max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
wizard/multiple_test_request_wizard.py
IDRISSOUM/hospital_management
0
12797751
# -*- coding: utf-8 -*- # Part of BrowseInfo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models, _ from datetime import date,datetime class wizard_multiple_test_request(models.TransientModel): _name = 'wizard.multiple.test.request' request_date = fields.Datetime('Request Date', required = True) wizard_multiple_test_patient_id = fields.Many2one('medical.patient','Patient', required = True) urgent = fields.Boolean('Urgent',) wizard_multiple_test_physician_id = fields.Many2one('medical.physician','Doctor', required = True) wizard_multiple_test_owner_partner_id = fields.Many2one('res.partner','Owner') tests_ids = fields.Many2many('medical.test_type', 'lab_test_report_test_rel', 'test_id', 'report_id', 'Tests') @api.multi def create_lab_test(self): wizard_obj = self patient_id = wizard_obj.wizard_multiple_test_patient_id phy_id = wizard_obj.wizard_multiple_test_physician_id new_created_id_list = [] date = wizard_obj.request_date for test_id in wizard_obj.tests_ids: lab_test_req_obj = self.env['medical.test_type'] test_browse_record = lab_test_req_obj.browse(test_id.id) test_name = test_browse_record.name medical_test_request_obj = self.env['medical.patient.lab.test'] new_created_id = medical_test_request_obj.create({'date': date, 'doctor_id': phy_id.id, 'patient_id':patient_id.id, 'state': 'tested', 'name':test_id.id, 'request' :self.env['ir.sequence'].next_by_code('test_seq') }) new_created_id_list.append(new_created_id.id) if new_created_id_list: imd = self.env['ir.model.data'] action = imd.xmlid_to_object('hospital_management.action_medical_patient_lab_test') list_view_id = imd.xmlid_to_res_id('hospital_management.medical_patient_lab_test_tree_view') result = { 'name': action.name, 'help': action.help, 'type': action.type, 'views': [ [list_view_id,'tree' ]], 'target': action.target, 'context': action.context, 'res_model': action.res_model, } if len(new_created_id_list) : result['domain'] = "[('id','in',%s)]" % new_created_id_list return result # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
2.0625
2
backend/django/KlasHelper/model.py
Ryulth/KlasHelperRemaster
7
12797752
# This is an auto-generated Django model module. # You'll have to do the following manually to clean this up: # * Rearrange models' order # * Make sure each model has one field with primary_key=True # * Remove `managed = False` lines if you wish to allow Django to create, modify, and delete the table # Feel free to rename the models, but don't rename db_table values or field names. # # Also note: You'll have to insert the output of 'django-admin sqlcustom [app_label]' # into your database. from __future__ import unicode_literals from django.db import models class Comment(models.Model): comment_id = models.IntegerField() class_code = models.CharField(max_length=20) post_id = models.IntegerField(blank=True, null=True) create_date = models.DateTimeField(blank=True, null=True) author_id = models.CharField(max_length=20) content = models.TextField(blank=True, null=True) flag = models.IntegerField(blank=True, null=True) class Meta: managed = False db_table = 'comment' class Course20182(models.Model): class_code = models.CharField(max_length=20) class_name = models.CharField(max_length=100) class_year = models.CharField(max_length=10, blank=True, null=True) quota = models.CharField(max_length=10, blank=True, null=True) instructor = models.CharField(max_length=100, blank=True, null=True) credit = models.CharField(max_length=10, blank=True, null=True) class_hour_room = models.CharField(max_length=500, blank=True, null=True) class_type = models.CharField(max_length=20, blank=True, null=True) class_lan = models.CharField(max_length=50, blank=True, null=True) notice = models.CharField(max_length=100, blank=True, null=True) campus = models.CharField(max_length=10, blank=True, null=True) class Meta: managed = False db_table = 'course_2018_20' class DjangoMigrations(models.Model): app = models.CharField(max_length=255) name = models.CharField(max_length=255) applied = models.DateTimeField() class Meta: managed = False db_table = 'django_migrations' class Post(models.Model): post_id = models.IntegerField() class_code = models.CharField(max_length=20) author_id = models.CharField(max_length=20) title = models.CharField(max_length=255) content = models.TextField(blank=True, null=True) create_date = models.DateTimeField(blank=True, null=True) hit = models.IntegerField() flag = models.IntegerField(blank=True, null=True) class Meta: managed = False db_table = 'post' class User(models.Model): klas_id = models.CharField(primary_key=True, max_length=20) naver_id = models.CharField(max_length=20, blank=True, null=True) lectures = models.CharField(max_length=512, blank=True, null=True) name = models.CharField(max_length=20, blank=True, null=True) class Meta: managed = False db_table = 'user'
1.992188
2
ms/get_citations.py
yoavram-lab/EffectiveNPI
0
12797753
<reponame>yoavram-lab/EffectiveNPI import click @click.command() @click.argument('aux_filename', default='ms.aux', type=click.Path(exists=True, file_okay=True, dir_okay=False, readable=True)) @click.argument('output_filename', default='citation_keys', type=click.Path(file_okay=True, dir_okay=False, writable=True)) @click.option('-v/-V', '--verbose/--no-verbose', default=False) def main(aux_filename, output_filename, verbose): with open(aux_filename) as f: lines = f.readlines() lines = (line.strip() for line in lines if line.startswith(r'\citation')) lines = (line[len('\citation{'):-1] for line in lines) citations = set() for line in lines: for c in line.split(','): citations.add(c) if verbose: print("Found {} citations in {}".format(len(citations), aux_filename)) with open(output_filename, 'wt') as f: f.write('\n'.join(sorted(citations))) if __name__ == '__main__': main()
3.0625
3
utils/estimation_for_grid_Feynman_database.py
smeznar/ProGED
5
12797754
<reponame>smeznar/ProGED<filename>utils/estimation_for_grid_Feynman_database.py # -*- coding: utf-8 -*- """ Created on Thu Oct 7 11:22:45 2021 @author: jureb """ import numpy as np import pandas as pd import sys import os import pickle import multiprocessing as mp sys.path.append(os.getcwd()+"/source") import ProGED as pg import warnings #warnings.filterwarnings("ignore") np.random.seed(0) if __name__ == "__main__": datadir = "" eqN = int(sys.argv[1]) modelsfile = sys.argv[2] processN = int(sys.argv[3]) eqfile = "source/FeynmanEquations.csv" reference = pd.read_csv(eqfile) print("eqN: " + str(eqN) + ", file: " + reference["Filename"][eqN]) data = np.loadtxt(datadir + reference["Filename"][eqN]) sampleind = np.random.randint(0,10**6,1000) print("--Loading models") with open(modelsfile, "rb") as file: models = pickle.load(file) pool = mp.Pool(processN) print("--Fitting models") models = pg.fit_models(models, data[sampleind], target_variable_index=-1, pool_map = pool.map, verbosity = 1) print("--Exporting results") with open("results/" + modelsfile.split(".")[0] + "_fit.models", "wb") as file: pickle.dump(models, file)
1.992188
2
tests/util/test_transform.py
xiangze/edward
5,200
12797755
from __future__ import absolute_import from __future__ import division from __future__ import print_function import edward as ed import numpy as np import tensorflow as tf from collections import namedtuple from edward.models import ( Beta, Dirichlet, DirichletProcess, Gamma, MultivariateNormalDiag, Normal, Poisson, TransformedDistribution) from tensorflow.contrib.distributions import bijectors class test_transform_class(tf.test.TestCase): def assertSamplePosNeg(self, sample): num_pos = np.sum((sample > 0.0), axis=0, keepdims=True) num_neg = np.sum((sample < 0.0), axis=0, keepdims=True) self.assertTrue((num_pos > 0).all()) self.assertTrue((num_neg > 0).all()) def test_args(self): with self.test_session(): x = Normal(-100.0, 1.0) y = ed.transform(x, bijectors.Softplus()) sample = y.sample(10).eval() self.assertTrue((sample >= 0.0).all()) def test_kwargs(self): with self.test_session(): x = Normal(-100.0, 1.0) y = ed.transform(x, bijector=bijectors.Softplus()) sample = y.sample(10).eval() self.assertTrue((sample >= 0.0).all()) def test_01(self): with self.test_session(): x = Beta(1.0, 1.0) y = ed.transform(x) self.assertIsInstance(y, TransformedDistribution) sample = y.sample(10, seed=1).eval() self.assertSamplePosNeg(sample) def test_nonnegative(self): with self.test_session(): x = Gamma(1.0, 1.0) y = ed.transform(x) self.assertIsInstance(y, TransformedDistribution) sample = y.sample(10, seed=1).eval() self.assertSamplePosNeg(sample) def test_simplex(self): with self.test_session(): x = Dirichlet([1.1, 1.2, 1.3, 1.4]) y = ed.transform(x) self.assertIsInstance(y, TransformedDistribution) sample = y.sample(10, seed=1).eval() self.assertSamplePosNeg(sample) def test_real(self): with self.test_session(): x = Normal(0.0, 1.0) y = ed.transform(x) self.assertIsInstance(y, Normal) sample = y.sample(10, seed=1).eval() self.assertSamplePosNeg(sample) def test_multivariate_real(self): with self.test_session(): x = MultivariateNormalDiag(tf.zeros(2), tf.ones(2)) y = ed.transform(x) sample = y.sample(10, seed=1).eval() self.assertSamplePosNeg(sample) def test_no_support(self): with self.test_session(): x = DirichletProcess(1.0, Normal(0.0, 1.0)) with self.assertRaises(AttributeError): y = ed.transform(x) def test_unhandled_support(self): with self.test_session(): FakeRV = namedtuple('FakeRV', ['support']) x = FakeRV(support='rational') with self.assertRaises(ValueError): y = ed.transform(x) if __name__ == '__main__': tf.test.main()
2.140625
2
beyond_the_basics/01.organizing_larger_programs/reader/__main__.py
tonper19/PythonDemos
0
12797756
import sys import reader r = reader.Reader(sys.argv[1]) try: print(r.read()) finally: r.close()
1.96875
2
commands/server/start.py
dccs-tech/mcmi-cluster
1
12797757
<reponame>dccs-tech/mcmi-cluster from systems.commands.index import Command class Start(Command('server.start')): def exec(self): def start_server(server): self.data("Starting server", str(server)) server.start() self.run_list(self.server_instances, start_server)
2.140625
2
tr/trans.py
hegistva/sync-reader
0
12797758
<gh_stars>0 from tr.books import book_manager from tr.libs.trans import book_mapper from tr.libs.trans import utils from tr.libs.speech import aligner book_id = '20000LeaguesUnderTheSea' book_id = 'AroundTheWorldIn80Days' # book_manager.downloadBook(book_id) # book_mapper.mapChapter(utils.Lang.FRA, utils.Lang.ENG, book_id, 1, doMapping=False, debug=True) # book_mapper.mapBook(utils.Lang.FRA, utils.Lang.ENG, book_id, chapters=1, chapterToPrint=1) # map sentence for all chapters, save results in beads files # book_mapper.beadMapBook(utils.Lang.FRA, utils.Lang.ENG, book_id) # speech # aligner.alignChapter(utils.Lang.ENG, book_id, 1) # aligner.alignChapter(utils.Lang.FRA, book_id, 1) # start at min, stop at max-1 # for chapter in range(7, 38): # aligner.alignChapter(utils.Lang.ENG, book_id, chapter) # for chapter in range(13, 38): # aligner.alignChapter(utils.Lang.FRA, book_id, chapter) for i in range(1, 38): r = aligner.findBoundaries('fra', book_id, i) print("Chapitre %s: %s" % (i, r)) r = aligner.findBoundaries('eng', book_id, i) print("Chapter %s: %s" % (i, r))
2.3125
2
model/vae.py
kefirski/mnist_cdvae
1
12797759
import torch as t import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from model.encoder import Encoder from model.decoder import Decoder import math class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() self.encoder = Encoder() self.decoder = Decoder() def forward(self, input, z=None): """ :param input: an Float tensor with shape of [batch_size, 1, 28, 28] :param z: an Float tensor with shape of [batch_size, latent_size] if sampling is performed :return: an Float tensor with shape of [batch_size, 1, 28, 28], [batch_size, 16], [batch_size, 16] """ mu, logvar = self.encoder(input) [batch_size, latent_size] = mu.size() std = t.exp(0.5 * logvar) z = Variable(t.randn([batch_size, 15, latent_size])) if input.is_cuda: z = z.cuda() mu_repeated = mu.unsqueeze(1).repeat(1, 15, 1) std_repeated = std.unsqueeze(1).repeat(1, 15, 1) z = z * std_repeated + mu_repeated z = z.view(batch_size * 15, -1) return self.decoder(z), mu, logvar, z def encode(self, input): return self.encoder(input) def decode(self, input): return self.decoder(input) @staticmethod def monte_carlo_divergence(z, mu, std, n): [batch_size, latent_size] = mu.size() log_p_z_x = VAE.normal_prob(z, mu, std) log_p_z = VAE.normal_prob(z, Variable(t.zeros(batch_size, latent_size)), Variable(t.ones(batch_size, latent_size))) result = log_p_z_x - log_p_z return result.view(-1, n).sum(1) / n @staticmethod def normal_prob(z, mu, std): return t.exp(-0.5 * ((z - mu) * t.pow(std + 1e-8, -1) * (z - mu)).sum(1)) / \ t.sqrt(t.abs(2 * math.pi * std.prod(1))) @staticmethod def divergence_with_prior(mu, logvar): return (-0.5 * t.sum(logvar - t.pow(mu, 2) - t.exp(logvar) + 1, 1)).mean() @staticmethod def divergence_with_posterior(p_first, p_second): """ :params p_first, p_second: tuples with parameters of distribution over latent variables :return: divirgence estimation """ return 0.5 * t.sum(2 * p_second[1] - 2 * p_first[1] + t.exp(p_first[1]) / (t.exp(p_second[1]) + 1e-8) + t.pow(p_second[0] - p_second[0], 2) / (t.exp(p_second[1]) + 1e-8) - 1).mean()
2.5
2
bdn/verification/tasks/listen_ethereum_ipfs_hash_storage.py
OpenSourceUniversity/bdn
1
12797760
import logging from celery import shared_task from bdn import contract from bdn import redis from .perform_ipfs_meta_verifications_array import ( perform_ipfs_meta_verifications_array) logger = logging.getLogger(__name__) @shared_task def listen_ethereum_ipfs_hash_storage(): redis_db = redis.get_redis() verification_storage = contract.contract('VerificationStorage') event = verification_storage.events.Verification last_block = redis_db.get('_verification_filter_block') or 0 if last_block != 0: last_block = int(last_block) hash_filter = event.createFilter(fromBlock=last_block) for entry in hash_filter.get_all_entries(): block_number = int(entry['blockNumber']) entry_args = dict(entry['args']) entry_data = { 'transactionHash': entry['transactionHash'].hex(), 'blockHash': entry['blockHash'].hex(), 'blockNumber': entry['blockNumber'], 'args': { 'ipfsHash': entry_args.get('ipfsHash', b'').decode(), }, } perform_ipfs_meta_verifications_array.delay(entry_data) if block_number > last_block: redis_db.set('_verification_filter_block', block_number)
2.1875
2
tests/test_exception.py
petertriho/prestans
12
12797761
import unittest from prestans.http import STATUS from prestans.http import VERB from prestans import exception class ExceptionBase(unittest.TestCase): def test_http_status(self): base_value = exception.Base(http_status=STATUS.OK, message="message") self.assertEqual(base_value.http_status, STATUS.OK) base_value.http_status = STATUS.NO_CONTENT self.assertEqual(base_value.http_status, STATUS.NO_CONTENT) def test_stack_trace(self): base = exception.Base(http_status=STATUS.OK, message="message") self.assertEqual(base.stack_trace, []) def test_push_trace(self): pass def test_message(self): base_value = exception.Base(http_status=STATUS.OK, message="message") self.assertEqual(base_value.message, "message") def test_str(self): base = exception.Base(http_status=STATUS.OK, message="message") self.assertEqual(base.http_status, STATUS.OK) self.assertEqual(str(base.message), "message") class ExceptionUnsupportedVocabularyError(unittest.TestCase): def test_init(self): unsupported_vocabulary_error = exception.UnsupportedVocabularyError( accept_header="accept", supported_types=["a", "b", "c"] ) self.assertEqual(unsupported_vocabulary_error.http_status, STATUS.NOT_IMPLEMENTED) self.assertEqual(unsupported_vocabulary_error.message, "Unsupported vocabulary in the Accept header") stack_trace = [{ "accept_header": "accept", "supported_types": ["a", "b", "c"] }] self.assertEqual(unsupported_vocabulary_error.stack_trace, stack_trace) class ExceptionUnsupportedContentTypeError(unittest.TestCase): def test_init(self): unsupported_content_type = exception.UnsupportedContentTypeError("text/plain", "application/json") self.assertEqual(unsupported_content_type.http_status, STATUS.NOT_IMPLEMENTED) self.assertEqual(unsupported_content_type.message, "Unsupported Content-Type in Request") stack_trace = [{ "requested_type": "text/plain", "supported_types": "application/json" }] self.assertEqual(unsupported_content_type.stack_trace, stack_trace) class ExceptionValidationError(unittest.TestCase): def test_init(self): validation_error = exception.ValidationError( message="message", attribute_name="attribute", value="value", blueprint={"key": "value"} ) self.assertEqual(validation_error.http_status, STATUS.BAD_REQUEST) self.assertEqual(validation_error.message, "message") self.assertEqual(validation_error.stack_trace, [ { "attribute_name": "attribute", "value": "value", "message": "message", "blueprint": {"key": "value"} } ]) self.assertEqual(str(validation_error), "attribute message") class ExceptionHandlerException(unittest.TestCase): def test_init(self): from prestans.rest import Request import logging logging.basicConfig() self.logger = logging.getLogger("prestans") from prestans.deserializer import JSON charset = "utf-8" serializers = [JSON()] default_serializer = JSON() request_environ = { "REQUEST_METHOD": VERB.GET, "PATH_INFO": "/url", "HTTP_USER_AGENT": "chrome", "wsgi.url_scheme": "https", "SERVER_NAME": "localhost", "SERVER_PORT": "8080" } request = Request( environ=request_environ, charset=charset, logger=self.logger, deserializers=serializers, default_deserializer=default_serializer ) handler_exception = exception.HandlerException(STATUS.FORBIDDEN, "message") handler_exception.request = request self.assertEqual(handler_exception.http_status, STATUS.FORBIDDEN) self.assertEqual(handler_exception.message, "message") self.assertEqual(handler_exception.request, request) self.assertEqual(handler_exception.log_message, 'GET https://localhost:8080/url chrome "message"') self.assertEqual(str(handler_exception), 'GET https://localhost:8080/url chrome "message"') handler_exception_without_request = exception.HandlerException(STATUS.NOT_FOUND, "message") self.assertEqual(handler_exception_without_request.http_status, STATUS.NOT_FOUND) self.assertEqual(handler_exception_without_request.message, "message") self.assertEqual(handler_exception_without_request.log_message, "message") self.assertEqual(str(handler_exception_without_request), "message") class ExceptionRequestException(unittest.TestCase): def test_init(self): request_exception = exception.RequestException(STATUS.BAD_REQUEST, "bad request") self.assertEqual(request_exception.http_status, STATUS.BAD_REQUEST) self.assertEqual(request_exception.message, "bad request") class ExceptionUnimplementedVerbError(unittest.TestCase): def test_init(self): unimplemented_verb = exception.UnimplementedVerbError("GET") self.assertEqual(unimplemented_verb.http_status, STATUS.NOT_IMPLEMENTED) self.assertEqual(unimplemented_verb.message, "API does not implement the HTTP Verb") self.assertEqual(unimplemented_verb.stack_trace, [{"verb": "GET"}]) class ExceptionNoEndpointError(unittest.TestCase): def test_init(self): no_endpoint = exception.NoEndpointError() self.assertEqual(no_endpoint.http_status, STATUS.NOT_FOUND) self.assertEqual(no_endpoint.message, "API does not provide this end-point") class ExceptionAuthenticationError(unittest.TestCase): def test_init(self): authentication = exception.AuthenticationError() self.assertEqual(authentication.http_status, STATUS.UNAUTHORIZED) self.assertEqual(authentication.message, "Authentication Error; service is only available to authenticated") authentication_custom = exception.AuthenticationError("Custom message") self.assertEqual(authentication_custom.http_status, STATUS.UNAUTHORIZED) self.assertEqual(authentication_custom.message, "Custom message") class ExceptionAuthorizationError(unittest.TestCase): def test_init(self): authorization = exception.AuthorizationError("Role") self.assertEqual(authorization.http_status, STATUS.FORBIDDEN) self.assertEqual(authorization.message, "Role is not allowed to access this resource") class ExceptionSerializationFailedError(unittest.TestCase): def test_init(self): serialization_failed_error = exception.SerializationFailedError("format") self.assertEqual(serialization_failed_error.http_status, STATUS.NOT_FOUND) self.assertEqual(serialization_failed_error.message, "Serialization failed: format") self.assertEqual(str(serialization_failed_error), "Serialization failed: format") class ExceptionDeSerializationFailedError(unittest.TestCase): def test_init(self): deserialization_failed_error = exception.DeSerializationFailedError("format") self.assertEqual(deserialization_failed_error.http_status, STATUS.NOT_FOUND) self.assertEqual(deserialization_failed_error.message, "DeSerialization failed: format") self.assertEqual(str(deserialization_failed_error), "DeSerialization failed: format") class ExceptionAttributeFilterDiffers(unittest.TestCase): def test_init(self): attribute_filter_differs = exception.AttributeFilterDiffers(["cat", "dog"]) self.assertEqual(attribute_filter_differs.http_status, STATUS.BAD_REQUEST) self.assertEqual( attribute_filter_differs.message, "attribute filter contains attributes (cat, dog) that are not part of template" ) class ExceptionInconsistentPersistentDataError(unittest.TestCase): def test_init(self): error = exception.InconsistentPersistentDataError("name", "error message") self.assertEqual(error.http_status, STATUS.INTERNAL_SERVER_ERROR) self.assertEqual(error.message, "Data Adapter failed to validate stored data on the server") self.assertEqual( str(error), "DataAdapter failed to adapt name, Data Adapter failed to validate stored data on the server" ) self.assertEqual(error.stack_trace, [{'exception_message': "error message", 'attribute_name': "name"}]) class ExceptionDataValidationException(unittest.TestCase): def test_init(self): exp = exception.DataValidationException("message") self.assertEqual(exp.http_status, STATUS.BAD_REQUEST) self.assertEqual(exp.message, "message") class ExceptionRequiredAttributeError(unittest.TestCase): def test_init(self): exp = exception.RequiredAttributeError() self.assertEqual(exp.http_status, STATUS.BAD_REQUEST) self.assertEqual(exp.message, "attribute is required and does not provide a default value") class ExceptionParseFailedError(unittest.TestCase): def test_init(self): default_msg = exception.ParseFailedError() self.assertEqual(default_msg.http_status, STATUS.BAD_REQUEST) self.assertEqual(default_msg.message, "Parser Failed") custom_msg = exception.ParseFailedError("custom") self.assertEqual(custom_msg.http_status, STATUS.BAD_REQUEST) self.assertEqual(custom_msg.message, "custom") class ExceptionLessThanMinimumError(unittest.TestCase): def test_init(self): exp = exception.LessThanMinimumError(3, 5) self.assertEqual(exp.http_status, STATUS.BAD_REQUEST) self.assertEqual(exp.message, "3 is less than the allowed minimum of 5") class ExceptionMoreThanMaximumError(unittest.TestCase): def test_init(self): exp = exception.MoreThanMaximumError(5, 3) self.assertEqual(exp.http_status, STATUS.BAD_REQUEST) self.assertEqual(exp.message, "5 is more than the allowed maximum of 3") class ExceptionInvalidChoiceError(unittest.TestCase): def test_init(self): exp = exception.InvalidChoiceError(3, [1, 2, 5]) self.assertEqual(exp.http_status, STATUS.BAD_REQUEST) self.assertEqual(exp.message, "value 3 is not one of these choices 1, 2, 5") class ExceptionMinimumLengthError(unittest.TestCase): def test_init(self): exp = exception.MinimumLengthError("dog", 5) self.assertEqual(exp.http_status, STATUS.BAD_REQUEST) self.assertEqual(exp.message, "length of value: dog has to be greater than 5") class ExceptionMaximumLengthError(unittest.TestCase): def test_init(self): exp = exception.MaximumLengthError("dog", 2) self.assertEqual(exp.http_status, STATUS.BAD_REQUEST) self.assertEqual(exp.message, "length of value: dog has to be less than 2") class ExceptionInvalidTypeError(unittest.TestCase): def test_init(self): exp = exception.InvalidTypeError("str", "int") self.assertEqual(exp.http_status, STATUS.BAD_REQUEST) self.assertEqual(exp.message, "data type str given, expected int") class ExceptionMissingParameterError(unittest.TestCase): def test_init(self): missing_parameter = exception.MissingParameterError() self.assertEqual(missing_parameter.http_status, STATUS.BAD_REQUEST) self.assertEqual(missing_parameter.message, "missing parameter") class ExceptionInvalidFormatError(unittest.TestCase): def test_init(self): invalid_format = exception.InvalidFormatError("cat") self.assertEqual(invalid_format.http_status, STATUS.BAD_REQUEST) self.assertEqual(invalid_format.message, "invalid value cat provided") class ExceptionInvalidMetaValueError(unittest.TestCase): def test_init(self): invalid_meta_value = exception.InvalidMetaValueError() self.assertEqual(invalid_meta_value.http_status, STATUS.BAD_REQUEST) self.assertEqual(invalid_meta_value.message, "invalid meta value") class ExceptionUnregisteredAdapterError(unittest.TestCase): def test_init(self): unregistered_adapter = exception.UnregisteredAdapterError("namespace.Model") self.assertEqual(unregistered_adapter.http_status, STATUS.BAD_REQUEST) self.assertEqual(unregistered_adapter.message, "no registered adapters for data model namespace.Model") class ExceptionResponseException(unittest.TestCase): def test_init(self): from prestans.types import Model class MyModel(Model): pass my_model = MyModel() response = exception.ResponseException(STATUS.OK, "message", my_model) self.assertEqual(response.http_status, STATUS.OK) self.assertEqual(response.message, "message") self.assertEqual(response.response_model, my_model) self.assertRaises(TypeError, exception.ResponseException, STATUS.INTERNAL_SERVER_ERROR, "message", "string") class ExceptionServiceUnavailable(unittest.TestCase): def test_init(self): service_unavailable = exception.ServiceUnavailable() self.assertEqual(service_unavailable.http_status, STATUS.SERVICE_UNAVAILABLE) self.assertEqual(service_unavailable.message, "Service Unavailable") class ExceptionBadRequest(unittest.TestCase): def test_init(self): bad_request = exception.BadRequest() self.assertEqual(bad_request.http_status, STATUS.BAD_REQUEST) self.assertEqual(bad_request.message, "Bad Request") class ExceptionConflict(unittest.TestCase): def test_init(self): conflict = exception.Conflict() self.assertEqual(conflict.http_status, STATUS.CONFLICT) self.assertEqual(conflict.message, "Conflict") class ExceptionNotFound(unittest.TestCase): def test_init(self): not_found = exception.NotFound() self.assertEqual(not_found.http_status, STATUS.NOT_FOUND) self.assertEqual(not_found.message, "Not Found") class ExceptionUnauthorized(unittest.TestCase): def test_init(self): unauthorized = exception.Unauthorized() self.assertEqual(unauthorized.http_status, STATUS.UNAUTHORIZED) self.assertEqual(unauthorized.message, "Unauthorized") class ExceptionMovedPermanently(unittest.TestCase): def test_init(self): moved_permanently = exception.MovedPermanently() self.assertEqual(moved_permanently.http_status, STATUS.MOVED_PERMANENTLY) self.assertEqual(moved_permanently.message, "Moved Permanently") class ExceptionPaymentRequired(unittest.TestCase): def test_init(self): payment_required = exception.PaymentRequired() self.assertEqual(payment_required.http_status, STATUS.PAYMENT_REQUIRED) self.assertEqual(payment_required.message, "Payment Required") class ExceptionForbidden(unittest.TestCase): def test_init(self): forbidden = exception.Forbidden() self.assertEqual(forbidden.http_status, STATUS.FORBIDDEN) self.assertEqual(forbidden.message, "Forbidden") class ExceptionInternalServerError(unittest.TestCase): def test_init(self): internal_server_error = exception.InternalServerError() self.assertEqual(internal_server_error.http_status, STATUS.INTERNAL_SERVER_ERROR) self.assertEqual(internal_server_error.message, "Internal Server Error")
2.875
3
scraper.py
PetterDK/ps5-stock
0
12797762
<gh_stars>0 import bs4 as bs import urllib.request import time import json import mail as m import requests as r import os database_ip = os.environ['database'] get_products = 'http://'+database_ip+'/get-all-products' update_product = 'http://'+database_ip+'/update-product' headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36'} def update(url, stock, time): params = {'url': url, 'stock': stock, 'time': time} r.get(url=update_product, params=params) def filter_html(url, find, identifier): req = urllib.request.Request(url, headers=headers) source = urllib.request.urlopen(req).read() soup = bs.BeautifulSoup(source, 'html.parser') return soup.find(find, class_=identifier) while True: in_stock = [] data = r.get(get_products).json() data = json.loads(data) for product in data: try: product_url = product['product_url'] name = product['product_name'] identifier = product['class'] store = product['store'] find = product['find'] filtered = filter_html(product_url, find, identifier) if store == "Elgiganten" or store == "Proshop" or store == "Happii" or store == "Merlin": if filtered is None: print("Item available", name, store) update(product_url, "På lager", time.strftime('%H:%M:%S', time.localtime())) in_stock.append({'store': store, 'name': name, 'url': product_url}) else: print("Item unavailable", name, store) update(product_url, "Ikke på lager", time.strftime('%H:%M:%S', time.localtime())) elif store == "Bilka" or store == "Coolshop" or store == "Power" or store == "Foetex" or store == "BR" or store == "Expert": if filtered is None: print('Item unavailable', name, store) update(product_url, "Ikke på lager", time.strftime('%H:%M:%S', time.localtime())) else: print('Item available', name, store) update(product_url, "På lager", time.strftime('%H:%M:%S', time.localtime())) in_stock.append({'store': store, 'name': name, 'url': product_url}) time.sleep(1) except Exception as e: print(e) if len(in_stock) > 0: print('Lets email!') m.send_email(in_stock)
2.78125
3
day-11/python_alexlyttle/octopus.py
alan-turing-institute/advent-of-code-2021
12
12797763
<gh_stars>10-100 import numpy as np def load_input(file_name): with open(file_name, 'r') as file: return file.read() def party_from_str(s): lines = s.splitlines() return np.array([[int(i) for i in line] for line in lines]) def update(party): """Update the party of octopuses. There is probably a faster way.""" party += 1 while np.any(party > 9): i, j = np.where(party > 9) n = i > 0 e = j < party.shape[1] - 1 s = i < party.shape[0] - 1 w = j > 0 ne = n & e se = s & e nw = n & w sw = s & w # north, northeast, east, southeast, south, southwest, west, northwest i_adj = [ i[n] - 1, i[ne] - 1, i[e], i[se] + 1, i[s] + 1, i[sw] + 1, i[w], i[nw] - 1, ] j_adj = [ j[n], j[ne] + 1, j[e] + 1, j[se] + 1, j[s], j[sw] - 1, j[w] - 1, j[nw] - 1, ] party[(i, j)] = 0 # This is a bit slow and could be improved is_adj = np.full(party.shape, False) for d in range(8): is_adj[(i_adj[d], j_adj[d])] = True party[(party > 0) & is_adj] += 1 is_adj[:, :] = False return party def count_flashes(party, num_steps=100): count = 0 for step in range(num_steps): party = update(party) count += np.count_nonzero(party == 0) return count def synchronise(party): step = 0 while np.any(party > 0): party = update(party) step += 1 return step if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='Count octopus flashes' ) parser.add_argument('input_file', metavar='INPUT_FILE', type=str, help='input file name') parser.add_argument('-s', '--sync', action='store_true') args = parser.parse_args() s = load_input(args.input_file) party = party_from_str(s) if args.sync: step = synchronise(party) print(f'Step = {step}') else: count = count_flashes(party) print(f'Count = {count}')
