max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
server.py
PaulsBecks/fc-reliable-messaging
0
12797851
from http.server import HTTPServer,BaseHTTPRequestHandler import signal import sys class Server(BaseHTTPRequestHandler) : def _set_response(self): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() def do_POST(self): content_length = int(self.headers['Content-Length']) data = self.rfile.read(content_length).decode('utf-8') dataSplit = data.split(" ") peerId = str(dataSplit[0]) count = str(dataSplit[-1]) peerLogFile = "server-"+peerId+".log" def send_response(): self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers() self.wfile.write(("ACK "+count).encode("utf-8")) try: with open(peerLogFile, "r") as f: lastEntry = f.readlines()[-1] lastId = str(lastEntry.split(" ")[-1]) if int(lastId) > int(count): send_response() return except (FileNotFoundError, IndexError): print("No server.log file available yet.") with open(peerLogFile, "a") as f: print(str(data)) f.write(str(data) + "\n") f.close() send_response() def stop_server(server): print("Stop server.") server.server_close() sys.exit(0) def run(server_class=HTTPServer, handler_class=Server): print("Start server on port 8000.") server_address = ('', 8000) httpd = server_class(server_address, handler_class) httpd.handle_request() try: httpd.serve_forever() except KeyboardInterrupt : stop_server(httpd) if __name__ == "__main__": print("Create server") run()
2.859375
3
reseaut/apps/profiles/serializers.py
koladev32/Beta
0
12797852
from rest_framework import serializers from .models import Profile class ProfileSerializer(serializers.ModelSerializer): last_name = serializers.CharField(source='user.last_name') bio = serializers.CharField(allow_blank=True,required=False) #work_domain = serializers.CharField(max_length=50) image = serializers.SerializerMethodField() following = serializers.SerializerMethodField() class Meta: model = Profile fields = ('last_name','bio','image','following')#,'work_domain') read_only_fields = ('last_name',) def get_image(self,obj): if obj.image: return obj.image return 'https://image.flaticon.com/icons/svg/1738/1738691.svg' def get_following(self,instance): request = self.context.get('request',None) if request is None: return False if not request.user.is_authenticated: return False follower = request.user.profile followee = instance return follower.is_following(followee)
2.328125
2
loldib/getratings/models/NA/na_fiora/na_fiora_mid.py
koliupy/loldib
0
12797853
from getratings.models.ratings import Ratings class NA_Fiora_Mid_Aatrox(Ratings): pass class NA_Fiora_Mid_Ahri(Ratings): pass class NA_Fiora_Mid_Akali(Ratings): pass class NA_Fiora_Mid_Alistar(Ratings): pass class NA_Fiora_Mid_Amumu(Ratings): pass class NA_Fiora_Mid_Anivia(Ratings): pass class NA_Fiora_Mid_Annie(Ratings): pass class NA_Fiora_Mid_Ashe(Ratings): pass class NA_Fiora_Mid_AurelionSol(Ratings): pass class NA_Fiora_Mid_Azir(Ratings): pass class NA_Fiora_Mid_Bard(Ratings): pass class NA_Fiora_Mid_Blitzcrank(Ratings): pass class NA_Fiora_Mid_Brand(Ratings): pass class NA_Fiora_Mid_Braum(Ratings): pass class NA_Fiora_Mid_Caitlyn(Ratings): pass class NA_Fiora_Mid_Camille(Ratings): pass class NA_Fiora_Mid_Cassiopeia(Ratings): pass class NA_Fiora_Mid_Chogath(Ratings): pass class NA_Fiora_Mid_Corki(Ratings): pass class NA_Fiora_Mid_Darius(Ratings): pass class NA_Fiora_Mid_Diana(Ratings): pass class NA_Fiora_Mid_Draven(Ratings): pass class NA_Fiora_Mid_DrMundo(Ratings): pass class NA_Fiora_Mid_Ekko(Ratings): pass class NA_Fiora_Mid_Elise(Ratings): pass class NA_Fiora_Mid_Evelynn(Ratings): pass class NA_Fiora_Mid_Ezreal(Ratings): pass class NA_Fiora_Mid_Fiddlesticks(Ratings): pass class NA_Fiora_Mid_Fiora(Ratings): pass class NA_Fiora_Mid_Fizz(Ratings): pass class NA_Fiora_Mid_Galio(Ratings): pass class NA_Fiora_Mid_Gangplank(Ratings): pass class NA_Fiora_Mid_Garen(Ratings): pass class NA_Fiora_Mid_Gnar(Ratings): pass class NA_Fiora_Mid_Gragas(Ratings): pass class NA_Fiora_Mid_Graves(Ratings): pass class NA_Fiora_Mid_Hecarim(Ratings): pass class NA_Fiora_Mid_Heimerdinger(Ratings): pass class NA_Fiora_Mid_Illaoi(Ratings): pass class NA_Fiora_Mid_Irelia(Ratings): pass class NA_Fiora_Mid_Ivern(Ratings): pass class NA_Fiora_Mid_Janna(Ratings): pass class NA_Fiora_Mid_JarvanIV(Ratings): pass class NA_Fiora_Mid_Jax(Ratings): pass class NA_Fiora_Mid_Jayce(Ratings): pass class NA_Fiora_Mid_Jhin(Ratings): pass class NA_Fiora_Mid_Jinx(Ratings): pass class NA_Fiora_Mid_Kalista(Ratings): pass class NA_Fiora_Mid_Karma(Ratings): pass class NA_Fiora_Mid_Karthus(Ratings): pass class NA_Fiora_Mid_Kassadin(Ratings): pass class NA_Fiora_Mid_Katarina(Ratings): pass class NA_Fiora_Mid_Kayle(Ratings): pass class NA_Fiora_Mid_Kayn(Ratings): pass class NA_Fiora_Mid_Kennen(Ratings): pass class NA_Fiora_Mid_Khazix(Ratings): pass class NA_Fiora_Mid_Kindred(Ratings): pass class NA_Fiora_Mid_Kled(Ratings): pass class NA_Fiora_Mid_KogMaw(Ratings): pass class NA_Fiora_Mid_Leblanc(Ratings): pass class NA_Fiora_Mid_LeeSin(Ratings): pass class NA_Fiora_Mid_Leona(Ratings): pass class NA_Fiora_Mid_Lissandra(Ratings): pass class NA_Fiora_Mid_Lucian(Ratings): pass class NA_Fiora_Mid_Lulu(Ratings): pass class NA_Fiora_Mid_Lux(Ratings): pass class NA_Fiora_Mid_Malphite(Ratings): pass class NA_Fiora_Mid_Malzahar(Ratings): pass class NA_Fiora_Mid_Maokai(Ratings): pass class NA_Fiora_Mid_MasterYi(Ratings): pass class NA_Fiora_Mid_MissFortune(Ratings): pass class NA_Fiora_Mid_MonkeyKing(Ratings): pass class NA_Fiora_Mid_Mordekaiser(Ratings): pass class NA_Fiora_Mid_Morgana(Ratings): pass class NA_Fiora_Mid_Nami(Ratings): pass class NA_Fiora_Mid_Nasus(Ratings): pass class NA_Fiora_Mid_Nautilus(Ratings): pass class NA_Fiora_Mid_Nidalee(Ratings): pass class NA_Fiora_Mid_Nocturne(Ratings): pass class NA_Fiora_Mid_Nunu(Ratings): pass class NA_Fiora_Mid_Olaf(Ratings): pass class NA_Fiora_Mid_Orianna(Ratings): pass class NA_Fiora_Mid_Ornn(Ratings): pass class NA_Fiora_Mid_Pantheon(Ratings): pass class NA_Fiora_Mid_Poppy(Ratings): pass class NA_Fiora_Mid_Quinn(Ratings): pass class NA_Fiora_Mid_Rakan(Ratings): pass class NA_Fiora_Mid_Rammus(Ratings): pass class NA_Fiora_Mid_RekSai(Ratings): pass class NA_Fiora_Mid_Renekton(Ratings): pass class NA_Fiora_Mid_Rengar(Ratings): pass class NA_Fiora_Mid_Riven(Ratings): pass class NA_Fiora_Mid_Rumble(Ratings): pass class NA_Fiora_Mid_Ryze(Ratings): pass class NA_Fiora_Mid_Sejuani(Ratings): pass class NA_Fiora_Mid_Shaco(Ratings): pass class NA_Fiora_Mid_Shen(Ratings): pass class NA_Fiora_Mid_Shyvana(Ratings): pass class NA_Fiora_Mid_Singed(Ratings): pass class NA_Fiora_Mid_Sion(Ratings): pass class NA_Fiora_Mid_Sivir(Ratings): pass class NA_Fiora_Mid_Skarner(Ratings): pass class NA_Fiora_Mid_Sona(Ratings): pass class NA_Fiora_Mid_Soraka(Ratings): pass class NA_Fiora_Mid_Swain(Ratings): pass class NA_Fiora_Mid_Syndra(Ratings): pass class NA_Fiora_Mid_TahmKench(Ratings): pass class NA_Fiora_Mid_Taliyah(Ratings): pass class NA_Fiora_Mid_Talon(Ratings): pass class NA_Fiora_Mid_Taric(Ratings): pass class NA_Fiora_Mid_Teemo(Ratings): pass class NA_Fiora_Mid_Thresh(Ratings): pass class NA_Fiora_Mid_Tristana(Ratings): pass class NA_Fiora_Mid_Trundle(Ratings): pass class NA_Fiora_Mid_Tryndamere(Ratings): pass class NA_Fiora_Mid_TwistedFate(Ratings): pass class NA_Fiora_Mid_Twitch(Ratings): pass class NA_Fiora_Mid_Udyr(Ratings): pass class NA_Fiora_Mid_Urgot(Ratings): pass class NA_Fiora_Mid_Varus(Ratings): pass class NA_Fiora_Mid_Vayne(Ratings): pass class NA_Fiora_Mid_Veigar(Ratings): pass class NA_Fiora_Mid_Velkoz(Ratings): pass class NA_Fiora_Mid_Vi(Ratings): pass class NA_Fiora_Mid_Viktor(Ratings): pass class NA_Fiora_Mid_Vladimir(Ratings): pass class NA_Fiora_Mid_Volibear(Ratings): pass class NA_Fiora_Mid_Warwick(Ratings): pass class NA_Fiora_Mid_Xayah(Ratings): pass class NA_Fiora_Mid_Xerath(Ratings): pass class NA_Fiora_Mid_XinZhao(Ratings): pass class NA_Fiora_Mid_Yasuo(Ratings): pass class NA_Fiora_Mid_Yorick(Ratings): pass class NA_Fiora_Mid_Zac(Ratings): pass class NA_Fiora_Mid_Zed(Ratings): pass class NA_Fiora_Mid_Ziggs(Ratings): pass class NA_Fiora_Mid_Zilean(Ratings): pass class NA_Fiora_Mid_Zyra(Ratings): pass
1.390625
1
ProcessDoc.py
CharlesG12/IndexCompression
0
12797854
import os import Token from xml.dom import minidom class ProcessDoc: def __init__(self, path, lemma, stem): self.collection_dic = {} self.doc_info = [] self.lemma = lemma self.stem = stem self.path = path def run(self): for filename in os.listdir(self.path): doc_no, doclen, max_tf, doc_dic = self.load_file(os.path.join(self.path, filename)) for key, value in doc_dic.items(): # add token to dictionary if not exist if key not in self.collection_dic: self.collection_dic[key] = [1, value, [doc_no, value, doclen, max_tf]] # increase the frequency by one if exist in the dictionary else: self.collection_dic[key][0] += 1 self.collection_dic[key][1] += value self.collection_dic[key].append([doc_no, value, doclen, max_tf]) def load_file(self, url): # parse xml doc from the url mydoc = minidom.parse(url) # read doc NO doc = mydoc.getElementsByTagName('DOCNO')[0] doc_no = int(doc.firstChild.data) # read doc text file text = mydoc.getElementsByTagName('TEXT')[0] data = text.firstChild.data token = Token.Token() if self.lemma == 1: token.apply_lemma() elif self.stem == 1: token.apply_stemming() return token.tokenize(data, doc_no)
2.84375
3
apis/watsonNLUTa.py
amol-m-deshpande/testing-remote
0
12797855
<gh_stars>0 from flask_restful import Resource import json from ibm_watson import NaturalLanguageUnderstandingV1 from ibm_watson import ToneAnalyzerV3 from ibm_watson.natural_language_understanding_v1 \ import Features, EntitiesOptions, KeywordsOptions, \ SyntaxOptions, SyntaxOptionsTokens, CategoriesOptions, ConceptsOptions from ibm_cloud_sdk_core.authenticators import IAMAuthenticator from flask import request, jsonify from operator import itemgetter from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt from datetime import datetime class WatsonNLUTA(Resource): NLU_API_KEY_ID = "" NLU_URL = "" TONE_API_KEY_ID = "" TONE_URL = "" def __init__(self): try: with open('naturallanguageunderstanding.json', 'r') as credentialsFile: credentials1 = json.loads(credentialsFile.read()) self.NLU_API_KEY_ID = credentials1.get('apikey') self.NLU_URL = credentials1.get('url') nlu_authenticator = IAMAuthenticator(self.NLU_API_KEY_ID) natural_language_understanding = NaturalLanguageUnderstandingV1( version='2021-08-01', authenticator=nlu_authenticator ) natural_language_understanding.set_service_url(self.NLU_URL) self.natural_language_understanding = natural_language_understanding except json.decoder.JSONDecodeError: print("Natural Language Understanding credentials file is empty, please enter the credentials and try again.") try: with open('toneanalyzer.json', 'r') as credentialsFile: credentials2 = json.loads(credentialsFile.read()) self.TONE_API_KEY_ID = credentials2.get('apikey') self.TONE_URL = credentials2.get('url') tone_analyzer_authenticator = IAMAuthenticator(self.TONE_API_KEY_ID) tone_analyzer = ToneAnalyzerV3( version='2017-09-21', authenticator=tone_analyzer_authenticator ) tone_analyzer.set_service_url(self.TONE_URL) self.tone_analyzer = tone_analyzer except json.decoder.JSONDecodeError: print("Tone Analyzer credentials file is empty, please enter the credentials and try again.") def get(self): pass def post(self): if request.method == 'POST': body = json.loads(request.get_data()) options = body fileName = body.get('filename') ''' Prepare the text for Analysis''' with open('static/transcripts/'+fileName, 'r') as text_file: text = text_file.read() ''' Initialize a return variable ''' myJsonDict = {} ''' Extract Category with NLU ''' if options.get('category') == "True": try: response = self.natural_language_understanding.analyze( language='en', text=text, features=Features(categories=CategoriesOptions(limit=1))).get_result() category = response['categories'][0] myJsonDict.update({"category": category}) except: myJsonDict.update({"category": "Text too small to extract category"}) else: pass ''' Extract Concepts with NLU ''' if options.get('concepts') == "True": try: response = self.natural_language_understanding.analyze( language='en', text=text, features=Features(concepts=ConceptsOptions(limit=3))).get_result() concepts = sorted(response['concepts'], key=itemgetter('relevance'), reverse=True) myJsonDict.update({"concepts": concepts}) except: myJsonDict.update({"concepts": "Text too small to extract concepts"}) else: pass ''' Extract Entity with NLU ''' if options.get('entity') == "True": try: response = self.natural_language_understanding.analyze( language='en', text=text, features=Features(entities=EntitiesOptions(limit=1))).get_result() entity = sorted(response['entities'], key=itemgetter('relevance'), reverse=True) myJsonDict.update({"entity": entity[0]}) except: myJsonDict.update({"entity": "Text too small to extract entity"}) else: pass ''' Extract Sentiments and Emotions with NLU ''' if options.get('sentiments') == "True": try: response = self.natural_language_understanding.analyze( language='en', text=text, features=Features(keywords=KeywordsOptions(sentiment=True, emotion=True, limit=10))).get_result() keywords = sorted(response['keywords'], key=itemgetter('relevance'), reverse=True) keywords_sentiments_emotions = [] for i in keywords: keywords_sentiments_emotions_buffer = { 'keyword': i['text'], 'sentiment': i['sentiment']['label'], 'emotion': '' } maximum = i['emotion']['sadness'] keywords_sentiments_emotions_buffer['emotion'] = 'sadness' if i['emotion']['joy'] > maximum: maximum = i['emotion']['joy'] keywords_sentiments_emotions_buffer['emotion'] = 'joy' elif i['emotion']['fear'] > maximum: maximum = i['emotion']['fear'] keywords_sentiments_emotions_buffer['emotion'] = 'fear' elif i['emotion']['disgust'] > maximum: maximum = i['emotion']['disgust'] keywords_sentiments_emotions_buffer['emotion'] = 'disguest' elif i['emotion']['anger'] > maximum: maximum = i['emotion']['anger'] keywords_sentiments_emotions_buffer['emotion'] = 'anger' keywords_sentiments_emotions.append( keywords_sentiments_emotions_buffer) myJsonDict.update({"sentiments": keywords_sentiments_emotions}) except: myJsonDict.update({"sentiments": "Text too small to extract sentiments"}) else: pass ''' Analyse tone to get top 5 positive sentences ''' if options.get('positiveSentences') == "True": tone_analysis = self.tone_analyzer.tone( {'text': text}, content_type='application/json' ).get_result() sentences_with_joy = [] # print(json.dumps(tone_analysis, indent=2)) try: for tone in tone_analysis['sentences_tone']: try: if tone['tones'][0]['tone_name'] == "Joy": tempDict = {"sentence_id": tone['sentence_id'], "text": tone['text'], "score": tone['tones'][0]['score']} sentences_with_joy.append(tempDict) except: continue sentences_with_joy = sorted( sentences_with_joy, key=itemgetter('score'), reverse=True) myJsonDict.update( {"positiveSentences": sentences_with_joy[:5]}) except: tempDict = {"sentence_id": '', "text": 'Text file too small to get positive sentences, please try again with a bigger document.', "score": '100'} myJsonDict.update( {"positiveSentences": [tempDict]}) # return sentences_with_joy[:5] ['text'] ['score'] else: pass ''' Pre-Processing parts of speech to plot Word Cloud ''' try: response = self.natural_language_understanding.analyze( language='en', text=text, features=Features( syntax=SyntaxOptions( sentences=True, tokens=SyntaxOptionsTokens( lemma=True, part_of_speech=True, )))).get_result() verbs = [] for i in response['syntax']['tokens']: if i['part_of_speech'] == 'VERB': verbs.append(i['text']) nouns = [] for i in response['syntax']['tokens']: if i['part_of_speech'] == 'NOUN': nouns.append(i['text']) adj = [] for i in response['syntax']['tokens']: if i['part_of_speech'] == 'ADJ': adj.append(i['text']) nouns_adjectives = [] for x in nouns: nouns_adjectives.append(x) for y in adj: nouns_adjectives.append(y) comment_words_verbs = ' ' comment_words_nouns_adj = ' ' stopwords = set(STOPWORDS) for val in verbs: val = str(val) tokens = val.split() for i in range(len(tokens)): tokens[i] = tokens[i].lower() for words in tokens: comment_words_verbs = comment_words_verbs + words + ' ' for val in nouns_adjectives: val = str(val) tokens = val.split() for i in range(len(tokens)): tokens[i] = tokens[i].lower() for words in tokens: comment_words_nouns_adj = comment_words_nouns_adj + words + ' ' wordcloud_verbs = WordCloud(width=800, height=800, background_color='white', stopwords=stopwords, min_font_size=10, max_font_size=150, random_state=42).generate(comment_words_verbs) wordcloud_nouns_adj = WordCloud(width=800, height=800, background_color='white', colormap="Dark2", stopwords=stopwords, min_font_size=10, max_font_size=150, random_state=42).generate(comment_words_nouns_adj) todayDate = datetime.today().strftime('%m-%d-%Y-%s') verbsWC = "static/images/verbs"+todayDate+'.png' plt.switch_backend('Agg') plt.figure(figsize=(5, 5), facecolor=None) plt.imshow(wordcloud_verbs) plt.axis("off") plt.tight_layout(pad=0) plt.savefig(verbsWC, title=True) nounsAdjWC = "static/images/nouns_adjectives"+todayDate+'.png' plt.switch_backend('Agg') plt.figure(figsize=(5, 5), facecolor=None) plt.imshow(wordcloud_nouns_adj) plt.axis("off") plt.tight_layout(pad=0) plt.savefig(nounsAdjWC, title=True) wordclouds = [nounsAdjWC, verbsWC] myJsonDict.update({"wordclouds": wordclouds}) except: myJsonDict.update({"wordclouds": "Text too small to extract wordclouds"}) # print(json.dumps(myJsonDict, indent=2)) return jsonify(myJsonDict)
