all').attrib['totalTrue']) p.falsePos += int(t.find('aggregateResults').find('all').attrib['totalFalse']) if t.find('aggregateResults').find('both') is not None: # bed file established regions p.truePosRegionB += int(t.find('aggregateResults').find('both').attrib['totalTrue']) p.falsePosRegion += int(t.find('aggregateResults').find('both').attrib['totalFalse']) p.truePosRegionOutsideB += int(t.find('aggregateResults').find('neither').attrib['totalTrue']) p.falsePosRegionOutside += int(t.find('aggregateResults').find('neither').attrib['totalFalse']) else: # the first homology test in the xml, A->B p.truePosA += int(t.find('aggregateResults').find('all').attrib['totalTrue']) p.falseNeg += int(t.find('aggregateResults').find('all').attrib['totalFalse']) if t.find('aggregateResults').find('both') is not None: # bed file established regions p.truePosRegionA += int(t.find('aggregateResults').find('both').attrib['totalTrue']) p.falseNegRegion += int(t.find('aggregateResults').find('both').attrib['totalFalse']) p.truePosRegionOutsideA += int(t.find('aggregateResults').find('neither').attrib['totalTrue']) p.falseNegRegionOutside += int(t.find('aggregateResults').find('neither').attrib['totalFalse']) def findPair(seqA, seqB, pairs): # Check to see if the pair (seqA, seqB) is stored in pairs. Return None if not, return the pair if so. if '%s-%s' % (seqA, seqB) in pairs: # if '%s-%s' % (seqB, seqA) in pairs: # raise RuntimeError('Duplicate pair found in `pairs\' dict: %s-%s' % (seqA, seqB)) return pairs['%s-%s' % (seqA, seqB)] if '%s-%s' % (seqB, seqA) in pairs: # if '%s-%s' % (seqA, seqB) in pairs: # raise RuntimeError('Duplicate pair found in `pairs\' dict: %s-%s' % (seqA, seqB)) return pairs['%s-%s' % (seqB, seqA)] return None def reportPairs(pairs, options): print('') sortedPairs = sorted(pairs, key = lambda x: pairs[x].niceNames) for pair in sortedPairs: p = pairs[pair] p.calcRecall() p.calcPrecision() if p.precision == -1.0 or (p.precision + p.recall) == 0: precStr = 'nan' fStr = 'nan' else: precStr = '%.5f' % p.precision fStr = '%.5f' % (2 * ((p.precision * p.recall)/ (p.precision + p.recall))) if p.precisionRegion == -1.0 or (p.precisionRegion + p.recallRegion) == 0: precRegStr = 'nan' fRegStr = 'nan' else: precRegStr = '%.5f' % p.precisionRegion fRegStr = '%.5f' % (2 * ((p.precisionRegion * p.recallRegion)/ (p.precisionRegion + p.recallRegion))) if p.precisionRegionOutside == -1.0 or (p.precisionRegionOutside + p.recallRegionOutside) == 0: precRegOutStr = 'nan' fRegOutStr = 'nan' else: precRegOutStr = '%.5f' % p.precisionRegionOutside fRegOutStr = '%.5f' % (2 * ((p.precisionRegionOutside * p.recallRegionOutside)/ (p.precisionRegionOutside + p.recallRegionOutside))) if not isRegionMode(pairs): print('%35s %10s %10.5f %10s %9d %9d %9d %9d' % (p.niceNames, precStr, p.recall, fStr, p.truePosA, p.truePosB, p.falsePos, p.falseNeg)) else: print('%35s %10s %10.5f %10s %9d %9d %9d %9d' % ('%s inside' % p.niceNames, precRegStr, p.recallRegion, fRegStr, p.truePosRegionA, p.truePosRegionB, p.falsePosRegion, p.falseNegRegion)) print('%35s %10s %10.5f %10s %9d %9d %9d %9d' % ('%s outside' % p.niceNames, precRegOutStr, p.recallRegionOutside, fRegOutStr, p.truePosRegionOutsideA, p.truePosRegionOutsideB, p.falsePosRegionOutside, p.falseNegRegionOutside)) def summarize(options): """ summarize() summizes the information contained in file stored in options.xml """ try: tree = ET.parse(options.xml) except xml.parsers.expat.ExpatError: raise RuntimeError('Input xml, %s is not a well formed xml document.' % options.xml) root = tree.getroot() homTests = root.findall('homologyTests') pairs = {} addPairData(pairs, homTests[0]) addPairData(pairs, homTests[1], falsePosMode = True) if isRegionMode(pairs): # if a BED was used by mafComparator then the xml will be in Region mode suffix = 'Region' truePosOutA = getItem(pairs, 'truePosRegionOutsideA', False) truePosOutB = getItem(pairs, 'truePosRegionOutsideB', False) falseNegOut = getItem(pairs, 'falseNegRegionOutside', False) falsePosOut = getItem(pairs, 'falsePosRegionOutside', False) truePosSelfOutA = getItem(pairs, 'truePosRegionOutsideA', True) truePosSelfOutB = getItem(pairs, 'truePosRegionOutsideB', True) falsePosSelfOut = getItem(pairs, 'falsePosRegionOutside', True) falseNegSelfOut = getItem(pairs, 'falseNegRegionOutside', True) precisionOut = float(truePosOutB) / (truePosOutB + falsePosOut) recallOut = float(truePosOutA) / (truePosOutA + falseNegOut) precisionSelfOut = float(truePosSelfOutB) / (truePosSelfOutB + falsePosSelfOut) recallSelfOut = float(truePosSelfOutA) / (truePosSelfOutA + falseNegSelfOut) else: suffix = '' truePosA = getItem(pairs, 'truePos' + suffix + 'A', False) truePosB = getItem(pairs, 'truePos' + suffix + 'B', False) falseNeg = getItem(pairs, 'falseNeg' + suffix, False) falsePos = getItem(pairs, 'falsePos' + suffix, False) truePosSelfA = getItem(pairs, 'truePos' + suffix + 'A', True) truePosSelfB = getItem(pairs, 'truePos' + suffix + 'B', True) falsePosSelf = getItem(pairs, 'falsePos' + suffix, True) falseNegSelf = getItem(pairs, 'falseNeg' + suffix, True) if (truePosB + falsePos) == 0: precision = float('nan') else: precision = float(truePosB) / (truePosB + falsePos) if (truePosA + falseNeg) == 0: recall = float('nan') else: recall = float(truePosA) / (truePosA + falseNeg) if (truePosSelfB + falsePosSelf) == 0: precisionSelf = float('nan') else: precisionSelf = float(truePosSelfB) / (truePosSelfB + falsePosSelf) if (truePosSelfA + falseNegSelf) == 0: recallSelf = float('nan') else: recallSelf = float(truePosSelfA) / (truePosSelfA + falseNegSelf) print '%35s, %10s, %10s, %10s, %9s, %9s, %9s, %9s' % ('dataset', 'Precision', 'Recall', 'F-score', 'TP (A)', 'TP (B)', 'FP (B)', 'FN (A)') if isRegionMode(pairs): sanityCheckRegionMode(truePosA, truePosB, falsePos, falseNeg, truePosOutA, truePosOutB, falsePosOut, falseNegOut, truePosSelfA, truePosSelfB, falsePosSelf, falseNegSelf, truePosSelfOutA, truePosSelfOutB, falsePosSelfOut, falseNegSelfOut, pairs, options) print '%35s, %10s, %10s, %10s, %9s, %9s, %9s, %9s' % ('Overall (w/o self) inside', precision, recall, 2 * (precision * recall) / (precision + recall), truePosA, truePosB, falsePos, falseNeg) print '%35s, %10s, %10s, %10s, %9s, %9s, %9s, %9s' % ('Overall (w/o self) outside', precisionOut, recallOut, 2 * ((precisionOut * recallOut) / (precisionOut + recallOut)), truePosOutA, truePosOutA, falsePosOut, falseNegOut) print '%35s, %10s, %10s, %10s, %9s, %9s, %9s, %9s' % ('Overall (w/ self) inside', precisionSelf, recallSelf, 2 * ((precisionSelf * recallSelf) / (precisionSelf + recallSelf)), truePosSelfA, truePosSelfB, falsePosSelf, falseNegSelf) print '%35s, %10s, %10s, %10s, %9s, %9s, %9s, %9s' % ('Overall (w/ self) outside', precisionSelfOut, recallSelfOut, 2 * ((precisionSelfOut * recallSelfOut) / (precisionSelfOut + recallSelfOut)), truePosSelfOutA, truePosSelfOutB, falsePosSelfOut, falseNegSelfOut) else: sanityCheck(truePosA, truePosB, falsePos, falseNeg, truePosSelfA, truePosSelfB, falsePosSelf, falseNegSelf, pairs, options) print '%35s, %10s, %10s, %10s, %9s, %9s, %9s, %9s' % ('Overall (w/o self)', precision, recall, 2 * (precision * recall) / (precision + recall), truePosA, truePosB, falsePos, falseNeg) print '%35s, %10s, %10s, %10s, %9s, %9s, %9s, %9s' % ('Overall (w/ self)', precisionSelf, recallSelf, 2 * ((precisionSelf * recallSelf) / (precisionSelf + recallSelf)), truePosSelfA, truePosSelfB, falsePosSelf, falseNegSelf) reportPairs(pairs, options) def sanityCheckRegionMode(truePosA, truePosB, falsePos, falseNeg, truePosOutA, truePosOutB, falsePosOut, falseNegOut, truePosSelfA, truePosSelfB, falsePosSelf, falseNegSelf, truePosSelfOutA, truePosSelfOutB, falsePosSelfOut, falseNegSelfOut, pairs, options): # Each column of numbers reported in the rows labeled "Overall" should be the sum of # the numbers contained in the column corresponding to "inside" or "outside" status. obsTruePosA = 0 obsTruePosB = 0 obsFalsePos = 0 obsFalseNeg = 0 obsTruePosOutA = 0 obsTruePosOutB = 0 obsFalsePosOut = 0 obsFalseNegOut = 0 obsTruePosASelf = 0 obsTruePosBSelf = 0 obsFalsePosSelf = 0 obsFalseNegSelf = 0 obsTruePosASelfOut = 0 obsTruePosBSelfOut = 0 obsFalsePosSelfOut = 0 obsFalseNegSelfOut = 0 for pair in pairs: p = pairs[pair] if p.niceNames.startswith('self-'): obsTruePosASelf += p.truePosRegionA obsTruePosBSelf += p.truePosRegionB obsFalsePosSelf += p.falsePosRegion obsFalseNegSelf += p.falseNegRegion obsTruePosASelfOut += p.truePosRegionOutsideA obsTruePosBSelfOut += p.truePosRegionOutsideB obsFalsePosSelfOut += p.falsePosRegionOutside obsFalseNegSelfOut += p.falseNegRegionOutside else: obsTruePosA += p.truePosRegionA obsTruePosB += p.truePosRegionB obsFalsePos += p.falsePosRegion obsFalseNeg += p.falseNegRegion obsTruePosOutA += p.truePosRegionOutsideA obsTruePosOutB += p.truePosRegionOutsideB obsFalsePosOut += p.falsePosRegionOutside obsFalseNegOut += p.falseNegRegionOutside obsTruePosASelf += obsTruePosA obsTruePosBSelf += obsTruePosB obsFalsePosSelf += obsFalsePos obsFalseNegSelf += obsFalseNeg obsTruePosASelfOut += obsTruePosOutA obsTruePosBSelfOut += obsTruePosOutB obsFalsePosSelfOut += obsFalsePosOut obsFalseNegSelfOut += obsFalseNegOut for obs, exp in [(obsTruePosA, truePosA), (obsTruePosB, truePosB), (obsFalsePos, falsePos), (obsFalseNeg, falseNeg), (obsTruePosOutA, truePosOutA), (obsTruePosOutB, truePosOutB), (obsFalsePosOut, falsePosOut), (obsFalseNegOut, falseNegOut), (obsTruePosASelf, truePosSelfA), (obsTruePosBSelf, truePosSelfB), (obsFalsePosSelf, falsePosSelf), (obsFalseNegSelf, falseNegSelf), (obsTruePosASelfOut, truePosSelfOutA), (obsTruePosBSelfOut, truePosSelfOutB), (obsFalsePosSelfOut, falsePosSelfOut), (obsFalseNegSelfOut, falseNegSelfOut), ]: assert(obs == exp) def sanityCheck(truePosA, truePosB, falsePos, falseNeg, truePosASelf, truePosBSelf, falsePosSelf, falseNegSelf, pairs, options): # Each column of numbers reported in the rows labeled "Overall" should be the sum of # the numbers contained in the column. obsTruePosA = 0 obsTruePosB = 0 obsFalsePos = 0 obsFalseNeg = 0 obsTruePosASelf = 0 obsTruePosBSelf = 0 obsFalsePosSelf = 0 obsFalseNegSelf = 0 for pair in pairs: p = pairs[pair] if p.niceNames.startswith('self-'): obsTruePosASelf += p.truePosA obsTruePosBSelf += p.truePosB obsFalsePosSelf += p.falsePos obsFalseNegSelf += p.falseNeg else: obsTruePosA += p.truePosA obsTruePosB += p.truePosB obsFalsePos += p.falsePos obsFalseNeg += p.falseNeg obsTruePosASelf += obsTruePosA obsTruePosBSelf += obsTruePosB obsFalsePosSelf += obsFalsePos obsFalseNegSelf += obsFalseNeg for obs, exp in [(obsTruePosA, truePosA), (obsTruePosB, truePosB), (obsFalsePos, falsePos), (obsFalseNeg, falseNeg), (obsTruePosASelf, truePosASelf), (obsTruePosBSelf, truePosBSelf), (obsFalsePosSelf, falsePosSelf), (obsFalseNegSelf, falseNegSelf),]: assert(obs == exp) def isRegionMode(pairs): """ Detects if a BED was used to restrict tests to a region """ for pair in pairs: p = pairs[pair] if p.truePosRegionA > 0 or p.truePosRegionB > 0 or p.falsePosRegion > 0 or p.falseNegRegion > 0: return True def getItem(pairs, item, alignSelf): ans = 0 for pair in pairs: p = pairs[pair] if not alignSelf: if len(p.species) == 1: continue ans += p.__dict__[item] return ans def main(): usage = ('usage: %prog \n\n' '%prog \n') parser = OptionParser(usage) initOptions(parser) options, args = parser.parse_args() checkOptions(options, args, parser) summarize(options) if __name__ == '__main__': main()
1.765625
2
tests/test_blocks.py
regulusweb/wagtail-extensions
3
12796861
import datetime import pytest from unittest.mock import patch from django.core.exceptions import ValidationError from freezegun import freeze_time from phonenumber_field.phonenumber import PhoneNumber from wagtail.core.models import Page from wagtail_extensions.blocks import ( DepartmentBlock, ImagesBlock, LinkBlock, OpeningTimeBlock, OpeningTimesBlock, PhoneBlock ) @pytest.mark.django_db @pytest.fixture def page(): # Homepage is created by Wagtail's initial migrations # But let's create our own child page for testing with. homepage = Page.objects.get(url_path='/home/') page = Page(title='A test page', slug="test") homepage.add_child(instance=page) return page def test_department_block_clean_invalid(): department = DepartmentBlock() with pytest.raises(ValidationError): department.clean({}) def test_department_block_clean_valid_with_both(): department = DepartmentBlock() department.clean({'name':'Test', 'email':'<EMAIL>', 'phones': ['+447528712345']}) def test_department_block_to_python_empty(): department = DepartmentBlock() department.to_python({}) def test_department_block_to_python_strip_empty_phonenumbers(): department = DepartmentBlock() value = department.get_prep_value({'phones': ['', '+447528712345', '']}) assert value['phones'] == ['+447528712345'] def test_link_block_with_url(): block = LinkBlock() value = block.to_python({ 'link': [{'type': 'url', 'value': '/hello/'}] }) assert value.link_url == '/hello/' assert value.link_text == '/hello/' def test_link_block_with_url_and_text(): block = LinkBlock() value = block.to_python({ 'text': 'Hello World', 'link': [{'type': 'url', 'value': '/hello/'}] }) assert value.link_url == '/hello/' assert value.link_text == 'Hello World' def test_link_block_with_empty_string_text(): block = LinkBlock() value = block.to_python({ 'text': '', 'link': [{'type': 'url', 'value': '/hello/'}] }) assert value.link_url == '/hello/' assert value.link_text == '/hello/' def test_link_block_with_missing_streamblock(): block = LinkBlock() value = block.to_python({ 'text': '', 'link': [] }) assert value.link_url == '' assert value.link_text == '' @pytest.mark.django_db def test_link_block_with_page(page): block = LinkBlock() value = block.to_python({ 'link': [{'type': 'page', 'value': page.pk}] }) assert value.link_url == page.url assert value.link_text == page.title @pytest.mark.django_db def test_link_block_with_page_that_no_longer_exists(page): """ If a page referenced by a PageChooserBlock has been deleted, the block value will be None. """ block = LinkBlock() value = block.to_python({ 'link': [{'type': 'page', 'value': None}] }) assert value.link_url == '' assert value.link_text == '' @pytest.mark.django_db def test_link_block_with_page_and_text(page): block = LinkBlock() value = block.to_python({ 'text': '<NAME>', 'link': [{'type': 'page', 'value': page.pk}] }) assert value.link_url == page.url assert value.link_text == 'Hello World' def test_link_block_clean_for_required(): block = LinkBlock() value = block.to_python({ 'text': 'Hello World', 'link': [] # This must not be empty if the field is required }) with pytest.raises(ValidationError): block.clean(value) def test_link_block_clean_for_not_required(): block = LinkBlock(required=False) value = block.to_python({ 'text': '<NAME>', 'link': [] # Can be empty if the field is not required }) # This should not raise an exception block.clean(value) @freeze_time("2017-01-01") def test_openingtime_block_clean_date_in_past(): openingtime = OpeningTimeBlock() with pytest.raises(ValidationError): openingtime.clean({'date': '2016-01-01'}) def test_openingtime_block_clean_end_before_start(): openingtime = OpeningTimeBlock() with pytest.raises(ValidationError): openingtime.clean({'start': '20:00', 'end': '08:00', 'weekday': '1'}) def test_openingtime_block_clean_no_weekday_or_date(): openingtime = OpeningTimeBlock() with pytest.raises(ValidationError): openingtime.clean({'start': '20:00', 'end': '08:00'}) @freeze_time("2017-01-01") def test_openingtime_block_clean_valid(): openingtime = OpeningTimeBlock() openingtime.clean({'start': '08:00', 'end': '20:00', 'date': '2017-01-01'}) def test_openingtime_block_to_python_empty(): openingtime = OpeningTimeBlock() openingtime.to_python({'label': '', 'date': None, 'closed': False, 'start': None, 'end': None, 'weekday': ''}) # Pass without error def test_openingtime_block_to_python_cast_weekday(): openingtime = OpeningTimeBlock() value = openingtime.to_python({'weekday': '5'}) assert value['weekday'] == 5 def test_openingtime_block_to_python_public_label(): openingtime = OpeningTimeBlock() value = openingtime.to_python({'weekday': '7'}) assert value['label'] == OpeningTimeBlock.PUBLIC_LABEL def test_openingtime_block_to_python_public_with_label(): openingtime = OpeningTimeBlock() label = 'Easter sunday' value = openingtime.to_python({'weekday': '7', 'label': label}) assert value['label'] == label def test_openingtime_block_single_date_empty(): assert OpeningTimeBlock.single_date({}) == False def test_openingtime_block_single_date_with_date(): assert OpeningTimeBlock.single_date({'date': 'some date'}) == True def test_openingtime_block_single_date_public(): assert OpeningTimeBlock.single_date({'weekday': 7}) == True def test_openingtime_block_next_date_empty(): assert OpeningTimeBlock.next_date({}) is None @freeze_time("2017-12-13") def test_openingtime_block_next_date_today(): assert OpeningTimeBlock.next_date({'weekday': 2}) == datetime.date(2017, 12, 13) @freeze_time("2017-12-13") def test_openingtime_block_next_date_sunday(): assert OpeningTimeBlock.next_date({'weekday': 6}) == datetime.date(2017, 12, 17) @freeze_time("2017-12-13") def test_openingtime_block_next_date_public(): assert OpeningTimeBlock.next_date({'weekday': 7}) is None def test_openingtimes_block_time_keyfunc_specific(): openingtime = OpeningTimeBlock() value = openingtime.to_python({}) with patch.object(openingtime, 'single_date', return_value=True): out = OpeningTimesBlock.time_keyfunc(value) assert out is value def test_openingtimes_block_time_keyfunc_non_specific(): value = OpeningTimeBlock().to_python({'closed': False, 'start': '5:00', 'end': '10:00'}) out = OpeningTimesBlock.time_keyfunc(value) assert out == (False, datetime.time(5), datetime.time(10)) @patch('wagtail_extensions.blocks.groupby') def test_openingtimes_block_group_times(mocked_groupby): value = {} mocked_groupby.return_value = [('first', [1, 4, 5]), ('second', [7, 10])] out = OpeningTimesBlock.group_times(value) assert out == [[1, 4, 5], [7, 10]] mocked_groupby.assert_called_once_with(value, OpeningTimesBlock.time_keyfunc) def test_openingtimes_block_get_time_for_date_empty(): assert OpeningTimesBlock.get_time_for_date(None, None) is None def test_openingtimes_block_get_time_for_date_no_times(): assert OpeningTimesBlock.get_time_for_date({}, datetime.date(2017, 12, 10)) is None def test_openingtimes_block_get_time_for_date_times_date(): match = {'date': datetime.date(2017, 12, 10)} value = { 'times': [ {'weekday': 4}, match, ], } assert OpeningTimesBlock.get_time_for_date(value, datetime.date(2017, 12, 10)) == match def test_openingtimes_block_get_time_for_date_times_weekday(): match = {'weekday': 6} value = { 'times': [ {'weekday': 4}, {'date': datetime.date(2017, 12, 10)}, match, ], } assert OpeningTimesBlock.get_time_for_date(value, datetime.date(2017, 12, 17)) == match def test_openingtimes_block_get_time_for_date_times_no_match(): value = { 'times': [ {'weekday': 4}, {'date': datetime.date(2017, 12, 10)}, {'weekday': 2}, ], } assert OpeningTimesBlock.get_time_for_date(value, datetime.date(2017, 12, 17)) is None @freeze_time('2017-06-28') def test_openingtimes_block_opening_today(): openingtimes = OpeningTimesBlock with patch.object(openingtimes, 'get_time_for_date') as mocked_get: value = 'test' out = openingtimes.opening_today(value) mocked_get.assert_called_once_with(value, datetime.date(2017, 6, 28)) assert out == mocked_get.return_value def test_openingtimes_block_get_context(): openingtimes = OpeningTimesBlock() value = {'times': [1, 5, 10]} with patch.object(openingtimes, 'group_times') as mocked_group,\ patch.object(openingtimes, 'opening_today') as mocked_today: ctx = openingtimes.get_context(value) mocked_group.assert_called_once_with([1, 5, 10]) mocked_today.assert_called_once_with(value) assert ctx['times'] == mocked_group.return_value assert ctx['today'] == mocked_today.return_value def test_phone_block_get_prep_value(): phone = PhoneBlock() number = PhoneNumber.from_string('+447528712345') number_str = phone.get_prep_value(number) assert number_str == '+447528712345' def test_phone_block_to_python(): phone = PhoneBlock() number = phone.to_python('+447528712345') assert number == PhoneNumber.from_string('+447528712345') def test_phone_block_to_python_empty(): phone = PhoneBlock() assert phone.to_python('') == '' def test_images_block_get_context(): block = ImagesBlock() assert block.get_context({'images': ['an image', 'another image', 'yet another image']})['column_width'] == 4 def test_images_block_get_context_empty_list(): block = ImagesBlock() assert block.get_context({})['column_width'] == 12
2.140625
2
django_workflow_system/utils/response_schema_handlers/__init__.py
eikonomega/django-workflow-system
2
12796862
"""Convenience imports.""" from .date_range_question import get_response_schema as date_range_question_schema from .free_form_question import get_response_schema as free_form_question_schema from .multiple_choice_question import ( get_response_schema as multiple_choice_question_schema, ) from .numeric_range_question import get_response_schema as numeric_range_question_schema from .single_choice_question import get_response_schema as single_choice_question_schema from .true_false_question import get_response_schema as true_false_question_schema
1.0625
1
utils/start.py
shadowcompiler/Jo
0
12796863
<filename>utils/start.py # coding:utf-8 # open start message file start_file = open('ressources/start.txt', 'r', encoding='utf-8') message = start_file.read() start_file.close()
2.078125
2
bluebird/sim_client/bluesky/sim_client.py
rkm/bluebird
8
12796864
""" BlueSky simulation client class """ # TODO: Need to re-add the tests for string parsing/units from the old API tests import os from typing import List from semver import VersionInfo from .bluesky_aircraft_controls import BlueSkyAircraftControls from .bluesky_simulator_controls import BlueSkySimulatorControls from bluebird.settings import Settings from bluebird.sim_client.bluesky.bluesky_client import BlueSkyClient from bluebird.utils.abstract_sim_client import AbstractSimClient from bluebird.utils.timer import Timer _BS_MIN_VERSION = os.getenv("BS_MIN_VERSION") if not _BS_MIN_VERSION: raise ValueError("The BS_MIN_VERSION environment variable must be set") MIN_SIM_VERSION = VersionInfo.parse(_BS_MIN_VERSION) # TODO Check cases where we need this def _assert_valid_args(args: list): """ Since BlueSky only accepts commands in the form of (variable-length) strings, we need to check the arguments for each command string we construct before sending it """ # Probably a cleaner way of doing this... assert all( x and not x.isspace() and x != "None" for x in map(str, args) ), f"Invalid argument in : {args}" class SimClient(AbstractSimClient): """AbstractSimClient implementation for BlueSky""" @property def aircraft(self) -> BlueSkyAircraftControls: return self._aircraft_controls @property def simulation(self) -> BlueSkySimulatorControls: return self._sim_controls @property def sim_version(self) -> VersionInfo: return self._client.host_version def __init__(self, **kwargs): self._client = BlueSkyClient() self._aircraft_controls = BlueSkyAircraftControls(self._client) self._sim_controls = BlueSkySimulatorControls(self._client) def start_timers(self) -> List[Timer]: return self._client.start_timers() def connect(self, timeout=1) -> None: self._client.connect( Settings.SIM_HOST, event_port=Settings.BS_EVENT_PORT, stream_port=Settings.BS_STREAM_PORT, timeout=timeout, ) def shutdown(self, shutdown_sim: bool = False) -> bool: self._client.stop() return True
2.546875
3
Stability.py
ahmadborzou/Study_DM_in_Galaxies-master
0
12796865
<reponame>ahmadborzou/Study_DM_in_Galaxies-master<gh_stars>0 """ Created on May 19 2019 author : <NAME>, PhD email : <EMAIL> affiliation: Baylor University """ import numpy as np from Galaxies import profile import Constants as co import Inputs as ins import warnings ## a galaxy(DM mass,n0,T0) gal = profile(ins.m,ins.n0,ins.T0) def SolveStability(): ## increments of xi dxi = gal.xi(co.parsec*0.1) ## start xi from dxi rather than 0 to avoid singularity xi = np.copy(dxi) ## temperature setup y = ins.y(xi) y_p = ins.y_p(xi) ## fugacity setup lns = 0. ## s0=1 =>lns0 = 0 lns_p = 0. ## number of loops in the while loop N = 0 ## mass of galaxy M = 0. ## for free falling speed v02_vr2 = 0. ## To calculate the Gravitational Potential energy temphi = 0. ## containers to store the outputs xi_arr = [] r_arr = [] lns_arr = [] lnsp_arr = [] lnspp_arr = [] y_arr = [] yp_arr = [] ypp_arr = [] rho_arr = [] rhop_arr = [] P_arr = [] M_arr = [] v02_vr2_arr = [] temphi_arr = [] ## append the initial values xi_arr.append(xi) r_arr.append(gal.r(xi)) lns_arr.append(lns) lnsp_arr.append(lns_p) lnspp_arr.append(0.) y_arr.append(y) yp_arr.append(y_p) ypp_arr.append(0.) rho_arr.append(gal.m*gal.n(lns,y)) rhop_arr.append(gal.m*gal.n_p(lns_p,lns,y_p,y)) P_arr.append(gal.P(lns,y)) M_arr.append(M) v02_vr2_arr.append(v02_vr2) temphi_arr.append(temphi) ## stop the loop when density is 1/1000 of the initial value while gal.n(lns,y) > 1.e-3*gal.n0: ## second derivative of y and s y_pp = ins.y_pp(xi) lns_pp = gal.lnspp(lns_p,lns,y_pp,y_p,y,xi) ## set the temperature and its derivative y = ins.y(xi) y_p = ins.y_p(xi) ## determine s and y if N == 0: ## Newton method in the first loop lns += lns_p*dxi lns_p += lns_pp*dxi ############ ## adapt dxi ############ ## tolerance toler = 0.003 ## at dxi/2. forward lns_12 = lns_arr[-1] + lns_p*(dxi/2.) lns_p_12 = lnsp_arr[-1] + lns_pp*(dxi/2.) ## at dxi lns_ = lns_12 + lns_p_12*(dxi/2.) lns_pp_12 = gal.lnspp(lns_p_12,lns_12,ins.y_pp(xi+dxi/2.),ins.y_p(xi+dxi/2.),ins.y(xi+dxi/2.),xi+dxi/2.) lns_p_ = lns_p_12 + lns_pp_12*(dxi/2.) ## compare densities n1 = gal.n(lns,y) n2 = gal.n(lns_,y) n0 = gal.n(lns_arr[-1],y_arr[-1]) error = abs(n1-n2)/(n0*dxi) ## suggested dxi dxi_suggest = toler/error*dxi ## the smallest dxi if dxi_suggest < gal.xi(co.parsec*0.01): dxi = gal.xi(co.parsec*0.01) ## the largest dxi elif dxi_suggest > gal.xi(co.parsec): dxi = gal.xi(co.parsec) ## if in the range, accept the suggested dxi else: dxi = dxi_suggest print("new dxi: %g (pc)"%(dxi/gal.xi(co.parsec))) ############ ## end adapt ############ else: ## Verlet method lns = -lns_arr[-2] + 2.*lns + lns_pp*dxi**2 lns_p = lnsp_arr[-2] + 2.*lns_pp*dxi ## for unrealistic temperature profiles temperature can turn negative ## break the loop and inform the user if y < 0.: print ("***\n***\nNegative temperature. Breaking ...\n***\n***") raise(Exception("Negative temperature. Unacceptable solution")) break ## determine xi xi += dxi ## mass at radius r in SI units using M = M + dM M += 4.*np.pi*(gal.r(xi))**2*gal.m*gal.n(lns,y)*gal.r(dxi) v02_vr2 +=2.*co.G*M*gal.r(dxi)/(gal.r(xi))**2 temphi += gal.r(xi)*gal.m*gal.n(lns,y)*gal.r(dxi) ## break the loop and inform the user if derivative of density is infinite if gal.n_p(lns_p,lns,y_p,y) == np.inf: print ("***\n***\nderivative of number density is infinite.\nnumber density will sharply fall to zero.\nthis is usually the edge of the system.\nBreaking the while loop ...\n***\n***") break ## break the loop and inform the user if fugacity or its derivatives are infinite if lns == np.inf: print ("***\n***\nlog of z/z0 is infinite.\nThis is full degeneracy limit. We can't handle this at this point.\nBreaking the loop ...\n***\n***") break if lns_p == np.inf: print ("***\n***\n1st derivative of log of z/z0 is infinite.\nWe can't handle this at this point.\nBreaking the loop ...\n***\n***") break if lns_pp == np.inf: print ("***\n***\n2nd derivative of log of z/z0 is infinite.\nWe can't handle this at this point.\nBreaking the loop ...\n***\n***") break ## add the calculated quantities into the containers xi_arr.append(xi) r_arr.append(gal.r(xi)) lns_arr.append(lns) lnsp_arr.append(lns_p) lnspp_arr.append(lns_pp) y_arr.append(y) yp_arr.append(y_p) ypp_arr.append(y_pp) rho_arr.append(gal.m*gal.n(lns,y)) rhop_arr.append(gal.m*gal.n_p(lns_p,lns,y_p,y)) P_arr.append(gal.P(lns,y)) M_arr.append(M) v02_vr2_arr.append(v02_vr2) temphi_arr.append(temphi) try: if N%1000 == 0 and N>0: print ("r: %1.1e (kpc) xi: %1.1e "%(gal.r(xi)/(co.parsec*1000.),xi)) print ("lnz: %1.1e lns: %1.1e lnsp: %1.1e lnspp: %1.1e"%(gal.lnz0+lns,lns,lns_p,lns_pp)) print ("T: %1.1e (Kelvin) y: %1.1e yp: %1.1e ypp: %1.1e"%(gal.T0*y,y,y_p,y_pp)) print ("n: %1.1e (1/m^3) rho: %1.1e (kg/m^3)"%(gal.n(lns,y),gal.n(lns,y)*gal.m)) print ("M: %1.1e (sun)"%(M/co.MSun)) print ("--") except: ## this is just a print. no action needed pass ## change the counter N+=1 ################################### ## convert the lists to numpy array y_arr = np.array(y_arr) yp_arr = np.array(yp_arr) ypp_arr = np.array(ypp_arr) lns_arr = np.array(lns_arr) lnsp_arr = np.array(lnsp_arr) r_arr = np.array(r_arr) rho_arr = np.array(rho_arr) P_arr = np.array(P_arr) M_arr = np.array(M_arr) v02_vr2_arr = np.array(v02_vr2_arr) temphi_arr = np.array(temphi_arr) ## return the containers return lns_arr, lnsp_arr, lnspp_arr,\ y_arr, yp_arr, ypp_arr,\ r_arr, rho_arr, P_arr,\ M_arr, v02_vr2_arr, temphi_arr