2.875
3
data/tools/addon_manager/__init__.py
blackberry/Wesnoth
12
12797764
# This let's python know about the addon_manager module.
1.101563
1
oslash/state.py
stjordanis/OSlash
668
12797765
<filename>oslash/state.py from typing import Callable, Tuple, Any, TypeVar, Generic from .util import Unit from .typing import Functor from .typing import Monad TState = TypeVar("TState") TSource = TypeVar("TSource") TResult = TypeVar("TResult") class State(Generic[TSource, TState]): """The state monad. Wraps stateful computations. A stateful computation is a function that takes a state and returns a result and new state: state -> (result, state') """ def __init__(self, fn: Callable[[TState], Tuple[TSource, TState]]) -> None: """Initialize a new state. Keyword arguments: fn -- State processor. """ self._fn = fn @classmethod def unit(cls, value: TSource) -> "State[TSource, TState]": r"""Create new State. The unit function creates a new State object wrapping a stateful computation. State $ \s -> (x, s) """ return cls(lambda state: (value, state)) def map(self, mapper: Callable[[TSource], TResult]) -> "State[TResult, TState]": def _(a: Any, state: Any) -> Tuple[Any, Any]: return mapper(a), state return State(lambda state: _(*self.run(state))) def bind(self, fn: Callable[[TSource], "State[TState, TResult]"]) -> "State[TResult, TState]": r"""m >>= k = State $ \s -> let (a, s') = runState m s in runState (k a) s' """ def _(result: Any, state: Any) -> Tuple[Any, Any]: return fn(result).run(state) return State(lambda state: _(*self.run(state))) @classmethod def get(cls) -> "State[TState, TState]": r"""get = state $ \s -> (s, s)""" return State(lambda state: (state, state)) @classmethod def put(cls, new_state: TState) -> "State[Tuple, TState]": r"""put newState = state $ \s -> ((), newState)""" return State(lambda state: (Unit, new_state)) def run(self, state: TState) -> Tuple[TSource, TState]: """Return wrapped state computation. This is the inverse of unit and returns the wrapped function. """ return self._fn(state) def __call__(self, state: Any) -> Tuple: return self.run(state) assert issubclass(State, Functor) assert issubclass(State, Monad)
2.75
3
flappy.py
Kimhwiwoong/Flappy_Bird_ver.2
0
12797766
<reponame>Kimhwiwoong/Flappy_Bird_ver.2 from itertools import cycle from operator import itemgetter import random import sys import math import pygame from pygame.locals import * import time WHITE = (255, 255, 255) BLACK = (0, 0, 0) RED = (255, 50, 50) YELLOW = (255, 255, 0) GREEN = (0, 255, 50) BLUE = (50, 50, 255) GREY = (200, 200, 200) ORANGE = (200, 100, 50) CYAN = (0, 255, 255) MAGENTA = (255, 0, 255) TRANS = (1, 1, 1) TOPFIVE=[('kim',0),('kim',0),('kim',0),('kim',0),('kim',0)] FPS = 30 SCREENWIDTH = 288 SCREENHEIGHT = 512 # amount by which base can maximum shift to left PIPEGAPSIZE = 130 # gap between upper and lower part of pipe BASEY=SCREENHEIGHT * 0.79 # image, sound and hitmask dicts IMAGES, SOUNDS, HITMASKS = {}, {}, {} # True if the user plays the fury mode FURYMODE = False EASYMODE = False # In fury mode, the pipe sapwn system is different than in # normal mode, we add pipes with a "timer" (a frame counter) FURYMODE_FRAMES_TO_SPAWN_PIPES = 35 # pipes particles amount (for each pipe) FURYMODE_PARTICLES = 8 # max particles for each pipe hit FURYMODE_PARTICLES_MAX = 48 # list of all possible players (tuple of 3 positions of flap) PLAYERS_LIST = ( # red bird ( 'assets/sprites/redbird-upflap.png', 'assets/sprites/redbird-midflap.png', 'assets/sprites/redbird-downflap.png', ), # blue bird ( # amount by which base can maximum shift to left 'assets/sprites/bluebird-upflap.png', 'assets/sprites/bluebird-midflap.png', 'assets/sprites/bluebird-downflap.png', ), # yellow bird ( 'assets/sprites/yellowbird-upflap.png', 'assets/sprites/yellowbird-midflap.png', 'assets/sprites/yellowbird-downflap.png', ), ) # list of backgrounds BACKGROUNDS_LIST = ( 'assets/sprites/background-day.png', 'assets/sprites/background-night.png', ) # list of pipes PIPES_LIST = ( 'assets/sprites/pipe-green.png', 'assets/sprites/pipe-red.png', ) try: xrange except NameError: xrange = range class Keyboard(object): keys = {pygame.K_a: 'A', pygame.K_b: 'B', pygame.K_c: 'C', pygame.K_d: 'D', pygame.K_e: 'E', pygame.K_f: 'F', pygame.K_g: 'G', pygame.K_h: 'H', pygame.K_i: 'I', pygame.K_j: 'J', pygame.K_k: 'K', pygame.K_l: 'L', pygame.K_m: 'M', pygame.K_n: 'N', pygame.K_o: 'O', pygame.K_p: 'P', pygame.K_q: 'Q', pygame.K_r: 'R', pygame.K_s: 'S', pygame.K_t: 'T', pygame.K_u: 'U', pygame.K_v: 'V', pygame.K_w: 'W', pygame.K_x: 'X', pygame.K_y: 'Y', pygame.K_z: 'Z'} def main(): global SCREEN, FPSCLOCK, SLIDER pygame.init() FPSCLOCK = pygame.time.Clock() SCREEN = pygame.display.set_mode((SCREENWIDTH, SCREENHEIGHT)) pygame.display.set_caption('Flappy Bird') # numbers sprites for score display IMAGES['numbers'] = ( pygame.image.load('assets/sprites/0.png').convert_alpha(), pygame.image.load('assets/sprites/1.png').convert_alpha(), pygame.image.load('assets/sprites/2.png').convert_alpha(), pygame.image.load('assets/sprites/3.png').convert_alpha(), pygame.image.load('assets/sprites/4.png').convert_alpha(), pygame.image.load('assets/sprites/5.png').convert_alpha(), pygame.image.load('assets/sprites/6.png').convert_alpha(), pygame.image.load('assets/sprites/7.png').convert_alpha(), pygame.image.load('assets/sprites/8.png').convert_alpha(), pygame.image.load('assets/sprites/9.png').convert_alpha() ) # game over sprite IMAGES['gameover'] = pygame.image.load('assets/sprites/gameover.png').convert_alpha() # message sprite for welcome screen IMAGES['message'] = pygame.image.load('assets/sprites/message.png').convert_alpha() # base (ground) sprite IMAGES['base'] = pygame.image.load('assets/sprites/base.png').convert_alpha() # the "fury mode" button for welcome screen (with the key) IMAGES['furymode'] = pygame.image.load('assets/sprites/furymode.png').convert_alpha() IMAGES['furymode-key'] = pygame.image.load('assets/sprites/furymode-key.png').convert_alpha() IMAGES['easymode'] = pygame.image.load('assets/sprites/easymode.png').convert_alpha() IMAGES['hardmode'] = pygame.image.load('assets/sprites/hardmode.png').convert_alpha() # speaker sprite IMAGES['speaker'] = (pygame.image.load('assets/sprites/speaker_full.png').convert_alpha(), pygame.image.load('assets/sprites/speaker_mute.png').convert_alpha()) # 추가된 부분 IMAGES['coin'] = pygame.image.load('assets/sprites/coin.png').convert_alpha() # sounds if 'win' in sys.platform: soundExt = '.wav' else: soundExt = '.ogg' SOUNDS['die'] = pygame.mixer.Sound('assets/audio/die' + soundExt) SOUNDS['hit'] = pygame.mixer.Sound('assets/audio/hit' + soundExt) SOUNDS['point'] = pygame.mixer.Sound('assets/audio/point' + soundExt) SOUNDS['swoosh'] = pygame.mixer.Sound('assets/audio/swoosh' + soundExt) SOUNDS['wing'] = pygame.mixer.Sound('assets/audio/wing' + soundExt) # volume slider(defaultValue, maximum, minimum, Xposition, Yposition) SLIDER = Slider(0.5, 1, 0, 190, 0) while True: # select random background sprites randBg = random.randint(0, len(BACKGROUNDS_LIST) - 1) IMAGES['background'] = pygame.image.load(BACKGROUNDS_LIST[randBg]).convert() # select random player sprites randPlayer = random.randint(0, len(PLAYERS_LIST) - 1) IMAGES['player'] = ( pygame.image.load(PLAYERS_LIST[randPlayer][0]).convert_alpha(), pygame.image.load(PLAYERS_LIST[randPlayer][1]).convert_alpha(), pygame.image.load(PLAYERS_LIST[randPlayer][2]).convert_alpha(), ) # select random pipe sprites pipeindex = random.randint(0, len(PIPES_LIST) - 1) IMAGES['pipe'] = ( pygame.transform.rotate( pygame.image.load(PIPES_LIST[pipeindex]).convert_alpha(), 180), pygame.image.load(PIPES_LIST[pipeindex]).convert_alpha(), ) # pipes' particles for fury mode # pipes are green if pipeindex == 0: IMAGES['pipe-particle'] = ( pygame.image.load('assets/sprites/particles-green-0.png').convert_alpha(), pygame.image.load('assets/sprites/particles-green-1.png').convert_alpha(), pygame.image.load('assets/sprites/particles-green-2.png').convert_alpha(), pygame.image.load('assets/sprites/particles-green-3.png').convert_alpha(), pygame.image.load('assets/sprites/particles-green-4.png').convert_alpha(), pygame.image.load('assets/sprites/particles-green-5.png').convert_alpha(), pygame.image.load('assets/sprites/particles-green-6.png').convert_alpha(), pygame.image.load('assets/sprites/particles-green-7.png').convert_alpha(), ) else: IMAGES['pipe-particle'] = ( pygame.image.load('assets/sprites/particles-red-0.png').convert_alpha(), pygame.image.load('assets/sprites/particles-red-1.png').convert_alpha(), pygame.image.load('assets/sprites/particles-red-2.png').convert_alpha(), pygame.image.load('assets/sprites/particles-red-3.png').convert_alpha(), pygame.image.load('assets/sprites/particles-red-4.png').convert_alpha(), pygame.image.load('assets/sprites/particles-red-5.png').convert_alpha(), pygame.image.load('assets/sprites/particles-red-6.png').convert_alpha(), pygame.image.load('assets/sprites/particles-red-7.png').convert_alpha(), ) # hismask for pipes HITMASKS['pipe'] = ( getHitmask(IMAGES['pipe'][0]), getHitmask(IMAGES['pipe'][1]), ) # hitmask for player HITMASKS['player'] = ( getHitmask(IMAGES['player'][0]), getHitmask(IMAGES['player'][1]), getHitmask(IMAGES['player'][2]), ) # 추가된 부분 HITMASKS['coin'] = ( getHitmask(IMAGES['coin']), ) movementInfo = showWelcomeAnimation() crashInfo = mainGame(movementInfo) showGameOverScreen(crashInfo) def showWelcomeAnimation(): """Shows welcome screen animation of flappy bird""" global FURYMODE, EASYMODE # index of player to blit on screen playerIndex = 0 playerIndexGen = cycle([0, 1, 2, 1]) # iterator used to change playerIndex after every 5th iteration loopIter = 0 playerx = int(SCREENWIDTH * 0.2) playery = int((SCREENHEIGHT - IMAGES['player'][0].get_height()) / 2) messagex = int((SCREENWIDTH - IMAGES['message'].get_width()) / 2) messagey = int(SCREENHEIGHT * 0.12) easymodex = int((SCREENWIDTH - IMAGES['easymode'].get_width())/2) easymodey = int(SCREENHEIGHT * 0.68) hardmodex = int((SCREENWIDTH - IMAGES['hardmode'].get_width())/2) hardmodey = int(SCREENHEIGHT * 0.74) furymodex = int((SCREENWIDTH - IMAGES['furymode'].get_width()) / 2) furymodey = int(SCREENHEIGHT * 0.80) # just at right of the fury mode button (8 is right padding) furymodeKeyX = furymodex + IMAGES['furymode'].get_width() + 8 furymodeKeyY = furymodey + IMAGES['furymode-key'].get_height() / 2 basex = 0 # amount by which base can maximum shift to left baseShift = IMAGES['base'].get_width() - IMAGES['background'].get_width() # player shm for up-down motion on welcome screen playerShmVals = {'val': 0, 'dir': 1} # initialize volume for sound in SOUNDS: SOUNDS[sound].set_volume(SLIDER.val) while True: for event in pygame.event.get(): if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): pygame.quit() sys.exit() if event.type == pygame.MOUSEBUTTONDOWN: pos = pygame.mouse.get_pos() if SLIDER.button_rect.collidepoint(pos): SLIDER.hit = True elif event.type == pygame.MOUSEBUTTONUP: SLIDER.hit = False # Move volume slider if SLIDER.hit: SLIDER.move() for sounds in SOUNDS: SOUNDS[sounds].set_volume(SLIDER.val) #(2) key for easymode if (event.type == KEYDOWN and event.key == K_2) or ((event.type == MOUSEBUTTONDOWN and event.button == 1) and IMAGES['easymode'].get_rect(center=(easymodex+54,easymodey+14)).collidepoint(pygame.mouse.get_pos())): EASYMODE = True # make first flap sound and return values for mainGame SOUNDS['wing'].play() return { 'playery': playery + playerShmVals['val'], 'basex': basex, 'playerIndexGen': playerIndexGen, } elif (event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP)) or ((event.type == MOUSEBUTTONDOWN and event.button == 1) and IMAGES['hardmode'].get_rect(center=(hardmodex+54,hardmodey+14)).collidepoint(pygame.mouse.get_pos())): SOUNDS['wing'].play() return { 'playery': playery + playerShmVals['val'], 'basex': basex, 'playerIndexGen': playerIndexGen, } # (1) key for fury mode if (event.type == KEYDOWN and event.key == K_1) or ((event.type == MOUSEBUTTONDOWN and event.button == 1) and IMAGES['furymode'].get_rect(center=(furymodex+54,furymodey+14)).collidepoint(pygame.mouse.get_pos())): # make first flap sound and return values for mainGame FURYMODE = True SOUNDS['wing'].play() return { 'playery': playery + playerShmVals['val'], 'basex': basex, 'playerIndexGen': playerIndexGen, } # adjust playery, playerIndex, basex if (loopIter + 1) % 5 == 0: playerIndex = next(playerIndexGen) loopIter = (loopIter + 1) % 30 basex = -((-basex + 4) % baseShift) playerShm(playerShmVals) # draw sprites SCREEN.blit(IMAGES['background'], (0,0)) SLIDER.draw() if(SLIDER.val>0): SCREEN.blit(IMAGES['speaker'][0], (160,15)) else : SCREEN.blit(IMAGES['speaker'][1], (160,15)) SCREEN.blit(IMAGES['player'][playerIndex], (playerx, playery + playerShmVals['val'])) SCREEN.blit(IMAGES['message'], (messagex, messagey)) SCREEN.blit(IMAGES['base'], (basex, BASEY)) SCREEN.blit(IMAGES['easymode'],(easymodex,easymodey)) SCREEN.blit(IMAGES['hardmode'],(hardmodex,hardmodey)) SCREEN.blit(IMAGES['furymode'], (furymodex, furymodey)) SCREEN.blit(IMAGES['furymode-key'], (furymodeKeyX, furymodeKeyY)) pygame.display.update() FPSCLOCK.tick(FPS) def mainGame(movementInfo): global FURYMODE, FURYMODE_FRAMES_TO_SPAWN_PIPES, EASYMODE DIFFICULTY = 0 score = playerIndex = loopIter = 0 playerIndexGen = movementInfo['playerIndexGen'] playerx, playery = int(SCREENWIDTH * 0.2), movementInfo['playery'] basex = movementInfo['basex'] baseShift = IMAGES['base'].get_width() - IMAGES['background'].get_width() # no need to spawn pipes at start if FURYMODE: # list of upper pipes upperPipes = [] # list of lowerpipe lowerPipes = [] # list of particles # a particle is an object with attributes: # {'x': position-x, 'y': position-y, # 'vx': velocity-x, 'vy': velocity-y, # 'i': index in textures list} particles = [] # 추가된 부분 coins = [] else: if EASYMODE: DIFFICULTY = 4 # get 2 new pipes to add to upperPipes lowerPipes list newPipe1 = getRandomPipe(DIFFICULTY) newPipe2 = getRandomPipe(DIFFICULTY) # list of upper pipes upperPipes = [ {'x': SCREENWIDTH + 200, 'y': newPipe1[0]['y']}, {'x': SCREENWIDTH + 200 + (SCREENWIDTH / 2), 'y': newPipe2[0]['y']}, ] # list of lowerpipe lowerPipes = [ {'x': SCREENWIDTH + 200, 'y': newPipe1[1]['y']}, {'x': SCREENWIDTH + 200 + (SCREENWIDTH / 2), 'y': newPipe2[1]['y']}, ] # 추가된 부분 newCoin1 = getRandomCoin() newCoin2 = getRandomCoin() coins = [ {'x': SCREENWIDTH + 280, 'y': newCoin1[0]['y']}, {'x': SCREENWIDTH + 280 + (SCREENWIDTH / 2), 'y': newCoin2[0]['y']}, ] pipeVelX = -4 # player velocity, max velocity, downward accleration, accleration on flap playerVelY = -9 # player's velocity along Y, default same as playerFlapped playerMaxVelY = 10 # max vel along Y, max descend speed playerMinVelY = -8 # min vel along Y, max ascend speed playerAccY = 1 # players downward accleration playerRot = 45 # player's rotation playerVelRot = 3 # angular speed playerRotThr = 20 # rotation threshold playerFlapAcc = -9 # players speed on flapping playerFlapped = False # True when player flaps # The counter to spawn new pipes furymodePipeFrameCounter = 0 while True: for event in pygame.event.get(): if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): pygame.quit() sys.exit() if (event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP)) or (event.type == MOUSEBUTTONDOWN and event.button == 1): if playery > -2 * IMAGES['player'][0].get_height(): playerVelY = playerFlapAcc playerFlapped = True SOUNDS['wing'].play() # check for crash here crashTest = checkCrash({'x': playerx, 'y': playery, 'index': playerIndex}, upperPipes, lowerPipes) # 추가된 부분 coinTest = checkCoin({'x': playerx, 'y': playery, 'index': playerIndex}, coins) if crashTest[0]: # the player hits a pipe in fury mode if FURYMODE and not crashTest[1]: spawnParticles(particles, crashTest[3]) # remove the pipe # it's an upper pipe if crashTest[2]: upperPipes.remove(crashTest[3]) score+=1 # it's a lower pipe else: lowerPipes.remove(crashTest[3]) else: return { 'y': playery, 'groundCrash': crashTest[1], 'basex': basex, 'upperPipes': upperPipes, 'lowerPipes': lowerPipes, 'score': score, 'playerVelY': playerVelY, 'playerRot': playerRot } # 추가된 부분 if coinTest[0]: score += 1 SOUNDS['point'].play() coins.pop(0) # check for score playerMidPos = playerx + IMAGES['player'][0].get_width() / 2 for pipe in upperPipes: pipeMidPos = pipe['x'] + IMAGES['pipe'][0].get_width() / 2 if pipeMidPos <= playerMidPos < pipeMidPos + 4: score += 1 SOUNDS['point'].play() # playerIndex basex change if (loopIter + 1) % 3 == 0: playerIndex = next(playerIndexGen) loopIter = (loopIter + 1) % 30 basex = -((-basex + 100) % baseShift) # rotate the player if playerRot > -90: playerRot -= playerVelRot # player's movement if playerVelY < playerMaxVelY and not playerFlapped: playerVelY += playerAccY if playerFlapped: playerFlapped = False # more rotation to cover the threshold (calculated in visible rotation) playerRot = 45 playerHeight = IMAGES['player'][playerIndex].get_height() playery += min(playerVelY, BASEY - playery - playerHeight) # move pipes to left for uPipe in upperPipes: uPipe['x'] += pipeVelX for lPipe in lowerPipes: lPipe['x'] += pipeVelX # 추가된 부분 for coin in coins: coin['x'] += pipeVelX # update (add / remove) pipes and particles if FURYMODE: furymodePipeFrameCounter += 1 # the counter has the max value, we must spawn new pipes if furymodePipeFrameCounter == FURYMODE_FRAMES_TO_SPAWN_PIPES: # counter reset furymodePipeFrameCounter = 0 # pipe spawn pipes = getRandomPipe(DIFFICULTY) upperPipes.append(pipes[0]) lowerPipes.append(pipes[1]) # check if a pipe must be removed from the list for uPipe in upperPipes: if uPipe['x'] < -IMAGES['pipe'][0].get_width(): upperPipes.remove(uPipe) for lPipe in lowerPipes: if lPipe['x'] < -IMAGES['pipe'][0].get_width(): lowerPipes.remove(lPipe) # particles for particle in particles: # speed particle['x'] += particle['vx'] particle['y'] += particle['vy'] # gravity particle['vy'] += playerAccY # remove if the particle is under the ground if particle['y'] >= BASEY: particles.remove(particle) else: # add new pipes when first pipe is about to touch left of screen if 0 < upperPipes[0]['x'] < 5: newPipe = getRandomPipe(DIFFICULTY) upperPipes.append(newPipe[0]) lowerPipes.append(newPipe[1]) # 추가된 부분 newCoin = getRandomCoin() coins.append(newCoin[0]) # remove first pipe if its out of the screen if upperPipes[0]['x'] < -IMAGES['pipe'][0].get_width(): lowerPipes.pop(0) upperPipes.pop(0) # 추가된 부분 if coins[0]['x'] < -IMAGES['coin'].get_width(): coins.pop(0) # draw sprites SCREEN.blit(IMAGES['background'], (0,0)) for uPipe in upperPipes: SCREEN.blit(IMAGES['pipe'][0], (uPipe['x'], uPipe['y'])) for lPipe in lowerPipes: SCREEN.blit(IMAGES['pipe'][1], (lPipe['x'], lPipe['y'])) # 추가된 부분 for coin in coins: SCREEN.blit(IMAGES['coin'], (coin['x'], coin['y'])) # pipes' particles if FURYMODE: for particle in particles: SCREEN.blit(IMAGES['pipe-particle'][particle['i']], (particle['x'], particle['y'])) SCREEN.blit(IMAGES['base'], (basex, BASEY)) # print score so player overlaps the score showScore(score) # Player rotation has a threshold visibleRot = playerRotThr if playerRot <= playerRotThr: visibleRot = playerRot playerSurface = pygame.transform.rotate(IMAGES['player'][playerIndex], visibleRot) SCREEN.blit(playerSurface, (playerx, playery)) pygame.display.update() FPSCLOCK.tick(FPS) def showGameOverScreen(crashInfo): """crashes the player down ans shows gameover image""" global FURYMODE, EASYMODE FURYMODE = False EASYMODE = False score = crashInfo['score'] playerx = SCREENWIDTH * 0.2 playery = crashInfo['y'] playerHeight = IMAGES['player'][0].get_height() playerVelY = crashInfo['playerVelY'] playerAccY = 2 playerRot = crashInfo['playerRot'] playerVelRot = 7 count=0 gameover = True basex = crashInfo['basex'] upperPipes, lowerPipes = crashInfo['upperPipes'], crashInfo['lowerPipes'] # play hit and die sounds SOUNDS['hit'].play() if not crashInfo['groundCrash']: SOUNDS['die'].play() while True: for event in pygame.event.get(): if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): pygame.quit() sys.exit() if (event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP)) or (event.type == MOUSEBUTTONDOWN and event.button == 1): if playery + playerHeight >= BASEY - 1: return # player y shift if playery + playerHeight < BASEY - 1: playery += min(playerVelY, BASEY - playery - playerHeight) # player velocity change if playerVelY < 15: playerVelY += playerAccY # rotate only when it's a pipe crash if not crashInfo['groundCrash']: if playerRot > -90: playerRot -= playerVelRot # draw sprites overx = int((SCREENWIDTH - IMAGES['gameover'].get_width()) / 2) overy = int(SCREENHEIGHT * 0.5) #SCREEN.blit(IMAGES['background'], (0,0)) for uPipe, lPipe in zip(upperPipes, lowerPipes): SCREEN.blit(IMAGES['pipe'][0], (uPipe['x'], uPipe['y'])) SCREEN.blit(IMAGES['pipe'][1], (lPipe['x'], lPipe['y'])) SCREEN.blit(IMAGES['base'], (basex, BASEY)) showScore(score) playerSurface = pygame.transform.rotate(IMAGES['player'][1], playerRot) SCREEN.blit(playerSurface, (playerx,playery)) #showScore(score) if (score > TOPFIVE[4][1] and count==0) : SCREEN.blit(IMAGES['gameover'], (overx,overy)) pygame.display.update() gameover = False pygame.time.delay(1000) SCREEN.blit(IMAGES['background'], (0,0)) writeScore(score) count=count+1 pygame.display.update() elif(gameover == True): SCREEN.blit(IMAGES['gameover'], (overx,overy)) pygame.display.update() gameover = False pygame.time.delay(1000) showLeaderboard() FPSCLOCK.tick(FPS) pygame.display.update() def showLeaderboard(): fontobject = pygame.font.Font(None,30) SCREEN.blit(IMAGES['background'],(0,0)) SCREEN.blit(pygame.font.Font(None,50).render("LEADERBOARD", 1, RED),((SCREEN.get_width() / 2) -132, (SCREEN.get_height() / 2) -220)) for i in range(0,5) : SCREEN.blit(fontobject.render(TOPFIVE[i][0], 1, RED),((SCREEN.get_width() / 2) - 100, (SCREEN.get_height() / 2) -160 + (50*i))) SCREEN.blit(fontobject.render(str(TOPFIVE[i][1]), 1,RED),((SCREEN.get_width() / 2) + 75, (SCREEN.get_height() / 2) -160 + (50*i))) FPSCLOCK.tick(FPS) pygame.display.update() def playerShm(playerShm): """oscillates the value of playerShm['val'] between 8 and -8""" if abs(playerShm['val']) == 8: playerShm['dir'] *= -1 if playerShm['dir'] == 1: playerShm['val'] += 1 else: playerShm['val'] -= 1 def getRandomPipe(DIFFICULTY): PIPEGAPSIZE = 100 + DIFFICULTY * 10 """ returns a randomly generated pipe """ # y of gap between upper and lower pipe gapY = random.randrange(0, int(BASEY * 0.6 - PIPEGAPSIZE)) gapY += int(BASEY * 0.2) pipeHeight = IMAGES['pipe'][0].get_height() pipeX = SCREENWIDTH + 10 return [ {'x': pipeX, 'y': gapY - pipeHeight}, # upper pipe {'x': pipeX, 'y': gapY + PIPEGAPSIZE}, # lower pipe ] # 추가된 부분 def getRandomCoin(): """ returns a randomly generated coin """ coinY = random.randrange(20, int(BASEY * 0.6)) coinX = SCREENWIDTH + 100 return [ {'x': coinX, 'y': coinY}, ] def showScore(score): """displays score in center of screen""" scoreDigits = [int(x) for x in list(str(score))] totalWidth = 0 # total width of all numbers to be printed for digit in scoreDigits: totalWidth += IMAGES['numbers'][digit].get_width() Xoffset = (SCREENWIDTH - totalWidth) / 2 for digit in scoreDigits: SCREEN.blit(IMAGES['numbers'][digit], (Xoffset, SCREENHEIGHT * 0.1)) Xoffset += IMAGES['numbers'][digit].get_width() def spawnParticles(particles, pipe): """ Add paticles to the particle list randomly generated with pipe's rectangle (hitbox) """ global FURYMODE_PARTICLES, FURYMODE_PARTICLES_MAX, SOUNDS pipeW = IMAGES['pipe'][0].get_width() pipeH = IMAGES['pipe'][0].get_height() for i in range(FURYMODE_PARTICLES_MAX): particle = {} particle['x'] = random.randint(pipe['x'], pipe['x'] + pipeW) particle['y'] = random.randint(pipe['y'], pipe['y'] + pipeH) particle['i'] = random.randint(1, FURYMODE_PARTICLES) - 1 # random angle for a minimum velocity vel = random.random() * 10 + 5 aMin = -math.pi * .35 aMax = math.pi * .25 angle = random.random() * (aMax - aMin) + aMin particle['vx'] = math.cos(angle) * vel particle['vy'] = math.sin(angle) * vel particles.append(particle) # sound effect SOUNDS['hit'].play() def checkCrash(player, upperPipes, lowerPipes): """returns True if player collders with base or pipes.""" global FURYMODE pi = player['index'] player['w'] = IMAGES['player'][0].get_width() player['h'] = IMAGES['player'][0].get_height() # if player crashes into ground if player['y'] + player['h'] >= BASEY - 1: return [True, True] else: playerRect = pygame.Rect(player['x'], player['y'], player['w'], player['h']) pipeW = IMAGES['pipe'][0].get_width() pipeH = IMAGES['pipe'][0].get_height() for uPipe in upperPipes: # pipe rect uPipeRect = pygame.Rect(uPipe['x'], uPipe['y'], pipeW, pipeH) # player and pipe hitmasks pHitMask = HITMASKS['player'][pi] uHitmask = HITMASKS['pipe'][0] # if bird collided with pipe uCollide = pixelCollision(playerRect, uPipeRect, pHitMask, uHitmask) if uCollide: # for fury mode we want to break the pipe so we # must return which pipe is colliding (lower or upper) if FURYMODE: return [True, False, True, uPipe] # normal mode return [True, False] for lPipe in lowerPipes: # pipe rect lPipeRect = pygame.Rect(lPipe['x'], lPipe['y'], pipeW, pipeH) # player and pipe hitmasks pHitMask = HITMASKS['player'][pi] lHitmask = HITMASKS['pipe'][0] # if bird collided with pipe lCollide = pixelCollision(playerRect, lPipeRect, pHitMask, lHitmask) if lCollide: # for fury mode we want to break the pipe so we # must return which pipe is colliding (lower or upper) if FURYMODE: return [True, False, False, lPipe] # normal mode return [True, False] return [False, False] # 추가된 부분 def checkCoin(player, coins): pi = player['index'] player['w'] = IMAGES['player'][0].get_width() player['h'] = IMAGES['player'][0].get_height() playerRect = pygame.Rect(player['x'], player['y'], player['w'], player['h']) coinW = IMAGES['coin'].get_width() coinH = IMAGES['coin'].get_height() for coin in coins: coinRect = pygame.Rect(coin['x'], coin['y'], coinW, coinH) pHitMask = HITMASKS['player'][pi] cHitMask = HITMASKS['coin'][0] cCollide = pixelCollision(playerRect, coinRect, pHitMask, cHitMask) if cCollide : return [True, False] return [False, False] def pixelCollision(rect1, rect2, hitmask1, hitmask2): """Checks if two objects collide and not just their rects""" rect = rect1.clip(rect2) if rect.width == 0 or rect.height == 0: return False x1, y1 = rect.x - rect1.x, rect.y - rect1.y x2, y2 = rect.x - rect2.x, rect.y - rect2.y for x in xrange(rect.width): for y in xrange(rect.height): if hitmask1[x1+x][y1+y] and hitmask2[x2+x][y2+y]: return True return False def writeScore(score): TOPFIVE.append((ask(SCREEN,"NAME: "),score)) TOPFIVE.sort(key=itemgetter(1),reverse= True) TOPFIVE.pop() def getHitmask(image): """returns a hitmask using an image's alpha.""" mask = [] for x in xrange(image.get_width()): mask.append([]) for y in xrange(image.get_height()): mask[x].append(bool(image.get_at((x,y))[3])) return mask def get_key(): while 1: event = pygame.event.poll() if event.type == KEYDOWN: return event.key else: pass def display_box(screen, message): fontobject = pygame.font.Font(None,18) fontobject1 = pygame.font.Font(None,30) "Print a message in a box in the middle of the screen" pygame.draw.rect(screen, (0,0,0), ((screen.get_width() / 2) - 100, (screen.get_height() / 2) - 10, 200,20), 0) pygame.draw.rect(screen, (255,255,255), ((screen.get_width() / 2) - 102, (screen.get_height() / 2) - 12, 204,24), 1) if len(message) != 0: screen.blit(fontobject1.render("HIGH SCORE!!!", 1, (255,255,255)), ((screen.get_width() / 2) - 75, (screen.get_height() / 2) - 50)) screen.blit(fontobject.render(message, 1, (255,255,255)), ((screen.get_width() / 2) - 100, (screen.get_height() / 2) - 10)) pygame.display.flip() def ask(screen, question): "ask(screen, question) -> answer" pygame.font.init() current_string = [] display_box(screen, question + ": " + "".join(current_string)) while 1: inkey = get_key() if inkey == K_BACKSPACE: current_string = current_string[0:-1] elif inkey == K_RETURN: break elif inkey == K_MINUS: current_string.append("_") elif inkey <= 127: current_string.append(chr(inkey)) display_box(screen, question + ": " + "".join(current_string)) return "".join(current_string) class Slider(): def __init__(self, val, maxi, mini, xpos, ypos): self.val = val # start value self.maxi = maxi # maximum at slider position right self.mini = mini # minimum at slider position left self.xpos = xpos # x-location on screen self.ypos = ypos # y-location on screen self.surf = pygame.surface.Surface((95, 40)) self.hit = False # the hit attribute indicates slider movement due to mouse interaction # Static graphics - slider background # self.surf.set_colorkey(BLACK) pygame.draw.rect(self.surf, WHITE, [5, 30, 80, 5], 0) # dynamic graphics - button surface # self.button_surf = pygame.surface.Surface((15, 15)) self.button_surf.fill(TRANS) self.button_surf.set_colorkey(TRANS) pygame.draw.circle(self.button_surf, ORANGE, (6, 6), 6, 0) def draw(self): """ Combination of static and dynamic graphics in a copy of the basic slide surface """ # static surf = self.surf.copy() # dynamic pos = (10+int((self.val-self.mini)/(self.maxi-self.mini)*80), 33) self.button_rect = self.button_surf.get_rect(center=pos) surf.blit(self.button_surf, self.button_rect) self.button_rect.move_ip(self.xpos, self.ypos) # move of button box to correct screen position # screen SCREEN.blit(IMAGES['background'], (0,0)) SCREEN.blit(surf, (self.xpos, self.ypos)) def move(self): """ The dynamic part; reacts to movement of the slider button. """ self.val = (pygame.mouse.get_pos()[0] - self.xpos - 10) / 80 * (self.maxi - self.mini) + self.mini if self.val < self.mini: self.val = self.mini if self.val > self.maxi: self.val = self.maxi if __name__ == '__main__': main()
2.703125
3
touchtechnology/news/templatetags/news.py
goodtune/vitriolic
0
12797767
from django.core.paginator import Paginator from django.template import Library from django.utils.translation import ugettext_lazy as _ from touchtechnology.news.models import Article, Category register = Library() @register.filter("category") def get_category(slug): return Category.objects.get(slug=slug) @register.inclusion_tag('touchtechnology/news/_related_list.html', takes_context=True) def related_articles(context, article, limit=None, order_by=None): categories = article.categories.live() articles = Article.objects.live() \ .exclude(pk=article.pk) \ .filter(categories__in=categories) \ .distinct() if order_by is not None: articles = articles.order_by(*order_by.split(',')) if limit is not None: articles = articles[:int(limit)] # FIXME backwards compatibility for custom templates context['slice'] = ':' context['article_list'] = articles return context @register.inclusion_tag('touchtechnology/news/_related_list.html', takes_context=True) def related_categories(context, article=None, limit=None): """ If an article is provided, then we select categories relating to it. Otherwise we select all article categories. """ if article is None: categories = Category.objects.all() else: categories = article.categories.all() context['category_list'] = categories return context @register.inclusion_tag('touchtechnology/news/_latest_articles.html', takes_context=True) def latest_articles(context, count=5, title=_("Latest News")): articles = Article.objects.live() paginator = Paginator(articles, count) page = paginator.page(1) context['paginator'] = paginator context['page'] = page context['article_list'] = page.object_list context['title'] = title return context
2.265625
2
src/flask_bombril/r.py
marcoprado17/flask-bone
0
12797768
<gh_stars>0 # !/usr/bin/env python # -*- coding: utf-8 -*- # ====================================================================================================================== # The MIT License (MIT) # ====================================================================================================================== # Copyright (c) 2016 [<NAME> - <EMAIL>] # ====================================================================================================================== class Resources: def __init__(self): self.string = self.__Strings() self.id = self.__Ids() self.dimen = self.__Dimens() class __Strings: def __init__(self): self.validators = self.__Validators() self.test_message = "Mensagem de teste" self.test_message_2 = "Mensagem de teste 2" self.static = "static" self.toast = "toast" self.category_separator = "-" class __Validators: def __init__(self): self.required_field = "Campo obrigatório." self.invalid_email_format = "Formato de email inválido." self.email_already_registered = "Email já cadastrado." self.unique_field = "Valor já registrado." self.field_min_length_singular = "O campo deve possuir no mínimo %(min_length)d caracter." self.field_min_length_plural = "O campo deve possuir no mínimo %(min_length)d caracteres." self.field_max_length_singular = "O campo deve possuir no máximo %(max_length)d caracter." self.field_max_length_plural = "O campo deve possuir no máximo %(max_length)d caracteres." self.field_length_range = "O campo deve possuir entre %(min_length)d e %(max_length)d caracteres." self.invalid_field_name = "Invalid field name '%(field_name)s'." self.field_must_be_equal_to = "Este campo precisa ser igual ao campo %(other_name)s." self.always_error = "Essa mensagem de erro sempre será lançada para esse campo" class __Ids: def __init__(self): self.example = "example" class __Dimens: def __init__(self): self.test_int = 42 self.test_int_2 = 17 R = Resources()
2.140625
2
gittip/__init__.py
gchiam/gittip-py
0
12797769
# -*- coding: utf-8 -*- __author__ = """<NAME>""" __email__ = '<EMAIL>' __version__ = '0.1.0'
1.054688
1
src/migrations/versions/da911e0e68bc_add_user_roles.py
mstrechen/advanced-news-scraper
0
12797770
<gh_stars>0 """add_user_roles Revision ID: <KEY> Revises: 8f176326a337 Create Date: 2020-08-09 23:00:56.671372 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '8f176326a337' branch_labels = None depends_on = None ROLES = ['admin', 'user'] def upgrade(): op.add_column('users', sa.Column('role', sa.Enum(*ROLES), default='user')) def downgrade(): op.drop_column('users', 'role')
1.171875
1
tests/integrationtests/mock_data.py
efre-lod/efre-lod-api
4
12797771
<filename>tests/integrationtests/mock_data.py import os import lod_api import difflib import json from collections import OrderedDict class MockDataHandler(): def __init__(self): # define path for test data self.path = os.path.join(lod_api.__path__[0], "../../tests/data/mockout/") print(self.path) def normalize_data(self, data, format): """ normalize given data with a given format in order to compare them with data dumps. """ if format == "nq": print("sort nq file") lines = sorted(data.split("\n")) data_out = "\n".join(lines) else: data_out = data # if format == "json": # data_json = json.loads(data, object_pairs_hook=orderedDict) # data_out = json.dumps(data_json) # elif format == "jsonl": # lines = [] # for js in data.split("\n"): # if js: # print(js) # data_json = json.loads(js, object_pairs_hook=orderedDict) # lines.append(json.dumps(data_json)) # data_out = "\n".join(lines) return data_out def _sanitize_fname(self, fname, extension=".dat"): fname = fname.replace("/", "-") return fname + extension def write(self, fname, data, format=None): fname = self._sanitize_fname(fname) with open(os.path.join(self.path, fname), "w+") as outfile: outfile.write(self.normalize_data(data, format)) def compare(self, fname, data, format=None): fname = self._sanitize_fname(fname) output_data = self.normalize_data(data, format) with open(os.path.join(self.path, fname), "r") as infile: compdata = infile.read() diff = difflib.unified_diff(output_data, compdata, fromfile="API-data", tofile=fname) print("".join(diff)) assert(output_data == compdata)
2.609375
3
fline/utils/logging/base_group.py
asromahin/fline
5
12797772
class BaseGroup: def __init__(self, log_type): self.log_type = log_type def __call__(self, data): return data
2.265625
2
benches/tokenizer.py
cgwalters/logreduce-tokenizer
0
12797773
# Copyright (C) 2022 Red Hat # SPDX-License-Identifier: Apache-2.0 # A copy of logreduce.tokenizer import re import os DAYS = "sunday|monday|tuesday|wednesday|thursday|friday|saturday" MONTHS = ( "january|february|march|april|may|june|july|august|september|" "october|november|december" ) SHORT_MONTHS = "jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dev" SHORT_DAYS = "mon|tue|wed|thu|fri|sat|sun" UUID_RE = r"[0-9a-f]{8}-?[0-9a-f]{4}-?[0-9a-f]{4}-?[0-9a-f]{4}-" "?[0-9a-f]{12}" IPV4_RE = ( r"(([01]?[0-9]?[0-9]|2[0-4][0-9]|2[5][0-5])\.){3}" r"([01]?[0-9]?[0-9]|2[0-4][0-9]|2[5][0-5])" ) IPV6_RE = r"([0-9A-Fa-f]{0,4}:){2,6}(\d{1,3}\.){0,3}[0-9A-Fa-f]{1,3}" MAC_RE = r"([0-9a-fA-F]{2}[:-]){5}([0-9a-fA-F]{2})" class Tokenizer: rawline_re = re.compile( # useless http GET r'"GET / HTTP/1.1"' r'|"OPTIONS * HTTP/1.0" 200' # ssh keys r"|AAAA[A-Z][0-9]" # hashed password r"|\$[0-9]\$" # Certificates r"|-----BEGIN" # git status r"|HEAD is now at|Change-Id: " # Download statement r"| ETA " # yum mirrors information r"|\* [a-zA-Z]+: [a-zA-Z0-9\.-]*$|Trying other mirror." # ssh scan attempts r'|audit.*exe="/usr/sbin/sshd"|sshd.*[iI]nvalid user' r"|sshd.*Unable to connect using the available authentication methods" r"|unix_chkpwd.*: password check failed for user" r"|sshd.*: authentication failure" r"|sshd.*: Failed password for" r"|sshd.*- POSSIBLE BREAK-IN ATTEMPT" # zuul random test r"|zuul.*echo BECOME-SUCCESS-" r"|^[^ ]{64}$" # useless debug statement r"|ovs-ofctl .* (dump-ports|dump-flows|show)\b" r"|(ip|eb)tables .* -L\b" ) # See https://en.wikipedia.org/wiki/Percent-encoding uri_percent_re = re.compile(r"%[2345][0-9A-F]") ip_re = re.compile(r"%s|%s|%s" % (IPV4_RE, IPV6_RE, MAC_RE)) # For some unknown reason, '_' in (?=) doesn't work in prefix match # re.sub(r'(?=\b|_)test(?=\b|_)', 'RNG', 'AUTH_test_') -> doesn't work # re.sub(r'(?=\b|_)_?test(?=\b|_)', 'RNG', 'AUTH_test_') -> works power2_re = re.compile( r"(?=\b|_)_?(?:[\w+/]{128}|[\w+/]{64}|" r"[0-9a-fA-F]{40}|[0-9a-fA-F]{32})(?=\b|_)" ) uuid_re = re.compile(r"(?=\b|_)_?(?:%s|tx[^ ]{32})(?=\b|_)" % UUID_RE, re.I) date_re = re.compile( r"\b(?:%s|%s|%s|%s)\b" % (DAYS, SHORT_DAYS, SHORT_MONTHS, MONTHS), re.I ) heat_re = re.compile(r"-\w{12}[- \"$]") comments = re.compile(r'(?:[\s]*# |^%% |^#|^[\s]*id = ").*') alpha_re = re.compile(r"[^a-zA-Z_\/\s]+") gitver_re = re.compile(r"git\w+") digits_re = re.compile(r"0x[0-9a-fA-F]{2,}|[0-9]+(?:\.\d+)?") randpath_re = re.compile( r"(?:/tmp/ansible\.\w{8}" r"|/tmp/tmp\w{6}" r"|/tmp/tmp\.\w{10})\b" ) gitsha_re = re.compile(r"\b\w{7}\.\.\w{7}\b") hash_re = re.compile(r"SHA256:[\w+/]{43}\b") @staticmethod def process(line: str) -> str: # Ignore some raw pattern first if Tokenizer.rawline_re.search(line): return "" strip = line # Break URI percent encoding strip = Tokenizer.uri_percent_re.sub(" ", strip) # Remove words that are exactly 32, 64 or 128 character longs strip = Tokenizer.power2_re.sub("RNGN", strip) # Remove uuid strip = Tokenizer.uuid_re.sub("RNGU", strip) # Remove heat short uuid but keep spacing # ObjectName-2kbhkd45kcs3-ServiceName -> ObjectName-HEATID-ServiceName strip = Tokenizer.heat_re.sub(" HEATID ", strip) # Remove git sha strip = Tokenizer.gitsha_re.sub("RNGG", strip) # Remove hashes strip = Tokenizer.hash_re.sub("RNGH", strip) # Remove random path strip = Tokenizer.randpath_re.sub("RNGP", strip) # Remove date strip = Tokenizer.date_re.sub("DATE", strip) # Remove ip/addr strip = Tokenizer.ip_re.sub("RNGI", strip) # Remove numbers strip = Tokenizer.digits_re.sub("", strip) # Only keep characters strip = Tokenizer.alpha_re.sub(" ", strip) # Remove tiny words strip = " ".join(filter(lambda x: len(x) > 3, strip.split())) # Weight failure token for token in ("error", "fail", "warn"): if token in strip.lower(): strip += " %sA %sB %sC %sD" % (token, token, token, token) return strip
2.234375
2
flink_rest_client/v1/jobs.py
frego-dev/flink-rest-client
0
12797774