2.796875
3
applepushnotification/tests/test_basic.py
xiaohaifxb/applepushnotification
7
12797856
#!/usr/bin/env python from applepushnotification import * from unittest import TestCase from applepushnotification.tests import TestAPNS import struct, time try: import json except ImportError, e: import simplejson as json class TestBasic(TestAPNS): def test_construct_service(self): service = self.create_service() service.start() service.stop() self.assertTrue(service._send_greenlet is None) self.assertTrue(service._error_greenlet is None) def test_construct_message(self): msg = self.create_message() encoded = str(msg) command, identifier, expiry, tok_length = struct.unpack("!bIIH", encoded[0:11]) self.assertEquals(command, 1) self.assertEquals(identifier, msg.identifier) self.assertTrue(expiry > time.time()) self.assertEquals(tok_length, 32) data = encoded[45:] m = json.loads(data) self.assertTrue("aps" in m) def test_send_message(self): service = self.create_service() service.start() service.send(self.create_message()) self.assertTrue(service.stop())
2.5625
3
tests/Unit/AutoML/test_feature_processing.py
nielsuit227/AutoML
2
12797857
<reponame>nielsuit227/AutoML import unittest import numpy as np import pandas as pd from sklearn.datasets import make_classification from sklearn.datasets import make_regression from Amplo.AutoML import FeatureProcesser class TestFeatureProcessing(unittest.TestCase): @classmethod def setUpClass(cls): pass def test_regression(self): x, y = make_regression() x, y = pd.DataFrame(x), pd.Series(y) fp = FeatureProcesser(max_lags=2, mode='regression') xt, sets = fp.fit_transform(x, y) def test_classification(self): x, y = make_classification() x, y = pd.DataFrame(x), pd.Series(y) fp = FeatureProcesser(max_lags=2, mode='classification') xt, sets = fp.fit_transform(x, y) def test_co_linearity(self): y = pd.Series(np.linspace(2, 100, 100)) x = pd.DataFrame({'a': np.linspace(-4, 4, 100), 'b': np.linspace(-4, 4, 100)}) fp = FeatureProcesser(mode='regression') xt, sets = fp.fit_transform(x, y) assert len(fp.coLinearFeatures) != 0, "Colinear feature not removed" def test_multiply_features(self): y = pd.Series(np.linspace(2, 100, 100)) b = pd.Series(np.linspace(-4, 4, 100) ** 2) x = pd.DataFrame({'a': y / b, 'b': b}) fp = FeatureProcesser(mode='regression') xt, sets = fp.fit_transform(x, y) assert len(fp.crossFeatures) != 0, "Multiplicative feature not spotted" def test_division(self): y = pd.Series(np.linspace(2, 100, 100)) b = pd.Series(np.linspace(-4, 4, 100) ** 2) x = pd.DataFrame({'a': y * b, 'b': b}) fp = FeatureProcesser(mode='regression') xt, sets = fp.fit_transform(x, y) assert len(fp.crossFeatures) != 0, "Division feature not spotted" def test_trigonometry(self): y = pd.Series(np.sin(np.linspace(0, 100, 100))) x = pd.DataFrame({'a': np.linspace(0, 100, 100)}) fp = FeatureProcesser(mode='regression') xt, sets = fp.fit_transform(x, y) assert len(fp.trigonometricFeatures) != 0, "Trigonometric feature not spotted" def test_lagged(self): y = pd.Series(np.random.randint(0, 100, 100)) x = pd.DataFrame({'a': np.roll(y, -5)}) fp = FeatureProcesser(mode='regression') xt, sets = fp.fit_transform(x, y) assert len(fp.laggedFeatures) != 0, "Lagged feature not spotted" def test_diff(self): y = pd.Series(np.random.randint(1, 100, 100)) x = pd.DataFrame({'a': np.cumsum(y)}) fp = FeatureProcesser(mode='regression') xt, sets = fp.fit_transform(x, y) assert len(fp.diffFeatures) != 0, "Difference feature not spotted" def test_select(self): n = 1000 y = pd.Series(np.linspace(0, 100, n)) x = pd.DataFrame({'a': y, 'b': np.random.normal(0, 1, n)}) fp = FeatureProcesser(mode='regression') xt, sets = fp.fit_transform(x, y) assert all([len(i) == 1 for i in sets.values()]), f"Random Feature Selected: {sets}" def test_settings(self): y = pd.Series(np.random.randint(1, 100, 100)) b = pd.Series(np.linspace(-4, 4, 100)) x = pd.DataFrame({'a': np.cumsum(y), 'b': np.roll(y, -5), 'c': y / b, 'd': y * b}) fp = FeatureProcesser(mode='regression') xt, sets = fp.fit_transform(x, y) settings = fp.get_settings() fpn = FeatureProcesser(mode='regression') fpn.load_settings(settings) for k, v in sets.items(): xtn = fpn.transform(x, k) assert len(v) == len(xtn.keys()), "Incorrect number of keys" assert all(xt[v].keys() == xtn.keys()), 'Keys are not correct' assert np.allclose(xt[v], xtn), 'Transformed data not consistent for {} set'.format(k) def test_get_required(self): y = pd.Series(np.linspace(2, 100, 100)) b = pd.Series(np.linspace(-4, 4, 100) ** 2) x = pd.DataFrame({'a': y / b, 'b': b, 'c': b / 2}) fp = FeatureProcesser(mode='regression') xt, sets = fp.fit_transform(x, y) assert set(fp.get_required_features(['a__x__b'])) == set(['b', 'a'])
2.953125
3
eval/read_code_table_and_train_text.py
YangXuepei/ime-eval
0
12797858
<reponame>YangXuepei/ime-eval # -*- coding:utf-8 -*-# import csv def readfile(filename): csvfile = open(filename, 'rb') reader = csv.reader(csvfile) result = {} for item in reader: result[item[0].decode('utf-8')] = item[1] csvfile.close() # print result # return a directory {character:code} return result def load_test(testname): # store the testdata in a string test = "" file = open(testname) for line in file.readlines(): test += line.strip('\n') test = test.decode('utf-8') return test def load_all_pinyin(filename): pinyin = [] pyfile = open(filename) for line in pyfile: pinyin.append(line.strip()) return pinyin
3.234375
3
src/dash/apps/pca.py
ijmiller2/COVID-19_Multi-Omics
4
12797859
<gh_stars>1-10 import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import datetime from data import get_omics_data, get_biomolecule_names, get_combined_data from plot import biomolecule_bar, boxplot, pca_scores_plot, pca_loadings_plot from nav import navbar external_stylesheets=[dbc.themes.BOOTSTRAP] """app = dash.Dash( __name__, external_stylesheets=external_stylesheets) app.title = 'COVID-19 Multi-Omics'""" from app import app print() print(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")) print("Loading data for pca...") print() # load metabolomics data matrix print("Loading metabolomics data...") from app import metabolomics_df, metabolomics_quant_range print("Metabolomics data shape: {}".format(metabolomics_df.shape)) print("Loading lipidomics data...") from app import lipidomics_df, lipidomics_quant_range print("Lipidomics data shape: {}".format(lipidomics_df.shape)) print("Loading proteomics data...") from app import proteomics_df, proteomics_quant_range print("Proteomics data shape: {}".format(proteomics_df.shape)) print("Loading transcriptomics data...") from app import transcriptomics_df, transcriptomics_quant_range print("Transcriptomics data shape: {}".format(transcriptomics_df.shape)) available_datasets = ['Proteins', 'Lipids', 'Metabolites', 'Transcripts', 'Combined Biomolecules'] # define dataset dictionaries from app import dataset_dict, df_dict, quant_value_range_dict, global_names_dict from app import metabolomics_biomolecule_names_dict from app import lipidomics_biomolecule_names_dict from app import proteomics_biomolecule_names_dict from app import transcriptomics_biomolecule_names_dict # get combined omics df and quant value range print("Creating combined omics df...") df_dict, quant_value_range_dict = get_combined_data(df_dict, quant_value_range_dict) # start with proteomics data sorted_biomolecule_names_dict = {k: v for k, v in sorted(proteomics_biomolecule_names_dict.items(), key=lambda item: item[1])} #available_biomolecules = proteomics_biomolecule_names_dict.values() #available_biomolecules = proteomics_df.columns[:proteomics_quant_range].sort_values().tolist() default_biomolecule = list(sorted_biomolecule_names_dict.keys())[0] plotly_config = {"toImageButtonOptions":{'format':'svg', 'filename': 'dash_plot'}, "displaylogo": False} first_card = dbc.Card( [ dbc.CardHeader("PCA SCORES PLOT", style={"background-color":"#5bc0de", "font-weight":"bold", "font-size":"large"}), dbc.CardBody(dcc.Graph(id='pca-scores-figure', config=plotly_config)) ]) second_card = dbc.Card( [ dbc.CardHeader("PCA LOADINGS PLOT", style={"background-color":"#5bc0de", "font-weight":"bold", "font-size":"large"}), dbc.CardBody(dcc.Graph(id='pca-loadings-figure', config=plotly_config)) ]) third_card = dbc.Card( [ dbc.CardHeader("BIOMOLECULE BARPLOT", style={"background-color":"#5bc0de", "font-weight":"bold", "font-size":"large"}), dbc.CardBody(dcc.Graph(id='biomolecule-barplot', config=plotly_config)) ]) fourth_card = dbc.Card( [ dbc.CardHeader("BIOMOLECULE BOXPLOT", style={"background-color":"#5bc0de", "font-weight":"bold", "font-size":"large"}), dbc.CardBody(dcc.Graph(id='biomolecule-boxplot', config=plotly_config)) ]) ### control_panel = dbc.Card( [ dbc.CardHeader("CONTROL PANEL", style={"background-color":"#5bc0de", "font-weight":"bold", "font-size":"large"}), dbc.CardBody( [html.P("Select Dataset", className="card-title", style={"font-weight":"bold"}), dcc.Dropdown( id='dataset_id', options=[{'label': i, 'value': i} for i in available_datasets], # only passing in quant value columns value=available_datasets[0]), html.Hr(), html.P("Select Biomolecule", className="card-title", style={"font-weight":"bold"}), # NOTE: This is dcc object not dbc dcc.Dropdown( id='biomolecule_id', # label maps to biomolecule name, value to biomolecule_id options=[{'label': value, 'value': key} for key, value in sorted_biomolecule_names_dict.items()], # only passing in quant value columns value=default_biomolecule, className="dropdown-item p-0"), ]) ]) #app.layout = dbc.Container([ layout = dbc.Container([ navbar, html.Hr(), dbc.Row(dbc.Col(html.H1("COVID-19 Multi-Omics Data Dashboard"), width={"size": 6, "offset": 3})), html.Hr(), dbc.Row( [dbc.Col( dbc.Nav( [ html.H3("TYPE OF ANALYSIS", style={"font-weight":"bold", "color":"black"}), dbc.NavItem(dbc.NavLink("PCA", active=True, href="pca", style={"background-color":"grey"})), dbc.NavItem(dbc.NavLink( html.Span( "Linear Regression", id="tooltip-lr", style={"cursor": "pointer", "color":"grey"}, ),disabled=False, href="linear_regression")), dbc.NavItem(dbc.NavLink( html.Span( "Differential Expression", id="tooltip-de", style={"cursor": "pointer", "color":"grey"}, ),disabled=False, href="differential_expression")), dbc.NavItem(dbc.NavLink( html.Span( "Clustergrammer", id="tooltip-cg", style={"cursor":"pointer", "color":"grey"}, ),disabled=False, href="clustergrammer")), html.Hr(), control_panel ], vertical="md", pills=True ), md=2, className="mb-3"), #dbc.Col(control_panel, md=6) dbc.Col(first_card, md=4), dbc.Col(second_card, md=6) ], className="mb-3"), dbc.Row([dbc.Col(third_card, md=7, align="center"), dbc.Col(fourth_card, md=5, align="center")], className="mb-3") ], fluid=True) @app.callback( dash.dependencies.Output('biomolecule_id', 'options'), [Input('dataset_id', 'value')]) def update_biomolecule_options(dataset_id): dataset = dataset_dict[dataset_id] biomolecule_names_dict = global_names_dict[dataset] df = df_dict[dataset] quant_value_range = quant_value_range_dict[dataset] # get list of columns for dataset available_biomolecules = df.columns[:quant_value_range].sort_values().tolist() sorted_biomolecule_names_dict = {k: v for k, v in sorted(biomolecule_names_dict.items(), key=lambda item: item[1])} options=[{'label': value, 'value': key} for key, value in sorted_biomolecule_names_dict.items() if key in available_biomolecules] #print(options) return options @app.callback( Output('biomolecule_id', 'value'), [Input('dataset_id', 'value')]) def update_default_biomolecule(dataset_id): dataset = dataset_dict[dataset_id] biomolecule_names_dict = global_names_dict[dataset] sorted_biomolecule_names_dict = {k: v for k, v in sorted(biomolecule_names_dict.items(), key=lambda item: item[1])} default_biomolecule=list(sorted_biomolecule_names_dict.keys())[0] return default_biomolecule @app.callback( Output('pca-scores-figure', 'figure'), [Input('dataset_id', 'value')]) def update_pca_scores_plot(dataset_id): dataset = dataset_dict[dataset_id] df = df_dict[dataset] quant_value_range = quant_value_range_dict[dataset] fig = pca_scores_plot(df, quant_value_range) return fig @app.callback( Output('pca-loadings-figure', 'figure'), [Input('dataset_id', 'value'), Input('biomolecule_id', 'value')]) def update_pca_loadings_plot(dataset_id, biomolecule_id): dataset = dataset_dict[dataset_id] df = df_dict[dataset] biomolecule_names_dict = global_names_dict[dataset] quant_value_range = quant_value_range_dict[dataset] # build ome type list for coloring if not dataset == 'combined': ome_type_list = [dataset] * quant_value_range else: ome_type_list = ['proteomics'] * quant_value_range_dict['proteomics'] ome_type_list.extend(['lipidomics'] * quant_value_range_dict['lipidomics']) ome_type_list.extend(['metabolomics'] * quant_value_range_dict['metabolomics']) ome_type_list.extend(['transcriptomics'] * quant_value_range_dict['transcriptomics']) # get biomolecule index biomolecule_index = df.columns.tolist().index(biomolecule_id) ome_type_list[biomolecule_index] = 'selected_biomolecule' fig = pca_loadings_plot(df, quant_value_range, dataset_id, biomolecule_names_dict, ome_type_list) return fig @app.callback( Output('biomolecule-barplot', 'figure'), [Input('biomolecule_id', 'value'), Input('dataset_id', 'value')]) def update_biomolecule_barplot(biomolecule_id, dataset_id): dataset = dataset_dict[dataset_id] df = df_dict[dataset] biomolecule_names_dict = global_names_dict[dataset] biomolecule_name = biomolecule_names_dict[biomolecule_id] fig = biomolecule_bar(df, biomolecule_id, biomolecule_names_dict) return fig @app.callback( Output('biomolecule-boxplot', 'figure'), [Input('biomolecule_id', 'value'), Input('dataset_id', 'value')]) def update_biomolecule_boxplot(biomolecule_id, dataset_id): dataset = dataset_dict[dataset_id] df = df_dict[dataset] biomolecule_names_dict = global_names_dict[dataset] biomolecule_name = biomolecule_names_dict[biomolecule_id] fig = boxplot(df, biomolecule_id, biomolecule_names_dict) return fig print("Starting server...") if __name__ == '__main__': app.run_server( debug=True, host='0.0.0.0', #port='8080' )
2.328125
2
apps/availability/migrations/0001_initial.py
ExpoAshique/ProveBanking__s
0
12797860
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ ('projects', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='UpdateRequest', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('requested_by', models.ManyToManyField(related_name=b'requested_availability_updates', to=settings.AUTH_USER_MODEL)), ('user', models.ForeignKey(related_name=b'update_requests', to=settings.AUTH_USER_MODEL)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Week', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('date', models.DateField()), ('allocation', models.IntegerField(default=0)), ('proposed', models.ManyToManyField(related_name=b'availability_weeks', to='projects.ProposedResource')), ('user', models.ForeignKey(related_name=b'availability_weeks', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('date',), }, bases=(models.Model,), ), migrations.AlterUniqueTogether( name='week', unique_together=set([('user', 'date')]), ), ]
1.664063
2
region_cache/region.py
jheard-tw/region_cache
2
12797861