2.265625
2
gerateData_RuleClass.py
rafael-veiga/Classification-algorithm-of-Congenital-Zika-Syndrome-characterizations-diagnosis-and-validation
0
12796866
# -*- coding: utf-8 -*- """ Created on Mon Jul 27 08:49:21 2020 @author: rafae """ import pandas as pd import numpy as np def gerarbanco(): banco = pd.read_stata("Microcefalia MS analysis 20160609.dta") circ = pd.read_csv("circumference.csv",sep=";",index_col='sem') banco.index = range(len(banco.index)) bancoNovo = pd.DataFrame() banco.NV_USG_RESULT.replace( ['ALTERADO','NORMAL'],['Alterado','Normal'],inplace=True) # rule classification sexo = banco.TP_SEXO classFinal = pd.Series([np.nan]*len(sexo)) classFinal[banco.NV_CMV=='IgM reagente'] = 'Discarded' classFinal[banco.NV_HCV=='Reagente'] = 'Discarded' classFinal[banco.NV_RUBEOLA=='IgM reagente'] = 'Discarded' classFinal[banco.NV_TOXO=='IgM reagente'] = 'Discarded' classFinal[banco.NV_RM_RESULT=='Normal'] = 'Discarded' classFinal[banco.NV_TC_RESULT=='Normal'] = 'Discarded' classFinal[banco.NV_ZIKA=='Positivo'] = 'Definite' # organize database tamanhoCabe = banco.headcirc bancoNovo['sexo'] = list(sexo) bancoNovo['tamanhoCabe'] = list(tamanhoCabe) bancoNovo['classFeto'] = list(banco.TP_CLASSIFICACAO_FETO_RN) semanaGes = banco.SINASC_SEMAGESTAC missing = pd.Series([np.nan]*len(sexo)) missing[bancoNovo.tamanhoCabe.isnull()]=1 missing[sexo.isnull()]=1 missing[bancoNovo.classFeto.isnull()]=1 missing[semanaGes.isnull()]=1 micro = pd.Series([np.nan]*len(sexo)) for i in range(len(sexo)): if missing[i]!=1: if semanaGes[i]<=42 and semanaGes[i]>=14: ref1 =0 if sexo[i]=='Masculino': ref1 = circ.boy_min[semanaGes[i]] else: ref1 = circ.girl_min[semanaGes[i]] if tamanhoCabe[i]<ref1: micro[i]=1 else: micro[i]=0 bancoNovo['micro'] = list(micro) banco['micro']=micro bancoNovo['NV_TC_MICRO'] = list(banco.NV_TC_MICRO) #sorologia bancoNovo['NV_Storch'] =list(banco.lab_STORCH) bancoNovo['NV_sifilis'] = list(banco.NV_SIFILIS) bancoNovo['NV_TOXO'] = list(banco.NV_TOXO.replace(['IgG reagente','IgM reagente'],['Reagente','Reagente'])) bancoNovo['NV_CMV'] =list( banco.NV_CMV) bancoNovo['NV_DENGUE']=list(banco.NV_DENGUE.replace(['IgG reagente','IgM reagente'],['Reagente','Reagente'])) bancoNovo['NV_CHIK']=list(banco.NV_CHIK) count_storch = pd.Series([np.nan]*len(sexo)) for i in range(len(sexo)): if len(bancoNovo.NV_sifilis[i].strip())>1: count_storch[i]=1 if len(bancoNovo.NV_CMV[i].strip())>1: if count_storch.isnull()[i]: count_storch[i]=1 else: count_storch[i]=count_storch[i]+1 if len(bancoNovo.NV_TOXO[i].strip())>1: if count_storch.isnull()[i]: count_storch[i]=1 else: count_storch[i]=count_storch[i]+1 banco['count_storch'] = count_storch bancoNovo['count_storch'] = list(count_storch) #exames bancoNovo['NV_USG_MICRO']=list(banco.NV_USG_MICRO) bancoNovo['NV_TC_MICRO']=list(banco.NV_TC_MICRO) bancoNovo['NV_RM_MICRO']=list(banco.NV_RM_MICRO) bancoNovo['NV_USG_RESULT']=list(banco.NV_USG_RESULT) bancoNovo['NV_TC_RESULT']=list(banco.NV_TC_RESULT) bancoNovo['NV_RM_RESULT']=list(banco.NV_TC_RESULT) texto = banco.NV_RM_CALC texto = texto + ' ' + banco.NV_USG_CALC_DESC texto = texto + ' ' + banco.NV_RM_CALC texto = texto + ' ' + banco.NV_TC_CALC texto = texto + ' ' + banco.NV_USG_OUTRO texto = texto + ' ' + banco.NV_TC_OUTRO texto = texto + ' ' + banco.NV_RM_OUTRO texto = texto + ' ' + banco.NV_USG_VENTR texto = texto + ' ' + banco.NV_TC_VENTR texto = texto + ' ' + banco.NV_RM_VENTR missImagem = pd.Series([np.nan]*len(sexo)) for i in range(len(sexo)): if len(banco.NV_USG_RESULT[i].strip())<2 and len(banco.NV_TC_RESULT[i].strip())<2 and len(banco.NV_RM_RESULT[i].strip())<2 and len(texto[i].strip())<2: missImagem[i] = 1 else: missImagem[i] = 0 texto = texto + ' ' + banco.DS_OBSERVACOES_GERAIS for i in range(len(texto)): texto[i] = texto[i].strip().replace('.',' ').replace(';',' ').replace(',',' ').replace('?',' ').replace("'",' ').replace('=','').replace('-',' ').replace('+',' ').replace('/',' ').replace('(',' ').replace(')',' ').replace('<',' ').replace('>',' ').replace(':',' ').replace('&',' ').replace('¿',' ').replace('%',' ').replace('\n',' ').replace('"',' ').lower() bancoNovo['missImagem'] = list(missImagem) bancoNovo['casegr'] = list(banco.casegr) bancoNovo['classFinal']=list(classFinal) return texto,bancoNovo texto,bancoNovo = gerarbanco() bancoNovo['texto'] = list(texto) # type class and save typeClass= pd.Series([np.nan]*len(bancoNovo)) typeClass[bancoNovo.classFinal.isnull()==False]='rule' typeClass[(typeClass.isnull()) & (bancoNovo.texto.str.strip()!='')]='group2' typeClass[typeClass.isnull()]='group1' bancoNovo['typeClass']=list(typeClass) bancoNovo.to_csv('banco_total.csv')
2.53125
3
itertools_ex.py
byaka/functionsEx_new
0
12796867
<gh_stars>0 # -*- coding: utf-8 -*- import types, collections """ Collection of methods for working with Generators, which respects `yield .. send ..` ability. """ def gExtend(prepend, g, append=None): _gType=types.GeneratorType _iType=collections.Iterable if not isinstance(g, _gType): raise TypeError('Wrong type, second arg must be Generator') if isinstance(prepend, _gType): gPrepend=prepend elif isinstance(prepend, _iType): gPrepend=g else: raise TypeError('Wrong type, first arg must be Generator or Iterable') if append is None: gAppend=None elif isinstance(append, _gType): gAppend=append elif isinstance(append, _iType): gAppend=None else: raise TypeError('Wrong type, arg `append` must be Generator or Iterable') for v in prepend: extCmd=(yield v) if extCmd is not None: yield # this allows to use our generator inside `for .. in ..` without skipping on `send` gPrepend.send(extCmd) # for v in g: extCmd=(yield v) if extCmd is not None: yield # this allows to use our generator inside `for .. in ..` without skipping on `send` g.send(extCmd) # if append is not None: for v in prepend: extCmd=(yield v) if extCmd is not None: yield # this allows to use our generator inside `for .. in ..` without skipping on `send` if gAppend is not None: gAppend.send(extCmd) def gCheck(g): try: return gExtend((next(g),), g) except StopIteration: return () def gChain(*gens): for g in gens: isGen=isinstance(g, types.GeneratorType) for o in g: extCmd=(yield o) if extCmd is not None: yield # this allows to use our generator inside `for .. in ..` without skipping on `send` if isGen: g.send(extCmd) def grouper(n, obj, fill=None): # group items by n (ABCDEFG --> ABC DEF Gxx if n=3) args=[iter(obj)]*n return izip_longest(fill=fill, *args)
2.859375
3
iseq/gencode.py
EBI-Metagenomics/iseq
0
12796868
<filename>iseq/gencode.py # NCBI genetic code table version 4.6 from dataclasses import dataclass from typing import Dict, List, Optional, Tuple __all__ = ["GeneticCode"] genetic_codes: List[Tuple[str, str, int]] = [] names: Dict[str, int] = {} alt_names: Dict[str, int] = {} ids: Dict[int, int] = {} @dataclass class GeneticCode: name: str alt_name: str id: int def __init__( self, name: Optional[str] = None, alt_name: Optional[str] = None, id: Optional[int] = None, ): n = sum([name is None, alt_name is None, id is None]) if n != 2: raise ValueError("You must use one, and only one, parameter.") if name is not None: if name in names: self.name, self.alt_name, self.id = genetic_codes[names[name]] return raise ValueError(f"Unknown name {name}.") if alt_name is not None: if alt_name in alt_names: self.name, self.alt_name, self.id = genetic_codes[alt_names[alt_name]] return raise ValueError(f"Unknown alternative name {alt_name}.") assert id is not None self.name, self.alt_name, self.id = genetic_codes[ids[id]] def register_ncbi_genetic_code(name: str, alt_name: str, id: int): names[name] = len(genetic_codes) if alt_name != "": alt_names[alt_name] = len(genetic_codes) ids[id] = len(genetic_codes) genetic_codes.append((name, alt_name, id)) register_ncbi_genetic_code( "Standard", "SGC0", 1, ) register_ncbi_genetic_code( "Vertebrate Mitochondrial", "SGC1", 2, ) register_ncbi_genetic_code( "Yeast Mitochondrial", "SGC2", 3, ) register_ncbi_genetic_code( "Mold Mitochondrial; Protozoan Mitochondrial; Coelenterate " "Mitochondrial; Mycoplasma; Spiroplasma", "SGC3", 4, ) register_ncbi_genetic_code( "Invertebrate Mitochondrial", "SGC4", 5, ) register_ncbi_genetic_code( "Ciliate Nuclear; Dasycladacean Nuclear; Hexamita Nuclear", "SGC5", 6, ) register_ncbi_genetic_code( "Echinoderm Mitochondrial; Flatworm Mitochondrial", "SGC8", 9, ) register_ncbi_genetic_code( "Euplotid Nuclear", "SGC9", 10, ) register_ncbi_genetic_code( "Bacterial, Archaeal and Plant Plastid", "", 11, ) register_ncbi_genetic_code( "Alternative Yeast Nuclear", "", 12, ) register_ncbi_genetic_code( "Ascidian Mitochondrial", "", 13, ) register_ncbi_genetic_code( "Alternative Flatworm Mitochondrial", "", 14, ) register_ncbi_genetic_code( "Blepharisma Macronuclear", "", 15, ) register_ncbi_genetic_code( "Chlorophycean Mitochondrial", "", 16, ) register_ncbi_genetic_code( "Trematode Mitochondrial", "", 21, ) register_ncbi_genetic_code( "Scenedesmus obliquus Mitochondrial", "", 22, ) register_ncbi_genetic_code( "Thraustochytrium Mitochondrial", "", 23, ) register_ncbi_genetic_code( "Rhabdopleuridae Mitochondrial", "", 24, ) register_ncbi_genetic_code( "Candidate Division SR1 and Gracilibacteria", "", 25, ) register_ncbi_genetic_code( "Pachysolen tannophilus Nuclear", "", 26, ) register_ncbi_genetic_code( "Karyorelict Nuclear", "", 27, ) register_ncbi_genetic_code( "Condylostoma Nuclear", "", 28, ) register_ncbi_genetic_code( "Mesodinium Nuclear", "", 29, ) register_ncbi_genetic_code( "Peritrich Nuclear", "", 30, ) register_ncbi_genetic_code( "Blastocrithidia Nuclear", "", 31, ) register_ncbi_genetic_code( "Balanophoraceae Plastid", "", 32, ) register_ncbi_genetic_code( "Cephalodiscidae Mitochondrial", "", 33, )
2.484375
2
questions/permutations/Solution.py
marcus-aurelianus/leetcode-solutions
141
12796869
''' Given a collection of distinct integers, return all possible permutations. Example: Input: [1,2,3] Output: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ] ''' class Solution: def permute(self, nums: List[int]) -> List[List[int]]: def generate_permutation(nums, ret, curr, visited): if len(curr) == len(nums): ret.append(list(curr)) return for num in nums: if num in visited: continue visited.add(num) curr.append(num) generate_permutation(nums, ret, curr, visited) curr.pop() visited.remove(num) ret = [] curr = [] visited = set() generate_permutation(nums, ret, curr, visited) return ret
3.8125
4
Redis/sentinel.py
Oliver-Yan-2019/algorithm
1
12796870
from redis import StrictRedis class SentinelClient(object): def __init__(self, url, db=None, name='default', health_check_interval=30): """create a redis client. Args: url: redis server url. db: redis database, default 0. name: client name, default 'default'. health_check_interval: how many seconds to check whether the redis server is healthy. """ self.client = StrictRedis.from_url( url=url, db=db, client_name=name, health_check_interval=health_check_interval, decode_responses=True ) if __name__ == '__main__': _client = SentinelClient(url='redis://localhost:26379') _pub_sub = _client.client.pubsub() _pub_sub.psubscribe('*') for i in _pub_sub.listen(): print(i)
2.90625
3
pymaster/field.py
LSSTDESC/NaMaster
37
12796871
<reponame>LSSTDESC/NaMaster from pymaster import nmtlib as lib import numpy as np from pymaster.utils import NmtWCSTranslator class NmtField(object): """ An NmtField object contains all the information describing the fields to correlate, including their observed maps, masks and contaminant templates. :param mask: array containing a map corresponding to the field's mask. \ Should be 1-dimensional for a HEALPix map or 2-dimensional for a map \ with rectangular pixelization. :param maps: array containing the observed maps for this field. Should be \ at least 2-dimensional. The first dimension corresponds to the number \ of maps, which should be 1 for a spin-0 field and 2 otherwise. \ The other dimensions should be [npix] for HEALPix maps or \ [ny,nx] for maps with rectangular pixels. For a spin>0 field, the two \ maps to pass should be the usual Q/U Stokes parameters for \ polarization, or e1/e2 (gamma1/gamma2 etc.) in the case of cosmic \ shear. It is important to note that NaMaster uses the same \ polarization convention as HEALPix (i.e. with the x-coordinate \ growing with increasing colatitude theta). It is however more common \ for galaxy ellipticities to be provided using the IAU convention \ (i.e. x grows with declination). In this case, the sign of the \ e2/gamma2 map should be swapped before using it to create an \ NmtField. See more \ `here <https://healpix.jpl.nasa.gov/html/intronode12.htm>`_ . \ If `None`, this field will only contain a mask but no maps. The field \ can then be used to compute a mode-coupling matrix, for instance, \ but not actual power spectra. :param spin: field's spin. If `None` it will be set to 0 if there is a single map on input, and will default to 2 if there are 2 maps. :param templates: array containing a set of contaminant templates for \ this field. This array should have shape [ntemp][nmap]..., where \ ntemp is the number of templates, nmap should be 1 for spin-0 fields \ and 2 otherwise. The other dimensions should be [npix] for \ HEALPix maps or [ny,nx] for maps with rectangular pixels. The \ best-fit contribution from each contaminant is automatically removed \ from the maps unless templates=None. :param beam: spherical harmonic transform of the instrumental beam \ (assumed to be rotationally symmetric - i.e. no m dependence). If \ None, no beam will be corrected for. Otherwise, this array should \ have at least as many elements as the maximum multipole sampled by \ the maps + 1 (e.g. if a HEALPix map, it should contain 3*nside \ elements, corresponding to multipoles from 0 to 3*nside-1). :param purify_e: use pure E-modes? :param purify_b: use pure B-modes? :param n_iter_mask_purify: number of iterations used to compute an \ accurate SHT of the mask when using E/B purification. :param tol_pinv: when computing the pseudo-inverse of the contaminant \ covariance matrix, all eigenvalues below tol_pinv * max_eval will be \ treated as singular values, where max_eval is the largest eigenvalue. \ Only relevant if passing contaminant templates that are likely to be \ highly correlated. :param wcs: a WCS object if using rectangular pixels (see \ http://docs.astropy.org/en/stable/wcs/index.html). :param n_iter: number of iterations when computing a_lms. :param lmax_sht: maximum multipole up to which map power spectra will be \ computed. If negative or zero, the maximum multipole given the map \ resolution will be used (e.g. 3 * nside - 1 for HEALPix maps). :param masked_on_input: set to `True` if input maps and templates are \ already multiplied by the masks. Note that this is not advisable \ if you're using purification. :param lite: set to `True` if you want to only store the bare minimum \ necessary to run a standard pseudo-Cl with deprojection and \ purification, but you don't care about deprojection bias. This \ will reduce the memory taken up by the resulting object. """ def __init__(self, mask, maps, spin=None, templates=None, beam=None, purify_e=False, purify_b=False, n_iter_mask_purify=3, tol_pinv=1E-10, wcs=None, n_iter=3, lmax_sht=-1, masked_on_input=False, lite=False): self.fl = None pure_e = 0 if purify_e: pure_e = 1 pure_b = 0 if purify_b: pure_b = 1 masked_input = 0 if masked_on_input: masked_input = 1 wt = NmtWCSTranslator(wcs, mask.shape) if wt.is_healpix == 0: if wt.flip_th: mask = mask[::-1, :] if wt.flip_ph: mask = mask[:, ::-1] mask = mask.reshape(wt.npix) if maps is None: mask_only = True if spin is None: raise ValueError("Please supply field spin") lite = True else: mask_only = False if (len(maps) != 1) and (len(maps) != 2): raise ValueError("Must supply 1 or 2 maps per field") if spin is None: if len(maps) == 1: spin = 0 else: spin = 2 else: if (((spin != 0) and len(maps) == 1) or ((spin == 0) and len(maps) != 1)): raise ValueError("Spin-zero fields are " "associated with a single map") if wt.is_healpix and (len(maps[0]) != len(mask)): raise ValueError("All maps must have the same resolution") if (pure_e or pure_b) and spin != 2: raise ValueError("Purification only implemented for spin-2 fields") # Flatten if 2D maps if (not mask_only) and (wt.is_healpix == 0): try: maps = np.array(maps) if wt.flip_th: maps = maps[:, ::-1, :] if wt.flip_ph: maps = maps[:, :, ::-1] maps = maps.reshape([len(maps), wt.npix]) except (IndexError, ValueError): raise ValueError("Input maps have the wrong shape") if isinstance(templates, (list, tuple, np.ndarray)): ntemp = len(templates) if (len(templates[0]) != 1) and (len(templates[0]) != 2): raise ValueError("Must supply 1 or 2 maps per field") if wt.is_healpix == 0: # Flatten if 2D maps try: templates = np.array(templates) if wt.flip_th: templates = templates[:, :, ::-1, :] if wt.flip_ph: templates = templates[:, :, :, ::-1] templates = templates.reshape([ntemp, len(maps), wt.npix]) except (IndexError, ValueError): raise ValueError("Input templates have the wrong shape") if len(templates[0][0]) != len(mask): raise ValueError("All maps must have the same resolution") else: if templates is not None: raise ValueError("Input templates can only be an array " "or None\n") if lmax_sht > 0: lmax = lmax_sht else: lmax = wt.get_lmax() if isinstance(beam, (list, tuple, np.ndarray)): if len(beam) <= lmax: raise ValueError("Input beam must have at least %d elements " "given the input map resolution" % (lmax)) beam_use = beam else: if beam is None: beam_use = np.ones(lmax+1) else: raise ValueError("Input beam can only be an array or None\n") if mask_only: self.fl = lib.field_alloc_empty(wt.is_healpix, wt.nside, lmax_sht, wt.nx, wt.ny, wt.d_phi, wt.d_theta, wt.phi0, wt.theta_max, spin, mask, beam_use, pure_e, pure_b, n_iter_mask_purify) else: if isinstance(templates, (list, tuple, np.ndarray)): self.fl = lib.field_alloc_new(wt.is_healpix, wt.nside, lmax_sht, wt.nx, wt.ny, wt.d_phi, wt.d_theta, wt.phi0, wt.theta_max, spin, mask, maps, templates, beam_use, pure_e, pure_b, n_iter_mask_purify, tol_pinv, n_iter, masked_input, int(lite)) else: self.fl = lib.field_alloc_new_notemp( wt.is_healpix, wt.nside, lmax_sht, wt.nx, wt.ny, wt.d_phi, wt.d_theta, wt.phi0, wt.theta_max, spin, mask, maps, beam_use, pure_e, pure_b, n_iter_mask_purify, n_iter, masked_input, int(lite)) self.lite = lite def __del__(self): if self.fl is not None: if lib.field_free is not None: lib.field_free(self.fl) self.fl = None def get_mask(self): """ Returns this field's mask as a 1D array. :return: mask """ return lib.get_mask(self.fl, int(self.fl.npix)) def get_maps(self): """ Returns a 2D array ([nmap][npix]) corresponding to the observed maps \ for this field. If the field was initialized with contaminant \ templates, the maps returned by this function have their best-fit \ contribution from these contaminants removed. :return: 2D array of maps """ if self.lite: raise ValueError("Input maps unavailable for lightweight fields") maps = np.zeros([self.fl.nmaps, self.fl.npix]) for imap in range(self.fl.nmaps): maps[imap, :] = lib.get_map(self.fl, imap, int(self.fl.npix)) else: mps = maps return mps def get_alms(self): """ Returns a 2D array ([nmap][nlm]) corresponding to the observed \ harmonic coefficients of this field. :return: 2D array of alms """ if self.lite: raise ValueError("Alms unavailable for lightweight fields") alms = [] for imap in range(self.fl.nmaps): alms.append(lib.get_alms(self.fl, imap, int(2*self.fl.nalms))) alms = np.array(alms).reshape([self.fl.nmaps, self.fl.nalms, 2]) alms = alms[:, :, 0] + 1j * alms[:, :, 1] return alms def get_templates(self): """ Returns a 3D array ([ntemp][nmap][npix]) corresponding to the \ contaminant templates passed when initializing this field. :return: 3D array of maps """ if self.lite: raise ValueError("Input maps unavailable for lightweight fields") temp = np.zeros([self.fl.ntemp, self.fl.nmaps, self.fl.npix]) for itemp in range(self.fl.ntemp): for imap in range(self.fl.nmaps): temp[itemp, imap, :] = lib.get_temp( self.fl, itemp, imap, int(self.fl.npix) ) else: tmps = temp return tmps class NmtFieldFlat(object): """ An NmtFieldFlat object contains all the information describing the \ flat-sky fields to correlate, including their observed maps, masks \ and contaminant templates. :param float lx,ly: size of the patch in the x and y directions (in \ radians) :param mask: 2D array (nx,ny) containing a HEALPix map corresponding \ to the field's mask. :param maps: 2 2D arrays (nmaps,nx,ny) containing the observed maps \ for this field. The first dimension corresponds to the number of \ maps, which should be 1 for a spin-0 field and 2 otherwise. \ If `None`, this field will only contain a mask but no maps. The field \ can then be used to compute a mode-coupling matrix, for instance, \ but not actual power spectra. :param spin: field's spin. If `None` it will be set to 0 if there is a single map on input, and will default to 2 if there are 2 maps. :param templates: array of maps (ntemp,nmaps,nx,ny) containing a set \ of contaminant templates for this field. This array should have \ shape [ntemp][nmap][nx][ny], where ntemp is the number of \ templates, nmap should be 1 for spin-0 fields and 2 for spin-2 \ fields, and nx,ny define the patch. The best-fit contribution \ from each contaminant is automatically removed from the maps \ unless templates=None :param beam: 2D array (2,nl) defining the FT of the instrumental beam \ (assumed to be rotationally symmetric). beam[0] should contain \ the values of l for which de beam is defined, with beam[1] \ containing the beam values. If None, no beam will be corrected \ for. :param purify_e: use pure E-modes? :param purify_b: use pure B-modes? :param tol_pinv: when computing the pseudo-inverse of the contaminant \ covariance matrix, all eigenvalues below tol_pinv * max_eval will \ be treated as singular values, where max_eval is the largest \ eigenvalue. Only relevant if passing contaminant templates that \ are likely to be highly correlated. :param masked_on_input: set to `True` if input maps and templates are already multiplied by the masks. Note that this is not advisable if you're using purification. :param lite: set to `True` if you want to only store the bare minimum \ necessary to run a standard pseudo-Cl with deprojection and \ purification, but you don't care about deprojection bias. This \ will reduce the memory taken up by the resulting object. """ def __init__(self, lx, ly, mask, maps, spin=None, templates=None, beam=None, purify_e=False, purify_b=False, tol_pinv=1E-10, masked_on_input=False, lite=False): self.fl = None pure_e = 0 if purify_e: pure_e = 1 pure_b = 0 if purify_b: pure_b = 1 masked_input = 0 if masked_on_input: masked_input = 1 if (lx < 0) or (ly < 0): raise ValueError("Must supply sensible dimensions for " "flat-sky field") # Flatten arrays and check dimensions shape_2D = np.shape(mask) self.ny = shape_2D[0] self.nx = shape_2D[1] if maps is None: mask_only = True if spin is None: raise ValueError("Please supply field spin") lite = True else: mask_only = False nmaps = len(maps) if (nmaps != 1) and (nmaps != 2): raise ValueError("Must supply 1 or 2 maps per field") if spin is None: if nmaps == 1: spin = 0 else: spin = 2 else: if (((spin != 0) and nmaps == 1) or ((spin == 0) and nmaps != 1)): raise ValueError("Spin-zero fields are " "associated with a single map") if (pure_e or pure_b) and spin != 2: raise ValueError("Purification only implemented for spin-2 fields") # Flatten mask msk = (mask.astype(np.float64)).flatten() if (not mask_only): # Flatten maps mps = [] for m in maps: if np.shape(m) != shape_2D: raise ValueError("Mask and maps don't have the same shape") mps.append((m.astype(np.float64)).flatten()) mps = np.array(mps) # Flatten templates if isinstance(templates, (list, tuple, np.ndarray)): tmps = [] for t in templates: tmp = [] if len(t) != nmaps: raise ValueError("Maps and templates should have the " "same number of maps") for m in t: if np.shape(m) != shape_2D: raise ValueError("Mask and templates don't have " "the same shape") tmp.append((m.astype(np.float64)).flatten()) tmps.append(tmp) tmps = np.array(tmps) else: if templates is not None: raise ValueError("Input templates can only be an array " "or None") # Form beam if isinstance(beam, (list, tuple, np.ndarray)): beam_use = beam else: if beam is None: beam_use = np.array([[-1.], [-1.]]) else: raise ValueError("Input beam can only be an array or " "None") if mask_only: self.fl = lib.field_alloc_empty_flat(self.nx, self.ny, lx, ly, spin, msk, beam_use, pure_e, pure_b) else: # Generate field if isinstance(templates, (list, tuple, np.ndarray)): self.fl = lib.field_alloc_new_flat(self.nx, self.ny, lx, ly, spin, msk, mps, tmps, beam_use, pure_e, pure_b, tol_pinv, masked_input, int(lite)) else: self.fl = lib.field_alloc_new_notemp_flat(self.nx, self.ny, lx, ly, spin, msk, mps, beam_use, pure_e, pure_b, masked_input, int(lite)) self.lite = lite def __del__(self): if self.fl is not None: if lib.field_flat_free is not None: lib.field_flat_free(self.fl) self.fl = None def get_mask(self): """ Returns this field's mask as a 2D array ([ny][nx]). :return: 2D mask. """ msk = lib.get_mask_flat(self.fl, int(self.fl.npix)).reshape([self.ny, self.nx]) return msk def get_maps(self): """ Returns a 3D array ([nmap][ny][nx]) corresponding to the observed \ maps for this field. If the field was initialized with contaminant \ templates, the maps returned by this function have their best-fit \ contribution from these contaminants removed. :return: 3D array of flat-sky maps """ if self.lite: raise ValueError("Input maps unavailable for lightweight fields. " "To use this function, create an `NmtFieldFlat` " "object with `lite=False`.") maps = np.zeros([self.fl.nmaps, self.fl.npix]) for imap in range(self.fl.nmaps): maps[imap, :] = lib.get_map_flat(self.fl, imap, int(self.fl.npix)) mps = maps.reshape([self.fl.nmaps, self.ny, self.nx]) return mps def get_templates(self): """ Returns a 4D array ([ntemp][nmap][ny][nx]) corresponding to the \ contaminant templates passed when initializing this field. :return: 4D array of flat-sky maps """ if self.lite: raise ValueError("Input maps unavailable for lightweight fields. " "To use this function, create an `NmtFieldFlat` " "object with `lite=False`.") temp = np.zeros([self.fl.ntemp, self.fl.nmaps, self.fl.npix]) for itemp in range(self.fl.ntemp): for imap in range(self.fl.nmaps): temp[itemp, imap, :] = lib.get_temp_flat( self.fl, itemp, imap, int(self.fl.npix) ) tmps = temp.reshape([self.fl.ntemp, self.fl.nmaps, self.ny, self.nx]) return tmps
2.515625
3
data-structures/p482.py
sajjadt/competitive-programming
10
12796872
<filename>data-structures/p482.py from os import linesep num_tests = int(input()) for i in range(num_tests): input() perms = list(map(int, input().split())) nums = list(map(str, input().split())) out = [0] * len(perms) for j in range(len(perms)): out[perms[j]-1] = str(nums[j]) print(linesep.join(out)) if i != num_tests - 1: print()
3.109375
3
gem/constants.py
praekeltfoundation/Molo-Merge-CMS-Scratchpad
1
12796873
from django.utils.translation import ugettext_lazy as _ MALE = "m" FEMALE = "f" UNSPECIFIED = "-" GENDERS = {(MALE, _("male")), (FEMALE, _("female")), (UNSPECIFIED, _("don't want to answer"))}
1.9375
2
BaseTools/PythonLibrary/Uefi/Capsule/CatGenerator_test.py
StefMa/mu_basecore
0
12796874
import os import logging import unittest from Uefi.Capsule.CatGenerator import * #must run from build env or set PYTHONPATH env variable to point to the PythonLibrary folder class CatGeneratorTest(unittest.TestCase): def test_win10_OS(self): o = CatGenerator("x64", "win10") self.assertEqual(o.OperatingSystem, "10") def test_10_OS(self): o = CatGenerator("x64", "10") self.assertEqual(o.OperatingSystem, "10") def test_win10Server_OS(self): o = CatGenerator("x64", "Server10") self.assertEqual(o.OperatingSystem, "Server10") def test_invalid_OS(self): with self.assertRaises(ValueError): CatGenerator("x64", "Invalid Junk") def test_x64_arch(self): o = CatGenerator("x64", "win10") self.assertEqual(o.Arch, "X64") def test_amd64_arch(self): o = CatGenerator("amd64", "win10") self.assertEqual(o.Arch, "X64") def test_arm_arch(self): o = CatGenerator("arm", "win10") self.assertEqual(o.Arch, "ARM") def test_arm64_arch(self): o = CatGenerator("arm64", "win10") self.assertEqual(o.Arch, "ARM64") def test_aarch64_arch(self): o = CatGenerator("aarch64", "win10") self.assertEqual(o.Arch, "ARM64") def test_invalid_arch(self): with self.assertRaises(ValueError): CatGenerator("Invalid Arch", "win10") def test_invalid_pathtotool(self): o = CatGenerator("amd64", "10") with self.assertRaises(Exception) as cm: o.MakeCat("garbage", os.path.join("c:", "test", "badpath", "inf2cat.exe")) self.assertTrue(str(cm.exception).startswith("Can't find Inf2Cat on this machine."))