from flink_rest_client.common import _execute_rest_request, RestException class JobTrigger: def __init__(self, prefix, type_name, job_id, trigger_id): self._prefix = prefix self._type_name = type_name self.job_id = job_id self.trigger_id = trigger_id @property def status(self): return _execute_rest_request( url=f"{self._prefix}/{self.job_id}/{self._type_name}/{self.trigger_id}" ) class JobVertexSubtaskClient: def __init__(self, prefix): """ Constructor. Parameters ---------- prefix: str REST API url prefix. It must contain the host, port pair. """ self._prefix = prefix @property def prefix_url(self): return f"{self._prefix}/subtasks" def subtask_ids(self): """ Returns the subtask identifiers. Returns ------- list Positive integer list of subtask ids. """ return [elem["subtask"] for elem in self.accumulators()["subtasks"]] def accumulators(self): """ Returns all user-defined accumulators for all subtasks of a task. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid/accumulators Returns ------- dict User-defined accumulators """ return _execute_rest_request(url=f"{self.prefix_url}/accumulators") def metric_names(self): """ Returns the supported metric names. Returns ------- list List of metric names. """ return [ elem["id"] for elem in _execute_rest_request(url=f"{self.prefix_url}/metrics") ] def metrics(self, metric_names=None, agg_modes=None, subtask_ids=None): """ Provides access to aggregated subtask metrics. By default it returns with all existing metric names. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid/subtasks/metrics Parameters ---------- metric_names: list (optional) List of selected specific metric names. Default: <all metrics> agg_modes: list (optional) List of aggregation modes which should be calculated. Available aggregations are: "min, max, sum, avg". Default: <all modes> subtask_ids: list List of positive integers to select specific subtasks. The list of valid subtask ids is available through the subtask_ids() method. Default: <all subtasks>. Returns ------- dict Key-value pairs of metrics. """ if metric_names is None: metric_names = self.metric_names() supported_agg_modes = ["min", "max", "sum", "avg"] if agg_modes is None: agg_modes = supported_agg_modes if len(set(agg_modes).difference(set(supported_agg_modes))) > 0: raise RestException( f"The provided aggregation modes list contains invalid value. Supported aggregation " f"modes: {','.join(supported_agg_modes)}; given list: {','.join(agg_modes)}" ) if subtask_ids is None: subtask_ids = self.subtask_ids() params = { "get": ",".join(metric_names), "agg": ",".join(agg_modes), "subtasks": ",".join([str(elem) for elem in subtask_ids]), } query_result = _execute_rest_request( url=f"{self.prefix_url}/metrics", params=params ) result = {} for elem in query_result: metric_name = elem.pop("id") result[metric_name] = elem return result def get(self, subtask_id): """ Returns details of the current or latest execution attempt of a subtask. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid/subtasks/:subtaskindex Parameters ---------- subtask_id: int Positive integer value that identifies a subtask. Returns ------- dict """ return _execute_rest_request(url=f"{self.prefix_url}/{subtask_id}") def get_attempt(self, subtask_id, attempt_id=None): """ Returns details of an execution attempt of a subtask. Multiple execution attempts happen in case of failure/recovery. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid/subtasks/:subtaskindex/attempts/:attempt Parameters ---------- subtask_id: int Positive integer value that identifies a subtask. attempt_id: int (Optional) Positive integer value that identifies an execution attempt. Default: current execution attempt's id Returns ------- dict Details of the selected attempt. """ if attempt_id is None: return self.get(subtask_id) return _execute_rest_request( url=f"{self.prefix_url}/{subtask_id}/attempts/{attempt_id}" ) def get_attempt_accumulators(self, subtask_id, attempt_id=None): """ Returns the accumulators of an execution attempt of a subtask. Multiple execution attempts happen in case of failure/recovery. Parameters ---------- subtask_id: int Positive integer value that identifies a subtask. attempt_id: int (Optional) Positive integer value that identifies an execution attempt. Default: current execution attempt's id Returns ------- dict The accumulators of the selected execution attempt of a subtask. """ if attempt_id is None: attempt_id = self.get(subtask_id)["attempt"] return _execute_rest_request( url=f"{self.prefix_url}/{subtask_id}/attempts/{attempt_id}/accumulators" ) class JobVertexClient: def __init__(self, prefix, job_id, vertex_id): """ Constructor. Parameters ---------- prefix: str REST API url prefix. It must contain the host, port pair. """ self._prefix = prefix self.job_id = job_id self.vertex_id = vertex_id @property def prefix_url(self): return f"{self._prefix}/{self.job_id}/vertices/{self.vertex_id}" @property def subtasks(self): return JobVertexSubtaskClient(self.prefix_url) def details(self): """ Returns details for a task, with a summary for each of its subtasks. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid Returns ------- dict details for a task. """ return _execute_rest_request(url=self.prefix_url) def backpressure(self): """ Returns back-pressure information for a job, and may initiate back-pressure sampling if necessary. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid/backpressure Notes ----- The deprecated status means that the back pressure stats are not available. Returns ------- dict Backpressure information """ return _execute_rest_request(url=f"{self.prefix_url}/backpressure") def metric_names(self): """ Returns the supported metric names. Returns ------- list List of metric names. """ return [ elem["id"] for elem in _execute_rest_request(url=f"{self.prefix_url}/metrics") ] def metrics(self, metric_names=None): """ Provides access to task metrics. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid/metrics Returns ------- dict Task metrics. """ if metric_names is None: metric_names = self.metric_names() params = {"get": ",".join(metric_names)} query_result = _execute_rest_request( url=f"{self.prefix_url}/metrics", params=params ) result = {} for elem in query_result: metric_name = elem.pop("id") result[metric_name] = elem["value"] return result def subtasktimes(self): """ Returns time-related information for all subtasks of a task. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid/subtasktimes Returns ------- dict Time-related information for all subtasks """ return _execute_rest_request(url=f"{self.prefix_url}/subtasktimes") def taskmanagers(self): """ Returns task information aggregated by task manager. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid/taskmanagers Returns ------- dict Task information aggregated by task manager. """ return _execute_rest_request(url=f"{self.prefix_url}/taskmanagers") def watermarks(self): """ Returns the watermarks for all subtasks of a task. Endpoint: [GET] /jobs/:jobid/vertices/:vertexid/watermarks Returns ------- list Watermarks for all subtasks of a task. """ return _execute_rest_request(url=f"{self.prefix_url}/watermarks") class JobsClient: def __init__(self, prefix): """ Constructor. Parameters ---------- prefix: str REST API url prefix. It must contain the host, port pair. """ self.prefix = f"{prefix}/jobs" def all(self): """ Returns an overview over all jobs and their current state. Endpoint: [GET] /jobs Returns ------- list List of jobs and their current state. """ return _execute_rest_request(url=self.prefix)["jobs"] def job_ids(self): """ Returns the list of job_ids. Returns ------- list List of job ids. """ return [elem["id"] for elem in self.all()] def overview(self): """ Returns an overview over all jobs. Endpoint: [GET] /jobs/overview Returns ------- list List of existing jobs. """ return _execute_rest_request(url=f"{self.prefix}/overview")["jobs"] def metric_names(self): """ Returns the supported metric names. Returns ------- list List of metric names. """ return [ elem["id"] for elem in _execute_rest_request(url=f"{self.prefix}/metrics") ] def metrics(self, metric_names=None, agg_modes=None, job_ids=None): """ Returns an overview over all jobs. Endpoint: [GET] /jobs/metrics Parameters ---------- metric_names: list (optional) List of selected specific metric names. Default: <all metrics> agg_modes: list (optional) List of aggregation modes which should be calculated. Available aggregations are: "min, max, sum, avg". Default: <all modes> job_ids: list List of 32-character hexadecimal strings to select specific jobs. The list of valid jobs are available through the job_ids() method. Default: <all taskmanagers>. Returns ------- dict Aggregated job metrics. """ if metric_names is None: metric_names = self.metric_names() supported_agg_modes = ["min", "max", "sum", "avg"] if agg_modes is None: agg_modes = supported_agg_modes if len(set(agg_modes).difference(set(supported_agg_modes))) > 0: raise RestException( f"The provided aggregation modes list contains invalid value. Supported aggregation " f"modes: {','.join(supported_agg_modes)}; given list: {','.join(agg_modes)}" ) if job_ids is None: job_ids = self.job_ids() params = { "get": ",".join(metric_names), "agg": ",".join(agg_modes), "jobs": ",".join(job_ids), } query_result = _execute_rest_request( url=f"{self.prefix}/metrics", params=params ) result = {} for elem in query_result: metric_name = elem.pop("id") result[metric_name] = elem return result def get(self, job_id): """ Returns details of a job. Endpoint: [GET] /jobs/:jobid Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- dict Details of the selected job. """ return _execute_rest_request(url=f"{self.prefix}/{job_id}") def get_config(self, job_id): """ Returns the configuration of a job. Endpoint: [GET] /jobs/:jobid/config Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- dict Job configuration """ return _execute_rest_request(url=f"{self.prefix}/{job_id}/config") def get_exceptions(self, job_id): """ Returns the most recent exceptions that have been handled by Flink for this job. Endpoint: [GET] /jobs/:jobid/exceptions Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- dict The most recent exceptions. """ return _execute_rest_request(url=f"{self.prefix}/{job_id}/exceptions") def get_execution_result(self, job_id): """ Returns the result of a job execution. Gives access to the execution time of the job and to all accumulators created by this job. Endpoint: [GET] /jobs/:jobid/execution-result Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- dict The execution result of the selected job. """ return _execute_rest_request(url=f"{self.prefix}/{job_id}/execution-result") def get_metrics(self, job_id, metric_names=None): """ Provides access to job metrics. Endpoint: [GET] /jobs/:jobid/metrics Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. metric_names: list (optional) List of selected specific metric names. Default: <all metrics> Returns ------- dict Job metrics. """ if metric_names is None: metric_names = self.metric_names() params = {"get": ",".join(metric_names)} query_result = _execute_rest_request( url=f"{self.prefix}/{job_id}/metrics", params=params ) return dict([(elem["id"], elem["value"]) for elem in query_result]) def get_plan(self, job_id): """ Returns the dataflow plan of a job. Endpoint: [GET] /jobs/:jobid/plan Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- dict Dataflow plan """ return _execute_rest_request(url=f"{self.prefix}/{job_id}/plan")["plan"] def get_vertex_ids(self, job_id): """ Returns the ids of vertices of the selected job. Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- list List of identifiers. """ return [elem["id"] for elem in self.get(job_id)["vertices"]] def get_accumulators(self, job_id, include_serialized_value=None): """ Returns the accumulators for all tasks of a job, aggregated across the respective subtasks. Endpoint: [GET] /jobs/:jobid/accumulators Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. include_serialized_value: bool (Optional) Boolean value that specifies whether serialized user task accumulators should be included in the response. Returns ------- dict Accumulators for all task. """ params = {} if include_serialized_value is not None: params["includeSerializedValue"] = ( "true" if include_serialized_value else "false" ) return _execute_rest_request( url=f"{self.prefix}/{job_id}/accumulators", http_method="GET", params=params ) def get_checkpointing_configuration(self, job_id): """ Returns the checkpointing configuration of the selected job_id Endpoint: [GET] /jobs/:jobid/checkpoints/config Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- dict Checkpointing configuration of the selected job. """ return _execute_rest_request( url=f"{self.prefix}/{job_id}/checkpoints/config", http_method="GET" ) def get_checkpoints(self, job_id): """ Returns checkpointing statistics for a job. Endpoint: [GET] /jobs/:jobid/checkpoints Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- dict Checkpointing statistics for the selected job: counts, summary, latest and history. """ return _execute_rest_request( url=f"{self.prefix}/{job_id}/checkpoints", http_method="GET" ) def get_checkpoint_ids(self, job_id): """ Returns checkpoint ids of the job_id. Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- list List of checkpoint ids. """ return [elem["id"] for elem in self.get_checkpoints(job_id=job_id)["history"]] def get_checkpoint_details(self, job_id, checkpoint_id, show_subtasks=False): """ Returns details for a checkpoint. Endpoint: [GET] /jobs/:jobid/checkpoints/details/:checkpointid If show_subtasks is true: Endpoint: [GET] /jobs/:jobid/checkpoints/details/:checkpointid/subtasks/:vertexid Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. checkpoint_id: int Long value that identifies a checkpoint. show_subtasks: bool If it is True, the details of the subtask are also returned. Returns ------- dict """ checkpoint_details = _execute_rest_request( url=f"{self.prefix}/{job_id}/checkpoints/details/{checkpoint_id}", http_method="GET", ) if not show_subtasks: return checkpoint_details subtasks = {} for vertex_id in checkpoint_details["tasks"].keys(): subtasks[vertex_id] = _execute_rest_request( url=f"{self.prefix}/{job_id}/checkpoints/details/{checkpoint_id}/subtasks/{vertex_id}", http_method="GET", ) checkpoint_details["subtasks"] = subtasks return checkpoint_details def rescale(self, job_id, parallelism): """ Triggers the rescaling of a job. This async operation would return a 'triggerid' for further query identifier. Endpoint: [GET] /jobs/:jobid/rescaling Notes ----- Using Flink version 1.12, the method will raise RestHandlerException because this rescaling is temporarily disabled. See FLINK-12312. Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. parallelism: int Positive integer value that specifies the desired parallelism. Returns ------- JobTrigger Object that can be used to query the status of rescaling. """ params = {"parallelism": parallelism} trigger_id = _execute_rest_request( url=f"{self.prefix}/{job_id}/rescaling", http_method="PATCH", params=params )["triggerid"] return JobTrigger(self.prefix, "rescaling", job_id, trigger_id) def create_savepoint(self, job_id, target_directory, cancel_job=False): """ Triggers a savepoint, and optionally cancels the job afterwards. This async operation would return a JobTrigger for further query identifier. Endpoint: [GET] /jobs/:jobid/savepoints Notes ----- The target directory has to be a location accessible by both the JobManager(s) and TaskManager(s) e.g. a location on a distributed file-system or Object Store. Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. target_directory: str Savepoint target directory. cancel_job: bool If it is True, it also stops the job after the savepoint creation. Returns ------- JobTrigger Object that can be used to query the status of savepoint. """ trigger_id = _execute_rest_request( url=f"{self.prefix}/{job_id}/savepoints", http_method="POST", accepted_status_code=202, json={"cancel-job": cancel_job, "target-directory": target_directory}, )["request-id"] return JobTrigger(self.prefix, "savepoints", job_id, trigger_id) def terminate(self, job_id): """ Terminates a job. Endpoint: [PATCH] /jobs/:jobid Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. Returns ------- bool True if the job has been canceled, otherwise False. """ res = _execute_rest_request( url=f"{self.prefix}/{job_id}", http_method="PATCH", accepted_status_code=202 ) if len(res) < 1: return True else: return False def stop(self, job_id, target_directory, drain=False): """ Stops a job with a savepoint. This async operation would return a JobTrigger for further query identifier. Attention: The target directory has to be a location accessible by both the JobManager(s) and TaskManager(s) e.g. a location on a distributed file-system or Object Store. Draining emits the maximum watermark before stopping the job. When the watermark is emitted, all event time timers will fire, allowing you to process events that depend on this timer (e.g. time windows or process functions). This is useful when you want to fully shut down your job without leaving any unhandled events or state. Endpoint: [GET] /jobs/:jobid/stop Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. target_directory: str Savepoint target directory. drain: bool (Optional) If it is True, it emits the maximum watermark before stopping the job. default: False Returns ------- JobTrigger Object that can be used to query the status of savepoint. """ data = { "drain": False if drain is None else drain, "targetDirectory": target_directory, } trigger_id = _execute_rest_request( url=f"{self.prefix}/{job_id}/stop", http_method="POST", accepted_status_code=202, json=data, )["request-id"] return JobTrigger(self.prefix, "savepoints", job_id, trigger_id) def get_vertex(self, job_id, vertex_id): """ Returns a JobVertexClient. Parameters ---------- job_id: str 32-character hexadecimal string value that identifies a job. vertex_id: str 32-character hexadecimal string value that identifies a vertex. Returns ------- JobVertexClient JobVertexClient instance that can execute vertex related queries. """ return JobVertexClient(self.prefix, job_id, vertex_id)
2.09375
2
bin/selectNetwroks.py
ehsanfar/Network_Auctioneer
2
12797775
""" Copyright 2018, <NAME>, Stevens Institute of Technology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys, os sys.path.append(os.path.abspath('..')) from resources.classes import * from resources.globalv import * from collections import defaultdict, Counter from itertools import product import pickle import random import hashlib from resources.optimizeMILP import optimizeMILP from multiprocessing import Process, Manager import argparse dir_topologies = os.path.abspath('..') + '/topologies_new/' def createNetTopologies(): global seedlist, filename, numfederates, elementnames, edgedivider numberfederates = numfederates*[len(elementnames)//numfederates] # print([s.name for s in sources]) destinations = elementnames[-2:] sources = [e for e in elementnames if e not in destinations] if os.path.isfile(filename): with open(filename, 'rb') as infile: hashNetworkDict = pickle.load(infile) hashNetworkDict = {h: obj for h,obj in hashNetworkDict.items() if obj.costValueDict} else: hashNetworkDict = {} for seed in seedlist: # print(seed) random.seed(seed) while sum(numberfederates)<len(elementnames): i = random.choice(range(len(numberfederates))) numberfederates[i] += 1 namelist = [n*['f%d'%i] for i, n in enumerate(numberfederates)] federatenames = [e for l in namelist for e in l] random.shuffle(federatenames) # print("shuffle:", federatenames) # all_edges = [(satellites[0],satellites[1]), (satellites[3],stations[0]), (satellites[1],satellites[3]), # (satellites[2],satellites[4]), (satellites[2],satellites[1]), (satellites[2],satellites[3]), (satellites[3],satellites[4]), (satellites[4],stations[1]), (satellites[2],stations[0])] # all_possible_edges = [(a,b) for a, b in list(product(elementnames, elementnames)) if (a != b and element_federate_dict[a] != element_federate_dict[b])] all_possible_edges = [] all_edges = [] # while len([l for l in all_possible_edges if l[1] in destinations])<len(elements)//linkcapacity: all_possible_edges = [(a,b) for a, b in list(product(elementnames, elementnames)) if (a != b and not (a in destinations))] all_edges = random.sample(all_possible_edges, int(len(all_possible_edges)//edgedivider)) edge2destin = [l for l in all_possible_edges if l[1] in destinations and l not in all_edges] existingedges2desgin = [l for l in all_edges if l[1] in destinations] nume2d = int(len(sources)/2 - len(existingedges2desgin)) # print(nume2d) if nume2d>0: newedges = random.sample(edge2destin, nume2d) # print(len(all_edges)) all_edges = all_edges + newedges # print(newedges) # print(len(all_edges)) all_edge_set = set([]) destin_count = 0 for edge in all_edges: s, d = edge # if destin_count > len(satellites): # continue if s in destinations or d in destinations: destin_count += linkcapacity all_edge_set.add((s,d)) all_edge_set.add((d,s)) all_edges = list(all_edge_set) tempNetTop = NetTop(elementnames, all_edges, federatenames, sources, destinations) if tempNetTop.hashid not in hashNetworkDict: # print(seed, tempNetTop.hashid) hashNetworkDict[tempNetTop.hashid] = tempNetTop with open(filename, 'wb') as outfile: pickle.dump(hashNetworkDict, outfile) def calCostValue(nettopObj): federatenames = nettopObj.federates # fedPriceDict = {fname: (sharelinkcost, uselinkcost) for fname in federatenames} # federates = [Federate(name = f, cash = 0, sharelinkcost = fedPriceDict[f][0], uselinkcost = fedPriceDict[f][1]) for f in set(federatenames)] # federateDict = {f.name: f for f in federates} # # print("element names:", nettopObj.elements) # elements = [Element(name = e, capacity=elementcapacity, size = 0, owner = federateDict[f]) for (e,f) in zip(nettopObj.elements, federatenames)] # elementDict = {e.name: e for e in elements} # sources = [e for e in elements if e.name not in nettopObj.destinations] # # sources = nettopObj.sources # # print([s.name for s in sources]) # linklist = [Link(source = elementDict[e1], destin = elementDict[e2], capacity = linkcapacity, size = 0, owner = elementDict[e2].owner) for (e1, e2) in nettopObj.edges] # time = 0 # newtasks = [Task(id = id + n, element=s, lastelement=s, size=size, value=value, expiration=time + 5, init=time, active=True, penalty=penalty) for n, s in enumerate(sources)] # elfedDict = {e: f for e, f in zip(nettopObj.elements, nettopObj.federates)} # federates = [Federate(name = f, cash = 0, sharelinkcost = 0, uselinkcost = 0) for f in set(federatenames)] # federateDict = {f.name: f for f in federates} # # print("element names:", nettopObj.elements) # elements = [Element(name = e, capacity=elementcapacity, size = 0, owner = federateDict[f]) for (e,f) in zip(nettopObj.elements, federatenames)] # elementDict = {e.name: e for e in elements} # sources = [e for e in elements if e.name not in nettopObj.destinations] # # sources = nettopObj.sources # # print([s.name for s in sources]) # linklist = [Link(source = elementDict[e1], destin = elementDict[e2], capacity = linkcapacity, size = 0, owner = elementDict[e2].owner) for (e1, e2) in nettopObj.edges] # time = 0 # newtasks = [Task(id = id + n, element=s, lastelement=s, size=size, value=value, expiration=time + 5, init=time, active=True, penalty=penalty) for n, s in enumerate(sources)] # elfedDict = {e: f for e, f in zip(nettopObj.elements, nettopObj.federates)} # print(elfedDict) # print("new tasks:", newtasks) for sharelinkcost, uselinkcost in basetuples: fedPriceDict = {fname: (sharelinkcost, uselinkcost) for fname in federatenames} federates = [Federate(name = f, cash = 0, sharelinkcost = fedPriceDict[f][0], uselinkcost = fedPriceDict[f][1]) for f in set(federatenames)] federateDict = {f.name: f for f in federates} # print("element names:", nettopObj.elements) elements = [Element(name = e, capacity=elementcapacity, size = 0, owner = federateDict[f]) for (e,f) in zip(nettopObj.elements, federatenames)] elementDict = {e.name: e for e in elements} sources = [e for e in elements if e.name not in nettopObj.destinations] # sources = nettopObj.sources # print([s.name for s in sources]) linklist = [Link(source = elementDict[e1], destin = elementDict[e2], capacity = linkcapacity, size = 0, owner = elementDict[e2].owner) for (e1, e2) in nettopObj.edges] time = 0 newtasks = [Task(id = id + n, element=s, lastelement=s, size=size, value=value, expiration=time + 5, init=time, active=True, penalty=penalty) for n, s in enumerate(sources)] elfedDict = {e: f for e, f in zip(nettopObj.elements, nettopObj.federates)} # print("new tuple:", sharelinkcost, uselinkcost) # print("length of cost value dict:", len(nettopObj.costValueDict)) # print(nettopObj.hashid, nettopObj.costValueDict) # if (sharelinkcost, uselinkcost) not in nettopObj.costValueDict or nettopObj.costValueDict[(sharelinkcost, uselinkcost)] == 0: # for f in federates: # f.cash = 0 # f.sharelinkcost = sharelinkcost # f.uselinkcost = uselinkcost edgePriceDict = {e: fedPriceDict[elfedDict[e[1]]][0] for e in nettopObj.edges} # print(edgePriceDict) # print(nettopObj.hashid) # print(fedPriceDict) # print(linklist) # print(nettopObj.destinations) # print(len(newtasks)) # print(federates) # print(linklist) solutionObj = MILPSolution(nettopObj.hashid, time, fedPriceDict = fedPriceDict, fedValDict = {f: 0 for f in fedPriceDict.keys()}, edgelist = []) solutionObj = optimizeMILP(elements = elements, linklist = linklist, destinations = nettopObj.destinations, storedtasks = [], newtasks = newtasks, time = time, federates = federates, edgePriceDict = edgePriceDict, solutionObj = solutionObj) totalvalue = solutionObj.totalvalue # print(solutionObj.sourceEdgeDict) # print(solutionObj.fedValDict) nettopObj.costValueDict[(sharelinkcost, uselinkcost)] = totalvalue # print("New tuple cost and value:", sharelinkcost, uselinkcost, totalvalue) def updateCostValue(objlist, proc, tempfilename): global filename if os.path.isdir("/home/abbas.ehsanfar/gurobi"): hostname = os.environ['HOSTNAME'] os.environ['GRB_LICENSE_FILE'] = "/home/abbas.ehsanfar/gurobi/%s/lic%s/gurobi.lic"%(hostname,str(proc%30).zfill(2)) for k, nettopObj in enumerate(objlist): # print("New topoology:", nettopObj.hashid) calCostValue(nettopObj) if k%20 == 0: objDict = {obj.hashid: obj for obj in objlist} with open(tempfilename, 'wb') as outfile: pickle.dump(objDict, outfile) # with open(filename, 'rb') as infile: # hashNetworkDict = pickle.load(infile) # for h, obj in objDict.items(): # hashNetworkDict[h] = obj # with open(filename, 'wb') as outfile: # pickle.dump(hashNetworkDict, outfile) with open(tempfilename, 'wb') as outfile: objDict = {obj.hashid: obj for obj in objlist} pickle.dump(objDict, outfile) def multiProcCostValue(): global nproc, filename with open(filename, 'rb') as infile: hashNetworkDict = pickle.load(infile) topollist = list(hashNetworkDict.values()) N = len(topollist) allProcs = [] for proc in range(nproc): tempfilename = filename[:-2] + '_proc%s.p'%str(proc).zfill(2) inds = range(proc, N, nproc) objlist = [topollist[i] for i in inds] p = Process(target=updateCostValue, args=(objlist,proc,tempfilename)) p.start() allProcs.append(p) for a in allProcs: a.join() finalDict = {} for proc in range(nproc): tempfilename = filename[:-2] + '_proc%s.p'%str(proc).zfill(2) with open(tempfilename, 'rb') as infile: hashNetworkDict = pickle.load(infile) for h, obj in hashNetworkDict.items(): finalDict[h] = obj with open(filename, 'wb') as outfile: pickle.dump(finalDict, outfile) for proc in range(nproc): os.remove(filename[:-2] + '_proc%s.p'%str(proc).zfill(2)) def calAuctionScore(): global filename print(filename) if os.path.isfile(filename): with open(filename, 'rb') as infile: hashNetworkDict = pickle.load(infile) # topollist = hashNetworkDict.values() # if len(hashNetworkDict) < 1000: # return for k, topol in hashNetworkDict.items(): costdict = topol.costValueDict maxtup = (0, 1000) for mintup in [(500,501), (400,600)]: if mintup in costdict: topol.auctionscore += costdict[maxtup] - costdict[mintup] # print(topol.auctionscore) toplist = sorted(hashNetworkDict.values(), key = lambda x: x.auctionscore, reverse = True)[:10] # print(filename, [e.auctionscore for e in toplist]) with open(filename[:-2] + '_top10.p', 'wb') as outfile: pickle.dump(toplist, outfile) with open(filename[:-2] + '_score.p', 'wb') as outfile: pickle.dump(hashNetworkDict, outfile) else: return def aggregate60Nodes(): for numfederates, numelements, edgedivider in [(4,20,7), (4,20,11), (4,20,3), (4,20,5)]: filename = dir_topologies + 'hashNetworkDict_elements%d_federates%d_density%d.p'%(numelements, numfederates, edgedivider) finalDict = {} for proc in range(60): tempfilename = filename[:-2] + '_proc%s.p'%str(proc).zfill(2) with open(tempfilename, 'rb') as infile: hashNetworkDict = pickle.load(infile) for h, obj in list(hashNetworkDict.items()): finalDict[h] = obj with open(filename, 'wb') as outfile: pickle.dump(finalDict, outfile) def aggregateNetworks(): netlist = [] for (numfederates, numelements), edgedivider in list(fedeldensitylist): filename = dir_topologies + 'hashNetworkDict_elements%d_federates%d_density%d_top10.p'%(numelements, numfederates, edgedivider) # if os.path.isfile(filename): with open(filename, 'rb') as infile: netlist.extend(pickle.load(infile)) hashNetDict = {net.hashid: net for net in netlist} with open(dir_topologies + 'hashNetDict.p', 'wb') as outfile: pickle.dump(hashNetDict, outfile) if __name__ == '__main__': parser = argparse.ArgumentParser(description="This processed raw data of twitter.") parser.add_argument('--nproc', type=int, default=3, help='cores on server') parser.add_argument('--n', type=int, default=3, help='cores on server') args = parser.parse_args() argsdict = vars(args) nproc = argsdict['nproc'] time = 0 # basecost = [0, 200, 400, 600, 800, 1000] seedlist = list(range(0,500)) # for (numfederates, numelements), edgedivider in reversed(list(product([(2,10), (2,15), (3,15), (2,20), (3,20), (4,20)], [3,5,7,11]))): aggregateNetworks() # for (numfederates, numelements), edgedivider in list(fedeldensitylist): # filename = dir_topologies + 'hashNetworkDict_elements%d_federates%d_density%d.p'%(numelements, numfederates, edgedivider) # elementnames = ['e%d'%(i+1) for i in range(numelements)] # createNetTopologies() # multiProcCostValue() # calAuctionScore()
1.859375
2
Pyrado/pyrado/tasks/sequential.py
jacarvalho/SimuRLacra
0
12797776
<filename>Pyrado/pyrado/tasks/sequential.py import numpy as np from copy import deepcopy from typing import Sequence import pyrado from pyrado.spaces.base import Space from pyrado.utils.data_types import EnvSpec from pyrado.tasks.base import Task from pyrado.tasks.reward_functions import RewFcn from pyrado.utils.input_output import print_cbt class SequentialTasks(Task): """ Task class for a sequence of tasks a.k.a. goals """ def __init__(self, tasks: Sequence[Task], start_idx: int = 0, hold_rew_when_done: bool = False, verbose: bool = False): """ Constructor :param tasks: sequence of tasks a.k.a. goals, the order matters :param start_idx: index of the task to start with, by default with the first one in the list :param hold_rew_when_done: if `True` reward values for done tasks will be stored and added every step :param verbose: print messages on task completion .. note:: `hold_rew_when_done=True` only makes sense for positive rewards. """ self._tasks = deepcopy(tasks) self._idx_curr = start_idx self.succeeded_tasks = np.full(len(self), False, dtype=bool) self.failed_tasks = np.full(len(self), False, dtype=bool) self.succeeded_tasks[:start_idx] = True # check off tasks which are before the start task self.hold_rew_when_done = hold_rew_when_done if self.hold_rew_when_done: self.held_rews = np.zeros(len(self)) self.verbose = verbose def __len__(self) -> int: return len(self._tasks) @property def env_spec(self) -> EnvSpec: return self._tasks[0].env_spec # safe to assume that all tasks have the same env_spec @property def tasks(self) -> Sequence[Task]: """ Get the list of tasks. """ return deepcopy(self._tasks) @property def idx_curr(self) -> int: """ Get the index of the currently active task. """ return self._idx_curr @idx_curr.setter def idx_curr(self, idx: int): """ Set the index of the currently active task. """ if not (0 <= idx < len(self)): raise pyrado.ValueErr(given=idx, ge_constraint='0', le_constraint=f'{len(self) - 1}') self._idx_curr = idx @property def state_des(self) -> np.ndarray: """ Get the desired state the current task. """ return self._tasks[self._idx_curr].state_des @state_des.setter def state_des(self, state_des: np.ndarray): """ Set the desired state the current task. """ if not isinstance(state_des, np.ndarray): raise pyrado.TypeErr(given=state_des, expected_type=np.ndarray) self._tasks[self._idx_curr].state_des = state_des @property def space_des(self) -> Space: """ Get the desired space the current task. """ return self._tasks[self._idx_curr].space_des @space_des.setter def space_des(self, space_des: Space): """ Set the desired space the current task. """ if not isinstance(space_des, Space): raise pyrado.TypeErr(given=space_des, expected_type=Space) self._tasks[self._idx_curr].space_des = space_des @property def rew_fcn(self) -> RewFcn: """ Get the reward function of the current task. """ return self._tasks[self._idx_curr].rew_fcn def step_rew(self, state: np.ndarray, act: np.ndarray, remaining_steps: int) -> float: """ Get the step reward from the current task. """ step_rew = 0. if self.hold_rew_when_done: for i in range(len(self)): # Iterate over previous tasks if self.succeeded_tasks[i] or self.failed_tasks[i]: # Add the last reward from every done task (also true for failed tasks) step_rew += self.held_rews[i] if not (self.succeeded_tasks[self._idx_curr] or self.failed_tasks[self._idx_curr]): # Only give step reward if current sub-task is active step_rew += self._tasks[self._idx_curr].step_rew(state, act, remaining_steps) final_rew = self._is_curr_task_done(state, act, remaining_steps) # zero if the task is not done # self.logger.add_value('successful tasks', self.successful_tasks) return step_rew + final_rew def compute_final_rew(self, state: np.ndarray, remaining_steps: int) -> float: """ Compute the reward / cost on task completion / fail of this task. Since this task holds multiple sub-tasks, the final reward / cost is computed for them, too. .. note:: The `ParallelTasks` class is not a subclass of `TaskWrapper`, i.e. this function only looks at the immediate sub-tasks. :param state: current state of the environment :param remaining_steps: number of time steps left in the episode :return: final reward of all sub-tasks """ sum_final_rew = 0. for t in self._tasks: sum_final_rew += t.compute_final_rew(state, remaining_steps) return sum_final_rew def reset(self, **kwargs): """ Reset all tasks. """ self.idx_curr = 0 for s in self._tasks: s.reset(**kwargs) # Reset internal check list for done tasks self.succeeded_tasks = np.full(len(self), False, dtype=bool) self.failed_tasks = np.full(len(self), False, dtype=bool) if 'start_idx' in kwargs: self.succeeded_tasks[:kwargs['start_idx']] = True # Reset the stored reward values for done tasks if self.hold_rew_when_done: self.held_rews = np.zeros(len(self)) # doesn't work with start_idx def _is_curr_task_done(self, state: np.ndarray, act: np.ndarray, remaining_steps: int, verbose: bool = False) -> float: """ Check if the current task is done. If so, move to the next one and return the final reward of this task. :param state: current state :param act: current action :param remaining_steps: number of time steps left in the episode :param verbose: print messages on success or failure :return: final return of the current subtask """ if not self.succeeded_tasks[self._idx_curr] and not self.failed_tasks[self._idx_curr] and self._tasks[self._idx_curr].is_done(state): # Task has not been marked done yet, but is now done if self._tasks[self._idx_curr].has_succeeded(state): # Check off successfully completed task self.succeeded_tasks[self._idx_curr] = True if verbose: print_cbt(f'task {self._idx_curr} has succeeded (is done) at state {state}', 'g') elif self._tasks[self._idx_curr].has_failed(state): # Check off unsuccessfully completed task self.failed_tasks[self._idx_curr] = True if verbose: print_cbt(f'Task {self._idx_curr} has failed (is done) at state {state}', 'r') else: raise pyrado.ValueErr(msg=f'Task {self._idx_curr} neither succeeded or failed but is done!') # Memorize current reward if self.hold_rew_when_done: self.held_rews[self._idx_curr] = self._tasks[self._idx_curr].step_rew(state, act, remaining_steps=0) # Give a reward for completing the task defined by the task task_final_rew = self._tasks[self._idx_curr].final_rew(state, remaining_steps) # Advance to the next task self.idx_curr = (self._idx_curr + 1) % len(self) else: task_final_rew = 0. return task_final_rew def has_succeeded(self, state: np.ndarray) -> bool: """ Check if this tasks is done. The SequentialTasks is successful if all sub-tasks are successful. :param state: environments current state :return: `True` if succeeded """ successful = np.all(self.succeeded_tasks) if successful and self.verbose: print_cbt(f'All {len(self)} sequential sub-tasks are done successfully', 'g') return successful
2.546875
3
Python/strings/long2bin.py
ebouaziz/miscripts
0
12797777
<gh_stars>0 #!/usr/bin/env python2.7 # Deal with long integer encoded as binary strings # sample long integer l = (2**32-2)*(2**32-3)*(2**32-7) # input long integer print "%x" % l # create a list ls = [] while l: # extract each byte of the long integer and store it into the list bot = l&((1<<8)-1) l >>= 8 ls.append(bot) # pad the list up to 32 items ls.extend([0]*(32-len(ls))) # reverse the list ls.reverse() # build up output data (signature) binstring = [chr(c) for c in ls] # output debug string print "(%d) %s" % (len(binstring), ''.join('%x' % c for c in ls))
3.484375
3
genetic_algorithm.py
Ziggareto/national_cipher_challenge
0
12797778
import basics import random import math import matplotlib.pyplot as plt import numpy as np import cProfile import pstats import time class node(): # Has a keyword that defines it's means ofo decrypting the text # Can reproduce to make a mutated offspring def __init__(self, key=None): self.key = key def reproduce(self): pass class algorithm(): #has a population of nodes with keywords, can breed to make offspring with random #mutations/changes, can cull to select for best english scoring offspring def __init__(self, text, population_size, breeding_times, node_class): self.text = text self.breeding_times = breeding_times # how many times each parent will breed self.population_size = population_size self.population = [] self.past_generations = [] self.complete_scores = [] # stores the complete score history self.summary_scores = [] # stores min max mean median self.node = node_class # stores the type of node self.scorer = basics.ngram_score('english_trigrams.txt', 'english_quadgrams.txt') self.base_score = self.scorer.score(basics.generate_random_text(len(text))) self.english_score = self.scorer.score(basics.generate_english_text(len(text))) self.cycles_count = 0 self.graphing = False #When turned on, cull() passes new scores to the graph #self.initialize_population() def initialize_graph(self): self.graphing = True self.ax = plt.gca() if len(self.summary_scores) > 0: start_num_points = len(self.summary_scores) xdata = np.array([x for x in range(1, start_num_points)]) self.lines = [self.ax.plot(xdata, [score[num] for score in self.summary_scores])[0] for num in range(3)] else: self.lines = [self.ax.plot([], [])[0] for num in range(3)] self.ax.relim() self.ax.autoscale_view(True, True, True) plt.ion() plt.show() def update_line(self, line, new_data): #Given a line and new_data of the form [new_x, new_y], adds on the new values line.set_xdata(np.append(line.get_xdata(), new_data[0])) line.set_ydata(np.append(line.get_ydata(), new_data[1])) def update_graph(self): for num in range(len(self.lines)): self.update_line(self.lines[num], [self.cycles_count, self.summary_scores[-1][num]]) self.ax.relim() self.ax.autoscale_view(True, True, True) plt.draw() plt.pause(0.01) def initialize_population(self): # Initializes the population with size self.population, hopefully near to endpoint pass def score(self, my_node): return(self.scorer.score(self.decrypt(self.text, my_node.key))) def decrypt(self, text, key): pass def cycle(self, ntimes=1): # Does ntimes cycles of breed and cull for num in range(ntimes): self.cycles_count += 1 self.breed() self.cull() def run_to_score(self, score): # Keeps cycling until the latest population's mean score is greater than score while True: self.cycle() if self.summary_scores[-1][2] > score: break def turnover(self, breeding_times, num_cycles_small, num_cycles_large, cullsize): for num in range(num_cycles_large): for num in range(num_cycles_small): self.breed(size=len(self.population), times=breeding_times) self.cull(size=cullsize) def breed(self, size=None, times=None): """Replaces self.population with a whole load of newly bred offspring, randomly selecting who pairs with who""" if size == None: size = self.population_size if times == None: times = self.breeding_times self.offspring = [] for pop_num in range(size): for breed_num in range(times): self.offspring.append(self.population[pop_num].reproduce()) # archive the parent generation, make the new population the offspring. self.past_generations.append(self.population) self.population = self.offspring def cull(self, size=None): #size is the final size (post culling) of the population if size == None: size = self.population_size """Removes the bottom scorers of the population until the population fits population_size""" # From each node in population we get [node_index, node_score] in population_ranking population_ranking = [[x, self.score(self.population[x])] for x in \ range(len(self.population))] population_ranking.sort(key=lambda x: x[1]) # sort by score from lowest to highest # The new population is the top population_size guys as ranked # x[0] is the index of the node self.population = [self.population[x[0]] for x in population_ranking[-size:]] # The actual scores, with the same indices as their node counterparts in population self.ranking = [x[1] for x in population_ranking[-size:]] #score keeping self.complete_scores.append(self.ranking) botpercentile = self.ranking[math.floor(0.05*size)] toppercentile = self.ranking[math.floor(0.95*size)] median = self.ranking[math.ceil(size/2)] self.summary_scores.append([botpercentile, median, toppercentile]) # if graphing is turned on, send the new data to the graph if self.graphing == True: self.update_graph() class genetic_algorithm(algorithm): def breed(self, size=None, times=None): """Replaces self.population with a whole load of newly bred offspring, randomly selecting who pairs with who""" if size == None: size = self.population_size if times == None: times = self.breeding_times self.offspring = [] # 0 will increment each time a node breeds, until it reaches breeding_times available = [[x, 0] for x in self.population] # who is left available while True: # take the first node in available as the base, breed them with random partners # in available, then remove first node from available # range(...) ensures we breed the right number of times for breed_count in range(available[0][1], self.breeding_times): try: # try to choose a partner from those in available choice = random.choice(available[1:]) except IndexError: #Sometimes the last guy gets left out #print('ruh roh') choice = [random.choice(self.population), -1] # breed with the chosen partner self.offspring.append(available[0][0].reproduce(choice[0])) # increase the partner's breed count by one choice[1] += 1 # if the partner's bred the requisite number of times, remove them from available if choice[1] == self.breeding_times: available.remove(choice) # remove our start node from available del(available[0]) # if everyone's bred, break the loop if len(available) == 0: break # archive the parent generation, make the new population the offspring. self.past_generations.append(self.population) self.population = self.offspring def algorithm_avg_time(n, score, algorithm, *args, graphing=False, **kwargs): """Makes n algorithms, returns the avg time for them to run to a score, given""" algorithms = [] for num in range(n): algorithms.append(algorithm(*args, **kwargs)) if graphing: algorithms[-1].initialize_graph() prof = cProfile.Profile() for num in range(n): print('{0} out of {1}:'.format(num+1, n), end='') prof.runctx('algorithms[num].run_to_score(score)', globals(), locals()) if graphing: for line in algorithms[num].lines: line.remove() stats = pstats.Stats() stats.add(prof) return(stats)