<reponame>jheard-tw/region_cache import pickle import redis from collections.abc import MutableMapping from datetime import datetime from functools import wraps import blinker import logging from logging import getLogger _logger = getLogger('region_cache') class Region(MutableMapping): """ A bound cache region. Do not instantiate these directly. Instead use the RegionCache.region() function. This will make for proper nesting of cache structures. """ def __init__(self, region_cache, name, timeout=None, update_resets_timeout=True, serializer=pickle): self._region_cache = region_cache self.name = name self._region_cache.conn.hset(name, '__cache_region_created_at__', datetime.utcnow().isoformat()) self._timeout = None self._region_cache = region_cache self._serializer = serializer self._pipe = None self._children_key = self.name + "::child_caches" self._update_resets_timeout = update_resets_timeout if timeout: self._timeout = timeout self._region_cache.conn.expire(name, timeout) if '.' in name: parent = name.rsplit('.', 1)[0] parent = self._region_cache.region(parent) parent.add_child(self) def __repr__(self): return "Region({})".format(self.name) def region(self, name=None, timeout=None, update_resets_timeout=None, serializer=None): """ Get a sub-region from this region. When this region is invalidated, the subregion will be too. :param name: The name of the subregion. If dots are included, then the dotted regions are treated as subregions of this subregion. :param timeout: The timeout in seconds for this region. Defaults to the parent region's timeout :param update_resets_timeout: Whether updating the region resets the timeout. Defaults to the parent region's setting. :param serializer: The serializer to use. Must define loads and dumps(). Defaults to the parent region's setting :return: Region """ return self._region_cache.region( name=self.name + '.' + name, timeout=timeout or self._timeout, update_resets_timeout=( update_resets_timeout if self._update_resets_timeout is not None else self._update_resets_timeout), serializer=serializer or self._serializer ) def invalidate(self, pipeline=None): """ Delete this region's cache data and all its subregions. :param pipeline: Used internally. :return: None """ _logger.debug("Invalidating region %s", self.name) if pipeline is None: pipeline = self._region_cache.conn.pipeline() is_root_call = True else: is_root_call = False for child in self.children(): child.invalidate(pipeline) pipeline.delete(self.name) if is_root_call: pipeline.execute() def invalidate_on(self, *signals): """ Bind this cache region to blinker signals. When any of the signals have been triggered, invalidate the cache. :param signals: blinker signal objects or string names for named signals. :return: None """ def handler(sender, **kwargs): try: self.invalidate() except redis.TimeoutError: logging.getLogger('region_cache').exception( "Invalidation of {self.name} in signal handler timed out. Flush it manually".format(self=self)) for sig in signals: if isinstance(sig, str): sig = blinker.signal(sig) sig.connect(handler, weak=False) def cached(self, f): """ Decorator that uses a serialized form of the input args as a key and caches the result of calling the method. Subsequent calls to the method with the same arguments will return the cached result. """ @wraps(f) def wrapper(*args, **kwargs): key = self._serializer.dumps((args, kwargs)) try: ret = self[key] except KeyError: ret = f(*args, **kwargs) self[key] = ret return ret return wrapper def get_or_compute(self, item, alt): """ Get the value, or if the value is not in the cache, compute it from `alt`. Alt can be a callable or a scalar. :param item: The key to get :param alt: Callable or scalar. The value to return. Will be stored in the cache on computation. :return: The value in the cache. """ try: return self[item] except KeyError: value = alt() if callable(alt) else alt self[item] = value return value except redis.TimeoutError: _logger.warning("Cannot reach cache. Using alternative") if callable(alt): return alt() else: return alt def __getitem__(self, item): timed_out = False if self._region_cache.is_disconnected(): raise KeyError(item) # pylint: disable=W0212 if self._region_cache._raise_on_timeout: # raise the redis timeout error instead of a key error raw_value = self._region_cache.read_conn.hget(self.name, item) else: try: raw_value = self._region_cache.read_conn.hget(self.name, item) except redis.TimeoutError: raw_value = None timed_out = True if timed_out: # pylint: disable=W0212 if self._region_cache._reconnect_on_timeout: self._region_cache.invalidate_connections() raise KeyError(item) if raw_value is not None: return self._serializer.loads(raw_value) else: raise KeyError(item) def __setitem__(self, key, value): raw_value = self._serializer.dumps(value) if not self._region_cache.is_disconnected(): should_reset_timeout = (not self._pipe and self._timeout and (self._update_resets_timeout or not len(self))) if self._pipe: self._pipe.hset(self.name, key, raw_value) else: self._region_cache.conn.hset(self.name, key, raw_value) if should_reset_timeout: self._region_cache.conn.expire(self.name, self._timeout) def __delitem__(self, key): if not self._region_cache.is_disconnected(): should_reset_timeout = (not self._pipe and self._timeout and (self._update_resets_timeout or (len(self) == 1 and key in self))) if self._pipe: self._pipe.hdel(self.name, key) else: self._region_cache.conn.hdel(self.name, key) if should_reset_timeout: self._region_cache.conn.expire(self.name, self._timeout) else: raise redis.TimeoutError(f"Cannot delete item {key} from {self.name} because we are disconnected.") def __iter__(self): for k in self._region_cache.read_conn.hkeys(self.name): if not k.decode('utf-8').startswith('__'): yield k def __len__(self): return self._region_cache.conn.hlen(self.name) def __enter__(self): if not self._pipe: self._pipe = self._region_cache.conn.pipeline() return self def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is None: # if we started with nothing in the cache, reset it should_reset_timeout = (self._timeout and (self._update_resets_timeout or len(self) == 0)) self._pipe.execute() if should_reset_timeout: self._region_cache.conn.expire(self.name, self._timeout) retval = True else: self._pipe.reset() retval = False self._pipe = None return retval def __eq__(self, other): return other.name == self.name def children(self): return (self._region_cache.region(name.decode('utf-8')) for name in self._region_cache.read_conn.smembers(self._children_key)) def add_child(self, child): self._region_cache.conn.sadd(self._children_key, child.name) def reset_timeout(self): self._region_cache.conn.expire(self.name, self._timeout)
2.34375
2
tests/test_failure.py
kprzybyla/resultful
0
12797862
<gh_stars>0 import pytest from hypothesis import ( given, strategies as st, ) from resultful import ( unsafe, success, failure, unwrap_failure, Result, NoResult, ) from .conftest import ( st_exceptions, unreachable, ) @given(error=st_exceptions()) def test_special_methods(error: BaseException) -> None: result = failure(error) assert bool(result) is False assert repr(result) == f"resultful.Failure({error!r})" @given(error=st_exceptions()) def test_unsafe(error: BaseException) -> None: with pytest.raises(BaseException) as exception: unsafe(failure(error)) assert exception.value is error @given(error=st_exceptions()) def test_equality(error: BaseException) -> None: assert failure(error) == failure(error) @given(error=st_exceptions()) def test_inequality_with_success(error: BaseException) -> None: assert failure(error) != success(error) @given(error=st_exceptions()) def test_unwrap_failure_from_failure(error: BaseException) -> None: result = unwrap_failure(failure(error)) assert result is error @given(value=st.integers()) def test_unwrap_failure_from_success(value: int) -> None: result = unwrap_failure(success(value)) assert result is NoResult @given(error=st_exceptions()) def test_error(error: BaseException) -> None: result = failure(error) assert not result assert result.error is error @given(error=st_exceptions()) def test_error_wrapped_in_failure(error: BaseException) -> None: result = failure(failure(error)) assert not result assert result.error is error @given(value=st.integers()) def test_error_wrapped_in_success(value: int) -> None: result = failure(success(value)) assert result is NoResult @given(error=st_exceptions()) def test_result_if_condition(error: BaseException) -> None: def compute() -> Result[int, BaseException]: return failure(error) result = compute() if not result: assert result.error is error else: unreachable() if result.is_failure: assert result.error is error else: unreachable() if result.is_success: unreachable() else: assert result.error is error @given(error=st_exceptions()) def test_result_if_condition_walrus_operator(error: BaseException) -> None: def compute() -> Result[int, BaseException]: return failure(error) if not (result := compute()): assert result.error is error else: unreachable() if (result := compute()).is_failure: assert result.error is error else: unreachable() if (result := compute()).is_success: unreachable() else: assert result.error is error
2.3125
2
data.py
hashmymind/ML-Final
0
12797863
<filename>data.py import pytreebank import pickle import numpy as np dataset = pytreebank.load_sst() def get_sst(cate='5'): train_X = [] train_y = [] for e in dataset['train']: label, sentence = e.to_labeled_lines()[0] if cate == '2' and label == 2: continue if cate == '2': label = 1 if label >2 else 0 train_X.append(sentence) train_y.append(label) test_X = [] test_y = [] for e in dataset['test']: label, sentence = e.to_labeled_lines()[0] if cate == '2' and label == 2: continue if cate == '2': label = 1 if label >2 else 0 test_X.append(sentence) test_y.append(label) return (train_X,train_y), (test_X, test_y) if __name__ == '__main__': pass
2.8125
3
config.py
Pandinosaurus/pnn.pytorch
1
12797864
# config.py import os import datetime import argparse result_path = "results/" result_path = os.path.join(result_path, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S/')) parser = argparse.ArgumentParser(description='Your project title goes here') # ======================== Data Setings ============================================ parser.add_argument('--dataset-test', type=str, default='CIFAR10', metavar='', help='name of training dataset') parser.add_argument('--dataset-train', type=str, default='CIFAR10', metavar='', help='name of training dataset') parser.add_argument('--split_test', type=float, default=None, metavar='', help='percentage of test dataset to split') parser.add_argument('--split_train', type=float, default=None, metavar='', help='percentage of train dataset to split') parser.add_argument('--dataroot', type=str, default='../../data', metavar='', help='path to the data') parser.add_argument('--save', type=str, default=result_path +'Save', metavar='', help='save the trained models here') parser.add_argument('--logs', type=str, default=result_path +'Logs', metavar='', help='save the training log files here') parser.add_argument('--resume', type=str, default=None, metavar='', help='full path of models to resume training') parser.add_argument('--nclasses', type=int, default=10, metavar='', help='number of classes for classification') parser.add_argument('--input-filename-test', type=str, default=None, metavar='', help='input test filename for filelist and folderlist') parser.add_argument('--label-filename-test', type=str, default=None, metavar='', help='label test filename for filelist and folderlist') parser.add_argument('--input-filename-train', type=str, default=None, metavar='', help='input train filename for filelist and folderlist') parser.add_argument('--label-filename-train', type=str, default=None, metavar='', help='label train filename for filelist and folderlist') parser.add_argument('--loader-input', type=str, default=None, metavar='', help='input loader') parser.add_argument('--loader-label', type=str, default=None, metavar='', help='label loader') # ======================== Network Model Setings =================================== parser.add_argument('--nblocks', type=int, default=10, metavar='', help='number of blocks in each layer') parser.add_argument('--nlayers', type=int, default=6, metavar='', help='number of layers') parser.add_argument('--nchannels', type=int, default=3, metavar='', help='number of input channels') parser.add_argument('--nfilters', type=int, default=64, metavar='', help='number of filters in each layer') parser.add_argument('--avgpool', type=int, default=1, metavar='', help='set to 7 for imagenet and 1 for cifar10') parser.add_argument('--level', type=float, default=0.1, metavar='', help='noise level for uniform noise') parser.add_argument('--resolution-high', type=int, default=32, metavar='', help='image resolution height') parser.add_argument('--resolution-wide', type=int, default=32, metavar='', help='image resolution width') parser.add_argument('--ndim', type=int, default=None, metavar='', help='number of feature dimensions') parser.add_argument('--nunits', type=int, default=None, metavar='', help='number of units in hidden layers') parser.add_argument('--dropout', type=float, default=None, metavar='', help='dropout parameter') parser.add_argument('--net-type', type=str, default='noiseresnet18', metavar='', help='type of network') parser.add_argument('--length-scale', type=float, default=None, metavar='', help='length scale') parser.add_argument('--tau', type=float, default=None, metavar='', help='Tau') # ======================== Training Settings ======================================= parser.add_argument('--cuda', type=bool, default=True, metavar='', help='run on gpu') parser.add_argument('--ngpu', type=int, default=1, metavar='', help='number of gpus to use') parser.add_argument('--batch-size', type=int, default=64, metavar='', help='batch size for training') parser.add_argument('--nepochs', type=int, default=500, metavar='', help='number of epochs to train') parser.add_argument('--niters', type=int, default=None, metavar='', help='number of iterations at test time') parser.add_argument('--epoch-number', type=int, default=None, metavar='', help='epoch number') parser.add_argument('--nthreads', type=int, default=20, metavar='', help='number of threads for data loading') parser.add_argument('--manual-seed', type=int, default=1, metavar='', help='manual seed for randomness') parser.add_argument('--port', type=int, default=8097, metavar='', help='port for visualizing training at http://localhost:port') # ======================== Hyperparameter Setings ================================== parser.add_argument('--optim-method', type=str, default='Adam', metavar='', help='the optimization routine ') parser.add_argument('--learning-rate', type=float, default=1e-3, metavar='', help='learning rate') parser.add_argument('--learning-rate-decay', type=float, default=None, metavar='', help='learning rate decay') parser.add_argument('--momentum', type=float, default=0.9, metavar='', help='momentum') parser.add_argument('--weight-decay', type=float, default=1e-4, metavar='', help='weight decay') parser.add_argument('--adam-beta1', type=float, default=0.9, metavar='', help='Beta 1 parameter for Adam') parser.add_argument('--adam-beta2', type=float, default=0.999, metavar='', help='Beta 2 parameter for Adam') args = parser.parse_args()
2.421875
2
researchutils/chainer/initializers/__init__.py
keio-ytlab/researchutils
1
12797865
from researchutils.chainer.initializers.normal_with_loc import NormalWithLoc
1.195313
1
exercicios/exercicio087.py
Helton-Rubens/Python-3
0
12797866
matriz = [[], [], []] par = 0 somatre = 0 for c in range(0, 3): for i in range(0, 3): matriz[c].append(int(input(f'Digite um valor para a posição [{c}/{i}]: '))) if matriz[c][i] % 2 == 0: par += matriz[c][i] somatre = somatre + matriz[c][2] print('=+'*28) for c in range(0, 3): print('|', end='') for i in range(0, 3): print(f'{matriz[c][i]:^5}', end='|') print() print('-'*30) print(f'A soma dos valores pares é: {par}') print(f'A soma dos valores da terceira coluna é: {somatre}') print(f'O maior valor da segunda linha é: {max(matriz[1])}')
3.65625
4
study/study8.py
tanyong-cq/pythonlearning
0
12797867
<reponame>tanyong-cq/pythonlearning #!/usr/bin/env python # -*- coding: utf-8 -*- ''' dict ''' d1 = {'a':1, 'b':2, 'c':3} print(d1) print(d1.keys()) print(d1.values()) print(str(d1)) print(len(d1)) print(d1['a']) d1['a'] = 10 print(d1['a']) del d1['a'] print(d1) d1.clear() print(d1) print(d1.get('a'))
3.84375
4
openprocurement/tender/cfaselectionua/models/submodels/organizationAndPocuringEntity.py