2.5
2
src/goa/utils.py
deeplego/goa
0
12796875
import numpy as np import matplotlib.pyplot as plt from typing import Tuple, Union, TypeVar, Iterable, Dict from goa import problems T = TypeVar("T") def plot_population( problem: problems.BaseProblem, X: Union[T, Iterable[T]], ax: plt.Axes = None, c: str = "darkblue", linestyle: str = ":", marker: str = "X", markersize: int = 6, markevery: int = 2, antialiased: bool = True, figsize: Tuple[float, float] = (12, 8), kwargs: Dict = None, ) -> plt.Axes: knobs = dict() if kwargs is not None: knobs.update(kwargs) if not ax: fig = plt.figure(figsize=figsize) ax = fig.add_subplot(projection="3d") if X.shape == (2,): X = [X] for x, y in X: ax.plot( [x, x], [y, y], [problem(np.asarray([x, y])), 0], c=c, linestyle=linestyle, marker=marker, markersize=markersize, markevery=markevery, antialiased=antialiased, **knobs ) return ax def root_mean_squared_error( x: Union[float, np.ndarray], y: Union[float, np.ndarray] ) -> float: return np.sqrt(np.mean(np.power(np.subtract(x, y), 2))) def custom_init_view_function( y: float = 20, x: float = 120, a: float = 30, b: float = 15 ) -> Tuple[float, float]: return a - np.cos(y) * b, x
2.890625
3
generate_crypto_key.py
erictapia/cryptography
0
12796876
# Standard library import os from pathlib import Path # Third party from cryptography.fernet import Fernet from dotenv import load_dotenv # Constants CRYPTO_KEY_ENV_VAR = 'CRYPTO_KEY' ENV_VAR_EXIST = f'The {CRYPTO_KEY_ENV_VAR} environment variable already exist. Cannot continue as the crypto key may still be in use.' ENV_VAR_PATH = Path.home() / '.my_python_env' # Load virtual environmental variables load_dotenv(dotenv_path=ENV_VAR_PATH) def environment_var_exist(): return os.environ.get(CRYPTO_KEY_ENV_VAR) def generate_key(): return Fernet.generate_key() def write_key_env_var(crypto_key): # Only write if environmental variable does not exist. # Otherwise raise an exception - environment variable already exists. if not environment_var_exist(): with ENV_VAR_PATH.open(mode='w') as file: file.write(f'{CRYPTO_KEY_ENV_VAR}={crypto_key}') else: raise Exception(ENV_VAR_EXIST) if __name__ == '__main__': crypto_key = generate_key().decode() write_key_env_var(crypto_key)
2.578125
3
getelhid.py
dlindem/ahotsak-wikibase
0
12796877
import csv import config import awb infilename = config.datafolder+'wikidata/wdlid_ElhId.csv' resourceitem = "Q19" #Q19: Elhuyar #positem = "Q8" # Q7: substantibo, Q8: aditza with open(infilename, encoding="utf-8") as csvfile: sourcedict = csv.DictReader(csvfile) lex_elh = {} for row in sourcedict: lex_elh[row['lexemeId'].replace("http://www.wikidata.org/entity/","")] = row['ElhId'] for awbid in awb.wdmappings: wdid = awb.wdmappings[awbid] if awbid.startswith('L') and wdid in lex_elh: wdstatement = awb.updateclaim(awbid, "P1", wdid, "string") quali = awb.setqualifier(awbid, "P1", wdstatement, "P7", lex_elh[wdid], "string")
2.484375
2
tests/test_calculations.py
godzilla-but-nicer/cellularautomata
0
12796878
import numpy as np from casim.calculations import word_entropy def test_word_entropy(): test_arr = np.array([1, 0, 0, 1, 1, 0, 1, 0]) assert np.round(word_entropy(test_arr, 3), decimals=1) == 2.5
2.484375
2
mtp_api/apps/security/migrations/0018_auto_20181003_1117.py
ministryofjustice/mtp-api
5
12796879
<reponame>ministryofjustice/mtp-api # Generated by Django 2.0.8 on 2018-10-03 10:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('prison', '0016_auto_20171121_1110'), ('security', '0017_auto_20180914_1613'), ] operations = [ migrations.AddField( model_name='prisonerprofile', name='disbursement_count', field=models.IntegerField(default=0), ), migrations.AddField( model_name='prisonerprofile', name='disbursement_total', field=models.IntegerField(default=0), ), migrations.AddField( model_name='prisonerprofile', name='recipients', field=models.ManyToManyField(related_name='prisoners', to='security.RecipientProfile'), ), migrations.AddField( model_name='recipientprofile', name='prisons', field=models.ManyToManyField(related_name='recipients', to='prison.Prison'), ), migrations.AlterField( model_name='prisonerprofile', name='prisoner_dob', field=models.DateField(blank=True, null=True), ), ]
1.585938
2
main.py
LCRT215/Conways-Game-of-Life
0
12796880
<filename>main.py import pygame import sys from game_window_class import * WIDTH, HEIGHT = 800, 800 BACKGROUND = (33, 47, 60) #initial game setup def get_events(): global running for event in pygame.event.get(): if event.type == pygame.QUIT: running = False def update(): game_window.update() def draw(): window.fill(BACKGROUND) game_window.draw() pygame.init() window = pygame.display.set_mode((WIDTH, HEIGHT)) clock = pygame.time.Clock() game_window = Game_window(window, 150, 180) running = True while running: get_events() update() draw() pygame.display.update() clock.tick() pygame.quit() sys.exit()
3.25
3
mp_calc/app/serverlibrary.py
seancze/d2w_mini_project_mp_sort
0
12796881
<gh_stars>0 def mergesort(array, byfunc=None): if len(array) > 1: start, end = 0, len(array) mid = len(array) // 2 left = array[start:mid] right = array[mid:end] i, j, k = 0, 0, 0 # Sort recursively (I.e. Starting from 2 elements) mergesort(left, byfunc=byfunc) mergesort(right, byfunc=byfunc) # Add to array in-place while i < len(left) and j < len(right): if byfunc(left[i]) <= byfunc(right[j]): array[k] = left[i] i += 1 else: array[k] = right[j] j += 1 k += 1 # Remaining elements while i < len(left): array[k] = left[i] i += 1 k += 1 while j < len(right): array[k] = right[j] j += 1 k += 1 class Stack: def __init__(self): self._items = [] def push(self, item): self._items.append(item) def pop(self): if len(self._items): return self._items.pop() def peek(self): if len(self._items): return self._items[-1] @property def is_empty(self): return len(self._items) == 0 @property def size(self): return len(self._items) class EvaluateExpression: valid_char = '0123456789+-*/() ' valid_num = '0123456789' valid_operator = '+-*/()' def __init__(self, string=""): self.expr = string @property def expression(self): return self.expr @expression.setter def expression(self, new_expr): for char in new_expr: if char not in EvaluateExpression.valid_char: self.expr = "" return self.expr = new_expr def insert_space(self): s = "" for char in self.expr: if char in EvaluateExpression.valid_operator: s += f" {char} " else: s += char return s def process_operator(self, operand_stack, operator_stack): a = operand_stack.pop() operator = operator_stack.pop() b = operand_stack.pop() if operator == "+": ans = b + a elif operator == "-": ans = b - a elif operator == "*": ans = b * a elif operator == "/": ans = b // a operand_stack.push(ans) def evaluate(self): operand_stack = Stack() operator_stack = Stack() expression = self.insert_space() tokens = expression.split() for el in tokens: try: # Note: "10.5" will NOT be able to be converted into an int my_int = int(el) operand_stack.push(my_int) except: if el == "+" or el == "-": while not operator_stack.is_empty and operator_stack.peek() not in "()": self.process_operator(operand_stack, operator_stack) operator_stack.push(el) elif el == "*" or el == "/": while operator_stack.peek() in "*/": self.process_operator(operand_stack, operator_stack) operator_stack.push(el) elif el == "(": operator_stack.push(el) elif el == ")": while operator_stack.peek() != "(": self.process_operator(operand_stack, operator_stack) while operator_stack.size > 0: if operator_stack.peek() in "()": operator_stack.pop() continue self.process_operator(operand_stack, operator_stack) return operand_stack.peek() def get_smallest_three(challenge): records = challenge.records times = [r for r in records] mergesort(times, lambda x: x.elapsed_time) return times[:3]
3.71875
4
seqseqpan/modifier.py
sekang2/seq-seq-pan
0
12796882
<reponame>sekang2/seq-seq-pan<gh_stars>0 import collections import itertools from operator import itemgetter import math from Bio import pairwise2 from seqseqpan.base import * class Separator: def separate_lcbs(self, alignment, length): separated = Alignment(alignment.xmfa_file) for nr, genome in alignment.genomes.items(): separated.add_genome(genome, nr) for lcb in alignment.lcbs: if lcb.length <= length: for entry in lcb.entries: seq = entry.sequence.replace("-", "") new_entry = SequenceEntry(entry.genome_nr, entry.start, entry.end, entry.strand, seq) separated.add_lcb_entries(new_entry) else: separated.add_lcb(lcb) return separated class Merger: def merge_lcbs(self, alignment, consensus_genome_nr, new_genome_nr, block_length): if len(alignment.genomes) > 2: raise ConsensusXMFAInputError() lcbs = alignment.get_sorted_lcbs(new_genome_nr) # do not create small (less bp than blocklength) LCBs by splitting, but append/prepend sequence merged_split_lcbs = [] for i in range(len(lcbs)): lcb = lcbs[i] new_entry = lcb.get_entry(new_genome_nr) consensus_entry = lcb.get_entry(consensus_genome_nr) prepend = False append = False use_prev = False use_next = False prev_gap = False next_gap = False to_reverse_complement = False next_new_entry = None prev_new_entry = None # check if new entry is small and only created by splitting or aligning of new genome (consensus is None) if consensus_entry is None and new_entry is not None and len(new_entry.sequence) <= block_length: nr_gaps = len(new_entry.sequence) # check if can be appended to previous entry and if that ends with a gap if len(merged_split_lcbs) > 0: prev_lcb = merged_split_lcbs[-1] prev_new_entry = prev_lcb.get_entry(new_genome_nr) if prev_new_entry is not None and (new_entry.start - prev_new_entry.end) == 1: use_prev = True if (prev_new_entry.strand == "+" and prev_new_entry.sequence[-1] == "-") \ or ( prev_new_entry.strand == "-" and prev_new_entry.sequence[0] == "-"): prev_gap = True # check if can be prepended to next entry and if that starts with a gap if len(lcbs) > (i+1): next_lcb = lcbs[i + 1] next_new_entry = next_lcb.get_entry(new_genome_nr) if next_new_entry is not None and (next_new_entry.start - new_entry.end) == 1: use_next = True if (next_new_entry.strand == "+" and next_new_entry.sequence[0] == "-")\ or (next_new_entry.strand == "-" and next_new_entry.sequence[-1] == "-"): next_gap = True neighbour_new_entry = None # if both, choose the one with gap at start or end if (not next_gap) and use_prev: neighbour_new_entry = prev_new_entry neighbour_lcb = prev_lcb if neighbour_new_entry.strand == "+": append = True else: prepend = True elif use_next: neighbour_new_entry = next_new_entry neighbour_lcb = next_lcb if neighbour_new_entry.strand == "+": prepend = True else: append = True if neighbour_new_entry is not None: if new_entry.strand != neighbour_new_entry.strand: to_reverse_complement = True if append or prepend: if to_reverse_complement: new_entry.reverse_complement() sequence = neighbour_new_entry.sequence neighbour_consensus_entry = neighbour_lcb.get_entry(consensus_genome_nr) neighbour_lcb.length += nr_gaps neighbour_new_entry.end = max(new_entry.end, neighbour_new_entry.end) neighbour_new_entry.start = min(new_entry.start, neighbour_new_entry.start) if append: neighbour_new_entry.sequence = sequence + new_entry.sequence if neighbour_consensus_entry is not None: neighbour_consensus_entry.sequence += ("-" * nr_gaps) elif prepend: neighbour_new_entry.sequence = new_entry.sequence + sequence if neighbour_consensus_entry is not None: neighbour_consensus_entry.sequence = ("-" * nr_gaps) + neighbour_consensus_entry.sequence # entry should not be merged or could be neither appended nor prepended # add LCBs to alignment as it is else: merged_split_lcbs.append(lcb) merged = Alignment(alignment.xmfa_file) for nr, genome in alignment.genomes.items(): merged.add_genome(genome, nr) for lcb in merged_split_lcbs: merged.add_lcb(lcb) return merged class Realigner: # local realignment around overlapping or consecutive gaps in two sequences # if border_aln_length is not None align only sequences at block border up to given length def realign(self, alignment, processor, border_aln_length=0): if len(alignment.genomes) > 2: raise ConsensusXMFAInputError() realigned = Alignment(alignment.xmfa_file) for nr, genome in alignment.genomes.items(): realigned.add_genome(genome, nr) # go through lcbs, skip one-entry ones for lcb in alignment.get_sorted_lcbs(0): if len(lcb.entries) == 1: realigned.add_lcb(lcb) else: entry_one = lcb.entries[0] entry_two = lcb.entries[1] # get regions to realign one_first_two_second = self._get_realign_regions(entry_one.gaps, entry_two.gaps) if len(one_first_two_second) > 0: seq_one, seq_two = self._realign(entry_one.sequence, entry_two.sequence, one_first_two_second, processor, border_aln_length) entry_one.sequence = seq_one entry_two.sequence = seq_two # get regions to realign for updated entries with second entry first two_first_one_second = self._get_realign_regions(entry_two.gaps, entry_one.gaps) if len(two_first_one_second) > 0: seq_two, seq_one = self._realign(entry_two.sequence, entry_one.sequence, two_first_one_second, processor, border_aln_length) entry_one.sequence = seq_one entry_two.sequence = seq_two new_lcb = LCB() new_lcb.add_entries([entry_one, entry_two]) realigned.add_lcb(new_lcb) return realigned def _get_realign_regions(self, gaps_for_start, gaps_for_end): ends_dict = {end: start for start, end in gaps_for_end.items()} location_list = [start for start, end in gaps_for_start.items()] + list(ends_dict.keys()) region_starts = [item for item, count in collections.Counter(location_list).items() if count > 1] regions = [] for start in region_starts: regions.append([(start, gaps_for_start[start]), (ends_dict[start], start)]) return regions def _realign(self, seq_one, seq_two, realign_regions, processor, border_aln_length): # if border_aln_length is not None align only sequences at block border up to given length realign_regions = sorted(realign_regions) index_offset = 0 for interval in realign_regions: max_index, max_seq_length = max( enumerate([interval[0][1] - interval[0][0], interval[1][1] - interval[1][0]]), key=lambda p: p[1]) # get length of gaps at start or end of block short_border_intervals = [(i[1] - i[0]) <= border_aln_length for i in interval # check border length if i[0] == 0 # start of block or ((i[1] - index_offset) == len(seq_one)) # end of block or ((i[1] - index_offset) == len(seq_two))] # end of block interval_start = interval[max_index][0] - index_offset interval_end = interval[max_index][1] - index_offset # border_aln_length not set OR small sequence at start or end of block if border_aln_length == 0 or any(short_border_intervals): # check if interval only 'N' - if yes: do not realign n_stretch = 'N' * max_seq_length if not (seq_one[interval_start:interval_end] == n_stretch or seq_two[interval_start:interval_end] == n_stretch): max_seq_length = math.ceil(max_seq_length * 1.5) # get surrounding sequences seq_start = interval_start - max_seq_length seq_end = interval_end + max_seq_length # do not go over boundaries of sequences! seq_start = max(seq_start, 0) min_orig_seq_length = min(len(seq_one), len(seq_two)) seq_end = min(seq_end, min_orig_seq_length) # N-stretches in sequences # find N-stretch between start and interval and start sub-sequence after nearest stretch n_stretch_length = 10 n_stretch = 'N' * n_stretch_length n_stretch_idx = seq_one.rfind(n_stretch, seq_start, interval_start) if n_stretch_idx > -1: seq_start = max(seq_start, (n_stretch_idx + n_stretch_length)) n_stretch_idx = seq_two.rfind(n_stretch, seq_start, interval_start) if n_stretch_idx > -1: seq_start = max(seq_start, (n_stretch_idx + n_stretch_length)) # find N-stretch between interval and end and end sub-sequence before nearest stretch n_stretch_idx_one = seq_one.find(n_stretch, interval_end, seq_end) n_stretch_idx_two = seq_two.find(n_stretch, interval_end, seq_end) seq_end = min(seq_end, (n_stretch_idx_one if n_stretch_idx_one > -1 else seq_end), (n_stretch_idx_two if n_stretch_idx_two > -1 else seq_end) ) #if border_aln_length > 0: # print(seq_one[seq_start:seq_end]) # print(seq_two[seq_start:seq_end]) seq_one_nogap = seq_one[seq_start:seq_end].replace("-", "") seq_two_nogap = seq_two[seq_start:seq_end].replace("-", "") if not (seq_one_nogap == '' or seq_two_nogap == ''): # else: do nothing for current interval if (seq_end - seq_start) < 1000: #https://github.com/biopython/biopython/pull/782 alignments = pairwise2.align.globalxs(seq_one_nogap.upper(), seq_two_nogap.upper(), -0.5, -0.1, #default one_alignment_only=True) if len(alignments) > 0: max_score = max([x[2] for x in alignments]) alignments = (lambda max_score=max_score: [item for item in alignments if item[2] == max_score])() max_length = min([x[4] for x in alignments]) alignments = (lambda max_length=max_length: [item for item in alignments if item[4] == max_length])() aln_seq_one = alignments[0][0] aln_seq_two = alignments[0][1] else: # no alignment, do nothing for current interval break else: # do external blat alignment aln_seq_one, aln_seq_two = self._external_blat(seq_one_nogap, seq_two_nogap, processor) if aln_seq_one is not None: max_length = len(aln_seq_one) else: # no alignment, do nothing for current interval break if max_length > 0 and max_length < ( seq_end - seq_start ): # only use new alignment if better than old one #if border_aln_length > 0: # print(aln_seq_one) # print(aln_seq_two) seq_one = aln_seq_one.join([seq_one[:seq_start], seq_one[seq_end:]]) seq_two = aln_seq_two.join([seq_two[:seq_start], seq_two[seq_end:]]) index_offset += ((seq_end - seq_start) - max_length) return seq_one, seq_two def _external_blat(self, seq_one, seq_two, processor): def _check_tuple_overlap(tuple_list): num_tuple = len(tuple_list) last_ok_end = -1 exclude_idx = [] #overlap_detected = False for idx in range(num_tuple): if tuple_list[idx][0] < last_ok_end: #current start smaller than last end -> exclude exclude_idx.append(idx) else: last_ok_end = tuple_list[idx][1] # current tuple is ok -> store end return exclude_idx align_result = processor.external_blat(seq_one, seq_two) if align_result is not None: # seq_one equals hit seq_two equals query # only one query and first hit has highest score per definition of blat match = align_result[0][0] # add starting sequences, in case query or hit do not start at "0" seq_one_list = [] seq_two_list = [] if match.hit_start > 0: seq_one_list.append(seq_one[0:match.hit_start]) seq_two_list.append("-" * match.hit_start) if match.query_start > 0: seq_one_list.append("-" * match.query_start) seq_two_list.append(seq_two[0:match.query_start]) if match.is_fragmented: # in really rare cases fragments are overlapping! exclude_keys = _check_tuple_overlap(match.hit_range_all) exclude_keys = exclude_keys + _check_tuple_overlap(match.query_range_all) hspfrag_keys = list(set(range(len(match.hit_range_all))) - set(exclude_keys)) hspfrag_key_num = len(hspfrag_keys) for hspfrag_idx in range(hspfrag_key_num): hspfrag_key = hspfrag_keys[hspfrag_idx] hspfrag = match[hspfrag_key] seq_one_list.append(str(hspfrag.hit.seq)) seq_two_list.append(str(hspfrag.query.seq)) # add sequences between aligned intervals to sequences if hspfrag_idx < (hspfrag_key_num - 1): next_hspfrag = match[hspfrag_keys[hspfrag_idx + 1]] inter_hit_len = next_hspfrag.hit_start - hspfrag.hit_end if inter_hit_len > 0: seq_one_list.append(seq_one[hspfrag.hit_end:next_hspfrag.hit_start]) seq_two_list.append("-" * inter_hit_len) inter_query_len = next_hspfrag.query_start - hspfrag.query_end if inter_query_len > 0: seq_one_list.append("-" * inter_query_len) seq_two_list.append(seq_two[hspfrag.query_end:next_hspfrag.query_start]) else: seq_rec_one = match.aln[0] if seq_rec_one.id == "seq1": seq_one_list.append(str(match.aln[0].seq)) seq_two_list.append(str(match.aln[1].seq)) else: seq_one_list.append(str(match.aln[1].seq)) seq_two_list.append(str(match.aln[0].seq)) # add last sequence parts if hit or query do not include sequence ends if match.hit_end < len(seq_one): seq_len = len(seq_one) - match.hit_end seq_one_list.append(seq_one[match.hit_end:]) seq_two_list.append("-" * seq_len) if match.query_end < len(seq_two): seq_len = len(seq_two) - match.query_end seq_one_list.append("-" * seq_len) seq_two_list.append(seq_two[match.query_end:]) return "".join(seq_one_list).upper(), "".join(seq_two_list).upper() else: return None, None class SingletonAligner: def genome_count_split(self, alignment): if len(alignment.genomes) > 2: raise ConsensusXMFAInputError() single_alignment_1 = Alignment(alignment.xmfa_file) single_alignment_2 = Alignment(alignment.xmfa_file) single_alignment_1.genomes[1] = alignment.genomes[1] single_alignment_2.genomes[2] = alignment.genomes[2] pairlcbs = [] for lcb in alignment.lcbs: if len(lcb.entries) == 1: if lcb.entries[0].strand == "-": lcb.reverse_complement_entries() if lcb.entries[0].genome_nr == 1: single_alignment_1.add_lcb(lcb) elif lcb.entries[0].genome_nr == 2: single_alignment_2.add_lcb(lcb) else: pairlcbs.append(lcb) alignment.lcbs = pairlcbs return alignment, single_alignment_1, single_alignment_2 def join(self, alignment, alignment_two): if len(alignment.genomes) > 2: print("ERROR: I don't want to think about cases with more than 2 genomes now.") genome_names_one = [genome.file_path for genome in alignment.genomes.values()] genome_names_two = [genome.file_path for genome in alignment_two.genomes.values()] if genome_names_one.sort() != genome_names_two.sort(): print("ERROR: Can only join alignments from same set of genomes.") if alignment.genomes[1].file_path != alignment_two.genomes[1].file_path: genome_nr_dict = {1: 2, 2: 1} else: genome_nr_dict = {1: 1, 2: 2} for lcb in alignment_two.lcbs: for entry in lcb.entries: entry.genome_nr = genome_nr_dict[entry.genome_nr] alignment.add_lcb(lcb) return alignment class Remover: def remove(self, alignment, rm_genome): if len(alignment.genomes) >= rm_genome > -1: for lcb in alignment.lcbs: entries = [entry for entry in lcb.entries if entry.genome_nr != rm_genome] # did LCB include entry of genome to remove? if len(entries) < len(lcb.entries): # are there any entries left in LCB? if len(entries) > 1: # if more than one entry left search for gaps that are present in all remaining entries rm_gaps = set(itertools.chain.from_iterable( [list(range(k, entries[0].gaps[k])) for k in entries[0].gaps])) for entry in entries[1:]: rm_gaps &= set( itertools.chain.from_iterable([list(range(k, entry.gaps[k])) for k in entry.gaps])) rm_gaps = sorted(list(rm_gaps)) # make intervals of consecutive gap positions for faster join() gap_ranges = [] for k, g in itertools.groupby(enumerate(rm_gaps), lambda x: x[0] - x[1]): group = list(map(itemgetter(1), g)) gap_ranges.append((group[0], group[-1])) # tuples with intervals if len(gap_ranges) > 0: if gap_ranges[0][0] != 0: gap_ranges = [(-1, -1)] + gap_ranges if gap_ranges[-1] != lcb.length: gap_ranges = gap_ranges + [(lcb.length, lcb.length)] for entry in entries: entry.sequence = ''.join( [entry.sequence[(gap_ranges[i][1] + 1):gap_ranges[i + 1][0]] for i in range(len(gap_ranges) - 1)]) if entry.genome_nr > rm_genome: entry.genome_nr -= 1 # if no gaps found only reduce genome nr (avoid looping through entries twice if gaps present) else: for entry in entries: if entry.genome_nr > rm_genome: entry.genome_nr -= 1 elif len(entries) == 1: # if only one entry left replace all gaps in sequence entries[0].sequence = entries[0].sequence.replace("-", "") if entries[0].genome_nr > rm_genome: entries[0].genome_nr -= 1 else: for entry in entries: if entry.genome_nr > rm_genome: entry.genome_nr -= 1 lcb.entries[:] = entries alignment.lcbs[:] = [lcb for lcb in alignment.lcbs if len(lcb.entries) > 0] max_genome = len(alignment.genomes) for nr in range(rm_genome + 1, max_genome + 1): alignment.genomes[nr - 1] = alignment.genomes[nr] del alignment.genomes[max_genome] return alignment else: raise ParameterError("remove_genome", rm_genome, "between 0 and " + str(len(alignment.genomes)) + " (number of genomes in XMFA)") def merge(self, alignment): for lcb in alignment.lcbs: lcb.entries = sorted(lcb.entries, key=lambda entry: entry.genome_nr) new_alignment = Alignment(alignment.xmfa_file) for nr, genome in alignment.genomes.items(): new_alignment.add_genome(genome, nr) for order in alignment.genomes: if len(alignment.lcbs) > 1: # if more than one lcb is unchecked try to merge alignment.lcbs = alignment.get_sorted_lcbs(order) j = 0 if alignment.lcbs[0].get_entry(order) is not None: new_alignment.add_lcb(alignment.lcbs[0]) for lcb in range(1, len(alignment.lcbs)): j += 1 if alignment.lcbs[lcb].get_entry(order) is not None: i = 0 if len(alignment.lcbs[lcb].entries) == len(alignment.lcbs[lcb - 1].entries): strand = alignment.lcbs[lcb].entries[0].strand == alignment.lcbs[lcb - 1].entries[0].strand for entry in range(0, len(alignment.lcbs[lcb].entries)): if alignment.lcbs[lcb].entries[entry].genome_nr != alignment.lcbs[lcb - 1].entries[entry].genome_nr \ or alignment.lcbs[lcb].entries[entry].start - alignment.lcbs[lcb - 1].entries[entry].end != 1 \ or (alignment.lcbs[lcb].entries[entry].strand == alignment.lcbs[lcb - 1].entries[entry].strand) != strand: # if an entry does not fulfill all conditions stop and do not merge this lcb new_alignment.add_lcb(alignment.lcbs[lcb]) break else: i += 1 if i == len(alignment.lcbs[lcb].entries): if not strand: # if all entries have an unequal strand reverse complement this lcb alignment.lcbs[lcb].reverse_complement_entries() new_alignment.lcbs[-1].length += alignment.lcbs[lcb].length for pos in range(0, len(new_alignment.lcbs[-1].entries)): new_alignment.lcbs[-1].entries[pos].sequence += alignment.lcbs[lcb].entries[pos].sequence new_alignment.lcbs[-1].entries[pos].end = alignment.lcbs[lcb].entries[pos].end else: new_alignment.add_lcb(alignment.lcbs[lcb]) else: break alignment.lcbs[:] = alignment.lcbs[j:len(alignment.lcbs)] # continue with unchecked lcbs # if only one lcb left check whether it is already checked or not elif len(alignment.lcbs) == 1 and new_alignment.lcbs[-1].entries[0].genome_nr != alignment.lcbs[0].entries[0].genome_nr: new_alignment.add_lcb(alignment.lcbs[0]) # if not checked yet add it as last lcb and finish break else: break return new_alignment
2.6875
3
generator/txmultivariablegenerator.py
zarppy/MUREIL_2014
0
12796883
<filename>generator/txmultivariablegenerator.py # # # Copyright (C) University of Melbourne 2013 # # # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. # # """Module for a variable generator using the txmultigeneratormultisite base class. """ from tools import configurablebase, mureilexception from generator import txmultigeneratormultisite from master import interfacesflowmaster import copy import numpy import string class TxMultiVariableGeneratorBase(txmultigeneratormultisite.TxMultiGeneratorMultiSite, interfacesflowmaster.InterfaceSemiScheduledDispatch): """A simple implementation of a variable generator, providing per-unit capital costs. """ def get_details(self): """Return a list of flags indicating the properties of the generator. """ flags = txmultigeneratormultisite.TxMultiGeneratorMultiSite.get_details(self) flags['technology'] = self.config['tech_type'] flags['dispatch'] = 'semischeduled' return flags def get_config_spec(self): """Return a list of tuples of format (name, conversion function, default), e.g. ('capex', float, 2.0). Put None if no conversion required, or if no default value, e.g. ('name', None, None) Configuration: as for txmultigenerator.TxMultiGeneratorBase, plus: tech_type: string - the generic technology type, to report in get_details() as technology. detail_type: string - a specific name, e.g. 'onshore_wind_vic', for printing in an output string data_name: string - the name of the data array holding the timeseries capacity factor data, e.g. ts_wind. data_map_name: string - the name of the data array e.g. ts_wind_map which holds an n x 2 array where n is the number of site indices mapped. The first in each pair is the site index and the second the index into the data table. If this is not provided, a 1:1 is assumed. data_ts_length: the length of the data timeseries, typically provided globally. """ return txmultigeneratormultisite.TxMultiGeneratorMultiSite.get_config_spec(self) + [ ('tech_type', None, 'generic_variable'), ('detail_type', None, 'generic_variable'), ('data_name', None, None), ('data_map_name', None, ''), ('data_ts_length', int, None) ] def get_data_types(self): """Return a list of keys for each type of data required, for example ts_wind, ts_demand. Outputs: data_type: list of strings - each a key name describing the data required for this generator. """ data_types = txmultigeneratormultisite.TxMultiGeneratorMultiSite.get_data_types(self) data_types.append(self.config['data_name']) if len(self.config['data_map_name']) > 0: data_types.append(self.config['data_map_name']) return data_types def set_data(self, data): """Set the data dict with the data series required for the generator. Inputs: data: dict - with keys matching those requested by get_data_types. """ txmultigeneratormultisite.TxMultiGeneratorMultiSite.set_data(self, data) self.data = data[self.config['data_name']] self.site_to_data = {} if len(self.config['data_map_name']) > 0: map_data = data[self.config['data_map_name']] for i in range(0, map_data.shape[0]): self.site_to_data[map_data[i, 0]] = map_data[i, 1] if len(self.params_to_site) == 0: # We have a data map, but no params to site, so assume # all data are used and map 1:1 to this. self.params_to_site = map_data[:,0] elif len(self.params_to_site) > 0: # No data map is provided, but params_to_site is. If the # lengths agree, map the site index list to the data 1:1. if not (len(self.params_to_site) == self.data.shape[1]): raise mureilexception.ConfigException('In model ' + self.config['section'] + ', no data map is provided, the data is width ' + str(self.data.shape[1]) + ' and the provided params_to_site list is ' + str(len(self.params_to_site)) + ' so no automatic mapping is possible.', {}) for i in range(len(self.params_to_site)): self.site_to_data[self.params_to_site[i]] = i else: # No list of sites is provided. Just map to ordinal numbers. self.params_to_site = range(self.data.shape[1]) for i in range(0, self.data.shape[1]): self.site_to_data[i] = i # Check that all of the values in site_to_data are within the # self.data matrix. max_data = self.data.shape[1] for data_index in self.site_to_data.itervalues(): if (data_index < 0) or (data_index >= max_data): raise mureilexception.ConfigException('data_index ' + str(data_index) + ' was requested by the model in section ' + self.config['section'] + ' but the maximum index in the data array is ' + str(max_data), {}) def calculate_dispatch_offer(self, period, param=None): """Calculate the dispatch offer as the SRMC. This is the VOM for variable generators. """ return self.period_configs[period]['vom'] def get_offers_semischeduled(self, state_handle, ts_length): """Get offers for this semi-scheduled generator. Outputs: site_indices: the identifying indices of each site with active capacity. All lists of sites below will correspond with this list. offer_price: the offer price, one per site (interpreted as same for all timesteps) quantity: the offer quantity, one timeseries per site, in MW. """ offer_price = self.calculate_dispatch_offer(state_handle['curr_period']) site_indices, quantity = self.calculate_outputs(state_handle, ts_length) return site_indices, offer_price, quantity def calculate_outputs(self, state_handle, ts_length): """Calculate the maximum outputs, before scheduling. Inputs: state_handle ts_length: an integer - the length of the timeseries Outputs: site_indices: the list of sites with active capacity output: a set of timeseries, corresponding to site_indices """ cap_list = state_handle['capacity'] site_indices = self.get_site_indices(state_handle) num_sites = len(site_indices) output = numpy.zeros((num_sites, ts_length)) for i in range(num_sites): site = site_indices[i] total_cap = sum([tup[0] for tup in cap_list[site]]) data_index = self.site_to_data[site] ### TODO - it may be expensive to have self.data this way - ### would it help to transpose it when it's read in, so ### the memory lines up better? output[i,:] = self.data[:,data_index] * total_cap return site_indices, output def calculate_variable_costs(self, state_handle, site_indices, schedule): """Calculate variable costs and carbon based on schedule. Inputs: state_handle site_indices schedule: The scheduled output, a set of timeseries Outputs: variable_cost, carbon, other """ vom = self.period_configs[state_handle['curr_period']]['vom'] * 1e-6 num_sites = len(site_indices) vble_cost = numpy.zeros(num_sites) carbon = numpy.zeros(num_sites) for i in range(num_sites): vble_cost[i] = numpy.sum(schedule[i,:]) * vom return vble_cost, carbon, {} def calculate_outputs_and_costs(self, state_handle, supply_request, max_supply=[], price=[]): """Implement calculate_outputs_and_costs as defined in TxMultiGeneratorBase, for the variable generators. """ site_indices, supply = self.calculate_outputs(state_handle, len(supply_request)) vble_cost, carbon, other = self.calculate_variable_costs(state_handle, site_indices, supply) return supply, vble_cost, carbon, other def get_simple_desc_string(self, results, state_handle): """Implement get_simple_desc_string as defined in TxMultiGeneratorBase, for the variable generator. """ return self.config['detail_type'] + ' with site capacities (MW): ' + ( string.join(map('({:d}: {:.2f}) '.format, results['site_indices'], results['capacity']))) def get_full_desc_string(self, results, state_handle): """Implement get_full_desc_string as defined in TxMultiGeneratorBase, for the variable generator. """ return self.get_simple_desc_string(results, state_handle)
2.078125
2
backend/app/controllers/interval_controller.py
codestrange/calendario-matcom
8
12796884
from flask import jsonify from . import api from ..database import Interval @api.route('/intervals') def get_intervals(): intervals = Interval.query.all() return jsonify([{ 'id': interval.id, 'name': interval.name, 'start': str(interval.start), 'end': str(interval.end) } for interval in intervals])
2.640625
3
ImgEdit.py
yujiecong/PyQt-Digit-Image-Process
3
12796885
class Edit: @staticmethod
1.25
1
tests/unit/asynchronous/test_expand_dict.py
GQMai/mbed-cloud-sdk-python
12
12796886
from mbed_cloud.subscribe.subscribe import expand_dict_as_keys from tests.common import BaseCase class Test(BaseCase): def test_empty(self): self.assertEqual(expand_dict_as_keys(dict()), [ tuple() ]) def test_static(self): self.assertEqual(expand_dict_as_keys(dict(a=1, b=2)), [ tuple([('a', 1), ('b', 2)]) ]) def test_static_sorted(self): self.assertEqual(expand_dict_as_keys(dict(c=1, b=2)), [ tuple([('b', 2), ('c', 1)]) ]) def test_expand(self): self.assertEqual(expand_dict_as_keys(dict(a=1, b=[2, 3])), [ tuple([('a', 1), ('b', 2)]), tuple([('a', 1), ('b', 3)]), ]) def test_product(self): self.assertEqual(expand_dict_as_keys(dict(a=1, b=[2, 3], c=[4, 5])), [ tuple([('a', 1), ('b', 2), ('c', 4)]), tuple([('a', 1), ('b', 2), ('c', 5)]), tuple([('a', 1), ('b', 3), ('c', 4)]), tuple([('a', 1), ('b', 3), ('c', 5)]), ]) def test_usage(self): keys = set(expand_dict_as_keys(dict(a=1, b=[2, 3], c=[4, 5]))) self.assertIn(expand_dict_as_keys(dict(a=1, b=2, c=5))[0], keys) self.assertNotIn(expand_dict_as_keys(dict(a=1, b=2, c=6))[0], keys)
2.296875
2
other/py/dmopc14c5p4.py
tylertian123/CompSciSolutions
0
12796887
n, m = input().split() n = int(n) m = int(m) good = [] bad = [] for _ in range(n): s, p = input().split() if p == "1": bad.append(int(s)) else: good.append(int(s)) good.sort() bad.sort() prot = 0 space = 0 gi = 0 bi = 0 while space < m: g = good[gi] if gi < len(good) else None b = bad[bi] if bi < len(bad) else None # Both good and bad left if g is not None and b is not None: # Can put good if space + g <= m: # Can't put bad or good is more efficient if space + b > m or g / 2 < m: prot += 2 space += g gi += 1 # Can put bad and bad is more efficient else: prot += 1 space += b bi += 1 # Can't put good but can put bad elif space + b <= m: prot += 1 space += b bi += 1 # Can't put either one else: break # Only good left elif g is not None: # Still room left if space + g <= m: prot += 2 space += g gi += 1 else: break # Only bad left elif b is not None: if space + b <= m: prot += 1 space += b bi += 1 else: break # Nothing left else: break print(prot)
3.28125
3
src/components/kankeiforms/__init__.py
BigJerBD/Kankei-Backend
0
12796888
<reponame>BigJerBD/Kankei-Backend<gh_stars>0 from components.kankeiforms.kankeiform import KankeiForm def init(config): KankeiForm.timeout = config.DB_TIMEOUT_SEC from . import exploration from . import comparison from . import random def get_kankeiforms(config): init(config) return KankeiForm.registry def get_kankeiforms_dict(config): """ note:: currently simply forward query config, however it is not ideal since we want to present information about `querying` and not the config :return: """ init(config) return { grp: {name: content.asdict() for name, content in content.items()} for grp, content in KankeiForm.registry.items() }
2.3125
2
Roller.py
AndrewTruett/histogrammer
0
12796889
<gh_stars>0 from Roll import Roll class Roller: def __init__(self, user): self._rolls = [] self._user = user def add_roll(self, roll): self._rolls.append(roll) def clear_rolls(self): self._rolls = [] @property def rolls(self): return self._rolls @property def user(self): return self._user
2.75
3
openmm/plot_osmp.py
aakognole/osmp-calc
0
12796890