3.3125
3
nmutils/gui/ptychoViewer/design_rc.py
alexbjorling/nanomax-analysis-utils
3
12797779
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt5 (Qt v5.12.5) # # WARNING! All changes made in this file will be lost! # from PyQt5 import QtCore from silx.gui import qt as QtCore qt_resource_data = b"\ \x00\x00\x19\x3d\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x32\x00\x00\x00\x32\x08\x06\x00\x00\x00\x1e\x3f\x88\xb1\ \x00\x00\x00\x06\x62\x4b\x47\x44\x00\xff\x00\xff\x00\xff\xa0\xbd\ \xa7\x93\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0b\x13\x00\x00\ \x0b\x13\x01\x00\x9a\x9c\x18\x00\x00\x00\x07\x74\x49\x4d\x45\x07\ \xe3\x01\x1e\x09\x34\x07\xfb\x3d\x97\x4b\x00\x00\x00\x1d\x69\x54\ \x58\x74\x43\x6f\x6d\x6d\x65\x6e\x74\x00\x00\x00\x00\x00\x43\x72\ \x65\x61\x74\x65\x64\x20\x77\x69\x74\x68\x20\x47\x49\x4d\x50\x64\ \x2e\x65\x07\x00\x00\x18\xa1\x49\x44\x41\x54\x68\xde\x35\x99\x67\ \x7c\x55\x55\xfa\xb6\xaf\xbd\x4f\x4b\x4e\x7a\x25\x09\x25\x09\x09\ \x1d\x44\x91\x26\x8a\xe8\x20\x4a\x71\x44\x01\xb1\x2b\x16\xb0\xcc\ \x60\xc1\xae\xef\x08\x63\x77\xfe\x3a\xa2\xa0\x88\x0c\x16\xac\x88\ \x0a\xa2\xa0\x02\x4a\x13\x51\x40\x40\x7a\x42\x4d\x02\x49\x48\x2f\ \x27\x27\xa7\xee\xfb\xfd\xb0\xb7\x9f\xf2\xcb\x29\xfb\xac\x67\xad\ \xfb\xb9\xcb\x7a\x8c\xbc\xe8\x70\xcd\xef\xdc\xc1\x75\x07\x80\x10\ \x3c\xd0\x7b\x04\x1b\xbb\xee\x66\xcf\xe6\x28\xae\x19\x49\x30\xa6\ \x83\xfa\x39\x30\xe3\x1c\xe8\x0d\x0c\xee\xf0\x32\xe3\xd9\x08\x2c\ \xc9\x83\x48\x36\x0c\x38\x08\xe3\xc5\xee\x3b\xe0\x9b\x42\xd8\x0d\ \x7c\xb0\x03\xd2\xbe\x06\xf7\x27\x5d\xe0\xf4\x28\x70\xf9\x20\xe5\ \x04\x47\x56\xed\xa0\x6a\x84\x49\x69\xd8\x22\x73\x85\x9b\xb4\xc7\ \xa6\x42\x73\x6f\x02\x23\x9b\x49\x78\x66\x09\xee\x6f\xc3\x84\xa3\ \x26\xbe\x7d\x97\x62\xb5\xe7\xa3\x59\x3f\x62\xae\xf6\xf3\xf6\xab\ \x11\xae\x5f\x94\x8f\x7b\xe5\x85\x7c\x78\xaf\x9f\xa9\x89\xaf\x52\ \x7b\xf6\x3a\x1a\xc9\x67\xe0\xb7\x43\xd9\xfe\xf7\xcf\x30\xbf\x6b\ \xde\xcf\xdf\x6a\x81\xb9\x40\x03\x6c\xe9\x7a\x88\x7f\x54\x47\x71\ \x7d\x0d\x9c\xee\x0f\x87\xa1\x79\x3f\x1c\xc7\xcf\x50\x60\xc6\xbf\ \x2c\xf8\x4f\x7f\x68\x1e\x00\x1d\xbd\xe0\x60\x0a\x08\xb2\x42\x70\ \x3e\xb0\x28\x0c\x49\x19\x10\x9e\x0a\x34\x74\x03\x6e\x82\xf8\xc3\ \xd0\xf2\x02\x7d\x2f\x99\xc1\xa8\x45\x09\x14\xd7\x42\x5a\x38\x0e\ \x1d\x6d\x44\x18\x88\xf7\xb7\x97\x30\x27\x7e\x47\xa8\xde\xc0\xb7\ \x29\x87\xd6\xa3\x23\xd0\xa9\x2c\x5c\x8f\x4d\xc0\x38\xe4\xa1\xf7\ \xeb\x29\xf0\x99\x8b\xe3\xea\x46\x60\xed\x83\x64\x86\xfb\x91\x1c\ \x4d\xa7\xa6\xc5\xa0\xe0\x64\x22\x93\xdf\x9a\x8b\x59\x19\x8c\x92\ \xb8\x0d\xc8\x81\x78\x14\xc2\x64\x91\x91\x68\xc2\x56\x17\xb8\xce\ \x62\x8d\x83\x0d\x37\xc1\x68\x82\xdc\x70\x77\x02\x2c\xcc\x05\xf2\ \xc1\x30\xe0\x9c\xcd\x1c\x7b\xb3\x8d\xde\xcf\xc2\xae\x3e\xb0\x0b\ \x88\xb9\xc1\x9d\x03\x81\x81\xc0\xd3\xfb\xc1\x3c\x03\xec\x43\x44\ \x11\xb3\x49\x9a\xf3\x24\x7c\x9c\x45\x6c\x8c\xa0\xcb\xef\xb8\xe8\ \x0a\x94\x63\x1a\x3e\x7c\x5d\x93\xd1\xf8\x16\xd2\x9a\x9b\x70\x75\ \xf6\x84\x68\x6f\x28\x3d\xc3\xd0\x4b\xcb\xc9\x8c\x2c\x62\xdf\xb2\ \x9d\xdc\xb2\xfb\x08\x1e\xef\x11\x16\x56\x26\x71\xdb\xb1\x5f\xf8\ \x57\x82\x87\x65\x56\x0e\x2c\xd9\xde\x45\x5a\x81\x74\x27\x6a\xac\ \x43\x17\xcb\xa3\xd8\xa3\x48\xd9\xf9\xd2\xe0\x2e\xda\x7d\x08\x0d\ \x94\x57\x7f\x84\x90\x0a\x3d\x52\x62\xa2\x94\x9a\x2c\x0d\x34\x54\ \x7f\x00\x5d\x27\xf4\x80\xd0\x0f\x42\xaf\x0b\xad\x15\xaa\x8d\xa3\ \xaf\x84\xaa\x02\x28\x7e\xef\x00\x89\xe7\xd5\x41\x95\x9a\x39\x25\ \x8b\x8d\xb2\xcc\x0f\x14\xfc\x0d\xc5\x6f\xf0\x49\xcc\x96\xd8\xa1\ \x28\x87\xa4\xbf\x77\x97\x26\xa3\x76\x36\xa9\x9c\x46\x9d\xa0\x42\ \xed\x4f\xa5\xc9\x1a\xd8\x4f\x07\x8d\x66\x3d\x52\x70\x4c\x4a\xfe\ \x51\x67\xb6\xf8\xb4\xe3\xdc\x1b\x34\x3f\x7f\xa9\x46\x0e\x8d\xeb\ \x92\xfc\x72\x99\x59\xde\x36\x82\x35\xc0\x71\xc8\xf8\x16\x26\x07\ \xa2\xb8\x3c\x1e\x20\x09\xc6\x9d\x65\x75\x29\xcc\xa9\x8f\x30\xe4\ \x66\xa0\x2a\x19\x22\x3e\x88\x87\x69\xb9\x5e\xfc\x38\x00\xae\x06\ \x1e\x04\x2e\x8c\xdb\xd0\x3a\x5f\x90\x6c\xc0\x84\x38\x74\xab\x07\ \x1e\x39\x88\xc6\xfe\x17\x3f\x2f\x93\xce\x12\x0c\xda\x31\xac\x3c\ \x12\x67\x8f\x20\x3e\x35\x0c\x1c\x00\x22\x18\xf8\xb0\x36\xf6\x83\ \xc4\x44\x7c\x74\x12\x25\x4e\xb1\xf9\x09\xc9\x2b\xf2\xe0\xf0\xcd\ \xf4\x30\x3b\x99\x68\xee\x87\x0b\xc6\x53\xf0\xa6\x20\xdf\x4b\x81\ \x37\x99\xe2\x16\x93\x7b\x3c\x07\x31\x17\x0e\xe9\x44\x61\x60\x00\ \x18\xc5\x30\x39\x0e\x74\x58\xd0\xe5\x04\xc1\x5b\xa1\xd5\x03\x33\ \x16\x00\x1b\x92\x41\x01\x48\x6d\xe5\xf4\xdc\x28\xf7\x3c\x0d\x1b\ \x80\x33\x67\xa0\xe8\x13\x48\xfe\x10\xfa\x76\x40\xb3\x01\x9e\xf5\ \x90\x38\x2a\x17\x96\x65\x63\x5a\x10\xfb\x5f\x13\xfc\xed\x23\xa0\ \x02\x38\x06\x04\x60\xdf\x38\x4c\xd3\x0b\x7d\x77\x03\xc2\x45\x3b\ \x66\xa0\x1f\x84\x3a\xf1\x70\x9c\x46\x92\x88\x64\x9c\x02\xab\x15\ \xd1\x04\xf1\x54\x0a\x4f\x0f\x85\x13\x82\xba\x22\x16\x1d\x9b\x42\ \x63\xd5\xc5\xb4\x9b\x01\xc2\xed\x43\xe1\x93\x76\xd4\xb1\x12\xe9\ \x69\x74\xa8\x19\x6d\xaf\x40\xba\x18\x59\x43\xd0\xd3\x21\x54\xbf\ \x18\xc9\x9f\x2a\xb9\xfc\x52\x8a\xa9\x8a\x15\x86\xae\x10\xfa\x57\ \x0c\x35\xcd\x46\x56\x4f\xa4\x81\x09\x52\x41\x9a\xa2\x8b\xd0\x71\ \xa1\xf8\xcd\x3e\x89\xc7\x25\x56\x4a\x3d\x67\x4b\xcb\x90\x36\x21\ \xdd\xe4\x96\x98\x22\xf1\x9e\xc4\x42\x89\xc9\xd2\xa7\x48\x2c\x95\ \x28\x73\xe0\x85\x2c\x5e\x56\x05\x96\xda\x78\x45\x4a\x19\xae\x06\ \xa4\x2a\x1a\x14\x4b\xb9\x43\xba\x20\x59\x61\xe3\x65\xfd\xb3\x58\ \x7a\xce\x1f\xd6\xdb\xee\x23\xda\x53\x34\x5f\x9c\xe8\x40\x0d\xfb\ \x90\x1e\x42\x7f\xb6\x23\x6b\x13\xd2\xf9\xa6\xc2\xff\x41\x95\xeb\ \x90\xd2\x3d\x92\xd1\x53\x2a\x71\xab\x6a\x13\xfa\x8f\xd0\xea\xb3\ \x28\x3a\x16\x89\xf3\x24\x6e\x92\xb8\x56\x62\x92\x42\x4f\xb8\x55\ \x65\x21\xdd\x80\xc4\x1d\x12\x1f\x49\xfc\x21\x99\x9f\x4b\x85\x57\ \x4b\x6b\x90\x26\xba\x25\xde\x95\xc5\x59\x89\x72\x69\x46\x0f\xa9\ \x70\x8c\xe2\x54\x2a\x4a\x48\x3a\xb7\x97\xc4\x1a\x95\x63\x29\x98\ \xfb\xb0\xe4\x9a\xa5\x83\x58\x6a\x64\x9b\xe4\x2f\x52\x83\xf7\x2b\ \xad\xa1\x55\xe3\x86\x48\x1f\x12\x50\xa5\x7b\xad\xf4\xb8\x21\x2a\ \x6a\xd1\xce\x2a\xa4\xb5\x68\xb3\xec\x82\xac\x6b\xd1\x9a\x18\xd2\ \x55\x48\xd9\x48\x69\x86\xaa\x3f\x44\xff\x16\x3a\xb5\xc6\x94\x92\ \xd2\x25\x86\x38\x8b\xbd\x47\x32\x6e\x56\xe4\xca\x62\x9d\x6a\x41\ \x9b\x84\x82\x3f\x20\x25\x96\x38\xef\x7f\x26\xb1\x4c\xe2\x5b\x29\ \xfd\x46\x69\x2b\xd2\x85\xa5\x12\x6f\x49\x6c\x96\x78\x43\x7a\xd8\ \x23\xf1\xaa\xc4\x26\x69\xd8\xc5\x12\x1f\xa9\x91\x98\xe4\xba\x5d\ \x71\xf6\xa9\x81\xb0\xc2\x5c\x2b\xb9\x6e\xd1\x7a\xc2\xba\x17\xe9\ \x3b\x62\x6a\xf0\xbd\x22\x0d\xf5\xab\x82\x45\x22\xb2\x1b\x55\xef\ \x40\x91\x25\xe8\xcb\x38\x52\x11\xd2\x14\xa4\x9b\x4c\xc9\x6b\x4a\ \x49\x1e\x55\x2c\x43\x5f\x06\x91\xee\x43\x72\x17\x4a\xfc\x4d\x62\ \x92\x64\x9e\x27\x2b\xbb\x50\x81\x95\xe8\x47\x0b\xad\x11\xfa\x46\ \xe8\x90\x90\x16\x20\x65\xa4\x49\xdc\xee\x2c\xf2\x6b\x89\xef\xa4\ \xec\xcb\xa5\xf7\x0d\xa9\xa0\xbf\xc4\xff\x24\xf6\x4b\xbd\x2f\x95\ \xf2\x87\x4b\xfc\x2c\x15\x3d\x28\x31\x47\x61\x02\x12\x0f\xa9\x93\ \x5a\x9d\xa6\x46\x32\x27\xa9\x9a\x4a\x7d\x8d\xb4\x84\x98\x54\x38\ \x5e\xe2\x62\x45\xf8\x42\xaf\x13\x93\xa1\xc7\x11\xdd\x40\xa3\x20\ \xbe\x07\xdc\x33\x93\xc0\x17\x81\xd0\x00\xf0\x1d\x22\xb8\x3c\x82\ \xd5\x08\xc9\xff\x01\xca\x52\x80\x9e\xe0\xe9\xc0\xba\xfe\x34\x07\ \x66\x84\x38\x3a\x0a\x48\x80\x0e\x5b\x5d\x70\x01\x05\x40\x7e\x0c\ \x52\x6a\xc0\xfc\xb7\x1b\x3e\x1a\x01\x91\x99\x40\x37\xa0\x0e\x92\ \x0e\xc3\x9d\xcf\xc3\xfb\xf9\xd0\xfe\x36\x10\x83\x5e\xf7\xc3\xd1\ \x6f\x80\x0e\x2c\x52\x30\xe9\x0e\xfc\x8f\x0a\x9e\x24\x42\x23\x99\ \x74\x52\x46\x37\x06\xf3\x13\x49\x7c\x03\xc6\x25\x9c\xd2\x60\xd6\ \x53\x42\x12\x60\x54\xfd\x82\xaa\xfa\xc2\xd6\x4c\x98\xbd\x15\x12\ \xe7\xb9\xc0\x63\x41\xc8\x84\xac\x38\x24\x00\xbf\x00\x5d\x81\x01\ \x06\x8d\x17\x19\x6c\xb8\xdc\xe2\x54\x81\xfd\x52\x9f\xd3\x90\x17\ \x86\xf6\x1c\xd8\x92\x0a\x85\xc0\xc5\xe5\xe0\x8d\x81\x2b\x05\x94\ \x01\x91\xd3\x90\xb8\x20\x17\xde\xeb\x0f\xa1\xa1\xc0\x40\xe0\x0f\ \x18\xbe\x1c\xf6\x0f\x86\xce\x47\x81\x1a\x9b\x3a\x69\x02\xb6\x42\ \xca\x6e\x08\x05\x89\x45\xd7\x53\x8b\x81\x17\x93\x6c\x7e\xc0\x74\ \x7d\x4c\x34\x3e\x8f\x43\x14\x73\x12\x17\xa9\x40\x42\xfa\x19\x8c\ \x52\x19\xca\x05\xba\x20\x2e\x06\xee\x3a\x0c\xfe\x76\x30\xbf\x04\ \x3e\x07\x32\x80\xcb\xa0\xf9\x2a\xd8\x71\x11\xb4\x87\xa1\xdf\x09\ \x83\x82\xed\x90\xb1\x0a\xd8\x9e\x08\xa6\x05\xe3\xc3\xfc\xf4\xb1\ \x18\x14\x85\xdc\x1b\x80\x03\x06\x74\x26\xa2\xe2\x04\x3a\x1f\x69\ \xc7\xec\x1b\xc3\xdd\x28\x5c\x8b\x4d\x8c\xd5\xbd\xa1\xf1\x6a\xa0\ \x18\x68\x05\xb2\x80\x1e\xc0\x66\x48\xff\x11\x46\xee\x04\x3f\xf0\ \xdd\xe5\x28\xf2\x36\x27\x29\xc1\x02\x0a\x68\x04\xc2\xb4\x51\xc0\ \x29\xa0\xbb\x51\x49\x81\xf1\x14\x46\x49\x03\xc6\x45\x42\x5d\x81\ \x66\xc0\x04\x6e\x06\xa6\x6e\x80\x84\xc7\x9d\xcd\x99\x0a\xca\x85\ \x78\x1d\xb8\xd7\x02\x95\x69\xd0\x91\xe5\x54\x98\x68\x0b\x27\x89\ \x58\x0f\xfc\xc0\xb6\xf9\x21\x2e\x3a\x08\xc6\x38\x2f\xd4\x74\x07\ \x86\x01\x17\x01\x67\xc0\xa8\x85\x9e\xab\x88\xdd\xd6\x8c\xbb\x05\ \xd8\xe9\x81\x5f\xde\x06\x75\x01\x0a\xc1\x58\x05\xd7\x3e\x0b\x97\ \xc6\xed\x47\xee\x02\xfe\x04\x36\x4f\x27\xca\x62\x56\x92\x4e\x77\ \x1b\xd8\xa4\xb2\x01\x1f\x75\x98\xf9\x8f\x42\xcd\x1c\x5a\xcc\xe1\ \xb8\x83\x98\x44\xb0\x68\x02\x7c\xc0\x1e\xe0\x9a\x74\xa0\x08\xa8\ \x05\x16\x79\x30\x82\x83\x70\xd3\x08\xc9\x95\xd0\x91\xe8\x14\x60\ \x02\xe9\xf6\x8e\xfa\x0e\x50\x7b\x67\x88\x46\x20\x94\x05\x89\x7d\ \xa3\x50\xd3\xe2\x7c\xae\x0b\x60\x80\x4a\xe0\xf8\x60\xdc\xcf\x54\ \xd9\x4d\x45\x1c\xf8\xc2\xfe\x21\xcf\x09\x98\xf9\x13\x5c\xe9\x3c\ \x36\xd9\xf9\xea\x70\xc0\xb7\x06\xf7\xba\xc5\x0c\xe6\x01\xd2\x71\ \x93\x42\x94\x44\x0e\x63\x31\x91\xfa\x9a\x67\x68\xe7\x26\x16\x58\ \xc9\xb8\x5d\xce\x77\xe5\x34\xea\x21\x60\x7b\x29\x8c\xbd\x0c\xc8\ \x05\xd6\x47\xa1\xf2\x28\x14\xc3\xe9\x3b\x0c\x62\x45\xb5\xc4\x32\ \x6a\x09\xf9\x21\xec\x03\x9f\x0f\x3c\xfd\xa0\xc6\x03\x41\xa0\x3c\ \x0f\x0a\xbf\x12\xe9\x5b\x1a\x61\xc3\x17\xf0\xe7\xaf\xd0\x2c\xa8\ \x2e\x80\xa6\x49\xc0\x14\xec\x4f\x36\x00\x27\x81\xef\x60\x76\x0d\ \xfc\xd3\x81\x45\x14\x38\x88\xcd\x1e\x06\xe0\x8b\x62\x10\x26\x8f\ \x18\xb5\x24\xd0\x8c\x41\x3a\xb3\x39\x0c\x84\x28\xa1\x37\x70\x15\ \xe0\x6e\xc0\xc4\x87\x45\xcc\x39\x91\x62\x20\x25\xe8\x3c\x34\x05\ \x88\x79\xc0\xf4\xc2\xe8\x36\x22\xb7\x59\x54\x03\x1d\x06\xb8\xbd\ \xa0\x64\x68\xf4\xd8\x20\xf3\x3b\x48\xf7\x01\x4d\x09\x10\xbd\x10\ \x32\x87\x05\x09\xb9\xcb\xf0\x76\x82\xe7\x87\x72\x98\xb7\x1b\x6a\ \x9f\x71\x8e\x7b\xa7\x8d\x9d\x8b\x6a\x60\x2c\xd0\xe2\xf4\x7b\xb2\ \x53\x40\xa7\x43\x83\x56\x04\xa8\xc7\xcf\x59\xb2\x30\x38\x8b\x9f\ \x6c\x4e\x72\x3e\x71\x92\x8c\xf7\x71\xa9\x1b\x85\x0c\xc4\x5d\x48\ \x0c\x37\x50\xee\xb4\xdd\x2c\x60\xf8\x77\xc0\x07\xb6\x25\x22\x16\ \xb5\x51\xb0\xb4\x88\x9e\x1f\xb6\xd3\xd3\x48\x00\xb7\x0f\x92\x5b\ \xe1\xfc\x5a\x62\x33\xe1\xf4\x14\xfb\x24\x3d\x40\xe9\x72\x70\xcf\ \x4d\x83\x53\xbd\x21\x9e\x47\x12\x9d\xe0\x09\x40\x34\x19\x62\xfd\ \x9c\x9e\x6a\x06\x32\x81\xc1\x50\x57\x85\x7a\x74\x80\x1b\x8c\x6c\ \xe7\xad\x0c\xc0\xed\xc0\xab\xdc\x07\x64\xe0\x61\x0f\xd9\xe4\x13\ \xe7\x02\xdc\x34\x92\x4a\x10\x94\x0f\x74\xe0\x36\x77\x61\xf8\x94\ \xa3\xb1\xd4\x13\x02\xfa\x02\xcf\x34\x42\x97\xbb\x80\xad\x29\x30\ \xb9\x9d\xce\xfb\x21\xbc\x07\xd2\x3f\x32\xa0\x5c\x50\xef\x03\x2b\ \x05\xa2\x3d\xed\x10\x43\x0b\x3c\xb7\x8d\xdf\x9f\x86\xf4\x3a\xe8\ \x33\xd5\x80\x6d\x53\x81\xee\x0e\x36\xdd\x0e\x5e\x92\x9d\xf3\x8e\ \xd9\xcd\x4f\x9e\xa3\x38\x1f\xc3\xa2\xb7\xd1\x35\x60\xec\x75\x5a\ \x27\xe4\x6c\x62\x05\x30\x6f\x18\x58\xf7\x01\xa3\x09\x90\x88\x89\ \x9f\x1d\x24\x53\x80\x9b\x16\x44\x2a\x06\xed\x80\x2b\x6f\x5e\x74\ \xde\xb9\x58\xcc\x04\xae\x6b\x83\xbc\x23\xce\xf3\x7f\x8b\xc0\x2e\ \x2f\x9e\xb4\x38\x5b\x67\xc0\xaf\x77\x43\xcb\x3f\x40\x17\xc5\x49\ \x09\x86\x31\xab\x23\x10\x8a\x80\x51\x8b\x75\x63\x3b\x4d\x43\x20\ \x7b\x0f\x24\xaf\x32\xe0\xac\x1b\x38\x0d\xb4\x81\xcf\x05\x39\x35\ \x30\xf8\x28\xf4\xf9\x12\x9a\x16\x40\xc4\x0b\x1a\x0d\x94\xd8\x05\ \x46\x57\x60\xf4\xb4\x20\xd5\xd6\x4b\x92\x81\x6d\xc0\xd2\x12\x08\ \x3c\xe7\x54\xe6\xc3\xcd\x29\x22\x18\x94\xf2\x3d\x09\xf8\x68\x24\ \x15\xe1\xe6\x00\x60\x3c\x2e\x34\x06\x98\xb0\xd7\xc1\xe9\x61\x60\ \x08\x34\x64\x40\xd6\x63\x60\xec\x02\xfc\x49\x58\x53\x23\xec\xb8\ \x39\xca\xee\x7e\x10\x31\xe1\xbc\x6a\x28\xfd\x15\x92\xc3\x70\x70\ \x3a\x54\x7b\xa0\x67\x08\x06\x6c\x00\xef\xcf\x6e\x62\xbd\x5d\x44\ \x0b\xc3\x44\x4a\x21\xad\x19\x8c\x9f\xbc\xf0\x4e\x1a\x54\x5e\x65\ \x0b\x13\x5d\x9c\x86\xef\x07\xde\xb7\x20\xfb\x10\x3c\xbc\x0d\x06\ \xc7\x61\x25\xb0\x22\x07\xea\x9e\xb0\x29\xc8\xa8\x05\x8d\x27\x48\ \x29\x1e\xca\x70\x73\x14\xa3\xcf\xab\xd0\xd2\x0b\xac\x54\x1a\x1a\ \x5e\xc2\x68\x8e\xa3\x0a\x13\x06\xaf\xb7\xc5\x96\xdf\x6d\x24\xd4\ \x7f\x0c\x1b\x7d\x30\xfd\x59\xe0\x95\x3c\x9b\x3e\x53\x92\x60\xc8\ \x4e\x8e\x7e\xda\xcc\xa6\x02\x1b\x30\xa5\x0e\xc1\xa4\x01\xed\x40\ \x7f\xc0\x72\x40\x97\xb2\x1d\xdc\x73\xbd\x18\xdb\x87\x43\x60\x18\ \xf6\xf5\x45\xa1\x73\x5a\x47\x1c\x85\x1f\x07\xb8\x11\x11\x0c\x63\ \x09\x5c\xf1\x5f\xd8\x52\x02\xc1\x73\x81\x09\x58\x4c\xc4\x34\x1f\ \x02\xb7\x0b\x2b\xf2\x10\x15\xf4\x27\x07\x51\xe5\x3a\x4b\xbf\xd4\ \x67\x20\xb0\x0d\x3c\x60\xe8\x35\xd4\x36\x13\x52\xd7\x39\xc7\x9a\ \x0a\xbc\x66\x6f\xc4\xe6\x75\xb0\x3c\x03\x1e\x5d\x09\xc5\x37\x26\ \x43\xa8\x14\xe8\x05\xae\xc3\x30\xb1\x8c\xda\xd7\xa2\xfc\xd6\xcb\ \xee\xcf\x7c\xa7\x80\x11\x0d\x90\xf5\x36\xf0\x41\x3e\x9c\xfc\xbb\ \xb3\x78\xb7\xf3\x37\x08\x29\xef\x40\x7b\x8a\x53\x72\x7f\xe0\x38\ \xe2\x7a\x0c\x42\xb6\xbe\xf8\x1f\x86\x60\x0c\xb8\x11\xc8\x43\x0c\ \x25\x46\x04\x8f\x71\x2d\xf4\xad\x27\x7c\xf8\x67\x5a\xc8\x23\x86\ \xa8\xc5\xc0\xed\xde\xce\xe0\x41\xf7\x81\x3e\x46\x65\x01\x14\x38\ \x81\x74\x1c\x6d\x17\xea\xfc\x1a\x29\x0d\x69\x80\x5b\x07\x4e\xa1\ \xfb\x85\xaa\xca\x90\xce\xc3\x0e\x58\x8c\x95\x98\x29\x65\x75\x51\ \x60\x17\xfa\x40\x68\x95\x50\x5d\x25\xd2\x39\xa9\x12\xe3\x24\x1e\ \x96\x78\x59\xe2\xff\x6c\x07\x3c\x7c\xac\xf4\x32\x52\xde\x60\x89\ \x47\x25\x5e\x93\xf2\xc6\x49\xfe\xcb\x24\x96\x4b\x3c\x23\xf1\x93\ \x94\x76\x8f\x64\x0e\x74\x2c\xfe\xcb\x12\xdf\xe8\x18\x52\x9c\x46\ \x29\x65\x9c\x54\x92\x24\xb1\x54\xad\x9c\x50\x35\x31\xad\x45\x6a\ \x20\x2e\x93\xad\xd0\x1e\x87\xa4\xa3\xf6\x49\xe4\xd4\xc1\x67\x57\ \x02\x8f\x03\xc7\x0b\x18\xd0\x2f\x9f\xe9\x47\xe0\xa5\xde\xf0\xc7\ \x3a\x60\x4c\xf8\x2f\xb5\x80\x40\x1b\x49\x6b\xa1\xaf\x20\x2f\x0a\ \x39\xb7\x02\xfb\x66\x01\xf7\x39\xb2\x1c\x85\xe4\x23\xe8\xa3\x65\ \xf0\xf0\x4f\xf0\xc2\x30\xa8\x9d\x65\xbf\x97\xbf\x0e\xd2\x76\x42\ \xf0\x5e\x70\x1d\x87\x82\x57\x6c\x80\x06\x93\x20\x2b\x44\x8c\xbe\ \x88\x5c\x70\x2f\x24\x9d\x3a\x76\x91\x49\x53\xfb\x67\x50\x97\x06\ \xa3\xee\x23\xd5\x5c\x00\xec\xe0\x24\xb0\x18\x13\x53\x33\xe1\x50\ \x2a\xc4\xdb\xed\x93\xef\xb1\x11\x2a\x3c\xd0\x7e\x1d\x30\xa8\x0a\ \x3a\xdd\x8c\x98\xe5\x61\x58\x1b\x7c\x92\x0d\xdf\x7f\x19\x87\x3b\ \x37\x41\xd6\xef\x90\x17\xc1\x2a\xb6\x59\xb2\x7b\x3b\x70\xc8\x07\ \xc6\x01\x60\x37\xa4\x7d\x41\x7c\xee\xeb\xb4\xfc\xb1\x14\xce\xc6\ \x61\x76\x16\xb4\x5f\x64\xab\x6c\xea\x7a\x98\xb3\x01\x4e\xcc\xb1\ \xbb\xac\x74\x83\xcd\x54\x64\x43\xef\x03\x70\xfe\x59\xe2\xb4\x12\ \x66\x02\x8c\xf8\x89\xac\xcc\x7b\x71\x11\x63\x1f\x59\xd4\xb4\x6f\ \x87\xce\x0c\x78\xe0\x1d\xba\x78\xdf\x60\x32\x27\xed\xaf\xea\x2c\ \x7a\x44\xa8\x79\x0b\xd2\x6c\xa4\xbb\xd1\x67\x31\xb4\x40\x48\xaf\ \x21\xf5\x44\x32\x0b\xa5\x9b\x4c\xad\xb0\xd0\xb3\x42\x2b\x85\x1a\ \xf6\x20\xbd\x88\xda\x8f\xa1\x4f\x84\x76\x75\x22\xcd\x44\x1a\x8d\ \x74\x77\x92\x6a\x8e\xd8\x01\xcb\x9a\xed\x95\xdc\xa5\x12\xb3\x24\ \x5e\xb7\x21\xf7\x86\x5b\x9a\xd4\xdd\xce\xf4\xec\x95\xa6\xb9\xa5\ \xbc\xa1\xb2\x08\x48\x7d\xc7\x4b\xf3\x3d\x92\xb1\x51\x41\x24\x15\ \x0c\x94\x6e\xf1\xaa\xd1\xa8\xd3\x7e\xa4\xbd\xc8\x4e\x9b\xf7\x64\ \x49\x77\x23\x0d\xef\xa3\x33\x54\xca\x0c\xb7\x9b\x04\x01\xcb\xeb\ \x58\x9f\x6f\x0d\x4a\xf6\xc0\x0a\xa0\x75\xa2\x23\xc4\x78\xe1\x93\ \x3c\xa6\xfd\xdb\x66\xa9\xe3\xc0\x67\xe7\xc2\x2f\x4f\xc2\xbe\x12\ \x9b\x1f\x9a\x12\xa0\x7a\x11\x34\xac\x87\x23\xef\x74\xe0\xcd\x84\ \x7e\xd7\x27\x63\x2c\x98\x06\xb1\x09\xf6\xce\x1b\xf5\xf0\xc8\x12\ \x08\xc5\x61\xcd\x9d\x0e\xe7\x6d\x86\x09\x31\xa8\x1d\x83\x41\x10\ \xda\xf2\x6c\x37\x61\x96\x11\x02\x38\x3b\x01\x3c\x11\xd2\x53\xbe\ \xc7\x72\x7e\x7b\x3b\x13\x89\xbf\xf3\x03\x54\xe6\x41\xef\x32\x0a\ \x86\xf5\xc0\xd4\x29\x11\x00\x1a\x8a\x80\x30\xd0\x2c\xce\x59\x0a\ \xe7\x00\x5f\xf4\x05\xa6\x01\x66\x9d\xed\xa6\xde\x82\x69\x9f\xd8\ \x26\xd3\x72\xf4\xb9\xcc\x11\x63\x0b\xd8\xef\x82\x3d\x3e\xe8\xd2\ \x00\x99\x17\x16\xc1\xf2\xa9\xf6\x26\x50\x0f\xac\x84\xe9\x6f\xd0\ \xf1\x58\x1b\x7c\x9b\xe1\x38\xe7\x3a\xb8\xf8\xbf\x50\x93\xe8\x10\ \x76\x13\x24\xc8\x76\x2f\x29\x7b\xc8\xa0\x02\xe2\xd7\xc3\x0f\x17\ \x62\x5e\x3e\x8b\x62\x3e\xa0\x17\x10\xc1\xe4\x20\x43\x09\xad\xdb\ \x08\xcd\x26\x8c\x01\x33\xa1\x4c\x8c\x05\x76\x25\x3a\x8a\x5e\x0c\ \xbe\xcd\xf0\x78\x15\x6c\x04\x0e\xdd\x08\x64\x05\x6c\xb5\x68\xea\ \x81\xe7\x49\x17\x33\xd7\xc3\x20\xcb\x76\xcc\x3e\xa7\x10\x0f\x10\ \x01\x86\x1e\x87\x8c\xcb\xdc\x70\xf4\xaf\xe0\xeb\x05\x1a\xe1\xf2\ \xfd\xe8\xe5\x0e\xfc\x2f\x02\xdb\x6f\x03\xae\xb0\xe9\x76\x64\x3d\ \x54\x25\x3a\x2a\x6f\xc1\x59\xcb\x66\xea\xdc\x1d\x58\x18\x74\xd0\ \x07\x6a\x27\x41\x69\x8c\x94\x21\x8f\x30\x90\x1a\x92\x9c\xdf\x5c\ \x1b\xef\x43\x78\xdd\x2a\xa8\xc9\xc5\xc4\x65\x92\x07\x18\x09\xb6\ \xa2\x33\xd4\xb6\xb1\x05\x6b\xed\x84\x5d\x56\x0a\x4c\x32\x00\xc0\ \x3a\x0f\xaa\xc6\x90\xfc\x9c\xcd\x03\x38\x11\x20\xd7\xb1\x80\x03\ \x42\x90\x71\xbd\x17\xfe\xbc\xd0\x71\x6e\x2e\x7b\x03\x2e\xdd\x4d\ \xe4\x83\x00\x34\x80\xb1\x74\x08\xc4\xaf\x43\xe4\x80\x6b\x05\x5c\ \x12\x84\xca\xae\x8e\x2f\xe9\x84\x90\xcb\xde\x9d\x92\x33\x44\xe9\ \xa0\x85\x24\xb0\x86\x43\x52\x12\xdc\xd5\x88\xc1\x6b\x74\xa3\x83\ \x14\x22\x54\x60\x50\x13\xbd\x04\xbe\xee\x83\xf9\xdb\x4d\x16\xdb\ \x80\xc3\x5e\x68\xbe\xd5\xd1\xa1\x69\x10\x1a\x69\xef\xf2\x7a\xe0\ \xd8\x0b\x31\x98\x52\x03\xae\x3f\xec\x33\xa8\xf0\x91\x7a\xc8\x2e\ \xa4\xc5\xd1\x69\x01\x3d\x7f\x04\x4e\x7b\x9c\x73\xaa\xb2\xd3\xcd\ \xf0\xd5\xb4\x7d\xd0\x48\x3c\x03\x8c\x4f\x81\xf6\x5c\xe0\x24\x06\ \xeb\x60\xfa\xff\xa0\x17\x50\x59\x07\xfc\x66\x7b\xf0\xdc\xd3\xb6\ \xb5\xca\xe9\xc0\xc7\x5e\x52\xc1\x16\xe1\x8f\x53\xed\xbd\xc9\x59\ \x4c\x8e\xf1\x23\x7e\x5c\x00\x24\xe2\x82\xce\xcb\x70\xd5\xbe\xc8\ \xbc\x20\x50\x09\x1c\x48\x80\xd6\x12\xd8\x3d\x1c\x0e\xe6\xdb\x4b\ \x31\x80\xb2\x64\x68\xba\x06\x7a\x8c\x6b\x23\x3a\xa0\x82\xf8\x8c\ \x08\x47\xc7\x42\xb3\xdb\x5e\xb2\xdf\xb6\x87\xe4\x1b\xe0\x2b\x8b\ \x42\xc3\x29\x48\xaa\x80\xd1\x95\x04\xdf\x0b\x53\x57\x0c\x1e\x13\ \x12\xf7\x00\x3f\xb9\x81\x1d\x90\xf6\x13\xfc\xb7\xda\x86\xf3\x91\ \x20\x1c\xfc\x1d\xac\x13\x70\xd9\x2f\x30\x0a\x70\x45\xe1\xfb\x10\ \x1e\x26\x03\x6d\x18\xfe\x15\x50\xd0\x08\xa5\x11\x4c\xef\x1a\x5c\ \x15\xd3\xa9\x26\x8b\x0c\x3c\x64\xf0\x2b\xc6\x34\xa1\x98\xd3\xe7\ \x25\x0e\x54\x5a\x1c\x93\x5d\xef\xc0\x26\xc1\x69\xe6\xae\x4e\x4b\ \xfe\x95\xef\xb3\x9d\xbe\xf8\x2b\xb8\x02\x0c\x88\x43\x5e\x04\x9a\ \x0c\x30\x3d\x90\x64\x42\xd0\x70\xd2\x6b\x1c\x5c\x07\xc0\xac\xb0\ \xe1\x6b\x0d\x00\xb3\xd5\x89\xd4\x01\x87\x92\xba\x3b\x8b\x71\x3b\ \xff\x6f\xea\x03\x4d\x1d\x30\xa4\x1a\x4e\x5a\xf6\xae\xf5\x07\x56\ \x26\x13\xab\x7e\x04\x77\x47\x0d\x78\xb7\x62\xfc\xd3\x42\x27\x0d\ \xe8\x16\x87\x87\x4f\x42\x61\x1d\x94\xf7\x87\x25\xe9\x7f\x99\x67\ \x18\xdb\x09\x17\x1e\x06\x6f\x1d\xb8\x9b\x0c\x4e\x8d\x16\x47\xbb\ \xc2\x19\xd3\x2e\x22\x0b\x28\x8c\x83\xab\x0d\x7a\x1d\x36\x71\x9d\ \x4e\xa2\xa3\x28\x08\xfd\xe2\x18\xc9\xd0\x6a\x40\x72\x04\x32\x0f\ \x01\x6d\x2e\xf0\x5a\x90\x21\xac\xae\x60\x76\x02\x27\x9c\x23\x6d\ \x72\x6e\x17\x9a\x9c\x4b\xfa\x46\x03\x12\x65\x53\xe3\x28\xc7\x9d\ \x1e\x73\x12\x60\x93\x09\xcd\x16\x04\x4d\xc8\xb3\x60\x53\x1b\x9a\ \x25\xd4\xf4\x15\x52\x96\x7d\x4d\x1a\x5e\x63\xcf\x3c\x1e\x93\x2d\ \x8e\xd6\xbd\x48\x45\x09\x92\xbb\xc4\xf6\x59\x29\xdd\xd5\xf2\xab\ \xa1\xaf\x85\xde\x77\x66\x23\xed\xfb\x90\x6e\x47\x32\x06\x4b\x3c\ \x27\x71\x97\x74\x5e\x9a\xac\x16\xd4\x20\x64\x1d\x40\xea\x9f\x2e\ \x31\x47\xe2\x6a\xe9\x46\xaf\x62\x6d\xce\xe5\x76\x7e\x77\x7b\x4e\ \x92\x3b\xda\xbe\x1f\x5e\x89\x74\xa5\x5f\x62\xae\x7d\xb5\x6a\x3c\ \x29\xbd\xe8\x91\xe6\x23\x3d\x85\xd4\xbb\x44\x31\x96\xa9\x99\xcd\ \x8a\xf1\x95\x94\x3b\x52\xee\x9e\x31\xbb\xd8\x8c\x97\x80\xc6\x5c\ \x68\xac\xa3\x35\xdf\x6e\xde\x5e\xc0\xf4\x27\xc1\x58\xdc\x17\xac\ \x73\x1c\x00\x45\xb0\x6e\x69\xe4\x8f\xc1\xc2\x72\xfa\x23\x82\x1d\ \x1a\x39\x05\x28\xc5\x01\x5e\x21\xec\xbd\x15\xe3\xb1\x77\xf1\x2c\ \x0a\x63\xd4\x00\x87\x46\x3b\x1e\x6c\x34\x7c\xeb\xc7\xf5\xaf\x4f\ \xed\xd3\xa8\x79\x9d\x18\x93\x70\xd7\x1d\x83\xdd\x83\xa0\xc0\x24\ \xb6\x6e\x31\x01\x6e\xc6\x04\x92\x38\x82\xcb\x5c\x08\x66\x14\xd6\ \x16\x51\x5b\xbe\x8d\x72\x32\xd8\x88\x97\x29\x40\xbf\xba\x7d\x98\ \x0d\x09\x10\x6f\x05\x8e\x02\x9e\x10\xc4\x60\x67\xa9\x9d\xfd\xaf\ \xde\x0d\xe6\x4a\x0f\x58\x3d\x1d\x90\x95\x13\x9b\xf6\x2d\x1f\xbd\ \x15\xe4\x88\xdf\x2e\xa0\x15\x38\x0b\x1c\x2f\x82\xd0\x5c\xa0\xf0\ \x57\x60\x9d\xcd\x63\x1a\x0a\xcb\x06\xd0\x50\x01\x91\x81\x40\xce\ \x61\xe7\x39\xb9\xd0\x39\xc8\xc6\x6e\x04\xc0\xc0\xcd\x69\x3b\x68\ \xe5\x00\x47\x52\x69\x89\x5e\x4e\x10\x48\x21\x88\xcb\x58\x08\xbe\ \x00\x6c\x01\xf6\x3e\x41\x2d\xb9\x44\xf1\x60\x81\x9d\x11\x93\xca\ \x31\xb7\xba\xe1\x82\x9f\x81\x02\x03\xa2\x99\x30\x14\x0e\xa4\xc0\ \x13\xc7\x21\x7b\x01\x70\x36\xcb\x09\x43\x89\xc4\x1f\x28\x63\xe1\ \x0a\x9b\xc9\x32\x9d\x30\xd5\xd5\xe9\x91\x46\xe0\xc4\x18\xd0\x83\ \x16\x78\xea\x1c\x21\x1c\x04\xa1\xfb\xc8\x9e\x9f\x41\x4d\x1e\xc4\ \x5e\x39\xee\xa4\xc2\x5c\xb0\xfa\x40\xb5\xcb\xce\x57\xb6\x94\xdb\ \x91\x36\x06\xd6\xc2\x4b\x39\xa1\x1c\x2a\x00\x11\x81\x0b\xde\x82\ \xad\x49\xc4\xbf\x7c\x93\x0e\x6e\x64\x37\x06\xb5\x18\x40\x9c\xae\ \xfc\x06\xe1\x2d\x98\x3b\x3c\x50\xb2\x1a\x88\x09\x12\x5a\x38\x36\ \x0b\xfa\x06\xa0\xe7\x5c\xe7\xc6\xa6\x3d\x13\xcc\x3f\x61\xc6\x87\ \xbc\x30\x3f\x42\xa6\x63\x2e\x52\x9d\x1b\x9b\x06\x87\xb5\xf2\x1d\ \xf2\x39\x3b\x1b\x98\x71\x04\xdb\x17\xec\x06\x7a\x90\xba\x60\x22\ \x5d\x57\x83\x31\x59\x90\xfe\x81\x8d\x41\x2b\x1b\xfe\xf4\xdb\x4d\ \x4e\x93\xc3\x8b\x95\x50\x0b\x66\xe7\x20\xba\x63\x51\x08\x98\xb9\ \x0f\xc3\x40\x37\xd6\xca\x77\xe8\xe0\x16\xc2\x24\x72\x35\x01\x7a\ \x02\x73\xdc\xaf\xe2\x4e\x9a\x00\xd9\x41\x38\xf8\x2b\xd2\x30\xa4\ \x41\x48\x2f\xdb\x01\xa9\x7d\x09\xd2\x40\xaf\xe4\x2a\x92\xe8\xa7\ \xce\xfb\x0d\xbd\x1e\x43\xcb\x85\x2a\xcb\x50\xe0\x15\x14\x7e\xd3\ \xd0\xd7\x16\xfa\xde\x42\x91\xcf\x91\x35\x07\x35\x6f\x40\xe5\x42\ \x2d\x9d\xc8\x7a\xd0\x70\x02\xd8\x42\x89\xb7\xa5\x82\x0b\x14\xd9\ \x87\x34\x0b\x89\xc5\xf6\x08\xe1\xda\x22\xbb\xb1\x79\x59\xe2\x4f\ \xc9\x7b\x8b\xf4\x3c\xb2\x78\x4d\x47\x88\xab\x95\x93\xd2\x2d\x48\ \x09\x97\xc9\xa2\x5a\xe2\xa8\xe2\x74\xd8\x73\x94\x84\x71\xd2\x84\ \x54\x29\xad\x44\x1a\x93\x22\x1a\xd7\x20\x8d\xb0\x67\x22\x95\xb5\ \xa8\x7a\x1f\x52\xae\xcb\x59\xc4\x20\xb5\x5d\xe3\xd5\x8f\xad\x68\ \x6f\x33\x0a\xbf\x66\x48\x05\xc9\x12\x57\x4a\xfe\x21\xaa\x2c\x47\ \x3b\x9a\x91\x8a\x0d\xc9\xb8\x44\x72\x4f\x53\xec\xfe\x02\x55\x34\ \x22\xeb\x30\xd2\xa4\x44\xc9\x78\xca\x19\xf6\xcc\x97\x86\x95\x48\ \xfb\x90\x0a\xa6\x48\xfc\x20\x79\x2f\x96\x16\xe3\x4c\xbc\xbe\x92\ \xce\x19\x2e\xcd\xec\xa9\x38\x47\xd5\x4e\x4c\x56\xef\xbb\xa4\xe1\ \xdd\x24\xbe\x51\x05\x71\xd5\x10\x57\x98\xbd\xd2\xe8\x3e\xd2\xb9\ \x1e\x69\x58\x9a\x94\xf0\x90\x4e\x25\xaf\x11\x81\xa9\xd9\xd2\x3f\ \x3c\x6a\x6d\x41\x3f\xcb\xa1\xd0\xc4\x04\xc9\x3f\x48\xb1\xaf\xd0\ \x1c\xa1\xc6\xdf\x4c\xa9\xb7\x47\xa2\x54\xe2\x42\x89\xfb\xa4\xa4\ \x73\xb4\xa6\x02\xad\x6e\x41\xea\xe6\x93\xb8\xd5\x99\x0d\xfe\x4b\ \xea\x31\x5c\xf1\x5f\x91\x75\x10\xe9\xbc\x14\x27\xc6\xbe\x69\x9f\ \xc4\x7d\x49\xd2\x55\x99\x4e\xbc\x9d\x2a\x3d\x89\xc4\x74\x89\xf7\ \xa5\x31\xbd\xa5\xae\x97\x49\xac\x52\x88\x36\xa9\x47\x81\xfd\x3a\ \x35\x8a\x52\x27\xb1\x5c\x16\x6f\x48\x4f\xa1\x78\xca\x75\x6a\x4a\ \x78\x49\x35\x74\x68\x8e\x4b\x42\x59\x3e\x59\xef\xa1\xda\x00\x8a\ \x4f\x4f\x96\x28\x96\xae\x40\xc1\xfd\xf6\x04\x2a\xb0\x14\xc9\x3f\ \xde\x59\xe8\x34\x89\x4b\xa4\x94\x6e\xaa\x5d\x6a\xea\x45\xa1\x2f\ \x2c\x64\x6d\x41\x2a\xcd\x75\xf4\xe3\x11\x89\xd5\x92\xeb\x7d\xe9\ \xd2\x54\xe9\x17\xa4\x61\x45\x12\x1f\x4a\x54\x2a\xc6\x46\x29\x6d\ \x8c\xc4\x9b\xb2\x58\x2b\xa5\xa7\x39\x8b\x3d\x29\x75\x4f\x56\x94\ \xb5\x3a\x4c\x4c\x01\x0e\x4a\xc6\x33\x8a\xd2\xa4\x38\x01\x1d\x24\ \xa6\xf6\xb1\xcb\xa4\xf3\x5d\x8a\xe6\x4e\x51\x1d\x3f\xeb\x3b\xa4\ \xd5\xc4\xf4\x11\x12\xf1\xcf\x91\x1e\x47\x9a\x99\x2d\xe5\xf8\xa5\ \x2b\x4c\xe9\x5b\x54\x17\x45\xd6\x03\x6e\xc9\xdf\x5d\xe2\x5c\x7b\ \x66\xe8\xc9\x97\xae\x34\xf4\xe9\x09\x7b\x28\xba\x4a\x68\xb1\xd0\ \xd9\x16\xd4\xbc\x1d\xe9\x2a\xbf\xc4\x15\x12\xf3\xd5\x4a\xab\x2c\ \x8e\x4b\xb9\x23\xa5\x67\x90\xae\x2a\x94\x58\xa9\x06\xa4\x20\x4b\ \xed\xcb\x0b\xf6\x4a\xbc\xab\x38\xfb\x55\x81\x65\x4f\x79\xf9\x46\ \xed\x04\x74\x9a\x6a\x1d\x24\xa4\xad\x48\x11\x3a\x15\x34\x7f\x94\ \xdc\x53\x15\x49\xdd\xab\x36\xef\xef\xfa\xa2\xf0\xa0\x16\x76\x3d\ \xa2\x08\xeb\x74\x77\x9e\xe4\x9a\xdb\x9f\x79\xc6\xda\x14\xd8\x38\ \x19\x92\x8f\xc1\xe8\x30\xd1\x2b\x0d\x52\x9e\xea\x86\xf1\x45\x02\ \x14\x89\xc8\x05\x89\x54\xbd\xb8\x8f\xa5\x8f\x07\xf8\xfc\x21\xe1\ \xca\xb0\xc5\x32\xd9\x21\xcd\xfa\x20\x44\x4a\x81\x1b\xa2\xf8\x87\ \x9f\x80\xd0\x16\x12\x2a\x4f\x41\xd4\x87\xd1\x31\x02\xca\x2c\x22\ \xb3\x77\x11\x9d\xba\x12\xef\xba\x18\x66\x74\x24\xee\x3e\x9f\x41\ \x53\x00\xb8\x80\x28\x25\xf8\x68\xc6\x4b\x39\x71\xd2\x30\xc8\xe6\ \x77\xba\x10\x26\xca\x20\x76\xe1\x3f\x6f\x01\xee\xd0\x49\xde\xf0\ \xcd\x23\xd2\x69\xb1\xc2\x5f\xcc\x65\x9d\xd5\x84\x5b\x45\xa3\xbf\ \x81\x98\x75\x02\xde\xdf\x79\x95\x46\x6d\x7b\x4f\xd7\x1c\x9a\xad\ \xc0\x2f\x48\x2f\x21\x8d\xf4\x48\x5d\x8b\xa4\x3b\x0d\x35\x1c\xb2\ \x73\xfa\x1b\x16\xda\xd8\x89\x82\xb5\xa8\xea\x18\x7a\xc1\x42\xcf\ \x0b\xad\x13\xfa\x3d\x8c\xe2\x9b\x0d\x75\x9c\x34\xa4\xa3\xc8\x6a\ \xb4\x19\x50\x05\xdd\x25\x63\x92\xc4\x08\x89\x19\xd2\xf8\x02\xe9\ \xff\x21\x79\xee\x90\x8c\xcf\x25\xe3\x4a\xbb\x7f\x8c\x6a\xc9\x78\ \x47\x32\x26\x48\xac\x90\xd8\xa7\xbd\x48\x11\x9e\x95\xd8\xa9\x72\ \xa2\xb2\x58\xa7\x36\x0e\x4a\x2c\xd7\x7a\xb3\x5c\xa1\xae\x77\xa9\ \xf9\xfa\xb1\xba\xb6\xfc\x2e\x69\xd0\x10\x19\x0d\x7c\xab\xe5\x13\ \x5d\xdc\x64\x3e\x40\xda\xaf\x03\xc0\xbf\x0e\xba\x75\xf2\xf5\xe7\ \xa2\xc7\x06\x38\x5a\x6b\x32\xfe\x50\x1a\x19\xd5\x51\x68\x4f\x83\ \x84\x28\xd4\xd6\xd1\xf9\x3c\x6c\x19\x0f\x7d\x2c\xe8\xfe\x0a\xb8\ \xde\x99\x02\x6d\x57\x41\xe6\x87\x90\xe1\x42\x97\x54\x41\x71\x19\ \x9d\x57\x99\xf8\xdf\x4b\x41\x8b\x2e\x27\x16\xbe\x06\x4f\xc6\x6b\ \xe0\xa9\x85\xba\xc7\x61\xf8\xbb\x70\x32\x8c\x96\xb5\x12\x49\x08\ \xe2\x5b\x1e\x82\x77\xee\x21\xce\x2d\x1c\xa2\x3b\x3d\x88\x62\xb2\ \x95\xdd\x5c\xc6\xf9\x9e\x8d\xec\x1b\xf8\x15\xc5\x5d\x8a\xd9\xfc\ \xfd\x97\x4c\xce\x3c\x97\xfd\xf7\x1f\xa7\xab\xd9\x40\xc3\x2b\xb7\ \x61\xac\xfc\x3d\x41\x57\x7f\xdf\xdd\x1e\xe6\xac\x05\x4a\x4c\xea\ \x17\x59\x64\xee\xcb\xc1\x35\x0f\x38\xde\x1d\x54\x04\xf4\x71\xc2\ \xcf\x20\x3b\x00\x4d\x3a\x49\xfd\xe7\x65\xac\x4f\x86\x1b\xde\x05\ \xe3\x89\x31\xc4\x9b\x5f\x76\xac\x6c\x22\x2e\x8e\x41\xff\x77\xed\ \xbc\x9f\x93\x83\x36\x8e\xc2\xe0\x12\x3a\xb8\x80\x24\xbe\xb0\x83\ \xd7\xcd\x4b\x09\x2f\x81\x76\x13\x52\x0c\xf0\xec\x01\xf3\x43\xe0\ \xb7\xf1\x54\xec\xfb\x37\xf9\xb1\x12\x02\x34\x93\xe9\xdf\x0d\xe6\ \xd7\x90\x60\xc1\xed\x2b\xa8\x5e\xf7\x22\x4b\x0a\x07\x91\x5b\xe6\ \xa1\x3c\x2d\xc6\x4b\x67\x42\xb8\xae\x6e\x7e\x73\x5e\x72\xaf\x6d\ \xa4\xbf\xdf\x1b\x7a\xf9\x61\xdb\x34\x92\x7e\x18\x86\xf9\x51\x09\ \x34\x8c\x04\xa6\xdb\x73\x0c\x8e\x42\xd1\x01\xc8\xfc\x9e\xc8\xa4\ \xa3\x54\x4e\x6f\x64\x76\x29\xdc\x0e\x64\xee\x04\xea\xea\x31\x6b\ \x4e\x60\x5a\x51\x4c\xd7\x6f\xa0\x6e\x50\x6f\x40\xdd\x5d\x58\xa7\ \xfb\x62\x5a\x3e\xc4\x4c\x0c\xd2\x70\xf1\x7f\xd0\x77\x33\x9c\x13\ \xc4\x5d\x0f\xfe\x3a\x70\x6f\x07\xe3\xb8\xe3\x6c\x7a\x54\x91\xbe\ \x25\x9b\x5d\x4c\x22\x89\x8d\x24\x45\x0b\x68\x8d\x9c\x8f\x72\xf7\ \xd1\xb2\xeb\x72\x9a\xae\xf6\xb0\x6a\xfd\x9d\x7c\xf8\xa4\xc1\x23\ \xef\x1c\xa4\xa5\x7d\x0a\xff\x1f\xa7\x48\xb3\x27\x67\x17\xe2\x1e\ \x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ " qt_resource_name = b"\ \x00\x05\ \x00\x73\x5e\x63\ \x00\x6c\ \x00\x6f\x00\x67\x00\x6f\x00\x73\ \x00\x08\ \x0a\x61\x5a\xa7\ \x00\x69\ \x00\x63\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ " qt_resource_struct_v1 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ " qt_resource_struct_v2 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x10\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x01\x74\x20\x97\x84\xbd\ " qt_version = [int(v) for v in QtCore.qVersion().split('.')] if qt_version < [5, 8, 0]: rcc_version = 1 qt_resource_struct = qt_resource_struct_v1 else: rcc_version = 2 qt_resource_struct = qt_resource_struct_v2 def qInitResources(): QtCore.qRegisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
1.109375
1
deepensemble/layers/dense.py
pdoren/correntropy-and-ensembles-in-deep-learning
1
12797780
import theano.tensor as T from .layer import Layer __all__ = ['Dense'] class Dense(Layer): """ Typical Layer of MLP. .. math:: Layer(x) = activation(Wx + b) where :math:`x \\in \\mathbb{R}^{n_{output}}`, :math:`W \\in \\mathbb{R}^{n_{output} \\times n_{input}}` and :math:`b \\in \\mathbb{R}^{n_{output}}`. Parameters ---------- n_input : int or tuple[] Dimension of input. n_output : int or tuple[] Dimension of output. activation : callback Activation function. """ def __init__(self, n_input=None, n_output=None, activation=None): input_shape = n_input if isinstance(n_input, tuple) else (None, n_input) output_shape = n_output if isinstance(n_output, tuple) else (None, n_output) super(Dense, self).__init__(input_shape=input_shape, output_shape=output_shape, non_linearity=activation) def output(self, x, prob=True): """ Return output of layers Parameters ---------- x : theano.tensor.matrix Input sample prob : bool Flag for changing behavior of some layers. Returns ------- theano.tensor.matrix Returns the output layers according to above equation: .. math:: Layer(x) = activation(Wx + b) """ if x.ndim > 2: x = x.flatten(2) lin_output = T.dot(x, self.get_W()) + self.get_b().dimshuffle('x', 0) # noinspection PyCallingNonCallable return ( lin_output if self._non_linearity is None else self._non_linearity(lin_output) )
3.03125
3
sztuczna_inteligencja/2-lab/komandos.py
Magikis/Uniwersity
12
12797781
from sokobanASTAR import taxiDistance from IO_SI import * from sokoban import * targets = set() board = [] _dirs = {'U': (-1, 0), 'D': (1, 0), 'R': (0, 1), 'L': (0, -1)} d = {} def showBoard(state): for i in range(len(board)): for j in range(len(board[i])): tup = (i, j) if tup in state and tup in targets: print('B', end='') elif tup in state: print('S', end='') elif tup in targets: print('G', end='') elif board[i][j] != '#': print(' ', end='') else: print('#', end='') print() print() def getMoves(): return ['U', 'D', 'L', 'R'] def isWall(pos): (i, j) = pos return board[i][j] == '#' def getInitialState(countPaths=True): # state => tuple(boxesTuple, keeperPos) global targets, board board = readBoard() targets = set(getIndexs(board, ['G', 'B'])) state = set(getIndexs(board, ['B', 'S'])) if countPaths: for t in targets: shortestPathToGoal(t) return tuple(sorted(state)) def isWin(state): for s in state: if s not in targets: return False return True def apllyMove(state, move): newState = set() for x in state: pos = combineMove(x, _dirs[move]) if isWall(pos): newState.add(x) else: newState.add(pos) return tuple(sorted(newState)) def genNewStates(state): states = [] for move in getMoves(): states.append((apllyMove(state, move), move)) return states targetsD = {} def shortestPathToGoal(pos): targetsD[pos] = 0 visited = set([pos]) queue = deque([(pos, 0)]) while queue: (state, steps) = queue.popleft() aviableSteps = [combineMove(state, _dirs[move]) for move in getMoves() if not isWall(combineMove(state, _dirs[move]))] for nextState in aviableSteps: if nextState in visited: continue visited.add(nextState) if nextState in targetsD: targetsD[nextState] = min(steps + 1, targetsD[nextState]) else: targetsD[nextState] = steps + 1 queue.append((nextState, steps + 1)) return # def countShortestPathToTarget(G): # for v in G: # res = [] # for t in targets: # res.append(d[(v, t)]) # targetsD[v] = min(res) def h(state): minDists = [] minDists = [targetsD[s] for s in state] return max(minDists) + (len(state) // 12) def hUnOpt(state): minDists = [targetsD[s] for s in state] minDists = sorted(minDists) res = 0 for i in range(len(minDists)): res += minDists[i] * ((i + 1) ) ** 2 return res # def takeV(): # res = [] # for i in range(len(board)): # for j in range(len(board[i])): # v = (i, j) # if not isWall(v): # res.append(v) # return res # def warshalFloyd(G): # for v1 in G: # for v2 in G: # d[(v1, v2)] = float('inf') # for v in G: # for move in [_dirs[move] for move in getMoves()]: # vN = tuple(map(sum, zip(v, move))) # if not isWall(vN): # d[(v, vN)] = 1 # for u in G: # for v1 in G: # for v2 in G: # if d[(v1, v2)] > d[(v1, u)] + d[(u, v2)]: # d[(v1, v2)] = d[(v1, u)] + d[(u, v2)]
2.453125
2
apps/connections/statistics.py
Houston-ARTCC/zhu-core
1
12797782
from datetime import timedelta from django.db.models import Sum, Q, DurationField from django.db.models.functions import Coalesce, Cast from django.utils import timezone from .models import ControllerSession from ..users.models import User, Status def annotate_hours(query): """ Annotates given QuerySet with controlling hours for the current (curr_hours), previous (prev_hours), and penultimate (prev_prev_hours) months. """ MONTH_NOW = timezone.now().month YEAR_NOW = timezone.now().year CURR_MONTH = (Q(sessions__start__month=MONTH_NOW) & Q(sessions__start__year=YEAR_NOW)) PREV_MONTH = (Q(sessions__start__month=MONTH_NOW - 1 if MONTH_NOW > 1 else 12) & Q(sessions__start__year=YEAR_NOW if MONTH_NOW > 1 else YEAR_NOW - 1)) PREV_PREV_MONTH = (Q(sessions__start__month=MONTH_NOW - 2 if MONTH_NOW > 2 else 12 if MONTH_NOW > 1 else 11) & Q(sessions__start__year=YEAR_NOW if MONTH_NOW > 2 else YEAR_NOW - 1)) return query.annotate( curr_hours=Coalesce(Sum('sessions__duration', filter=CURR_MONTH), Cast(timedelta(), DurationField())), prev_hours=Coalesce(Sum('sessions__duration', filter=PREV_MONTH), Cast(timedelta(), DurationField())), prev_prev_hours=Coalesce(Sum('sessions__duration', filter=PREV_PREV_MONTH), Cast(timedelta(), DurationField())), ) def get_user_hours(): """ Returns query set of active users annotated with controlling hours for the current (curr_hours), previous (prev_hours), and penultimate (prev_prev_hours) months. """ return annotate_hours(User.objects.exclude(status=Status.NON_MEMBER)) def get_top_controllers(): """ Returns query set of active users annotated with controlling hour sums for the current month (hours) sorted by most controlling hours (controllers with no hours are not included). """ SAME_MONTH = Q(sessions__start__month=timezone.now().month) SAME_YEAR = Q(sessions__start__year=timezone.now().year) users = User.objects.exclude(status=Status.NON_MEMBER) users = users.annotate(hours=Sum('sessions__duration', filter=SAME_MONTH & SAME_YEAR)) return users.exclude(hours__isnull=True).order_by('-hours') def get_top_positions(): SAME_MONTH = Q(start__month=timezone.now().month) SAME_YEAR = Q(start__year=timezone.now().year) sessions = ControllerSession.objects.filter(SAME_MONTH & SAME_YEAR) position_durations = {} for session in sessions: position = session.facility + '_' + session.level if position in position_durations: position_durations[position] += session.duration else: position_durations[position] = session.duration sorted_positions = sorted(position_durations, key=position_durations.get, reverse=True) return [{'position': position, 'hours': position_durations[position]} for position in sorted_positions] def get_daily_statistics(year, user=None): """ Returns a query dictionary of every day of the given year annotated with the controlling hours for that day. """ sessions = ControllerSession.objects.filter(start__year=year) if user: sessions = sessions.filter(user=user) return sessions.extra({'day': 'date(start)'}).values('day').annotate(value=Sum('duration'))
2.453125
2
format_raw_info.py
lihd1003/Booking.com-Scraper
1
12797783
<reponame>lihd1003/Booking.com-Scraper from ast import literal_eval import json from os import listdir import pandas as pd def save_raw_listing_info(folder_in, folder_out): files = listdir(folder_in) all_info = [] for f in files: if "json" not in f or "info" not in f: continue with open(folder_in + f, "r") as f: all_info += json.load(f) with open(folder_out + "INFO.json", "w") as f: json.dump(all_info, f, indent=2) attributes = list(all_info[0].keys()) attributes.remove("room_types") df_dict = {} for attr in attributes: df_dict[attr] = [] for info in all_info: for attr in attributes: df_dict[attr].append(info[attr]) pd.DataFrame(df_dict).to_csv(folder_out + "/INFO.csv", index=False) def save_raw_avalibility(folder_in, folder_out, date_in, date_out): all_b = [folder_in + e for e in listdir(folder_in) if date_in in e] collect = [] for file in all_b: f = open(file, "r") collect += json.load(f) with open(folder_out + "AVALIBILITY"+date_in.replace("-","")+"_"+date_out.replace("-","")+".json", "w") as f: json.dump(collect, f, indent=2)
2.640625
3
neuromaps/tests/test_stats.py
VinceBaz/neuromaps
0
12797784
# -*- coding: utf-8 -*- """ For testing neuromaps.stats functionality """ import numpy as np import pytest from neuromaps import stats @pytest.mark.xfail def test_compare_images(): assert False def test_permtest_metric(): rs = np.random.default_rng(12345678) x, y = rs.random(size=(2, 100)) r, p = stats.permtest_metric(x, y) assert np.allclose([r, p], [0.0345815411043023, 0.7192807192807192]) r, p = stats.permtest_metric(np.c_[x, x[::-1]], np.c_[y, y]) assert np.allclose(r, [0.0345815411043023, 0.03338608427980476]) assert np.allclose(p, [0.7192807192807192, 0.7472527472527473]) @pytest.mark.parametrize('x, y, expected', [ # basic one-dimensional input (range(5), range(5), (1.0, 0.0)), # broadcasting occurs regardless of input order (np.stack([range(5), range(5, 0, -1)], 1), range(5), ([1.0, -1.0], [0.0, 0.0])), (range(5), np.stack([range(5), range(5, 0, -1)], 1), ([1.0, -1.0], [0.0, 0.0])), # correlation between matching columns (np.stack([range(5), range(5, 0, -1)], 1), np.stack([range(5), range(5, 0, -1)], 1), ([1.0, 1.0], [0.0, 0.0])) ]) def test_efficient_pearsonr(x, y, expected): assert np.allclose(stats.efficient_pearsonr(x, y), expected) def test_efficient_pearsonr_errors(): with pytest.raises(ValueError): stats.efficient_pearsonr(range(4), range(5)) assert all(np.isnan(a) for a in stats.efficient_pearsonr([], []))
2.1875
2
image_classifier.py
springcoil/deep-learning-tutorial-pydata2016
0
12797785