tarasvaskiv/openprocurement.tender.cfaselectionua
0
12797868
from openprocurement.api.models import Organization as BaseOrganization from openprocurement.tender.cfaselectionua.models.submodels.contactpoint import ContactPoint from schematics.types import StringType from schematics.types.compound import ModelType from openprocurement.api.roles import RolesFromCsv from openprocurement.api.models import ListType class Organization(BaseOrganization): """An organization.""" contactPoint = ModelType(ContactPoint) class ProcuringEntity(Organization): """An organization.""" class Options: roles = RolesFromCsv('ProcuringEntity.csv', relative_to=__file__) kind = StringType(choices=['general', 'special', 'defense', 'other']) additionalContactPoints = ListType( ModelType(ContactPoint, required=True), required=False )
2.171875
2
src/contrail/vncNetwork.py
madhukar32/contrail-hybrid-cloud
0
12797869
<gh_stars>0 from vnc_api import vnc_api from contrail.util import (readTenant, readNetwork) from hybridLogger import hybridLogger from exception import * import uuid class vncNetwork(hybridLogger): def __init__(self, vnc, domain, tenantName ,logLevel='INFO'): self.log = super(vncNetwork, self).log(level=logLevel, name=vncNetwork.__name__) self.vnc = vnc self.tenantName = tenantName self.domain = domain self.tenantObj = readTenant(self.vnc, domain=self.domain, tenantName=self.tenantName) def createNetwork(self, **kwargs): _requiredArgs = ['cidr', 'name'] try: cidr = kwargs['cidr'] networkName = kwargs['name'] prefix, prefixLen = cidr.split('/') except KeyError: raise ArguementError(_requiredArgs, vncNetwork.createNetwork.__name__) except Exception as e: self.log.error("Function: createNetwork Message: cidr is not in correct format : {0}".format(e)) return False prefixLen = int(prefixLen) try: allocationPool = kwargs['allocationPool'] except KeyError, AttributeError: allocationPool = False try: routeTarget = kwargs['routeTarget'] except KeyError, AttributeError: routeTarget = False allocTypeList = [] if allocationPool: if type(allocationPool) == list: allocationPoolList = allocationPool else: allocationPoolList = [allocationPool] for allocationPool in allocationPoolList: try: allocationPoolStart, allocationPoolStop = allocationPool.split('-') allocType = vnc_api.AllocationPoolType() allocType.set_start(allocationPoolStart) allocType.set_end(allocationPoolStop) allocTypeList.append(allocType) except Exception as e: self.log.error("Function: createNetwork Message: allocationPool error : {0}".format(e)) return False try: fipPoolName = kwargs['fipPoolName'] except KeyError, AttributeError: fipPoolName = False if fipPoolName: routerExternal = True else: routerExternal = False try: networkObj = vnc_api.VirtualNetwork(name=networkName, parent_obj=self.tenantObj, router_external=routerExternal) networkExists = self._checkIfNetworkExists(networkObj, self.tenantObj) if networkExists: self.log.warn("Network: {0} already exists".format(networkName)) return networkObj subnet = vnc_api.SubnetType(prefix, prefixLen) if not allocTypeList: ipamSubnet = vnc_api.IpamSubnetType(subnet = subnet) else: ipamSubnet = vnc_api.IpamSubnetType(subnet = subnet, allocation_pools=allocTypeList) networkObj.add_network_ipam(vnc_api.NetworkIpam(),vnc_api.VnSubnetsType([ipamSubnet])) newNetworkId = self.vnc.virtual_network_create(networkObj) self.log.info("Virtual Network: {0} created ".format(networkName)) except Exception as e: self.log.error("Function: createNetwork Message: Error While Creating network : {0}".format(e)) return False if routeTarget: try: updateNetwork = self._addRouteTarget(networkObj, routeTarget) except Exception as e: self.log.error("Function: createNetwork Message: Error While adding route target to the network: {0}".format(e)) return False if fipPoolName: fipObj = self.returnFipObj(fipPoolName, networkObj) else: fipObj = None return networkObj, fipObj def returnFipObj(self, fipPoolName, networkObj): fipPoolId = str(uuid.uuid4()) fipPool = vnc_api.FloatingIpPool(name = fipPoolName, parent_obj = networkObj) fipPool.uuid = fipPoolId self.vnc.floating_ip_pool_create(fipPool) self.tenantObj.add_floating_ip_pool(fipPool) self.vnc.project_update(self.tenantObj) return fipPool def _checkIfNetworkExists(self, networkObj, tenantObj): newFqName = networkObj.get_fq_name() vnList = self.vnc.virtual_networks_list(parent_id=tenantObj.uuid) if not vnList: return False else: for elem in vnList['virtual-networks']: if(elem['fq_name'] == newFqName): return True else: continue return False def _addRouteTarget(self, networkObj, routeTarget): try: routeTargets = vnc_api.RouteTargetList(['target:' + routeTarget]) networkObj.set_route_target_list(routeTargets) return self.vnc.virtual_network_update(networkObj) except Exception as e: raise ContrailError(vncApi='vnc_api.RouteTargetList', error=e)
2.296875
2
main.py
j4g3/terminal-python
0
12797870
import os import glob files = open('dados.dll') data = files.read() files.close #desktop of user user_info = os.path.expanduser('~') location_default = os.path.expanduser('~\\Desktop') location = os.path.expanduser('~\\Desktop') desktop = os.path.expanduser(f'{location}').replace(f'{user_info}', f'{data}') os.chdir(location) help_git = ''' These are common Git commands used in various situations: start a working area (see also: git help tutorial) clone Clone a repository into a new directory init Create an empty Git repository or reinitialize an existing one work on the current change (see also: git help everyday) add Add file contents to the index mv Move or rename a file, a directory, or a symlink reset Reset current HEAD to the specified state rm Remove files from the working tree and from the index examine the history and state (see also: git help revisions) bisect Use binary search to find the commit that introduced a bug grep Print lines matching a pattern log Show commit logs show Show various types of objects status Show the working tree status grow, mark and tweak your common history branch List, create, or delete branches checkout Switch branches or restore working tree files commit Record changes to the repository diff Show changes between commits, commit and working tree, etc merge Join two or more development histories together rebase Reapply commits on top of another base tip tag Create, list, delete or verify a tag object signed with GPG collaborate (see also: git help workflows) fetch Download objects and refs from another repository pull Fetch from and integrate with another repository or a local branch push Update remote refs along with associated objects 'git help -a' and 'git help -g' list available subcommands and some concept guides. See 'git help <command>' or 'git help <concept>' to read about a specific subcommand or concept. ''' command_list = ''' List of Commands wget missing URL git help -g' list available subcommands cat list content in file cd browse directories ls listing files clear clean terminal ''' while True: command = input(f'{desktop}:# ') if command == 'ls': #listing files os.chdir(location) print(location) location = os.getcwd() desktop = os.path.expanduser(f'{location}').replace(f'{user_info}', f'{data}') for file in glob.glob("*"): print(file) elif(command[0] == 'c' and command[1] == 'd'): #browsing the files location = str(command).replace("cd", "").replace(" ","") if(command.count("..")): os.chdir('../') location = os.getcwd() desktop = os.path.expanduser(f'{location}').replace(f'{user_info}', f'{data}') else: command = command.replace("cd ", "") os.chdir(command) location = os.getcwd() desktop = os.path.expanduser(f'{location}').replace(f'{user_info}', f'{data}') elif command == 'clear': #clean in terminal os.system('cls' if os.name == 'nt' else 'clear') elif command == 'refresh': #restart of terminal os.system('cls' if os.name == 'nt' else 'clear') os.system('python refresh.py') exit() elif(command.count('cat ')): command = command.replace("cat ", "") cat = open(f'{command}', 'r') content = cat.readlines() #listing content of file print('\n') for line in content: print(line) cat.close() print('\n') elif command[0] == 'g' and command[1] == 'i' and command[2] == 't': os.system(command) elif command == '': pass elif command == 'help' or command == 'commands': print(command_list) elif(command.count('wget ')): print(os.getcwd()) elif(command == 'pwd'): print(location)
2.5
2
src/pactor/nodes_commands.py
kstrempel/pactor
1
12797871
<reponame>kstrempel/pactor from pactor.vm import VM from pactor.node_parent import AstNode from pactor.node_stack_helper import pop_value, pop class WhenNode(AstNode): def run(self, vm: VM): quote = pop(vm) is_true = pop_value(vm) if is_true: vm.run_ast(quote.ast) def __repr__(self): return 'when' class IfNode(AstNode): def run(self, vm: VM): quote_false = pop(vm) quote_true = pop(vm) is_true = pop_value(vm) if is_true: vm.run_ast(quote_true.ast) else: vm.run_ast(quote_false.ast) def __repr__(self): return 'if' class TimesNode(AstNode): def run(self, vm: VM): quote = pop(vm) count = pop_value(vm) for _ in range(0, count): vm.run_ast(quote.ast) def __repr__(self): return 'times'
2.4375
2
GameObject.py
P3D-Space-Tech-Demo/Section2SpaceflightDocking
0
12797872
<gh_stars>0 from panda3d.core import Vec4, Vec3, Vec2, Plane, Point3, BitMask32 from direct.actor.Actor import Actor from panda3d.core import CollisionSphere, CollisionCapsule, CollisionNode, CollisionRay, CollisionSegment, CollisionHandlerQueue from direct.gui.OnscreenText import OnscreenText from direct.gui.OnscreenImage import OnscreenImage from panda3d.core import TextNode from panda3d.core import AudioSound from panda3d.core import PointLight from panda3d.core import NodePath, PandaNode from panda3d.core import Quat from Section2SpaceflightDocking.CommonValues import * from Section2SpaceflightDocking.Common import Common import math, random FRICTION = 10.0 class GameObject(): def __init__(self, pos, modelName, modelAnims, maxHealth, maxSpeed, colliderName, weaponIntoMask, size): self.root = Common.framework.showBase.render.attachNewNode(PandaNode("obj")) self.colliderName = colliderName self.modelName = modelName if modelName is None: self.actor = NodePath(PandaNode("actor")) elif modelAnims is None: self.actor = Common.framework.showBase.loader.loadModel(modelName) else: self.actor = Actor(modelName, modelAnims) self.actor.reparentTo(self.root) if pos is not None: self.root.setPos(pos) self.maxHealth = maxHealth self.health = maxHealth self.healthRechargeRate = 2.0 self.healthRechargeSuppressionTimer = 0 self.healthRechargeSuppressionDuration = 0.5 self.maxSpeed = maxSpeed self.terminalVelocity = 50 self.flinchCounter = 0 self.velocity = Vec3(0, 0, 0) self.acceleration = 300.0 self.inControl = True self.outOfControlTimer = 0 self.walking = False self.size = size if colliderName is not None: colliderNode = CollisionNode(colliderName) colliderNode.addSolid(CollisionSphere(0, 0, 0, size)) self.colliderNP = self.root.attachNewNode(colliderNode) self.colliderNP.setPythonTag(TAG_OWNER, self) colliderNode.setFromCollideMask(0) colliderNode.setIntoCollideMask(weaponIntoMask) #self.colliderNP.show() else: self.colliderNP = self.root.attachNewNode(PandaNode("stand-in")) self.deathSound = None def physicalImpact(self, surfaceNormal): proj = self.velocity.project(surfaceNormal) self.velocity -= proj*2 def update(self, dt, fluid = False): speed = self.velocity.length() if self.inControl: if self.walking and speed > self.maxSpeed: self.velocity.normalize() self.velocity *= self.maxSpeed speed = self.maxSpeed else: if speed > self.terminalVelocity: self.velocity.normalize() self.velocity *= self.terminalVelocity speed = self.terminalVelocity if Common.useFriction: if not self.walking: perc = speed/self.maxSpeed frictionVal = FRICTION*dt/(max(1, perc*perc)) if not self.inControl: frictionVal *= 0.8 if frictionVal > speed: self.velocity.set(0, 0, 0) else: frictionVec = -self.velocity frictionVec.normalize() frictionVec *= frictionVal self.velocity += frictionVec if not self.inControl: if speed < 0.1: self.inControl = True else: self.outOfControlTimer -= dt if self.outOfControlTimer <= 0: self.inControl = True if fluid: self.root.setFluidPos(self.root.getPos() + self.velocity*dt) else: self.root.setPos(self.root.getPos() + self.velocity*dt) if self.healthRechargeSuppressionTimer > 0: self.healthRechargeSuppressionTimer -= dt else: self.alterHealth(self.healthRechargeRate*dt, None, 0, 0) def alterHealth(self, dHealth, incomingImpulse, knockback, flinchValue, overcharge = False): previousHealth = self.health self.health += dHealth if incomingImpulse is not None and knockback > 0.1: self.velocity += incomingImpulse*knockback self.inControl = False self.outOfControlTimer = knockback*0.1 self.walking = False if dHealth < 0: self.healthRechargeSuppressionTimer = self.healthRechargeSuppressionDuration if self.health < 0: self.health = 0 if flinchValue > 0: self.flinchCounter -= flinchValue if dHealth > 0 and self.health > self.maxHealth and not overcharge: self.health = self.maxHealth if previousHealth > 0 and self.health <= 0 and self.deathSound is not None: self.deathSound.play() def turnTowards(self, target, turnRate, dt): if isinstance(target, NodePath): target = target.getPos(Common.framework.showBase.render) elif isinstance(target, GameObject): target = target.root.getPos(Common.framework.showBase.render) diff = target - self.root.getPos(Common.framework.showBase.render) selfQuat = self.root.getQuat(Common.framework.showBase.render) selfForward = selfQuat.getForward() axis = selfForward.cross(diff.normalized()) axis.normalize() if axis.lengthSquared() < 0.1: return angle = selfForward.signedAngleDeg(diff.normalized(), axis) quat = Quat() angle = math.copysign(min(abs(angle), turnRate*dt), angle) quat.setFromAxisAngle(angle, axis) newQuat = selfQuat*quat self.root.setQuat(Common.framework.showBase.render, newQuat) def getAngleWithVec(self, vec): forward = self.actor.getQuat(Common.framework.showBase.render).getForward() forward2D = Vec2(forward.x, forward.y) vec = Vec2(vec.x, vec.y) vec.normalize() angle = forward2D.signedAngleDeg(vec) return angle def cleanup(self): if self.colliderNP is not None and not self.colliderNP.isEmpty(): self.colliderNP.clearPythonTag(TAG_OWNER) self.colliderNP.removeNode() self.colliderNP = None if self.actor is not None: if isinstance(self.actor, Actor): self.actor.cleanup() self.actor.removeNode() self.actor = None if self.root is not None: self.root.removeNode() self.root = None class ArmedObject(): def __init__(self): self.weaponSets = [] self.weaponNPs = {} self.lockedTarget = None def weaponFired(self, weapon): pass def weaponReset(self, weapon): pass def addWeapon(self, weapon, setIndex, sourceNP): while len(self.weaponSets) <= setIndex: self.weaponSets.append([]) self.weaponSets[setIndex].append(weapon) self.weaponNPs[weapon] = sourceNP def startFiringSet(self, weaponSet): if weaponSet < len(self.weaponSets): for weapon in self.weaponSets[weaponSet]: if not weapon.active: weapon.triggerPressed(self) def ceaseFiringSet(self, weaponSet): if weaponSet < len(self.weaponSets): for weapon in self.weaponSets[weaponSet]: if weapon.active: weapon.triggerReleased(self) def update(self, dt): for weaponSet in self.weaponSets: for weapon in weaponSet: weapon.update(dt, self) def attackPerformed(self, weapon): pass def cleanup(self): for weaponSet in self.weaponSets: for weapon in weaponSet: weapon.cleanup() self.weaponSets = [] self.weaponNPs = {} class Blast(): def __init__(self, model, minSize, maxSize, duration): self.model = model self.model.setTwoSided(True) self.model.setTransparency(True) self.model.setBillboardPointEye() self.minSize = minSize self.maxSize = maxSize self.sizeRange = self.maxSize - self.minSize self.duration = duration self.timer = duration def update(self, dt): self.timer -= dt if self.timer < 0: self.timer = 0 perc = 1.0 - (self.timer / self.duration) self.model.setScale(self.minSize + self.sizeRange*perc) self.model.setAlphaScale(math.sin(perc*3.142)) def cleanup(self): if self.model is not None: self.model.removeNode() self.model = None
2.03125
2
synapse/dispatcher.py
mrmuxl/synapse-agent
1
12797873