import numpy as np import matplotlib.pyplot as plt import glob from sys import argv from os.path import exists as file_exists methods = ['drude', 'c36'] mol1, mol2 = str(argv[1]), str(argv[2]) sysname = mol1+'_'+mol2 def blockavg(x,nblocks=30): lblock = int(len(x)/nblocks) m = [] for i in range(nblocks): start = i*lblock end = (i+1)*lblock m.append(np.mean(x[start:end])) m = np.array(m) return np.mean(m), np.std(m) for method in methods: dirs = sorted(glob.glob('%s_at_*'%(method))) if len(dirs) == 0: continue print(method.upper(),':',mol1.upper(),'-',mol2.upper()) osmp = [] f = open('OSMP_%s_%s_%s.dat'%(mol1,mol2,method), 'w') f.write('# %8s %10s %10s\n'%('Conc (M)','OsmP (bar)','Error')) print('# %8s %10s %10s'%('Conc (M)','OsmP (bar)','Error')) for d in dirs: c = d.split("_")[2] r1 = np.loadtxt('%s/osmp.%s_%s_%s.1.dat'%(d,mol1,mol2,c)) r2 = np.loadtxt('%s/osmp.%s_%s_%s.2.dat'%(d,mol1,mol2,c)) r3 = np.loadtxt('%s/osmp.%s_%s_%s.3.dat'%(d,mol1,mol2,c)) r = np.concatenate((r1,r2,r3))/100000.0 m,s = blockavg(r[:,1]) print("%10.1f %10.3f %10.3f"%(float(c),m,s)) f.write("%10.1f %10.3f %10.3f\n"%(float(c),m,s)) osmp.append((float(c),m,s)) osmp = np.array(osmp) f.close() # plot plt.figure() plt.title(method.upper()+': '+mol1.upper()+' - '+mol2.upper()) plt.errorbar(osmp[:,0],osmp[:,1],yerr=osmp[:,2],marker='o',markersize=5,capsize=3) plt.xlabel('Concentration (M)') plt.ylabel('Osmotic Pressure (bar)') plt.tight_layout() plt.savefig('OSMP_%s_%s_%s.png'%(mol1,mol2,method)) plt.close() if file_exists('OSMP_%s_%s_drude.dat'%(mol1,mol2)) and file_exists('OSMP_%s_%s_c36.dat'%(mol1,mol2)): osmp_drude = np.loadtxt('OSMP_%s_%s_drude.dat'%(mol1,mol2)) osmp_c36 = np.loadtxt('OSMP_%s_%s_c36.dat'%(mol1,mol2)) plt.figure() plt.title(mol1.upper()+' - '+mol2.upper()) plt.errorbar(osmp_drude[:,0],osmp_drude[:,1],yerr=osmp_drude[:,2],marker='o',markersize=5,capsize=3,label='drude') plt.errorbar(osmp_c36[:,0],osmp_c36[:,1],yerr=osmp_c36[:,2],marker='o',markersize=5,capsize=3,label='c36') plt.xlabel('Concentration (M)') plt.ylabel('Osmotic Pressure (bar)') plt.legend() plt.tight_layout() plt.savefig('OSMP_%s_%s_both.png'%(mol1,mol2)) plt.close()
2.375
2
training/data_lib.py
vsewall/frame-interpolation
521
12796891
# Copyright 2022 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Dataset creation for frame interpolation.""" from typing import Callable, Dict, List, Optional from absl import logging import gin.tf import tensorflow as tf def _create_feature_map() -> Dict[str, tf.io.FixedLenFeature]: """Creates the feature map for extracting the frame triplet.""" feature_map = { 'frame_0/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''), 'frame_0/format': tf.io.FixedLenFeature((), tf.string, default_value='jpg'), 'frame_0/height': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_0/width': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_1/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''), 'frame_1/format': tf.io.FixedLenFeature((), tf.string, default_value='jpg'), 'frame_1/height': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_1/width': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_2/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''), 'frame_2/format': tf.io.FixedLenFeature((), tf.string, default_value='jpg'), 'frame_2/height': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'frame_2/width': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'path': tf.io.FixedLenFeature((), tf.string, default_value=''), } return feature_map def _parse_example(sample): """Parses a serialized sample. Args: sample: A serialized tf.Example to be parsed. Returns: dictionary containing the following: encoded_image image_height image_width """ feature_map = _create_feature_map() features = tf.io.parse_single_example(sample, feature_map) output_dict = { 'x0': tf.io.decode_image(features['frame_0/encoded'], dtype=tf.float32), 'x1': tf.io.decode_image(features['frame_2/encoded'], dtype=tf.float32), 'y': tf.io.decode_image(features['frame_1/encoded'], dtype=tf.float32), # The fractional time value of frame_1 is not included in our tfrecords, # but is always at 0.5. The model will expect this to be specificed, so # we insert it here. 'time': 0.5, # Store the original mid frame filepath for identifying examples. 'path': features['path'], } return output_dict def _random_crop_images(crop_size: int, images: tf.Tensor, total_channel_size: int) -> tf.Tensor: """Crops the tensor with random offset to the given size.""" if crop_size > 0: crop_shape = tf.constant([crop_size, crop_size, total_channel_size]) images = tf.image.random_crop(images, crop_shape) return images def crop_example(example: tf.Tensor, crop_size: int, crop_keys: Optional[List[str]] = None): """Random crops selected images in the example to given size and keys. Args: example: Input tensor representing images to be cropped. crop_size: The size to crop images to. This value is used for both height and width. crop_keys: The images in the input example to crop. Returns: Example with cropping applied to selected images. """ if crop_keys is None: crop_keys = ['x0', 'x1', 'y'] channels = [3, 3, 3] # Stack images along channel axis, and perform a random crop once. image_to_crop = [example[key] for key in crop_keys] stacked_images = tf.concat(image_to_crop, axis=-1) cropped_images = _random_crop_images(crop_size, stacked_images, sum(channels)) cropped_images = tf.split( cropped_images, num_or_size_splits=channels, axis=-1) for key, cropped_image in zip(crop_keys, cropped_images): example[key] = cropped_image return example def apply_data_augmentation( augmentation_fns: Dict[str, Callable[..., tf.Tensor]], example: tf.Tensor, augmentation_keys: Optional[List[str]] = None) -> tf.Tensor: """Applies random augmentation in succession to selected image keys. Args: augmentation_fns: A Dict of Callables to data augmentation functions. example: Input tensor representing images to be augmented. augmentation_keys: The images in the input example to augment. Returns: Example with augmentation applied to selected images. """ if augmentation_keys is None: augmentation_keys = ['<KEY>'] # Apply each augmentation in sequence augmented_images = {key: example[key] for key in augmentation_keys} for augmentation_function in augmentation_fns.values(): augmented_images = augmentation_function(augmented_images) for key in augmentation_keys: example[key] = augmented_images[key] return example def _create_from_tfrecord(batch_size, file, augmentation_fns, crop_size) -> tf.data.Dataset: """Creates a dataset from TFRecord.""" dataset = tf.data.TFRecordDataset(file) dataset = dataset.map( _parse_example, num_parallel_calls=tf.data.experimental.AUTOTUNE) # Perform data_augmentation before cropping and batching if augmentation_fns is not None: dataset = dataset.map( lambda x: apply_data_augmentation(augmentation_fns, x), num_parallel_calls=tf.data.experimental.AUTOTUNE) if crop_size > 0: dataset = dataset.map( lambda x: crop_example(x, crop_size=crop_size), num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.batch(batch_size, drop_remainder=True) return dataset def _generate_sharded_filenames(filename: str) -> List[str]: """Generates filenames of the each file in the sharded filepath. Based on github.com/google/revisiting-self-supervised/blob/master/datasets.py. Args: filename: The sharded filepath. Returns: A list of filepaths for each file in the shard. """ base, count = filename.split('@') count = int(count) return ['{}-{:05d}-of-{:05d}'.format(base, i, count) for i in range(count)] def _create_from_sharded_tfrecord(batch_size, train_mode, file, augmentation_fns, crop_size, max_examples=-1) -> tf.data.Dataset: """Creates a dataset from a sharded tfrecord.""" dataset = tf.data.Dataset.from_tensor_slices( _generate_sharded_filenames(file)) # pylint: disable=g-long-lambda dataset = dataset.interleave( lambda x: _create_from_tfrecord( batch_size, file=x, augmentation_fns=augmentation_fns, crop_size=crop_size), num_parallel_calls=tf.data.AUTOTUNE, deterministic=not train_mode) # pylint: enable=g-long-lambda dataset = dataset.prefetch(buffer_size=2) if max_examples > 0: return dataset.take(max_examples) return dataset @gin.configurable('training_dataset') def create_training_dataset( batch_size: int, file: Optional[str] = None, files: Optional[List[str]] = None, crop_size: int = -1, crop_sizes: Optional[List[int]] = None, augmentation_fns: Optional[Dict[str, Callable[..., tf.Tensor]]] = None ) -> tf.data.Dataset: """Creates the training dataset. The given tfrecord should contain data in a format produced by frame_interpolation/datasets/create_*_tfrecord.py Args: batch_size: The number of images to batch per example. file: (deprecated) A path to a sharded tfrecord in <tfrecord>@N format. Deprecated. Use 'files' instead. files: A list of paths to sharded tfrecords in <tfrecord>@N format. crop_size: (deprecated) If > 0, images are cropped to crop_size x crop_size using tensorflow's random cropping. Deprecated: use 'files' and 'crop_sizes' instead. crop_sizes: List of crop sizes. If > 0, images are cropped to crop_size x crop_size using tensorflow's random cropping. augmentation_fns: A Dict of Callables to data augmentation functions. Returns: A tensorflow dataset for accessing examples that contain the input images 'x0', 'x1', ground truth 'y' and time of the ground truth 'time'=[0,1] in a dictionary of tensors. """ if file: logging.warning('gin-configurable training_dataset.file is deprecated. ' 'Use training_dataset.files instead.') return _create_from_sharded_tfrecord(batch_size, True, file, augmentation_fns, crop_size) else: if not crop_sizes or len(crop_sizes) != len(files): raise ValueError('Please pass crop_sizes[] with training_dataset.files.') if crop_size > 0: raise ValueError( 'crop_size should not be used with files[], use crop_sizes[] instead.' ) tables = [] for file, crop_size in zip(files, crop_sizes): tables.append( _create_from_sharded_tfrecord(batch_size, True, file, augmentation_fns, crop_size)) return tf.data.experimental.sample_from_datasets(tables) @gin.configurable('eval_datasets') def create_eval_datasets(batch_size: int, files: List[str], names: List[str], crop_size: int = -1, max_examples: int = -1) -> Dict[str, tf.data.Dataset]: """Creates the evaluation datasets. As opposed to create_training_dataset this function makes sure that the examples for each dataset are always read in a deterministic (same) order. Each given tfrecord should contain data in a format produced by frame_interpolation/datasets/create_*_tfrecord.py The (batch_size, crop_size, max_examples) are specified for all eval datasets. Args: batch_size: The number of images to batch per example. files: List of paths to a sharded tfrecord in <tfrecord>@N format. names: List of names of eval datasets. crop_size: If > 0, images are cropped to crop_size x crop_size using tensorflow's random cropping. max_examples: If > 0, truncate the dataset to 'max_examples' in length. This can be useful for speeding up evaluation loop in case the tfrecord for the evaluation set is very large. Returns: A dict of name to tensorflow dataset for accessing examples that contain the input images 'x0', 'x1', ground truth 'y' and time of the ground truth 'time'=[0,1] in a dictionary of tensors. """ return { name: _create_from_sharded_tfrecord(batch_size, False, file, None, crop_size, max_examples) for name, file in zip(names, files) }
2.078125
2
7 kyu/Consecutive letters.py
mwk0408/codewars_solutions
6
12796892
def solve(s): s=list(s) s.sort() s=''.join(s) if len(s)==1: return True for i in range(1,len(s),1): if ord(s[i])-ord(s[i-1])!=1: return False return True
3.125
3
Homework/BAB_homework_task2.py
kc9jud/ShellCorretta
0
12796893
import matplotlib.pyplot as plt import numpy as np #returns the binding energy predicted by nuclear liquid drop model def BE_liquidDrop(N,Z): #N=num of neutrons, Z=num of protons #num of nucleons A = N+Z #physical constants (from Alex's notes, in MeV) a1 = 15.49 a2 = 17.23 a3 = 0.697 a4 = 22.6 #nuclear liquid drop model return a1*A - a2*A**(2./3) - a3*(Z**2)/(A*(1./3)) - a4*(N-Z)**2/A #finds the neutron dripline def findDripLine(Z): #test statement for finding dripline check = False #start with symmetric nucleus N=Z #iterative search for dripline while (check == False): BE_i = BE_liquidDrop(N+1,Z) BE_f = BE_liquidDrop(N,Z) Q = BE_f-BE_i if (Q>0): return N else: N = N+1 def makeMatCores(Zrange): Nstart = 0 Nrange = int(2.3*Zrange) Zstart = 1 mat = np.zeros((Zrange-Zstart,Nrange-Nstart)) for Z in range(Zstart,Zrange): for N in range(Nstart,Nrange): BE_i_up = BE_liquidDrop(N+1,Z) BE_f_up = BE_liquidDrop(N,Z) Qup = BE_f_up-BE_i_up BE_i_down = BE_liquidDrop(N+1,Z) BE_f_down = BE_liquidDrop(N,Z) Qdown = BE_f_down-BE_i_down if (Q<0): mat[Z-Zstart, N-Nstart] = 1 else: mat[Z-Zstart, N-Nstart] = 0 return mat #plt.matshow(makeMatCores(100,100)) #define range of Z's Z_low = 2 Z_top = 150 mat = makeMatCores(Z_top) img2 = plt.imshow(mat,interpolation='nearest', origin='lower') plt.show() #interested in finding the neutron drip line for the range Z=36-44 #Z = range(Z_low, Z_top+1) #N = [] # #for z in Z: # dripline = findDripLine(z) # print "For", z,"protons, the neutron dripline is",dripline, "neutrons" # N.append(dripline) # #mat = np.zeros((max(Z)+1,max(N)+1)) # #for i in range(0,len(Z)): # mat[Z[i],N[i]] = 1 #plt.matshow(mat) #plt.show()
2.859375
3
src/DNAAnimBuilding.py
Toonerz/libdna
1
12796894
<reponame>Toonerz/libdna<filename>src/DNAAnimBuilding.py from pandac.PandaModules import * from panda3d.core import * from DNAInteractiveProp import DNAInteractiveProp class DNAAnimBuilding(DNAInteractiveProp): def __init__(self): DNAInteractiveProp.__init__(self) self.anim = '' def setAnim(self, anim): self.anim = anim def getAnim(self): return self.anim
1.75
2
tests/__init__.py
ymber/surface
5
12796895
""" Surface control station tests. """
0.890625
1
gcraft/application/wx.py
ddomurad/gcraft
0
12796896
<gh_stars>0 from OpenGL.GLUT import * from gcraft.core.app import GCraftApp from gcraft.core.input_event import InputEvent import wx from wx import glcanvas class GCraftCanvas(wx.glcanvas.GLCanvas): def __init__(self, parent: wx.Window, gc_app: GCraftApp): wx.glcanvas.GLCanvas.__init__(self, parent, -1) self._renderer = gc_app self._renderer.swap_buffers = self.on_swap_buffers self._renderer_inited = False self._last_mouse_pos = None self._context = wx.glcanvas.GLContext(self) self.Bind(wx.EVT_ERASE_BACKGROUND, self.on_erase_background_event) self.Bind(wx.EVT_SIZE, self.on_resize_event) self.Bind(wx.EVT_PAINT, self.on_paint_event) self.Bind(wx.EVT_MOUSE_EVENTS, self.on_mouse_event) self.Bind(wx.EVT_KEY_DOWN, self.on_key_down_event) self.Bind(wx.EVT_KEY_UP, self.on_key_up_event) def init(self): glutInit() self._renderer_inited = True self._renderer.on_init() self.resize() def resize(self): if self._renderer_inited: size = self.GetClientSize() self.SetCurrent(self._context) self._renderer.on_reshape(size.width, size.height) def render(self): self._renderer.on_render() self._renderer.input_state.clear_mouse_movement() def on_swap_buffers(self): self.SwapBuffers() def on_erase_background_event(self, event): pass # Do nothing, to avoid flashing on MSW. def on_resize_event(self, event): wx.CallAfter(self.resize) event.Skip() def on_paint_event(self, event): self.SetCurrent(self._context) if not self._renderer_inited: self.init() self.render() self.Refresh(False) def on_mouse_event(self, event): if event.GetEventType() == wx.wxEVT_LEFT_DOWN: input_event = InputEvent(InputEvent.IE_MOUSE, mouse_x=event.X, mouse_y=event.Y, mouse_btn=0, state=True) self._renderer.input_state.update_state(input_event) self._renderer.on_input(input_event) elif event.GetEventType() == wx.wxEVT_LEFT_UP: input_event = InputEvent(InputEvent.IE_MOUSE, mouse_x=event.X, mouse_y=event.Y, mouse_btn=0, state=False) self._renderer.input_state.update_state(input_event) self._renderer.on_input(input_event) if event.GetEventType() == wx.wxEVT_RIGHT_DOWN: input_event = InputEvent(InputEvent.IE_MOUSE, mouse_x=event.X, mouse_y=event.Y, mouse_btn=1, state=True) self._renderer.input_state.update_state(input_event) self._renderer.on_input(input_event) elif event.GetEventType() == wx.wxEVT_RIGHT_UP: input_event = InputEvent(InputEvent.IE_MOUSE, mouse_x=event.X, mouse_y=event.Y, mouse_btn=1, state=False) self._renderer.input_state.update_state(input_event) self._renderer.on_input(input_event) elif event.GetEventType() == wx.wxEVT_MOTION: if self._last_mouse_pos is None: self._last_mouse_pos = [event.X, event.Y] input_event = InputEvent(InputEvent.IE_MOUSE_MOVE, mouse_x=event.X, mouse_y=event.Y, mouse_dx=self._last_mouse_pos[0] - event.X, mouse_dy=self._last_mouse_pos[1] - event.Y) self._renderer.input_state.update_state(input_event) self._renderer.on_input(input_event) self._last_mouse_pos[0] = event.X self._last_mouse_pos[1] = event.Y def on_key_down_event(self, event): input_event = InputEvent(InputEvent.IE_KEY_DOWN, mouse_x=event.Y, mouse_y=event.Y, key=event.GetKeyCode()) self._renderer.input_state.update_state(input_event) self._renderer.on_input(input_event) def on_key_up_event(self, event): input_event = InputEvent(InputEvent.IE_KEY_UP, mouse_x=event.Y, mouse_y=event.Y, key=event.GetKeyCode()) self._renderer.input_state.update_state(input_event) self._renderer.on_input(input_event) class GCraftContinuousRenderer(wx.Timer): def __init__(self, canvas: GCraftCanvas): wx.Timer.__init__(self) self.canvas = canvas def start(self): wx.Timer.Start(self, 10) def stop(self): wx.Timer.Stop(self) def Notify(self): self.canvas.Refresh(False) class GCraftContinuousCanvas(GCraftCanvas): def __init__(self, parent: wx.Window, gc_app: GCraftApp): GCraftCanvas.__init__(self, parent, gc_app) self.renderer_timer = GCraftContinuousRenderer(self) def start(self): self.renderer_timer.start() def stop(self): self.renderer_timer.stop()
1.984375
2
lr.py
xyk2000/LogisticsRegression
1
12796897
<reponame>xyk2000/LogisticsRegression<filename>lr.py import numpy as np np.random.seed(10) def sigmoid(x): return 1 / (1 + np.exp(-x)) class LogisticsReg(): def __init__(self,learn_rate=1e-3,niter=100000): self.lr=learn_rate self.iter=int(niter) def fit(self,x,y): x=np.insert(x, 0, values=1, axis=1) w=np.random.uniform(size=(x.shape[1])) for i in range(self.iter): p = sigmoid(x.dot(w)) w -= self.lr * x.T.dot(p - y) self.w=w def predict(self,x): x=np.insert(x, 0, values=1, axis=1) return sigmoid(x.dot(self.w)) if __name__=='__main__': data=np.loadtxt('data.csv',delimiter=',',skiprows=1) np.random.shuffle(data) x=data[:600,:-1] y=data[:600,-1] mean=np.mean(x,axis=0) std=np.std(x,axis=0) x=(x-mean)/std x_val=data[600:,:-1] y_val=data[600:,-1] x_val=(x_val-mean)/std model=LogisticsReg() model.fit(x,y) import sklearn.metrics pred=model.predict(x_val) print(sklearn.metrics.roc_auc_score(y_val,pred)) ''' with open('acc_thres.csv','w') as f: for i in range(100): pred=model.predict(x_val)>(i/100) acc=sklearn.metrics.accuracy_score(y_val,pred) f.write('%s,%s\n'%(i/100,acc)) ''' with open('acc_lr.csv','w') as f: for i in range(-10,1): model=LogisticsReg(10**i) model.fit(x,y) pred=model.predict(x_val)>0.5 acc=sklearn.metrics.accuracy_score(y_val,pred) f.write('%s,%s\n'%(10**i,acc))
3.015625
3
kalamine/layout.py
qwerty-fr/kalamine
0
12796898
<reponame>qwerty-fr/kalamine #!/usr/bin/env python3 import datetime import os import re import sys import yaml from .template import xkb_keymap, \ osx_keymap, osx_actions, osx_terminators, \ klc_keymap, klc_deadkeys, klc_dk_index, \ web_keymap, web_deadkeys from .utils import open_local_file, load_data, text_to_lines, lines_to_text, \ DEFAULT_DEAD_KEYS, ODK_ID ### # Helpers # def upper_key(letter): if len(letter) != 1: # dead key? return ' ' customAlpha = { '\u00df': '\u1e9e', # ß ẞ '\u007c': '\u00a6', # | ¦ '\u003c': '\u2264', # < ≤ '\u003e': '\u2265', # > ≥ '\u2020': '\u2021', # † ‡ '\u2190': '\u21d0', # ← ⇐ '\u2191': '\u21d1', # ↑ ⇑ '\u2192': '\u21d2', # → ⇒ '\u2193': '\u21d3', # ↓ ⇓ '\u00b5': ' ', # µ (to avoid getting `Μ` as uppercase) } if letter in customAlpha: return customAlpha[letter] elif letter.upper() != letter.lower(): return letter.upper() else: return ' ' def substitute_lines(text, variable, lines): prefix = 'KALAMINE::' exp = re.compile('.*' + prefix + variable + '.*') indent = '' for line in text.split('\n'): m = exp.match(line) if m: indent = m.group().split(prefix)[0] break return exp.sub(lines_to_text(lines, indent), text) def substitute_token(text, token, value): exp = re.compile('\\$\\{' + token + '(=[^\\}]*){0,1}\\}') return exp.sub(value, text) def load_tpl(layout, ext): tpl = 'base' if layout.has_altgr: tpl = 'full' if layout.has_1dk and ext.startswith('.xkb'): tpl = 'full_1dk' out = open_local_file(os.path.join('tpl', tpl + ext)).read() out = substitute_lines(out, 'GEOMETRY_base', layout.base) out = substitute_lines(out, 'GEOMETRY_full', layout.full) out = substitute_lines(out, 'GEOMETRY_altgr', layout.altgr) for key, value in layout.meta.items(): out = substitute_token(out, key, value) return out ### # Constants # CONFIG = { 'author': '<NAME>', 'license': 'WTFPL - Do What The Fuck You Want Public License', 'geometry': 'ISO' } SPACEBAR = { 'shift': " ", # U+0020 SPACE 'altgr': " ", # U+0020 SPACE 'altgr_shift': " ", # U+0020 SPACE '1dk': "'", # U+0027 APOSTROPHE '1dk_shift': "'" # U+0027 APOSTROPHE } GEOMETRY = load_data('geometry.yaml') ### # Main # class KeyboardLayout: """ Lafayette-style keyboard layout: base + 1dk + altgr layers. """ def __init__(self, filepath): """ Import a keyboard layout to instanciate the object. """ # initialize a blank layout self.layers = [{}, {}, {}, {}, {}, {}] self.dead_keys = {} # dictionary subset of DEAD_KEYS self.dk_index = [] # ordered keys of the above dictionary self.meta = CONFIG.copy() # default parameters, hardcoded self.has_altgr = False self.has_1dk = False # load the YAML data (and its ancessor, if any) try: cfg = yaml.load(open(filepath), Loader=yaml.SafeLoader) if 'extends' in cfg: path = os.path.join(os.path.dirname(filepath), cfg['extends']) ext = yaml.load(open(path), Loader=yaml.SafeLoader) ext.update(cfg) cfg = ext except Exception as e: print('File could not be parsed.') print('Error: {}.'.format(e)) sys.exit(1) # metadata: self.meta for k in cfg: if k not in ['base', 'full', 'altgr', 'spacebar', 'deadkeys']: self.meta[k] = cfg[k] filename = os.path.splitext(os.path.basename(filepath))[0] self.meta['name'] = cfg['name'] if 'name' in cfg else filename self.meta['name8'] = cfg['name8'] if 'name8' in cfg \ else self.meta['name'][0:8] self.meta['fileName'] = self.meta['name8'].lower() self.meta['lastChange'] = datetime.date.today().isoformat() dead_keys = {} if 'deadkeys' in cfg: dead_keys = cfg['deadkeys'] for dk in DEFAULT_DEAD_KEYS: found = any((d for d in dead_keys if d['char'] == dk['char'])) if not found: dead_keys.append(dk) # keyboard layers: self.layers & self.dead_keys rows = GEOMETRY[self.meta['geometry']]['rows'] if 'full' in cfg: full = text_to_lines(cfg['full']) self._parse_template(full, dead_keys, rows, 0) self._parse_template(full, dead_keys, rows, 4) self.has_altgr = True else: base = text_to_lines(cfg['base']) self._parse_template(base, dead_keys, rows, 0) self._parse_template(base, dead_keys, rows, 2) if 'altgr' in cfg: self.has_altgr = True self._parse_template(text_to_lines(cfg['altgr']), dead_keys, rows, 4) # space bar spc = SPACEBAR.copy() if 'spacebar' in cfg: for k in cfg['spacebar']: spc[k] = cfg['spacebar'][k] self.layers[0]['spce'] = ' ' self.layers[1]['spce'] = spc['shift'] self.layers[2]['spce'] = spc['1dk'] self.layers[3]['spce'] = spc['shift_1dk'] if 'shift_1dk' in spc \ else spc['1dk'] if self.has_altgr: self.layers[4]['spce'] = spc['altgr'] self.layers[5]['spce'] = spc['altgr_shift'] # active dead keys: self.dk_index for dk in dead_keys: if dk['char'] in self.dead_keys: self.dk_index.append(dk['char']) # remove unused characters in self.dead_keys[].{base,alt} def layer_has_char(char, layer_index): for id in self.layers[layer_index]: if self.layers[layer_index][id] == char: return True return False for dk_id in self.dead_keys: base = self.dead_keys[dk_id]['base'] alt = self.dead_keys[dk_id]['alt'] used_base = '' used_alt = '' for i in range(len(base)): if layer_has_char(base[i], 0) or layer_has_char(base[i], 1): used_base += base[i] used_alt += alt[i] self.dead_keys[dk_id]['base'] = used_base self.dead_keys[dk_id]['alt'] = used_alt # 1dk behavior if ODK_ID in self.dead_keys: self.has_1dk = True odk = self.dead_keys[ODK_ID] # alt_self (double-press), alt_space (1dk+space) odk['alt_space'] = spc['1dk'] for key in self.layers[0]: if self.layers[0][key] == ODK_ID: odk['alt_self'] = self.layers[2][key] break # copy the 2nd and 3rd layers to the dead key for i in [0, 1]: for (name, alt_char) in self.layers[i + 2].items(): base_char = self.layers[i][name] if name != 'spce' and base_char != ODK_ID: odk['base'] += base_char odk['alt'] += alt_char def _parse_template(self, template, dead_keys, rows, layerNumber): """ Extract a keyboard layer from a template. """ if layerNumber == 0: # base layer colOffset = 0 else: # AltGr or 1dk colOffset = 2 j = 0 for row in rows: i = row['offset'] + colOffset keys = row['keys'] base = list(template[2 + j * 3]) shift = list(template[1 + j * 3]) for key in keys: baseKey = ('*' if base[i - 1] == '*' else '') + base[i] shiftKey = ('*' if shift[i - 1] == '*' else '') + shift[i] if layerNumber == 0 and baseKey == ' ': # 'shift' prevails baseKey = shiftKey.lower() if layerNumber != 0 and shiftKey == ' ': shiftKey = upper_key(baseKey) if baseKey != ' ': self.layers[layerNumber + 0][key] = baseKey if shiftKey != ' ': self.layers[layerNumber + 1][key] = shiftKey for dk in dead_keys: if baseKey == dk['char']: self.dead_keys[baseKey] = dk.copy() if shiftKey == dk['char']: self.dead_keys[shiftKey] = dk.copy() i += 6 j += 1 ### # Geometry: base, full, altgr # def _fill_template(self, template, rows, layerNumber): """ Fill a template with a keyboard layer. """ if layerNumber == 0: # base layer colOffset = 0 shiftPrevails = True else: # AltGr or 1dk colOffset = 2 shiftPrevails = False j = 0 for row in rows: i = row['offset'] + colOffset keys = row['keys'] base = list(template[2 + j * 3]) shift = list(template[1 + j * 3]) for key in keys: baseKey = ' ' if key in self.layers[layerNumber]: baseKey = self.layers[layerNumber][key] shiftKey = ' ' if key in self.layers[layerNumber + 1]: shiftKey = self.layers[layerNumber + 1][key] dead_base = len(baseKey) == 2 and baseKey[0] == '*' dead_shift = len(shiftKey) == 2 and shiftKey[0] == '*' if shiftPrevails: shift[i] = shiftKey[-1] if dead_shift: shift[i-1] = '*' if upper_key(baseKey) != shiftKey: base[i] = baseKey[-1] if dead_base: base[i-1] = '*' else: base[i] = baseKey[-1] if dead_base: base[i-1] = '*' if upper_key(baseKey) != shiftKey: shift[i] = shiftKey[-1] if dead_shift: shift[i-1] = '*' i += 6 template[2 + j * 3] = ''.join(base) template[1 + j * 3] = ''.join(shift) j += 1 return template def _get_geometry(self, layers=[0], name='ISO'): """ `geometry` view of the requested layers. """ rows = GEOMETRY[name]['rows'] template = GEOMETRY[name]['template'].split('\n')[:-1] for i in layers: template = self._fill_template(template, rows, i) return template @property def base(self): return self._get_geometry([0, 2]) # base + 1dk @property def full(self): return self._get_geometry([0, 4]) # base + altgr @property def altgr(self): return self._get_geometry([4]) # altgr only ### # OS-specific drivers: keylayout, klc, xkb, xkb_patch # @property def keylayout(self): """ Mac OSX driver """ out = load_tpl(self, '.keylayout') for i, layer in enumerate(osx_keymap(self)): out = substitute_lines(out, 'LAYER_' + str(i), layer) out = substitute_lines(out, 'ACTIONS', osx_actions(self)) out = substitute_lines(out, 'TERMINATORS', osx_terminators(self)) return out @property def klc(self): """ Windows driver (warning: requires CR/LF + UTF16LE encoding) """ out = load_tpl(self, '.klc') out = substitute_lines(out, 'LAYOUT', klc_keymap(self)) out = substitute_lines(out, 'DEAD_KEYS', klc_deadkeys(self)) out = substitute_lines(out, 'DEAD_KEY_INDEX', klc_dk_index(self)) out = substitute_token(out, 'encoding', 'utf-16le') return out @property def xkb(self): # will not work with Wayland """ GNU/Linux driver (standalone / user-space) """ out = load_tpl(self, '.xkb') out = substitute_lines(out, 'LAYOUT', xkb_keymap(self, False)) return out @property def xkb_patch(self): """ GNU/Linux driver (system patch) """ out = load_tpl(self, '.xkb_patch') out = substitute_lines(out, 'LAYOUT', xkb_keymap(self, True)) return out ### # JSON output: keymap (base+altgr layers) and dead keys # @property def json(self): return { 'name': self.meta['name'], 'description': self.meta['description'], 'geometry': self.meta['geometry'].lower(), 'keymap': web_keymap(self), 'deadkeys': web_deadkeys(self), 'altgr': self.has_altgr }
2.21875
2
src/core.py
MKuranowski/AdventOfCode2021
0
12796899
<gh_stars>0 from typing import Callable, Generator, Iterable, TypeVar _T = TypeVar("_T") _K = TypeVar("_K") def empty_str(t: str) -> bool: return t == "" def split_on(seq: Iterable[_T], pred: Callable[[_T], bool]) -> list[list[_T]]: after_split: list[list[_T]] = [] current: list[_T] = [] for elem in seq: if pred(elem): # Split on this element if current: after_split.append(current) current = [] else: current.append(elem) if current: after_split.append(current) return after_split def aggregate_by(iterable: Iterable[_T], key: Callable[[_T], _K]) -> dict[_K, list[_T]]: """Groups elements from an iterable by key(elem). Analogous to itertools.group_by; however this function doesn't care about the order of the keys. """ d: dict[_K, list[_T]] = {} for elem in iterable: d.setdefault(key(elem), []).append(elem) return d def iterate(f: Callable[[_T], _T], x: _T = 0) -> Generator[_T, None, None]: """Iterate produces an infinite sequence of x, f(x), f(f(x)), ... See Clojure's iterate. """ while True: yield x x = f(x)
2.859375
3
rl/algorithms/mfrl/mfrl.py
RamiSketcher/AMMI-RL
0
12796900
import gym from gym.spaces import Box import numpy as np import torch as T import rl.environments from rl.data.buffer import TrajBuffer, ReplayBuffer # from rl.data.buffer import TrajBuffer, ReplayBufferNP # def make_env(env_id, seed, idx, capture_video, run_name): # def thunk(): # print('in thunk') # env = gym.make(env_id) # env = gym.wrappers.RecordEpisodeStatistics(env) # if capture_video: # if idx == 0: # env = gym.wrappers.RecordVideo(env, f"videos/{run_name}") # env = gym.wrappers.ClipAction(env) # env = gym.wrappers.NormalizeObservation(env) # env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10)) # env = gym.wrappers.NormalizeReward(env) # env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10)) # env.seed(seed) # env.action_space.seed(seed) # env.observation_space.seed(seed) # return env # # return thunk class MFRL: """ Model-Free Reinforcement Learning """ def __init__(self, exp_prefix, configs, seed, device): # super(MFRL, self).__init__(configs, seed) # print('init MBRL!') self.exp_prefix = exp_prefix self.configs = configs self.seed = seed self._device_ = device def _build(self): self._set_env() self._set_buffer() def _set_env(self): name = self.configs['environment']['name'] evaluate = self.configs['algorithm']['evaluation'] # Inintialize Learning environment self.learn_env = gym.make(name) self._seed_env(self.learn_env) assert isinstance (self.learn_env.action_space, Box), "Works only with continuous action space" if evaluate: # Ininialize Evaluation environment self.eval_env = gym.make(name) self._seed_env(self.eval_env) else: self.eval_env = None # Spaces dimensions self.obs_dim = self.learn_env.observation_space.shape[0] self.act_dim = self.learn_env.action_space.shape[0] self.act_up_lim = self.learn_env.action_space.high self.act_low_lim = self.learn_env.action_space.low def _seed_env(self, env): env.seed(self.seed) env.action_space.seed(self.seed) env.observation_space.seed(self.seed) def _set_buffer(self): max_size = self.configs['data']['buffer_size'] device = self._device_ if self.configs['algorithm']['on-policy']: max_size = self.configs['data']['batch_size'] num_traj = max_size//20 horizon = 1000 self.buffer = TrajBuffer(self.obs_dim, self.act_dim, horizon, num_traj, max_size, self.seed, device) else: self.buffer = ReplayBuffer(self.obs_dim, self.act_dim, max_size, self.seed, device) def initialize_buffer(self, num_traj=400): # print('Initialize a New Buffer..') seed = self.seed device = self._device_ if self.configs['algorithm']['on-policy']: # num_traj = 40 horizon = 1000 max_size = self.configs['data']['batch_size'] self.buffer = TrajBuffer(self.obs_dim, self.act_dim, horizon, num_traj, max_size, self.seed, device) def initialize_learning(self, NT, Ni): max_el = self.configs['environment']['horizon'] o, Z, el, t = self.learn_env.reset(), 0, 0, 0 if Ni < 1: return o, Z, el, t print(f'[ Initial exploaration ] Starting') for ni in range(1, Ni+1): print(f'[ Initial exploaration ] Epoch {ni}') nt = 0 while nt < NT: # Random actions a = self.learn_env.action_space.sample() o_next, r, d, info = self.learn_env.step(a) d = True if el == max_el else d # Ignore artificial termination self.buffer.store_transition(o, a, r, o_next, d) o = o_next Z += r el +=1 t +=1 if d or (el == max_el): o, Z, el = self.learn_env.reset(), 0, 0 nt += 1 return o, Z, el, t def internact_op(self, n, o, d, Z, el, t): Nt = self.configs['algorithm']['learning']['epoch_steps'] max_el = self.configs['environment']['horizon'] # a = self.actor_critic.get_action_np(o) with T.no_grad(): a, log_pi, v = self.actor_critic.get_a_and_v_np(T.Tensor(o)) # print('log_pi: ', log_pi) o_next, r, d_next, _ = self.learn_env.step(a) Z += r el += 1 t += 1 self.buffer.store_transition(o, a, r, d, v, log_pi, el) if d_next or (el == max_el): # o_next, Z, el = self.learn_env.reset(), 0, 0 with T.no_grad(): v_next = self.actor_critic.get_v(T.Tensor(o_next)).cpu() self.buffer.traj_tail(d_next, v_next, el) # print(f'termination: t={t} | el={el} | total_size={self.buffer.total_size()}') o_next, d_next, Z, el = self.learn_env.reset(), 0, 0, 0 o, d = o_next, d_next return o, d, Z, el, t def internact_opB(self, n, o, Z, el, t): Nt = self.configs['algorithm']['learning']['epoch_steps'] max_el = self.configs['environment']['horizon'] # a = self.actor_critic.get_action_np(o) with T.no_grad(): a, log_pi, v = self.actor_critic.get_a_and_v_np(T.Tensor(o)) # print('log_pi: ', log_pi) o_next, r, d, _ = self.learn_env.step(a) Z += r el += 1 t += 1 self.buffer.store(o, a, r, o_next, v, log_pi, el) o = o_next if d or (el == max_el): if el == max_el: with T.no_grad(): v = self.actor_critic.get_v(T.Tensor(o)).cpu() else: # print('v=0') v = T.Tensor([0.0]) self.buffer.finish_path(el, v) # print(f'termination: t={t} | el={el} | total_size={self.buffer.total_size()}') o, Z, el = self.learn_env.reset(), 0, 0 return o, Z, el, t def internact(self, n, o, Z, el, t): Nx = self.configs['algorithm']['learning']['expl_epochs'] max_el = self.configs['environment']['horizon'] if n > Nx: a = self.actor_critic.get_action_np(o) # Stochastic action | No reparameterization # Deterministic action | No reparameterization else: a = self.learn_env.action_space.sample() o_next, r, d, _ = self.learn_env.step(a) d = False if el == max_el else d # Ignore artificial termination self.buffer.store_transition(o, a, r, o_next, d) o = o_next Z += r el +=1 t +=1 if d or (el == max_el): o, Z, el = self.learn_env.reset(), 0, 0 return o, Z, el, t def evaluate_op(self): evaluate = self.configs['algorithm']['evaluation'] if evaluate: print('[ Evaluation ]') EE = self.configs['algorithm']['evaluation']['eval_episodes'] max_el = self.configs['environment']['horizon'] EZ = [] # Evaluation episodic return ES = [] # Evaluation episodic score EL = [] # Evaluation episodic length for ee in range(1, EE+1): print(f' [ Agent Evaluation ] Episode: {ee} ', end='\r') o, d, Z, S, el = self.eval_env.reset(), False, 0, 0, 0 while not(d or (el == max_el)): # with T.no_grad(): a, _, _ = self.actor_critic.get_pi(T.Tensor(o)) a = self.actor_critic.get_action_np(o, deterministic=True) # a = self.actor_critic.get_action_np(o, deterministic=True) o, r, d, info = self.eval_env.step(a) Z += r if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': S += info['score'] el += 1 EZ.append(Z) if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': ES.append(S/el) EL.append(el) # if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': # for i in range(len(ES)): # ES[i] /= EL[i] return EZ, ES, EL def evaluate(self): evaluate = self.configs['algorithm']['evaluation'] if evaluate: print('[ Evaluation ]') EE = self.configs['algorithm']['evaluation']['eval_episodes'] max_el = self.configs['environment']['horizon'] EZ = [] # Evaluation episodic return ES = [] # Evaluation episodic score EL = [] # Evaluation episodic length for ee in range(1, EE+1): print(f' [ Agent Evaluation ] Episode: {ee} ', end='\r') o, d, Z, S, el = self.eval_env.reset(), False, 0, 0, 0 while not(d or (el == max_el)): # Take deterministic actions at evaluation time a = self.actor_critic.get_action_np(o, deterministic=True) # Deterministic action | No reparameterization o, r, d, info = self.eval_env.step(a) Z += r if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': S += info['score'] el += 1 EZ.append(Z) if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': ES.append(S/el) EL.append(el) # if self.configs['environment']['type'] == 'mujoco-pddm-shadowhand': # for i in range(len(ES)): # ES[i] /= EL[i] return EZ, ES, EL
2.078125
2
twitter/getStatus.py
cuete/py-cat
0
12796901
#!/usr/bin/env python #Update your .twconfig file on this same directory #with your own api keys and secrets #Get them signing up at https://apps.twitter.com #Install required modules with #'pip install -r requirements.txt' import configparser import os import sys import json import twitter def jdefault(o): return o.__dict__ #usage: print(json.dumps(string, default=jdefault)) def main(): #Twitter status id to fetch statusId = '973464578708316161' try: sys.stdout.write('reading config file... ') config = configparser.RawConfigParser() config.read('.twconfig') print('success!') except: print('failed to read config file!') exit() try: sys.stdout.write('connecting to api... ') api = twitter.Api(consumer_key=config.get('keys', 'consumer_key'), consumer_secret=config.get('keys', 'consumer_secret'), access_token_key=config.get('keys', 'access_key'), access_token_secret=config.get('keys', 'access_secret')) print('success!') except Exception as e: print('failed to connect to twitter api!') print(e) exit() try: sys.stdout.write('fetching status %s... ' % statusId ) status = api.GetStatus(statusId) print('success!') except: print('failed to get status!') exit() try: print('writing to file out.txt... ') with open(statusId + '.txt', 'w') as outfile: statusparsed = json.loads(str(status).encode()) outfile.write(json.dumps(status, default=jdefault) + '\n') sys.stdout.write('Created at: ' + statusparsed['created_at']) outfile.closed except: print('failed writing to file!') exit() if __name__ == "__main__": main()
2.640625
3
schoolbooks/schoolbook_even_medium.py
Dia-B/polymul-z2mx-m4
6
12796902