<reponame>springcoil/deep-learning-tutorial-pydata2016<gh_stars>0 from __future__ import print_function # os.environ['THEANO_FLAGS'] = 'device=gpu1' import numpy as np import theano import theano.tensor as T import lasagne import trainer, utils class TemperatureSoftmax (object): """ A softmax function with a temperature setting; increasing it smooths the resulting probabilities. """ def __init__(self, temperature=1.0): self._temperature = theano.shared(lasagne.utils.floatX(temperature), 'temperature') @property def temperature(self): return 1.0 / self._temperature.get_value() @temperature.setter def temperature(self, value): self._temperature.set_value(lasagne.utils.floatX(1.0 / value)) def __call__(self, x): return lasagne.nonlinearities.softmax(x * self._temperature) class AbstractClassifier (object): @classmethod def for_model(cls, network_build_fn, params_path=None, *args, **kwargs): """ Construct a classifier, given a network building function and an optional path from which to load parameters. :param network_build_fn: network builder function of the form `fn(input_var, **kwargs) -> lasagne_layer` that constructs a network in the form of a Lasagne layer, given an input variable (a Theano variable) :param params_path: [optional] path from which to load network parameters :return: a classifier instance """ # Prepare Theano variables for inputs and targets input_var = T.tensor4('inputs') target_var = T.ivector('targets') # Build the network print("Building model and compiling functions...") network = network_build_fn(input_var=input_var, **kwargs) # If a parameters path is provided, load them if params_path is not None: utils.load_model(params_path, network) return cls(input_var, target_var, network, *args, **kwargs) @classmethod def for_network(cls, network, *args, **kwargs): """ Construct a classifier instance, given a pre-built network. :param network: pre-built network, in the form of a Lasagne layer :param args: :param kwargs: :return: """ # Construct input_var = utils.get_network_input_var(network) target_var = T.ivector('targets') return cls(input_var, target_var, network, *args, **kwargs) class ImageClassifier (AbstractClassifier): def __init__(self, input_var, target_var, final_layer, updates_fn=None): """ Constructor - construct an `ImageClassifier` instance given variables for input, target and a final layer (a Lasagne layer) :param input_var: input variable, a Theano variable :param target_var: target variable, a Theano variable :param final_layer: final layer, a Lasagne layer :param updates_fn: [optional] a function of the form `fn(cost, params) -> updates` that generates update expressions given the cost and the parameters to update using an optimisation technique e.g. Nesterov Momentum: `lambda cost, params: lasagne.updates.nesterov_momentum(cost, params, learning_rate=0.002, momentum=0.9)` """ self.input_var = input_var self.target_var = target_var self.final_layer = final_layer self.softmax = TemperatureSoftmax() network = lasagne.layers.NonlinearityLayer(final_layer, self.softmax) self.network = network # TRAINING # Get an expression representing the network's output prediction = lasagne.layers.get_output(network) # Create a loss expression for training, i.e., a scalar objective we want # to minimize (for our multi-class problem, it is the cross-entropy loss): loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) # We could add some weight decay as well here, see lasagne.regularization. # Create update expressions for training, i.e., how to modify the # parameters at each training step. Here, we'll use Stochastic Gradient # Descent (SGD) with Nesterov momentum, but Lasagne offers plenty more. params = lasagne.layers.get_all_params(network, trainable=True) if updates_fn is None: updates = lasagne.updates.nesterov_momentum( loss.mean(), params, learning_rate=0.01, momentum=0.9) else: updates = updates_fn(loss.mean(), params) # EVALUATION - VALIDATION, TEST, PREDICTION # Create prediction expressions; use deterministic forward pass (disable # dropout layers) eval_prediction = lasagne.layers.get_output(network, deterministic=True) # Create evaluation loss expression eval_loss = lasagne.objectives.categorical_crossentropy(eval_prediction, target_var) # Create an expression for error count test_err = T.sum(T.neq(T.argmax(eval_prediction, axis=1), target_var), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: self._train_fn = theano.function([input_var, target_var], loss.sum(), updates=updates) # Compile a function computing the validation loss and error: self._val_fn = theano.function([input_var, target_var], [eval_loss.sum(), test_err]) # Compile a function computing the predicted probability self._predict_prob_fn = theano.function([input_var], eval_prediction) # Construct a trainer self.trainer = trainer.Trainer() # Provide with training function self.trainer.train_with(train_batch_fn=self._train_fn, train_epoch_results_check_fn=self._check_train_epoch_results) # Evaluate with evaluation function, the second output value - error rate - is used for scoring self.trainer.evaluate_with(eval_batch_fn=self._val_fn, validation_score_fn=1) # Set the epoch logging function self.trainer.report(epoch_log_fn=self._epoch_log) # Tell the trainer to store parameters when the validation score (error rate) is best # self.trainer.retain_best_scoring_state_of_updates(updates) self.trainer.retain_best_scoring_state_of_network(network) def _check_train_epoch_results(self, epoch, train_epoch_results): if np.isnan(train_epoch_results).any(): return 'Training loss of NaN' else: return None def _epoch_log(self, epoch_number, delta_time, train_results, val_results, test_results): """ Epoch logging callback, passed to the `self.trainer.report()` """ items = [] items.append('Epoch {}/{} took {:.2f}s'.format(epoch_number + 1, self.trainer.num_epochs, delta_time)) items.append('train loss={:.6f}'.format(train_results[0])) if val_results is not None: items.append('val loss={:.6f}, val err={:.2%}'.format(val_results[0], val_results[1])) if test_results is not None: items.append('test err={:.2%}'.format(test_results[1])) return ', '.join(items) @property def n_upper_layers(self): return len(self.upper_layers) def predict_prob(self, X, batchsize=500, temperature=None, batch_xform_fn=None): """ Predict probabilities for input samples :param X: input samples :param batchsize: [optional] mini-batch size default=500 :param temperature: [optional] softmax temperature :return: """ y = [] if temperature is not None: self.softmax.temperature = temperature for batch in self.trainer.batch_iterator(X, batchsize=batchsize, shuffle=False): if batch_xform_fn is not None: batch = batch_xform_fn(batch) y_batch = self._predict_prob_fn(batch[0]) y.append(y_batch) y = np.concatenate(y, axis=0) if temperature is not None: self.softmax.temperature = 1.0 return y def predict_cls(self, X, batchsize=500, batch_xform_fn=None): prob = self.predict_prob(X, batchsize=batchsize, batch_xform_fn=batch_xform_fn) return np.argmax(prob, axis=1)
2.75
3
mugimugi_client_api/search_item/parody.py
JeanMarc-Moly/mugimugi_client_api
0
12797786
<gh_stars>0 from dataclasses import dataclass from typing import ClassVar from mugimugi_client_api_entity import Parody from mugimugi_client_api_entity import SearchParody as Root from mugimugi_client_api_entity.enum import ElementPrefix, ItemType from .abstract import SearchItem @dataclass class SearchParody(SearchItem): ROOT: ClassVar[type] = Root TYPE: ClassVar[ItemType] = ItemType.PARODY PREFIX: ClassVar[ElementPrefix] = Parody.PREFIX
2.125
2
src/adasigpy/adasigpy.py
borley1211/aspy
0
12797787
<reponame>borley1211/aspy<filename>src/adasigpy/adasigpy.py import numpy as np from .domain.method import Method, init_w from .interface.filter import AdaptiveSignalProcesserABC class AdaptiveSignalProcesser(AdaptiveSignalProcesserABC): def __init__(self, model, shape, mu, w_init, lambda_): self.method = Method.methods[model] self.mu = mu self.w = init_w(w_init, shape) self.lambda_ = lambda_ def adopt(self, d, x): len_d, len_x = len(d), len(x) if len_d != len_x: raise ValueError( f"2 arrays should have same length. But now, 'd' has {len_d} and 'x' has {len_x}." ) self.method(d, x, self.w, self.mu, self.lambda_) def update(self, d, x): len_d, len_x = len(d), len(x) if len_d != len_x: raise ValueError( f"2 arrays should have same length. But now, 'd' has {len_d} and 'x' has {len_x}." ) w_delta = self.method(d, x, self.w, self.mu, self.lambda_) self.w = self.w + w_delta return self.w
2.515625
3
checkcel/checkerator.py
mboudet/validator
0
12797788
from openpyxl import Workbook from checkcel.validators import OntologyValidator, SetValidator, LinkedSetValidator from openpyxl.utils import get_column_letter from checkcel.checkplate import Checkplate class Checkerator(Checkplate): def __init__( self, output, **kwargs ): super(Checkerator, self).__init__(**kwargs) self.output = output def generate(self): wb = Workbook() current_data_column = 1 current_ontology_column = 1 current_set_column = 1 current_readme_row = 1 readme_sheet = wb.active readme_sheet.title = "README" data_sheet = wb.create_sheet(title="Data") ontology_sheet = None set_sheet = None set_columns = {} for column_name, validator in self.validators.items(): readme_sheet.cell(column=1, row=current_readme_row, value=validator.describe(column_name)) current_readme_row += 1 data_sheet.cell(column=current_data_column, row=1, value=column_name) if isinstance(validator, OntologyValidator): if not ontology_sheet: ontology_sheet = wb.create_sheet(title="Ontologies") data_validation = validator.generate(get_column_letter(current_data_column), get_column_letter(current_ontology_column), ontology_sheet) current_ontology_column += 1 elif isinstance(validator, SetValidator): # Total size, including separators must be < 256 if sum(len(i) for i in validator.valid_values) + len(validator.valid_values) - 1 > 256: if not set_sheet: set_sheet = wb.create_sheet(title="Sets") data_validation = validator.generate(get_column_letter(current_data_column), column_name, get_column_letter(current_set_column), set_sheet) current_set_column += 1 else: data_validation = validator.generate(get_column_letter(current_data_column)) set_columns[column_name] = get_column_letter(current_data_column) elif isinstance(validator, LinkedSetValidator): if not set_sheet: set_sheet = wb.create_sheet(title="Sets") data_validation = validator.generate(get_column_letter(current_data_column), set_columns, column_name, get_column_letter(current_set_column), set_sheet, wb) current_set_column += 1 set_columns[column_name] = get_column_letter(current_data_column) else: data_validation = validator.generate(get_column_letter(current_data_column)) if data_validation: data_sheet.add_data_validation(data_validation) current_data_column += 1 for sheet in wb.worksheets: for column_cells in sheet.columns: length = (max(len(self.as_text(cell.value)) for cell in column_cells) + 2) * 1.2 sheet.column_dimensions[get_column_letter(column_cells[0].column)].width = length wb.save(filename=self.output) def as_text(self, value): return str(value) if value is not None else ""
2.65625
3
utils.py
spchung/whenbots
0
12797789
import datetime # some wrapper classes for binance websockets and api responses class WsKline: # takes in a websocket payload on init -> https://binance-docs.github.io/apidocs/spot/en/#kline-candlestick-streams def __init__(self, ws_kline): self.eventTime=datetime.datetime.fromtimestamp( float(ws_kline['E'])/1000 ).strftime("%m-%d-%Y %H:%M:%S") self.symbol=ws_kline['s'] self.klineStartTime=datetime.datetime.fromtimestamp( float(ws_kline['k']['t'])/1000).strftime("%m-%d-%Y %H:%M:%S") self.klineCloseTime=datetime.datetime.fromtimestamp( float(ws_kline['k']['c'])/1000).strftime("%m-%d-%Y %H:%M:%S") self.interval=ws_kline['k']['i'] self.openPrice=float(ws_kline['k']['o']) self.closePrice=float(ws_kline['k']['c']) self.highPrice=float(ws_kline['k']['h']) self.lowPrice=float(ws_kline['k']['l']) self.baseAssetVolume=float(ws_kline['k']['v']) self.numberOfTrades=int(ws_kline['k']['n']) self.klineClosed=ws_kline['k']['x'] self.quoteAssetVolume=float(ws_kline['k']['q']) self.takerBaseAssetVolume=float(ws_kline['k']['V']) self.takerQuoteAssetVolume=float(ws_kline['k']['Q']) def toDict(self): d = dict() d['time'] = self.klineCloseTime d['open'] = self.openPrice d['high'] = self.highPrice d['low'] = self.lowPrice d['close'] = self.closePrice return d
2.671875
3
continuity/tasks.py
scast/continuity-docker
0
12797790
<filename>continuity/tasks.py from dockermap.map.config import ClientConfiguration from dockermap.api import MappingDockerClient from fabric.api import (cd, env, execute, hide, local, prefix, prompt, puts, roles, run, sudo, task) from fabric.utils import abort from fabric.colors import cyan, green, red, yellow from fabric.contrib.console import confirm from fabric.contrib.files import exists @task def build_image(image='production'): if env.docker.build(**env.images[image]['build']) is None: abort(red('Failed to build image {image}'.format(image=image))) else: print green('Successfully built image {image}'.format(image=image)) @task def build(action='check'): '''Step 1. Build artifacts (docker images) for all environments.''' force = action == 'force' check_changed = action == 'check' with cd(env.project_path): remote, dest_branch = env.remote_ref.split('/', 1) changed_files = [] if check_changed: with hide('running', 'stdout'): changed_files = env.run('git diff-index --cached --name-only ' '{working_ref}'.format(**env), capture=True).splitlines() with open('images_rebuilt', 'w') as f: for environment in env.manager.get_rebuild_steps('common', changed_files, force=force): build_image(environment) f.write('{}\n'.format(environment)) @task def run_tests(): '''Step 2. Run tests and keep it real.''' # Start the testing runner container_map = env.container_map map_client = env.map_client info = map_client.startup('runner') container_id = info[0][1]['Id'] # Wait on it to return exit_status = env.docker.wait(container=container_id, timeout=600) # Clean up logs = env.docker.logs(container=container_id) for container in container_map.containers: map_client.shutdown(container) # Abort or succeed. print logs if exit_status == 0: print green('All tests passed.') else: abort(red('Some tests failed!')) @task def push(): '''Step 3. Merge and push artifacts.''' # TODO: push to registry # Perform clean up env.run('rm -rf images_rebuilt') @task def deploy(): '''Step 4. Deploy artifacts.''' for cname in env.containers: env.map_client.shutdown(cname) env.map_client.startup(cname)
2.09375
2
control_produccion/migrations/0008_auto_20160808_1812.py
asapper/lito-produccion
0
12797791
<filename>control_produccion/migrations/0008_auto_20160808_1812.py # -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-08-09 00:12 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('control_produccion', '0007_auto_20160623_1052'), ] operations = [ migrations.RemoveField( model_name='order', name='order_date_created', ), migrations.RemoveField( model_name='order', name='order_machine', ), migrations.RemoveField( model_name='order_process', name='order_process_datetime_finished', ), migrations.RemoveField( model_name='order_process', name='order_process_datetime_pause_start', ), migrations.RemoveField( model_name='order_process', name='order_process_datetime_started', ), migrations.RemoveField( model_name='order_process', name='order_process_is_paused', ), migrations.RemoveField( model_name='order_process', name='order_process_seconds_paused', ), migrations.RemoveField( model_name='order_process', name='order_process_user_finished', ), migrations.RemoveField( model_name='order_process', name='order_process_user_started', ), migrations.AddField( model_name='order', name='order_sh_id', field=models.PositiveSmallIntegerField(default=0), preserve_default=False, ), migrations.AddField( model_name='process', name='process_group_sh_id', field=models.PositiveSmallIntegerField(default=0), preserve_default=False, ), migrations.AddField( model_name='process', name='process_sh_id', field=models.PositiveSmallIntegerField(default=0), preserve_default=False, ), ]
1.429688
1
api/get_numpy_array_from_dbase.py
fmidev/ml-feature-db
0
12797792
<gh_stars>0 #!/usr/bin/python # -*- coding: utf-8 -*- from configparser import ConfigParser #from lib import mlfb #from lib import mlfb_test4 from lib import mlfb def main(): # Example script to use mlfb class #a = mlfb_test4.mlfb_test4(1) #a = mlfb.mlfb_test4(1) a = mlfb.mlfb(1) #input1=999 #input1=99.88 #input1=99,66 #input1=99.55 #input1='atest9988' #input1=97 #input1='atest1188' # (type_in, 'null', '20180226T165000',666,'testpara1',665)) #type_in,time_in,location_id_in,parameter_in,value_in input_type='4test2288' input_source='null' input_time='20180226T165000' input_location_id=455 input_parameter='test2para' input_value=441 #a.insert_row_trains_1('test99') #a.insert_row_trains_1(input_type,input_source,input_time,input_location_id,input_parameter,input_value) #input_location_id=5 input_location_id=1 #input_parameter='temperature' input_parameter='temperature' input_value=-9 # get rows a.get_rows_from_postgre_to_numpy(input_parameter,input_value) if __name__=='__main__': main()
2.109375
2
setup.py
RLMarvin/RLBotTraining
0
12797793
<gh_stars>0 import setuptools import importlib # Avoid native import statements as we don't want to depend on the package being created yet. def load_module(module_name, full_path): spec = importlib.util.spec_from_file_location(module_name, full_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module version = load_module("rlbottraining.version", "rlbottraining/version.py") paths = load_module("rlbottraining.paths", "rlbottraining/paths.py") with open("README.md", "r") as readme_file: long_description = readme_file.read() setuptools.setup( name='rlbottraining', packages=setuptools.find_packages(), install_requires=[ 'rlbot>=1.25.0', 'docopt', 'watchdog', 'numpy', ], python_requires='>=3.7.0', version=version.__version__, description='A framework for writing training for Rocket League bots.', long_description=long_description, long_description_content_type="text/markdown", author='RLBot Community', author_email='<EMAIL>', url='https://github.com/RLBot/RLBotTraining', keywords=['rocket-league', 'training', 'train'], license='MIT License', classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: Microsoft :: Windows", ], entry_points={ # Allow people to run `rlbottraining` instead of `python -m rlbottraining` 'console_scripts': ['rlbottraining = rlbottraining.__main__:main'] }, package_data={ 'rlbottraining': [ f'{paths._match_config_dir}/*.cfg', f'{paths._example_bot_dir}/*/*.cfg', str(paths._website_static_source), str(paths._example_rl_custom_training_json), ] }, )
1.671875
2
check_normals.py
panmari/seeing3d
56
12797794
<reponame>panmari/seeing3d<filename>check_normals.py #!/usr/bin/env python """ see if normals are plausible by looking at their norm. """ import sys import Image import numpy as np import matplotlib.pyplot as pl img_fname = sys.argv[1] img = Image.open(img_fname) imgarr = np.array(img).astype(np.float)/255. print imgarr.shape imgarr2 = 2.*imgarr - 1. imgarr3 = (imgarr2*imgarr2).sum(2) mask = ~(imgarr3==3.0) imgarr3 *= mask imgarr3 = np.sqrt(imgarr3) print imgarr3.min(), imgarr3.max() pl.matshow(imgarr3) pl.colorbar() pl.show() #print imgarr2.min(), imgarr2.max()
2.46875
2
Instances/Final-Task/processFile.py
namespace-Pt/Algorithm
0
12797795
path_save = r'D:\Data\Class_data\Alg_data\FinalTask\l_1.txt' path = r'D:\Data\Class_data\Alg_data\FinalTask\F.txt' with open(path,'r',encoding='utf-8',errors='ignore') as f: string = '' # for line in f: # string += line.strip() # except: # continue string = f.read() print(len(string)) g = open(path_save,'w') g.write(string) g.close()
2.8125
3
convertmask/utils/auglib/optional/resize.py
wwdok/mask2json
27
12797796
<filename>convertmask/utils/auglib/optional/resize.py ''' lanhuage: python Descripttion: version: beta Author: xiaoshuyui Date: 2020-10-26 08:31:13 LastEditors: xiaoshuyui LastEditTime: 2020-11-20 14:12:40 ''' import os import xml.etree.ElementTree as ET import numpy as np import skimage from convertmask.utils.methods.logger import logger from convertmask.utils.xml2yolo.xml2yolo import convert as x2yVert from convertmask.utils.yolo2xml.yolo2xml import convert as y2xVert def resize_img(img: np.ndarray, heightFactor=1, widthFactor=1): if isinstance(img,str): img = skimage.io.imread(img) imgShape = img.shape resizedImg = skimage.transform.resize( img, (int(heightFactor * imgShape[0]), int(widthFactor * imgShape[1]))) return np.array(resizedImg * 255).astype(np.uint8) # def resize_xml(xmlpath:str, heightFactor=1, widthFactor=1): # pass def resizeScript(img, xmlpath: str, heightFactor=1, widthFactor=1,flag=True): if isinstance(img, str) and os.path.exists(img): oriImg = skimage.io.imread(img) elif isinstance(img, np.ndarray): oriImg = img else: logger.error('Input error!') return in_file = open(xmlpath) tree = ET.parse(in_file) root = tree.getroot() parentPath, xmlFilename = os.path.split(xmlpath) xf, _ = os.path.splitext(xmlFilename) savePath = parentPath + os.sep + xf + '_reshape.xml' root.find('filename').text = xf + '_reshape.jpg' root.find('path').text = parentPath + os.sep + xf + '_reshape.jpg' resizeImg = resize_img(oriImg, heightFactor, widthFactor) resizeImgShape = resizeImg.shape width = int(resizeImgShape[1]) height = int(resizeImgShape[0]) size = root.find('size') size.find('width').text = str(width) size.find('height').text = str(height) for obj in root.iter('object'): xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) # print('===========================') # print(b) bb = x2yVert((oriImg.shape[1], oriImg.shape[0]), b) x, y, w, h = bb[0], bb[1], bb[2], bb[3] # print(x, y, w, h) # w = w # h = h bbox = y2xVert((resizeImgShape[1],resizeImgShape[0]), x, y, w, h) # print(bbox) # print('===========================') xmlbox.find('xmin').text = str(int(bbox[0])) xmlbox.find('ymin').text = str(int(bbox[2])) xmlbox.find('xmax').text = str(int(bbox[1])) xmlbox.find('ymax').text = str(int(bbox[3])) if flag: # save file tree.write(savePath) in_file.close() return resizeImg, savePath else: return tree
2.5625
3
docker_loader/image.py
msiedlarek/docker-loader
4
12797797
<filename>docker_loader/image.py<gh_stars>1-10 import gzip import shutil import logging logger = logging.getLogger(__name__) class Image: def __init__(self, client, id): self.client = client self.id = id self.repository_tag = None def __str__(self): return self.repository_tag or self.id[:12] def tag(self, repository, tag=None, force=None, **kwargs): if tag is None: tag = 'latest' if force is None and tag == 'latest': force = True logger.info("Tagging image {image} as {repository}:{tag}...".format( image=self, repository=repository, tag=tag )) self.client.tag( self.id, repository=repository, tag=tag, force=force, **kwargs ) self.repository_tag = ':'.join((repository, tag)) return self def remove(self, **kwargs): logger.info("Removing image: {}".format(self)) self.client.remove_image(self.id, **kwargs) def get(self): if self.repository_tag: return self.client.get_image(self.repository_tag) else: return self.client.get_image(self.id) def save(self, path, compress=False): logger.info("Saving image {image} to: {file}".format( image=self, file=path )) if compress: open_func = gzip.open else: open_func = open with open_func(path, 'wb') as output: shutil.copyfileobj(self.get(), output) return self
2.515625
3
authors/apps/comments/models.py
MuhweziDeo/Ah-backend-xmen
4
12797798
from django.dispatch import receiver from django.db.models.signals import pre_save from django.db import models from authors.apps.articles.models import Article from authors.apps.profiles.models import Profile from simple_history.models import HistoricalRecords class Comment(models.Model): """ Handles CRUD on a comment that has been made on article """ body=models.TextField(max_length=500) createdAt=models.DateTimeField(auto_now_add=True) updatedAt=models.DateTimeField(auto_now=True) highlight_start = models.PositiveIntegerField(null=True, blank=True) highlight_end = models.PositiveIntegerField(null=True, blank=True) highlight_text = models.TextField(max_length=500, null=True) author=models.ForeignKey(Profile,on_delete=models.CASCADE, related_name='authored_by') article=models.ForeignKey(Article,on_delete=models.CASCADE, related_name='article') comment_history = HistoricalRecords() class Meta: ordering=['-createdAt'] def __str__(self): return self.body class CommentReply(models.Model): """ Handles replying on a specific comment by made on an article """ comment=models.ForeignKey(Comment,on_delete=models.CASCADE,related_name='replies') reply_body=models.TextField() repliedOn=models.DateTimeField(auto_now_add=True) updatedOn=models.DateTimeField(auto_now=True) author=models.ForeignKey(Profile,on_delete=models.CASCADE) reply_history = HistoricalRecords() class Meta: ordering=['repliedOn'] def __str__(self): return self.reply_body class CommentLike(models.Model): """ Handles liking of a specific user by an authenticated user """ comment=models.ForeignKey(Comment,on_delete=models.CASCADE) like_status=models.BooleanField() liked_by=models.ForeignKey(Profile,on_delete=models.CASCADE) def __str__(self): return "like by {}".format(self.liked_by) class CommentReplyLike(models.Model): """ Holds data for liking reply made a comment """ liked=models.BooleanField() reply_like_by=models.ForeignKey(Profile,on_delete=models.CASCADE) comment_reply=models.ForeignKey(CommentReply,on_delete=models.CASCADE) def __str__(self): return "reply liked by {}".format(self.reply_like_by)
2.21875
2
example_tf_loader_def.py
chunish/c-
0
12797799
# _*_ coding: utf-8 _*_ import os import time import numpy as np import tensorflow as tf class loader(object): def __init__(self, batch_size=1, img_width=0, img_height=0): self.batch_size = batch_size self.img_w = img_width self.img_h = img_height self.batch_total = 0 def load_csv(self, csv_path): paths = [] labels = [] only_path = True with open(csv_path, 'rb') as ff: for i,d in enumerate(ff): if only_path: path = d[:-1] label = i else: path, label = d.split(',') path = path[:-1] paths.append(path) labels.append(label) self.batch_total = len(labels) // self.batch_size + 1 return paths, labels def run(self, csv_path): paths_list, labels_list = self.load_csv(csv_path) img_queue, label_queue = tf.train.slice_input_producer([paths_list, labels_list], shuffle=True) img_content = tf.read_file(img_queue) img_data = tf.image.decode_jpeg(img_content, channels=3) img_resize = tf.image.resize_images(img_data, [self.img_w, self.img_h]) img_standard = tf.image.per_image_standardization(img_resize) img_batch, label_batch = tf.train.batch([img_standard, label_queue], batch_size=self.batch_size) return img_batch, label_batch if __name__ == '__main__': IMG_WIDTH = 1200 IMG_HEIGHT = 1600 MAX_EPOCH = 1000 img_path = '/home/kcadmin/datasets/img_list.csv' data = loader(batch_size=90, img_width=IMG_WIDTH, img_height=IMG_HEIGHT) ibatch, lbatch = data.run(csv_path=img_path) with tf.Session() as sess: coord = tf.train.Coordinator() thread = tf.train.start_queue_runners(sess=sess, coord=coord) for epoch in range(MAX_EPOCH): for batch in range(data.batch_total): i, l = sess.run([ibatch, lbatch]) print '{}/{}, {}/{}: {},{}'.format(batch, data.batch_total, epoch, MAX_EPOCH, len(l), i.shape) coord.request_stop() coord.join(thread)
2.59375
3
deepnlpf/core/execute.py
deepnlpf/deepnlpf
3
12797800
<filename>deepnlpf/core/execute.py<gh_stars>1-10 # -*- coding: utf-8 -*- import deepnlpf.log as log class Execute (object): """ Execute Scripts External in Outher Language Programation. """ def __init__(self): pass def run_r(self, script, *args): import rpy2.robjects as ro r = ro.r r.source(script) return r.main(*args) def run_java(self, jar_file, *args): try: import subprocess return subprocess.check_output(['java', '-jar', jar_file, *args], shell=False) except Exception as err: log.logger.error(err)
2.546875
3
website/basics/forms.py
apoorv-x12/Django-Arunachala
0
12797801
from django import forms class InterestForm(forms.Form): amount=forms.FloatField(label='Amount') rate=forms.FloatField(label="Interest rate" ,min_value=5 ,max_value=50)
2.625
3
streamz_ml/tests/test_stream_estimator.py
remiadon/streamz-ml
7
12797802
<filename>streamz_ml/tests/test_stream_estimator.py import pytest from itertools import product from streamz_ml import StreamEstimator import numpy as np from streamz import Stream import pandas as pd from streamz.dataframe import DataFrame, Series from streamz.utils_test import wait_for, await_for def test_no_fit_method(): class MyEstimator(): def predict(self, X): return X class MyStreamingEstimator(MyEstimator, StreamEstimator): pass with pytest.raises(TypeError): my_est = MyStreamingEstimator() def test_no_predict_method(): class MyEstimator(): def fit(self, X): return X class MyStreamingEstimator(MyEstimator, StreamEstimator): pass with pytest.raises(TypeError): my_est = MyStreamingEstimator() def test_check_method(): class MyEstimator(StreamEstimator): def partial_fit(self, X, y): pass def predict(self, X): pass my_est = MyEstimator() with pytest.raises(AttributeError): my_est._check_method('score') my_est._check_method('partial_fit') my_est._check_method('predict') def test_stream_inputs(): wrong_Xs = (pd.DataFrame(), None, pd.np.array([]), list()) wrong_ys = (pd.DataFrame(), pd.Series(), None, pd.np.array([]), list()) wrong_entries = product(wrong_Xs, wrong_ys) for X, y in wrong_entries: with pytest.raises(AssertionError): StreamEstimator._check_stream_inputs(X, y) class MyEstimator(): def __init__(self): self.fit_ctr = 0 self.predict_ctr = 0 def partial_fit(self, X, y): self.fit_ctr += 1 return self def predict(self, X): self.predict_ctr += 1 return np.ones(X.shape[0]) class MyStreamingEstimator(MyEstimator, StreamEstimator): pass def test_stream_partial_fit(): X_example, y_example = pd.DataFrame({'name': [], 'amount': []}), pd.Series([]) X_stream, y_stream = Stream(), Stream() X, y = DataFrame(X_stream, example=X_example), Series(y_stream, example=y_example) model = MyStreamingEstimator() fit_results = model.stream_partial_fit(X, y) fit_ctr_list = [] fit_results.map(lambda model: model.fit_ctr).sink(fit_ctr_list.append) n_fits = 10 for i in range(n_fits): X_stream.emit(X_example) y_stream.emit(y_example) predicate = lambda: (list(range(1, n_fits + 1)) == fit_ctr_list) wait_for(predicate, .2) def test_stream_predict(): n_rows = 100 X_example = pd.DataFrame({'name': [None] * n_rows, 'amount': [None] * n_rows}) X_stream = Stream() X = DataFrame(X_stream, example=X_example) model = MyStreamingEstimator() example_data = pd.Series(pd.np.ones(X_example.shape[0])) pred_series = model.stream_predict(X, y_example=pd.Series(example_data)) pred_df = model.stream_predict(X, y_example=pd.DataFrame(data=example_data)) pred_series_list, pred_df_list = [], [] pred_series.stream.sink(pred_series_list.append) pred_df.stream.sink(pred_df_list.append) n_fits = 10 for i in range(n_fits): X_stream.emit(X_example) ctr_predicate = lambda: (model.predict_ctr == n_fits) target_predictions = np.ones((X_example.shape[0], n_fits)) pred_series_predicate = \ lambda: pd.np.array_equal(pd.np.concatenate(pred_series_list).reshape(-1), target_predictions.reshape(-1)) pred_df_predicate = \ lambda: pd.np.array_equal(pd.np.concatenate(pred_df_list).reshape(-1), target_predictions.reshape(-1)) await_for(ctr_predicate, .1) await_for(pred_series_predicate, .1) await_for(pred_df_predicate, .1) def test_score_stream(): class MyEstimator(StreamEstimator): def partial_fit(self, X, y): pass def predict(self, X): pass def score(self, X, y): return 1 n_rows = 20 X_example, y_example = pd.DataFrame({'name': [None] * n_rows, 'amount': [None] * n_rows}), pd.Series([]) X_stream, y_stream = Stream(), Stream() X, y = DataFrame(X_stream, example=X_example), Series(y_stream, example=y_example) model = MyEstimator() score_stream = model.stream_score(X, y) score_list = list() score_stream.stream.sink(score_list.append) score_predicate = lambda: score_list == [1] * n_rows await_for(score_predicate, .1)
2.421875
2
tests/test_geckodriver.py
ramonmedeiros/geckodriver-binary
0
12797803
from selenium import webdriver import geckodriver_binary # Adds geckodriver binary to path def test_driver(): driver = webdriver.Firefox() driver.get("http://www.python.org") assert "Python" in driver.titl driver.quit()
2.53125
3
Connector/info/__init__.py
bridgedragon/NodeChain
0
12797804
<reponame>bridgedragon/NodeChain #!/usr/bin/python from . import endpoints
0.832031
1
bapsflib/utils/exceptions.py
BaPSF/bapsflib
11
12797805
# This file is part of the bapsflib package, a Python toolkit for the # BaPSF group at UCLA. # # http://plasma.physics.ucla.edu/ # # Copyright 2017-2018 <NAME> and contributors # # License: Standard 3-clause BSD; see "LICENSES/LICENSE.txt" for full # license terms and contributor agreement. # """Exceptions specific to `bapsflib`.""" __all__ = [ "HDFMappingError", "HDFReadControlError", "HDFReadDigiError", "HDFReadMSIError", "HDFReadError", ] class HDFMappingError(Exception): """Exception for failed HDF5 mappings""" def __init__(self, device_name: str, why=""): super().__init__(f"'{device_name}' mapping failed: {why}") class HDFReadError(Exception): """Exception for failed HDF5 reading""" pass class HDFReadDigiError(HDFReadError): """Exception for failed HDF5 reading of digitizer.""" pass class HDFReadControlError(HDFReadError): """Exception for failed HDF5 reading of digitizer.""" pass class HDFReadMSIError(HDFReadError): """Exception for failed HDF5 reading of digitizer.""" pass
2.078125
2
src/create_db.py
keshik6/deep-image-retrieval
31
12797806
<gh_stars>10-100 from tqdm import tqdm import torch import gc import os import numpy as np from sklearn.metrics import cohen_kappa_score from model import TripletNet, create_embedding_net from dataset import QueryExtractor, EmbeddingDataset from torchvision import transforms import torchvision.models as models from torch.utils.data import DataLoader from utils import perform_pca_on_single_vector def create_embeddings_db_pca(model_weights_path, img_dir, fts_dir): """ Given a model weights path, this function creates a triplet network, loads the parameters and generates the dimension reduced (using pca) vectors and save it in the provided feature directory. Args: model_weights_path : path of trained weights img_dir : directory that holds the images fts_dir : directory to store the embeddings Returns: None Eg run: create_embeddings_db_pca("./weights/oxbuild-exp-3.pth", img_dir="./data/oxbuild/images/", fts_dir="./fts_pca/oxbuild/") """ # Create cuda parameters use_cuda = torch.cuda.is_available() np.random.seed(2019) torch.manual_seed(2019) device = torch.device("cuda" if use_cuda else "cpu") print("Available device = ", device) # Create transforms mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] transforms_test = transforms.Compose([transforms.Resize(460), transforms.FiveCrop(448), transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])), transforms.Lambda(lambda crops: torch.stack([transforms.Normalize(mean=mean, std=std)(crop) for crop in crops])), ]) # Creat image database if "paris" in img_dir: print("> Blacklisted images must be removed") blacklist = ["paris_louvre_000136.jpg", "paris_louvre_000146.jpg", "paris_moulinrouge_000422.jpg", "paris_museedorsay_001059.jpg", "paris_notredame_000188.jpg", "paris_pantheon_000284.jpg", "paris_pantheon_000960.jpg", "paris_pantheon_000974.jpg", "paris_pompidou_000195.jpg", "paris_pompidou_000196.jpg", "paris_pompidou_000201.jpg", "paris_pompidou_000467.jpg", "paris_pompidou_000640.jpg", "paris_sacrecoeur_000299.jpg", "paris_sacrecoeur_000330.jpg", "paris_sacrecoeur_000353.jpg", "paris_triomphe_000662.jpg", "paris_triomphe_000833.jpg", "paris_triomphe_000863.jpg", "paris_triomphe_000867.jpg",] files = os.listdir(img_dir) for blacklisted_file in blacklist: files.remove(blacklisted_file) QUERY_IMAGES = [os.path.join(img_dir, file) for file in sorted(files)] else: QUERY_IMAGES = [os.path.join(img_dir, file) for file in sorted(os.listdir(img_dir))] # Create dataset eval_dataset = EmbeddingDataset(img_dir, QUERY_IMAGES, transforms=transforms_test) eval_loader = DataLoader(eval_dataset, batch_size=1, num_workers=0, shuffle=False) # Create embedding network resnet_model = create_embedding_net() model = TripletNet(resnet_model) model.load_state_dict(torch.load(model_weights_path)) model.to(device) model.eval() # Create features with torch.no_grad(): for idx, image in enumerate(tqdm(eval_loader)): # Move image to device and get crops image = image.to(device) bs, ncrops, c, h, w = image.size() # Get output output = model.get_embedding(image.view(-1, c, h, w)) output = output.view(bs, ncrops, -1).mean(1).cpu().numpy() # Perform pca output = perform_pca_on_single_vector(output) # Save fts img_name = (QUERY_IMAGES[idx].split("/")[-1]).replace(".jpg", "") save_path = os.path.join(fts_dir, img_name) np.save(save_path, output.flatten()) del output, image gc.collect() # if __name__ == '__main__': # create_embeddings_db_pca("./weights/oxbuild-exp-3.pth", img_dir="./data/oxbuild/images/", fts_dir="./fts_pca/oxbuild/")
2.203125
2
ansible_nwd/utilities/utilities.py
VasseurLaurent/ansible-nwd
8
12797807
<reponame>VasseurLaurent/ansible-nwd import glob import os def get_list_files(path,list_files): for filename in glob.iglob(path + '**/*', recursive=True): if os.path.isfile(filename): relative_paths = os.path.relpath(filename, path) list_files.append(relative_paths) return list_files
2.5625
3
random surface growth/generate_anim_with_one_amoeba.py
ricsirke/simulations
0
12797808
<gh_stars>0 import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation N = 100 world = np.zeros((N, N)) def get_neighs(i,j): neighs = [] if i+1 < N: neighs.append([i+1,j]) if j+1 < N: neighs.append([i,j+1]) if 0 <= i-1: neighs.append([i-1,j]) if 0 <= j-1: neighs.append([i,j-1]) return neighs starting_point_coord = int(np.floor(N/2)) starting_point = [starting_point_coord, starting_point_coord] amoebe = [starting_point] amoebe_mark = 1 world[0,0] = amoebe_mark perimeters = get_neighs(*starting_point) #################################################################### fig = plt.figure() im = plt.imshow(world) pos_x = 0 pos_y = -8 player_score_text_handle = plt.text(pos_x, pos_y, "blocks: 0") perimeter_score_text_handle = plt.text(0, -3, "perimeter blocks: 0") def animate(i): global perimeters, world, im random_index = np.random.randint(0, len(perimeters)) random_perimeter = perimeters.pop(random_index) print(random_perimeter) neighs = get_neighs(*random_perimeter) # filter inner points new_perimeters = [] for neigh in neighs: if world[neigh[0], neigh[1]] != amoebe_mark and neigh not in perimeters: new_perimeters.append(neigh) ####### perimeters = perimeters + new_perimeters world[random_perimeter[0], random_perimeter[1]] = amoebe_mark im.set_array(world) player_score_text_handle.set_text("player: " + str(i)) perimeter_score_text_handle.set_text("perimeter:" + str(len(perimeters))) interval_ms = 50 anim = FuncAnimation(fig, animate, frames=2000, interval = interval_ms, repeat = False) plt.axis('off') anim.save("anim.mp4") #################################################################### #plt.show()
3.203125
3
system/models/collect.py
u-n-i-c-o-rn/jimi
2
12797809
<gh_stars>1-10 import time from core.models import action, conduct, webui from core import helpers, logging, cache, settings class _collect(action._action): limit = int() # class _properties(webui._properties): # def generate(self,classObject): # formData = [] # formData.append({"type" : "input", "schemaitem" : "_id", "textbox" : classObject._id}) # formData.append({"type" : "input", "schemaitem" : "name", "textbox" : classObject.name}) # formData.append({"type" : "input", "schemaitem" : "limit", "textbox" : classObject.limit, "tooltip" : "Defines the number of events to collect before resuming"}) # formData.append({"type" : "checkbox", "schemaitem" : "enabled", "checked" : classObject.enabled}) # formData.append({"type" : "checkbox", "schemaitem" : "log", "checked" : classObject.log}) # formData.append({"type" : "input", "schemaitem" : "comment", "textbox" : classObject.comment}) # return formData def __init__(self): self.events = [] def doAction(self,data): try: if "skip" in data["flowData"]: del data["flowData"]["skip"] return { "result" : True, "rc" : 0 } except KeyError: pass self.events.append(data["flowData"]["event"]) self.data = data if self.limit != 0 and self.limit < len(self.events): self.continueFlow() # Returning false to stop flow continue return { "result" : False, "rc" : 9 } def continueFlow(self): if self.events: tempDataCopy = conduct.copyData(self.data) tempDataCopy["flowData"]["event"] = self.events tempDataCopy["flowData"]["skip"] = 1 self.events = [] tempDataCopy["flowData"]["eventStats"] = { "first" : True, "current" : 0, "total" : 1, "last" : True } self.data["persistentData"]["system"]["conduct"].triggerHandler(self.data["flowData"]["flow_id"],tempDataCopy,flowIDType=True) def postRun(self): self.continueFlow()
2.03125
2
face_applications_dlib/face_headpose_dlib.py
AlbertaBeef/vitis_ai_python_examples
1
12797810