import sys import time import signal import socket from Queue import Queue from synapse.scheduler import SynSched from synapse.amqp import AmqpSynapse, AmqpAdmin, AmqpError from synapse.config import config from synapse.controller import Controller from synapse.logger import logger from synapse.synapse_exceptions import ResourceException @logger class Dispatcher(object): """This module dispatches commands incoming from the command line to specific transports. It is also responsible for starting threads and catching signals like SIGINT and SIGTERM. """ def __init__(self, transport): self.transport = transport self.force_close = False # Handle signals #signal.signal(signal.SIGINT, self.stop) signal.signal(signal.SIGTERM, self.stop) # Threads instances variables self.controller = None self.sched = None self.resourcefile = None # These queues will be shared between the controller and the # transport and are used for incoming tasks and responses self.publish_queue = Queue() self.tasks_queue = Queue() def stop(self, signum, frame): """This method handles SIGINT and SIGTERM signals. """ self.logger.debug("Stopping due to signal #%d" % signum) self.stop_synapse() def stop_synapse(self): """Closes all threads and exits properly. """ if self.resourcefile: self.resourcefile.done = True # Close the controller and wait for it to quit if self.controller: if self.controller.isAlive(): self.controller.close() self.controller.join() self.logger.debug("Controller thread stopped") # Shutdown the scheduler/monitor if self.sched: if self.sched.isAlive(): self.sched.shutdown() self.sched.join() self.logger.debug("Scheduler stopped") self.force_close = True self.logger.info("Successfully stopped.") def dispatch(self): """This method actually dispatches to specific transport methods according to command line parameters. """ self.logger.info('Starting on %s transport' % self.transport.capitalize()) transports = { 'amqp': self.start_amqp, 'http': self.start_resourcefile, 'file': self.start_resourcefile, } try: transports[self.transport]() except (AttributeError, KeyError), err: self.logger.error("Transport unknown. [%s]" % err) self.stop_synapse() sys.exit() def start_amqp(self): """Starts all needed threads: scheduler, controller and AMQP transport IOLOOP. """ retry_timeout = config.rabbitmq['retry_timeout'] try: self.amqpadmin = AmqpAdmin(config.rabbitmq) while not self.force_close: try: self.amqpadmin.connect() break except (socket.timeout, IOError) as err: self.logger.error(err) try: self.logger.debug("Sleeping %d sec" % retry_timeout) time.sleep(retry_timeout) except KeyboardInterrupt: self.stop_synapse() raise SystemExit except AmqpError as err: break except KeyboardInterrupt: self.stop_synapse() raise SystemExit self.sched = SynSched() self.controller = Controller(scheduler=self.sched, tasks_queue=self.tasks_queue, publish_queue=self.publish_queue) # Start the controller self.controller.start() # Start the scheduler self.sched.start() self.amqpsynapse = AmqpSynapse(config.rabbitmq, publish_queue=self.publish_queue, tasks_queue=self.tasks_queue) while not self.force_close: try: self.amqpsynapse.connect() except (AmqpError, IOError) as err: self.logger.error(err) try: self.logger.debug("Sleeping %d sec" % retry_timeout) time.sleep(retry_timeout) except KeyboardInterrupt: self.stop_synapse() except KeyboardInterrupt: self.stop_synapse() except SystemExit: pass except ResourceException as err: self.logger.error(str(err)) def start_resourcefile(self): """This method handles the --uri file and --uri http commands. """ from synapse.resourcefile import ResourceFile try: self.resourcefile = ResourceFile(self.transport) self.resourcefile.fetch() except KeyboardInterrupt: self.stop_synapse()
2.484375
2
explore_data.py
adamw00000/MAK-Datahub
1
12797874
# %% import os import sys # os.chdir("../../..") os.environ['DJANGO_SETTINGS_MODULE'] = 'MAKDataHub.settings' import django django.setup() # %% import math import pickle import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from MAKDataHub.services import Services profile_service = Services.profile_service() storage_service = Services.storage_service() last_run = profile_service.get_last_profile_creation_run() ## New database full_df: pd.DataFrame = pickle.load(last_run.unlock_data.open('rb')) # full_df = full_df.loc[full_df.DeviceId != 3].reset_index(drop = True) ## Old database # unlock_data_path = storage_service.download_file(last_run.unlock_data_uri) # full_df: pd.DataFrame = pickle.load(open(unlock_data_path, 'rb')) # full_df = full_df.loc[full_df.DeviceId != '1439cbc3ad71ac06'].reset_index(drop = True) # %% df = full_df.iloc[:, list(range(36)) + list(range(72, 108)) + list(range(108, 144)) + list(range(180, 216)) + [216]].reset_index(drop = True) df = df.loc[(df.DeviceId != 4) & (df.DeviceId != 7), :].reset_index(drop = True) X, y = df.iloc[:, 0:-1], df.iloc[:, -1] #%% full_df.shape # %% display(full_df.iloc[:, list(range(36)) + [216]].groupby('DeviceId').agg([np.min, np.max])) display(full_df.iloc[:, list(range(36, 72)) + [216]].groupby('DeviceId').agg([np.min, np.max])) display(full_df.iloc[:, list(range(72, 108)) + [216]].groupby('DeviceId').agg([np.min, np.max])) display(full_df.iloc[:, list(range(108, 144)) + [216]].groupby('DeviceId').agg([np.min, np.max])) display(full_df.iloc[:, list(range(144, 180)) + [216]].groupby('DeviceId').agg([np.min, np.max])) display(full_df.iloc[:, list(range(180, 216)) + [216]].groupby('DeviceId').agg([np.min, np.max])) # %% display(full_df.iloc[:, list(range(36)) + [216]].groupby('DeviceId').agg([np.mean])) display(full_df.iloc[:, list(range(36, 72)) + [216]].groupby('DeviceId').agg([np.mean])) display(full_df.iloc[:, list(range(72, 108)) + [216]].groupby('DeviceId').agg([np.mean])) display(full_df.iloc[:, list(range(108, 144)) + [216]].groupby('DeviceId').agg([np.mean])) display(full_df.iloc[:, list(range(144, 180)) + [216]].groupby('DeviceId').agg([np.mean])) display(full_df.iloc[:, list(range(180, 216)) + [216]].groupby('DeviceId').agg([np.mean])) # %% sns.boxplot(df.DeviceId, df.AccMgn_mean) # %% sns.boxplot(df.DeviceId, df.AccMgn_median) # %% sns.boxplot(df.DeviceId, df.GyrMgn_amax) # %% sns.pairplot(df.loc[df.DeviceId != 3, :], hue="DeviceId", vars=["AccMgn_mean", "AccMgn_median"], markers='.') # %% test = df.loc[df.DeviceId != '3', :] sns.swarmplot(data = test, x="DeviceId", y="RotMgn_median") # %% test = full_df.loc[:, :] sns.boxplot(data = test, x="DeviceId", y="GrvMgn_amax") # %% print('OneClassSVM') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = y[y == device_id] X_device = X.loc[y == device_id, :] X_non_device = X.loc[y != device_id, :] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_device, y_device, test_size=0.2) from sklearn.svm import OneClassSVM estimator = OneClassSVM(random_state = 12369) estimator.fit_predict(X_train) tp = np.mean(estimator.predict(X_test) == 1) fn = np.mean(estimator.predict(X_test) == -1) tn = np.mean(estimator.predict(X_non_device) == 1) fp = np.mean(estimator.predict(X_non_device) == 1) accuracy = (tp + tn) / (tp + tn + fn + fp) precision = tp / (tp + fp) recall = tp / (tp + fn) fscore = 2 * recall * precision / (recall + precision) accuracies.append(accuracy if not np.isnan(accuracy) else 0) precisions.append(precision if not np.isnan(precision) else 0) recalls.append(recall if not np.isnan(recall) else 0) fscores.append(fscore if not np.isnan(fscore) else 0) print(f'{device_id} - accuracy: {round(accuracy, 2)}, precision: {round(precision, 2)}, recall: {round(recall, 2)}') # print(f'{device_id} - Class acc: {round(np.mean(estimator.predict(X_test) == 1), 2)}, non-class acc: {round(np.mean(estimator.predict(X_non_device) == -1), 2)}') print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('IsolationForest') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = y[y == device_id] X_device = X.loc[y == device_id, :] X_non_device = X.loc[y != device_id, :] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_device, y_device, test_size=0.2) from sklearn.ensemble import IsolationForest estimator = IsolationForest(n_estimators = 10) estimator.fit(X_train) tp = np.mean(estimator.predict(X_test) == 1) fn = np.mean(estimator.predict(X_test) == -1) tn = np.mean(estimator.predict(X_non_device) == 1) fp = np.mean(estimator.predict(X_non_device) == 1) accuracy = (tp + tn) / (tp + tn + fn + fp) precision = tp / (tp + fp) recall = tp / (tp + fn) fscore = 2 * recall * precision / (recall + precision) accuracies.append(accuracy if not np.isnan(accuracy) else 0) precisions.append(precision if not np.isnan(precision) else 0) recalls.append(recall if not np.isnan(recall) else 0) fscores.append(fscore if not np.isnan(fscore) else 0) print(f'{device_id} - accuracy: {round(accuracy, 2)}, precision: {round(precision, 2)}, recall: {round(recall, 2)}') # print(f'{device_id} - Class acc: {round(np.mean(estimator.predict(X_device) == 1), 2)}, non-class acc: {round(np.mean(estimator.predict(X_non_device) == -1), 2)}') print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('LOF') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = y[y == device_id] X_device = X.loc[y == device_id, :] X_non_device = X.loc[y != device_id, :] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_device, y_device, test_size=0.2) from sklearn.neighbors import LocalOutlierFactor estimator = LocalOutlierFactor(n_neighbors = 10, novelty = True, contamination = 'auto') estimator.fit(X_train) tp = np.mean(estimator.predict(X_test) == 1) fn = np.mean(estimator.predict(X_test) == -1) tn = np.mean(estimator.predict(X_non_device) == 1) fp = np.mean(estimator.predict(X_non_device) == 1) accuracy = (tp + tn) / (tp + tn + fn + fp) precision = tp / (tp + fp) recall = tp / (tp + fn) fscore = 2 * recall * precision / (recall + precision) accuracies.append(accuracy if not np.isnan(accuracy) else 0) precisions.append(precision if not np.isnan(precision) else 0) recalls.append(recall if not np.isnan(recall) else 0) fscores.append(fscore if not np.isnan(fscore) else 0) print(f'{device_id} - accuracy: {round(accuracy, 2)}, precision: {round(precision, 2)}, recall: {round(recall, 2)}') # print(f'{device_id} - Class acc: {round(np.mean(estimator.predict(X_device) == 1), 2)}, non-class acc: {round(np.mean(estimator.predict(X_non_device) == -1), 2)}') print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('LinearSVC') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.svm import LinearSVC estimator = LinearSVC(random_state = 12369) estimator.fit(X_train, y_train) from sklearn.metrics import classification_report print(classification_report(y_test, estimator.predict(X_test))) report = classification_report(y_test, estimator.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('KNeighborsClassifier') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.neighbors import KNeighborsClassifier estimator = KNeighborsClassifier() estimator.fit(X_train, y_train) from sklearn.metrics import classification_report print(classification_report(y_test, estimator.predict(X_test))) report = classification_report(y_test, estimator.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('GaussianNB') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.naive_bayes import GaussianNB estimator = GaussianNB() estimator.fit(X_train, y_train) from sklearn.metrics import classification_report print(classification_report(y_test, estimator.predict(X_test))) report = classification_report(y_test, estimator.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(random_state = 12369) estimator.fit(X_train, y_train) from sklearn.metrics import classification_report print(classification_report(y_test, estimator.predict(X_test))) report = classification_report(y_test, estimator.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier - global model') from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 12369) from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(random_state = 12369) estimator.fit(X_train, y_train) from sklearn.metrics import classification_report print(classification_report(y_test, estimator.predict(X_test))) # %% print('RandomForestClassifier - standardized') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.preprocessing import StandardScaler X_std = StandardScaler().fit_transform(X) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_std, y_device, test_size=0.2, random_state = 12369) from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(random_state = 12369) estimator.fit(X_train, y_train) from sklearn.metrics import classification_report print(classification_report(y_test, estimator.predict(X_test))) report = classification_report(y_test, estimator.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + RFECV') from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 12369) from yellowbrick.model_selection import RFECV from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) selector = RFECV(estimator, cv = 5, scoring='f1_weighted', step = 0.05) selector.fit(X_train, y_train) selector.show() from sklearn.metrics import classification_report print(classification_report(y_test, selector.predict(X_test))) # %% print('RandomForestClassifier + RFE20') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) selector = RFE(estimator, n_features_to_select = 20, step = 0.05) selector.fit(X_train, y_train) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, selector.predict(X_test))) report = classification_report(y_test, selector.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + SelectFromModel') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) selector = SelectFromModel(estimator, max_features = 20) selector.fit(X_train, y_train) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, selector.estimator_.predict(X_test))) report = classification_report(y_test, selector.estimator_.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + PCA') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.decomposition import PCA pca = PCA(n_components=20).fit(X_train) X_train = pca.transform(X_train) X_test = pca.transform(X_test) from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) estimator.fit(X_train, y_train) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, estimator.predict(X_test))) report = classification_report(y_test, estimator.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + SelectKBest (f_classif)') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.feature_selection import SelectKBest, f_classif selector = SelectKBest(score_func = f_classif, k=20).fit(X_train, y_train) X_train = selector.transform(X_train) X_test = selector.transform(X_test) from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) estimator.fit(X_train, y_train) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, estimator.predict(X_test))) report = classification_report(y_test, estimator.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + SelectKBest (mutual_info_classif)') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.feature_selection import SelectKBest, mutual_info_classif selector = SelectKBest(score_func = mutual_info_classif, k=20).fit(X_train, y_train) X_train = selector.transform(X_train) X_test = selector.transform(X_test) from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) estimator.fit(X_train, y_train) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, estimator.predict(X_test))) report = classification_report(y_test, estimator.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + RandomUnderSampler') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from imblearn.under_sampling import RandomUnderSampler X_oversampled, y_oversampled = RandomUnderSampler().fit_resample(X_train, y_train) from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) selector = RFE(estimator, n_features_to_select = 20, step = 0.05) selector.fit(X_oversampled, y_oversampled) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, selector.predict(X_test))) report = classification_report(y_test, selector.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + RandomOverSampler') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from imblearn.over_sampling import RandomOverSampler X_oversampled, y_oversampled = RandomOverSampler().fit_resample(X_train, y_train) from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) selector = RFE(estimator, n_features_to_select = 20, step = 0.05) selector.fit(X_oversampled, y_oversampled) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, selector.predict(X_test))) report = classification_report(y_test, selector.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + SMOTE') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from imblearn.over_sampling import SMOTE X_oversampled, y_oversampled = SMOTE().fit_resample(X_train, y_train) from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) selector = RFE(estimator, n_features_to_select = 20, step = 0.05) selector.fit(X_oversampled, y_oversampled) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, selector.predict(X_test))) report = classification_report(y_test, selector.