<reponame>Dia-B/polymul-z2mx-m4<filename>schoolbooks/schoolbook_even_medium.py from math import ceil from .common import schoolbook_inner, Registers, schoolbook_postprocess import sys def schoolbook_medium(SRC1, SRC2, DEST, n): parts = ceil(n / 12) npart = ceil(n / parts) instructions = schoolbook_even_medium(SRC1, SRC2, DEST, npart * parts) yield from schoolbook_postprocess(SRC1, SRC2, DEST, instructions, n, stack_src=True) def schoolbook_even_medium(SRC1, SRC2, DEST, n): # the idea here is that we need to divide neatly into schoolbook blocks # for n <= 12, it's simply one schoolbook # for 12 < n <= 24, we divide into 2x2 schoolbooks (so require even n) # for 24 < n <= 36, we divide into 3x3 schoolbooks (so require n % 3 == 0) # etc. assert n % ceil(n / 12) == 0, "Can only handle n that divide into schoolbooks" # reverse to prioritize low registers (as these have 16-bit loads) regs = Registers(reversed([f'r{i}' for i in range(0, 13)] + ["r14"])) # consider SRC1, SRC2 and DEST allocated regs.alloc(SRC1) regs.alloc(SRC2) regs.alloc(DEST) # these can be flexible, do not need to be r0 and r1 after first re-alloc src1 = SRC1 src2 = SRC2 parts = ceil(n / 12) npart = n // parts # note that these offsets shouldnt exceed 4096 (i.e. n shouldnt be huge) dest_offset = 0 a_offset = 0 b_offset = 0 def blockload(addr, regs, n, offset=0): for i, r in enumerate(regs): # if it's the last coefficient for odd n, load only one halfword if i == n // 2 and n & 1: yield f"ldrh {r}, [{addr}, #{i * 4 + offset}]" else: yield f"ldr {r}, [{addr}, #{i * 4 + offset}]" # allocate registers for a and b a = [regs.alloc() for _ in range(ceil(npart / 2))] yield from blockload(src1, a, npart, a_offset) if npart >= 11: # we cannot afford to keep these pointers around yield f"push {{{src1}}}" regs.free(src1) b = [regs.alloc() for _ in range(ceil(npart / 2))] yield from blockload(src2, b, npart, b_offset) if npart >= 11: yield f"push {{{src2}}}" regs.free(src2) initialized = set() for col in range(parts): for row in (range(parts - 1, -1, -1) if col & 1 else range(parts)): lastrow = not (col & 1) and row == parts-1 or (col & 1) and row == 0 yield from schoolbook_inner(npart, a, b, DEST, regs, initialized, restore_b=not lastrow, dest_offset=dest_offset) if col & 1: # for odd columns, go 'back up' instead of down dest_offset -= 2 * npart else: dest_offset += 2 * npart # if it's the last part in this col, don't load new src1 inputs if lastrow: if row == 0: # if we just finished a back-and-forth dest_offset += 2 * 2 * npart continue if npart >= 11: src1 = regs.alloc() yield f"ldr {src1}, [sp, #4]" if col & 1: # for odd columns, go 'back up' instead of down a_offset -= 2 * npart else: a_offset += 2 * npart yield from blockload(src1, a, npart, a_offset) if npart >= 11: yield f"str {src1}, [sp, #4]" regs.free(src1) if col == parts-1: # if it's the last part, don't load new src2 inputs continue if npart >= 11: src2 = regs.alloc() yield f"ldr {src2}, [sp, #0]" b_offset += 2 * npart regs.free(*set(b)) # free; for some n there's one extra after repacking b = [regs.alloc() for _ in range(ceil(npart / 2))] yield from blockload(src2, b, npart, b_offset) if npart >= 11: yield f"str {src2}, [sp, #0]" regs.free(src2) regs.free(*set(a)) regs.free(*set(b)) if npart >= 11: yield f"pop {{{SRC2}}}" yield f"pop {{{SRC1}}}"
2.59375
3
examples/rec/tf_ncf.py
initzhang/Hetu
82
12796903
import tensorflow as tf def neural_mf(user_input, item_input, y_, num_users, num_items, embed_partitioner=None): embed_dim = 8 layers = [64, 32, 16, 8] learning_rate = 0.01 with tf.compat.v1.variable_scope('nmf', dtype=tf.float32): with tf.device('/cpu:0'): User_Embedding = tf.compat.v1.get_variable(name="user_embed", shape=( num_users, embed_dim + layers[0] // 2), initializer=tf.random_normal_initializer(stddev=0.01), partitioner=embed_partitioner) Item_Embedding = tf.compat.v1.get_variable(name="item_embed", shape=( num_items, embed_dim + layers[0] // 2), initializer=tf.random_normal_initializer(stddev=0.01), partitioner=embed_partitioner) user_latent = tf.nn.embedding_lookup(User_Embedding, user_input) item_latent = tf.nn.embedding_lookup(Item_Embedding, item_input) W1 = tf.compat.v1.get_variable(name='W1', shape=( layers[0], layers[1]), initializer=tf.random_normal_initializer(stddev=0.1)) W2 = tf.compat.v1.get_variable(name='W2', shape=( layers[1], layers[2]), initializer=tf.random_normal_initializer(stddev=0.1)) W3 = tf.compat.v1.get_variable(name='W3', shape=( layers[2], layers[3]), initializer=tf.random_normal_initializer(stddev=0.1)) W4 = tf.compat.v1.get_variable(name='W4', shape=( embed_dim + layers[3], 1), initializer=tf.random_normal_initializer(stddev=0.1)) with tf.device('/gpu:0'): mf_user_latent, mlp_user_latent = tf.split( user_latent, [embed_dim, layers[0] // 2], 1) mf_item_latent, mlp_item_latent = tf.split( item_latent, [embed_dim, layers[0] // 2], 1) mf_vector = tf.multiply(mf_user_latent, mf_item_latent) mlp_vector = tf.concat((mlp_user_latent, mlp_item_latent), 1) fc1 = tf.matmul(mlp_vector, W1) relu1 = tf.nn.relu(fc1) fc2 = tf.matmul(relu1, W2) relu2 = tf.nn.relu(fc2) fc3 = tf.matmul(relu2, W3) relu3 = tf.nn.relu(fc3) concat_vector = tf.concat((mf_vector, relu3), 1) y = tf.reshape(tf.matmul(concat_vector, W4), (-1,)) loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=y_) loss = tf.reduce_mean(loss) y = tf.sigmoid(y) optimizer = tf.compat.v1.train.GradientDescentOptimizer( learning_rate) return loss, y, optimizer
2.40625
2
tests/graph/test_ppatterns.py
saezlab/squidpy
0
12796904
import pytest from anndata import AnnData from pandas.testing import assert_frame_equal import numpy as np from squidpy.gr import moran, ripley_k, co_occurrence MORAN_K = "moranI" def test_ripley_k(adata: AnnData): """Check ripley score and shape.""" ripley_k(adata, cluster_key="leiden") # assert ripley in adata.uns assert "ripley_k_leiden" in adata.uns.keys() # assert clusters intersection cat_ripley = set(adata.uns["ripley_k_leiden"]["leiden"].unique()) cat_adata = set(adata.obs["leiden"].cat.categories) assert cat_ripley.isdisjoint(cat_adata) is False def test_moran_seq_par(dummy_adata: AnnData): """Check whether moran results are the same for seq. and parallel computation.""" moran(dummy_adata) dummy_adata.var["highly_variable"] = np.random.choice([True, False], size=dummy_adata.var_names.shape) df = moran(dummy_adata, copy=True, n_jobs=1, seed=42, n_perms=50) df_parallel = moran(dummy_adata, copy=True, n_jobs=2, seed=42, n_perms=50) idx_df = df.index.values idx_adata = dummy_adata[:, dummy_adata.var.highly_variable.values].var_names.values assert MORAN_K in dummy_adata.uns.keys() assert "pval_sim_fdr_bh" in dummy_adata.uns[MORAN_K] assert dummy_adata.uns[MORAN_K].columns.shape == (4,) # test highly variable assert dummy_adata.uns[MORAN_K].shape != df.shape # assert idx are sorted and contain same elements assert not np.array_equal(idx_df, idx_adata) np.testing.assert_array_equal(sorted(idx_df), sorted(idx_adata)) # check parallel gives same results with pytest.raises(AssertionError, match=r'.*\(column name="pval_sim"\) are different.*'): # because the seeds will be different, we don't expect the pval_sim values to be the same assert_frame_equal(df, df_parallel) @pytest.mark.parametrize("n_jobs", [1, 2]) def test_moran_reproducibility(dummy_adata: AnnData, n_jobs: int): """Check moran reproducibility results.""" moran(dummy_adata) dummy_adata.var["highly_variable"] = np.random.choice([True, False], size=dummy_adata.var_names.shape) # seed will work only when multiprocessing/loky df_1 = moran(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50) df_2 = moran(dummy_adata, copy=True, n_jobs=n_jobs, seed=42, n_perms=50) idx_df = df_1.index.values idx_adata = dummy_adata[:, dummy_adata.var.highly_variable.values].var_names.values assert MORAN_K in dummy_adata.uns.keys() # assert fdr correction in adata.uns assert "pval_sim_fdr_bh" in dummy_adata.uns[MORAN_K] assert dummy_adata.uns[MORAN_K].columns.shape == (4,) # test highly variable assert dummy_adata.uns[MORAN_K].shape != df_1.shape # assert idx are sorted and contain same elements assert not np.array_equal(idx_df, idx_adata) np.testing.assert_array_equal(sorted(idx_df), sorted(idx_adata)) # check parallel gives same results assert_frame_equal(df_1, df_2) def test_co_occurrence(adata: AnnData): """ check ripley score and shape """ co_occurrence(adata, cluster_key="leiden") # assert occurrence in adata.uns assert "leiden_co_occurrence" in adata.uns.keys() assert "occ" in adata.uns["leiden_co_occurrence"].keys() assert "interval" in adata.uns["leiden_co_occurrence"].keys() # assert shapes arr = adata.uns["leiden_co_occurrence"]["occ"] assert arr.ndim == 3 assert arr.shape[2] == 49 assert arr.shape[1] == arr.shape[0] == adata.obs["leiden"].unique().shape[0] # @pytest.mark.parametrize(("ys", "xs"), [(10, 10), (None, None), (10, 20)]) @pytest.mark.parametrize(("n_jobs", "n_splits"), [(1, 2), (2, 2)]) def test_co_occurrence_reproducibility(adata: AnnData, n_jobs: int, n_splits: int): """Check co_occurrence reproducibility results.""" arr_1, interval_1 = co_occurrence(adata, cluster_key="leiden", copy=True, n_jobs=n_jobs, n_splits=n_splits) arr_2, interval_2 = co_occurrence(adata, cluster_key="leiden", copy=True, n_jobs=n_jobs, n_splits=n_splits) np.testing.assert_array_equal(sorted(interval_1), sorted(interval_2)) np.testing.assert_allclose(arr_1, arr_2)
2.3125
2
tests/test_characteristic.py
bdrydyk/homecontroller
0
12796905
""" Tests for pyhap.characteristic """ import uuid from unittest import mock import pytest import pyhap.characteristic as characteristic from pyhap.characteristic import Characteristic PROPERTIES = { "Format": characteristic.HAP_FORMAT.INT, "Permissions": [characteristic.HAP_PERMISSIONS.READ] } def get_char(props, valid=None, min_value=None, max_value=None): if valid is not None: props["ValidValues"] = valid if min_value is not None: props["minValue"] = min_value if max_value is not None: props["maxValue"] = max_value c = Characteristic(display_name="Test Char", type_id=uuid.uuid1(), properties=props) return c def test_default_value(): char = get_char(PROPERTIES.copy()) assert (characteristic.HAP_FORMAT.DEFAULT[PROPERTIES["Format"]] == char.value) def test_default_valid_value(): valid_values = {"foo": 2, "bar": 3} char = get_char(PROPERTIES.copy(), valid=valid_values) assert char.value in valid_values.values() def test_set_value(): char = get_char(PROPERTIES.copy()) new_value = 3 char.set_value(new_value) assert char.value == new_value def test_set_value_valid_values(): valid_values = {"foo": 2, "bar": 3, } char = get_char(PROPERTIES.copy(), valid=valid_values) with pytest.raises(ValueError): char.set_value(4) def test_set_value_callback_toggle(): char = get_char(PROPERTIES.copy()) char.setter_callback = mock.Mock() char.set_value(3, should_callback=False) assert not char.setter_callback.called char.set_value(3, should_callback=True) assert char.setter_callback.called def test_override_properties_properties(): new_properties = {'minValue': 10, 'maxValue': 20, 'step': 1} char = get_char(PROPERTIES.copy(), min_value=0, max_value=1) char.override_properties(properties=new_properties) assert char.properties['minValue'] == new_properties['minValue'] assert char.properties['maxValue'] == new_properties['maxValue'] assert char.properties['step'] == new_properties['step'] def test_override_properties_valid_values(): new_valid_values = {'foo2': 2, 'bar2': 3} char = get_char(PROPERTIES.copy(), valid={'foo': 1, 'bar': 2}) char.override_properties(valid_values=new_valid_values) assert char.properties['ValidValues'] == new_valid_values def test_get_hap_value(): max_value = 5 raw_value = 6 char = get_char(PROPERTIES.copy(), max_value=max_value) char.set_value(raw_value, should_notify=False) assert char.value == raw_value assert char.get_hap_value() == max_value def test_notify(): char = get_char(PROPERTIES.copy()) broker_mock = mock.Mock() char.broker = broker_mock notify_value = 3 expected = { "type_id": char.type_id, "value": notify_value, } char.value = notify_value char.notify() assert broker_mock.publish.called broker_mock.publish.assert_called_with(expected, char) def test_notify_except_no_broker(): char = get_char(PROPERTIES.copy()) with pytest.raises(characteristic.NotConfiguredError): char.notify()
2.53125
3
example.py
julianspaeth/RandomSurvialForest
40
12796906
from random_survival_forest import RandomSurvivalForest, concordance_index from lifelines import datasets from sklearn.model_selection import train_test_split import time rossi = datasets.load_rossi() # Attention: duration column must be index 0, event column index 1 in y y = rossi.loc[:, ["arrest", "week"]] X = rossi.drop(["arrest", "week"], axis=1) X, X_test, y, y_test = train_test_split(X, y, test_size=0.25, random_state=10) print("RSF") start_time = time.time() rsf = RandomSurvivalForest(n_estimators=20, n_jobs=-1, min_leaf=10) rsf = rsf.fit(X, y) print("--- %s seconds ---" % (time.time() - start_time)) y_pred = rsf.predict(X_test) c_val = concordance_index(y_time=y_test["week"], y_pred=y_pred, y_event=y_test["arrest"]) print("C-index", round(c_val, 3))
2.46875
2
sysinv/sysinv/sysinv/sysinv/puppet/device.py
etaivan/stx-config
0
12796907
<reponame>etaivan/stx-config<filename>sysinv/sysinv/sysinv/sysinv/puppet/device.py # # Copyright (c) 2017 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # import collections from sysinv.common import constants from sysinv.puppet import base class DevicePuppet(base.BasePuppet): """Class to encapsulate puppet operations for device configuration""" def _get_device_id_index(self, host): """ Builds a dictionary of device lists indexed by device id. """ devices = collections.defaultdict(list) for device in self.dbapi.pci_device_get_all(hostid=host.id): devices[device.pdevice_id].append(device) return devices def _get_host_qat_device_config(self, pci_device_list): """ Builds a config dictionary for QAT devices to be used by the platform devices (compute) puppet resource. """ device_config = {} qat_c62x_devices = pci_device_list[constants.NOVA_PCI_ALIAS_QAT_C62X_PF_DEVICE] if len(qat_c62x_devices) != 0: for idx, device in enumerate(qat_c62x_devices): name = 'pci-%s' % device.pciaddr dev = { 'qat_idx': idx, "device_id": "c62x", } device_config.update({name: dev}) qat_dh895xcc_devices = pci_device_list[constants.NOVA_PCI_ALIAS_QAT_DH895XCC_PF_DEVICE] if len(qat_dh895xcc_devices) != 0: for idx, device in enumerate(qat_dh895xcc_devices): name = 'pci-%s' % device.pciaddr dev = { 'qat_idx': idx, "device_id": "dh895xcc", } device_config.update({name: dev}) if len(device_config) == 0: return {} return { 'platform::devices::qat::device_config': device_config, 'platform::devices::qat::service_enabled': True, } def get_host_config(self, host): if constants.WORKER not in host.subfunctions: # configuration only required for compute hosts return {} devices = self._get_device_id_index(host) if len(devices) == 0: # no pci devices on the system return {} device_config = {} qat_devices = self._get_host_qat_device_config(devices) if qat_devices: device_config.update(qat_devices) return device_config
1.976563
2
Code/search_algorithms/binary_search/binarySearch.py
Kevinjadia/Hacktoberfest_DSA_2021
4
12796908
target = int(input("enter search target: ")) def binarySearch(list,target): maximum = len(list) -1 minimum = 0 result = None while (result != target): m = (maximum + minimum) // 2 midPoint = list[m] if(target > midPoint): minimum = m +1 elif(target < midPoint): maximum = m -1 else: return m result = midPoint return m print(binarySearch([1,2,3,4,5,6,7,8,9,10],target))
4.0625
4
accounts/urls.py
rattletat/homework-server
1
12796909
<filename>accounts/urls.py<gh_stars>1-10 from django.contrib.auth.views import LogoutView from django.urls import path from accounts.views import login, send_login_email app_name = 'accounts' urlpatterns = [ path("send_login_email", send_login_email, name="send_login_email"), path("login", login, name="login"), path('logout', LogoutView.as_view(), name='logout'), ]
1.9375
2
lib/python3.6/token.py
trikyas/django-project
1
12796910
<gh_stars>1-10 /anaconda3/lib/python3.6/token.py
1.0625
1
Machine-Learning-with-Python- From-LM-to-DL/Midterm/04_midterm_exercise.py
andresdelarosa1887/Public-Projects
1
12796911
<gh_stars>1-10 import numpy as np classification_vector= np.array([-1,-1,-1,-1,-1,1,1,1,1,1]) data_vector= np.array([[0,0], [2,0],[3,0], [0,2],[2,2],[5,1],[5,2],[2,4],[4,4],[5,5]]) def quadratic_kernel(data_vector): return np.array((1 + np.dot(data_vector, data_vector.T))**2) def perceptron_quadratic_kernel(feature_matrix, labels, T): # Your code here theta_0 = 0 theta= np.zeros(len(feature_matrix[0])) for epoch in range(T): for i, x in enumerate(feature_matrix): kernelized_vector= quadratic_kernel(feature_matrix[i]) if (labels[i]*(np.dot(kernelized_vector, theta) + theta_0))[1] <= 0: theta= theta + (np.dot(labels[i], kernelized_vector)) theta_0= (theta_0 + labels[i]) print(theta) else: theta_0= theta_0 theta= theta return((theta, theta_0))
2.765625
3
Simulation/main.py
MKamyab1991/quadcopter_ppo
2
12796912
import gym import numpy as np import torch import torch.optim as optim from utils_main import make_env, save_files from neural_network import ActorCritic from ppo_method import ppo from common.multiprocessing_env import SubprocVecEnv from itertools import count use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") num_envs = 2 env_name = "CustomEnv-v0" envs = [make_env(env_name) for i in range(num_envs)] envs = SubprocVecEnv(envs) num_inputs = envs.observation_space.shape[0] num_outputs = envs.action_space.shape[0] # Hyper params: hidden_size = 400 lr = 3e-6 num_steps = 20 mini_batch_size = 5 ppo_epochs = 4 threshold_reward = -0.01 model = ActorCritic(num_inputs, num_outputs, hidden_size).to(device) env = gym.make(env_name) my_ppo = ppo(model, env) optimizer = optim.Adam(model.parameters(), lr=lr) max_frames = 1_500_0000 frame_idx = 0 test_rewards = [] save_iteration = 1000 model_save_iteration = 1000 state = envs.reset() early_stop = False def trch_ft_device(input, device): output = torch.FloatTensor(input).to(device) return output saver_model = save_files() while frame_idx < max_frames and not early_stop: log_probs = [] values = [] states = [] actions = [] rewards = [] masks = [] entropy = 0 for _ in range(num_steps): state = trch_ft_device(state, device) dist, value = model(state) action = dist.sample() next_state, reward, done, _ = envs.step(action.cpu().numpy()) log_prob = dist.log_prob(action) entropy += dist.entropy().mean() # appending log_probs.append(log_prob) values.append(value) rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device)) masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device)) states.append(state) actions.append(action) # next iteration init. state = next_state frame_idx += 1 if frame_idx % save_iteration == 0: test_reward = np.mean([my_ppo.test_env() for _ in range(num_envs)]) test_rewards.append(test_reward) # plot(frame_idx, test_rewards) if test_reward > threshold_reward: early_stop = True if frame_idx % model_save_iteration == 0: saver_model.model_save(model) next_state = trch_ft_device(next_state, device) _, next_value = model(next_state) returns = my_ppo.compute_gae(next_value, rewards, masks, values) returns = torch.cat(returns).detach() log_probs = torch.cat(log_probs).detach() values = torch.cat(values).detach() states = torch.cat(states) actions = torch.cat(actions) advantage = returns - values my_ppo.ppo_update(ppo_epochs, mini_batch_size, states, actions, log_probs, returns, advantage, optimizer) max_expert_num = 50000 num_steps = 0 expert_traj = [] # building an episode based on the current model. for i_episode in count(): state = env.reset() done = False total_reward = 0 while not done: state = torch.FloatTensor(state).unsqueeze(0).to(device) dist, _ = model(state) action = dist.sample().cpu().numpy()[0] next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward expert_traj.append(np.hstack([state, action])) num_steps += 1 print("episode:", i_episode, "reward:", total_reward) if num_steps >= max_expert_num: break expert_traj = np.stack(expert_traj) print() print(expert_traj.shape) print() np.save("expert_traj.npy", expert_traj)
2.28125
2
contentstore/migrations/0011_message_metadata.py
praekeltfoundation/seed-stage-based-messaging
1
12796913
# Generated by Django 2.1.2 on 2019-02-20 15:47 import django.contrib.postgres.fields.jsonb from django.db import migrations class Migration(migrations.Migration): dependencies = [("contentstore", "0010_auto_20181126_1104")] operations = [ migrations.AddField( model_name="message", name="metadata", field=django.contrib.postgres.fields.jsonb.JSONField(default=dict), ) ]
1.703125
2
tests/test_all.py
pawelmhm/recenseo.es
0
12796914
<reponame>pawelmhm/recenseo.es """ Integration tests for the app. """ import os,sys import unittest from contextlib import closing from datetime import datetime import time import StringIO import logging from flask import url_for from src import flaskr from src import modele from src.config import TestConfig from utilities import manipulate_db from tests import test_login timestamp = datetime.fromtimestamp(time.time()) logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) class BaseTestCase(unittest.TestCase): def setUp(self): """Before each test, set up a blank database""" self.app = flaskr.app.test_client() self.login("Hugo", "secret") def tearDown(self): self.logout() def login(self,username,password): return self.app.post('/login', data=dict( username=username, password=password), follow_redirects=True) def logout (self): return self.app.get('/logout', follow_redirects=True) class GeneralTestCase(BaseTestCase): def edit_profile(self): return self.app.get("/edit_profile", follow_redirects=True) def test_edit_profile(self): rv = self.edit_profile() self.assertIn("Edit your profile Hugo", rv.data) def update_profile(self, email,about_me): return self.app.post("/edit_profile", data=dict(email=email, about_me=about_me), follow_redirects=True) def test_update_profile(self): rv = self.update_profile("maniana", "Curious explorer of new lands") self.assertIn("Your profile has been updated", rv.data) def make_review_request(self,title,content,category,deadline): return self.app.post("/post_request_review", data=dict( title=title, content=content, category=category, deadline=deadline), follow_redirects=True) def test_request_review(self): rv = self.app.get("/request_review", follow_redirects=True) self.assertEqual(200,rv.status_code) @unittest.skip("make review request tested with files") def test_make_review_request(self): rv = self.make_review_request("title", "In this wos of so much importance to literature.", "academic", "09/12/2012") self.assertEqual(200,rv.status_code) def main_thread(self): return self.app.get('/', follow_redirects=True) def test_main_thread(self): rv = self.main_thread() self.assertEqual(200, rv.status_code) self.assertIn('Review Someone',rv.data) def click_reviews(self,id): url = "/req/" + str(id) return self.app.get(url, follow_redirects=True) def test_click_reviews(self): rv = self.click_reviews(1) self.assertEqual(200, rv.status_code) def display_user_requests(self,uid): return self.app.get('/display_user_requests/%s' % uid, follow_redirects=True) def test_display_user_request(self): rv = self.display_user_requests(1) self.assertEqual(rv.status_code,200) self.assertIn("Hugo",rv.data) def review_this(self,review_text,rating,request_id): url = '/req/post/' + str(request_id) return self.app.post(url, data=dict( review_text=review_text, rating=rating), follow_redirects=True) def test_review_this(self): # invalid request response = self.review_this("good work",99,102) self.assertIn("errors",response.data) rv = self.review_this( "nice work this is amazing", 5, 101) self.assertEqual(rv.status_code,200) self.assertIn("has been added",rv.data) def test_reviews_of_user(self): rv = self.app.get("/reviews_of_user/%s" % 2, follow_redirects=True) self.assertEqual(rv.status_code, 200) self.assertIn("reviews of drafts published by", rv.data) def test_show_responses(self): rv = self.app.get('/reviews/201') self.assertEqual(200,rv.status_code) def test_update_possible(self): url = "/req/" + str(101) rv = self.app.get(url) self.assertIn("Update Request", rv.data) url = "/req/" + str(3) rv = self.app.get(url) self.assertNotIn("Update Request", rv.data) def update_post(self,id,title,content,category,deadline): url = "/req/update/" + str(id) return self.app.post(url,data=dict( title=title, content=content, category=category, deadline=deadline), follow_redirects=True) <EMAIL>("not implemented yet") def test_update_post(self): # what if update is not allowed? Hugo's article has id 101, he tries # to update 102 rv = self.update_post(102,"new title","new content with long soom",\ "academic",timestamp) self.assertEqual(200,rv.status_code) self.assertIn("invalid", rv.data) # now a valid request rv = self.update_post(101,"new title","new content with a lot of blah", \ "academic",timestamp) self.assertIn("ok",rv.data) def test_all_reviews(self): rv = self.app.get('/reviews') self.assertEqual(rv.status_code,200) self.assertIn('All reviews written by all users',rv.data) self.assertIn('Anonymous', rv.data) class TestPostRequest(BaseTestCase): data = {'title':'Lewiathanus livus', 'content':'A book by Hobbes is always worth reading', 'category':'academic', 'deadline':str(timestamp)} rather_not = ['sh', 'ps1','ghost','exe'] def do_post(self, data): return self.app.post('/request_review', data=data, follow_redirects=True) def upload_something(self, extension, message): """ Message, expected message in flash. """ data = self.data.copy() filename = 'file.%s' % extension data["file"] = (StringIO.StringIO('new file'), filename) response = self.do_post(data) self.assertEqual(response.status_code,200) self.assertIn(message,response.data) def test_upload_allowed_formats(self): # valid formats for ext in TestConfig.ALLOWED_EXTENSIONS: self.upload_something(ext,'review request sucessfuly') def test_upload_invalid_data(self): # Invalid extensions # we expect a message informing about it message = "following formats are allowed:" for ext in self.rather_not: self.upload_something(ext, message) def test_no_file(self): rv = self.do_post(self.data) self.assertEqual(rv.status_code,200) self.assertIn("No file added",rv.data) def test_invalid_form(self): data = self.data.copy() data["content"] = "" rv = self.do_post(data) self.assertEqual(rv.status_code,200) self.assertIn("Invalid form.",rv.data) if __name__ == '__main__': manipulate_db.populateDb(TestConfig.DATABASE) unittest.main()
2.515625
3
output/models/ms_data/additional/test102433_xsd/__init__.py
tefra/xsdata-w3c-tests
1
12796915
<filename>output/models/ms_data/additional/test102433_xsd/__init__.py from output.models.ms_data.additional.test102433_xsd.test102433 import Bar __all__ = [ "Bar", ]
1.117188
1
mongo_db_from_config/__init__.py
cisagov/mongo-db-from-config
0
12796916
"""This package contains the mongo_db_from_config code.""" from .mongo_db_from_config import db_from_config __version__ = "0.0.1" __all__ = ["db_from_config"]
1.148438
1
circuit_benchmarks/qft.py
eddieschoute/circuit-benchmarks
7
12796917
<reponame>eddieschoute/circuit-benchmarks<filename>circuit_benchmarks/qft.py<gh_stars>1-10 # -*- coding: utf-8 -* # Copyright 2019, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. import math from qiskit import QuantumRegister, QuantumCircuit def qft_circuit(number_qubits: int): """Create quantum fourier transform circuit on quantum register qreg.""" qreg = QuantumRegister(number_qubits, name="myreg") circuit = QuantumCircuit(qreg, name="qft") for i in range(number_qubits): for j in range(i): circuit.cu1(math.pi / float(2 ** (i - j)), qreg[i], qreg[j]) circuit.h(qreg[i]) return circuit
2.4375
2
randomFourierComplete.py
aasensio/randomModulator
1
12796918
import numpy as np import matplotlib.pyplot as pl import scipy.sparse as sp import scipy.sparse.linalg as splinalg import scipy.fftpack as fft def bin_ndarray(ndarray, new_shape, operation='sum'): """ Bins an ndarray in all axes based on the target shape, by summing or averaging. Number of output dimensions must match number of input dimensions. Example ------- >>> m = np.arange(0,100,1).reshape((10,10)) >>> n = bin_ndarray(m, new_shape=(5,5), operation='sum') >>> print(n) [[ 22 30 38 46 54] [102 110 118 126 134] [182 190 198 206 214] [262 270 278 286 294] [342 350 358 366 374]] """ if not operation.lower() in ['sum', 'mean', 'average', 'avg']: raise ValueError("Operation {} not supported.".format(operation)) if ndarray.ndim != len(new_shape): raise ValueError("Shape mismatch: {} -> {}".format(ndarray.shape, new_shape)) compression_pairs = [(d, c//d) for d, c in zip(new_shape, ndarray.shape)] flattened = [l for p in compression_pairs for l in p] ndarray = ndarray.reshape(flattened) for i in range(len(new_shape)): if operation.lower() == "sum": ndarray = ndarray.sum(-1*(i+1)) elif operation.lower() in ["mean", "average", "avg"]: ndarray = ndarray.mean(-1*(i+1)) return ndarray def myFFT(x): """ Return the FFT of a real signal taking into account some normalization Parameters ---------- x : float Signal time series Returns ------- float : Fourier coefficients of the real signal """ out = fft.rfft(x) return out / np.sqrt(len(out)) def myIFFT(x): """ Return the IFFT for a real signal taking into account some normalization Parameters ---------- x : float Fourier coefficients Returns ------- float : signal """ out = fft.irfft(x) return out * np.sqrt(len(out)) def myTotalPower(f): """ Return the power spectrum of a signal Parameters ---------- f : float Signal Fourier coefficients Returns ------- float : total power """ return f[0]**2 + 2.0*np.sum(f[1:]**2) class randomDemodulator(object): """Summary Returns ------- TYPE : Demodulate I and Q signals together """ def __init__(self, totalTime, dt, dtIntegration, stokes, beta, signalToNoise=0.0, seed=0, modulationType=0): """Summary Parameters ---------- totalTime : TYPE Description dt : TYPE Description dtIntegration : TYPE Description seed : int, optional Description Returns ------- TYPE : Description """ self.totalTime = totalTime self.dt = dt self.dtIntegration = dtIntegration self.seed = seed self.signalToNoise = signalToNoise self.modulationType = modulationType if (self.seed != 0): np.random.seed(self.seed) # Read seeing power spectrum self.powerLites = np.loadtxt('powerSpectrumSeeing.dat') self.powerLites[:,1] = 10.0**self.powerLites[:,1] # Number of samples of the original sample self.nSteps = int(totalTime / dt) self.times = np.arange(self.nSteps) * self.dt # Frequency axis self.freq = fft.rfftfreq(self.nSteps, d=dt) # Betas and Stokes parameters self.beta = beta self.stokes = stokes # Generate Gaussian noise with unit variance and multiply by the square root of the power spectrum # to generate the noise with the appropriate power spectrum noise = np.random.randn(self.nSteps) noiseFFT = myFFT(noise) self.powerSeeing = np.interp(np.abs(self.freq), self.powerLites[:,0], self.powerLites[:,1]) self.powerSeeing[0] = 0.0 self.seeingFFT = np.sqrt(self.powerSeeing) * noiseFFT self.seeingFFT /= np.sqrt(myTotalPower(self.seeingFFT)) self.seeing = myIFFT(self.seeingFFT) # Make sure that the total power is unity print 'Total variance = ', np.sum(self.seeing**2), myTotalPower(self.seeingFFT) # Compute the signal and its power spectrum self.signal = [None] * 4 for i in range(4): self.signal[i] = self.stokes[i]*(1.0 + self.beta[i] * self.seeing) # Generate modulation using a lambda/4 and lambda/2 polarimeter with random angles # self.modulation = [np.ones(self.nSteps), 2.0*np.random.rand(self.nSteps)-1.0, 2.0*np.random.rand(self.nSteps)-1.0, 2.0*np.random.rand(self.nSteps)-1.0] if (self.modulationType == 0): self.alphaModulation = 0.5*np.pi*np.random.rand(self.nSteps) self.betaModulation = 0.5*np.pi*np.random.rand(self.nSteps) else: temp = np.load('alphaBetaSamples.npz') self.alphaModulation = temp['arr_0'][0:self.nSteps] self.betaModulation = temp['arr_1'][0:self.nSteps] self.modulation = [np.ones(self.nSteps), \ np.cos(2.0*self.alphaModulation) * np.cos(2.0*(self.alphaModulation-2.0*self.betaModulation)),\ np.sin(2.0*self.alphaModulation) * np.cos(2.0*(self.alphaModulation-2.0*self.betaModulation)),\ np.sin(2.0*(2.0*self.betaModulation-self.alphaModulation))] self.integrationTime = self.dtIntegration self.lengthSample = int(self.dtIntegration / self.dt) self.nSamples = int(self.dt / self.dtIntegration * self.nSteps) self.signalIntegrated = [None] * 2 for i in range(2): temp = self.signal[0] * self.modulation[0] sign = (-1.0)**i for j in range(1,4): temp += sign * self.signal[j] * self.modulation[j] self.signalIntegrated[i] = bin_ndarray(temp, (self.nSamples,), operation='sum') self.signalIntegrated[i] += np.mean(self.signalIntegrated[i]) / self.signalToNoise * np.random.randn(self.nSamples) self.tIntegrated = np.arange(self.nSamples) * self.dtIntegration # Generate modulation matrix self.sparseM = [None] * 4 self.sparseMStar = [None] * 4 for state in range(4): sparseData = [] sparseRow = [] sparseCol = [] loop = 0 for i in range(self.nSamples): for j in range(self.lengthSample): sparseData.append(self.modulation[state][loop]) sparseRow.append(i) sparseCol.append(loop) loop += 1 self.sparseM[state] = sp.coo_matrix((sparseData, (sparseRow, sparseCol)), shape=(self.nSamples, self.nSteps)) self.sparseMStar[state] = self.sparseM[state].transpose(copy=True) self.factor = 2*np.ones(self.nSteps) self.factor[0] = 1.0 def forward(self, signal, beta, ray): return self.sparseM[ray].dot(1.0+beta*signal) def forwardPartial(self, signal, ray): return self.sparseM[ray].dot(signal) def backward(self, z, ray): return self.factor * myFFT(self.sparseMStar[ray].dot(z)) def totalPower(self, z): return (z[0] * z[0].conj() + 2 * np.sum(z[1:] * z[1:].conj())).real / len(z) def softThreshold(self, x, lambdaValue): return np.fmax(0,1.0 - lambdaValue / np.fmax(np.abs(x),1e-10)) * x def hardThreshold(self, x, lambdaValue): xPar = np.copy(x) xPar[np.abs(x) < lambdaValue] = 0.0 return xPar def FISTA(self, initial=None, initialStokes=None, thresholdMethod='soft', niter=10, lambdaValue=1.0): """ Solve the l1 regularized problem using the FISTA algorithm, that solves the following problem: argmin_O ||y - M*F^{-1}*alpha||_2 + \lambda ||alpha||_1 Args: rank (int, optional): rank of the solution niter (int, optional): number of iterations Returns: TYPE: Description """ if (initial == None): x = np.zeros(self.nSteps) I0 = 0.9 Q0 = 0.1 U0 = 0.2 V0 = 0.3 betaI = 10.0#self.beta[0] betaQ = 10.0#self.beta[1] betaU = 10.0#self.beta[2] betaV = 10.0#self.beta[3] else: x = np.copy(initial) I0, Q0, U0, V0 = initialStokes xNew = np.copy(x) y = np.copy(x) res = self.sparseMStar[0].dot(self.sparseM[0]) largestEigenvalue = splinalg.eigsh(res, k=1, which='LM', return_eigenvectors=False) self.mu = 0.5 / (np.real(largestEigenvalue)) * 0.0002 t = 1.0 normL1 = [] normL2 = [] normL0 = [] for loop in range(niter): signal = myIFFT(x) forwI = self.forward(signal, betaI, 0) # M1(t) * (1+betaI*N(t)) forwQ = self.forward(signal, betaQ, 1) # M2(t) * (1+betaQ*N(t)) forwU = self.forward(signal, betaU, 2) # M3(t) * (1+betaU*N(t)) forwV = self.forward(signal, betaV, 3) # M4(t) * (1+betaV*N(t)) residual1 = self.signalIntegrated[0] - (I0 * forwI + Q0 * forwQ + U0 * forwU + V0 * forwV) gradient1 = -2.0 * I0 * betaI * self.backward(residual1, 0) - 2.0 * Q0 * betaQ * self.backward(residual1, 1) - \ 2.0 * U0 * betaU * self.backward(residual1, 2) - 2.0 * V0 * betaV * self.backward(residual1, 3) residual2 = self.signalIntegrated[1] - (I0 * forwI - Q0 * forwQ - U0 * forwU - V0 * forwV) gradient2 = -2.0 * I0 * betaI * self.backward(residual2, 0) + 2.0 * Q0 * betaQ * self.backward(residual2, 1) + \ 2.0 * U0 * betaU * self.backward(residual2, 2) + 2.0 * V0 * betaV * self.backward(residual2, 3) gradient = gradient1 + gradient2 if (thresholdMethod == 'hardLambda'): xNew = self.hardThreshold(y - self.mu * np.real(gradient), lambdaValue) if (thresholdMethod == 'hardPercentage'): xNew = self.hardThreshold(y - self.mu * np.real(gradient), lambdaValue) if (thresholdMethod == 'soft'): xNew = self.softThreshold(y - self.mu * np.real(gradient), lambdaValue) xNew[0] = 0.0 xNew /= np.sqrt(myTotalPower(xNew)) if (thresholdMethod == 'L2'): xNew = y - self.mu * np.real(gradient) tNew = 0.5*(1+np.sqrt(1+4.0*t**2)) y = xNew + (t-1.0) / tNew * (xNew - x) t = tNew x = np.copy(xNew) normResidual = np.linalg.norm(residual1 + residual2) normSolutionL1 = np.linalg.norm(x, 1) normSolutionL0 = np.linalg.norm(x, 0) if (loop % 10): # Stokes parameters I0 = 0.5 * np.sum(forwI * (self.signalIntegrated[0]+self.signalIntegrated[1])) / np.sum(forwI**2) A = np.zeros((3,3)) A[0,0] = np.sum(forwQ**2) A[1,1] = np.sum(forwU**2) A[2,2] = np.sum(forwV**2) A[0,1] = np.sum(forwQ * forwU) A[1,0] = A[0,1] A[0,2] = np.sum(forwQ * forwV) A[2,0] = A[0,2] A[1,2] = np.sum(forwU * forwV) A[2,1] = A[1,2] b = np.zeros(3) b[0] = 0.5 * np.sum(forwQ * (self.signalIntegrated[0]-self.signalIntegrated[1])) b[1] = 0.5 * np.sum(forwU * (self.signalIntegrated[0]-self.signalIntegrated[1])) b[2] = 0.5 * np.sum(forwV * (self.signalIntegrated[0]-self.signalIntegrated[1])) Q0, U0, V0 = np.linalg.solve(A,b) if (I0 < 0): I0 = 1.0 if (np.abs(Q0) > 1.0): Q0 = 1e-3 if (np.abs(U0) > 1.0): U0 = 1e-3 if (np.abs(V0) > 1.0): V0 = 1e-3 # Seeing amplitude M1N = self.forwardPartial(signal, 0) # M1(t) * N(t) M2N = self.forwardPartial(signal, 1) # M2(t) * N(t) M3N = self.forwardPartial(signal, 2) # M3(t) * N(t) M4N = self.forwardPartial(signal, 3) # M4(t) * N(t) M1One = self.forwardPartial(np.ones(self.nSteps), 0) # M1(t) * 1(t) M2One = self.forwardPartial(np.ones(self.nSteps), 1) # M2(t) * 1(t) M3One = self.forwardPartial(np.ones(self.nSteps), 2) # M3(t) * 1(t) M4One = self.forwardPartial(np.ones(self.nSteps), 3) # M4(t) * 1(t) A = np.zeros((3,3)) A[0,0] = Q0**2 * np.sum(M2N**2) A[1,1] = U0**2 * np.sum(M3N**2) A[2,2] = V0**2 * np.sum(M4N**2) A[0,1] = Q0 * U0 * np.sum(M3N * M2N) A[1,0] = A[0,1] A[0,2] = Q0 * V0 * np.sum(M4N * M2N) A[2,0] = A[0,2] A[1,2] = U0 * V0 * np.sum(M4N * M3N) A[2,1] = A[1,2] b = np.zeros(3) b[0] = 0.5 * Q0 * np.sum(M2N * (self.signalIntegrated[0]-self.signalIntegrated[1])) - \ Q0**2 * np.sum(M2One * M2N) - Q0 * U0 * np.sum(M3One * M2N) - Q0 * V0 * np.sum(M4One * M2N) b[1] = 0.5 * U0 * np.sum(M3N * (self.signalIntegrated[0]-self.signalIntegrated[1])) - \ U0 * Q0 * np.sum(M2One * M3N) - U0**2 * np.sum(M3One * M3N) - U0 * V0 * np.sum(M4One * M3N) b[2] = 0.5 * V0 * np.sum(M4N * (self.signalIntegrated[0]-self.signalIntegrated[1])) - \ V0 * Q0 * np.sum(M2One * M4N) - V0 * U0 * np.sum(M3One * M4N) - V0**2 * np.sum(M4One * M4N) betaI = np.abs((0.5 * I0 * np.sum(M1N * (self.signalIntegrated[0]+self.signalIntegrated[1])) - \ I0**2 * np.sum(M1One * M1N)) / (I0**2 * np.sum(M1N**2))) betaQ, betaU, betaV = np.abs(np.linalg.solve(A,b)) if (loop % 50 == 0): print "It {0:4d} - l2={1:10.3e} - l1={2:10.4f} - l0={3:5.1f}% - I={4:11.5f} - Q/I={5:11.5f} - U/I={6:11.5f} - V/I={7:11.5f} - bI={8:11.5f} - bQ={9:11.5f} - bU={10:11.5f} - bV={11:11.5f}".format(loop, normResidual, normSolutionL1, 100.0*normSolutionL0 / self.nSteps, I0, Q0/I0, U0/I0, V0/I0, betaI, betaQ, betaU, betaV) normL2.append(normResidual) normL1.append(normSolutionL1) normL0.append(normSolutionL0) return x, (I0, Q0, U0, V0), (betaI, betaQ, betaU, betaV), normL2, normL1, normL0 def demodulateTrivial(self): forwI = self.sparseM[0].dot(np.zeros(self.nSteps)+1.0) forwQ = self.sparseM[1].dot(np.zeros(self.nSteps)+1.0) forwU = self.sparseM[2].dot(np.zeros(self.nSteps)+1.0) forwV = self.sparseM[3].dot(np.zeros(self.nSteps)+1.0) I0 = 0.5 * np.sum(forwI * (self.signalIntegrated[0]+self.signalIntegrated[1])) / np.sum(forwI**2) A = np.zeros((3,3)) A[0,0] = np.sum(forwQ**2) A[1,1] = np.sum(forwU**2) A[2,2] = np.sum(forwV**2) A[0,1] = np.sum(forwQ * forwU) A[1,0] = A[0,1] A[0,2] = np.sum(forwQ * forwV) A[2,0] = A[0,2] A[1,2] = np.sum(forwU * forwV) A[2,1] = A[1,2] b = np.zeros(3) b[0] = 0.5 * np.sum(forwQ * (self.signalIntegrated[0]-self.signalIntegrated[1])) b[1] = 0.5 * np.sum(forwU * (self.signalIntegrated[0]-self.signalIntegrated[1])) b[2] = 0.5 * np.sum(forwV * (self.signalIntegrated[0]-self.signalIntegrated[1])) Q0, U0, V0 = np.linalg.solve(A,b) return I0, Q0, U0, V0 # totalTime = 1.0 # s # dt = 0.001 # s # dtIntegration = 0.01 #s # beta = np.asarray([15.0, 100.0, 100., 100.0]) # stokes = np.asarray([1.0, 1.2e-3, 5.e-3, 0.001]) # out = randomDemodulator(totalTime, dt, dtIntegration, stokes, beta, seed=123, signalToNoise=1e3) # coefFourier, stokes, beta, normL21, normL11 = out.FISTA(thresholdMethod = 'soft', niter = 600, lambdaValue = 0.000000051) # stI, stQ, stU, stV = out.demodulateTrivial() # print "Q/I_original={0} - Q/I_inferred={1} - Q/I_trivial={2} - diff={3}".format(out.stokes[1] / out.stokes[0], stokes[1] / stokes[0], \ # stQ/stI, out.stokes[1] / out.stokes[0]-stokes[1] / stokes[0]) # print "U/I_original={0} - U/I_inferred={1} - U/I_trivial={2} - diff={3}".format(out.stokes[2] / out.stokes[0], stokes[2] / stokes[0], \ # stU/stI, out.stokes[2] / out.stokes[0]-stokes[2] / stokes[0]) # print "V/I_original={0} - V/I_inferred={1} - V/I_trivial={2} - diff={3}".format(out.stokes[3] / out.stokes[0], stokes[3] / stokes[0], \ # stV/stI, out.stokes[3] / out.stokes[0]-stokes[3] / stokes[0]) # pl.close('all') # f, ax = pl.subplots(nrows=1, ncols=4, figsize=(18,6)) # coefFourier[0] = 0.0 # Nt = myIFFT(coefFourier) # Nt /= np.sqrt(myTotalPower(coefFourier)) # stokesPar = ['I', 'Q', 'U', 'V'] # loop = 0 # for loop in range(4): # ax[loop].plot(out.times, out.signal[loop]) # ax[loop].plot(out.times, stokes[loop] / stokes[0] * (1.0 + beta[loop]*Nt)) # ax[loop].set_xlabel('Time [s]') # ax[loop].set_ylabel('Stokes {0}'.format(stokesPar[loop])) # ax[loop].annotate # pl.tight_layout() # ax[0,0].plot(out.times, out.signal[0]) # ax[0,0].plot(out.times, stokes[0] *(1.0+beta[0]*Nt)) # ax[0,1].plot(out.signal[1]) # ax[0,1].plot(stokes[1] / stokes[0] *(1.0+beta[1]*Nt)) # ax[1,0].plot(out.signal[2]) # ax[1,0].plot(stokes[2] / stokes[0] * (1.0+beta[2]*Nt)) # ax[1,1].plot(out.signal[3]) # ax[1,1].plot(stokes[3] / stokes[0] * (1.0+beta[3]*Nt)) # ax[2,0].semilogy(np.abs(myFFT(out.seeing))) # ax[2,0].semilogy(np.abs(myFFT(Nt))) # ax[2,1].semilogy(normL21) # ax[2,1].semilogy(normL11) # ax[3,0].plot(out.signalIntegrated[0]) # ax[3,0].plot(out.signalIntegrated[1]) # ax[3,1].plot(out.seeing) # ax[3,1].plot(Nt)