<reponame>AlbertaBeef/vitis_ai_python_examples<gh_stars>1-10 ''' Copyright 2021 Avnet Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' # USAGE # python face_headpose_dlib.py [--input 0] [--detthreshold 0.55] [--nmsthreshold 0.35] from ctypes import * from typing import List import cv2 import numpy as np import vart import pathlib import xir import os import math import threading import time import sys import argparse from imutils.video import FPS sys.path.append(os.path.abspath('../')) sys.path.append(os.path.abspath('./')) from vitis_ai_vart.facedetect import FaceDetect from vitis_ai_vart.facelandmark import FaceLandmark from vitis_ai_vart.utils import get_child_subgraph_dpu import dlib # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--input", required=False, help = "input camera identifier (default = 0)") ap.add_argument("-d", "--detthreshold", required=False, help = "face detector softmax threshold (default = 0.55)") ap.add_argument("-n", "--nmsthreshold", required=False, help = "face detector NMS threshold (default = 0.35)") args = vars(ap.parse_args()) if not args.get("input",False): inputId = 0 else: inputId = int(args["input"]) print('[INFO] input camera identifier = ',inputId) if not args.get("detthreshold",False): detThreshold = 0.55 else: detThreshold = float(args["detthreshold"]) print('[INFO] face detector - softmax threshold = ',detThreshold) if not args.get("nmsthreshold",False): nmsThreshold = 0.35 else: nmsThreshold = float(args["nmsthreshold"]) print('[INFO] face detector - NMS threshold = ',nmsThreshold) # Initialize Vitis-AI/DPU based face detector densebox_xmodel = "/usr/share/vitis_ai_library/models/densebox_640_360/densebox_640_360.xmodel" densebox_graph = xir.Graph.deserialize(densebox_xmodel) densebox_subgraphs = get_child_subgraph_dpu(densebox_graph) assert len(densebox_subgraphs) == 1 # only one DPU kernel densebox_dpu = vart.Runner.create_runner(densebox_subgraphs[0],"run") dpu_face_detector = FaceDetect(densebox_dpu,detThreshold,nmsThreshold) dpu_face_detector.start() # Initialize Vitis-AI/DPU based face landmark landmark_xmodel = "/usr/share/vitis_ai_library/models/face_landmark/face_landmark.xmodel" landmark_graph = xir.Graph.deserialize(landmark_xmodel) landmark_subgraphs = get_child_subgraph_dpu(landmark_graph) assert len(landmark_subgraphs) == 1 # only one DPU kernel landmark_dpu = vart.Runner.create_runner(landmark_subgraphs[0],"run") dpu_face_landmark = FaceLandmark(landmark_dpu) dpu_face_landmark.start() # Initialize DLIB based face detector dlib_face_detector = dlib.get_frontal_face_detector() # Initialize DLIB based face landmark dlib_landmark_model = "./models/shape_predictor_68_face_landmarks.dat" dlib_face_landmark = dlib.shape_predictor(dlib_landmark_model) # algorithm selection use_dlib_detection = False use_dlib_landmarks = True print("[INFO] face detection = VART") print("[INFO] face landmarks = DLIB") # Initialize the camera input print("[INFO] starting camera input ...") cam = cv2.VideoCapture(inputId) cam.set(cv2.CAP_PROP_FRAME_WIDTH,640) cam.set(cv2.CAP_PROP_FRAME_HEIGHT,480) if not (cam.isOpened()): print("[ERROR] Failed to open camera ", inputId ) exit() # 3D model points. model_points = np.array([ (0.0, 0.0, 0.0), # Nose tip (0.0, -330.0, -65.0), # Chin (-225.0, 170.0, -135.0), # Left eye left corner (225.0, 170.0, -135.0), # Right eye right corne (-150.0, -150.0, -125.0), # Left Mouth corner (150.0, -150.0, -125.0) # Right mouth corner ]) # Camera internals ret,frame = cam.read() size=frame.shape focal_length = size[1] center = (size[1]/2, size[0]/2) camera_matrix = np.array( [[focal_length, 0, center[0]], [0, focal_length, center[1]], [0, 0, 1]], dtype = "double" ) print("[INFO] Camera Matrix :\n {0}".format(camera_matrix)); # start the FPS counter fps = FPS().start() # init the real-time FPS display rt_fps_count = 0; rt_fps_time = cv2.getTickCount() rt_fps_valid = False rt_fps = 0.0 rt_fps_message = "FPS: {0:.2f}".format(rt_fps) rt_fps_x = 10 rt_fps_y = size[0]-10 # loop over the frames from the video stream while True: # Update the real-time FPS counter if rt_fps_count == 0: rt_fps_time = cv2.getTickCount() # Capture image from camera ret,frame = cam.read() dlib_image = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB) faces = [] if use_dlib_detection == False: # Vitis-AI/DPU based face detector faces = dpu_face_detector.process(frame) #print(faces) if use_dlib_detection == True: # DLIB based face detector dlib_faces = dlib_face_detector(dlib_image, 0) for face in dlib_faces: faces.append( (face.left(),face.top(),face.right(),face.bottom()) ) #print(faces) # loop over the faces for i,(left,top,right,bottom) in enumerate(faces): # draw a bounding box surrounding the object so we can # visualize it cv2.rectangle( frame, (left,top), (right,bottom), (0,255,0), 2) # extract the face ROI startX = int(left) startY = int(top) endX = int(right) endY = int(bottom) #print( startX, endX, startY, endY ) widthX = endX-startX heightY = endY-startY face = frame[startY:endY, startX:endX] if use_dlib_landmarks == False: # extract face landmarks landmarks = dpu_face_landmark.process(face) # calculate coordinates for full frame for i in range(5): landmarks[i,0] = startX + landmarks[i,0]*widthX landmarks[i,1] = startY + landmarks[i,1]*heightY # draw landmarks #for i in range(5): # x = int(landmarks[i,0]) # y = int(landmarks[i,1]) # cv2.circle( frame, (x,y), 3, (255,255,255), 2) # prepare 2D points image_points = np.array([ (landmarks[2,0], landmarks[2,1]), # Nose tip (landmarks[2,0], landmarks[2,1]), # Chin (place-holder for now) (landmarks[0,0], landmarks[0,1]), # Left eye left corner (landmarks[1,0], landmarks[1,1]), # Right eye right corne (landmarks[3,0], landmarks[3,1]), # Left Mouth corner (landmarks[4,0], landmarks[4,1]) # Right mouth corner ], dtype="double") # estimate approximate location of chin # let's assume that the chin location will behave similar as the nose location eye_center_x = (image_points[2][0] + image_points[3][0])/2; eye_center_y = (image_points[2][1] + image_points[3][1])/2; nose_offset_x = (image_points[0][0] - eye_center_x); nose_offset_y = (image_points[0][1] - eye_center_y); mouth_center_x = (image_points[4][0] + image_points[5][0])/2; mouth_center_y = (image_points[4][1] + image_points[5][1])/2; image_points[1] = (mouth_center_x + nose_offset_x, mouth_center_y + nose_offset_y); #print(image_points) if use_dlib_landmarks == True: # extract face landmarks with DLIB dlib_rect = dlib.rectangle( startX,startY,endX,endY ) dlib_landmarks = dlib_face_landmark(dlib_image,dlib_rect) # draw landmarks #for i in range(dlib_landmarks.num_parts): # x = int(dlib_landmarks.part(i).x) # y = int(dlib_landmarks.part(i).y) # cv2.circle( frame, (x,y), 3, (255,255,255), 2) # prepare 2D points image_points = np.array([ (dlib_landmarks.part(30).x, dlib_landmarks.part(30).y), # Nose tip (dlib_landmarks.part( 8).x, dlib_landmarks.part( 8).y), # Chin (dlib_landmarks.part(36).x, dlib_landmarks.part(36).y), # Left eye left corner (dlib_landmarks.part(45).x, dlib_landmarks.part(45).y), # Right eye right corne (dlib_landmarks.part(48).x, dlib_landmarks.part(48).y), # Left Mouth corner (dlib_landmarks.part(54).x, dlib_landmarks.part(54).y) # Right mouth corner ], dtype="double") #print(image_points) # calculate head pose dist_coeffs = np.zeros((4,1)) # Assuming no lens distortion (success, rotation_vector, translation_vector) = cv2.solvePnP(model_points, image_points, camera_matrix, dist_coeffs, flags=cv2.SOLVEPNP_ITERATIVE) #print "Rotation Vector:\n {0}".format(rotation_vector) #print "Translation Vector:\n {0}".format(translation_vector) # Project a 3D point (0, 0, 1000.0) onto the image plane. # We use this to draw a line sticking out of the nose (nose_end_point2D, jacobian) = cv2.projectPoints(np.array([(0.0, 0.0, 1000.0)]), rotation_vector, translation_vector, camera_matrix, dist_coeffs) for p in image_points: #cv2.circle(face, (int(p[0]), int(p[1])), 3, (0,0,255), -1) #cv2.circle(face, (int(p[0]), int(p[1])), 3, (255,255,255), 2) cv2.circle(frame, (int(p[0]), int(p[1])), 3, (255,255,255), 2) # draw head pose vector p1 = ( int(image_points[0][0]), int(image_points[0][1])) p2 = ( int(nose_end_point2D[0][0][0]), int(nose_end_point2D[0][0][1])) cv2.line(frame, p1, p2, (255,0,0), 2) # Display Status status = "Status :" status = status + " FaceDetect=" if use_dlib_detection == True: status = status + "DLIB" else: status = status + "VART" status = status + " Landmark=" if use_dlib_landmarks == True: status = status + "DLIB" else: status = status + "VART" if rt_fps_valid == True: status = status + " " + rt_fps_message cv2.putText(frame, status, (rt_fps_x,rt_fps_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1, cv2.LINE_AA) # Display the processed image cv2.imshow("Head Pose Estimation", frame) key = cv2.waitKey(1) & 0xFF # Update the FPS counter fps.update() # if the `q` key was pressed, break from the loop if key == ord("q"): break # if the `d` key was pressed, toggle between detection algorithms if key == ord("d"): use_dlib_detection = not use_dlib_detection if use_dlib_detection == True: print("[INFO] face detection = DLIB") else: print("[INFO] face detection = VART") # if the `l` key was pressed, toggle between landmark algorithms if key == ord("l"): use_dlib_landmarks = not use_dlib_landmarks if use_dlib_landmarks == True: print("[INFO] face landmarks = DLIB") else: print("[INFO] face landmarks = VART") # Update the real-time FPS counter rt_fps_count = rt_fps_count + 1 if rt_fps_count >= 10: t = (cv2.getTickCount() - rt_fps_time)/cv2.getTickFrequency() rt_fps_valid = True rt_fps = 10.0/t rt_fps_message = "FPS: {0:.2f}".format(rt_fps) #print("[INFO] ",rt_fps_message) rt_fps_count = 0 # Stop the timer and display FPS information fps.stop() print("[INFO] elapsed time: {:.2f}".format(fps.elapsed())) print("[INFO] elapsed FPS: {:.2f}".format(fps.fps())) # Stop the face detector dpu_face_detector.stop() del densebox_dpu dpu_face_landmark.stop() del landmark_dpu # Cleanup cv2.destroyAllWindows()
2.1875
2
PyTeacher/bgui/progress_bar.py
Banshee1221/PyRob
40
12797811
from .gl_utils import * from .widget import Widget, BGUI_DEFAULT class ProgressBar(Widget): """A solid progress bar. Controlled via the 'percent' property which assumes percent as a 0-1 floating point number.""" theme_section = 'ProgressBar' theme_options = { 'FillColor1': (0.0, 0.42, 0.02, 1.0), 'FillColor2': (0.0, 0.42, 0.02, 1.0), 'FillColor3': (0.0, 0.42, 0.02, 1.0), 'FillColor4': (0.0, 0.42, 0.02, 1.0), 'BGColor1': (0, 0, 0, 1), 'BGColor2': (0, 0, 0, 1), 'BGColor3': (0, 0, 0, 1), 'BGColor4': (0, 0, 0, 1), 'BorderSize': 1, 'BorderColor': (0, 0, 0, 1), } def __init__(self, parent, name=None, percent=1.0, sub_theme='', aspect=None, size=[1, 1], pos=[0, 0], options=BGUI_DEFAULT): """ :param parent: the widget's parent :param name: the name of the widget :param percent: the initial percent :param sub_theme: sub type of theme to use :param aspect: constrain the widget size to a specified aspect ratio :param size: a tuple containing the width and height :param pos: a tuple containing the x and y position :param options: various other options """ Widget.__init__(self, parent, name, aspect, size, pos, sub_theme, options) theme = self.theme self.fill_colors = [ theme['FillColor1'], theme['FillColor2'], theme['FillColor3'], theme['FillColor4'], ] self.bg_colors = [ theme['BGColor1'], theme['BGColor2'], theme['BGColor3'], theme['BGColor4'], ] self.border_color = theme['BorderColor'] self.border = theme['BorderSize'] self._percent = percent @property def percent(self): return self._percent @percent.setter def percent(self, value): self._percent = max(0.0, min(1.0, value)) def _draw(self): """Draw the progress bar""" # Enable alpha blending glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) # Enable polygon offset glEnable(GL_POLYGON_OFFSET_FILL) glPolygonOffset(1.0, 1.0) mid_x = self.gl_position[0][0] + (self.gl_position[1][0] - self.gl_position[0][0]) * self._percent # Draw fill glBegin(GL_QUADS) glColor4f(self.fill_colors[0][0], self.fill_colors[0][1], self.fill_colors[0][2], self.fill_colors[0][3]) glVertex2f(self.gl_position[0][0], self.gl_position[0][1]) glColor4f(self.fill_colors[1][0], self.fill_colors[1][1], self.fill_colors[1][2], self.fill_colors[1][3]) glVertex2f(mid_x, self.gl_position[1][1]) glColor4f(self.fill_colors[2][0], self.fill_colors[2][1], self.fill_colors[2][2], self.fill_colors[2][3]) glVertex2f(mid_x, self.gl_position[2][1]) glColor4f(self.fill_colors[3][0], self.fill_colors[3][1], self.fill_colors[3][2], self.fill_colors[3][3]) glVertex2f(self.gl_position[3][0], self.gl_position[3][1]) glEnd() # Draw bg glBegin(GL_QUADS) glColor4f(self.bg_colors[0][0], self.bg_colors[0][1], self.bg_colors[0][2], self.bg_colors[0][3]) glVertex2f(mid_x, self.gl_position[0][1]) glColor4f(self.bg_colors[1][0], self.bg_colors[1][1], self.bg_colors[1][2], self.bg_colors[1][3]) glVertex2f(self.gl_position[1][0], self.gl_position[1][1]) glColor4f(self.bg_colors[2][0], self.bg_colors[2][1], self.bg_colors[2][2], self.bg_colors[2][3]) glVertex2f(self.gl_position[2][0], self.gl_position[2][1]) glColor4f(self.bg_colors[3][0], self.bg_colors[3][1], self.bg_colors[3][2], self.bg_colors[3][3]) glVertex2f(mid_x, self.gl_position[3][1]) glEnd() # Draw outline glDisable(GL_POLYGON_OFFSET_FILL) r, g, b, a = self.border_color glColor4f(r, g, b, a) glPolygonMode(GL_FRONT, GL_LINE) glLineWidth(self.border) glBegin(GL_QUADS) for i in range(4): glVertex2f(self.gl_position[i][0], self.gl_position[i][1]) glEnd() glPolygonMode(GL_FRONT, GL_FILL) Widget._draw(self)
2.859375
3
study_sample/enchance_oop/use_type/enhance_oop_type.py
dantefung/Python-Codebase
0
12797812
############ # use_type ############ # type() ''' 动态语言和静态语言最大的不同,就是函数和类的定义,【不是编译时定义的,而是运行时动态创建的。】 ''' # 比方说我们要定义一个Hello的class,就写一个hello.py模块: ''' class Hello(object): def hello(self, name='world'): print('Hello, %s.' % name) ''' # 当Python解释器载入hello模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个 # Hello的class对象,测试如下: from hello import Hello h = Hello() h.hello() print(type(Hello)) print(type(h)) ''' type()函数可以查看一个类型或变量的类型,Hello是一个class,它的类型就是type,而h是一个实例,它的类型就是class Hello. 我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数。 type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数 创建出Hello类,而无需通过 class Hello(object)...的定义: ''' def fn(self, name='world'): # 先定义函数 print('Hello, %s.' % name) Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class ''' 要创建一个class对象,type()函数一次传入3个参数: 1.class的名称; 2.继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素的写法; 3.class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。 通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时, 仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。 正常情况下,我们用class Xxx..来定义类,但是,type()函数也允许我们动态创建出类来,也就是说 动态语言本身支持动态创建类,这和静态语言有非常大的不同,要在静态语言运行时期创建类,必须构造源代码字符串 再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。 ''' ################# # metaclass ################# ''' 除了使用type()动态创建类以外,要控制类的创建行为,还可以使用metaclass. metaclass,直译为元类,简单的解释就是: 当我们定义了类以后,就可以根据这个类创建出实例,所以: 先定义类,然后创建实例。 但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。 连接起来就是: 先定义metaclass,就可以创建类,最后创建实例。 所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。 metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况, 所以,以下内容看不懂也没关系,因为基本上你不会用到。 我们先看一个简单的例子,这个metaclass可以给我们自定义的MyList增加一个add方法: 定义ListMetaclass,按照默认习惯,metaclass的类名重视以Metaclass结尾,以便清楚地标识这是一个metaclass: ''' # metaclass是类的模板,所以必须从'type'类型派生: class ListMetaclass(type): def __new__(cls, name, bases, attrs): attrs['add'] = lambda self, value: self.append(value) return type.__new__(cls, name, bases, attrs) ''' 有了ListMetaclass,我们在定义类的时候还是指示要使用ListMetaclass来定制类,传入关键字参数metaclass: ''' class MyList(list, metaclass=ListMetaclass): pass ''' 当我们传入关键字参数metaclass时,魔术就生效了, 它指示Python解释器在创建MyList时, 要通过ListMetaclass.__new__()来创建。 在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。 __new__()方法接收到的参数依次是: 1.当前准备创建的类的对象 2.类的名字 3.类继承的父类集合 4.类的方法集合 测试一下MyList是否可以调用add()方法: ''' L = MyList() L.add(1) print(L) ''' 而普通的list没有add()方法: ''' # L2 = list() # L2.add(1) ''' 动态修改有什么意义?直接在MyList定义中写上add()方法不是更简单吗? 正常情况下,确实应该直接写,通过metaclass修改纯属变态。 但是,总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。 ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。 要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。 让我们来尝试编写一个ORM框架。 编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User类来操作对应的数据库表User,我们期待他写出这样的代码: class User(Model): # 定义类的属性到列的映射: id = IntegerField('id') name = StringField('username') email = StringField('email') password = StringField('password') # 创建一个实例: u = User(id=12345, name='Michael', email='<EMAIL>', password='<PASSWORD>') # 保存到数据库: u.save() 其中,父类Model和属性类型StringField、IntegerField是由ORM框架提供的,剩下的魔术方法比如save()全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。 现在,我们就按上面的接口来实现该ORM。 首先来定义Field类,它负责保存数据库表的字段名和字段类型: ''' class Field(object): def __init__(self, name, column_type): self.name = name self.column_type = column_type def __str__(self): return '<%s:%s>' % (self.__class__.__name__, self.name) ''' 在Field的基础上,进一步定义各种类型的Field,比如StringField,IntegerField等等: ''' class StringField(Field): def __init__(self, name): super(StringField, self).__init__(name, 'varchar(100)') class IntegerField(Field): def __init__(self, name): super(IntegerField, self).__init__(name, 'bigint') ''' 下一步,就是编写最复杂的ModelMetaclass了: '''
4.40625
4
tests/snc/agents/general_heuristics/test_priority_agents.py
dmcnamee/snc
5
12797813
import numpy as np import pytest import snc.environments.job_generators.discrete_review_job_generator \ as drjg import snc.environments.controlled_random_walk as crw import snc.environments.state_initialiser as si import snc.agents.general_heuristics.random_nonidling_agent \ as random_nonidling_agent import snc.agents.general_heuristics.longest_buffer_priority_agent \ as longest_priority_agent import snc.agents.general_heuristics.custom_activity_priority_agent \ as custom_priority_agent def get_null_env_params(state, num_resources=None, buffer_processing_matrix=None, constituency_matrix=None): num_buffers = state.shape[0] arrival_rate = np.ones_like(state) if num_resources is None: num_resources = num_buffers if buffer_processing_matrix is None: buffer_processing_matrix = -np.triu(np.ones((num_buffers, num_resources))) if constituency_matrix is None: constituency_matrix = np.zeros((num_resources, num_resources)) time_interval = 1 return { "cost_per_buffer": np.zeros_like(state), "capacity": np.zeros_like(state), "constituency_matrix": constituency_matrix, "job_generator": drjg.DeterministicDiscreteReviewJobGenerator( arrival_rate, buffer_processing_matrix, sim_time_interval=time_interval ), "state_initialiser": si.DeterministicCRWStateInitialiser(state), "job_conservation_flag": True, "list_boundary_constraint_matrices": None, } def test_random_heuristic_agent_starving(): # Single server queue safety_stock = 10.0 state = 5 * np.ones((1, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.ones((1, 1)) env_params["list_boundary_constraint_matrices"] = [np.ones((1, 1))] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert action == np.zeros((1, 1)) def test_random_heuristic_agent(): # Single server queue safety_stock = 1.0 state = 1.1 * np.ones((1, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.ones((1, 1)) env_params["list_boundary_constraint_matrices"] = [np.ones((1, 1))] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert action == np.ones((1, 1)) def test_random_heuristic_agent_multiple_buffers_eye_condition_starving(): # Station scheduling three buffers, each of them having to be above safety stock safety_stock = 10.0 state = 5 * np.ones((3, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.ones((1, 3)) env_params["list_boundary_constraint_matrices"] = [np.eye(3)] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.zeros((3, 1))) def test_random_heuristic_agent_multiple_buffers_eye_condition(): # Station scheduling three buffers, each of them having to be above safety stock safety_stock = 1.0 state = 1.1 * np.ones((3, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.ones((1, 3)) env_params["list_boundary_constraint_matrices"] = [np.eye(3)] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.sum(action) == 1 def test_random_heuristic_agent_multiple_buffers_sum_condition_starving(): # Station scheduling three buffers, the sum of their size having to be above safety stock safety_stock = 10.0 state = 3 * np.ones((3, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.ones((1, 3)) env_params["list_boundary_constraint_matrices"] = [np.ones((1, 3))] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.zeros((3, 1))) def test_random_heuristic_agent_multiple_buffers_sum_condition(): # Station scheduling three buffers, the sum of their size having to be above safety stock safety_stock = 10.0 state = 5 * np.ones((3, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.ones((1, 3)) env_params["list_boundary_constraint_matrices"] = [np.ones((1, 3))] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.sum(action) == 1 def test_random_heuristic_agent_multiple_buffers_multiple_resources_eye_cond_starving(): # Two stations, each one scheduling two buffers, each of them having to be above safety stock. safety_stock = 10.0 state = 5 * np.ones((4, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.hstack((np.eye(2), np.zeros((2, 2)))), np.hstack((np.zeros((2, 2)), np.eye(2)))] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.zeros((4, 1))) def test_random_heuristic_agent_multiple_buffers_multiple_resources_eye_cond(): # Two stations, each one scheduling two buffers, each of them having to be above safety stock. safety_stock = 9.9 state = 10 * np.ones((4, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.hstack((np.eye(2), np.zeros((2, 2)))), np.hstack((np.zeros((2, 2)), np.eye(2)))] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.sum(action) == 2 def test_random_heuristic_agent_multiple_buffers_multiple_resources_sum_cond_starving(): # Two stations, each one scheduling two buffers, the sum of their size having to be above # safety stock. safety_stock = 10 state = 4 * np.ones((4, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.array([[1, 1, 0, 0]]), np.array([[0, 0, 1, 1]])] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.zeros((4, 1))) def test_random_heuristic_agent_multiple_buffers_multiple_resources_sum_cond(): # Two stations, each one scheduling two buffers, the sum of their size having to be above safety # stock. safety_stock = 9.9 state = 5 * np.ones((4, 1)) env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.array([[1, 1, 0, 0]]), np.array([[0, 0, 1, 1]])] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.sum(action) == 2 def test_random_heuristic_agent_multiple_buffers_multiple_resources_sum_cond_1_starve(): # Two stations, each one scheduling two buffers, the sum of their size having to be above safety # stock. safety_stock = 9.9 state = np.array([4, 5, 5, 5])[:, None] env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.array([[1, 1, 0, 0]]), np.array([[0, 0, 1, 1]])] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.sum(action[2:4]) == 1 and np.all(action[0:2] == np.zeros((2, 1))) def test_random_heuristic_agent_multiple_buffers_multiple_resources_sum_cond_2_starve(): # Two stations, each one scheduling two buffers, the sum of their size having to be above safety # stock. safety_stock = 9.9 state = np.array([5, 5, 5, 4])[:, None] env_params = get_null_env_params(state) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.array([[1, 1, 0, 0]]), np.array([[0, 0, 1, 1]])] env = crw.ControlledRandomWalk(**env_params) agent = random_nonidling_agent.RandomNonIdlingAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.sum(action[0:2]) == 1 and np.all(action[2:4] == np.zeros((2, 1))) def test_priority_nonidling_heuristic_agent_starving(): # Single server queue buffer_processing_matrix = - np.ones((1, 1)) safety_stock = 10.0 state = 5 * np.ones((1, 1)) env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.ones((1, 1)) env_params["list_boundary_constraint_matrices"] = [np.ones((1, 1))] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert action == np.zeros((1, 1)) def test_priority_nonidling_heuristic_agent(): # Single server queue buffer_processing_matrix = - np.ones((1, 1)) safety_stock = 4.0 state = 5 * np.ones((1, 1)) env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.ones((1, 1)) env_params["list_boundary_constraint_matrices"] = [np.ones((1, 1))] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock, name="LPAAgent") action = agent.map_state_to_actions(state) assert action == np.ones((1, 1)) def test_priority_nonidling_heuristic_agent_multiple_buffers_eye_condition_starving(): # One station scheduling two buffers, one larger than the other, but both below safety stock. buffer_processing_matrix = - np.eye(2) safety_stock = 10.0 state = np.array([9, 5])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.ones((1, 2)) env_params["list_boundary_constraint_matrices"] = [np.eye(2)] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.zeros((2, 1))) def test_priority_nonidling_heuristic_agent_multiple_buffers_eye_condition_small_one_starve(): # One station scheduling two buffers, one larger than the other. Only the large one is above # safety stock. buffer_processing_matrix = - np.eye(2) safety_stock = 10.0 state = np.array([9, 11])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.ones((1, 2)) env_params["list_boundary_constraint_matrices"] = [np.eye(2)] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.array([0, 1])[:, None]) def test_priority_nonidling_heuristic_agent_multi_buffers_eye_cond_small_one_starve_reverse_ord(): # One station scheduling two buffers, one larger than the other. Only the large one is above # safety stock, swap order with respect to previous test. buffer_processing_matrix = - np.eye(2) safety_stock = 10.0 state = np.array([11, 10])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.ones((1, 2)) env_params["list_boundary_constraint_matrices"] = [np.eye(2)] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.array([1, 0])[:, None]) def test_priority_nonidling_heuristic_agent_multiple_buffers_eye_condition(): # One station scheduling two buffers, one larger than the other, both above safety stock. buffer_processing_matrix = - np.eye(2) safety_stock = 10.0 state = np.array([30, 20])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.ones((1, 2)) env_params["list_boundary_constraint_matrices"] = [np.eye(2)] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.array([1, 0])[:, None]) def test_priority_nonidling_heuristic_agent_multiple_buffers_eye_condition_reverse_order(): # One station scheduling two buffers, one larger than the other, both above safety stock (swap # order with previous test). buffer_processing_matrix = - np.eye(2) safety_stock = 10.0 state = np.array([20, 30])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.ones((1, 2)) env_params["list_boundary_constraint_matrices"] = [np.eye(2)] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.array([0, 1])[:, None]) def test_priority_nonidling_heuristic_agent_multiple_largest_buffers_eye_condition(): # One station scheduling two buffers, both equal and above safety stock. buffer_processing_matrix = - np.eye(2) safety_stock = 10.0 state = np.array([11, 11])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.ones((1, 2)) env_params["list_boundary_constraint_matrices"] = [np.eye(2)] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.sum(action) == 1 def test_priority_nonidling_heuristic_agent_multiple_buffers_multiple_resources_sum_cond(): # Two stations, each one scheduling two buffers. The stations are connected in serial, such that # buffer 1 is connected with buffer 3, and 2 with 4. # Kind of condition doesn't matter since the largest buffer has to be above safety stock in this # agent. buffer_processing_matrix = np.array([[-1, 0, 0, 0], [0, -1, 0, 0], [1, 0, -1, 0], [0, 1, 0, -1]]) safety_stock = 10 state = np.array([30, 20, 20, 30])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.array([[1, 1, 0, 0]]), np.array([[0, 0, 1, 1]])] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.array([1, 0, 0, 1])[:, None]) def test_priority_nonidling_heuristic_agent_multi_buffers_and_resources_sum_cond_reverse_order(): # Two stations, each one scheduling two buffers. The stations are connected in serial, such that # buffer 1 is connected with buffer 3, and 2 with 4. # Kind of condition doesn't matter since the largest buffer has to be above safety stock in this # agent. buffer_processing_matrix = np.array([[-1, 0, 0, 0], [0, -1, 0, 0], [1, 0, -1, 0], [0, 1, 0, -1]]) safety_stock = 10 state = np.array([20, 30, 30, 20])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.array([[1, 1, 0, 0]]), np.array([[0, 0, 1, 1]])] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.array([0, 1, 1, 0])[:, None]) def test_priority_nonidling_heuristic_agent_multiple_buffers_and_resources_sum_cond_2_starve(): # Two stations, each one scheduling two buffers. The stations are connected in serial, such that # buffer 1 is connected with buffer 3, and 2 with 4. # Kind of condition doesn't matter since the largest buffer has to be above safety stock in this # agent. buffer_processing_matrix = np.array([[-1, 0, 0, 0], [0, -1, 0, 0], [1, 0, -1, 0], [0, 1, 0, -1]]) safety_stock = 10 state = np.array([30, 20, 9, 5])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.array([[1, 1, 0, 0]]), np.array([[0, 0, 1, 1]])] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.all(action == np.array([1, 0, 0, 0])[:, None]) def test_priority_nonidling_heuristic_agent_multiple_largest_buffers_multiple_resources_sum_cond(): # Two stations, each one scheduling two buffers. The stations are connected in serial, such that # buffer 1 is connected with buffer 3, and 2 with 4. # Kind of condition doesn't matter since the largest buffer has to be above safety stock in this # agent. buffer_processing_matrix = np.array([[-1, 0, 0, 0], [0, -1, 0, 0], [1, 0, -1, 0], [0, 1, 0, -1]]) safety_stock = 10 state = np.array([30, 30, 9, 5])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.array([[1, 1, 0, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.array([[1, 1, 0, 0]]), np.array([[0, 0, 1, 1]])] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert np.sum(action[0:2]) == 1 and np.all(action[2:4] == np.array([0, 0])[:, None]) def test_priority_nonidling_heuristic_agent_multiple_activities_buffers_and_resources(): # Two stations, each one scheduling two buffers. The stations are connected in serial, such that # buffer 1 is connected with buffer 3, and 2 with 4. # Kind of condition doesn't matter since the largest buffer has to be above safety stock in this # agent. buffer_processing_matrix = np.array([[-1, 0, -1, 0], [0, -1, 0, 0], [1, 0, -1, 0], [0, 1, 0, -1]]) safety_stock = 10 state = np.array([30, 20, 5, 20])[:, None] env_params = get_null_env_params( state, buffer_processing_matrix=buffer_processing_matrix) env_params["constituency_matrix"] = np.array([[1, 1, 1, 0], [0, 0, 1, 1]]) env_params["list_boundary_constraint_matrices"] = [np.array([[1, 1, 0, 0], [0, 0, 1, 0]]), np.array([[0, 0, 1, 1]])] env = crw.ControlledRandomWalk(**env_params) agent = longest_priority_agent.LongestBufferPriorityAgent(env, safety_stock) action = agent.map_state_to_actions(state) assert (action[0] + action[2] == 1) and (action[1] == 0) and (action[3] == 1) def test_priority_heuristic_agent_init_all_resources_given(): priorities = {0: 0, 1: 2, 2: 5} state = np.array([[10.], [10.], [10.]]) buffer_processing_matrix = np.array([[-1., 0., 0., 0., 0., 0., 0.], [0., -1., -1., 0., 0., 0., 0.], [0., 0., 0., -1., -1., -1., -1.]]) constituency_matrix = np.array([[1., 0., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 1., 1., 1., 1.]]) env_params = get_null_env_params(state=state, buffer_processing_matrix=buffer_processing_matrix, constituency_matrix=constituency_matrix) env = crw.ControlledRandomWalk(**env_params) agent = custom_priority_agent.CustomActivityPriorityAgent(env, priorities) assert agent.priorities == priorities def test_priority_heuristic_agent_init_not_all_resources_given(): priorities = {0: 0, 2: 5} expected_priorities = {0: 0, 1: None, 2: 5} state = np.array([[10.], [10.], [10.]]) buffer_processing_matrix = np.array([[-1., 0., 0., 0., 0., 0., 0.], [0., -1., -1., 0., 0., 0., 0.], [0., 0., 0., -1., -1., -1., -1.]]) constituency_matrix = np.array([[1., 0., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 1., 1., 1., 1.]]) env_params = get_null_env_params(state=state, buffer_processing_matrix=buffer_processing_matrix, constituency_matrix=constituency_matrix) env = crw.ControlledRandomWalk(**env_params) agent = custom_priority_agent.CustomActivityPriorityAgent(env, priorities) assert agent.priorities == expected_priorities def test_priority_heuristic_agent_init_wrong_activity_given(): priorities = {0: 0, 2: 1} state = np.array([[10.], [10.], [10.]]) buffer_processing_matrix = np.array([[-1., 0., 0., 0., 0., 0., 0.], [0., -1., -1., 0., 0., 0., 0.], [0., 0., 0., -1., -1., -1., -1.]]) constituency_matrix = np.array([[1., 0., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 1., 1., 1., 1.]]) env_params = get_null_env_params(state=state, buffer_processing_matrix=buffer_processing_matrix, constituency_matrix=constituency_matrix) env = crw.ControlledRandomWalk(**env_params) with pytest.raises(AssertionError): _ = custom_priority_agent.CustomActivityPriorityAgent(env, priorities) def test_priority_heuristic_agent_sample_random_action_empty_possible_actions(): priorities = {0: 0, 1: 2, 2: 5} state = np.array([[10.], [10.], [0.]]) buffer_processing_matrix = np.array([[-1., 0., 0., 0., 0., 0., 0.], [0., -1., -1., 0., 0., 0., 0.], [0., 0., 0., -1., -1., -1., -1.]]) constituency_matrix = np.array([[1., 0., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 1., 1., 1., 1.]]) env_params = get_null_env_params(state=state, buffer_processing_matrix=buffer_processing_matrix, constituency_matrix=constituency_matrix) env = crw.ControlledRandomWalk(**env_params) agent = custom_priority_agent.CustomActivityPriorityAgent(env, priorities) action = np.array([[1], [0], [1], [0], [0], [0], [0]]) activities = np.array([3, 4, 5, 6]) updated_action = agent.sample_random_actions(state=state, action=action, activities=activities) assert np.all(action == updated_action) def test_priority_heuristic_agent_sample_random_action_one_possible_action(): priorities = {0: 0, 1: 2, 2: 5} state = np.array([[10.], [0.], [10.]]) buffer_processing_matrix = np.array([[-1., 0., -1., 0., 0., 0., 0.], [0., -1., 0., 0., 0., 0., 0.], [0., 0., 0., -1., -1., -1., -1.]]) constituency_matrix = np.array([[1., 0., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 1., 1., 1., 1.]]) env_params = get_null_env_params(state=state, buffer_processing_matrix=buffer_processing_matrix, constituency_matrix=constituency_matrix) env = crw.ControlledRandomWalk(**env_params) agent = custom_priority_agent.CustomActivityPriorityAgent(env, priorities) action = np.array([[1], [0], [0], [0], [1], [0], [0]]) expected_action = np.array([[1], [0], [1], [0], [1], [0], [0]]) activities = np.array([1, 2]) updated_action = agent.sample_random_actions(state=state, action=action, activities=activities) assert np.all(expected_action == updated_action) def test_priority_heuristic_agent_sample_random_action_multiple_possible_actions(): np.random.seed(42) priorities = {0: 0, 1: 2, 2: 5} state = np.array([[10.], [10.], [10.]]) buffer_processing_matrix = np.array([[-1., 0., 0., 0., 0., 0., 0.], [0., -1., -1., 0., 0., 0., 0.], [0., 0., 0., -1., -1., -1., -1.]]) constituency_matrix = np.array([[1., 0., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 1., 1., 1., 1.]]) env_params = get_null_env_params(state=state, buffer_processing_matrix=buffer_processing_matrix, constituency_matrix=constituency_matrix) env = crw.ControlledRandomWalk(**env_params) agent = custom_priority_agent.CustomActivityPriorityAgent(env, priorities) action = np.array([[1], [0], [1], [0], [0], [0], [0]]) expected_action = np.array([[1], [0], [1], [0.25], [0.25], [0.25], [0.25]]) activities = np.array([3, 4, 5, 6]) num_sim = int(1e4) updated_action = np.zeros((buffer_processing_matrix.shape[1], num_sim)) for i in np.arange(num_sim): updated_action[:, [i]] = agent.sample_random_actions(state=state, action=action, activities=activities) average_updated_action = np.sum(updated_action, axis=1) / float(num_sim) np.testing.assert_array_almost_equal(average_updated_action.reshape(-1, 1), expected_action, decimal=2) def test_priority_heuristic_agent_map_state_to_actions_no_priorities(): np.random.seed(42) priorities = {} state = np.array([[10.], [10.], [10.]]) buffer_processing_matrix = np.array([[-1., 0., 0., 0., 0., 0., 0.], [0., -1., -1., 0., 0., 0., 0.], [0., 0., 0., -1., -1., -1., -1.]]) constituency_matrix = np.array([[1., 0., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 1., 1., 1., 1.]]) env_params = get_null_env_params(state=state, buffer_processing_matrix=buffer_processing_matrix, constituency_matrix=constituency_matrix) env = crw.ControlledRandomWalk(**env_params) agent = custom_priority_agent.CustomActivityPriorityAgent(env, priorities) expected_action = np.array([[1], [0.5], [0.5], [0.25], [0.25], [0.25], [0.25]]) num_sim = int(1e4) actions = np.zeros((buffer_processing_matrix.shape[1], num_sim)) for i in np.arange(num_sim): actions[:, [i]] = agent.map_state_to_actions(state=state) average_action = np.sum(actions, axis=1) / float(num_sim) np.testing.assert_array_almost_equal(average_action.reshape(-1, 1), expected_action, decimal=2) def test_priority_heuristic_agent_map_state_to_actions_full_priorities_empty_buffer(): np.random.seed(41) priorities = {0: 0, 1: 2, 2: 5} state = np.array([[10.], [10.], [0.]]) buffer_processing_matrix = np.array([[-1., 0., 0., -1., -1., 0., -1.], [0., -1., -1., 0., 0., 0., 0.], [0., 0., 0., 0., 0., -1., 0.]]) constituency_matrix = np.array([[1., 0., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 1., 1., 1., 1.]]) constituency_matrix_original = constituency_matrix.copy() env_params = get_null_env_params(state=state, buffer_processing_matrix=buffer_processing_matrix, constituency_matrix=constituency_matrix) env = crw.ControlledRandomWalk(**env_params) agent = custom_priority_agent.CustomActivityPriorityAgent(env, priorities) expected_average_action = np.array([[1], [0.], [1.], [0.33], [0.33], [0.], [0.33]]) num_sim = 5e4 actions = np.zeros((buffer_processing_matrix.shape[1], int(num_sim))) for i in np.arange(int(num_sim)): actions[:, [i]] = agent.map_state_to_actions(state=state) average_action = np.sum(actions, axis=1) / num_sim np.testing.assert_array_almost_equal(average_action.reshape(-1, 1), expected_average_action, decimal=2) assert np.all(constituency_matrix_original == constituency_matrix) assert np.all(constituency_matrix_original == env.constituency_matrix) def test_priority_heuristic_agent_map_state_to_actions_full_priorities_full_buffer(): priorities = {0: 0, 1: 2, 2: 5} state = np.array([[10.], [10.], [10.]]) buffer_processing_matrix = np.array([[-1., 0., 0., 0., 0., 0., 0.], [0., -1., -1., 0., 0., 0., 0.], [0., 0., 0., -1., -1., -1., -1.]]) constituency_matrix = np.array([[1., 0., 0., 0., 0., 0., 0.], [0., 1., 1., 0., 0., 0., 0.], [0., 0., 0., 1., 1., 1., 1.]]) env_params = get_null_env_params(state=state, buffer_processing_matrix=buffer_processing_matrix, constituency_matrix=constituency_matrix) env = crw.ControlledRandomWalk(**env_params) agent = custom_priority_agent.CustomActivityPriorityAgent(env, priorities) expected_action = np.array([[1], [0], [1], [0], [0], [1], [0]]) action = agent.map_state_to_actions(state=state) assert np.all(action == expected_action)
1.960938
2
src/dataloader/transforms.py
Rahul-fix/stereo-depth
0
12797814
import torch from torchvision.transforms import Compose,Normalize,RandomCrop,RandomResizedCrop,Resize,RandomHorizontalFlip, ToTensor from torchvision import transforms def get_transforms(): normalize = Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) transform = Compose([normalize]) return transform
2.140625
2
src/linear_model.py
vignesh-pagadala/linear-regression
0
12797815
import numpy as np import matplotlib.pyplot as plt import pprint def missingIsNan(s): return np.nan if s == b'?' else float(s) def makeStandardize(X): means = X.mean(axis = 0) stds = X.std(axis = 0) def standardize(origX): return (origX - means) / stds def unstandardize(stdX): return stds * stdX + means return (standardize, unstandardize) if __name__ == '__main__': # 1. Load the data. data = np.loadtxt("Data\\auto-mpg.data", usecols = range(8), converters = {3: missingIsNan}) # 2. 'Clean' the data. Cdata = data[~np.isnan(data).any(axis = 1)] # 3. Split it into input (X) and target (T) # Target = mpg (first column) # Input = remaining - columns 2 to 7 T = Cdata[:, 0:1] X = Cdata[:, 1:] # 4. Append column of 1s to X # X1 = np.insert(X, 0, 1, 1) # 4. Split the data into training (80 %) and testing data (20 %) nRows = X.shape[0] nTrain = int(round(0.8*nRows)) nTest = nRows - nTrain # Shuffle row numbers rows = np.arange(nRows) np.random.shuffle(rows) trainIndices = rows[:nTrain] testIndices = rows[nTrain:] # Check that training and testing sets are disjoint # print(np.intersect1d(trainIndices, testIndices)) Xtrain = X[trainIndices, :] Ttrain = T[trainIndices, :] Xtest = X[testIndices, :] Ttest = T[testIndices, :] # 5. Standardize (standardize, unstandardize) = makeStandardize(Xtrain) XtrainS = standardize(Xtrain) XtestS = standardize(Xtest) # 6. Tack column of 1s XtrainS1 = np.insert(XtrainS, 0, 1, 1) XtestS1 = np.insert(XtestS, 0, 1, 1) # 7. Find weights (solve for w) w = np.linalg.lstsq(XtrainS1.T @ XtrainS1, XtrainS1.T @ Ttrain, rcond = None)[0] # 8. Predict predict = XtestS1 @ w # 9. Compute RSME rsme = np.sqrt(np.mean((predict - Ttest)**2)) print(rsme)
3
3
practice1/5.1.py
StanislavDanilov/python3_course
0
12797816
<gh_stars>0 day = int(input(": ")) m = int(input(": ")) year = int(input(": ")) if m == 2: m = 12 elif m == 1: m = 11 else: m -= 2 c = year%100 print((day + ((13*m -1) //5) + year + year + (year //4 + c//4 - 2*c + 777)) % 7 ) #not job !!!!