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + SMOTEENN') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from imblearn.combine import SMOTEENN X_oversampled, y_oversampled = SMOTEENN().fit_resample(X_train, y_train) from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) selector = RFE(estimator, n_features_to_select = 20, step = 0.05) selector.fit(X_oversampled, y_oversampled) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, selector.predict(X_test))) report = classification_report(y_test, selector.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('RandomForestClassifier + SMOTETomek') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from imblearn.combine import SMOTETomek X_oversampled, y_oversampled = SMOTETomek().fit_resample(X_train, y_train) from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(n_estimators = 10, random_state = 12369) selector = RFE(estimator, n_features_to_select = 20, step = 0.05) selector.fit(X_oversampled, y_oversampled) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, selector.predict(X_test))) report = classification_report(y_test, selector.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('BalancedRandomForestClassifier') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from sklearn.feature_selection import RFE from imblearn.ensemble import BalancedRandomForestClassifier estimator = BalancedRandomForestClassifier(n_estimators = 10, random_state = 12369) selector = RFE(estimator, n_features_to_select = 20, step = 0.05) selector.fit(X_train, y_train) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, selector.predict(X_test))) report = classification_report(y_test, selector.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %% print('Hyperparameter tuning') for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from imblearn.combine import SMOTETomek X_oversampled, y_oversampled = SMOTETomek().fit_resample(X_train, y_train) from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(random_state = 12369, \ n_estimators = 50, min_samples_leaf = 1, \ min_samples_split = 2, \ bootstrap = False, \ max_features = 'sqrt', \ max_depth = 20) selector = RFE(estimator, n_features_to_select = 20, step = 0.05) # from sklearn.model_selection import GridSearchCV # param_grid = { # 'estimator__n_estimators': [10, 50, 100, 200, 500], # 'estimator__max_features': ['auto', 'sqrt', 'log2'], # 'estimator__max_depth': [4, 5, 6, 7, 8], # 'estimator__criterion': ['gini', 'entropy'] # } from sklearn.model_selection import RandomizedSearchCV param_grid = { 'estimator__n_estimators': [10, 20, 50, 100], 'estimator__max_features': ['auto', 'sqrt', 'log2'], 'estimator__max_depth': [int(x) for x in np.linspace(2, 20, num = 2)] + [None], 'estimator__min_samples_split': [2, 3, 4, 5], 'estimator__min_samples_leaf': [1, 2, 3], 'estimator__bootstrap': [True, False] } grid = RandomizedSearchCV(estimator = selector, \ param_distributions = param_grid, \ n_iter = 100, \ cv = 3, \ verbose = 2, \ random_state = 42, \ n_jobs = -1) grid.fit(X_oversampled, y_oversampled) print(grid.best_params_) # %% print('RandomForestClassifier + SMOTETomek + parameters') accuracies = [] precisions = [] recalls = [] fscores = [] for device_id in y.unique(): y_device = np.where(y == device_id, 1, 0) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y_device, test_size=0.2, random_state = 12369) from imblearn.combine import SMOTETomek X_oversampled, y_oversampled = SMOTETomek().fit_resample(X_train, y_train) from sklearn.feature_selection import RFE from sklearn.ensemble import RandomForestClassifier estimator = RandomForestClassifier(random_state = 12369, \ n_estimators = 50, min_samples_leaf = 1, \ min_samples_split = 2, \ bootstrap = False, \ max_features = 'sqrt', \ max_depth = 20) selector = RFE(estimator, n_features_to_select = 20, step = 0.05) selector.fit(X_oversampled, y_oversampled) from sklearn.metrics import classification_report print(f'Device {device_id}:') print(classification_report(y_test, selector.predict(X_test))) report = classification_report(y_test, selector.predict(X_test), output_dict=True) accuracies.append(report['accuracy']) precisions.append(report['1']['precision']) recalls.append(report['1']['recall']) fscores.append(report['1']['f1-score']) print(f'Accuracy: {round(np.mean(accuracies), 2)}, precision: {round(np.mean(precisions), 2)}, recall: {round(np.mean(recalls), 2)}, fscore: {round(np.mean(fscores), 2)}') # %%
1.9375
2
bytefall/_compat/tracing.py
NaleRaphael/bytefall
1
12797875
import sys from pdb import Pdb, getsourcelines from .utils import check_frame from bytefall._modules import sys as py_sys from bytefall._c_api import convert_to_builtin_frame from bytefall.config import EnvConfig __all__ = ['PdbWrapper'] class PdbWrapper(object): @staticmethod @check_frame def set_trace(frame, *args, **kwargs): return pdb_wrapper(frame)() def pdb_wrapper(this_frame): DEBUG_INTERNAL = EnvConfig().get('DEBUG_INTERNAL') _pdb = Pdb() if DEBUG_INTERNAL else _Pdb() def wrapper(): if DEBUG_INTERNAL: _pdb.set_trace(sys._getframe(3)) else: # Frame to be stepped in is not retrieved by `sys._getframe()`, # so that we don't need to pass its `f_back` into `set_trace()` _pdb.set_trace(this_frame) return wrapper class _Pdb(Pdb): def do_longlist(self, arg): filename = self.curframe.f_code.co_filename breaklist = self.get_file_breaks(filename) try: # Here we need to convert `self.curframe` to builtin frame # for `getsourcelines`, in which `inspect.findsource()` # requires a builtin frame to work. converted = convert_to_builtin_frame(self.curframe) lines, lineno = getsourcelines(converted) except OSError as err: self.error(err) return self._print_lines(lines, lineno, breaklist, self.curframe) do_ll = do_longlist def set_continue(self): self._set_stopinfo(self.botframe, None, -1) if not self.breaks: # Here we need to replace the implementation of `sys.settrace()` # and `sys._getframe()`. py_sys.settrace(None) # In the original implementation, here it calls # `sys._getframe().f_back` to get the caller of this method. # However, we cannot get caller `pyframe.Frame` that calling # `py_sys._getframe()`, but it does not affect the result. # Because the current running frame in vm is what we want here. frame = py_sys._getframe() while frame and frame is not self.botframe: del frame.f_trace frame = frame.f_back def set_trace(self, frame=None): self.reset() while frame: frame.f_trace = self.trace_dispatch self.botframe = frame frame = frame.f_back self.set_step() py_sys.settrace(self.trace_dispatch)
2.03125
2
func/model/status_processing.py
leonidasnascimento/sosi_func0007_company_finacial_report
0
12797876
class StatusProcessing(): success: bool message: str err_stack: str def __init__(self, _success: bool, _message: str, _err_stack: str = ""): self.success = _success self.message = _message self.err_stack = _err_stack pass pass
2.390625
2
PathTracking/inverseKinematics/inv_kinematics.py
deeksha777/roboscience
2
12797877
import pylab as plt import numpy as np from math import * N=100 t0 = 0.0 t1 = 2.0 t = np.linspace(t0,t1,N) dt = (t1-t0)/N one = np.ones((N)) xp = np.zeros((N)) yp = np.zeros((N)) th = np.zeros((N)) x = t*t y = t plt.figure() plt.plot(x,y,'g-') plt.legend(['Path'],loc='best') plt.title('Quadratic Path') plt.show() doty=one dotx=2*t ddoty=0 ddotx=2*one r = 1.0 L = 4.0 v = np.sqrt(dotx*dotx + doty*doty) kappa = (dotx*ddoty - doty*ddotx)/(v*v*v) dotphi1 = (v/r)*(kappa*L +1) dotphi2 = (v/r)*(-kappa*L+1) plt.plot(t,dotphi1,'b-', t,dotphi2,'g-') plt.title('Wheel Speeds') plt.legend(['Right', 'Left'],loc='best') plt.show() xp[0] = 0.0 yp[0] = 0.0 th[0] = 1.5707963267949 for i in range(N-1): xp[i+1] = xp[i] + (r*dt/2.0) * (dotphi1[i]+dotphi2[i]) * cos(th[i]) yp[i+1] = yp[i] + (r*dt/2.0)*(dotphi1[i]+dotphi2[i])* sin(th[i]) th[i+1] = th[i] + (r*dt/(2.0*L))*(dotphi1[i]-dotphi2[i]) plt.figure() plt.plot(x,y,'g-', xp, yp, 'bx') plt.legend(['Original Path', 'Robot Path'],loc='best') plt.title('Path') plt.show()
2.875
3
docker/base/installation/source/mpi4py/gatherUpper.py
WCU-EDGE/TinySup
0
12797878
#!/usr/bin/env python # gatherUpper.py import numpy from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() LENGTH = 3 x = None x_local = numpy.linspace(rank*LENGTH,(rank+1)*LENGTH, LENGTH) print(x_local) if rank == 0: x = numpy.zeros(size*LENGTH) print (x) comm.Gather(x_local, x, root=0) #you should notice that only the root process has a value for x that #is not "None" print ("process", rank, "x:", x) print ("process", rank, "x_local:", x_local)
2.34375
2
sort_anagrams.py
carlb15/Python
2
12797879
def sort_anagrams_1(strs): """ :type strs List[str] :rtype List[List[str]] """ map = {} for v in strs: target = ''.join(sorted(v)) print(target) if target not in map: map[target] = [] map[target].append(v) print('building map ', map[target]) result = [] for value in map.values(): print('anagrams ', value) result += [sorted(value)] return result def sort_anagrams(myList): def convert_strs_to_hashes(myList): d = dict() for anagram in myList: h = sum([ord(i) for i in anagram]) if h not in d: d[h] = [] d[h].append(anagram) return d if not myList or len(myList) < 2: return 0 if not myList else 1 d = convert_strs_to_hashes(myList) outputList = [] for key, values in d.items(): outputList.extend(values) return outputList if __name__=="__main__": anagrams = ["acme", "acre", "came", "care", "mace", "race"] print("Before ", anagrams) print("After ", sort_anagrams(anagrams)) anagrams = ["acme", "acre", "came", "care", "mace", "race"] print("Before ", anagrams) print("After ", sort_anagrams_1(anagrams))
4.0625
4
2_simulate_sdc.py
sztal/sda-model
1
12797880
"""Run simulations for SDC model. Parameters ---------- N_JOBS Number of cores used for parallelization. RANDOM_SEED Seed for the random numbers generator. SPACE Types of social space. Available values: 'uniform', 'lognormal', 'clusters_normal'. N Sizes of networks, NDIM Number of dimensions of simulated social spaces. DATA_REP Number of independent realizations of social spaces. SDA_PARAMS k Expected average degree. alpha Homophily level. directed Directed/undirected networks. p_rewire Probability of random rewiring. SDA_REP Number of independent realizations of adjacency matrices. SIM_PARAMS degseq_type Degree sequence type. One of: 'poisson', 'negbinom', 'powerlaw'. degseq_sort Should degree sequence be sorted by expected node degrees. """ import os import gc import numpy as np import pandas as pd from sklearn.externals.joblib import Memory import _ # Globals ROOT = os.path.dirname(os.path.realpath(__file__)) HERE = ROOT DATAPATH = os.path.join(HERE, 'raw-data') # Persistence MEMORY = Memory(location='.cache', verbose=1) N_JOBS = 4 # Data generation params RANDOM_SEED = 101 SPACE = ('uniform', 'lognormal', 'clusters_normal') N = (1000, 2000, 4000, 8000) NDIM = (1, 2, 4, 8, 16) CENTERS = (4,) DATA_REP = 2 # SDA params SDA_PARAMS = { 'k': (30,), 'alpha': (2, 4, 8, np.inf), 'directed': (False,), 'p_rewire': (.01,) } SDA_REP = 3 SIM_PARAMS = { 'degseq_type': ('poisson', 'negbinom', 'powerlaw'), 'sort': (True, False) } @MEMORY.cache(ignore=['n_jobs']) def simulate_cm(space, dparams, drep, sdaparams, sdarep, simparams, n_jobs): return _.simulate(space, dparams, drep, sdaparams, sdarep, simparams, n_jobs, simfunc=_.run_sdac) # Run simulations if RANDOM_SEED is not None: np.random.seed(RANDOM_SEED) sim = lambda s: simulate_cm( space=s, dparams=(N, NDIM, CENTERS), drep=DATA_REP, sdaparams=SDA_PARAMS, sdarep=SDA_REP, simparams=SIM_PARAMS, n_jobs=N_JOBS ) df = None # main data frame gdf = None # graph data frame for s in SPACE: sim(s) gc.collect() for s in SPACE: print(f"\rloading and processing '{s}' space' ...", end="") _df = sim(s) _df.drop(columns=['A', 'labels'], inplace=True) if df is None: df = _df else: df = pd.concat((df, _df), ignore_index=True) # Save data ------------------------------------------------------------------- # Standard data get saved as feather file, so it can be easily # shared with R for data analysis and visualization. # Adjacency matrices data is saved as a separate pickle file. # It will be used for graph visualizations. os.makedirs(DATAPATH, exist_ok=True) # Save main data as a feather file df.to_feather(os.path.join(DATAPATH, 'sda-data-cm.feather')) # Save graph data as a pickle file # joblib.dump(gdf, os.path.join(DATAPATH, 'sda-graphs-cm.pkl'))
2.5625
3
lib/piservices/fabops.py
creative-workflow/pi-setup
1
12797881
<reponame>creative-workflow/pi-setup<filename>lib/piservices/fabops.py import os, color from fabric import operations, api from fabric.contrib import files from policies import PiServicePolicies class FabricTaskOperator: def __init__(self, local_path, remote_path): self.remote_path = remote_path self.local_path = local_path self.ops = operations self.api = api self.env = api.env def run(self, command, *args, **kwargs): try: with color.for_run(): if self.is_local(): return self.ops.local('cd %s && %s' % (self.local_path, command), *args, **kwargs) else: return self.ops.run('cd %s && %s' % (self.remote_path, command), *args, combine_stderr=True, pty=False, **kwargs) except Exception as e: with color.for_error(): raise e def local(self, command, *args, **kwargs): try: with color.for_run(): return self.ops.local('cd %s && %s' % (self.local_path, command), *args, **kwargs) except Exception as e: with color.for_error(): raise e def sudo(self, command, *args, **kwargs): return self.run('sudo %s' % command, *args, **kwargs) def put(self, src, dest='', *args, **kwargs): with color.for_put(): with self.api.settings(warn_only=True): self.ops.put(src, self.normalize_path(dest), *args, **kwargs) def get(self, src, dest='', *args, **kwargs): with color.for_get(): with self.api.settings(warn_only=True): self.ops.get(self.normalize_path(src), dest, *args, **kwargs) def cd(self, path="~/"): return self.run(path) def file_exists(self, path): if not path: return False method = files.exists if PiServicePolicies.is_local(): method = os.path.isfile return method(self.normalize_path(path)) def cp(self, i, o): self.sudo('cp %s %s' % (self.normalize_path(i), self.normalize_path(o))) def normalize_path(self, path): if path.startswith('/'): return path return self.remote_path+'/'+path def zip_files_and_copy(self, file_list, target): if not file_list or len(file_list) < 1: return #make path relative, so they will be extracted correct on the remote end file_list = [x.replace(self.local_path+'/', '') for x in file_list] tmp_file_list = '/tmp/pisetup.%s.transfer.list' % self.name tmp_archive = '/tmp/pisetup.%s.transfer.tar' % self.name with open(tmp_file_list, 'w') as f: f.write('\n'.join(file_list)) self.api.local('cd %s && tar cvf - -T %s > %s' % (self.local_path, f.name, tmp_archive)) self.put(tmp_archive, '/tmp/', use_sudo=True) self.run('tar xvf %s -C %s ' % (tmp_archive, target)) os.unlink(f.name) os.unlink(tmp_archive) def clean_git_checkout(self, git_repo, target): target = self.local_path+'/'+target if os.path.isdir(target+'/.git'): self.ops.local('cd %s && git checkout master' % target) self.ops.local('cd %s && git reset --hard origin/master' % target) else: self.ops.local('mkdir -p '+target) self.ops.local('cd '+target+" && git clone "+git_repo+" . && git submodule init && git submodule update")
2.109375
2
intel/ll_signals.py
YmonOy/lastline_api
2
12797882
<reponame>YmonOy/lastline_api<filename>intel/ll_signals.py<gh_stars>1-10 from django.contrib.auth.signals import user_logged_in from request_provider.signals import get_request import ll_logger from ll_debug import __debugvar__ class SignalHandler: def __init__(self, logger): self.logger = logger # self = sender in this context, when looked from the perspective of the # Django signal system def login(self, user, request, **kwargs): self.logger.instance.addFilter(ll_logger.ContextFilter(request)) msg = 'User({0}) logged in'.format(request.user.username) self.logger.info(self.logger.to_request('Login', msg)) def logout(self, user, request, **kwargs): self.logger.instance.addFilter(ll_logger.ContextFilter(request)) msg = 'User({0}) logged out'.format(request.user.username) self.logger.info(self.logger.to_request('Logout', msg)) # Must override logged username from POST since user is not logged in def failed_login(self, credentials, **kwargs): request = get_request() username = request.POST.get('username', 'Undefined') self.logger.instance.addFilter( ll_logger.ContextFilter(request, overrides={'user':username}) ) msg = 'User({0}) failed login'.format(username) self.logger.info(self.logger.to_request('Login.fail', msg))