3.078125
3
tank/forms.py
oteejay/lms
0
12796919
<reponame>oteejay/lms from django import forms from django.utils.translation import gettext_lazy as _ from plant.models import Plant from .models import Tank, Configuration class TankForm(forms.ModelForm): plant = forms.ModelChoiceField(queryset=Plant.objects.all(), empty_label='...select plant...') class Meta: model = Tank fields = ('plant', 'capacity', 'unit', 'image') help_texts = { 'plant': _('The plant, this tank is located in.'), 'unit': _('The unit of measurement for its capacity.'), 'image': _("A picture of the scene where the LMS device is installed.") } class ConfigurationForm(forms.ModelForm): class Meta: model = Configuration fields = ('shape', 'width', 'length', 'height', 'major_diameter', 'minor_diameter', 'diameter', 'unit', 'alignment') labels = { 'major_diameter': _('Major Diameter'), 'minor_diameter': _('Minor Diameter') } help_texts = { 'unit': _('The unit of measurement utilized for this configuration.') } widgets = { 'shape': forms.Select(), 'alignment': forms.Select() }
2.578125
3
The container /Robotic Arm/craves.ai-master/pose/utils/evaluation.py
ReEn-Neom/ReEn.Neom-source-code-
0
12796920
<reponame>ReEn-Neom/ReEn.Neom-source-code- from __future__ import absolute_import import math import numpy as np import matplotlib.pyplot as plt from random import randint import torch from .misc import * from .transforms import transform, transform_preds __all__ = ['accuracy', 'AverageMeter'] def get_preds(scores): ''' get predictions from score maps in torch Tensor return type: torch.LongTensor ''' assert scores.dim() == 4, 'Score maps should be 4-dim' maxval, idx = torch.max(scores.view(scores.size(0), scores.size(1), -1), 2) maxval = maxval.view(scores.size(0), scores.size(1), 1) idx = idx.view(scores.size(0), scores.size(1), 1) + 1 preds = idx.repeat(1, 1, 2).float() preds[:,:,0] = (preds[:,:,0] - 1) % scores.size(3) + 1 preds[:,:,1] = torch.floor((preds[:,:,1] - 1) / scores.size(3)) + 1 pred_mask = maxval.gt(0).repeat(1, 1, 2).float() preds *= pred_mask return preds def calc_dists(preds, target, normalize): preds = preds.float() target = target.float() dists = torch.zeros(preds.size(1), preds.size(0)) for n in range(preds.size(0)): for c in range(preds.size(1)): if target[n,c,0] > 1 and target[n, c, 1] > 1: dists[c, n] = torch.dist(preds[n,c,:], target[n,c,:])/normalize[n] else: dists[c, n] = -1 return dists def dist_acc(dists, thr=0.5): ''' Return percentage below threshold while ignoring values with a -1 ''' if dists.ne(-1).sum() > 0: return dists.le(thr).eq(dists.ne(-1)).sum().numpy() / dists.ne(-1).sum().numpy() else: return -1 def accuracy(output, target, idxs, thr=0.5): ''' Calculate accuracy according to PCK, but uses ground truth heatmap rather than x,y locations First value to be returned is average accuracy across 'idxs', followed by individual accuracies ''' preds = get_preds(output) gts = get_preds(target) norm = torch.ones(preds.size(0))*output.size(3)/4.0 dists = calc_dists(preds, gts, norm) acc = torch.zeros(len(idxs)+1) avg_acc = 0 cnt = 0 for i in range(len(idxs)): acc[i+1] = dist_acc(dists[idxs[i]-1], thr=thr) if acc[i+1] >= 0: avg_acc = avg_acc + acc[i+1] cnt += 1 if cnt != 0: acc[0] = avg_acc / cnt return acc def final_preds_bbox(output, bbox, res): preds = get_preds(output) # float typ preds = preds.numpy() for i in range(preds.shape[0]): width = bbox[2][i] - bbox[0][i] height = bbox[3][i] - bbox[1][i] for j in range(preds.shape[1]): preds[i, j, :] = preds[i, j, :] / res * np.array([width, height]) + np.array([bbox[0][i], bbox[0][i]]) return torch.from_numpy(preds) def final_preds(output, center, scale, res): coords = get_preds(output) # float type # pose-processing for n in range(coords.size(0)): for p in range(coords.size(1)): hm = output[n][p] px = int(math.floor(coords[n][p][0])) py = int(math.floor(coords[n][p][1])) if px > 1 and px < res[0] and py > 1 and py < res[1]: diff = torch.Tensor([hm[py - 1][px] - hm[py - 1][px - 2], hm[py][px - 1]-hm[py - 2][px - 1]]) coords[n][p] += diff.sign() * .25 coords[:, :, 0] += 0.5 coords[:, :, 1] -= 0.5 preds = coords.clone() # Transform back for i in range(coords.size(0)): preds[i] = transform_preds(coords[i], center[i], scale[i], res) if preds.dim() < 3: preds = preds.view(1, preds.size()) return preds def d3_acc(preds, gts, percent = .5): num_samples = len(preds) acc = np.zeros_like(preds[0]) hit = 0 # miss_list = [] max_error_list = [] #max angle error for each image res_list = [] for i in range(num_samples): pred = np.array(preds[i]) gt = np.array(gts[i]) res = np.abs(pred - gt) res[0:7] = np.abs((res[0:7] + 180.0) % 360.0 - 180.0) max_error_list.append(np.max(res[0:4])) res_list.append(res) # if not np.any(res[0:4]>10): #false prediction # acc += res # hit = hit + 1 # else: # miss_list.append(i) top_n = int(percent * num_samples) #take top N images with smallesr error. sorted_list = np.argsort(max_error_list) for i in range(top_n): acc += res_list[sorted_list[i]] return (acc/top_n)[:4] class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count
2.328125
2
scripts/dcs.py
chebroluharika/SDK_Automation_Generator
0
12796921
<reponame>chebroluharika/SDK_Automation_Generator import requests import json import logging import time from copy import deepcopy import platform # For getting the operating system name import subprocess # For executing a shell command rest_call_timeout_sec = 60 max_retries_in_session = 50 polling_call_timeout_sec = 10 * 60 sec_between_polling = 10 class FirstTimeSetUp(object): def __init__(self, appliance_name, use_ip=False, override_version=None, retries=max_retries_in_session, appliance_dhcp_ip_address=None, post_eula_delay=0, use_static_ip=False, use_one_ip=False, ipv6_type=None, ova_ip=None, host_data=None): """Constructor method to RestAppliance. We compute the correct API-Version for REST calls. The version can be overridden by passing in a value for override_version. Ideally, this computation should be moved to a default in the datastore. Parameters ---------- appliance_name : str fully qualified name of the appliance use_ip : bool Flag to indicate if an IP address is being passed instead of DNS hostname. override_version (Optional): int The default version string (determined by program name) can be overridden. Currently only accepting values of 100, 199, and 200. retries (Optional): int Number of retries to do in HTTP session. appliance_dhcp_ip_address : str appliance dhcp ip address, will be used to connect to the appliance if not None """ self.fqdn = appliance_name if appliance_dhcp_ip_address: self.base_url = "https://" + appliance_dhcp_ip_address else: self.base_url = "https://" + appliance_name self.use_ip = use_ip # create a persistant session so that we can retry if the appliance goes offline (e.g. first time setup) self.sess = requests.Session() self.retries = retries adap = requests.adapters.HTTPAdapter(max_retries=self.retries) self.sess.mount('http://', adap) self.sess.mount('https://', adap) # if version is passed in, use that. Else use the default for the program # Default to the minimal version number that implements all the requirements that we need. Defined per program. # Eventually we may need version overrides at each REST call. if override_version: self.api_version = override_version else: self.api_version = 120 logging.info("The API Version utilized is {0}.".format(self.api_version)) self._header = {'X-API-Version': '{}'.format(self.api_version), 'Content-Type': 'application/json'} self._secure_header = {} def get_secure_headers(self): """Helper method to appliance_request(). Gives header information required by the appliance with authentication information. Return ------ _secure_header: dict. Dictionary containing X-API-Verions, Content-Type, and Auth. The Auth parameter value is a sessionID. """ # Once _secure_header is defined, we can use it over and over again for the duration of its life. # Note, the header is only good for that user (administrator), 24 hours, and until the next reboot. if self._secure_header: return self._secure_header payload = {"userName": "Administrator", "password": "<PASSWORD>"} url = '/rest/login-sessions' try: r = self.sess.post(self.base_url + url, verify=False, headers=self._header, data=json.dumps(payload), timeout=rest_call_timeout_sec) except requests.exceptions.RequestException as e: raise Exception("There was an issue connecting to the appliance to get headers. Exception message: {0}".format(e)) except Exception as e: raise Exception("There was an issue with the HTTP Call to get headers. Exception message: {0}".format(e)) if r.status_code >= 300: raise Exception('Failure to get secure connection. Status {0}.'.format(r.status_code)) try: safe_json = r.json() self._secure_header = self._header.copy() self._secure_header['Auth'] = safe_json.get('sessionID') if self._secure_header['Auth'] is None: raise Exception('Auth token for the header is undefined. No Session ID available. Status: {0}.'.format(r.status_code)) return self._secure_header except ValueError as e: raise Exception('Failure to get a JSON value from the response. Status: {0}.'.format(r.status_code)) except: raise Exception('Failure to access the sessionID from the response. Status: {0}. JSON: {1}'.format(r.status_code, r.json())) def appliance_request(self, request_type, url, secure=True, payload=None, other_properties={}, extra_headers={}, poll=True, timeout=None): """Helper method to call HTTP requests. An exception will be raised if an unknown value for request_type is utilized. Exceptions will also be raised if the appliance cannot be contacted. If secure=True, this function depends on get_secure_headers(). Parameters ---------- request_type: str accepted values are: "POST", "PUT", "GET", "DELETE" Any other value will raise an error. url: str url location of the REST call. This method concatenates https:// and the fully qualified domain name of the system with this string. secure (optional): boolean True requests data adding a header that includes authentiation information. False requests data without authentication information no value defaults in True payload (optional): dict Python object payload for POST or PUT calls, to be serialized into JSON. other_properties (optional): dict A dictionary of extra properties that we can give to the Python Request module. The dictionary is unpacked and added to Request. For example: other_properties={'stream': True} poll : boolean If false, polling tasks will return immiedtaly - needed for failover setups timeout: None or integer Defaults to rest_call_timeout_sec if 'None' or unspecified Return ------ return (success, r, safe_json_result, polling_results) A tuple with these values: success: bool. A True/False value. True indicates that the status_code was under 300 and the polling was successful. r: a response object from a Requests call. safe_json_results: the JSON returned from the HTTP request. None if the request did not return a JSON value. polling_results: dict. dictionary with two values, task_state and task_status. Both are populated whenever the call requires task polling. """ if timeout is None: timeout = rest_call_timeout_sec if not secure: head = self._header else: head = self.get_secure_headers() head = dict(head.items() + extra_headers.items()) full_url = self.base_url + url logging.debug("Preparing HTTP {0} request.".format(request_type)) logging.debug("Preparing URL: {0}.".format(full_url)) logging.debug("Preparing Headers: {0}.".format(head)) logging.debug("Preparing Payload: {0}.".format(json.dumps(payload))) polling_results = {} try: if request_type == "POST": r = self.sess.post(full_url, verify=False, headers=head, data=json.dumps(payload), timeout=timeout, **other_properties) elif request_type == "PUT": r = self.sess.put(full_url, verify=False, headers=head, data=json.dumps(payload), timeout=timeout, **other_properties) elif request_type == "GET": r = self.sess.get(full_url, verify=False, headers=head, timeout=timeout, **other_properties) elif request_type == "DELETE": r = self.sess.delete(full_url, verify=False, headers=head, timeout=timeout, **other_properties) else: raise Exception("RestAppliance attempted to call an http request other than POST, PUT, or GET. request_type: {0}. url: {1}".format(request_type, url)) try: safe_json_result = r.json() except: safe_json_result = {} logging.debug("Returned. Status code: {0}.".format(r.status_code)) logging.debug("Returned. JSON: {0}.".format(safe_json_result)) # 202 status codes indicate a task that is pollable. The calling function may not know that this will return a 202. success = False if r.status_code == 202: if not poll: return (True, r, safe_json_result, {'task_state': 'N/A', 'task_status': 'N/A'}) (task_state, task_status) = self.poll_for_task(url, r) polling_results = {'task_state': task_state, 'task_status': task_status} if task_state == "Completed": success = True elif self.use_ip and task_state == "Warning": #This is required sicne FTS will try to validate the hostname and if it is not valid hostname then it will #the warning for post-validation status. success = True elif r.status_code < 300: success = True else: polling_results = {'task_state': safe_json_result.get('errorCode', 'Error'), 'task_status': safe_json_result.get('details', str(safe_json_result))} return (success, r, safe_json_result, polling_results) except requests.exceptions.RequestException as e: raise Exception("There was an issue connecting to the appliance. Exception message: {0}".format(e)) except Exception as e: raise Exception("There was an issue with the HTTP Call. Exception message: {0}".format(e)) def accept_eula_once(self, service_access="yes"): """On initial communication with the appliance, the end user service agreement (EULA) must be accepted. This only needs to occur once. Additional calls will not change the status of the EULA nor the status of the service access. If a change to the service access is required, see the function change_service_access() If the appliance returns an error status (anything outside of the 100 or 200 range), an error is raised. No authentication on the appliance is required. Parameters ---------- service_access (optional): str "yes" will accept service access "no" will not allow service access empty value will default to "yes" """ url = '/rest/appliance/eula/status' (_, _, json_result, _) = self.appliance_request(request_type='GET', url=url, secure=False) if not json_result: # if False, eula acceptance has already occurred. logging.warning('EULA does not need to be saved.') else: logging.debug('Call EULA Acceptance with enable service access={0}'.format(service_access)) url = '/rest/appliance/eula/save' payload = {"supportAccess": service_access} (save_success, save_resp, save_json_response, _) = self.appliance_request(request_type='POST', url=url, secure=False, payload=payload) if save_success: logging.info('EULA Accepted.') else: raise Exception('accept_eula failed. Status: {0}. JSON Response: {1}'.format(save_resp.status_code, json.dumps(save_json_response, sort_keys=True, indent=4, separators=(',', ': ')))) def accept_eula(self, service_access="yes", tries=3, retry_interval=5): thistry = 1 while True: logging.info("accept_eula try {}".format(thistry)) try: self.accept_eula_once(service_access=service_access) return except Exception as e: logging.exception(e) if thistry >= tries: raise e time.sleep(retry_interval) thistry += 1 def change_administrator_password(self): """On initial logon, the administrator's password has to be changed from the default value. The call to the administrator password change is attempted. If the change administrator password call fails, then we attempt to login with the administrator password. If successful, we log a message and the accurate administrator password. If the administrator login is not successful, an error is raised. The administrator data is pulled from the dictionary in this file. This needs to be moved to a more formal location. Parameters ---------- none """ # The changePassword REST end point only works for the initial administrator password change. url = '/rest/users/changePassword' payload = {"userName": initial_admin, "oldPassword": <PASSWORD>, "newPassword": <PASSWORD>} (success, resp, json_response, _) = self.appliance_request(request_type='POST', url=url, secure=False, payload=payload) if success: logging.info('Administrator password change was accepted.') elif resp.status_code == 400: logon_url = '/rest/login-sessions' logon_payload = {"userName": admin_user, "password": <PASSWORD>} (logon_success, _, _, _) = self.appliance_request(request_type='POST', url=logon_url, secure=False, payload=logon_payload) if not logon_success: raise Exception('change_administrator_password failed. Status: {0}. JSON Response: {1}'.format(resp.status_code, json.dumps(json_response, sort_keys=True, indent=4, separators=(',', ': ')))) logging.warning('Administrator password has already been changed. Password is {0}'.format(<PASSWORD>)) else: raise Exception('change_administrator_password failed. Status: {0}. JSON Response: {1}'.format(resp.status_code, json.dumps(json_response, sort_keys=True, indent=4, separators=(',', ': ')))) def get_mac(self): """Request the MAC address from the appliance. Use the first one found in applianceNetworks collection. If the appliance returns an error status (anything outside of the 100 or 200 range), an error is raised. Parameters ---------- none Return ------ mac address: string """ json_answer = self.get_networking_data() for network in json_answer.get('applianceNetworks', []): mac_address = network.get('macAddress') if mac_address: logging.info('MAC Address is: {0}'.format(mac_address)) return mac_address raise Exception('MAC Address is not defined') def get_ipv4_name_servers(self): """Request the list of dns ipv4 name servers. Use the first one found in applianceNetworks collection. If the appliance returns an error status (anything outside of the 100 or 200 range), an error is raised. Parameters ---------- none Return ------ list of ipv4 name servers: list """ json_answer = self.get_networking_data() for network in json_answer.get('applianceNetworks', []): ipv4_name_servers = network.get('ipv4NameServers') if ipv4_name_servers: logging.info('IPv4 Name servers: {0}'.format(ipv4_name_servers)) return ipv4_name_servers raise Exception('IPv4 Name server is not defined') def get_networking_data(self): """Request the networking information from the appliance. If the appliance returns an error status (anything outside of the 100 or 200 range), an error is raised. Parameters ---------- none Return ------ a response object from a call to the network page. """ url = '/rest/appliance/network-interfaces' (success, resp, json_response, _) = self.appliance_request(request_type='GET', url=url, secure=True) if not success: raise Exception('get_networking_data call failed. Status: {0}. JSON Response: {1}'.format(resp.status_code, json.dumps(json_response, sort_keys=True, indent=4, separators=(',', ': ')))) return json_response def get_time_locale_data(self): """Request the networking information from the appliance. If the appliance returns an error status (anything outside of the 100 or 200 range), an error is raised. Parameters ---------- none Return ------ a response object from a call to the network page. """ url = "/rest/appliance/configuration/time-locale" (success, resp, json_response, _) = self.appliance_request(request_type='GET', url=url, secure=True) if not success: raise Exception('get_time_locale_data call failed. Status: {0}. JSON Response: {1}'.format(resp.status_code, json.dumps(json_response, sort_keys=True, indent=4, separators=(',', ': ')))) return json_response def set_time_server_and_locale(self, ntpserver): """ If the time definition is not part of the network-interfaces JSON, it is set via an independent REST endpoint. :param ntpserver: IP address of the ntpserver. :return: :raises: Exception, Exception """ time_locale_url = "/rest/appliance/configuration/time-locale" # Query for current time-locale setting. time_locale_settings = self.get_time_locale_data() # Exception will be raised by method if it fails. time_locale_settings["dateTime"] = None # our time is not necessarily the NTP time, so don't set it. time_locale_settings["ntpServers"] = [str(ntpserver)] # use the defined NTP server and only it. (ntp_success, _, ntp_rjson, ntp_polling_results) = self.appliance_request(request_type='POST', url=time_locale_url, secure=True, payload=time_locale_settings) if not ntp_success: logging.error(json.dumps(ntp_rjson, sort_keys=True, indent=4, separators=(',', ': '))) if 'Wait until the operation completes' in ntp_polling_results.get("task_status"): raise Exception( 'time-locale setting failed. Polling State: {0}. Polling Status: {1}. '.format( ntp_polling_results.get("task_state"), ntp_polling_results.get("task_status"))) else: raise Exception( 'time-locale setting failure. Polling State: {0}. Polling Status: {1}. '.format( ntp_polling_results.get("task_state"), ntp_polling_results.get("task_status"))) logging.info("NTP server setting was successful") def poll_for_task(self, calling_url, response): '''Helper method to appliance_request(). Status Response 202 indicates an asynchronous REST call. Poll until the task is complete or error. Adds to the set of parameters that appliance_request() returns. Parameters ---------- calling_url : string The URL that was called in appliance_request. response : a response object from a Requests call. Return ------ tuple containing: task_state: str. A short summary of the execution/completion status task_status: str. State of the task. For Example: Unknown, Running, Terminated, Error, Warning, Completed. ''' # network-interfaces is a special case. Rather than network-interfaces returning a object of type TaskResourceV2, this end point returns Void. # From my reading of the documentation, this is not consistant with the Task Tracker mechanism. I have brought this to the attention # of the atlas team. # # there are now at least two responses with the task URL in the header: # '/rest/appliance/network-interfaces' and '/rest/appliance/configuration/time-locale' # Go to checking for response in the header, if not there, check in the JSON. Poor consistency in # implementations and inconsistent with REST principles. url = response.headers.get('location') if url is None: url = response.json().get('uri') if url is None: raise Exception('Could not read the task to poll. Originating request on URL: {0}.'.format(calling_url)) full_rest_url = self.base_url + url task_state = 'Running' start_time = time.time() try: logging.debug("Starting polling the rest task {0}.".format(url)) already_reset_session = False while task_state in ['Running', 'New', 'Pending', 'Starting']: if time.time() >= start_time + polling_call_timeout_sec: raise Exception('Task Polling did not respond within {0} seconds. Time out and exit. Originating request on URL: {1}'.format(polling_call_timeout_sec, calling_url)) time.sleep(sec_between_polling) r_tree = None try: logging.debug("Current Time {0}".format(time.asctime(time.localtime(time.time())))) r_tree = self.sess.get(full_rest_url + "?view=tree", verify=False, headers=self.get_secure_headers(), timeout=rest_call_timeout_sec) except Exception as e: logging.exception("FTS get failed: " + str(e)) if already_reset_session: raise Exception("There was an issue with the HTTP Call for task polling. Exception message: {0}".format(e)) # delete and recreate of the session if it loses connection. Changes in IP address, FQDN, etc can make use lose the session. else: already_reset_session = True self.sess.close() self.sess = requests.Session() adap = requests.adapters.HTTPAdapter(max_retries=self.retries) self.sess.mount('http://', adap) self.sess.mount('https://', adap) if r_tree: r_treejson = r_tree.json() task_resource = r_treejson.get('resource') task_state = task_resource.get('taskState') task_status = task_resource.get('taskStatus', '') task_errors = task_resource.get('taskErrors', None) if task_errors: # in case of errors place them in log output and append to status message for e in task_errors: logging.error(e) task_status += ";" + ";".join([str(e) for e in task_errors]) logging.debug("Percent Complete : {0}. State: {1}. Status: {2}.".format(task_resource.get('percentComplete'), task_state, task_status)) logging.debug("The task tree for {0} is:".format(full_rest_url)) logging.debug("Returned JSON: {0}".format(r_treejson)) else: logging.debug("Exception during get call, response was not set") logging.debug("Unable to get the task tree for {0}".format(full_rest_url)) return(task_state, task_status) except ValueError as e: raise Exception('Error getting the JSON results from the task. Originating request on URL: {0}. Exception: {1}'.format(calling_url, e)) except Exception as e: raise Exception('Error in polling for the task. Originating request on URL: {0}. Exception: {1}'.format(calling_url, e)) def first_time_setup(self, ntpserver, use_static_ip=False, use_tbird_fts=False, use_i3s_fts=False, use_one_ip=False, ipv6_type=None, ova_ip=None, host_data=None): """Creates networking for the appliance. Configures the appliance as DHCP. The appliance queries itself to define its macAddress. If the api_version is above version 100, this will set a DNS Server IP address and set the overrideIpv4DhcpDnsServers value to False. "ipv4NameServers": [dns_server_ip], "overrideIpv4DhcpDnsServers": False If the api_version is below version 100, it does not set DNS. If the appliance returns an error status (anything outside of the 100 or 200 range), an error is raised. """ url = '/rest/appliance/network-interfaces' if ova_ip: networking_data = self.get_networking_data() network = networking_data['applianceNetworks'][0] network["hostname"] = self.fqdn network["domainName"] = self.fqdn.split(".", 1)[1] network['ipv4Type'] = "STATIC" network["searchDomains"] = None # this is what UI does so we follow network["aliasDisabled"] = True network["overrideIpv4DhcpDnsServers"] = False if network["app1Ipv4Addr"] == network["virtIpv4Addr"]: network["virtIpv4Addr"] = '' network["app1Ipv4Addr"] = ova_ip network["app2Ipv4Addr"] = '' else: raise Exception("Impossible happened: app1Ipv4Addr != virtIpv4Addr") network["ipv6Type"] = "UNCONFIGURE" payload = networking_data elif use_static_ip: networking_data = self.get_networking_data() networks = [] for network in networking_data['applianceNetworks']: if network["ipv4Type"] == "DHCP": network['ipv4Type'] = "STATIC" network['ipv6Type'] = "UNCONFIGURE" networks.append(network) if use_i3s_fts: network['ipv6Type'] = "UNCONFIGURE" network["overrideIpv4DhcpDnsServers"] = False network['virtIpv4Addr'] = None networks.append(network) appliance_domain_name = self.fqdn.split(".", 1)[1] if appliance_domain_name not in network["hostname"]: network["hostname"] = network["hostname"] + '.' + appliance_domain_name logging.info("Setting fqdn for the appliance:{0}".format(network["hostname"])) networking_data['applianceNetworks'] = networks networking_data.pop('serverCertificate', None) payload = networking_data else: appliance_mac_address = self.get_mac() ipv4_name_servers = self.get_ipv4_name_servers() # Only ipv6 with DHCP is supported, will add static at some point later. if ipv6_type != "DHCP": ipv6_type = "UNCONFIGURE" payload = {"type": "ApplianceServerConfiguration", "applianceNetworks": [{"ipv4Type": "DHCP", "ipv6Type": ipv6_type, "macAddress": appliance_mac_address, "hostname": self.fqdn, "device": "eth0", "ipv4NameServers": ipv4_name_servers, "overrideIpv4DhcpDnsServers": False, "ipv4Subnet": "", "ipv4Gateway": None, "confOneNode": True, "activeNode": 1 } ], } # Not clear why this conditions fails to query the network interface to get the base for the payload, but # we need to know if the network definition has the "time" dictionary defined in it; if it does, copy into # place for the test below this set of conditional branches. Since both get_mac and get_ipv4_name_servers # use calls to get_networking_data, this seems poorly designed, but given how complex the code is in this # area and the lack of documented test cases, this seems to be the safest change to make. old_network = self.get_networking_data() if "time" in old_network: payload["time"] = deepcopy(old_network["time"]) # This is the later data model, where the time server and locale are set via their own API # This will embed another REST process using POST inside the generation of a POST to do the network setup. self.set_time_server_and_locale(ntpserver) poll = True # Do not poll for the task if a ova_ip is passed in. If a ova_ip is passed in then we will lose connection # to the orginal location after the POST command to set the networking. Instead, we will change to the new # address and then poll for the task. if ova_ip: poll = False (success, response, rjson, polling_results) = self.appliance_request(request_type='POST', url=url, secure=True, payload=payload, poll=poll) # Reset the base url to the the fqdn for any subsequent rest actions and then use the fqdn to make sure the # networking setup task completes successfully. This needs to be done for OVA's that are deployed as DHCP but, # need to be configured as static since the ip address will change after setting up the networking. if ova_ip and success: self.base_url = "https://" + self.fqdn (task_state, task_status) = self.poll_for_task(url, response) polling_results = {'task_state': task_state, 'task_status': task_status} if task_state == "Completed": success = True else: success = False if not success: logging.error(json.dumps(rjson, sort_keys=True, indent=4, separators=(',', ': '))) if 'Wait until the operation completes' in polling_results.get("task_status"): raise Exception('first_time_setup failure. Polling State: {0}. Polling Status: {1}. '.format(polling_results.get("task_state"), polling_results.get("task_status"))) else: raise Exception('first_time_setup failure. Polling State: {0}. Polling Status: {1}. '.format(polling_results.get("task_state"), polling_results.get("task_status"))) logging.info("First time setup was successful") logging.debug(json.dumps(self.get_networking_data(), indent=2, sort_keys=True)) def readIPV6FromFile(self): ipv6address = [] vm_network_json_file = open('vm_network.json',) data = json.load(vm_network_json_file) # Iterating through the json list for i in data['results'][0]['msg']: for j in data['results'][0]['msg'][i]['ipv6']: ipv6address.append(j) # Closing file vm_network_json_file.close() return ipv6address def ping(hosts): """ Returns True if host (str) responds to a ping request. Remember that a host may not respond to a ping (ICMP) request even if the host name is valid. """ operating_sys = platform.system().lower() for i in hosts: param = '-n' if operating_sys=='windows' else '-c' shell_needed = True if operating_sys == 'windows' else False # Building the command. Ex: "ping -c 1 google.com" ping_command = ['ping', param, '1', i] ping_output = subprocess.run(ping_command,shell=shell_needed,stdout=subprocess.PIPE) success = ping_output.returncode if success == 0: return (str(i)+str('%ens160')) if __name__ == '__main__': post_eula_delay = '10' ntpserver = "10.10.10.10" ipv6address = readIPV6FromFile() pingableipv6 = ping(ipv6address) ra = FirstTimeSetUp("appliance_name", override_version=3200, use_ip=False, appliance_dhcp_ip_address=None, post_eula_delay=post_eula_delay, use_static_ip=False,use_one_ip=False, ipv6_type=None, ova_ip=None, host_data=None) ra.accept_eula("yes") logging.info("Sleeping {0} seconds to wait for appliance to stabilize".format(post_eula_delay)) time.sleep(post_eula_delay) ra.change_administrator_password() ra.first_time_setup(ntpserver, use_static_ip=False, use_i3s_fts=False, use_one_ip=False, ipv6_type=None, ova_ip=None, host_data=None)
2.375
2
drug/views.py
Ctrl-plus-C/Chiron
20
12796922