3.578125
4
dev/debug/sqllite_client.py
anderslaunerbaek/abc-core
0
12797817
import logging from abc_core.database.sqllite_client import SQLLite from abc_core.utils.logger_client import get_basis_logger_config def main(): logging.basicConfig(**get_basis_logger_config()) db = SQLLite(filename="../../data/application.db") res = db.select("SELECT * FROM blogs1") print(res) # for i in range(1): # db.insert( # query="INSERT INTO blogs VALUES (?,?,?,?,?);", # data=(f'private-blog{i+10}', '2021-03-07', 'Secret blog' ,'This is a secret',3) # ) # res = db.select("SELECT * FROM blogs WHERE public >= 3") # print(res) # (id text not null primary key, date text, title text, content text, public integer db.close_connection() if __name__ == "__main__": main()
3.03125
3
prvsnlib/context.py
acoomans/prvsn
0
12797818
<gh_stars>0 class ProvisioningContext: def __init__(self): self.runbook = None self.role = None context = ProvisioningContext()
1.53125
2
Image Recognition/utils/BayesianModels/BayesianSqueezeNet.py
EvenStrangest/PyTorch-BayesianCNN
1
12797819
import torch.nn as nn from utils.BBBlayers import BBBConv2d, FlattenLayer, BBBLinearFactorial class BBBSqueezeNet(nn.Module): """ SqueezeNet with slightly modified Fire modules and Bayesian layers. """ def __init__(self, outputs, inputs): super(BBBSqueezeNet, self).__init__() self.conv1 = BBBConv2d(inputs, 64, kernel_size=3, stride=2) self.soft1 = nn.Softplus() self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) # Fire module 1 self.squeeze1 = BBBConv2d(64, 16, kernel_size=1) self.squeeze_activation1 = nn.Softplus() self.expand3x3_1 = BBBConv2d(16, 128, kernel_size=3, padding=1) self.expand3x3_activation1 = nn.Softplus() # Fire module 2 self.squeeze2 = BBBConv2d(128, 16, kernel_size=1) self.squeeze_activation2 = nn.Softplus() self.expand3x3_2 = BBBConv2d(16, 128, kernel_size=3, padding=1) self.expand3x3_activation2 = nn.Softplus() self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) # Fire module 3 self.squeeze3 = BBBConv2d(128, 32, kernel_size=1) self.squeeze_activation3 = nn.Softplus() self.expand3x3_3 = BBBConv2d(32, 256, kernel_size=3, padding=1) self.expand3x3_activation3 = nn.Softplus() # Fire module 4 self.squeeze4 = BBBConv2d(256, 32, kernel_size=1) self.squeeze_activation4 = nn.Softplus() self.expand3x3_4 = BBBConv2d(32, 256, kernel_size=3, padding=1) self.expand3x3_activation4 = nn.Softplus() self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) # Fire module 5 self.squeeze5 = BBBConv2d(256, 48, kernel_size=1) self.squeeze_activation5 = nn.Softplus() self.expand3x3_5 = BBBConv2d(48, 384, kernel_size=3, padding=1) self.expand3x3_activation5 = nn.Softplus() # Fire module 6 self.squeeze6 = BBBConv2d(384, 48, kernel_size=1) self.squeeze_activation6 = nn.Softplus() self.expand3x3_6 = BBBConv2d(48, 384, kernel_size=3, padding=1) self.expand3x3_activation6 = nn.Softplus() # Fire module 7 self.squeeze7 = BBBConv2d(384, 64, kernel_size=1) self.squeeze_activation7 = nn.Softplus() self.expand3x3_7 = BBBConv2d(64, 512, kernel_size=3, padding=1) self.expand3x3_activation7 = nn.Softplus() # Fire module 8 self.squeeze8 = BBBConv2d(512, 64, kernel_size=1) self.squeeze_activation8 = nn.Softplus() self.expand3x3_8 = BBBConv2d(64, 512, kernel_size=3, padding=1) self.expand3x3_activation8 = nn.Softplus() self.drop1 = nn.Dropout(p=0.5) self.conv2 = BBBConv2d(512, outputs, kernel_size=1) self.soft2 = nn.Softplus() self.flatten = FlattenLayer(13 * 13 * 100) self.fc1 = BBBLinearFactorial(13 * 13 * 100, outputs) layers = [self.conv1, self.soft1, self.pool1, self.squeeze1, self.squeeze_activation1, self.expand3x3_1, self.expand3x3_activation1, self.squeeze2, self.squeeze_activation2, self.expand3x3_2, self.expand3x3_activation2, self.pool2, self.squeeze3, self.squeeze_activation3, self.expand3x3_3, self.expand3x3_activation3, self.squeeze4, self.squeeze_activation4, self.expand3x3_4, self.expand3x3_activation4, self.pool3, self.squeeze5, self.squeeze_activation5, self.expand3x3_5, self.expand3x3_activation5, self.squeeze6, self.squeeze_activation6, self.expand3x3_6, self.expand3x3_activation6, self.squeeze7, self.squeeze_activation7, self.expand3x3_7, self.expand3x3_activation7, self.squeeze8, self.squeeze_activation8, self.expand3x3_8, self.expand3x3_activation8, self.drop1, self.conv2, self.soft2, self.flatten, self.fc1] self.layers = nn.ModuleList(layers) def probforward(self, x): 'Forward pass with Bayesian weights' kl = 0 for layer in self.layers: if hasattr(layer, 'convprobforward') and callable(layer.convprobforward): x, _kl, = layer.convprobforward(x) kl += _kl elif hasattr(layer, 'fcprobforward') and callable(layer.fcprobforward): x, _kl, = layer.fcprobforward(x) kl += _kl else: x = layer(x) logits = x print('logits', logits) return logits, kl
2.25
2
src/python/validators/test_email_validator.py
phoffmeister/polyglot-registration
3
12797820
<filename>src/python/validators/test_email_validator.py import unittest from email_validator import EmailValidator class TestEmailValidator(unittest.TestCase): def test_validates_document(self): email_validator = EmailValidator() test_data = [ ("<EMAIL>", True), ("<EMAIL>", True), ("<EMAIL>", True), ("<EMAIL>", True), ("<EMAIL>", False), ("<EMAIL>", False), ("<EMAIL>", False), (".<EMAIL>", False), ("<EMAIL>.", False), ("person@", False) ] for item in test_data: self.assertEqual(item[1], email_validator.is_valid(item[0]))
3.390625
3
apps/account/admin.py
JoseTorquato/projeto_enif
0
12797821
from django.contrib import admin from .models import Balance class BalanceAdmin(admin.ModelAdmin): list_display = ('balance',) admin.site.register(Balance)
1.484375
1
convlab/modules/nlu/multiwoz/error.py
ngduyanhece/ConvLab
405
12797822
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. """ """ class ErrorNLU: """Base model for generating NLU error.""" def __init__(self, act_type_rate=0.0, slot_rate=0.0): """ Args: act_type_rate (float): The error rate applied on dialog act type. slot_rate (float): Error rate applied on slots. """ self.set_error_rate(act_type_rate, slot_rate) def set_error_rate(self, act_type_rate, slot_rate): """ Set error rate parameter for error model. Args: act_type_rate (float): The error rate applied on dialog act type. slot_rate (float): Error rate applied on slots. """ self.act_type_rate = act_type_rate self.slot_rate = slot_rate def apply(self, dialog_act): """ Apply the error model on dialog act. Args: dialog_act (tuple): Dialog act. Returns: dialog_act (tuple): Dialog act with noise. """ #TODO return
2.484375
2
cogs/weather.py
mmmalk/saberbot
0
12797823
import discord from discord.ext import commands import json, requests, io, re class Weather: """Weather class handles weather using openweather api params: attributes: apikey: api key for openweather config_location: configuration location for saberbot locations: json file containing the openweathermap location data """ def __init__(self, bot): self.bot = bot self.conf = self.bot.config["weather"] self.apikey = self.conf["apikey"] with open(self.conf["citylist"]) as jsonfile: self.locations_json = json.loads(jsonfile.read()) def parsequery(self, *args): """parses list of argument to string""" querystring = "" keywords = {} print(args) for arg in args: if "=" in arg: larg = arg.split("=") keywords[larg[0]] = larg[1] continue querystring += f" {str(arg)}" querystring = querystring.lstrip() return querystring, keywords def get_location_id(self, location, country): print(location) for item in self.locations_json: if item["name"] == location: if not country or item["country"]== country.upper(): return str(item["id"]) return None def get_data(self, id, url_string): """params: id - location id returns: data - dictionary object containing json response""" response = requests.get(url_string) data = json.loads(response.text) return data def CtoF(self, c): return (9/5)*c+32 @commands.command(pass_context=True) @commands.cooldown(1, 5.0, commands.BucketType.server) async def weather(self, ctx, *args): """Search for weather by city and optionally a country usage: !weather <city>, optionally specify country=<ID>, for example !weather London country=UK""" relevant = {} location, keywords = self.parsequery(*args) if keywords: country = keywords["country"] else: country = "" regex = re.compile("([^\w\s{1}]|\d|_|\s+)") #\W_ didn't work in testing for some reason? location = re.sub(regex, "", location) #transform location into string with spaces l = [] l.append(country) l.append(location) print(l) location_id = self.get_location_id(location, country) if location_id != None: weather_url=f"https://api.openweathermap.org/data/2.5/weather?id={location_id}&units=metric&APPID={self.apikey}" forecast_url=f"https://api.openweathermap.org/data/2.5/forecast/?id={location_id}&cnt=1&units=metric&APPID={self.apikey}" weatherdata = self.get_data(location_id, weather_url) forecastdata = self.get_data(location_id, forecast_url) country = weatherdata["sys"]["country"] print(weatherdata) relevant["today"] = {"desc" : weatherdata["weather"][0]["description"], "temp" : weatherdata["main"]["temp"]} relevant["tomorrow"] = {"desc" : forecastdata["list"][0]["weather"][0]["description"], "temp" : forecastdata["list"][0]["main"]["temp"]} await self.bot.send_message(ctx.message.channel, f"weather for {location}, {country}: today {relevant['today']['desc']} {int(relevant['today']['temp'])} °C / {int(self.CtoF(relevant['today']['temp']))} °F") await self.bot.send_message(ctx.message.channel, f"tomorrow: {relevant['tomorrow']['desc']}, {int(relevant['tomorrow']['temp'])} °C / {int(self.CtoF(relevant['tomorrow']['temp']))} °F") else: await self.bot.send_message(ctx.message.channel, f"Sorry, I don't know where {location} is") def setup(bot): bot.add_cog(Weather(bot))
3.234375
3
pyspark_db_utils/ch/__init__.py
osahp/pyspark_db_utils
7
12797824
<gh_stars>1-10 from .write_to_ch import write_to_ch from .read_from_ch import read_from_ch
1.179688
1
winearb/articles/admin.py
REBradley/WineArb
1
12797825
from django.contrib import admin from .models import Article class ArticleAdmin(admin.ModelAdmin): model = Article admin.site.register(Article)
1.539063
2
startup/33-CBFhandler.py
NSLS-II-LIX/profile_collection
0
12797826
import os from databroker.assets.handlers_base import HandlerBase from databroker.assets.base_registry import DuplicateHandler import fabio # for backward compatibility, fpp was always 1 before Jan 2018 #global pilatus_fpp #pilatus_fpp = 1 # this is used by the CBF file handler from enum import Enum class triggerMode(Enum): software_trigger_single_frame = 1 software_trigger_multi_frame = 2 external_trigger = 3 fly_scan = 4 #external_trigger_multi_frame = 5 # this is unnecessary, difference is fpp #global pilatus_trigger_mode #global default_data_path_root #global substitute_data_path_root #global CBF_replace_data_path #pilatus_trigger_mode = triggerMode.software_trigger_single_frame # if the cbf files have been moved already #CBF_replace_data_path = False class PilatusCBFHandler(HandlerBase): specs = {'AD_CBF'} | HandlerBase.specs froot = data_file_path.gpfs subdir = None trigger_mode = triggerMode.software_trigger_single_frame # assuming that the data files always have names with these extensions std_image_size = { 'SAXS': (1043, 981), 'WAXS1': (619, 487), 'WAXS2': (1043, 981) # orignal WAXS2 was (619, 487) } def __init__(self, rpath, template, filename, frame_per_point=1, initial_number=1): print(f'Initializing CBF handler for {self.trigger_mode} ...') self._template = template self._fpp = frame_per_point self._filename = filename self._initial_number = initial_number self._image_size = None self._default_path = os.path.join(rpath, '') self._path = "" for k in self.std_image_size: if template.find(k)>=0: self._image_size = self.std_image_size[k] if self._image_size is None: raise Exception(f'Unrecognized data file extension in filename template: {template}') for fr in data_file_path: if self._default_path.find(fr.value)==0: self._dir = self._default_path[len(fr.value):] return raise Exception(f"invalid file path: {self._default_path}") def update_path(self): # this is a workaround for data that are save in /exp_path then moved to /nsls2/xf16id1/exp_path if not self.froot in data_file_path: raise Exception(f"invalid froot: {self.froot}") self._path = self.froot.value+self._dir print(f"updating path, will read data from {self._path} ...") def get_data(self, fn): """ the file may not exist """ try: img = fabio.open(fn) data = img.data if data.shape!=self._image_size: print(f'got incorrect image size from {fn}: {data.shape}') #, return an empty frame instead.') except: print(f'could not read {fn}, return an empty frame instead.') data = np.zeros(self._image_size) #print(data.shape) return data def __call__(self, point_number): start = self._initial_number #+ point_number stop = start + 1 ret = [] tplt = self._template.replace("6.6d", "06d") # some early templates are not correctly formatted tl = tplt.replace(".", "_").split("_") # e.g. ['%s%s', '%06d', 'SAXS', 'cbf'], ['%s%s', '%06d', 'SAXS', '%05d', 'cbf'] # resulting in file names like test_000125_SAXS.cbf vs test_000125_SAXS_00001.cbf if self.trigger_mode != triggerMode.software_trigger_single_frame and self._fpp>1: # the template needs to have two number fileds if len(tl)==4: tl = tl[:-1]+["%05d"]+tl[-1:] elif len(tl)==5: tl = tl[:-2]+tl[-1:] self._template = "_".join(tl[:-1])+"."+tl[-1] print("CBF handler called: start=%d, stop=%d" % (start, stop)) print(" ", self._initial_number, point_number, self._fpp) print(" ", self._template, self._path, self._initial_number) self.update_path() if self.subdir is not None: self._path += f"{self.subdir}/" if self.trigger_mode == triggerMode.software_trigger_single_frame or self._fpp == 1: fn = self._template % (self._path, self._filename, self._initial_number+point_number) ret.append(self.get_data(fn)) elif self.trigger_mode in [triggerMode.software_trigger_multi_frame, triggerMode.fly_scan]: for i in range(self._fpp): fn = self._template % (self._path, self._filename, start, point_number+i) ret.append(self.get_data(fn)) elif self.trigger_mode==triggerMode.external_trigger: fn = self._template % (self._path, self._filename, start, point_number) ret.append(self.get_data(fn)) return np.array(ret).squeeze() db.reg.register_handler('AD_CBF', PilatusCBFHandler, overwrite=True)
2.015625
2
api/serializers.py
V-Holodov/pets_accounting
0
12797827
<reponame>V-Holodov/pets_accounting from rest_framework import serializers from api.models import Pet, PetPhoto class PetPhotoSerializer(serializers.ModelSerializer): """Serialization of pet photos.""" url = serializers.ImageField(source="photo") class Meta: model = PetPhoto fields = ("id", "url") def to_internal_value(self, data): resource_data = data["file"] return super().to_internal_value(resource_data) class PetSerializer(serializers.ModelSerializer): """Pet sterilization.""" photos = PetPhotoSerializer(many=True, read_only=True) class Meta: model = Pet fields = ("id", "name", "age", "type", "photos", "created_at") class PhotoLoadSerializer(serializers.Serializer): """Deserialization of the uploaded pet photo.""" file = serializers.ImageField() class IdsSerializer(serializers.Serializer): """Deserialization of pet IDs.""" ids = serializers.ListField( child=serializers.IntegerField(min_value=1), allow_empty=False )
2.171875
2
utils.py
marka17/vqvae
11
12797828
from typing import Tuple, Dict import random import numpy as np import torch from torchvision import datasets, transforms from sklearn.metrics.pairwise import cosine_distances from matplotlib import pyplot as plt try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter CIFAR10_ANNOTATION = { 0: 'airplane', 1: 'automobile', 2: 'bird', 3: 'cat', 4: 'deer', 5: 'dog', 6: 'frog', 7: 'horse', 8: 'ship', 9: 'truck' } def plot_cifar_image(image, label=""): plt.title(label) plt.imshow(image.permute(1, 2, 0).numpy()) plt.show() class AccumulateStats: def __enter__(self): pass def __exit__(self): pass def __call__(self): pass class AverageMeter(object): """ Computes and stores the average and current value """ def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class MeterLogger: def __init__(self, meters: Tuple[str], writer: SummaryWriter): self.average_meters: Dict[str, AverageMeter] = {k: AverageMeter() for k in meters} self._writer = writer def update(self, name: str, val, n=1): self.average_meters[name].update(val, n) def reset(self): for meter in self.average_meters.values(): meter.reset() def write(self, step, prefix): for name, meter in self.average_meters.items(): tag = prefix + '/' + name self._writer.add_scalar(tag, meter.avg, step) class ImageLogger: def __init__(self, writer: SummaryWriter, mean=None, std=None): self._writer = writer self.mean = mean self.std = std if self.mean is not None: self.mean = torch.tensor(self.mean).reshape(1, 3, 1, 1) if self.std is not None: self.std = torch.tensor(self.std).reshape(1, 3, 1, 1) def write(self, images, reconstruction, step, prefix): images = images.cpu() reconstruction = reconstruction.cpu() if self.mean is not None and self.std is not None: images = images * self.std + self.mean reconstruction = reconstruction * self.std + self.mean image_tag = prefix + '/' + 'image' self._writer.add_images(image_tag, images, step) reconstruction_tag = prefix + '/' + 'reconstruction' self._writer.add_images(reconstruction_tag, reconstruction, step) class VQEmbeddingLogger: def __init__(self, writer: SummaryWriter): self._writer = writer def write(self, embeddings, step): embeddings = embeddings.detach().cpu().numpy() sim = cosine_distances(embeddings) self._writer.add_image('cos_sim_vq_embeddings', sim, step, dataformats='HW') def double_soft_orthogonality(weights: torch.Tensor): a = torch.norm(weights @ weights.t() - torch.eye(weights.shape[0]).to(weights.device)) ** 2 b = torch.norm(weights.t() @ weights - torch.eye(weights.shape[1]).to(weights.device)) ** 2 return a + b def set_random_seed(seed: int, cuda: bool = False): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if cuda: torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.cuda.random.manual_seed(seed) torch.backends.cudnn.deterministic = True
2.640625
3
tests/fson_files/src/event_A_B.py
NVinity/fson
0
12797829
#&&&# source_file_name = 'data/A/event.txt' sink_file_name = 'data/B/event.txt' # with open(source_file_name, "r") as source_file: data = source_file.read() key = 'b' # context = {'b': 2} value = context[key] # print(value) #&&&# print(data) # with open(sink_file_name, "w") as sink_file: sink_file.write(data)
2.6875
3
councilmatic_core/migrations/0013_auto_20160707_1957.py
tor-councilmatic/django-councilmatic
1
12797830
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-07-07 23:57 from __future__ import unicode_literals from django.db import migrations import jsonfield.fields class Migration(migrations.Migration): dependencies = [ ('councilmatic_core', '0012_auto_20160707_1859'), ] operations = [ migrations.AlterField( model_name='bill', name='extras', field=jsonfield.fields.JSONCharField(default='{}', max_length=255), ), migrations.AlterField( model_name='event', name='extras', field=jsonfield.fields.JSONCharField(default='{}', max_length=255), ), migrations.AlterField( model_name='organization', name='extras', field=jsonfield.fields.JSONCharField(default='{}', max_length=255), ), migrations.AlterField( model_name='person', name='extras', field=jsonfield.fields.JSONCharField(default='{}', max_length=255), ), ]
1.703125
2
pip/commands/show.py
mindw/pip
0
12797831
from __future__ import absolute_import from email.parser import FeedParser import logging import os from pip.basecommand import Command from pip.status_codes import SUCCESS, ERROR from pip._vendor import pkg_resources logger = logging.getLogger(__name__) class ShowCommand(Command): """Show information about one or more installed packages.""" name = 'show' usage = """ %prog [options] <package> ...""" summary = 'Show information about installed packages.' def __init__(self, *args, **kw): super(ShowCommand, self).__init__(*args, **kw) self.cmd_opts.add_option( '-f', '--files', dest='files', action='store_true', default=False, help='Show the full list of installed files for each package.') self.cmd_opts.add_option( '--index', dest='index', metavar='URL', default='https://pypi.python.org/pypi', help='Base URL of Python Package Index (default %default)') self.cmd_opts.add_option( '-p', '--pypi', dest='pypi', action='store_true', default=False, help='Show PyPi version') self.parser.insert_option_group(0, self.cmd_opts) def run(self, options, args): if not args: logger.warning('ERROR: Please provide a package name or names.') return ERROR query = args if options.pypi: with self._build_session(options) as session: results = search_packages_info(query, options.index, session) else: results = search_packages_info(query, options.index) if not print_results(results, options.files): return ERROR return SUCCESS def _format_package(requirement): r = requirement installed_ver = '-' try: d = pkg_resources.get_distribution(r.project_name) installed_ver = str(d.version) except pkg_resources.DistributionNotFound: pass return "%s [%s]" % (r, installed_ver) def search_packages_info(query, index_url=None, session=None): """ Gather details from installed distributions. Print distribution name, version, location, and installed files. Installed files requires a pip generated 'installed-files.txt' in the distributions '.egg-info' directory. """ installed = dict( [(p.key, p) for p in pkg_resources.working_set]) query_names = [name.lower() for name in query] distributions = [installed[pkg] for pkg in query_names if pkg in installed] for dist in distributions: required_by = [] for _, p in installed.items(): r = next((r for r in p.requires() if r.key == dist.key), None) if r: required_by.append("%s %s" % (p.project_name, r.specifier)) else: for e in p.extras: r = next( (r for r in p.requires([e]) if r.key == dist.key), None ) if r: required_by.append( "%s[%s] %s" % (p.project_name, e, r.specifier)) extras = {} for e in dist.extras: reqs = set(dist.requires([e])) - set(dist.requires()) extras[e] = map(_format_package, reqs) if session: from pip.download import PipXmlrpcTransport from pip._vendor.six.moves import xmlrpc_client transport = PipXmlrpcTransport(index_url, session) pypi = xmlrpc_client.ServerProxy(index_url, transport) pypi_releases = pypi.package_releases(dist.project_name) pypi_version = pypi_releases[0] if pypi_releases else 'UNKNOWN' else: pypi_version = None requires = [_format_package(r_) for r_ in dist.requires()] package = { 'name': dist.project_name, 'version': dist.version, 'pypi_version': pypi_version, 'location': dist.location, 'requires': requires, 'required_by': required_by, 'extras': extras } file_list = None metadata = None if isinstance(dist, pkg_resources.DistInfoDistribution): # RECORDs should be part of .dist-info metadatas if dist.has_metadata('RECORD'): lines = dist.get_metadata_lines('RECORD') paths = [l.split(',')[0] for l in lines] paths = [os.path.join(dist.location, p) for p in paths] file_list = [os.path.relpath(p, dist.location) for p in paths] if dist.has_metadata('METADATA'): metadata = dist.get_metadata('METADATA') else: # Otherwise use pip's log for .egg-info's if dist.has_metadata('installed-files.txt'): paths = dist.get_metadata_lines('installed-files.txt') paths = [os.path.join(dist.egg_info, p) for p in paths] file_list = [os.path.relpath(p, dist.location) for p in paths] if dist.has_metadata('PKG-INFO'): metadata = dist.get_metadata('PKG-INFO') if dist.has_metadata('entry_points.txt'): entry_points = dist.get_metadata_lines('entry_points.txt') package['entry_points'] = entry_points installer = None if dist.has_metadata('INSTALLER'): for line in dist.get_metadata_lines('INSTALLER'): if line.strip(): installer = line.strip() break package['installer'] = installer # @todo: Should pkg_resources.Distribution have a # `get_pkg_info` method? feed_parser = FeedParser() feed_parser.feed(metadata) pkg_info_dict = feed_parser.close() for key in ('metadata-version', 'summary', 'home-page', 'author', 'author-email', 'license'): package[key] = pkg_info_dict.get(key) # It looks like FeedParser can not deal with repeated headers classifiers = [] for line in metadata.splitlines(): if not line: break # Classifier: License :: OSI Approved :: MIT License if line.startswith('Classifier: '): classifiers.append(line[len('Classifier: '):]) package['classifiers'] = classifiers if file_list: package['files'] = sorted(file_list) yield package def print_results(distributions, list_all_files): """ Print the informations from installed distributions found. """ results_printed = False for dist in distributions: results_printed = True logger.info("---") logger.info("Metadata-Version: %s", dist.get('metadata-version')) logger.info("Name: %s", dist['name']) logger.info("Version: %s", dist['version']) if dist['pypi_version']: logger.info("PyPi Version: %s", dist['pypi_version']) logger.info("Summary: %s", dist.get('summary')) logger.info("Home-page: %s", dist.get('home-page')) logger.info("Author: %s", dist.get('author')) logger.info("Author-email: %s", dist.get('author-email')) if dist['installer'] is not None: logger.info("Installer: %s", dist['installer']) logger.info("License: %s", dist.get('license')) logger.info("Location: %s", dist['location']) logger.info("Classifiers:") for classifier in dist['classifiers']: logger.info(" %s", classifier) logger.info("Requires:") for line in sorted(dist['requires']): logger.info(" %s", line) for extra_name, deps in dist['extras'].items(): logger.info("Extra Require [%s]:", extra_name) for line in sorted(deps): logger.info(" %s", line.strip()) logger.info("Required by(%d):", len(dist['required_by'])) for line in sorted(dist['required_by']): logger.info(" %s", line.strip()) if list_all_files: logger.info("Files:") if 'files' in dist: for line in dist['files']: logger.info(" %s", line.strip()) else: logger.info("Cannot locate installed-files.txt") if 'entry_points' in dist: logger.info("Entry-points:") for line in dist['entry_points']: logger.info(" %s", line.strip()) return results_printed
2.328125
2
swiftst/node/__init__.py
btorch/swift-setuptools
0
12797832
<reponame>btorch/swift-setuptools """ Location for deploying swift nodes """
0.644531
1
course_link/__init__.py
arindampradhan/course_link
0
12797833
__version__ = "0.2.0" __author__='<NAME>', __author_email__='<EMAIL>', __maintainer__='<NAME>', __maintainer_email__='<EMAIL>', __url__='https://github.com/arindampradhan/course_link',
1.132813
1
AutomationKit_InfrastructureServices@SVU/helpers/BuildConfig/Pcre/PcreConfig.py
dipAch/Infrastructure-Automation-Kit
0
12797834
<filename>AutomationKit_InfrastructureServices@SVU/helpers/BuildConfig/Pcre/PcreConfig.py<gh_stars>0 ############################################################## # Module Import Section. # Make all the necessary imports here. ############################################################## import helpers.BuildConfig.Logger.LoggerConfig ############################################################## # Get the configuration options set for the PCRE build # and install on the target host. # Set the PCRE Download URL. DOWNLOAD_URL = 'ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-8.40.tar.gz' # Get this value from the above Downloads URI. # It would be present before the `EXTENSION` type of the Archived Source Package in the URI. # Use it to enable the configure time `PREFIX` and `DOC_DIR` options. PCRE_VERSION = '8.40' # `PCRE` build environment details. ENVIRONMENT = { 'BUILD_TARGET': '__PCRE__', 'DEPENDENCY' : None, 'BUILD_TYPE' : 'Generic [Automated]', 'DESCRIPTION' : "Build Automation for setting up `HTTPD` Dependency components.", 'OS_SUPPORT' : { 'Unix': ['Solaris'], 'Linux': ['Ubuntu', 'RHEL'] } } # `THREAD` name that executes the download logic for `PCRE`. PCRE_DOWNLOADER_THREAD_NAME = 'PCRE::DOWNLOADER::THREAD' # `THREAD` name that executes the untar logic for `PCRE`. PCRE_UNTAR_THREAD_NAME = 'PCRE::UNTAR::THREAD' # Package type name convention to # be followed within the `TAR` final # extract directory. # Below is the `TAR` extraction directory for `PCRE`. PCRE_TAR_EXTRACT_PACKAGE_TYPE_LOCATION = 'Pcre/' # Location to keep the `PCRE` binary. # Change this location parameter to # suit your environment standards. PCRE_BINARY_LOCATION = '/usr/local/pcre-' # `DOCDIR` location for the `PCRE` install. PCRE_DOCDIR_LOCATION = '/usr/share/doc/pcre-' # `PCRE` component name to be used # program wide. # Used to reference or label `PCRE` # related nuances. PCRE_COMPONENT_NAME = 'Pcre' # `PCRE_TAR` component name to be used # program wide. # This is the identifier returned by # the DownloadManager Module. # It references the `PCRE_TAR` package. PCRE_TAR_COMPONENT_NAME = 'Pcre_Tar' # The `PCRE_TAR` extract name to be referenced after the # untarring operation. PCRE_TAR_EXTRACT_COMPONENT_NAME = 'Pcre_Tar_ExtractName' # Set the `DOCDIR` flag as an entry in the `DOCDIR` dictionary. PCRE_DOCDIR = {'docdir_options': '--docdir=' + PCRE_DOCDIR_LOCATION} # Define the Configure time Options that needs to be set. # For more Options, just add the directive to the below list. ENABLE_OPTIONS_FLAGS = ['--enable-unicode-properties', '--enable-pcre16', '--enable-pcre32', '--enable-pcregrep-libz', '--disable-static'] # Have the `PREFIX` set here, and we will include the `CONFIGURE` line options at run-time # from the `BUILD_SUPERVISOR` Script. INSTALL_TIME_OPTIONS = {'prefix_options': '--prefix='} # Set the log location options, to store the Build Information # for the `PCRE` source build (i.e., this is for the `CONFIGURE`, `MAKE` and `MAKE INSTALL` processes). PCRE_BUILD_PROCESS_LOG_DIRECTORY = 'Pcre_Subprocess_Logs/' PCRE_SUBPROCESS_LOG_LOCATION = helpers.BuildConfig.Logger.LoggerConfig.LOG_FILE_LOCATION + PCRE_BUILD_PROCESS_LOG_DIRECTORY PCRE_SUBPROCESS_LOG_FILENAME = PCRE_SUBPROCESS_LOG_LOCATION + 'Pcre_Subprocess.log'
2.09375
2
bin/get_pos_data.py
desihub/desiperf
0
12797835
<reponame>desihub/desiperf """ Get Positioner data """ import data_mgt.get_pos_data import argparse from itertools import repeat import os import pandas as pd import numpy as np from datetime import datetime import multiprocessing #os.environ['DATA_DIR'] = '/global/cscratch1/sd/parkerf/data_local' #os.environ['DATA_MGT_DIR'] = '/global/homes/p/parkerf/InstPerf/desiperf/py/desiperf/instperfapp/data_mgt' fiberpos = pd.read_csv(os.path.join(os.environ['DATA_MGT_DIR'],'fiberpos.csv')) parser = argparse.ArgumentParser(description='Update Positioner data') parser.add_argument('start', help='start date') parser.add_argument('end', help='end date') parser.add_argument('-o','--option', help='option: new, update (default)', default = 'update') parser.add_argument("-p", "--positioners", help = 'List of positioners') args = parser.parse_args() start_date = args.start end_date = args.end option = args.option print(option) positioners = args.positioners print(positioners) if positioners is None: all_pos = np.unique(fiberpos.CAN_ID) else: all_pos = positioners #finished = pd.read_csv('/n/home/desiobserver/parkerf/desiperf/py/desiperf/data_local/positioners/finished.txt',header=None) #fin = list(finished[0])[:-1] #finished_pos = [int(os.path.splitext(os.path.split(f)[1])[0]) for f in fin] #print(finished_pos) #all_pos = [x for x in all_pos if x not in finished_pos] print('Running for {} positioners'.format(len(all_pos))) start_time = datetime.now() exp_df_base, telem_df, coord_df, ptl_dbs = data_mgt.get_pos_data.get_dfs(start_date, end_date) pool = multiprocessing.Pool(processes=64) pool.starmap(data_mgt.get_pos_data.run, zip(all_pos, repeat(start_date), repeat(end_date), repeat(exp_df_base), repeat(coord_df), repeat(telem_df), repeat(fiberpos), repeat(ptl_dbs), repeat(option))) pool.terminate() print("total time: ",(datetime.now()-start_time).total_seconds()/60.)