2.015625
2
mapping/star/discretized_bath/symmetric_spquad.py
fhoeb/py-mapping
1
12797883
<filename>mapping/star/discretized_bath/symmetric_spquad.py """ Discretized bath for the generation of direct symmetric discretization coefficients, where the integrals for the couplings and energies are evaluated using scipy quad """ import numpy as np from scipy import integrate from mapping.star.discretized_bath.base.symmetric import BaseDiscretizedSymmetricBath from mapping.utils.integration_defaults import default_epsabs, default_epsrel, default_limit from mapping.star.discretized_bath.stopcoeff import StopCoefficients from mapping.star.discretized_bath.intervals import get_symmetric_interval_points class SpQuadDiscretizedSymmetricBath(BaseDiscretizedSymmetricBath): def __init__(self, J, domain, max_nof_coefficients=100, interval_type='lin', **kwargs): """ Generates direct discretization coefficients from a spectral density J, by computing the integrals: gamma_i = sqrt(int_i^i+1 J(x) dx) xi_i = int_i^i+1 J(x) * x dx/ gamma_i^2 :param J: Spectral density. A function defined on 'domain', must be >0 in the inner part of domain :param domain: List/tuple of two elements for the left and right boundary of the domain of J. The domain must contain 0. :param max_nof_coefficients: Size of the buffers which hold gamma and xi coefficients (maximum number of these coefficients that can be calculated) :param interval_type: see star.get_discretized_bath for an explanation of the available types :param kwargs: may contain 'ignore_zeros' If one gamma_i is numerically 0, the corresponding xi_i is also set 0, default is False 'epsabs': absolute tolerance for the scipy integrations, default is 1e-11 'epsrel': relative tolerance for the scipy integrations, default is 1e-11 'limit': limit parameter for the scipy quad function, default is 100 """ assert not np.isinf(domain[0]) and not np.isinf(domain[1]) if not domain[0] < 0 < domain[1]: print('Domain must contain 0!') raise AssertionError try: self.ignore_zeros = kwargs['ignore_zeros'] except KeyError: self.ignore_zeros = False try: self.epsabs = kwargs['epsabs'] except KeyError: self.epsabs = default_epsabs try: self.epsrel = kwargs['epsrel'] except KeyError: self.epsrel = default_epsrel try: self.limit = kwargs['limit'] except KeyError: self.limit = default_limit self.interval_type = interval_type self.x_pts_p, self.x_pts_m = get_symmetric_interval_points(domain, max_nof_coefficients, interval_type=interval_type, get_spacing=False, **kwargs) self.J = J super().__init__(self.compute_coefficients, max_nof_coefficients=max_nof_coefficients) def compute_coefficients(self, stop_n): """ Calculates the discretization coefficients up to stop_n (actually calculates 2*stop_n - self.next_n coefficients, since the indices are tailored for asymmetric discretizations) :param stop_n: Index up to which new coefficients are calculated """ x_pts_p = self.x_pts_p[::-1] if self.interval_type == 'log' else self.x_pts_p for n in range(2*self._next_n, 2*stop_n, 2): int_index = n // 2 # Coefficients for the positive part of the domain: try: a, b = x_pts_p[int_index], x_pts_p[int_index + 1] # Must invert the view, because for log-discretization the positive domain grid points are in # inverted order if self.interval_type == 'log': b, a = a, b except IndexError: raise StopCoefficients gamma_sq, err = \ integrate.quad(self.J, a, b, epsabs=self.epsabs, epsrel=self.epsrel, limit=self.limit) xi_numerator, err = \ integrate.quad(lambda x: x * self.J(x), a, b, epsabs=self.epsabs, epsrel=self.epsrel, limit=self.limit) self.gamma_buf[n] = np.sqrt(gamma_sq) if self.ignore_zeros and gamma_sq == 0: self.xi_buf[n] = 0 else: self.xi_buf[n] = xi_numerator / gamma_sq # Coefficients for the negative part of the domain: try: a, b = self.x_pts_m[int_index + 1], self.x_pts_m[int_index] # Must invert the view, because for log-discretization the positive domain grid points are in # inverted order if self.interval_type == 'log': b, a = a, b except IndexError: raise StopCoefficients gamma_sq, err = \ integrate.quad(self.J, a, b, epsabs=self.epsabs, epsrel=self.epsrel, limit=self.limit) xi_numerator, err = \ integrate.quad(lambda x: x * self.J(x), a, b, epsabs=self.epsabs, epsrel=self.epsrel, limit=self.limit) self.gamma_buf[n+1] = np.sqrt(gamma_sq) if self.ignore_zeros and gamma_sq == 0: self.xi_buf[n+1] = 0 else: self.xi_buf[n+1] = xi_numerator / gamma_sq self._update_next_n(1)
2.46875
2
testsuite/pointcloud-fold/run.py
halirutan/OpenShadingLanguage
2
12797884
#!/usr/bin/env python command += testshade("-param radius 1000.0 -param filename data/cloud.geo rdcloud")
1.015625
1
mmrotate/core/bbox/iou_calculators/builder.py
williamcorsel/mmrotate
449
12797885
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.utils import build_from_cfg from mmdet.core.bbox.iou_calculators.builder import IOU_CALCULATORS ROTATED_IOU_CALCULATORS = IOU_CALCULATORS def build_iou_calculator(cfg, default_args=None): """Builder of IoU calculator.""" return build_from_cfg(cfg, ROTATED_IOU_CALCULATORS, default_args)
1.875
2
light_draft/views.py
zerc/django-light-draft
8
12797886
<gh_stars>1-10 # coding: utf-8 from __future__ import unicode_literals from django.http import Http404 from django.views.generic.detail import DetailView from .utils import load_from_shapshot from .exceptions import DraftError class BaseDraftView(DetailView): """ View for loading data from model `snapshot` """ def get_template_names(self): names = super(BaseDraftView, self).get_template_names() preview = names[0].replace('.html', '_preview.html') names.insert(0, preview) return names def get_object(self, *args, **kwargs): if getattr(self, '__object', None): return self.__object if 'hash' in self.request.GET: try: self.__object = load_from_shapshot( self.model, self.request.GET.get('hash')) except DraftError: raise Http404('Snapshot does not exist') return self.__object return super(BaseDraftView, self).get_object(*args, **kwargs) def get_context_data(self, *args, **kwargs): context = super(BaseDraftView, self).get_context_data(*args, **kwargs) context['is_draft_preview'] = True return context
2.015625
2
DeleteNodeinaLinkedList.py
Bit64L/LeetCode-Python-
0
12797887
<reponame>Bit64L/LeetCode-Python-<filename>DeleteNodeinaLinkedList.py<gh_stars>0 # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def deleteNode(self, node): """ :type node: ListNode :rtype: void Do not return anything, modify node in-place instead. """ while node.next is not None: node.val = node.next.val pre = node node = node.next pre.next = None node1 = ListNode(1) node2 = ListNode(2) node3 = ListNode(3) node1.next = node2 node2.next = node3 solution = Solution() solution.deleteNode(node2) while node1 is not None: print(node1.val) node1 = node1.next
3.671875
4
tests/converter/test_url2netloc.py
Centaurioun/PyFunceble
213
12797888
""" The tool to check the availability or syntax of domain, IP or URL. :: ██████╗ ██╗ ██╗███████╗██╗ ██╗███╗ ██╗ ██████╗███████╗██████╗ ██╗ ███████╗ ██╔══██╗╚██╗ ██╔╝██╔════╝██║ ██║████╗ ██║██╔════╝██╔════╝██╔══██╗██║ ██╔════╝ ██████╔╝ ╚████╔╝ █████╗ ██║ ██║██╔██╗ ██║██║ █████╗ ██████╔╝██║ █████╗ ██╔═══╝ ╚██╔╝ ██╔══╝ ██║ ██║██║╚██╗██║██║ ██╔══╝ ██╔══██╗██║ ██╔══╝ ██║ ██║ ██║ ╚██████╔╝██║ ╚████║╚██████╗███████╗██████╔╝███████╗███████╗ ╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝ ╚═════╝╚══════╝╚═════╝ ╚══════╝╚══════╝ Tests of URL 2 Network Location converter. Author: <NAME>, @funilrys, contactTATAfunilrysTODTODcom Special thanks: https://pyfunceble.github.io/special-thanks.html Contributors: https://pyfunceble.github.io/contributors.html Project link: https://github.com/funilrys/PyFunceble Project documentation: https://pyfunceble.readthedocs.io/en/dev/ Project homepage: https://pyfunceble.github.io/ License: :: Copyright 2017, 2018, 2019, 2020, 2021 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import unittest import unittest.mock from PyFunceble.converter.url2netloc import Url2Netloc class TestUrl2Netloc(unittest.TestCase): """ Tests our internal URL converter. """ def setUp(self) -> None: """ Setups everything needed for the tests. """ self.converter = Url2Netloc() def tearDown(self) -> None: """ Destroys everything previously created for the tests. """ del self.converter def test_set_data_to_convert_no_string(self) -> None: """ Tests the method which let us set the data to work with for the case that a non-string value is given. """ given = ["Hello", "World"] self.assertRaises(TypeError, lambda: self.converter.set_data_to_convert(given)) def test_set_data_to_convert_empty_string(self) -> None: """ Tests the method which let us set the data to work with for the case that an empty-string value is given. """ given = "" self.assertRaises(ValueError, lambda: self.converter.set_data_to_convert(given)) def test_get_converted_nothing_to_decode(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that no conversion is needed. """ given = "example.org" expected = "example.org" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_full_url(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that a full URL is given. """ given = "https://example.org/hello/world/this/is/a/test" expected = "example.org" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_full_url_with_port(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that a full URL (with explicit port) is given. """ given = "https://example.org:8080/hello/world/this/is/a/test" expected = "example.org:8080" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_full_url_with_params(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that a full URL (with params) is given. """ given = "https://example.org/?is_admin=true" expected = "example.org" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_url_without_scheme(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that no scheme is given. """ given = "example.org/hello/world/this/is/a/test" expected = "example.org" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_url_without_scheme_and_with_params(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that no scheme (but with params) is given. """ given = "example.org/?is_admin=true" expected = "example.org" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_url_without_protocol(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that no protocol is given. """ given = "://example.org/hello/world/this/is/a/test" expected = "example.org" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_url_without_protocol_and_with_params(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that no protocol (but params) is given. """ given = "://example.org/?is_admin=true" expected = "example.org" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_url_without_protocol_and_path(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that no protocol and path is given. """ given = "://example.org/" expected = "example.org" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_url_startswith_2_slashes(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that the given url starts with 2 slashes. """ given = "//example.org/hello/world/this/is/a/test" expected = "example.org" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) def test_get_converted_url_startswith_1_slash(self) -> None: """ Tests the method which let us extracts the netloc from a given URL for the case that the given url starts with 1 slash. """ given = "/example.org/hello/world/this/is/a/test" expected = "" self.converter.data_to_convert = given actual = self.converter.get_converted() self.assertEqual(expected, actual) if __name__ == "__main__": unittest.main()
2.6875
3
ex02-odd_or_even.py
lew18/practicepython.org-mysolutions
0
12797889
<reponame>lew18/practicepython.org-mysolutions<filename>ex02-odd_or_even.py """ https://www.practicepython.org Exercise 2: Odd or Even 1 chile Ask the user for a number. Depending on whether the number is even or odd, print out an appropriate message to the user. Hint: how does an even / odd number react differently when divided by 2? Extras: 1. If the number is a multiple of 4, print out a different message. 2. Ask the user for two numbers: one number to check (call it num) and one number to divide by (check). If check divides evenly into num, tell that to the user. If not, print a different appropriate message. """ number = int(input("Enter an integer: ")) if (number % 4) == 0: print(str(number) + " is evenly divisible by 4.") elif ((number %2) == 0): print(str(number) + " is even.") else: print(str(number) + " is odd.") divisor = int(input("Enter a second integer: ")) if number % divisor: print("%d is not a divisor of %d." % (divisor, number)) else: print("%d is a divisor of %d." % (divisor, number))
4.46875
4
musicrecs/spotify/item/spotify_artist.py
nknaian/album_recs
2
12797890
<filename>musicrecs/spotify/item/spotify_artist.py from .spotify_item import SpotifyItem class SpotifyArtist(SpotifyItem): """Class to hold selected information about a spotify artist""" def __init__(self, spotify_artist): # Initialize base class super().__init__(spotify_artist)
2.546875
3
2020-04-10/test_log.py
feieryouyiji/learningpy
0
12797891
<gh_stars>0 # # err_logging.py # import logging # def foo(s): # return 10 / int(s) # def bar(s): # return foo(s) * 2 # def main(): # try: # bar('0') # except Exception as e: # print("----出错了") # logging.exception(e) class FooError(ValueError): pass def foo(s): n = int(s) if n == 0: raise FooError('invalid value: %s' % s) return 10 / n foo('0') print('END')
3.171875
3
pyigm/cgm/tests/test_galaxy.py
pyigm/pyigm
16
12797892
<filename>pyigm/cgm/tests/test_galaxy.py # Module to run tests on GalaxyCGM from __future__ import print_function, absolute_import, division, unicode_literals # TEST_UNICODE_LITERALS import pytest import numpy as np from pyigm.cgm.galaxy import GalaxyCGM def test_init_light(): mwcgm = GalaxyCGM(load=False) def test_init_full(): mwcgm = GalaxyCGM() assert len(mwcgm.abs.cgm_abs) > 0 # Cool assert 'Richter+17' in mwcgm.refs SiII_tbl = mwcgm.abs.ion_tbl((14,2)) assert (not np.any(np.isnan(SiII_tbl['logN']))) assert np.sum(SiII_tbl['flag_N'] > 0) == 188 # Hot assert 'Fang+15' in mwcgm.refs # OVII table ovii_tbl = mwcgm.abs.ion_tbl((8,7)) assert len(ovii_tbl['sig_logN'][0]) == 2 # OVI table ovi_tbl = mwcgm.abs.ion_tbl((8,6)) # Usage coords = mwcgm.abs.scoord
2.140625
2
Contributed/NeoPixelBarometer/Python/tempestbarometer.py
ucl-casa-ce/WindSpeedGauge
4
12797893
import requests import json import time import neopixel import board #Set Colours RED = (255, 0, 0) YELLOW = (255, 150, 0) ORANGE = (100, 64, 0) GREEN = (0, 255, 0) CYAN = (0, 255, 255) BLUE = (0, 0, 255) PURPLE = (180, 0, 255) OFF = (0, 0, 0) #Set NeoPixel Details - Pin/Number Pixels/Brightness etc pixels = neopixel.NeoPixel(board.D18, 144, brightness=0.03, auto_write=False) #Start up Lights n = 1 t_end = time.time() + 22.32 * 1 while time.time() < t_end: n = n + 1 if n >= 144: n = 1 pixels[n] = (RED) pixels[n-1] = (YELLOW) pixels.show() time.sleep (0.1) pixels.fill((0, 0, 0)) pixels.show() print ("Getting Conditions and Forecast") def getconditions(): # Get Data from Weather Flow for Station Location try: response = requests.get('https://swd.weatherflow.com/swd/rest/better_forecast?api_key=db55228a-b708-4325-9166-7f2d04c61baa&station_id=50216&units_temp=c&units_wind=mph&units_pressure=mb&units_precip=mm&units_distance=mi').text except requests.exceptions.RequestException as e: time.sleep(60) data = json.loads(response) text = data['current_conditions']['conditions'] icon = data['current_conditions']['icon'] baro = int(data['current_conditions']['sea_level_pressure']) trend = data['current_conditions']['pressure_trend'] print(text) print(icon) print(baro) print(trend) return trend, baro, icon def barometer(): conditions = getconditions() baro = conditions[1] # Pressure top 1050 minus number of pixels to set top pixel pixel = 906 pixelon = int(baro - pixel) pixels[pixelon] = (RED) def trendpixel(): conditions = getconditions() trend = conditions[0] if trend == 'steady': pixels[14] = (GREEN) else: pixels[14] = (OFF) if trend == 'rising': pixels[16] = (BLUE) else: pixels[16] = (OFF) if trend == 'falling': pixels[12] = (RED) else: pixels[12] = (OFF) def icon(): conditions = getconditions() icon = str(conditions[2]) print("Icon") print(icon) if icon == 'clear-day': pixels[36] = (YELLOW) else: pixels[36] = (OFF) if icon == 'partly-cloudy-day' or 'partly-cloudy-night': pixels[34] = (BLUE) else: pixels[34] = (OFF) if icon == 'cloudy': pixels[32] = (BLUE) else: pixels[32] = (OFF) if icon == 'possibly-rainy-day': pixels[30] = (BLUE) else: pixels[30] = (OFF) if icon == 'possibly-rainy-night': pixels[30] = (BLUE) else: pixels[30] = (OFF) if icon == 'clear-night': pixels[22] = (BLUE) else: pixels[22] = (OFF) while True: getconditions() barometer() trendpixel() icon() pixels.show() time.sleep(60)