<gh_stars>10-100 from django.shortcuts import render, redirect from django.views.decorators.csrf import csrf_exempt from rest_framework.authtoken.models import Token from rest_framework.decorators import api_view, permission_classes from rest_framework.permissions import AllowAny from rest_framework.status import ( HTTP_400_BAD_REQUEST, HTTP_404_NOT_FOUND, HTTP_200_OK ) from rest_framework.response import Response from rest_framework.views import APIView from django.contrib.auth import authenticate from .models import Nutrient, Record, Symptomrecord, Diseaserecord, Foodrecord, Foodlist, Selfcarediary from .serializers import NutrientsSerializer from rest_framework.views import APIView from rest_framework import permissions, status import infermedica_api # import Symp from .serializers import SelfcarediarySerializer import requests,json infermedica_api.configure(app_id='945555e1', app_key='be2ee424c225c567086a084637a359de') def home(request): if request.user.is_authenticated(): return render(request, 'drug/home.html',{}) return redirect('accounts/login') def loginpage(request): return render(request, 'drug/login.html', {}) def search(symptom): api = infermedica_api.get_api() data = api.search(symptom["orth"]) return data def nutrients(request): if request.user.is_authenticated(): return render(request, 'drug/nutrients.html', {}) return redirect('accounts/login') def selfdiary(request): if request.user.is_authenticated(): return render(request, 'drug/selfdiary.html', {}) return redirect('accounts/login') def analytics(request): if request.user.is_authenticated(): return render(request, 'drug/analytics.html', {}) return redirect('accounts/login') class Prescription(APIView): @csrf_exempt def post(self,request): medicname = request.data.get("text") # import pdb; pdb.set_trace() data = requests.get("https://api.fda.gov/drug/label.json?search="+medicname).json() return Response(data, status=status.HTTP_200_OK) def medication(request): if request.user.is_authenticated(): return render(request, 'drug/medication.html', {}) return redirect('accounts/login.html') class ParseD(APIView): @csrf_exempt def post(self,request): sentence = request.data.get("text") dbrow = Record(user=request.user,search_query=sentence) dbrow.save() api = infermedica_api.get_api() response = api.parse(sentence).to_dict()["mentions"] mysymptomlist = [] templist = {} print("reached templist") for data in response: templist["orth"] = data["orth"] templist["id"] = data["id"] mysymptomlist.append(templist.copy()) finalsearchdata = [] print("reached finalserach") for symptom in mysymptomlist: callsearchdata = api.search(symptom['orth']) finalsearchdata.extend(callsearchdata) finaldict = {} print("conversion") for dictdata in finalsearchdata: finaldict[dictdata['label']] = dictdata['id'] symprow = Symptomrecord(user_record=dbrow,present_symptoms=dictdata['label'],present_symptoms_id=dictdata['id']) symprow.save() return Response(finaldict, status=status.HTTP_200_OK) class Condition(APIView): @csrf_exempt def post(self, request): api = infermedica_api.API(app_id='945555e1', app_key='be2ee424c225c567086a084637a359de') # r = infermedica_api.Diagnosis(app_id='945555e1', app_key='be2ee424c225c567086a084637a359de') data = api.conditions_list() # r = requests.post(url, data=json.dumps({'text': text}),headers={'Authorization': apiKey, 'Content-Type': 'application/json'}) return Response({"test":data}, status=status.HTTP_200_OK) # class Search(APIView): class Diagnosis(APIView): @csrf_exempt def post(self,request): try: present_symptoms = request.data.getlist('choices[]') absent_symptoms = request.data.getlist('unchoices[]') except AttributeError: present_symptoms = request.data.get('choices') absent_symptoms = request.data.get('unchoices') query_text = request.data.get('queryText') recordobject = Record.objects.get(user=request.user,search_query=query_text) api = infermedica_api.get_api() re = infermedica_api.Diagnosis(sex=request.data.get("gender"), age=request.data.get("age")) for symptom in present_symptoms: re.add_symptom(symptom, 'present') for symptom in absent_symptoms: re.add_symptom(symptom, 'absent') re= api.diagnosis(re).to_dict() for dictdata in re['conditions']: diseaseobject = Diseaserecord(user_record=recordobject, probable_diseases=dictdata['name'], probable_diseases_id=dictdata['id']) diseaseobject.save() return Response({"test":re}, status=status.HTTP_200_OK) # call diagnosis class Symptom(APIView): @csrf_exempt def post(self,request): api = infermedica_api.get_api() response = api.parse(sentence).to_dict()["mentions"] # import pdb; pdb.set_trace() mysymptomlist = {} for data in response: mysymptomlist["orth"] = data["orth"] mysymptomlist["id"] = data["id"] data.append(api.symptom_details(mysymptomlist["id"])) return Response({"test":data},status=status.HTTP_200_OK) # @csrf_exempt # @api_view(["POST"]) # @permission_classes((AllowAny,)) # def login(request): # username = request.data.get("username") # password = request.data.get("password") # if username is None or password is None: # return Response({'error': 'Please provide both username and password'}, # status=HTTP_400_BAD_REQUEST) # user = authenticate(username=username, password=password) # if not user: # return Response({'error': 'Invalid Credentials'}, # status=HTTP_404_NOT_FOUND) # token, restdetails = Token.objects.get_or_create(user=user) # return Response({'token': token.key, "hasuraid": user.id}, # status=HTTP_200_OK) # @csrf_exempt # @api_view(["GET"]) # def sample_api(request): # data = {'sample_data': 123} # return Response(data, status=HTTP_200_OK) class HeartRateApi(APIView): @csrf_exempt def get(self, request): try: heartrate = HeartRate.objects.all() hserializer = HeartRateSerializer(heartrate) heartrate_data = hserializer.data return Response(heartrate_data, status=status.HTTP_200_OK) except: return Response({'success': False, 'message': 'No details found for given date'}, status=status.HTTP_400_BAD_REQUEST) @csrf_exempt def post(self, request, user): request_data = request.data.copy() request_data['user'] = user singleroomaval = request_data.get('singleroomaval','') doubleroomaval = request_data.get('doubleroomaval','') if singleroomaval != '': if int(singleroomaval) > 5 or int(singleroomaval) < 0: return Response({"success": False,"message": "Availability must be between 0 and 5."}, status=status.HTTP_400_BAD_REQUEST) if doubleroomaval != '': if int(doubleroomaval) > 5 or int(doubleroomaval) < 0: return Response({"success": False,"message": "Availability must be between 0 and 5."}, status=status.HTTP_400_BAD_REQUEST) try: booking = Booking.objects.get(date=datebooking) bserializer = BookingSerializer(booking, data=request_data, partial=True) except: bserializer = BookingSerializer(data=request_data) if bserializer.is_valid(): bserializer.save() return Response(bserializer.data, status=status.HTTP_200_OK) return Response(bserializer.errors, status=status.HTTP_400_BAD_REQUEST) class NutrientsApi(APIView): @csrf_exempt def get(self, request): try: nutrients = Nutrient.objects.all() nserializer = NutrientsSerializer(nutrients) nutrient_data = nserializer.data return Response(nutrient_data, status=status.HTTP_200_OK) except: return Response({'success': False, 'message': 'No details found for given date'}, status=status.HTTP_400_BAD_REQUEST) @csrf_exempt def post(self, request): request_data = request.data.copy() request_data["user"] = request.user.pk mealval = request_data.get('meal') data = { "query":mealval, "timezone": "US/Eastern" } result = requests.post('https://trackapi.nutritionix.com/v2/natural/nutrients', data, headers={"x-app-id":"94f5edb6","x-app-key":"8bb3ae712275e9810ceec3b583e2727d"}) calories = 0 fat = 0 sugar = 0 protein = 0 carbs = 0 vita = 0 vitb = 0 vitc = 0 vitd = 0 vite = 0 foodlist = "" for fooditem in result.json()["foods"]: foodlist += fooditem["food_name"]+"; " calories+=fooditem["nf_calories"] fat+=fooditem["nf_total_fat"] sugar+=fooditem["nf_sugars"] protein+=fooditem["nf_protein"] carbs+=fooditem["nf_total_carbohydrate"] nutlist = fooditem["full_nutrients"] vita+=nutlist[22]["value"]+nutlist[24]["value"] vitb+=nutlist[38]["value"]+nutlist[40]["value"] vitc+=nutlist[33]["value"] vitd+=nutlist[29]["value"] vite+=nutlist[27]["value"] foodrecord = Foodrecord(user=request.user,search_query=mealval,calories=calories,fat=fat,sugars=sugar,protein=protein,carbohydrates=carbs,vitamina=vita,vitaminbcomplex=vitb,vitaminc=vitc,vitamind=vitd,vitamine=vite) foodrecord.save() for fooditem in result.json()["foods"]: foodlistobj = Foodlist(food_record=foodrecord,food_item=fooditem["food_name"]) foodlistobj.save() response = { "foodlist":foodlist, "calories":calories, "fat":fat, "sugars":sugar, "protein":protein, "carbohydrates":carbs, "vitamina":vita, "vitaminbcomplex":vitb, "vitaminc":vitc, "vitamind":vitd, "vitamine":vite } # nserializer = NutrientsSerializer(data=request.data) # if nserializer.is_valid(): # nserializer.save() return Response(response, status=status.HTTP_200_OK) # return Response(nserializer.errors, status=status.HTTP_400_BAD_REQUEST) class SelfdiaryApi(APIView): def post(self, request): request_data = request.data.copy() request_data["user"] = request.user.pk sserializer = SelfcarediarySerializer(data=request_data) if sserializer.is_valid(): sserializer.save() return Response(sserializer.data, status=status.HTTP_200_OK) return Response(sserializer.errors, status=status.HTTP_400_BAD_REQUEST) def get(self, request): try: selfdiary = Selfcarediary.objects.filter(user=request.user) resplist = [] for qset in selfdiary: resplist.append({"diary":qset.diary,"date":qset.date}) return Response({"data":resplist}, status=status.HTTP_200_OK) except: return Response({"success": False}, status=status.HTTP_400_BAD_REQUEST)
1.875
2
deeppavlov/tasks/paraphrases/__init__.py
deepmipt/kpi2017
3
12796923
<filename>deeppavlov/tasks/paraphrases/__init__.py # Copyright 2017 Neural Networks and Deep Learning lab, MIPT # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Description of the module tasks.paraphraser: The task of the module To provide train and test data for the agents.paraphraser module. For this the dataset with paraphrases in russian posted on the site [1] is used. The module downloads train and test parts of the data. Then it shuffles, splits into batches and feeds the to the agents.paraphraser module for training (feeds the whole dataset for testing). The part of the data is reserved for the validation. Namely, the data is divided into k folds, where k equals to the '--bagging-folds-number' parameter. Each fold is then used once as a validation while the k - 1 remaining folds form the training set. [1] http://paraphraser.ru/ """
2.15625
2
porespy/dns/__init__.py
xu-kai-xu/porespy
0
12796924
r""" DNS ### **Direct Numerical Simulation** This module contains routines for performing direct numerical simulations. .. currentmodule:: porespy .. autosummary:: :template: mybase.rst :toctree: generated/ dns.tortuosity """ from ._funcs import *
1.140625
1
example/settings.py
rheinwerk-verlag/planning-poker-jira
1
12796925
<reponame>rheinwerk-verlag/planning-poker-jira<gh_stars>1-10 # Django settings for example project. import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) DEBUG = True TEMPLATE_DEBUG = DEBUG SECRET_KEY = '<KEY>' TEMPLATE_DIRS = ( os.path.join(BASE_DIR, 'planning_poker_jira/templates'), ) ASGI_APPLICATION = 'example.routing.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'planning_poker_jira.db', 'USER': '', 'PASSWORD': '', 'HOST': '', 'PORT': '', } } INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', 'django.contrib.admindocs', 'channels', 'planning_poker.apps.ChannelsPresenceConfig', 'planning_poker', 'encrypted_fields', 'planning_poker_jira', ) MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, } ] ROOT_URLCONF = 'example.urls' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) FIELD_ENCRYPTION_KEYS = [SECRET_KEY.encode().hex()]
1.960938
2
yolo/model/dense_prediction.py
parot-99/COVID-19-Warning-System
2
12796926
import tensorflow as tf from .config import cfg class YoloHead(tf.keras.layers.Layer): def __init__(self, grid_size, classes, strides, anchors, xyscale, i): super().__init__() self.grid_size = grid_size self.classes = classes self.strides = strides self.anchors = anchors self.xyscale = xyscale self.i = i def call(self, feature_map): batch_size = tf.shape(feature_map)[0] conv_output = tf.reshape( feature_map, (batch_size, self.grid_size, self.grid_size, 3, 5 + self.classes), ) bbox_xy, bbox_wh, detection_conf, classes_prob = tf.split( conv_output, (2, 2, 1, self.classes), axis=-1 ) xy_grid = tf.meshgrid( tf.range(self.grid_size), tf.range(self.grid_size) ) xy_grid = tf.expand_dims(tf.stack(xy_grid, axis=-1), axis=2) xy_grid = tf.tile( tf.expand_dims(xy_grid, axis=0), [batch_size, 1, 1, 3, 1], ) xy_grid = tf.cast(xy_grid, tf.float32) bbox_xy_sigmoid = tf.sigmoid(bbox_xy) detection_conf_sigmoid = tf.sigmoid(detection_conf) classes_prob_sigmoid = tf.sigmoid(classes_prob) prediction_xy = ( (bbox_xy_sigmoid * self.xyscale[self.i]) - 0.5 * (self.xyscale[self.i] - 1) + xy_grid ) * self.strides[self.i] prediction_wh = tf.exp(bbox_wh) * self.anchors[self.i] prediction_xywh = tf.concat([prediction_xy, prediction_wh], axis=-1) prediction_prob = detection_conf_sigmoid * classes_prob_sigmoid prediction_xywh = tf.reshape(prediction_xywh, (batch_size, -1, 4)) prediction_prob = tf.reshape( prediction_prob, (batch_size, -1, self.classes) ) return prediction_xywh, prediction_prob class FilterLayer(tf.keras.layers.Layer): def __init__(self, input_size, score_threshold=0.4): super().__init__() self.input_size = input_size self.score_threshold = score_threshold def call(self, bounding_boxes, scores): input_size = self.input_size score_threshold = self.score_threshold bounding_boxes = tf.concat(bounding_boxes, axis=1) scores = tf.concat(scores, axis=1) scores_max = tf.math.reduce_max(scores, axis=-1) mask = scores_max >= score_threshold class_boxes = tf.boolean_mask(bounding_boxes, mask) pred_conf = tf.boolean_mask(scores, mask) class_boxes = tf.reshape( class_boxes, [tf.shape(scores)[0], -1, tf.shape(class_boxes)[-1]] ) pred_conf = tf.reshape( pred_conf, [tf.shape(scores)[0], -1, tf.shape(pred_conf)[-1]] ) box_xy, box_wh = tf.split(class_boxes, (2, 2), axis=-1) input_size = tf.cast(input_size, dtype=tf.float32) box_yx = box_xy[..., ::-1] box_hw = box_wh[..., ::-1] box_mins = (box_yx - (box_hw / 2.0)) / input_size box_maxes = (box_yx + (box_hw / 2.0)) / input_size boxes = tf.concat( [ box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2], ], axis=-1, ) predictions = tf.concat([boxes, pred_conf], axis=-1) return predictions def dense_prediction(feature_maps, classes, tiny=False): bbox_tensors = [] prob_tensors = [] if tiny: yolo_head_1 = YoloHead( cfg.INPUT_SIZE // 16, classes, cfg.STRIDES_TINY, cfg.ANCHORS_TINY, cfg.XYSCALE_TINY, 0, )(feature_maps[0]) bbox_tensors.append(yolo_head_1[0]) prob_tensors.append(yolo_head_1[1]) yolo_head_2 = YoloHead( cfg.INPUT_SIZE // 32, classes, cfg.STRIDES_TINY, cfg.ANCHORS_TINY, cfg.XYSCALE_TINY, 1, )(feature_maps[1]) bbox_tensors.append(yolo_head_2[0]) prob_tensors.append(yolo_head_2[1]) else: yolo_head_1 = YoloHead( cfg.INPUT_SIZE // 8, classes, cfg.STRIDES, cfg.ANCHORS, cfg.XYSCALE, 0, )(feature_maps[0]) bbox_tensors.append(yolo_head_1[0]) prob_tensors.append(yolo_head_1[1]) yolo_head_2 = YoloHead( cfg.INPUT_SIZE // 16, classes, cfg.STRIDES, cfg.ANCHORS, cfg.XYSCALE, 1, )(feature_maps[1]) bbox_tensors.append(yolo_head_2[0]) prob_tensors.append(yolo_head_2[1]) yolo_head_3 = YoloHead( cfg.INPUT_SIZE // 32, classes, cfg.STRIDES, cfg.ANCHORS, cfg.XYSCALE, 2, )(feature_maps[2]) bbox_tensors.append(yolo_head_3[0]) prob_tensors.append(yolo_head_3[1]) predictions = FilterLayer( input_size=tf.constant([cfg.INPUT_SIZE, cfg.INPUT_SIZE]), score_threshold=0.2 )(bbox_tensors, prob_tensors) return predictions
2.484375
2
experiments/bert/bert.py
0xflotus/transfer-nlp
0
12796927
<reponame>0xflotus/transfer-nlp import math from typing import Tuple import numpy as np import pandas as pd import torch from pytorch_pretrained_bert import BertTokenizer, BertForSequenceClassification from torch.nn.utils import clip_grad_norm_ from torch.optim import Optimizer from torch.optim.optimizer import required from tqdm import tqdm from transfer_nlp.loaders.loaders import DatasetSplits, DataFrameDataset from transfer_nlp.loaders.vectorizers import Vectorizer from transfer_nlp.loaders.vocabulary import Vocabulary from transfer_nlp.plugins.config import register_plugin tqdm.pandas() @register_plugin class BertVectorizer(Vectorizer): def __init__(self, data_file: str): super().__init__(data_file=data_file) self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') df = pd.read_csv(data_file) target_vocab = Vocabulary(add_unk=False) for category in sorted(set(df.category)): target_vocab.add_token(category) self.target_vocab = target_vocab def vectorize(self, title: str, max_seq_length: int) -> Tuple[np.array, np.array, np.array]: tokens = self.tokenizer.tokenize(title) tokens = ["[CLS]"] + tokens + ["[SEP]"] token_type_ids = [0] * len(tokens) input_ids = self.tokenizer.convert_tokens_to_ids(tokens) attention_mask = [1] * len(input_ids) padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding attention_mask += padding token_type_ids += padding return np.array(input_ids), np.array(attention_mask), np.array(token_type_ids) @register_plugin class BertDataset(DatasetSplits): def __init__(self, data_file: str, batch_size: int, vectorizer: Vectorizer): self.df = pd.read_csv(data_file) np.random.shuffle(self.df.values) # Use this code in dev mode N = 1000 self.df = self.df.head(n=N) # preprocessing self.vectorizer: Vectorizer = vectorizer self.max_sequence = 0 for title in tqdm(self.df.title, desc="Getting max sequence"): tokens = self.vectorizer.tokenizer.tokenize(text=title) self.max_sequence = max(self.max_sequence, len(tokens)) self.max_sequence += 2 vectors = self.df['title'].progress_apply(lambda x: self.vectorizer.vectorize(title=x, max_seq_length=self.max_sequence)) self.df['input_ids'] = vectors.progress_apply(lambda x: x[0]) self.df['attention_mask'] = vectors.progress_apply(lambda x: x[1]) self.df['token_type_ids'] = vectors.progress_apply(lambda x: x[2]) self.df['y_target'] = self.df['category'].progress_apply(lambda x: self.vectorizer.target_vocab.lookup_token(x)) train_df = self.df[self.df.split == 'train'][['input_ids', 'attention_mask', 'token_type_ids', 'y_target']] val_df = self.df[self.df.split == 'val'][['input_ids', 'attention_mask', 'token_type_ids', 'y_target']] test_df = self.df[self.df.split == 'test'][['input_ids', 'attention_mask', 'token_type_ids', 'y_target']] super().__init__(train_set=DataFrameDataset(train_df), train_batch_size=batch_size, val_set=DataFrameDataset(val_df), val_batch_size=batch_size, test_set=DataFrameDataset(test_df), test_batch_size=batch_size) @register_plugin def bert_model(): return BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=4) # Optimizer Code from HuggingFace repo def warmup_cosine(x, warmup=0.002): if x < warmup: return x / warmup return 0.5 * (1.0 + torch.cos(math.pi * x)) def warmup_constant(x, warmup=0.002): if x < warmup: return x / warmup return 1.0 def warmup_linear(x, warmup=0.002): if x < warmup: return x / warmup return 1.0 - x SCHEDULES = { 'warmup_cosine': warmup_cosine, 'warmup_constant': warmup_constant, 'warmup_linear': warmup_linear, } @register_plugin class BertAdam(Optimizer): """Implements BERT version of Adam algorithm with weight decay fix. Params: lr: learning rate warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 t_total: total number of training steps for the learning rate schedule, -1 means constant learning rate. Default: -1 schedule: schedule to use for the warmup (see above). Default: 'warmup_linear' b1: Adams b1. Default: 0.9 b2: Adams b2. Default: 0.999 e: Adams epsilon. Default: 1e-6 weight_decay: Weight decay. Default: 0.01 max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 """ def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear', b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, max_grad_norm=1.0): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) if schedule not in SCHEDULES: raise ValueError("Invalid schedule parameter: {}".format(schedule)) if not 0.0 <= warmup < 1.0 and not warmup == -1: raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) if not 0.0 <= b1 < 1.0: raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) if not 0.0 <= b2 < 1.0: raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) if not e >= 0.0: raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, b1=b1, b2=b2, e=e, weight_decay=weight_decay, max_grad_norm=max_grad_norm) super(BertAdam, self).__init__(params, defaults) def get_lr(self): lr = [] for group in self.param_groups: for p in group['params']: state = self.state[p] if len(state) == 0: return [0] if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step'] / group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] lr.append(lr_scheduled) return lr def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['next_m'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['next_v'] = torch.zeros_like(p.data) next_m, next_v = state['next_m'], state['next_v'] beta1, beta2 = group['b1'], group['b2'] # Add grad clipping if group['max_grad_norm'] > 0: clip_grad_norm_(p, group['max_grad_norm']) # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time next_m.mul_(beta1).add_(1 - beta1, grad) next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) update = next_m / (next_v.sqrt() + group['e']) # Just adding the square of the weights to the loss function is *not* # the correct way of using L2 regularization/weight decay with Adam, # since that will interact with the m and v parameters in strange ways. # # Instead we want to decay the weights in a manner that doesn't interact # with the m/v parameters. This is equivalent to adding the square # of the weights to the loss with plain (non-momentum) SGD. if group['weight_decay'] > 0.0: update += group['weight_decay'] * p.data if group['t_total'] != -1: schedule_fct = SCHEDULES[group['schedule']] lr_scheduled = group['lr'] * schedule_fct(state['step'] / group['t_total'], group['warmup']) else: lr_scheduled = group['lr'] update_with_lr = lr_scheduled * update p.data.add_(-update_with_lr) state['step'] += 1 # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 # No bias correction # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] return loss
2.453125
2
deployer/contrib/loggers/on_host.py
timgates42/python-deployer
39
12796928
<reponame>timgates42/python-deployer<filename>deployer/contrib/loggers/on_host.py from deployer.loggers import Logger, RunCallback, ForkCallback from deployer.utils import esc1 class OnHostLogger(Logger): """ Log all transactions on every host in: ~/.deployer/history """ def __init__(self, username): from socket import gethostname self.from_host = gethostname() self.username = username def log_run(self, run_entry): if not run_entry.sandboxing: run_entry.host._run_silent(""" mkdir -p ~/.deployer/; echo -n `date '+%%Y-%%m-%%d %%H:%%M:%%S | ' ` >> ~/.deployer/history; echo -n '%s | %s | %s | ' >> ~/.deployer/history; echo '%s' >> ~/.deployer/history; """ % ('sudo' if run_entry.use_sudo else ' ', esc1(self.from_host), esc1(self.username), esc1(run_entry.command or '') )) return RunCallback() def log_fork(self, fork_entry): # Use the same class OnHostLogger in forks. class callback(ForkCallback): def get_fork_logger(c): return OnHostLogger(self.username) return callback()
2.265625
2
polybius/graphics/ui/menu.py
TStalnaker44/python_jeopardy
0
12796929
""" Author: <NAME> File: menu.py A general class for creating menus Parameters: pos - (x,y) position for the top-left corner of the menu dims - (width, height) pixels of the menu commands - list of dictionaries specifying the button attributes padding - (horizontal, vertical) padding between border and buttons spacing - space in pixels between buttons color - rgb color of the menu background (None for transparent) borderColor - rgb color value for border borderWidth - pixel width for the border font - Supplied as a pygame font orientation - "vertical" | "horizontal" """ import pygame from polybius.graphics.components import Button from polybius.graphics.basics.drawable import Drawable from polybius.graphics.utils.window import Window class Menu(Drawable, Window): def __init__(self, pos, dims, commands, padding=0, spacing=0, color=(80,80,80), borderColor=(0,0,0), borderWidth=2, orientation="vertical"): """Initializes the menu""" Drawable.__init__(self, "", pos, worldBound=False) Window.__init__(self) self._offset = (pos[0], pos[1]) self._width = dims[0] self._height = dims[1] h_padding = padding[0] v_padding = padding[1] self._borderColor = borderColor self._borderWidth = borderWidth self._backgroundColor = color n = len(commands) xStart = h_padding yStart = v_padding self._buttons = [] # Create buttons with a vertical configuration if orientation == "vertical": buttonWidth = self._width - (2*h_padding) - (2*borderWidth) buttonHeight = (self._height - (2*v_padding) - \ ((n-1)*spacing) - (2*borderWidth)) // n for x, b in enumerate(commands): font = pygame.font.SysFont(b["font"], b["fontSize"]) self._buttons.append((Button(b["text"], (xStart + self._offset[0], yStart + (x*buttonHeight) + \ (x*spacing) + self._offset[1]), font, b["fontColor"], b["color"], buttonHeight, buttonWidth, b["borderColor"], b["borderWidth"]), x+1, b["closeOnPress"], (b.get("toggleText",None),b["text"]))) # Create buttons with a horizontal configuration elif orientation == "horizontal": buttonWidth = (self._width - (2*h_padding) - \ ((n-1)*spacing) - (2*borderWidth)) // n buttonHeight = self._height - (2*v_padding) - (2*borderWidth) for x, b in enumerate(commands): font = pygame.font.SysFont(b["font"], b["fontSize"]) self._buttons.append((Button(b["text"], (xStart + self._offset[0] +\ (x*buttonWidth) + (x*spacing), yStart + self._offset[1]), font, b["fontColor"], b["color"], buttonHeight, buttonWidth, b["borderColor"], b["borderWidth"]), x+1, b["closeOnPress"], (b.get("toggleText",None),b["text"]))) self._selection = None self.createDisplay() def getButtonByText(self, text): """Return the button with the provided text""" for button in self._buttons: if button[0].getText() == text: return button[0] def getButtonByPosition(self, position): """Return the button at the given position in the menu""" return self._buttons[position][0] def handleEvent(self, event): """Handles events on the pause menu""" for b in self._buttons: b[0].handleEvent(event,self.select,(b,)) return self.getSelection() def select(self, button): """Sets the current selection""" b, selection, closeOnPress, toggleText = button if closeOnPress: self.close() if toggleText[0] != None: currentText = b._text if toggleText[0] == currentText: b.setText(toggleText[1]) else: b.setText(toggleText[0]) self._selection = selection def getSelection(self): """Returns the current selection and resets it to None""" sel = self._selection self._selection = None return sel def draw(self, screen): """Draws the menu on the screen""" super().draw(screen) # Draw buttons for b in self._buttons: b[0].draw(screen) def createDisplay(self): """Create the display of the menu""" # Draw the border surfBack = pygame.Surface((self._width, self._height)) surfBack.fill(self._borderColor) # Draw the background surf = pygame.Surface((self._width - (self._borderWidth * 2), self._height - (self._borderWidth * 2))) # Apply the background color or make transparent if self._backgroundColor == None: surf.fill((1,1,1)) surfBack.set_colorkey((1,1,1)) else: surf.fill(self._backgroundColor) # Blit the widget layer onto the back surface surfBack.blit(surf, (self._borderWidth, self._borderWidth)) self._image = surfBack
3.953125
4
app/unitOfMeasurements/routes.py
DeschutesBrewery/brewerypi
27
12796930
from flask import flash, redirect, render_template, request, url_for from flask_login import login_required from sqlalchemy import and_ from . import unitOfMeasurements from . forms import UnitOfMeasurementForm from .. import db from .. decorators import adminRequired from .. models import UnitOfMeasurement modelName = "Unit" @unitOfMeasurements.route("/unitOfMeasurements", methods = ["GET", "POST"]) @login_required @adminRequired def listUnitOfMeasurements(): unitOfMeasurements = UnitOfMeasurement.query return render_template("unitOfMeasurements/unitOfMeasurements.html", unitOfMeasurements = unitOfMeasurements) @unitOfMeasurements.route("/units/add", methods = ["GET", "POST"]) @login_required @adminRequired def addUnitOfMeasurement(): operation = "Add" form = UnitOfMeasurementForm() # Add a new unit of measurement. if form.validate_on_submit(): unitOfMeasurement = UnitOfMeasurement(Abbreviation = form.abbreviation.data, Name = form.name.data) db.session.add(unitOfMeasurement) db.session.commit() flash("You have successfully added the new unit of measurement \"{}\".".format(unitOfMeasurement.Abbreviation), "alert alert-success") return redirect(url_for("unitOfMeasurements.listUnitOfMeasurements")) # Present a form to add a new unit of measurement. breadcrumbs = [{"url" : url_for("unitOfMeasurements.listUnitOfMeasurements"), "text" : "<span class = \"glyphicon glyphicon-home\"></span>"}] return render_template("addEdit.html", breadcrumbs = breadcrumbs, form = form, modelName = modelName, operation = operation) @unitOfMeasurements.route("/units/addDefaultUnitsOfMeasurements", methods = ["GET", "POST"]) @login_required @adminRequired def addDefaultUnitsOfMeasurements(): defaultUnits = {"ASBC" : "american society of brewing chemists", "ADF" : "apparent degree of fermentation", "bbl" : "barrel", "cells/ml" : "cells per milliliter", "cells/ml/°P" : "cells per ml per degree plato", "°C" : "degree celsius", "°P" : "degree plato", "°F" : "degree fahrenheit", "°F/min" : "degree fahrenheit per minute", "EBC" : "european brewery convention", "gal" : "gallon", "gpm" : "gallons per minute", "g" : "grams", "g/bbl" : "grams per barrel", "g/L" : "grams per liter", "h" : "hour", "in" : "inches", "IBU" : "international bittering unit", "kg" : "kilogram", "L" : "liters", "mg" : "milligram", "mL" : "milliliter", "mm" : "millimeter", "min" : "minute", "ppb" : "parts per billion", "ppm" : "parts per million", "%" : "percentage", "pH" : "potential of hydrogen", "lb" : "pound", "lb/bbl" : "pounds per barrel", "psi" : "pounds per square inch", "RDF" : "real degree of fermentation", "RE" : "real extract", "s" : "second", "SG" : "specific gravity", "SRM" : "standard reference method", "t/h" : "tons per hour", "TA" : "total acidity", "vol" : "volumes", "x10^12 cells" : "x10^12 cells", "x10^6 cells" : "x10^6 cells"} addedUnits = [] skippedUnits = [] for defaultUnit in defaultUnits: unit = UnitOfMeasurement.query.filter(and_(UnitOfMeasurement.Abbreviation == defaultUnit, UnitOfMeasurement.Name == defaultUnits[defaultUnit])).first() if unit is None: addedUnits.append(defaultUnits[defaultUnit]) unit = UnitOfMeasurement(Abbreviation = defaultUnit) unit.Name = defaultUnits[defaultUnit] db.session.add(unit) else: skippedUnits.append(defaultUnits[defaultUnit]) db.session.commit() addedMessage = "" alert = "alert alert-warning" if addedUnits: for unit in addedUnits: if addedMessage == "": addedMessage = "Added: {}".format(unit) alert = "alert alert-success" else: addedMessage = "{}, {}".format(addedMessage, unit) addedMessage = "{}.".format(addedMessage) else: addedMessage = "Added none of the default units of measurements." flash(addedMessage, alert) skippedMessage = "" if skippedUnits: for unit in skippedUnits: if skippedMessage == "": skippedMessage = "Skipped: {}".format(unit) else: skippedMessage = "{}, {}".format(skippedMessage, unit) skippedMessage = "{} as they already exist.".format(skippedMessage) flash(skippedMessage, "alert alert-warning") return redirect(url_for("unitOfMeasurements.listUnitOfMeasurements")) @unitOfMeasurements.route("/unitOfMeasurements/delete/<int:unitOfMeasurementId>", methods = ["GET", "POST"]) @login_required @adminRequired def deleteUnitOfMeasurement(unitOfMeasurementId): unitOfMeasurement = UnitOfMeasurement.query.get_or_404(unitOfMeasurementId) if unitOfMeasurement.isReferenced(): flash('Unit of Measurement "{}" is referenced by one or more element and/or event frame attribute template and/or tag and cannot be deleted.'. \ format(unitOfMeasurement.Abbreviation), "alert alert-danger") else: unitOfMeasurement.delete() db.session.commit() flash('You have successfully deleted the unit of measurement "' + unitOfMeasurement.Abbreviation + '".', "alert alert-success") return redirect(url_for("unitOfMeasurements.listUnitOfMeasurements")) @unitOfMeasurements.route("/unitOfMeasurements/edit/<int:unitOfMeasurementId>", methods = ["GET", "POST"]) @login_required @adminRequired def editUnitOfMeasurement(unitOfMeasurementId): operation = "Edit" unitOfMeasurement = UnitOfMeasurement.query.get_or_404(unitOfMeasurementId) form = UnitOfMeasurementForm(obj = unitOfMeasurement) # Edit an existing unit of measurement. if form.validate_on_submit(): unitOfMeasurement.Abbreviation = form.abbreviation.data unitOfMeasurement.Name = form.name.data db.session.commit() flash("You have successfully edited the unit of measurement \"{}\".".format(unitOfMeasurement.Abbreviation), "alert alert-success") return redirect(url_for("unitOfMeasurements.listUnitOfMeasurements")) # Present a form to edit an existing unit of measurement. form.unitOfMeasurementId.data = unitOfMeasurement.UnitOfMeasurementId form.abbreviation.data = unitOfMeasurement.Abbreviation form.name.data = unitOfMeasurement.Name breadcrumbs = [{"url" : url_for("unitOfMeasurements.listUnitOfMeasurements"), "text" : "<span class = \"glyphicon glyphicon-home\"></span>"}, {"url" : None, "text" : unitOfMeasurement.Name}] return render_template("addEdit.html", breadcrumbs = breadcrumbs, form = form, modelName = modelName, operation = operation)
2.703125
3
conf/tests/test_wsgi.py
uktrade/sso
1
12796931
from unittest import mock import pytest from bs4 import BeautifulSoup from conf import wsgi @pytest.mark.django_db @pytest.mark.parametrize('script_name,prefix', (('/sso', '/sso/accounts/'), ('', '/accounts/'))) def test_set_script_name(rf, script_name, prefix): environ = rf._base_environ( PATH_INFO='/accounts/password/reset/', CONTENT_TYPE="text/html; charset=utf-8", REQUEST_METHOD="GET", HTTP_X_SCRIPT_NAME=script_name, ) response = wsgi.application(environ=environ, start_response=mock.Mock) assert response.status_code == 200 soup = BeautifulSoup(response.content, 'html.parser') element = soup.find(id='header-sign-in-link') assert element.attrs['href'].startswith(prefix)
2.34375
2
looking_for_group/game_catalog/migrations/0011_publishedmodule_parent_game_edition.py
andrlik/looking-for-group
0
12796932
# Generated by Django 2.1.2 on 2018-11-04 16:16 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('game_catalog', '0010_auto_20181104_1036'), ] operations = [ migrations.RemoveField( model_name='publishedgame', name='edition', ), migrations.RemoveField( model_name='publishedgame', name='game_system', ), migrations.RemoveField( model_name='publishedgame', name='isbn', ), migrations.RemoveField( model_name='publishedgame', name='publisher', ), ]
1.515625
2
bashbot/commands/rename_command.py
SudoPokeMaster/BashBot
0
12796933
import asyncio from bashbot.commands import Command from bashbot.commands.syntax import SyntaxBuilder from bashbot.session_manager import SessionManager class RenameCommand(Command): def __init__(self): super().__init__() self.name = "Rename terminal" self.aliases = [".rename"] self.description = "Renames terminal session" self.usage = ".rename <new_name>" self.permission = "session.rename" self.syntax = SyntaxBuilder() \ .param("new_name", "rename") \ .build() async def rename(self, client, message, parameters): session = SessionManager.get_session(message.channel) if session: if not len(parameters["new_name"]) > 20: session.name = parameters["new_name"] else: await client.send_message(message.channel, ":no_entry_sign: Maximum length of session name is 20. Your is: %s" % len(parameters["name"])) return session.send_output(asyncio.get_event_loop()) else: await client.send_message(message.channel, ":no_entry_sign: You are trying to freeze non-existing session")
2.296875
2
policy.py
shaoshitong/torchdistill
1
12796934
import os, sys if __name__ == "__main__": negative_identity_weight = [0, 0, 0] positive_identity_weight = [0, 0, 0] negative_classes_weight = [0, 0, 0] positive_classes_weight = [0, 0, 0] negative_policy_weight = [0, 0, 0] positive_policy_weight = [0, 0, 0] for i in range(len(negative_identity_weight)): log = f'log/cifar10/icpkd/resnet18_from_resnet50_option_1_{i}_2倍.txt' os.system("rm -rf ./resource") os.system(f"python ./SST/image_classification_policy.py --log {log}") print(f"============================end {i}================================")
2.28125
2
parser.py
Snake-Whisper/zone-file-parser
4
12796935