2.5
2
pruning/pytorch_snip/network.py
zwxu064/RANP
9
12797836
import torch.nn as nn import torch.nn.functional as F import scipy.io as scio from torchvision.models import vgg19_bn, resnet152, densenet161 class LeNet_300_100(nn.Module): def __init__(self, enable_bias=True): # original code is true super().__init__() self.fc1 = nn.Linear(784, 300, bias=enable_bias) self.fc2 = nn.Linear(300, 100, bias=enable_bias) self.fc3 = nn.Linear(100, 10, bias=enable_bias) def forward(self, x): x = F.relu(self.fc1(x.view(-1, 784))) x = F.relu(self.fc2(x)) return F.log_softmax(self.fc3(x), dim=1) class LeNet_5(nn.Module): def __init__(self, enable_bias=True): super().__init__() self.conv1 = nn.Conv2d(1, 6, 5, padding=2, bias=enable_bias) self.conv2 = nn.Conv2d(6, 16, 5, bias=enable_bias) self.fc3 = nn.Linear(16 * 5 * 5, 120, bias=enable_bias) self.fc4 = nn.Linear(120, 84, bias=enable_bias) self.fc5 = nn.Linear(84, 10, bias=enable_bias) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = F.relu(self.fc3(x.view(-1, 16 * 5 * 5))) x = F.relu(self.fc4(x)) x = F.log_softmax(self.fc5(x), dim=1) return x class LeNet_5_Caffe(nn.Module): """ This is based on Caffe's implementation of Lenet-5 and is slightly different from the vanilla LeNet-5. Note that the first layer does NOT have padding and therefore intermediate shapes do not match the official LeNet-5. """ def __init__(self, enable_bias=True): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5, padding=0, bias=enable_bias) self.conv2 = nn.Conv2d(20, 50, 5, bias=enable_bias) self.fc3 = nn.Linear(50 * 4 * 4, 500, bias=enable_bias) self.fc4 = nn.Linear(500, 10, bias=enable_bias) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = F.relu(self.fc3(x.view(-1, 50 * 4 * 4))) x = F.log_softmax(self.fc4(x), dim=1) return x VGG_CONFIGS = { 'C': [64, 64, 'M', 128, 128, 'M', 256, 256, [256], 'M', 512, 512, [512], 'M', 512, 512, [512], 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'like': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']} class VGG(nn.Module): """ This is a base class to generate three VGG variants used in SNIP paper: 1. VGG-C (16 layers) 2. VGG-D (16 layers) 3. VGG-like Some of the differences: * Reduced size of FC layers to 512 * Adjusted flattening to match CIFAR-10 shapes * Replaced dropout layers with BatchNorm """ def __init__(self, config, num_classes=10, enable_bias=True, enable_dump_features=False): super().__init__() self.enable_dump_features = enable_dump_features if enable_dump_features: self.features_block1 = self.make_layers([64, 64, 'M'], in_channels=3, batch_norm=True, enable_bias=enable_bias) self.features_block2 = self.make_layers([128, 128, 'M'], in_channels=64, batch_norm=True, enable_bias=enable_bias) self.features_block3 = self.make_layers([256, 256, [256], 'M'], in_channels=128, batch_norm=True, enable_bias=enable_bias) self.features_block4 = self.make_layers([512, 512, [512], 'M'], in_channels=256, batch_norm=True, enable_bias=enable_bias) self.features_block5 = self.make_layers([512, 512, [512], 'M'], in_channels=512, batch_norm=True, enable_bias=enable_bias) else: self.features = self.make_layers(VGG_CONFIGS[config], batch_norm=True, enable_bias=enable_bias) if config in {'C', 'D'}: self.classifier = nn.Sequential( nn.Linear(512, 512, bias=enable_bias), # 512 * 7 * 7 in the original VGG nn.ReLU(True), nn.BatchNorm1d(512), # instead of dropout nn.Linear(512, 512, bias=enable_bias), nn.ReLU(True), nn.BatchNorm1d(512), # instead of dropout nn.Linear(512, num_classes, bias=enable_bias)) elif config == 'like': self.classifier = nn.Sequential( nn.Linear(512, 512, bias=enable_bias), # 512 * 7 * 7 in the original VGG nn.ReLU(True), nn.BatchNorm1d(512), # instead of dropout nn.Linear(512, num_classes, bias=enable_bias)) else: assert False @staticmethod def make_layers(config, batch_norm=False, enable_bias=True, in_channels=3): # TODO: BN yes or no? layers = [] for idx, v in enumerate(config): if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: if isinstance(v, list): v, kernel_size, padding = v[0], 1, 0 else: kernel_size, padding = 3, 1 conv2d = nn.Conv2d(in_channels, v, kernel_size=kernel_size, padding=padding, bias=enable_bias) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) def forward(self, input, epoch_id=None, batch_id=None, gt=None): if self.enable_dump_features: feat_block1 = self.features_block1(input) feat_block2 = self.features_block2(feat_block1) feat_block3 = self.features_block3(feat_block2) feat_block4 = self.features_block4(feat_block3) x = self.features_block5(feat_block4) if (epoch_id is not None) and (batch_id is not None): scio.savemat('../checkpoints/inter_features_epoch{}_batch{}.mat'.format(epoch_id, batch_id), {'img': input.detach().squeeze().permute(2,3,1,0).cpu().numpy(), 'gt': gt.detach().squeeze().cpu().numpy(), 'b1': feat_block1.detach().squeeze().permute(2,3,1,0).cpu().numpy(), 'b2': feat_block2.detach().squeeze().permute(2,3,1,0).cpu().numpy(), 'b3': feat_block3.detach().squeeze().permute(2,3,1,0).cpu().numpy(), 'b4': feat_block4.detach().squeeze().permute(2,3,1,0).cpu().numpy(), 'b5': x.detach().squeeze().cpu().numpy()}) else: x = self.features(input) x = x.view(x.size(0), -1) x = self.classifier(x) x = F.log_softmax(x, dim=1) return x class AlexNet(nn.Module): # copy from https://medium.com/@kushajreal/training-alexnet-with-tips-and-checks-on-how-to-train-cnns-practical-cnns-in-pytorch-1-61daa679c74a def __init__(self, k=4, num_classes=10, enable_bias=True): super(AlexNet, self).__init__() self.conv_base = nn.Sequential( nn.Conv2d(3, 96, kernel_size=11, stride=2, padding=5, bias=enable_bias), nn.BatchNorm2d(96), nn.ReLU(inplace=True), nn.Conv2d(96, 256, kernel_size=5, stride=2, padding=2, bias=enable_bias), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 384, kernel_size=3, stride=2, padding=1, bias=enable_bias), nn.BatchNorm2d(384), nn.ReLU(inplace=True), nn.Conv2d(384, 384, kernel_size=3, stride=2, padding=1, bias=enable_bias), nn.BatchNorm2d(384), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, stride=2, padding=1, bias=enable_bias), nn.BatchNorm2d(256), nn.ReLU(inplace=True)) self.fc_base = nn.Sequential( nn.Linear(256, 1024 * k), nn.BatchNorm1d(1024 * k), nn.ReLU(inplace=True), nn.Linear(1024 * k, 1024 * k), nn.BatchNorm1d(1024 * k), nn.ReLU(inplace=True), nn.Linear(1024 * k, num_classes)) def forward(self, x): x = self.conv_base(x) x = x.view(x.size(0), -1) x = self.fc_base(x) x = F.log_softmax(x, dim=1) return x
2.5
2
utest/x3270/test_assertions.py
MichaelSeeburger/Robot-Framework-Mainframe-3270-Library
3
12797837
<reponame>MichaelSeeburger/Robot-Framework-Mainframe-3270-Library import re import pytest from pytest_mock import MockerFixture from robot.api import logger from Mainframe3270.x3270 import x3270 def test_page_should_contain_string(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") mocker.patch("robot.api.logger.info") under_test.page_should_contain_string("abc") logger.info.assert_called_with('The string "abc" was found') def test_page_should_contain_string_ignore_case( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="aBc") mocker.patch("robot.api.logger.info") under_test.page_should_contain_string("abc", ignore_case=True) logger.info.assert_called_with('The string "abc" was found') def test_page_should_contain_string_fails(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match='The string "def" was not found'): under_test.page_should_contain_string("def") def test_page_should_contain_string_custom_message( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match="my error message"): under_test.page_should_contain_string("def", error_message="my error message") def test_page_should_not_contain_string(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_not_contain_string("ABC") def test_page_should_not_contain_string_ignore_case( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_not_contain_string("def", ignore_case=True) def test_page_should_not_contain_string_fails(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match='The string "ABC" was found'): under_test.page_should_not_contain_string("ABC", ignore_case=True) def test_page_should_not_contain_string_custom_message( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match="my error message"): under_test.page_should_not_contain_string( "abc", error_message="my error message" ) def test_page_should_contain_any_string(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_contain_any_string(["abc", "def"]) def test_page_should_contain_any_string_ignore_case( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_contain_any_string(["ABC", "def"], ignore_case=True) def test_page_should_contain_any_string_fails(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises( Exception, match=re.escape("The strings \"['def', 'ghi']\" were not found") ): under_test.page_should_contain_any_string(["def", "ghi"]) def test_page_should_contain_any_string_custom_message( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match="my error message"): under_test.page_should_contain_any_string( ["def", "ghi"], error_message="my error message" ) def test_page_should_contain_all_strings(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", side_effect=["abc", "def"]) under_test.page_should_contain_all_strings(["abc", "def"]) def test_page_should_contain_all_strings_ignore_case( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", side_effect=["AbC", "DeF"]) under_test.page_should_contain_all_strings(["abc", "def"], ignore_case=True) def test_page_should_contain_all_strings_fails( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value=["def"]) with pytest.raises(Exception, match='The string "ghi" was not found'): under_test.page_should_contain_all_strings(["def", "ghi"]) def test_page_should_contain_all_strings_custom_message( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match="my error message"): under_test.page_should_contain_all_strings( ["abc", "def"], error_message="my error message" ) def test_page_should_not_contain_any_string(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_not_contain_any_string(["def", "ghi"]) def test_page_should_not_contain_any_string_fails( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match='The string "abc" was found'): under_test.page_should_not_contain_any_string(["abc", "def"]) def test_page_should_not_contain_any_string_ignore_case( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="ABC") with pytest.raises(Exception, match='The string "abc" was found'): under_test.page_should_not_contain_any_string(["abc", "def"], ignore_case=True) def test_page_should_not_contain_any_string_custom_message( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match="my error message"): under_test.page_should_not_contain_any_string( ["abc", "def"], error_message="my error message" ) def test_page_should_not_contain_all_strings(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_not_contain_all_strings(["def", "ghi"]) def test_page_should_not_contain_all_strings_ignore_case( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match='The string "abc" was found'): under_test.page_should_not_contain_all_strings(["ABC", "def"], ignore_case=True) def test_page_should_not_contain_all_strings_fails( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match='The string "abc" was found'): under_test.page_should_not_contain_all_strings(["abc", "def"]) def test_page_should_not_contain_all_strings_custom_message( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match="my error message"): under_test.page_should_not_contain_all_strings( ["abc", "def"], error_message="my error message" ) def test_page_should_contain_string_x_times(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="a") under_test.page_should_contain_string_x_times("a", 24) def test_page_should_contain_string_x_times_ignore_case( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="a") under_test.page_should_contain_string_x_times("A", 24, ignore_case=True) def test_page_should_contain_string_x_times_fails( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="a") with pytest.raises( Exception, match='The string "a" was not found "1" times, it appears "24" times' ): under_test.page_should_contain_string_x_times("a", 1) with pytest.raises( Exception, match='The string "b" was not found "1" times, it appears "0" times' ): under_test.page_should_contain_string_x_times("b", 1) def test_page_should_contain_string_x_times_custom_message( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="a") with pytest.raises(Exception, match="my error message"): under_test.page_should_contain_string_x_times( "b", 1, error_message="my error message" ) def test_page_should_match_regex(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_match_regex(r"\w+") def test_page_should_match_regex_fails(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises( Exception, match=re.escape(r'No matches found for "\d+" pattern') ): under_test.page_should_match_regex(r"\d+") def test_page_should_not_match_regex(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_not_match_regex(r"\d+") def test_page_should_not_match_regex_fails(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="a") with pytest.raises( Exception, match=re.escape('There are matches found for "[a]+" pattern') ): under_test.page_should_not_match_regex("[a]+") def test_page_should_contain_match(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_contain_match("*a?c*") def test_page_should_contain_match_fails(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises( Exception, match=re.escape('No matches found for "*e?g*" pattern') ): under_test.page_should_contain_match("*e?g*") def test_page_should_contain_match_ignore_case( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="ABC") under_test.page_should_contain_match("*a?c*", ignore_case=True) def test_page_should_contain_match_custom_message( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match="my error message"): under_test.page_should_contain_match("*def*", error_message="my error message") def test_page_should_not_contain_match(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") under_test.page_should_not_contain_match("*def*") def test_page_should_not_contain_match_fails(mocker: MockerFixture, under_test: x3270): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises( Exception, match=re.escape('There are matches found for "*abc*" pattern') ): under_test.page_should_not_contain_match("*abc*") def test_page_should_not_contain_match_ignore_case( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises( Exception, match=re.escape('There are matches found for "*abc*" pattern') ): under_test.page_should_not_contain_match("*ABC*", ignore_case=True) def test_page_should_not_contain_match_custom_message( mocker: MockerFixture, under_test: x3270 ): mocker.patch("Mainframe3270.py3270.Emulator.string_get", return_value="abc") with pytest.raises(Exception, match="my error message"): under_test.page_should_not_contain_match( "*abc*", error_message="my error message" )
2.296875
2
tests/test_series/__init__.py
smok-serwis/firanka
0
12797838
<gh_stars>0 import math import unittest from firanka.exceptions import NotInDomainError, DomainError from firanka.intervals import Interval from firanka.series import DiscreteSeries, FunctionSeries, ModuloSeries, \ LinearInterpolationSeries, Series from .common import NOOP, HUGE_IDENTITY class TestBase(unittest.TestCase): def test_abstract(self): self.assertRaises(NotImplementedError, lambda: Series('<-1;1>')[0]) class TestDiscreteSeries(unittest.TestCase): def test_redundancy_skip(self): a = DiscreteSeries([(0, 0), (1, 0), (2, 0)], '<0;5>') b = DiscreteSeries([(0, 0), (1, 0)], '<0;5>') a.join(b, lambda i, x, y: x + y) def test_uncov(self): self.assertRaises(DomainError, lambda: DiscreteSeries([[0, 0], [1, 1], [2, 2]], '<-5;2>')) def test_base(self): s = DiscreteSeries([[0, 0], [1, 1], [2, 2]]) self.assertEqual(s[0], 0) self.assertEqual(s[0.5], 0) self.assertEqual(s[1], 1) self.assertRaises(NotInDomainError, lambda: s[-1]) self.assertRaises(NotInDomainError, lambda: s[2.5]) s = DiscreteSeries([[0, 0], [1, 1], [2, 2]], domain=Interval(0, 3, True, True)) self.assertEqual(s[0], 0) self.assertEqual(s[0.5], 0) self.assertEqual(s[1], 1) self.assertRaises(NotInDomainError, lambda: s[-1]) self.assertEqual(s[2.5], 2) def test_translation(self): s = DiscreteSeries([[0, 0], [1, 1], [2, 2]]).translate(3) self.assertEqual(s[3], 0) self.assertEqual(s[3.5], 0) self.assertEqual(s[4], 1) def test_slice_outdomain(self): series = DiscreteSeries([[0, 0], [1, 1], [2, 2]]) self.assertRaises(NotInDomainError, lambda: series[-1:2]) def test_translate(self): sp = DiscreteSeries([[0, 0], [1, 1], [2, 2]]).translate(1) self.assertEqual(sp[1.5], 0) self.assertEqual(sp[2.5], 1) def test_slice(self): series = DiscreteSeries([[0, 0], [1, 1], [2, 2]]) sp = series[0.5:1.5] self.assertEqual(sp[0.5], 0) self.assertEqual(sp[1.5], 1) self.assertRaises(NotInDomainError, lambda: sp[0]) self.assertRaises(NotInDomainError, lambda: sp[2]) self.assertEqual(sp.domain.start, 0.5) self.assertEqual(sp.domain.stop, 1.5) def test_eval(self): sa = DiscreteSeries([[0, 0], [1, 1], [2, 2]]) sb = DiscreteSeries([[0, 1], [1, 2], [2, 3]]) sc = sa.join_discrete(sb, lambda i, a, b: a + b) self.assertIsInstance(sc, DiscreteSeries) self.assertEqual(sc.eval_points([0, 1, 2]), [1, 3, 5]) self.assertEqual(sc.data, [(0, 1), (1, 3), (2, 5)]) def test_eval2(self): sa = DiscreteSeries([[0, 0], [1, 1], [2, 2]]) sb = FunctionSeries(NOOP, '<0;2>') sc = sa.join_discrete(sb, lambda i, a, b: a + b) self.assertEqual(sc.eval_points([0, 1, 2]), [0, 2, 4]) self.assertIsInstance(sc, DiscreteSeries) self.assertEqual(sc.data, [(0, 0), (1, 2), (2, 4)]) def test_eval2i(self): sa = DiscreteSeries([[0, 0], [1, 1], [2, 2]]) sc = sa.join_discrete(HUGE_IDENTITY, lambda i, a, b: i) self.assertEqual(sc.eval_points([0, 1, 2]), [0, 1, 2]) self.assertIsInstance(sc, DiscreteSeries) self.assertEqual(sc.data, [(0, 0), (1, 1), (2, 2)]) def test_apply(self): sb = DiscreteSeries([[0, 0], [1, 1], [2, 2]]).apply( lambda k, v: k) self.assertEquals(sb.data, [(0, 0), (1, 1), (2, 2)]) def test_eval3(self): sa = FunctionSeries(lambda x: x ** 2, '<-10;10)') sb = FunctionSeries(NOOP, '<0;2)') sc = sa.join(sb, lambda i, a, b: a * b) PTS = [0, 1, 1.9] EPTS = [x * x ** 2 for x in PTS] self.assertEqual(sc.eval_points(PTS), EPTS) self.assertTrue(Interval('<0;2)') in sc.domain) def test_discretize(self): # note the invalid data for covering this domain self.assertRaises(DomainError, lambda: FunctionSeries(lambda x: x ** 2, '<-10;10)').discretize( [0, 1, 2, 3, 4, 5], '(-1;6)')) self.assertRaises(NotInDomainError, lambda: FunctionSeries(lambda x: x ** 2, '<-10;10)').discretize( [-100, 0, 1, 2, 3, 4, 5], '(-1;6)')) PTS = [-1, 0, 1, 2, 3, 4, 5] sa = FunctionSeries(lambda x: x ** 2, '<-10;10)').discretize(PTS, '(-1;6)') self.assertIsInstance(sa, DiscreteSeries) self.assertEqual(sa.data, [(i, i ** 2) for i in PTS]) sa = FunctionSeries(lambda x: x ** 2, '<-10;10)').discretize(PTS) self.assertIsInstance(sa, DiscreteSeries) self.assertEqual(sa.data, [(i, i ** 2) for i in PTS]) empty = FunctionSeries(lambda x: x ** 2, '<-10;10)').discretize([]) self.assertTrue(empty.domain.is_empty()) class TestFunctionSeries(unittest.TestCase): def test_slice(self): series = FunctionSeries(NOOP, '<0;2>') sp = series[0.5:1.5] self.assertEqual(sp[0.5], 0.5) self.assertEqual(sp[1.5], 1.5) self.assertRaises(NotInDomainError, lambda: sp[0]) self.assertRaises(NotInDomainError, lambda: sp[2]) self.assertEqual(sp.domain.start, 0.5) self.assertEqual(sp.domain.stop, 1.5) def test_apply(self): PTS = [-1, -2, -3, 1, 2, 3] series = FunctionSeries(NOOP, '<-5;5>').apply(lambda k, x: k) self.assertEqual(series.eval_points(PTS), [x for x in PTS]) def test_apply_wild(self): def dzika(k, x, a=5, *args, **kwargs): return k PTS = [-1, -2, -3, 1, 2, 3] series = FunctionSeries(NOOP, '<-5;5>').apply(dzika) self.assertEqual(series.eval_points(PTS), [x for x in PTS]) def test_domain_sensitivity(self): logs = FunctionSeries(math.log, '(0;5>') dirs = DiscreteSeries([(0, 1), (1, 2), (3, 4)], '<0;5>') self.assertRaises(ValueError, lambda: dirs.join_discrete(logs, lambda i, x, y: x + y)) class TestModuloSeries(unittest.TestCase): def test_exceptions(self): self.assertRaises(ValueError, lambda: ModuloSeries( FunctionSeries(NOOP, '(-inf; 0>'))) self.assertRaises(ValueError, lambda: ModuloSeries( FunctionSeries(NOOP, '(-inf; inf)'))) self.assertRaises(ValueError, lambda: ModuloSeries(FunctionSeries(NOOP, '<0; 0>'))) def test_base(self): series = ModuloSeries( DiscreteSeries([(0, 1), (1, 2), (2, 3)], '<0;3)')) self.assertEquals(series[3], 1) self.assertEquals(series[4], 2) self.assertEquals(series[5], 3) self.assertEquals(series[-1], 3) def test_advanced(self): series = ModuloSeries(DiscreteSeries([(-1, 1), (0, 2), (1, 3)], '<-1;2)')) self.assertEqual(series.period, 3.0) self.assertEqual(series.eval_points([-1, 0, 1]), [1, 2, 3]) self.assertEqual(series.eval_points([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]), [3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1]) def test_comp_discrete(self): ser1 = ModuloSeries(FunctionSeries(lambda x: x ** 2, '<0;3)')) ser2 = FunctionSeries(NOOP, '<0;3)') ser3 = ser1.join(ser2, lambda i, x, y: x * y) class TestLinearInterpolation(unittest.TestCase): def test_lin(self): series = LinearInterpolationSeries( DiscreteSeries([(0, 1), (1, 2), (2, 3)], '<0;3)')) self.assertEqual(series[0], 1) self.assertEqual(series[0.5], 1.5) self.assertEqual(series[1], 2) self.assertEqual(series[2.3], 3) def test_conf(self): self.assertRaises(TypeError, lambda: LinearInterpolationSeries( FunctionSeries(NOOP, '<0;3)')))
2.421875
2
src/utils/remote/remote_api/routes.py
devs-7/bible-projector-python
0
12797839
<filename>src/utils/remote/remote_api/routes.py from typing import Any, Callable, Dict, Optional, Union from flask import Blueprint, request from src.utils.remote import Command from werkzeug.utils import send_from_directory api_routes_blueprint = Blueprint('api_routes', __name__) execute: Callable[[Union[Command, str], Optional[Dict[str, Any]]], None] @api_routes_blueprint.route('/') def index(): return 'Bible projector remote API' @api_routes_blueprint.route('/favicon.ico') def favicon(): return send_from_directory( api_routes_blueprint.root_path, 'icon.ico', ) @api_routes_blueprint.route('/<command>', methods=['POST']) def command(command: str): global execute data = request.get_json() execute(command, data) return command
2.390625
2
test/test_workspace.py
fkie/rosrepo
5
12797840
<reponame>fkie/rosrepo # coding=utf-8 # # ROSREPO # Manage ROS workspaces with multiple Gitlab repositories # # Author: <NAME> # # Copyright 2016 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # import unittest import os import shutil import yaml import pickle from tempfile import mkdtemp try: from mock import patch except ImportError: from unittest.mock import patch import sys sys.stderr = sys.stdout from rosrepo.config import Config import test.helper as helper class WorkspaceTest(unittest.TestCase): def setUp(self): self.ros_root_dir = mkdtemp() self.wsdir = mkdtemp() self.homedir = mkdtemp() helper.create_fake_ros_root(self.ros_root_dir) helper.create_package(self.wsdir, "alpha", ["beta", "gamma", "installed-system"]) helper.create_package(self.wsdir, "beta", ["delta"]) helper.create_package(self.wsdir, "gamma", []) helper.create_package(self.wsdir, "delta", []) helper.create_package(self.wsdir, "epsilon", ["broken"]) helper.create_package(self.wsdir, "broken", ["missing"]) helper.create_package(self.wsdir, "incomplete", ["missing-system"]) helper.create_package(self.wsdir, "ancient", [], deprecated=True) helper.create_package(self.wsdir, "ancient2", [], deprecated="Walking Dead") for blacklisted_key in ["ROS_WORKSPACE", "ROS_PACKAGE_PATH"]: if blacklisted_key in os.environ: del os.environ[blacklisted_key] os.environ["HOME"] = self.homedir os.environ["XDG_CONFIG_HOME"] = os.path.join(self.homedir, ".config") def tearDown(self): shutil.rmtree(self.wsdir, ignore_errors=True) shutil.rmtree(self.homedir, ignore_errors=True) shutil.rmtree(self.ros_root_dir, ignore_errors=True) self.ros_root_dir = None self.wsdir = None def get_config_value(self, key, default=None): cfg = Config(self.wsdir, read_only=True) return cfg.get(key, default) def test_bash(self): """Test proper behavior of 'rosrepo bash'""" exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) self.assertEqual( helper.run_rosrepo("bash", "-w", self.wsdir, "ROS_WORKSPACE", "ROS_PACKAGE_PATH", "PATH", "UNKNOWN"), (0, "ROS_WORKSPACE=%(wsdir)s\nROS_PACKAGE_PATH=%(wsdir)s/src\nPATH=%(env_path)s\n# variable UNKNOWN is not set\n" % {"wsdir": self.wsdir, "env_path": os.environ["PATH"]}) ) os.environ["ROS_PACKAGE_PATH"] = os.pathsep.join(["/before"] + ["%s/src/%s" % (self.wsdir, d) for d in ["alpha", "beta", "gamma"]] + ["/after"]) self.assertEqual( helper.run_rosrepo("bash", "-w", self.wsdir), (0, "ROS_WORKSPACE=%(wsdir)s\nROS_PACKAGE_PATH=/before%(sep)s%(wsdir)s/src%(sep)s/after\n" % {"wsdir": self.wsdir, "sep": os.pathsep}) ) def test_clean(self): """Test proper behavior of 'rosrepo clean'""" exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) os.makedirs(os.path.join(self.wsdir, "build")) exitcode, stdout = helper.run_rosrepo("clean", "-w", self.wsdir, "--dry-run") self.assertEqual(exitcode, 0) self.assertTrue(os.path.isdir(os.path.join(self.wsdir, "build"))) exitcode, stdout = helper.run_rosrepo("clean", "-w", self.wsdir) self.assertEqual(exitcode, 0) self.assertFalse(os.path.isdir(os.path.join(self.wsdir, "build"))) def test_upgrade_from_version_1(self): """Test if workspaces from rosrepo 1.x are migrated properly""" os.rename(os.path.join(self.wsdir, "src"), os.path.join(self.wsdir, "repos")) os.makedirs(os.path.join(self.wsdir, "src")) with open(os.path.join(self.wsdir, "src", "CMakeLists.txt"), "w"): pass with open(os.path.join(self.wsdir, "src", "toplevel.cmake"), "w"): pass with open(os.path.join(self.wsdir, ".catkin_workspace"), "w"): pass os.symlink(os.path.join("..", "repos", "alpha"), os.path.join(self.wsdir, "src", "alpha")) os.symlink(os.path.join("..", "repos", "beta"), os.path.join(self.wsdir, "src", "beta")) os.symlink(os.path.join("..", "repos", "gamma"), os.path.join(self.wsdir, "src", "gamma")) os.symlink(os.path.join("..", "repos", "delta"), os.path.join(self.wsdir, "src", "delta")) with open(os.path.join(self.wsdir, "repos", ".metainfo"), "w") as f: f.write(yaml.safe_dump( { "alpha": {"auto": False, "pin": False}, "beta": {"auto": False, "pin": True}, "gamma": {"auto": True, "pin": False}, "delta": {"auto": True, "pin": False}, }, default_flow_style=False )) exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) self.assertEqual( helper.run_rosrepo("list", "-w", self.wsdir, "-n"), (0, "alpha\nbeta\ndelta\ngamma\n") ) self.assertEqual(self.get_config_value("default_build"), ["alpha"]) self.assertEqual(self.get_config_value("pinned_build"), ["beta"]) def test_upgrade_from_version_2(self): """Test if workspaces from rosrepo 2.x are migrated properly""" with open(os.path.join(self.wsdir, ".catkin_workspace"), "w"): pass os.makedirs(os.path.join(self.wsdir, ".catkin_tools", "profiles", "rosrepo")) os.makedirs(os.path.join(self.wsdir, ".rosrepo")) from rosrepo.common import PkgInfo with open(os.path.join(self.wsdir, ".rosrepo", "info"), "wb") as f: metadata = {} metadata["alpha"] = PkgInfo() metadata["beta"] = PkgInfo() metadata["alpha"].selected = True metadata["beta"].selected = True metadata["beta"].pinned = True f.write(pickle.dumps(metadata)) exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) self.assertEqual( helper.run_rosrepo("list", "-w", self.wsdir, "-n"), (0, "alpha\nbeta\ndelta\ngamma\n") ) self.assertEqual(self.get_config_value("default_build"), ["alpha"]) self.assertEqual(self.get_config_value("pinned_build"), ["beta"]) def test_upgrade_from_older_version_3(self): """Test if workspaces from rosrepo 3.x are upgraded to latest version""" exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "alpha") self.assertEqual(exitcode, 0) cfg = Config(self.wsdir) cfg["version"] = "3.0.0a0" cfg.write() self.assertEqual( helper.run_rosrepo("list", "-w", self.wsdir, "-n"), (0, "alpha\nbeta\ndelta\ngamma\n") ) from rosrepo import __version__ as rosrepo_version self.assertEqual(self.get_config_value("version"), rosrepo_version) def test_incompatible_new_version(self): """Test if workspaces from future rosrepo versions are detected""" exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) cfg = Config(self.wsdir) cfg["version"] = "999.0" cfg.write() exitcode, stdout = helper.run_rosrepo("list", "-w", self.wsdir, "-n") self.assertEqual(exitcode, 1) self.assertIn("newer version", stdout) def test_buildset(self): """Test proper behavior of 'rosrepo include' and 'rosrepo exclude'""" exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "--dry-run", "alpha") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("default_build", []), []) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "alpha") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("default_build"), ["alpha"]) self.assertEqual(self.get_config_value("pinned_build"), []) self.assertEqual( helper.run_rosrepo("list", "-w", self.wsdir, "-n"), (0, "alpha\nbeta\ndelta\ngamma\n") ) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "--pinned", "beta") self.assertEqual(exitcode, 0) self.assertEqual( helper.run_rosrepo("list", "-w", self.wsdir, "-n"), (0, "alpha\nbeta\ndelta\ngamma\n") ) self.assertEqual(self.get_config_value("pinned_build"), ["beta"]) exitcode, stdout = helper.run_rosrepo("exclude", "-w", self.wsdir, "-a") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("default_build"), []) self.assertEqual( helper.run_rosrepo("list", "-w", self.wsdir, "-n"), (0, "beta\ndelta\n") ) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "--default", "beta") self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("exclude", "-w", self.wsdir, "--pinned", "beta") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("default_build"), ["beta"]) self.assertEqual(self.get_config_value("pinned_build"), []) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "--pinned", "epsilon") self.assertEqual(exitcode, 1) self.assertIn("cannot resolve dependencies", stdout) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "--default", "epsilon") self.assertEqual(exitcode, 1) self.assertIn("cannot resolve dependencies", stdout) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "--default", "--all") self.assertEqual(exitcode, 1) self.assertIn("cannot resolve dependencies", stdout) self.assertEqual(self.get_config_value("default_build"), ["beta"]) self.assertEqual(self.get_config_value("pinned_build"), []) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "--default", "incomplete") self.assertEqual(exitcode, 0) self.assertIn("apt-get install", stdout) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "--default", "ancient", "ancient2") self.assertEqual(exitcode, 0) self.assertIn("is deprecated", stdout) self.assertIn("Walking Dead", stdout) os.makedirs(os.path.join(self.wsdir, "build")) exitcode, stdout = helper.run_rosrepo("init", "--reset", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) self.assertFalse(os.path.isdir(os.path.join(self.wsdir, "build"))) self.assertEqual(self.get_config_value("default_build", []), []) self.assertEqual(self.get_config_value("pinned_build", []), []) def test_build(self): """Test proper behavior of 'rosrepo build'""" exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--job-limit", "1") self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "--dry-run") self.assertEqual(exitcode, 1) self.assertIn("no packages to build", stdout) helper.failing_programs = ["catkin_lint"] exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "--dry-run", "alpha") self.assertEqual(exitcode, 0) self.assertIn("alpha", stdout) self.assertIn("beta", stdout) self.assertIn("gamma", stdout) self.assertIn("delta", stdout) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "alpha") self.assertEqual(exitcode, 1) self.assertIn("catkin_lint reported errors", stdout) helper.failing_programs = [] with patch("rosrepo.cmd_build.find_ros_root", lambda x: None): exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "alpha") self.assertEqual(exitcode, 1) self.assertIn("cannot detect ROS distribution", stdout) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "--all") self.assertEqual(exitcode, 1) self.assertIn("cannot resolve dependencies", stdout) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "--set-default") self.assertEqual(exitcode, 1) self.assertIn("no packages given", stdout) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "--set-default", "alpha") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("default_build", []), ["alpha"]) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "--set-pinned") self.assertEqual(exitcode, 1) self.assertIn("no packages given", stdout) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "--set-pinned", "beta") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("pinned_build", []), ["beta"]) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir) self.assertEqual(exitcode, 0) self.assertIn("alpha", stdout) self.assertIn("beta", stdout) self.assertIn("gamma", stdout) self.assertIn("delta", stdout) exitcode, stdout = helper.run_rosrepo("exclude", "-w", self.wsdir, "--all") self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir) self.assertEqual(exitcode, 0) self.assertNotIn("alpha", stdout) self.assertNotIn("gamma", stdout) self.assertIn("beta", stdout) self.assertIn("delta", stdout) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "incomplete") self.assertEqual(exitcode, 1) self.assertIn("missing system package", stdout) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "--clean") self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("build", "-w", self.wsdir, "--clean", "--dry-run", "--offline", "--verbose", "--no-status", "--keep-going", "-j2") self.assertEqual(exitcode, 0) def test_list(self): """Test proper behavior of 'rosrepo list'""" exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "alpha") self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("include", "-w", self.wsdir, "--pinned", "beta") self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("list", "-w", self.wsdir) self.assertEqual(exitcode, 0) self.assertIn("alpha", stdout) self.assertIn("beta", stdout) self.assertIn("gamma", stdout) self.assertIn("delta", stdout) self.assertNotIn("epsilon", stdout) exitcode, stdout = helper.run_rosrepo("list", "-w", self.wsdir, "-BC") self.assertEqual(exitcode, 0) self.assertIn("search filter", stdout) exitcode, stdout = helper.run_rosrepo("list", "-w", self.wsdir, "-S") self.assertEqual(exitcode, 0) self.assertIn("alpha", stdout) self.assertNotIn("beta", stdout) exitcode, stdout = helper.run_rosrepo("list", "-w", self.wsdir, "-P") self.assertEqual(exitcode, 0) self.assertNotIn("alpha", stdout) self.assertIn("beta", stdout) self.assertNotIn("delta", stdout) exitcode, stdout = helper.run_rosrepo("list", "-w", self.wsdir, "-Pv") self.assertEqual(exitcode, 0) self.assertIn("alpha", stdout) self.assertNotIn("beta", stdout) self.assertIn("delta", stdout) exitcode, stdout = helper.run_rosrepo("list", "-w", self.wsdir, "-PD") self.assertEqual(exitcode, 0) self.assertNotIn("alpha", stdout) self.assertIn("beta", stdout) self.assertIn("delta", stdout) exitcode, stdout = helper.run_rosrepo("list", "-w", self.wsdir, "-W") self.assertIn("alpha", stdout) self.assertIn("beta", stdout) self.assertIn("epsilon", stdout) def test_config(self): """Test proper behavior of 'rosrepo config'""" exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 0) with patch("rosrepo.cmd_config.find_ros_root", lambda x: None): exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir) self.assertEqual(exitcode, 1) self.assertIn("cannot detect ROS distribution", stdout) ####################### exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--job-limit", "16") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("job_limit"), 16) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--job-limit", "0") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("job_limit"), None) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--job-limit", "8") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("job_limit"), 8) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--no-job-limit") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("job_limit"), None) ####################### exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--install") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("install"), True) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--no-install") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("install"), False) ####################### exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-compiler", "clang") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("compiler"), "clang") exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-compiler", "does_not_exist") self.assertEqual(exitcode, 1) self.assertIn("unknown compiler", stdout) self.assertEqual(self.get_config_value("compiler"), "clang") exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--unset-compiler") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("compiler"), None) ####################### exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-crawl-depth", "2") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_crawl_depth"), 2) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-crawl-depth", "1") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_crawl_depth"), 1) ####################### exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-url", "Test", "http://localhost", "--store-credentials") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost", "private_token": "<PASSWORD>token"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-url", "Test", "http://localhost", "--private-token", "<PASSWORD>", "--store-credentials") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("store_credentials"), True) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--no-store-credentials") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("store_credentials"), False) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost", "private_token": "<PASSWORD>"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-url", "Test", "http://localhost", "--private-token", "<PASSWORD>") self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-url", "Test", "http://localhost") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost", "private_token": "<PASSWORD>"}]) self.assertEqual( helper.run_rosrepo("config", "-w", self.wsdir, "--get-gitlab-url", "does_not_exist"), (0, "\n") ) self.assertEqual( helper.run_rosrepo("config", "-w", self.wsdir, "--get-gitlab-url", "Test"), (0, "http://localhost\n") ) self.assertEqual( helper.run_rosrepo("config", "-w", self.wsdir, "--show-gitlab-urls", "--autocomplete"), (0, "Test\n") ) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--show-gitlab-urls") self.assertEqual(exitcode, 0) self.assertIn("Test", stdout) self.assertIn("http://localhost", stdout) self.assertIn("yes", stdout) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--gitlab-logout", "does_not_exist") self.assertEqual(exitcode, 1) self.assertIn("no such Gitlab server", stdout) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--gitlab-logout", "Test") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-url", "Test", "http://localhost", "--private-token", "<PASSWORD>") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-url", "Test", "http://localhost") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--unset-gitlab-url", "Test") self.assertEqual(exitcode, 0) self.assertEqual( helper.run_rosrepo("config", "-w", self.wsdir, "--show-gitlab-urls", "--autocomplete"), (0, "\n") ) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-url", "Test", "http://localhost", "--private-token", "<PASSWORD>") self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--gitlab-login", "Test", "--private-token", "<PASSWORD>") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-gitlab-url", "Test", "http://localhost", "--private-token", "<PASSWORD>", "--store-credentials") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost", "private_token": "t0ps3cr3t"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--remove-credentials") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--gitlab-login", "Test", "--private-token", "<PASSWORD>") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost", "private_token": "<PASSWORD>"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--gitlab-login", "Test") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("gitlab_servers"), [{"label": "Test", "url": "http://localhost", "private_token": "<PASSWORD>"}]) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--offline", "--set-gitlab-url", "Test", "http://localhost") self.assertEqual(exitcode, 0) self.assertIn("cannot verify Gitlab private token in offline mode", stdout) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--offline", "--gitlab-login", "Test") self.assertEqual(exitcode, 0) self.assertIn("cannot verify Gitlab private token in offline mode", stdout) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--remove-credentials") self.assertEqual(exitcode, 0) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--offline", "--set-gitlab-url", "Test", "http://localhost") self.assertEqual(exitcode, 1) self.assertIn("cannot acquire Gitlab private token in offline mode", stdout) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--offline", "--gitlab-login", "Test") self.assertEqual(exitcode, 1) self.assertIn("cannot acquire Gitlab private token in offline mode", stdout) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--unset-gitlab-url", "Test") self.assertEqual(exitcode, 0) cfg = Config(self.wsdir) cfg["gitlab_servers"] = [{"label": "NoURL"}] cfg.write() exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--gitlab-login", "NoURL") self.assertEqual(exitcode, 1) self.assertIn("cannot acquire token for Gitlab server without URL", stdout) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--gitlab-login", "does_not_exist") self.assertEqual(exitcode, 1) self.assertIn("no such Gitlab server", stdout) ####################### self.assertEqual(self.get_config_value("ros_root"), self.ros_root_dir) helper.run_rosrepo("config", "-w", self.wsdir, "--unset-ros-root") self.assertEqual(self.get_config_value("ros_root"), None) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--set-ros-root", self.ros_root_dir) self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("ros_root"), self.ros_root_dir) ####################### exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--no-catkin-lint") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("use_catkin_lint"), False) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--catkin-lint") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("use_catkin_lint"), True) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--no-catkin-lint") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("use_catkin_lint"), False) ####################### exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--no-rosclipse") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("use_rosclipse"), False) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--rosclipse") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("use_rosclipse"), True) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--no-rosclipse") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("use_rosclipse"), False) ####################### exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--no-env-cache") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("use_env_cache"), False) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--env-cache") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("use_env_cache"), True) exitcode, stdout = helper.run_rosrepo("config", "-w", self.wsdir, "--no-env-cache") self.assertEqual(exitcode, 0) self.assertEqual(self.get_config_value("use_env_cache"), False) ####################### def test_init_failures(self): """Test proper behavior of 'rosrepo init'""" with patch("rosrepo.cmd_init.find_ros_root", lambda x: None): exitcode, stdout = helper.run_rosrepo("init", self.wsdir) self.assertEqual(exitcode, 1) self.assertIn("cannot detect ROS distribution", stdout) os.environ["HOME"] = self.wsdir exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, self.wsdir) self.assertEqual(exitcode, 1) self.assertIn("$HOME", stdout) exitcode, stdout = helper.run_rosrepo("init", "-r", self.ros_root_dir, os.path.normpath(os.path.join(os.path.dirname(__file__), os.pardir))) self.assertEqual(exitcode, 1) self.assertIn("rosrepo source folder", stdout)
1.765625
2
gym/common/profiler/profiler.py
intrig-unicamp/gym
8
12797841
<gh_stars>1-10 import os import json import logging from gym.common.process import Actuator logger = logging.getLogger(__name__) class Profiler: FILES = 'info' FILES_PREFIX = 'info_' FILES_SUFFIX = 'py' def __init__(self): self.profiles = {} self._outputs = [] self.actuator = Actuator() self.cfg_acts() def cfg_acts(self): logger.info("Loading Profile Infos") folder = os.path.join( os.path.dirname(os.path.abspath(__file__)), Profiler.FILES) cfg = { "folder": folder, "prefix": Profiler.FILES_PREFIX, "sufix": Profiler.FILES_SUFFIX, "full_path": True, } self.actuator.cfg(cfg) def profile(self): self._outputs = self.actuator.get_acts() for value in self._outputs.values(): name = value.get("name", None) if name: self.profiles[name] = value else: logger.info("Could not load profiler output %s", value) return self.profiles if __name__ == "__main__": level = logging.DEBUG formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler = logging.StreamHandler() handler.setFormatter(formatter) handler.setLevel(level) logging.getLogger().addHandler(handler) logging.getLogger().setLevel(level) logger = logging.getLogger(__name__) prfl = Profiler() msg = prfl.profile() print(msg)
2.3125
2
tests/scripts/thread-cert/pktverify/null_field.py
AdityaHPatwardhan/openthread
2,962
12797842
#!/usr/bin/env python3 # # Copyright (c) 2019, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # nullField = None class NullField(object): """ Represents a null field that does not exists. """ def __new__(cls, *args, **kwargs): global nullField if nullField is None: nullField = object.__new__(cls, *args, **kwargs) return nullField def __init__(self): assert self is nullField def __bool__(self): """ NullField is always treated as False. """ return False def __getattr__(self, item): """ Any sub field of the NullField is NullField itself. """ return self def __setattr__(self, key, value): pass def __len__(self) -> 0: return 0 def __eq__(self, other): """ NullField is always not equal to any other value. """ return False def __ne__(self, other): return True def __lt__(self, other): """ Comparing NullField to any other value gets False. """ return False def __le__(self, other): """ Comparing NullField to any other value gets False. """ return False def __gt__(self, other): """ Comparing NullField to any other value gets False. """ return False def __ge__(self, other): """ Comparing NullField to any other value gets False. """ return False def __str__(self): return "nullField" def __repr__(self): return 'nullField' NullField() if __name__ == '__main__': assert nullField is NullField() assert not nullField, repr(nullField) assert nullField != nullField, repr(nullField) assert nullField != 0 assert not (nullField > 1) assert not (nullField < 1) assert not (nullField < nullField) assert not (nullField > nullField) assert bool(nullField) is False assert nullField != "" assert nullField != None # noqa assert nullField is not None
1.6875
2
utils/device_util.py
zhangxdnw/pc_remote_android
0
12797843
<gh_stars>0 #!/usr/bin/env python # -*- encoding: utf-8 -*- """ @File : device_util.py @Contact : <EMAIL> @License : MIT @Modify Time @Author @Version @Description ------------ ------- -------- ----------- 2021/10/25 10:23 zxd 1.0 None """ from adbutils import adb import uiautomator2 as u2 from uiautomator2 import Device def list_all_devices() -> []: """ 列出当前所有连接的设备 Returns: 已连接设备的序列号数组, 没有连接设备返回空数组 """ device_list = adb.device_list() if len(device_list) < 1: return [] else: return [device.serial for device in device_list] def connect(addr: str) -> Device: return u2.connect(addr) def top_app(device: Device) -> str: return device.current_app()['package'] def top_activity(device: Device) -> str: return device.app_current()['package'] + device.app_current()['activity'] def activity_window(device: Device, activity: str) -> list: wins = device.shell("dumpsys window " + activity + " | grep \"Window #\"") return wins.output.strip().split('\n') def stop_app(device: Device, package: str): device.app_stop(package) def stop_all(device: Device): device.app_stop_all() if __name__ == '__main__': print(list_all_devices())
2.515625
3
jupyter_rsession_proxy/__init__.py
uc-cdis/jupyter-rsession-proxy
0
12797844
import os import tempfile import subprocess import getpass import shutil from textwrap import dedent def get_r_env(): env = {} executable = 'R' try: # get notebook app from notebook.notebookapp import NotebookApp nbapp = NotebookApp.instance() kernel_name = nbapp.kernel_manager.default_kernel_name if kernel_name: kernel_spec = nbapp.kernel_spec_manager.get_kernel_spec(kernel_name) env.update(kernel_spec.env) executable = kernel_spec.argv[0] # patch LD_LIBRARY_PATH for conda env conda_lib_dir = os.path.join(env['CONDA_PREFIX'], 'lib') #r_lib_dir = os.path.join(conda_lib_dir, 'R/lib') env.update({ # 'LD_LIBRARY_PATH': r_lib_dir + ':' + conda_lib_dir 'LD_LIBRARY_PATH': conda_lib_dir }) except Exception: nbapp.log.warning('Error when trying to get R executable from kernel') # Detect various environment variables rsession requires to run # Via rstudio's src/cpp/core/r_util/REnvironmentPosix.cpp cmd = [executable, '--slave', '--vanilla', '-e', 'cat(paste(R.home("home"),R.home("share"),R.home("include"),R.home("doc"),getRversion(),sep=":"))'] r_output = subprocess.check_output(cmd) R_HOME, R_SHARE_DIR, R_INCLUDE_DIR, R_DOC_DIR, version = \ r_output.decode().split(':') # TODO: # maybe set a few more env vars? # e.g. MAXENT, DISPLAY='' (to avoid issues with java) # e.g. would be nice if RStudio terminal starts with correct conda env? # -> either patch ~/Renviron / Renviron.site # -> user Rprofile.site (if conda env specific?) # -> use ~/.Rprofile ... if user specific? # make R kernel used configurable? # ... or rather use standard system R installation, and let user install stuff in home folder? env.update({ 'R_DOC_DIR': R_DOC_DIR, 'R_HOME': R_HOME, 'R_INCLUDE_DIR': R_INCLUDE_DIR, 'R_SHARE_DIR': R_SHARE_DIR, 'RSTUDIO_DEFAULT_R_VERSION_HOME': R_HOME, 'RSTUDIO_DEFAULT_R_VERSION': version, }) return env def setup_shiny(): '''Manage a Shiny instance.''' def _get_shiny_cmd(port): # server.r_path ??? conf = dedent(""" run_as {user}; server {{ bookmark_state_dir {site_dir}/shiny-server-boomarks; listen {port}; location / {{ site_dir {site_dir}; log_dir {site_dir}/logs; directory_index on; }} }} """).format( user=getpass.getuser(), port=str(port), site_dir=os.getcwd() ) f = tempfile.NamedTemporaryFile(mode='w', delete=False) f.write(conf) f.close() return ['shiny-server', f.name] def _get_shiny_env(port): env = get_r_env() return env return { 'command': _get_shiny_cmd, 'environment': _get_shiny_env, 'launcher_entry': { 'title': 'Shiny', 'icon_path': os.path.join(os.path.dirname(os.path.abspath(__file__)), 'icons', 'shiny.svg') } } def setup_rstudio(): def _get_rsession_env(port): env = get_r_env() # rserver needs USER to be set to something sensible, # otherwise it'll throw up an authentication page if not os.environ.get('USER', ''): env['USER'] = getpass.getuser() return env def _get_r_executable(): try: # get notebook app from notebook.notebookapp import NotebookApp nbapp = NotebookApp.instance() # get R executable: kernel_name = nbapp.kernel_manager.default_kernel_name if kernel_name: kernel_spec = nbapp.kernel_spec_manager.get_kernel_spec(kernel_name) return kernel_spec.argv[0] except Exception: nbapp.log.warning('Error when trying to get R executable from kernel') return 'R' def _get_rsession_cmd(port): # Other paths rsession maybe in other_paths = [ # When rstudio-server deb is installed '/usr/lib/rstudio-server/bin/rserver', ] if shutil.which('rserver'): executable = 'rserver' else: for op in other_paths: if os.path.exists(op): executable = op break else: raise FileNotFoundError('Can not find rserver in PATH') cmd = [ executable, '--www-port=' + str(port), '--rsession-which-r=' + _get_r_executable(), ] env = get_r_env() if env.get('LD_LIBRARY_PATH'): cmd.append('--rsession-ld-library-path=' + env['LD_LIBRARY_PATH']) return cmd return { 'command': _get_rsession_cmd, 'environment': _get_rsession_env, 'launcher_entry': { 'title': 'RStudio', 'icon_path': os.path.join(os.path.dirname(os.path.abspath(__file__)), 'icons', 'rstudio.svg') } }
2.21875
2
chapter_1/08.py
takumi34/nlp_100
0
12797845
def cipher(s): res = [] for i in s: if (i.islower()): res.append(chr(219 - ord(i))) else: res.append(i) return ''.join(res) text = "chika chika" a = cipher(text) print(a) b = cipher(a) print(b)
3.734375
4
analysis_data.py
leeh43/MULAN_universal_lesion_analysis
6
12797846
<reponame>leeh43/MULAN_universal_lesion_analysis #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Sep 29 02:29:53 2019 @author: leeh43 """ import os import numpy as np import json import matplotlib.pyplot as plt; plt.rcdefaults() import matplotlib.pyplot as plt import random def get_files_endswith(src_dir, ext): if not os.path.isdir(src_dir): raise ValueError('Folder does not exist:' + src_dir) file_list = [] for root, dirs, files in os.walk(src_dir): for file in files: if file.lower().endswith(ext.lower()): file_list.append(root + '/' + file) return file_list file_list = [] dirs_list = [] data_dir = os.path.join('/nfs/masi/leeh43/MULAN_universal_lesion_analysis/results') file_list= get_files_endswith(data_dir, '.txt') data_list = [] for i in file_list: with open(i) as f: content = f.readlines() content = [x.strip() for x in content] data_list.append(content) json_file = os.path.join('/nfs/masi/leeh43/MULAN_universal_lesion_analysis/program_data/' + 'tags_cache.json') with open(json_file) as f: json_data = json.load(f) tag_class=[] tag_class = json_data['tag_dict_list'] tag_list = [] tag = [] for item in tag_class: tag_list.append(item['tag']) ################## Get Tag List Completed ###################### intermediate_list = [] num_list = [] for tag in tag_list: for item in data_list: for row in item: if tag in row: intermediate_list.append(row) num_list.append(len(intermediate_list)) intermediate_list = [] ################ Plot Graph ################### #width = 0.5 #fig = plt.figure(figsize=(10,40)) #y_pos = np.arange(len(tag_list)) #plt.barh(y_pos,num_list, width, align='center') #plt.yticks(y_pos, tag_list) #plt.xlabel('Numbers in Zhoubing datasets') #plt.title('Evaluation of DeepLesion on Zhoubing100') #plt.show() #fig.set_size_inches(25, 40) #fig.savefig('evaluation.png', dpi=300) ################# Total number of lesion ################ num_lesion = [] for item in data_list: for row in item: if 'lesion' in row: num_lesion.append(row) ################# Total number of liver lesion ################ liver_list = [] for item in num_lesion: if 'liver' in item: liver_list.append(item)
2.3125
2
pydash/Dash/Measurement/Metric/__init__.py
ensomniac/dash
0
12797847
#!/usr/bin/python # # 2022 <NAME>, <EMAIL> # <NAME>, <EMAIL> class _Metric: def __init__(self): pass @property def DisplayName(self): return "Metric" @property def AssetPath(self): return "metric" @property def UnitModules(self): return [ self.Millimeter, self.Centimeter, self.Decimeter, self.Meter ] @property def UnitCombos(self): return self.get_all_unit_combos() @property def BaseUnit(self): return self.Meter.ToDict() @property def Millimeter(self): from .millimeter import Millimeter return Millimeter @property def Centimeter(self): from .centimeter import Centimeter return Centimeter @property def Decimeter(self): from .decimeter import Decimeter return Decimeter @property def Meter(self): from .meter import Meter return Meter def ToDict(self): from .. import SystemToDict return SystemToDict(self) def get_all_unit_combos(self): units = [] for mod in self.UnitModules: unit_combo = { "display_name": mod.DisplayName, "asset_path": mod.AssetPath, # May need to be "id" for combos "abbreviation": mod.Abbreviation, "base_conversion_multiplier": mod.BaseConversionMultiplier, } units.append(unit_combo) return units Metric = _Metric()
2.34375
2
suministrospr/utils/models.py
amberlowh/suministrospr
42
12797848
from django.db import models from .fields import DateTimeCreatedField, DateTimeModifiedField class BaseModel(models.Model): created_at = DateTimeCreatedField() modified_at = DateTimeModifiedField() class Meta: get_latest_by = "modified_at" ordering = ("-modified_at", "-created_at") abstract = True
2.40625
2
bank_api.py
blizzarac/BankTransferTools
0
12797849
__author__ = 'alexanderstolz' import hib_sql_connection def getAllTransfers(): connection = hib_sql_connection.connectToHibiscus() return hib_sql_connection.queryToHibiscus(connection, "select * from umsatz;") def getOutgoingTransfers(): connection = hib_sql_connection.connectToHibiscus() return hib_sql_connection.queryToHibiscus(connection, "select * from umsatz where betrag < 0;") def getIncomingTransfers(): connection = hib_sql_connection.connectToHibiscus() return hib_sql_connection.queryToHibiscus(connection, "select * from umsatz where betrag > 0;")
2.328125
2
libs/indicators/ema.py
meetri/cryptolib
0
12797850
import os,sys,talib,numpy,math,logging,time,datetime,numbers from collections import OrderedDict from baseindicator import BaseIndicator class EMA(BaseIndicator): def __init__(self,csdata, config = {}): config["period"] = config.get("period",30) config["metric"] = config.get("metric","closed") config["label"] = config.get("label","ema") config["label"] = "{}{}".format(config["label"],config["period"]) BaseIndicator.__init__(self,csdata,config) self.chartcolors = ["mediumslateblue"] self.data = None self.analysis = None self.get_analysis() def get_settings(self): return "{}".format(self.config["period"]) def get_charts(self): data = [] for i in range(0,len(self.csdata[ self.config["metric"] ])): if isinstance(self.data[i],numbers.Number) and self.data[i] > 0: ts = time.mktime(datetime.datetime.strptime(self.csdata["time"][i], "%Y-%m-%dT%H:%M:%SZ").timetuple()) data.append({ "x": ts, "y": self.data[i], }) return [{ "key": "{}:{}".format(self.label,self.config["period"]), "type": "line", "color": "#FFF5EE", "yAxis": 1, "values": data }] def get_ema(self): if self.csdata is not None: try: smetric = self.scaleup( self.csdata[self.config["metric"]]) data = talib.EMA( numpy.array(smetric), self.config["period"]) self.data = self.scaledown(data) # scaledown except Exception as ex: self.data = None raise ex return self.data def get_analysis(self ): if self.data is None: self.get_ema() ema = self.data[-1] ema1 = self.data[-2] slope = None for k in range(-1,-10,-1): if slope == None: slope = self.data[k-1] / self.data[k] else: slope = slope / ( self.data[k-1] / self.data[k] ) last_price = self.csdata["closed"][-1] closing_time = self.csdata["time"][-1] action = None if last_price < ema: action = "oversold" res = { "weight": 2, "time": closing_time, "indicator-data": { "ema": ema }, "analysis": OrderedDict() } res["analysis"]["name"] = "{}:{}".format(self.get_name(),self.get_settings()) res["analysis"]["signal"] = action res["analysis"]["ema"] = ema res["analysis"]["slope"] = slope res["analysis"]["order"] = ["ema"] self.analysis = res return res def format_view(self): newres = dict(self.analysis["analysis"]) newres["slope"] = "{:.4f}".format(newres["slope"]) newres["ema"] = "{:.8f}".format(newres["ema"]) return newres
2.328125
2