#!/usr/bin/env python3 """ Limits: - can't read brackets in brackets - avoid using more then one bracket per line. Normally it should work, but you should use it carefull - problems by differncing ttl/domaine, if domain[:-1].isdigit()""" VERSION = 1.1 DOMAIN_MAX_LENGHT = 255 CLASSES = ["IN", "HS", "CH", "CS"] RRsTYPES = ["A","AAAA", "A6", "AFSDB", "APL", "CERT", "CNAME", "DHCID", "DNAME", "DNSKEY", "DS", "GPOS", "HINFO", "IPSECKEY", "ISDN", "KEY", "KX", "LOC", "MX", "NAPTR", "NSAP", "NS", "NSEC", "NSEC3","NSEC3PARAM", "NXT", "PTR", "PX", "RP", "PRSIG", "RT", "SIG", "SOA", "SPF", "SRV", "SSHFP", "TXT", "WKS", "X25"] from time import strftime class ZoneFileError(Exception): """Simple Exception handler""" def __init__(self, error, file): self.error = str(error) self.file = str(file) def __str__(self): return """Please check the given zone file {0}.\nFollowing Error occured: {1}""".format(self.file, self.error) class _Parser(): """Main Parser""" def __init__(self, file): self.file = file self.zone = list() self.Table = list() # format: [primKey, name, ttl, class, type, value] self.stream = open(file) self.zone_org = self.stream.read() self.stream.close() self.zone = self.zone_org.splitlines() self.rmComment() self.rmCompleteParanthese() self.split() self.cleanUp() self.parse() def error(self, error): """returns error""" raise ZoneFileError(error, self.file) def getIndexe(self, pattern): """return every index of fitting patter""" self.counter = 0 self.result = list() for i in range(self.zone_org.count(pattern)): self.result.append(self.zone_org.find(pattern, self.counter)) self.counter = self.result[-1] + 1 return self.result def rmComment(self): """Removes comments from zone (;, #, /**/, //)""" if ";" in self.zone_org: self.zone = [i.split(";")[0] for i in self.zone if i != ";"] if "#" in self.zone_org: self.zone = [i.split("#")[0] for i in self.zone if i != "#"] if "//" in self.zone_org: self.zone = [i.split("//")[0] for i in self.zone if i != "//"] if "/*" in self.zone_org: self.pop = list() self.counter = False for i in range(len(self.zone)): if "/*" in self.zone[i]: self.counter = True self.zone[i] = self.zone[i].split("/*")[0] continue if "*/" in self.zone[i]: self.pop.append(i) # warnig: complete line is removed. Problem with: /*comment\nbla\nbla*/command? self.counter = False continue if self.counter: self.pop.append(i) self.pop.sort(reverse = True) # To avoid collaps of mapping for i in self.pop: self.zone.pop(i) def move(self, index): """Merge index + 1 with index.""" self.zone[index] += " " + self.zone[index + 1] self.zone.pop(index + 1) def rmParanthese(self): """removes paranthes if closed from zone file line""" self.zone = [self.zone[i].replace("(", "").replace(")", "") if self.zone[i].count("(") == self.zone[i].count(")") else self.zone[i] for i in range(len(self.zone))] def mergeParanthese(self): """Merge every paranthes to one line""" self.paranthese = 0 self.subt = 0 for i in range(len(self.zone)): i -= self.subt # to compense the mapping collaps try: self.zone[i] except IndexError: break if "(" in self.zone[i]: self.paranthese += 1 self.use_index = i continue if ")" in self.zone[i]: self.paranthese -= 1 self.move(self.use_index) self.subt += 1 continue if self.paranthese: self.move(self.use_index) self.subt += 1 def rmCompleteParanthese(self): """removes every paranthes from zone by merging""" self.count = 0 while [i for i in self.zone if "(" in i or ")" in i]: self.count += 1 self.rmParanthese() self.mergeParanthese() if self.count > 100: self.error("Paranthese Syntax: Please avoid using Paranthese in Paranthese or more then more paranthese per line") self.rmParanthese() del self.count def split(self): """splits zone to fields""" self.zone = [i.split() for i in self.zone] def handle(self, primKey, Name, TTL, Class, Type, Value): """Handler for parser return. Here you get all data -> api""" # later mySQL? self.Table.append([primKey, Name, TTL, Class, Type, Value]) def isType(self, object): """returns true if object is a entry type like NS, eg.""" return True if object in RRsTYPES else False def isClass(self, object): """returns True if obeject is a class like IN, eg.""" return True if object in CLASSES else False def isTTL(self, liste): """returns True if given list from zone is TTL record""" return True if liste[0] == '$TTL' and len(liste) < 3 else False def isTTLobj(self, object): """Returns if given object is ttl. Warning: it's just probatly correct""" return True if object[:-1].isdigit() else False # -1 because of 23h for eg. def cleanUp(self): """removes empty strings and lists from zone""" self.zone = [i for i in self.zone if i and i[0] != ''] def getType(self, liste): """returns type of given entry""" for i in liste: if self.isType(i): return i def getClass(self, liste): """returns class of given entry""" for i in liste: if self.isClass(i): return i def parse(self): """Main Parser""" self.primKey = 0 for entry in self.zone: if self.isTTL(entry): self.default_TTL = entry[1] # default ttl continue self.type = self.getType(entry) self.klasse = self.getClass(entry) if self.type: self.default_type = self.type else: try: self.type = self.default_type except NameError: self.error("Please check your zonfile. Error at {0}.\nType not found".format(" ".join(entry))) if self.klasse: self.default_klasse = self.klasse else: try: self.klasse = self.default_klasse except NameError: self.error("Please check your zonfile. Error at {0}.\nClass not found".format(" ".join(entry))) self.typeindex = entry.index(self.type) self.value = " ".join(entry[self.typeindex+1:]) entry = entry[:self.typeindex] # left: probatly name, probatly ttl, probatly class self.over = len(entry) if self.over == 3: if entry.pop(2) != self.klasse: self.error("There occured a fatal logical error at {0}.\nPlease contact support for more information".format(" ".join(entry))) self.over = len(entry) if self.over == 2: # Possible: class, ttl, name but: entry[1] = {TTL//class} -> !name if entry[1] == self.klasse: entry.pop() else: self.ttl = entry.pop() # Has to be ttl self.over = len(entry) if self.over == 1: # possible: name, class, ttl if entry[0] == self.klasse: entry.pop() elif self.isTTLobj(entry[0]): print("warning at {0}. I'll handle it as TTL!".format(" | ".join([str(y) for y in (self.primKey, self.name, entry[0], self.klasse, self.type, self.value)]))) # carefull!!! 123456d as dom -> undifined error self.ttl = entry.pop() else: self.name = entry[0] try: self.ttl = self.default_TTL except AttributeError: self.error("Please check your zonfile. TTL not found") self.handle(self.primKey, self.name,self.ttl, self.klasse, self.type, self.value) del self.value self.primKey += 1 class Parser(): """Paser - Friendly User API""" def __init__(self, file): import os.path as path self.file = file self.parser = _Parser(file) self.table = self.parser.Table self.TTL = self.parser.default_TTL self.zonename = path.basename(self.file) del self.parser # RAM clean def getValues(self): """returns set of all available Values in the Zone""" return set([i[5] for i in self.table]) def getTypes(self): """returns set of all available Types in the Zone""" return set([i[4] for i in self.table]) def getClasses(self): """returns set of all available classes in the Zone""" return set([i[3] for i in self.table]) def getTTLs(self): """returns set of all available TTLs in the Zone (Normaly one)""" return set([i[2] for i in self.table]) def getDomains(self): """returns set of all available Domains in the Zone""" return set([i[1] for i in self.table]) def getIDs(self): """returns set of all available ID's // prim. keys of internal table""" return set([i[0] for i in self.table]) def getDefaultTTL(self): """Returns last used TTL""" return self.TTL def getRecords(self, ID = False, Domain = False, TTL = False, Class = False, Type = False, Value = False): """MetaGer - returns list of matching rows""" self.result = list() for i in self.table: if ID and ID != i[0]: continue if not isinstance(ID, bool) and ID == 0 and i[0] != 0: continue if Domain and Domain != i[1]: continue if TTL and TTL != i[2]: continue if Class and Class != i[3]: continue if Type and Type != i[4]: continue if Value and Value != i[5]: continue self.result.append(i) return self.result def getValue(self, Value): """Returns entrys matching the given value""" return [i for i in self.table if i[5] == Value] def getType(self, Type): """Returns entrys matching the given type""" return [i for i in self.table if i[4] == Type] def getClass(self, Class): """Returns entrys matching the given class""" return [i for i in self.table if i[3] == Class] def getTTL(self, TTL): """Returns entrys matching the given TTL""" return [i for i in self.table if i[2] == str(TTL)] def getName(self, Name): """Returns entrys matching the given name""" return [i for i in self.table if i[1] == Name] def getID(self, ID): """Returns entrys matching the given ID""" return [i for i in self.table if i[0] == ID] def getMaster(self): """Returns Master-field of SOA record""" return self.getType("SOA")[0][5].split()[0] def getZoneContact(self): """Returns contact-field of SOA record""" return self.getType("SOA")[0][5].split()[1] def getSerial(self): """Returns serial-field of SOA record""" return self.getType("SOA")[0][5].split()[2] def getRefreshTime(self): """Returns refersh time - field of SOA record""" return self.getType("SOA")[0][5].split()[3] def getRetryTime(self): """Returns retry time - field of SOA record""" return self.getType("SOA")[0][5].split()[4] def getExpireTime(self): """Returns expire time - field of SOA record""" return self.getType("SOA")[0][5].split()[5] def getNegativeCache(self): """Returns negative cache time - field of SOA record""" return self.getType("SOA")[0][5].split()[6] def getIPv4(self): """Return current IPv4 addr of origin""" return self.getRecords(Domain = "@", Class = "IN", Type="A")[0][5] def getIPv6(self): """Return current IPv6 addr of origin""" return self.getRecords(Domain = "@", Class = "IN", Type="AAAA")[0][5] def mkSerial(self, check = True): """Sets timestamp allone. If check, no serial > 99 are supported""" self.old_time = self.getSerial()[:8] self.new_time = strftime("%Y%m%d") if self.old_time != self.new_time: self.serial = "01" else: self.serial = str(int(self.getSerial()[8:]) + 1) if check: assert int(self.serial) < 100, """More then 99 changes aren't supported per day.""" if len(self.serial) < 2: self.serial = "0{0}".format(self.serial) return "{0}{1}".format(self.new_time, self.serial) def refresh(self): """Reloads complete zone""" self.__init__(self.file) def convert2sqlite(self, file, table = None, commit = True): """Writes results to sql database. If table not given, zonename is used if commit = [True] chnages are automatic committed to db, else connection object is returned""" import sqlite3 as sql if table: self.tableName = table else: self.tableName = self.zonename self.connection = sql.connect(file) self.cursor = self.connection.cursor() self.cursor.execute("drop table if exists '{0}'".format(self.tableName)) # insecure !!! Problems: "db.mydomain.local".count(".") != 0 -> mySQL Syntax error self.cursor.execute("""CREATE TABLE '{0}' (id INT, domain VARCHAR({1}) NOT NULL, ttl INT, class VARCHAR({2}) NOT NULL, type VARCHAR({3}) NOT NULL, value TEXT NOT NULL)""".format(self.tableName, DOMAIN_MAX_LENGHT, max([len(i) for i in RRsTYPES]), max([len(i) for i in CLASSES]))) # also insecure self.cursor.executemany('INSERT INTO "{0}" VALUES (?,?,?,?,?,?)' .format(self.tableName), self.table) if commit: self.connection.commit() self.cursor.close() else: return self.connection if __name__ == "__main__": from sys import argv from os import path as path if len(argv) == 1: print(""" Bind Zonefile Parser ==================== Version: {0} Converts zone file to sqlite database Stand Alone Usage: ./parser.py zonefile [database=zone.sqlite]\n""".format(VERSION)) elif len(argv) == 2: assert path.isfile(argv[1]), "Zonefile {0} not found".format(argv[1]) parser = Parser(argv[1]) parser.convert2sqlite("zone.sqlite") print("wrote database to zone.sqlite") elif len(argv) == 3: assert path.isfile(argv[1]), "Zonefile {0} not found".format(argv[1]) parser = Parser(argv[1]) parser.convert2sqlite(argv[2]) print("wrote database to {0}".format(argv[2])) else: print("To many arguments")
2.484375
2
money_legos/uniswap/contracts.py
gokhanbaydar/py-money-legos
3
12796936
<gh_stars>1-10 from .. import util exchangeAbi = util.read_json("./uniswap/abi/Exchange.json") factoryAbi = util.read_json("./uniswap/abi/Factory.json") contracts = { "factory": { "address": "0xc0a47dFe034B400B47bDaD5FecDa2621de6c4d95", "abi": factoryAbi, }, "exchange": { "abi": exchangeAbi, }, }
1.875
2
ebad/trainer/module.py
vahidzee/ebad
0
12796937
import pytorch_lightning as pl import torch import typing as th import torchmetrics from .. import utils as ebad_utils class AnoTrainer(pl.LightningModule): def __init__( self, model_cls: th.Union[str, torch.nn.Module], input_shape: th.Union[th.Tuple[int], th.List[int]], input_clamp: th.Optional[th.Union[float, tuple]] = (-1., 1.), model_params: th.Optional[dict] = None, **kwargs, ): super().__init__() self.model = ebad_utils.get_value(self.hparams.model_cls)(**(self.hparams.model_params or dict())) # metrics self.val_auroc = torchmetrics.AUROC(num_classes=2, pos_label=1) self.test_auroc = torchmetrics.AUROC(num_classes=2, pos_label=1) def forward(self, x): z = self.model(x) return z def training_step(self, batch, batch_idx: th.Optional[int] = None, optimizer_idx: th.Optional[int] = None): inputs, targets = batch if self.noise_eps: # add minimal noise to the original inputs to prevent the model from focusing on purely "clean" inputs inputs.add_(torch.randn_like(inputs) * self.noise_eps) if self.hparams.input_clamp: inputs.clamp_( *(self.hparams.input_clamp if isinstance(self.hparams.input_clamp, tuple) else ( -self.hparams.input_clamp, self.hparams.input_clamp))) # Obtain samples samples = self.sampler.sample(sample_size=inputs.shape[0], update_buffer=True, device=inputs.device) # Predict energy score for all images all_inputs = torch.cat([inputs, samples], dim=0) inputs_out, samples_out = self.model(all_inputs).chunk(2, dim=0) # Calculate losses loss = 0. if self.regularizer_alpha: reg_loss = (inputs_out ** 2 + samples_out ** 2).mean() loss += self.regularizer_alpha * reg_loss self.log(f'loss/regularization/train', reg_loss) cdiv_loss = samples_out.mean() - samples_out.mean() self.log(f'loss/contrastive_divergence/train', cdiv_loss) loss += cdiv_loss self.log(f'loss/train', loss) self.log(f'metrics/inputs/train', inputs_out.mean()) self.log(f'metrics/samples/train', samples_out.mean()) return loss def validation_step(self, batch, batch_idx: th.Optional[int] = None, optimizer_idx: th.Optional[int] = None): # calculate the contrastive divergence between purely random images and unseen examples inputs, targets = batch self.log(f'metrics/random/val', self.model(torch.rand_like(inputs) * 2 - 1).mean()) scores = self.model(inputs) self.val_auroc( preds=-scores, # auroc expects predictions to have higher values for the positive class targets=targets ) self.log('metrics/auroc/val', self.val_auroc, on_step=True, on_epoch=True)
2.40625
2
modules/url_content_fetcher.py
facebookresearch/URL-Sanitization
24
12796938
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Given an URL in string, make a request, fetch its content, and parse using BeautifulSoup. """ import time import requests import logging import urllib.parse as urlparse from bs4 import BeautifulSoup class URLContentFetcher(object): def __init__(self, url, timeout=3, parser='html5lib', proxies=None): self.url = url self.soup = None self.success = None self.message = None self.timeout = timeout self.parser = parser self.proxies = proxies self.running_time = 0 def read_and_soup(self): """ Fetch content from a url """ user_agent_list = [ 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/35.0.1916.47 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/60.0.3112.113 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/60.0.3112.90 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/44.0.2403.157 Safari/537.36', 'Mozilla/5.0 (Windows NT 6.3; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/60.0.3112.113 Safari/537.36', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) \ AppleWebKit/537.36 (KHTML, like Gecko) \ Chrome/57.0.2987.133 Safari/537.36', ] parsed = urlparse.urlparse(self.url) headers = { "User-Agent": user_agent_list[ hash(parsed.netloc + parsed.path) % len(user_agent_list)], "X-Requested-With": "XMLHttpRequest", "Accept-Encoding": "gzip", } try: start_time = time.time() r = requests.get( self.url, headers=headers, timeout=self.timeout, stream=True, proxies=self.proxies ) url_data = r.content.decode('utf-8', 'ignore') soup = BeautifulSoup(url_data, self.parser) end_time = time.time() self.running_time = end_time - start_time self.soup = soup self.success = True except Exception as e: logging.error(repr(e) + ", url: {0}".format(self.url)) self.success = False self.message = "Modified URL error: " + str(e) def get_body(self): """ Get the body of a HTML content """ if self.soup is None: self.read_and_soup() if not self.success or self.soup.body is None: return "" return self.soup.body.getText() def get_title(self): """ Get the title from a HTML content """ if self.soup is None: self.read_and_soup() if not self.success or self.soup.title is None: return "" return self.soup.title
3.484375
3
setup.py
coopie/ttv
0
12796939
<filename>setup.py from setuptools import setup setup(name='ttv', version='0.0.1', description='A command line tool and a python library for test, train, validation set splitting', author='<NAME>', author_email='<EMAIL>', url='https://github.com/coopie/ttv', download_url='https://github.com/coopie/ttv/archive/master.zip', license='MIT', install_requires=['docopt', 'pyyaml'], py_modules=['ttv'] )
1.171875
1
TDO/utils_tdo/utils_evaluation.py
lgi2p/TDSelection
0
12796940
<reponame>lgi2p/TDSelection<filename>TDO/utils_tdo/utils_evaluation.py def compute_precision_with_general(sol_dict_, truth_, ancestors_): #function that compute the number of expected/general/erroneous values returned by the approach #note that the general values are all the returned values that are more general than the expected one (therefore they are still true) #note that the erronous values are values that are neither general or expected n_exp_ = 0 n_gen_ = 0 n_err_ = 0 for d in sol_dict_: returned_value = sol_dict_[d] expected = truth_[d] if returned_value == expected: n_exp_ += 1 else: if returned_value in ancestors_[expected]: n_gen_ += 1 else: n_err_ += 1 return n_exp_, n_gen_, n_err_
2.234375
2
servicex/datastream/pyarrowdemo.py
ssl-hep/ServiceX_datastream
0
12796941
<reponame>ssl-hep/ServiceX_datastream # Copyright (c) 2019, IRIS-HEP # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import awkward import pyarrow as pa import sys import uproot print(sys.path) file = uproot.open(os.path.join("/Users","bengal1","dev","IRIS-HEP","data", "DYJetsToLL_M-50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8.root")) events = file["Events"] arrays = events.arrays(["nElectron", "Electron_pt", "Electron_eta", "Electron_phi", "Electron_mass", "Electron_cutBased", "Electron_pdgId", "Electron_pfRelIso03_all"], entrystop=1000) physics_objects = {} offsets = awkward.JaggedArray.counts2offsets(arrays[b'nElectron']) physics_objects["Electron"] = { "pt": awkward.JaggedArray.fromoffsets(offsets, arrays[b"Electron_pt"].content), "eta":awkward.JaggedArray.fromoffsets(offsets, arrays[b"Electron_eta"].content), "phi": awkward.JaggedArray.fromoffsets(offsets, arrays[b"Electron_phi"].content), "mass": awkward.JaggedArray.fromoffsets(offsets, arrays[b"Electron_mass"].content), "cutBased": awkward.JaggedArray.fromoffsets(offsets, arrays[ b"Electron_cutBased"].content), "pdgId": awkward.JaggedArray.fromoffsets(offsets, arrays[b"Electron_pdgId"].content), "pfRelIso03_all": awkward.JaggedArray.fromoffsets(offsets, arrays[ b"Electron_pfRelIso03_all"].content) } electrons = physics_objects["Electron"] t = awkward.Table(electrons) awkward.toparquet("tmp.parquet", t) pa_table = awkward.toarrow(t) batches = pa_table.to_batches() batch = batches[0] sink = pa.BufferOutputStream() writer = pa.RecordBatchStreamWriter(sink, batch.schema) writer.write_batch(batch) writer.close() buf = sink.getvalue() reader = pa.ipc.open_stream(buf) batches2 = [b for b in reader] arrays = awkward.fromarrow(batches2[0]) print(arrays)
1.4375
1
test/test_buildx_driver.py
altairengineering/pkr
16
12796942
import sys from .utils import pkrTestCase class TestBuildxDriver(pkrTestCase): PKR = "pkr" pkr_folder = "docker_driver" kard_env = "dev" kard_driver = "buildx_compose" kard_extra = { "tag": "123", "flag": "flag_value", "buildx.cache_registry": "dummy", "buildx.builder_name": "testpkrbuilder", } def test_docker_driver_values(self): self.kard_extra["src_path"] = self.src_path self.generate_kard() self.make_kard() out_dir = self.pkr_path / "kard" / "test" expected = sorted( [ out_dir / "buildx" / "folder2_dst" / "copy", out_dir / "buildx" / "file1" / "file2", out_dir / "buildx" / "file1.dockerfile", out_dir / "meta.yml", ] ) def walk(path): for p in path.iterdir(): if p.is_dir(): yield from walk(p) continue yield p.resolve() self.assertEqual(sorted(list(walk(out_dir))), expected) def test_docker_multiple_contexts(self): self.kard_extra["src_path"] = self.src_path self.generate_kard(env="contexts") self.make_kard() out_dir = self.pkr_path / "kard" / "test" self.assertTrue((out_dir / "buildx" / "folder2_dst" / "copy").exists()) self.assertTrue((out_dir / "context1" / "folder2_dst" / "copy").exists()) self.assertTrue((out_dir / "buildx" / "file1.dockerfile").exists()) self.assertTrue((out_dir / "context1" / "file1.dockerfile").exists()) cmd = "{} image build -s container1 -c".format(self.PKR) prc = self._run_cmd(cmd) stdout = prc.stdout.read() stderr = prc.stderr.read() # Python 3.6 if sys.version_info < (3, 7): self.assertEqual(stdout, b"", stdout) self.assertEqual( stderr, b"ERROR: (Exception) buildx is not supported for python < 3.6\n" ) return expected = ( b"Warning: No docker-compose file is provided with this environment.\n" b"Removing context1 ... Done !\n" b"Removing buildx ... Done !\n" b"Start buildx builder testpkrbuilder\n" b"Building docker images...\n\n" b"Building container1:123 image...\n\n" ) self.assertTrue("unknown instruction: flag_value" in stderr.decode("utf-8"), stderr) self.assertEqual(stdout, expected, stdout) self.assertRegex( stderr.decode("utf-8"), r"docker buildx build --progress plain --builder testpkrbuilder --load " r"--file /tmp/.*/file1.dockerfile --cache-from type=registry,ref=dummy/cache " r"--cache-to type=registry,mode=max,ref=dummy/cache --tag container1:123 " r"/tmp/.*/context1", )
2.203125
2
ch09/complexity.py
ricjuanflores/practice-of-the-python
319
12796943
def has_long_words(sentence): if isinstance(sentence, str): # <1> sentence = sentence.split(' ') for word in sentence: # <2> if len(word) > 10: # <3> return True return False # <4>
3.546875
4
src/wready/__init__.py
WisconsinRobotics/wready
0
12796944
<filename>src/wready/__init__.py from .sig_handler import SignalInterruptHandler from .wready_client import TaskContext, WReadyClient from .wready_server import InitTask, WReadyServer, WReadyServerObserver
1.140625
1
utils/models/manufacture_building.py
roomdie/KingsEmpiresBot
0
12796945
from utils.models import base, product # # Bronze Age # BronzePottery = base.ManufactureBuilding( name="🏺🏠 Гончарня", products=[product.dish, product.jug, product.amphora], create_price=[340, 490], create_time_sec=1800, manpower=108 ) BronzePlantation = base.ManufactureBuilding( name="🍇🏠 Плантация", products=[product.grape, product.pear, product.melon], create_price=[340, 490], create_time_sec=1800, manpower=108 ) # Iron Age IronForger = base.ManufactureBuilding( name="🥩🏠 Мясник", products=[product.meat, product.chicken], create_price=[1500, 2400], create_time_sec=5400, manpower=230 ) IronButcher = base.ManufactureBuilding( name="🧵🏠 Портной", products=[product.threads, product.socks], create_price=[1500, 2400], create_time_sec=5400, manpower=230 )
2.09375
2
problem0546.py
kmarcini/Project-Euler-Python
0
12796946
########################### # # #546 The Floor's Revenge - Project Euler # https://projecteuler.net/problem=546 # # Code by <NAME> # ###########################
1.1875
1
workertasks/migrations/0003_auto_20181109_0049.py
danula/crowdcog
1
12796947
# Generated by Django 2.1.3 on 2018-11-09 00:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('workertasks', '0002_auto_20181109_0046'), ] operations = [ migrations.AlterField( model_name='assignment', name='begin_exp', field=models.DateTimeField(null=True), ), migrations.AlterField( model_name='assignment', name='begin_hit', field=models.DateTimeField(null=True), ), migrations.AlterField( model_name='assignment', name='end_hit', field=models.DateTimeField(null=True), ), migrations.AlterField( model_name='worker', name='qualification', field=models.IntegerField(default=0), ), ]
1.476563
1
frameworks/pycellchem-2.0/src/artchem/ReactionParser.py
danielrcardenas/ac-course-2017
0
12796948
#--------------------------------------------------------------------------- # # ReactionParser.py: parser for chemical reactions in text format, such as: # # A + 2 B --> 3 C , k=2.49 # # by <NAME>, Univ. Basel, Switzerland, January 2010 # June 2013: adapted to the PyCellChemistry package # # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # # Copyright (C) 2015 <NAME> # Contact: http://www.artificial-chemistries.org/ # # This file is part of PyCellChemistry. # # PyCellChemistry is free software: you can redistribute it and/or # modify it under the terms of the GNU General Public License # version 3, as published by the Free Software Foundation. # # PyCellChemistry is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with PyCellChemistry, see file COPYING. If not, see # http://www.gnu.org/licenses/ # import sys from Multiset import * from Reaction import * class ReactionParser(): def parse_molecules( self, mollist ): """ parse educt or product multiset given as a list of strings containing the molecule name and an optional stoichiometric coefficient, e.g. [ 'a', '2 fox', '4 b1' ] """ newmols = Multiset() for mol in mollist: mol = mol.strip() if mol.find(' ') < 0: name = mol n = 1 else: (num, name) = mol.split(' ', 2) name = name.strip() n = int(num) if n > 0 and name != '': newmols.inject(name, n) return newmols def parse_line( self, line ): """ parse string containing chemical reaction """ line2 = line.split('#') # skip comments line = line2[0] try: if line.find(',') < 0: reactstr = line k = 1.0 else: (reactstr, kstr) = line.split(',', 2) reactstr = reactstr.strip() (kstr, kvar) = kstr.split('=', 2) if (kstr.strip() != 'k'): raise ValueError k = float(kvar) (educts, products) = reactstr.split('-->', 2) edlist = educts.split('+') prlist = products.split('+') edmset = ReactionParser.parse_molecules( self, edlist ) prmset = ReactionParser.parse_molecules( self, prlist ) except ValueError: print >> sys.stderr, "syntax error on line=", line exit(-1) if (edmset.empty() and prmset.empty()): return newreaction = Reaction(edmset, prmset, k) return newreaction def parse_input( self, infile ): """ parse input file containing multiple chemical reactions, one per line. 'infile' is the file descriptor for the open input file """ reactions = ReactionQueue() for line in infile.readlines(): line = line.strip() if (line != '' and line[0] != '#'): reaction = self.parse_line(line) reactions.add(reaction) return reactions def parse_stdin( self ): """ parse standard input (stdin) """ return self.parse_input(sys.stdin) def parse_file( self, fname ): """ open and parse input file fname """ reactions = None try: infd = open(fname, 'r') reactions = self.parse_input(infd) infd.close() except IOError: print >> sys.stderr, "Error opening file", fname exit(-1) return reactions
2.859375
3
raml_translation_with_score.py
nonstopfor/seq2seq-exposure-bias-tf
1
12796949
import cotk from cotk._utils.file_utils import get_resource_file_path from cotk.dataloader.dataloader import * from collections import Counter import numpy as np from itertools import chain class Score(DataField): def get_next(self, dataset): r"""read text and returns the next label(integer). Note that it may raise StopIteration. Args:{DataField.GET_NEXT_ARG} Examples: >>> dataset = iter(["1\n", "0\n"]) >>> field = Label() >>> field.get_next(dataset) 1 >>> field.get_next(dataset) 0 """ score = next(dataset) return float(score.strip()) def _map_fun(self, element, convert_ids_to_tokens=None): """ Returns the element itself. Args: element: An element of a dataset. convert_ids_to_tokens: It's useless. This argument exists, just to keep the signature the same as that of super class. """ return element class TranslationWithScore(cotk.dataloader.SingleTurnDialog): @cotk._utils.hooks.hook_dataloader def __init__(self, file_id, min_vocab_times, \ max_sent_length, invalid_vocab_times, \ tokenizer, remains_capital ): super().__init__(file_id, min_vocab_times, \ max_sent_length, invalid_vocab_times, \ tokenizer, remains_capital) def _load_data(self): data_fields = { 'train': [['post', 'Sentence'], ['resp', 'Sentence'], ['score', Score]], 'dev': [['post', 'Sentence'], ['resp', 'Sentence']], 'test': [['post', 'Sentence'], ['resp', 'Sentence']], } return self._general_load_data(self._file_path, data_fields, \ self._min_vocab_times, self._max_sent_length, None, self._invalid_vocab_times) def _general_load_data(self, file_path, data_fields, min_vocab_times, max_sent_length, max_turn_length, invalid_vocab_times): r'''This function implements a general loading process. Arguments: file_path (str): A string indicating the path of dataset. data_fields (dict, list, tuple): If it's a list(tuple), it must be a list of (key, field) pairs. Field must be a DataField instance, or a subclass of DataField(in this case, its instance will be used, assuming its constructor accepts no arguments), or a string(in this case, the instance of the class, whose __name__ is field, will be used). For example, data_fields=[['post', 'Sentence'], ['label', Label]] means that, in the raw file, the first line is a sentence and the second line is a label. They are saved in a dict. dataset = {'post': [line1, line3, line5, ...], 'label': [line2, line4, line6, ...]} data_fields=[['key1', 'Session'], ['key2', Label()]], means that, in the raw file, the first *several lines* is a session, *followed by an empty line*, and the next line is a label. dataset = {'key1': [session1, session2, ...], 'key2': [label1, label2, ...]} If it's a dict, different datasets may have different formats.(If `data_fields` is a list or a tuple, different datasets have the same format). Its keys are the same as `self.key_name` that indicate the datasets, and the values are lists as mentioned above. For example, data_fields = {'train': [['sess', 'Session'], ['label', 'Label']], 'test': [['sess', 'session']]}, means that the train set contains sessions and labels, but the test set only contains sessions. min_vocab_times (int): A cut-off threshold of valid tokens. All tokens appear not less than `min_vocab_times` in **training set** will be marked as valid words. max_sent_length (int): All sentences longer than ``max_sent_length`` will be shortened to first ``max_sent_length`` tokens. max_turn_length (int): All sessions, whose turn length is longer than ``max_turn_length`` will be shorten to first ``max_turn_length`` sentences. If the dataset don't contains sessions, this parameter will be ignored. invalid_vocab_times (int): A cut-off threshold of invalid tokens. All tokens appear not less than ``invalid_vocab_times`` in the **whole dataset** (except valid words) will be marked as invalid words. Otherwise, they are unknown words, which are ignored both for model or metrics. Returns: (tuple): containing: * **all_vocab_list** (list): vocabulary list of the datasets, including valid and invalid vocabs. * **valid_vocab_len** (int): the number of valid vocab. ``vocab_list[:valid_vocab_len]`` will be regarded as valid vocabs, while ``vocab_list[valid_vocab_len:]`` regarded as invalid vocabs. * **data** (dict): a dict contains data. * **data_size** (dict): a dict contains size of each item in data. ''' def get_fields(fields): assert isinstance(fields, list) or isinstance(fields, tuple) return [(data_key, DataField.get_field(field)) for data_key, field in fields] if isinstance(data_fields, dict): no_field_keys = [key for key in self.key_name if key not in data_fields] if no_field_keys: raise ValueError('There is no data fields for dataset(%s) ' % ', '.join(no_field_keys)) try: data_fields = {key: get_fields(data_fields[key]) for key in self.key_name} except AssertionError: raise TypeError('If `data_field` is a dict, its value must be a list(or tuple) of lists(or tuples).') elif isinstance(data_fields, list) or isinstance(data_fields, tuple): data_fields = get_fields(data_fields) data_fields = {key: data_fields for key in self.key_name} else: raise TypeError('`data_fields` must be a dict, or a list, or a tuple.') # now data_fields is a dict. Keys are the same as self.key_name('train', 'test', 'dev', etc.). Each value is # a list(tuple) of lists(tuples), which means (data_key(str), data_field(DataField)) pairs. # For example, # data_fields == {'train': [['sent', Sentence()], ['label', Label()]], # 'test': [['sent', Sentence()], ['label', Label()]]}. # Note, different dataset may have different fields. special_tokens = set(self.ext_vocab) origin_data = {} for key in self.key_name: origin_data[key] = {data_key: [] for data_key, _ in data_fields[key]} with open("%s/%s.txt" % (file_path, key), encoding='utf-8') as f_file: while True: try: for data_key, field in data_fields[key]: element = field.convert_to_tokens(field.get_next(f_file), self.tokenize) for token in field.iter_tokens(element): if token in special_tokens: raise RuntimeError( 'The dataset contains special token "%s". This is not allowed.' % token) origin_data[key][data_key].append(element) except StopIteration: break def chain_allvocab(dic, fields): vocabs = [] for data_key, field in fields: for element in dic[data_key]: vocabs.extend(field.iter_tokens(element)) return vocabs raw_vocab_list = chain_allvocab(origin_data['train'], data_fields['train']) # Important: Sort the words preventing the index changes between # different runs vocab = sorted(Counter(raw_vocab_list).most_common(), \ key=lambda pair: (-pair[1], pair[0])) left_vocab = [x[0] for x in vocab if x[1] >= min_vocab_times] vocab_list = self.ext_vocab + list(left_vocab) valid_vocab_len = len(vocab_list) valid_vocab_set = set(vocab_list) for key in self.key_name: if key == 'train': continue raw_vocab_list.extend(chain_allvocab(origin_data[key], data_fields[key])) vocab = sorted(Counter(raw_vocab_list).most_common(), \ key=lambda pair: (-pair[1], pair[0])) left_vocab = [x[0] for x in vocab if x[1] >= invalid_vocab_times and x[0] not in valid_vocab_set] vocab_list.extend(left_vocab) print("valid vocab list length = %d" % valid_vocab_len) print("vocab list length = %d" % len(vocab_list)) word2id = {w: i for i, w in enumerate(vocab_list)} data = {} data_size = {} for key in self.key_name: data[key] = {} for data_key, field in data_fields[key]: origin_data[key][data_key] = [field.convert_to_ids(element, word2id, self) for element in origin_data[key][data_key]] data[key][data_key] = [ field.cut(element, max_sent_length=max_sent_length, max_turn_length=max_turn_length) for element in origin_data[key][data_key]] if key not in data_size: data_size[key] = len(data[key][data_key]) elif data_size[key] != len(data[key][data_key]): raise RuntimeError( "The data of input %s.txt contains different numbers of fields" % key) vocab = chain_allvocab(origin_data[key], data_fields[key]) vocab_num = len(vocab) oov_num = sum([word not in word2id for word in vocab]) invalid_num = sum([word not in valid_vocab_set for word in vocab]) - oov_num sent_length = [] for data_key, field in data_fields[key]: sent_length.extend( [len(sent) for element in origin_data[key][data_key] for sent in field.iter_sentence(element)]) cut_word_num = np.sum(np.maximum(np.array(sent_length) - max_sent_length, 0)) session_keys = [data_key for data_key, field in data_fields[key] if field.__class__ == Session] if session_keys: turn_length = list( map(len, chain.from_iterable((origin_data[key][sess_key] for sess_key in session_keys)))) max_turn_length_before_cut = max(turn_length) sent_num = sum(turn_length) cut_sentence_rate = np.sum(np.maximum(np.array(turn_length) - max_turn_length, 0)) / sent_num else: max_turn_length_before_cut = 1 cut_sentence_rate = 0 print(("%s set. invalid rate: %f, unknown rate: %f, max sentence length before cut: %d, " + \ "cut word rate: %f\n\tmax turn length before cut: %d, cut sentence rate: %f") % \ (key, invalid_num / vocab_num, oov_num / vocab_num, max(sent_length), \ cut_word_num / vocab_num, max_turn_length_before_cut, cut_sentence_rate)) # calculate hash value hash_value = DataloaderHash(ignore_tokens=(self.go_id, self.eos_id, self.pad_id), unk_id=self.unk_id).hash_datasets(data, data_fields, vocab_list[len( self.ext_vocab):valid_vocab_len]) self.__hash_value = hash_value return vocab_list, valid_vocab_len, data, data_size def get_batch(self, key, indexes): '''{LanguageProcessingBase.GET_BATCH_DOC_WITHOUT_RETURNS} Returns: (dict): A dict at least contains: * **post_length** (:class:`numpy.ndarray`): A 1-d array, the length of post in each batch. Size: ``[batch_size]`` * **post** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in posts. Only provide valid words. ``unk_id`` will be used if a word is not valid. Size: ``[batch_size, max(sent_length)]`` * **post_allvocabs** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in posts. Provide both valid and invalid vocabs. Size: ``[batch_size, max(sent_length)]`` * **resp_length** (:class:`numpy.ndarray`): A 1-d array, the length of response in each batch. Size: ``[batch_size]`` * **resp** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in responses. Only provide valid vocabs. ``unk_id`` will be used if a word is not valid. Size: ``[batch_size, max(sent_length)]`` * **resp_allvocabs** (:class:`numpy.ndarray`): A 2-d padded array containing words of id form in responses. Provide both valid and invalid vocabs. Size: ``[batch_size, max(sent_length)]`` Examples: >>> # all_vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "how", "are", "you", >>> # "hello", "i", "am", "fine"] >>> # vocab_size = 9 >>> # vocab_list = ["<pad>", "<unk>", "<go>", "<eos>", "how", "are", "you", "hello", "i"] >>> dataloader.get_batch('train', [0, 1]) { "post_allvocabs": numpy.array([ [2, 5, 6, 10, 3], # first post: <go> are you fine <eos> [2, 7, 3, 0, 0], # second post: <go> hello <eos> <pad> <pad> ]), "post": numpy.array([ [2, 5, 6, 1, 3], # first post: <go> are you <unk> <eos> [2, 7, 3, 0, 0], # second post: <go> hello <eos> <pad> <pad> ]), "resp_allvocabs": numpy.array([ [2, 8, 9, 10, 3], # first response: <go> i am fine <eos> [2, 7, 3, 0, 0], # second response: <go> hello <eos> <pad> <pad> ]), "resp": numpy.array([ [2, 8, 1, 1, 3], # first response: <go> i <unk> <unk> <eos> [2, 7, 3, 0, 0], # second response: <go> hello <eos> <pad> <pad> ]), "post_length": numpy.array([5, 3]), # length of posts "resp_length": numpy.array([5, 3]), # length of responses } ''' if key not in self.key_name: raise ValueError("No set named %s." % key) res = {} batch_size = len(indexes) res["post_length"] = np.array(list(map(lambda i: len(self.data[key]['post'][i]), indexes)), dtype=int) res["resp_length"] = np.array(list(map(lambda i: len(self.data[key]['resp'][i]), indexes)), dtype=int) res_post = res["post"] = np.zeros((batch_size, np.max(res["post_length"])), dtype=int) res_resp = res["resp"] = np.zeros((batch_size, np.max(res["resp_length"])), dtype=int) for i, j in enumerate(indexes): post = self.data[key]['post'][j] resp = self.data[key]['resp'][j] res_post[i, :len(post)] = post res_resp[i, :len(resp)] = resp res["post_allvocabs"] = res_post.copy() res["resp_allvocabs"] = res_resp.copy() res_post[res_post >= self.valid_vocab_len] = self.unk_id res_resp[res_resp >= self.valid_vocab_len] = self.unk_id if key=='train': res['score']=np.array([self.data[key]['score'][i] for i in indexes]) return res def main(): max_sent_length = 50 loader = TranslationWithScore('./data/iwslt14_raml', 10, max_sent_length, 0, 'nltk', False) loader.restart("train",batch_size=2,shuffle=True) q=loader.get_next_batch("train") print(len(q['score'])) print(q) if __name__ == '__main__': main()
2.4375
2
tests/test_data_functions.py
arthurazs/dotapatch
12
12796950
<reponame>arthurazs/dotapatch '''Tests for HeropediaData functions''' from unittest import TestCase, main as unit_main from dotapatch.data import HeropediaData import os.path as path class TestDataFiles(TestCase): '''Test if files/folders exists''' @classmethod def setUpClass(cls): '''Sets up directory to check''' cls.DATA_DIR = HeropediaData.DATA_DIR def test_data_dir_exist(self): '''file: assert 'data' folder exists''' self.assertTrue(path.exists(self.DATA_DIR)) def test_item_data_exist(self): '''file: assert 'itemdata' file exists''' item_data = HeropediaData.ITEM_DATA self.assertTrue(path.isfile(path.join(self.DATA_DIR, item_data))) def test_hero_data_exist(self): '''file: assert 'herodata' file exists''' hero_data = HeropediaData.HERO_DATA self.assertTrue(path.isfile(path.join(self.DATA_DIR, hero_data))) class TestStringManipulation(TestCase): '''Tests string manipulation''' def test_sort_hero_name_change(self): '''str: sort_hero("wisp") returns "io"''' dictionary = ('wisp', None) self.assertEqual('io', HeropediaData.sort_hero(dictionary)) def test_sort_item_name_change(self): '''str: sort_item("sphere") returns "linken s sphere"''' dictionary = ('sphere', None) self.assertEqual( "linken's_sphere", HeropediaData.sort_item(dictionary)) def test_sort_hero_name_not_change(self): '''str: sort("io") returns "io"''' dictionary = ('io', None) self.assertEqual('io', HeropediaData.sort_hero(dictionary)) def test_sort_item_name_not_change(self): '''str: sort("linken s sphere") returns "linken s sphere"''' dictionary = ('linken s sphere', None) self.assertEqual( 'linken s sphere', HeropediaData.sort_item(dictionary)) if __name__ == '__main__': unit_main()
2.796875
3