3.265625
3
aiocloudflare/api/zones/amp/sxg/sxg.py
Stewart86/aioCloudflare
2
12797894
from aiocloudflare.commons.auth import Auth class Sxg(Auth): _endpoint1 = "zones" _endpoint2 = "amp/sxg" _endpoint3 = None
1.242188
1
projects/views.py
kylef-archive/django-projects
2
12797895
import cPickle as pickle import datetime from django.shortcuts import render_to_response, get_object_or_404 from django.template import RequestContext from django.http import Http404, HttpResponse from django.core import urlresolvers from unipath import FSPath as Path from projects.models import Project def document(request, project, url): try: project = Project.objects.get(slug=project) except Project.DoesNotExist: raise Http404 docroot = Path(project.get_pickle_path()) # First look for <bits>/index.fpickle, then for <bits>.fpickle bits = url.strip('/').split('/') + ['index.fpickle'] doc = docroot.child(*bits) if not doc.exists(): bits = bits[:-2] + ['%s.fpickle' % bits[-2]] doc = docroot.child(*bits) if not doc.exists(): raise Http404("'%s' does not exist" % doc) bits[-1] = bits[-1].replace('.fpickle', '') template_names = [ 'docs/%s.html' % '-'.join([b for b in bits if b]), 'docs/doc.html' ] return render_to_response(template_names, RequestContext(request, { 'doc': pickle.load(open(doc, 'rb')), 'env': pickle.load(open(docroot.child('globalcontext.pickle'), 'rb')), 'update_date': datetime.datetime.fromtimestamp(docroot.child('last_build').mtime()), 'home': project.get_absolute_url(), 'redirect_from': request.GET.get('from', None), })) def update(request, slug): try: project = Project.objects.get(slug=slug) except Project.DoesNotExist: raise Http404 project.update() return HttpResponse('done')
2.15625
2
decrypt_device/main.py
vnszero/Enigma_2.0
0
12797896
CEIL = 122 END_LINE = '\n' FLOOR = 32 FOG_NUM = 1 FOG_POS = 2 ROLLBACK = 90 SECURITY = 'access denied\n' SHIFT = 0 def verify_code(message : str) -> list: i = 0 shift = None fog_num = None fog_pos = None code_message = '' for alpha in message: if i == SHIFT: shift = alpha elif i == FOG_NUM: fog_num = alpha elif i == FOG_POS: fog_pos = alpha else: code_message += alpha if alpha == END_LINE: with open("code.txt", "w") as file: file.write(SECURITY) break i+=1 return shift, fog_num, fog_pos, code_message def clear(message : str, fog_num : int, fog_pos : int) -> str: clear_message = '' i = FLOOR for alpha in message: if i > fog_num: i = FLOOR if i == fog_pos: clear_message += alpha i += 1 return clear_message def uncesar(message : str, shift : int) -> str: uncesar_message = '' for alpha in message: ord_ascii = ord(alpha) if ord_ascii <= shift + FLOOR: uncesar_message += chr(ord_ascii+ROLLBACK-shift) else: uncesar_message += chr(ord(alpha)-shift) return uncesar_message def main(): try: # open, read and verify encrypt_message = '' with open("code.txt", "r") as file: encrypt_message = file.read() shift, fog_num, fog_pos, code_message = verify_code(encrypt_message) if shift != None and fog_num != None and fog_pos != None: # clear clear_message = clear(code_message, ord(fog_num), ord(fog_pos)) # uncesar decrypt_message = uncesar(clear_message, ord(shift)) # export with open('message.txt', 'w') as file: file.write(decrypt_message) except: print('There is a problem with: code.txt, Tip: verify the path') if __name__ == '__main__': main()
3.28125
3
spar_python/report_generation/ta1/ta1_section_performance_latency.py
nathanawmk/SPARTA
37
12797897
# ***************************************************************** # Copyright 2013 MIT Lincoln Laboratory # Project: SPAR # Authors: SY # Description: Section class # # # Modifications: # Date Name Modification # ---- ---- ------------ # 19 Sep 2013 SY Original version # ***************************************************************** # SPAR imports: import spar_python.report_generation.ta1.ta1_section as section import spar_python.report_generation.common.regression as regression import spar_python.report_generation.common.latex_classes as latex_classes import spar_python.report_generation.ta1.ta1_schema as t1s import spar_python.report_generation.ta1.ta1_analysis_input as t1ai class Ta1LatencySection(section.Ta1Section): """The latency section of the TA1 report""" def _store_query_latency_table(self): """Stores the LaTeX string representing the query latency table on the output object.""" constraint_list = self._config.get_constraint_list( require_correct=True) categories = self._config.results_db.get_unique_query_values( simple_fields=[(t1s.DBF_TABLENAME, t1s.DBF_NUMRECORDS), (t1s.DBF_TABLENAME, t1s.DBF_RECORDSIZE), (t1s.DBP_TABLENAME, t1s.DBP_SELECTIONCOLS), (t1s.DBF_TABLENAME, t1s.DBF_CAT)], constraint_list=constraint_list) # create the latency table: latency_table = latex_classes.LatexTable( "Query Latency vs. Number of Records Returned Best Fit Functions", "lat_main", ["DBNR", "DBRS", "Select", "Query Type", "Best-Fit Func", "R-Squared"]) # compute correctness for every query category: for (dbnr, dbrs, selection_cols, query_cat) in categories: inp = t1ai.Input() inp[t1s.DBF_CAT] = query_cat inp[t1s.DBF_NUMRECORDS] = dbnr inp[t1s.DBF_RECORDSIZE] = dbrs inp[t1s.DBP_SELECTIONCOLS] = selection_cols this_constraint_list = constraint_list + inp.get_constraint_list() [x_values, y_values] = self._config.results_db.get_query_values( simple_fields=[ (t1s.DBP_TABLENAME, t1s.DBP_NUMNEWRETURNEDRECORDS), (t1s.DBP_TABLENAME, t1s.DBP_QUERYLATENCY)], constraint_list=this_constraint_list) try: inputs = [x_values] outputs = y_values function = regression.regress( function_to_regress=self._config.ql_all_ftr, outputs=outputs, inputs=inputs) function_string = function.string rsquared = function.get_rsquared(inputs, outputs) except regression.BadRegressionInputError: function_string = "-" rsquared = "-" latency_table.add_content( [inp.test_db.get_db_num_records_str(), inp.test_db.get_db_record_size_str(), selection_cols, query_cat, function_string, rsquared]) self._outp["query_latency_table"] = latency_table.get_string() def _populate_output(self): """Populates the output object which is passed to the Jinja tempalte in get_string.""" self._store_query_latency_table()
1.929688
2
RhyAn/decomposer/medianNMF.py
kaveenr/rhyan
0
12797898
import numpy as np import scipy.signal as sp import scipy.spatial.distance as sp_dist import librosa class MedianNMF: y, sr = None,None n_components = None def __init__(self,y,sr,n_components = 5): self.y, self.sr = y,sr self.n_components = n_components def decompose(self): #filter out precussive parts hpss_y = self.hpss() #Perform Short-time Fourier transform D = librosa.stft(hpss_y) # Separate the magnitude and phase S, phase = librosa.magphase(D) #NMF decompose to components components, activations = self.decomposeNMF(hpss_y, S, self.n_components) #reconstruct and return return [self.reconstructComponent( components[:, i], activations[i], phase) for i in range(0,len(activations))] def hpss(self, margin=4.0): #extract precussive components through median filtering return librosa.effects.percussive(self.y, margin=margin) def decomposeNMF(self, y, magnitude, n_components): # Decompose by nmf return librosa.decompose.decompose(magnitude, n_components, sort=True) def reconstructFull(self, activations, phase): #reconstruct all components into one signal D_k = components.dot(activations) y_k = librosa.istft(D_k * phase) return y_k def reconstructComponent(self, components, activation, phase): D_k = np.multiply.outer(components, activation) y_k = librosa.istft(D_k * phase) #filter out noise using Savitzky-Golay filter component_filtered = sp.savgol_filter(y_k,11,1) return component_filtered
2.203125
2
M1L10-Mini_Project-OpenAI_Taxi-v2/agent.py
felixrlopezm/Udacity_Deep_Reinforcement_Learning
0
12797899
import numpy as np from collections import defaultdict class Agent: def __init__(self, nA=6): """ Initialize agent. Params ====== - nA: number of actions available to the agent """ self.nA = nA self.Q = defaultdict(lambda: np.zeros(self.nA)) self.epsilon_start = 1.0 self.i_episode = 1.0 self.alpha = 0.04 self.gamma = 0.9 def epsilon_greedy_probs(self, state, epsilon): ''' Calculation of probabilities accordgin to a epsilon greedy policy''' probs = np.ones(self.nA) * epsilon / self.nA best_action = np.argmax(self.Q[state]) probs[best_action] = 1 - epsilon + (epsilon / self.nA) return probs def select_action(self, state): """ Given the state, select an action. Params ====== - state: the current state of the environment Returns ======= - action: an integer, compatible with the task's action space """ # Random action # action = np.random.choice(self.nA) # Epsilon decay epsilon = self.epsilon_start / self.i_episode # Epsilon-greedy policy/probabilities probs = self.epsilon_greedy_probs(state, epsilon) # Action selection acc. to epsilon-greedy policy action = np.random.choice(np.arange(self.nA), p = probs) return action def step(self, state, action, reward, next_state, done): """ Update the agent's knowledge, using the most recently sampled tuple. Params ====== - state: the previous state of the environment - action: the agent's previous choice of action - reward: last reward received - next_state: the current state of the environment - done: whether the episode is complete (True or False) """ # SARSA method next_action = self.select_action(next_state) Gt = reward + self.gamma * self.Q[next_state][next_action] # Q-learning (SARSAMAX) method #best_action = np.argmax(self.Q[next_state]) #Gt = reward + self.gamma * self.Q[next_state][best_action] self.Q[state][action] += self.alpha * (Gt - self.Q[state][action]) # i_episode update for calculation of epsilon decay self.i_episode += 1.0
3.046875
3
attendees/persons/models/attending.py
xjlin0/-attendees30
0
12797900
<filename>attendees/persons/models/attending.py from django.db import models from django.core.exceptions import ValidationError from django.urls import reverse from django.contrib.contenttypes.fields import GenericRelation from django.contrib.postgres.fields.jsonb import JSONField from django.contrib.postgres.indexes import GinIndex from django.utils.functional import cached_property from model_utils.models import TimeStampedModel, SoftDeletableModel from . import Note, Utility, Attendee, Registration class Attending(TimeStampedModel, SoftDeletableModel, Utility): notes = GenericRelation(Note) id = models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID') registration = models.ForeignKey(Registration, null=True, blank=True, on_delete=models.SET_NULL) attendee = models.ForeignKey(Attendee, null=False, blank=False, on_delete=models.CASCADE, related_name="attendings") gatherings = models.ManyToManyField('occasions.Gathering', through='occasions.Attendance') category = models.CharField(max_length=20, null=False, blank=False, default="normal", help_text="normal, not_going, coworker, etc") meets = models.ManyToManyField('occasions.Meet', through='AttendingMeet', related_name="meets") infos = JSONField(null=True, blank=True, default=dict, help_text='Example: {"grade": 5, "age": 11, "bed_needs": 1, "mobility": 300}. Please keep {} here even no data') # Todo: infos contains the following display data which are not for table join/query: age, bed_needs, mobility def clean(self): # fetching birthday from attendee record first # Todo: check if meets' assemblies under attendee's organization if self.registration and self.registration.assembly.need_age and self.infos.bed_needs < 1 and self.info.age is None: raise ValidationError("You must specify age for the participant") def get_absolute_url(self): return reverse('attending_detail', args=[str(self.id)]) class Meta: db_table = 'persons_attendings' ordering = ['registration'] constraints = [ models.UniqueConstraint(fields=['attendee', 'registration'], condition=models.Q(is_removed=False), name="attending_attendee_registration") ] indexes = [ GinIndex(fields=['infos'], name='attending_infos_gin', ), ] @property def main_contact(self): return self.registration.registrant @cached_property def meet_names(self): return ",".join([d.display_name for d in self.meets.all()]) @property def attending_label(self): return f'({self.registration}) {self.attendee.display_label}' # parentheses needed in datagrid_attendee_update_view.js @cached_property def all_addresses(self): return '; '.join([a.street for a in self.attendee.places.all()]) def __str__(self): return '%s %s' % (self.attendee, self.meet_names)
2.09375
2
tests/ts4/contracts/user_subscription.py
tonred/tonclick
0
12797901
<gh_stars>0 from tonos_ts4 import ts4 class UserSubscription(ts4.BaseContract): def __init__(self, address: ts4.Address): super().__init__('UserSubscription', {}, nickname='UserSubscription', address=address) @property def active(self) -> bool: return self.call_getter('isActive', {'_answer_id': 0}) @property def auto_renew(self) -> bool: return self.call_getter('isAutoRenew', {'_answer_id': 0})
1.960938
2
thirdpart/pools.py
by46/geek
0
12797902
<reponame>by46/geek from gevent import socket from geventconnpool import ConnectionPool class MyPool(ConnectionPool): def _new_connection(self): return socket.create_connection(("www.baidu.com", 80)) if __name__ == '__main__': pool = MyPool(20) with pool.get() as conn: conn.send("PING\n")
2.734375
3
package/niflow/ants/brainextraction/workflows/atropos.py
rciric/poldracklab-antsbrainextraction
0
12797903
<gh_stars>0 from collections import OrderedDict from nipype.pipeline import engine as pe from nipype.interfaces import utility as niu from nipype.interfaces.ants import Atropos, MultiplyImages from ..interfaces.ants import ImageMath ATROPOS_MODELS = { 'T1': OrderedDict([ ('nclasses', 3), ('csf', 1), ('gm', 2), ('wm', 3), ]), 'T2': OrderedDict([ ('nclasses', 3), ('csf', 3), ('gm', 2), ('wm', 1), ]), 'FLAIR': OrderedDict([ ('nclasses', 3), ('csf', 1), ('gm', 3), ('wm', 2), ]), } def init_atropos_wf(name='atropos_wf', use_random_seed=True, omp_nthreads=None, mem_gb=3.0, padding=10, in_segmentation_model=list(ATROPOS_MODELS['T1'].values())): """ Implements supersteps 6 and 7 of ``antsBrainExtraction.sh``, which refine the mask previously computed with the spatial normalization to the template. **Parameters** use_random_seed : bool Whether ATROPOS should generate a random seed based on the system's clock omp_nthreads : int Maximum number of threads an individual process may use mem_gb : float Estimated peak memory consumption of the most hungry nodes in the workflow padding : int Pad images with zeros before processing in_segmentation_model : tuple A k-means segmentation is run to find gray or white matter around the edge of the initial brain mask warped from the template. This produces a segmentation image with :math:`$K$` classes, ordered by mean intensity in increasing order. With this option, you can control :math:`$K$` and tell the script which classes represent CSF, gray and white matter. Format (K, csfLabel, gmLabel, wmLabel). Examples: - ``(3,1,2,3)`` for T1 with K=3, CSF=1, GM=2, WM=3 (default) - ``(3,3,2,1)`` for T2 with K=3, CSF=3, GM=2, WM=1 - ``(3,1,3,2)`` for FLAIR with K=3, CSF=1 GM=3, WM=2 - ``(4,4,2,3)`` uses K=4, CSF=4, GM=2, WM=3 name : str, optional Workflow name (default: atropos_wf) **Inputs** in_files :abbr:`INU (intensity non-uniformity)`-corrected files. in_mask Brain mask calculated previously **Outputs** out_mask Refined brain mask out_segm Output segmentation out_tpms Output :abbr:`TPMs (tissue probability maps)` """ wf = pe.Workflow(name) inputnode = pe.Node(niu.IdentityInterface(fields=['in_files', 'in_mask']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface( fields=['out_mask', 'out_segm', 'out_tpms']), name='outputnode') # Run atropos (core node) atropos = pe.Node(Atropos( dimension=3, initialization='KMeans', number_of_tissue_classes=in_segmentation_model[0], n_iterations=3, convergence_threshold=0.0, mrf_radius=[1, 1, 1], mrf_smoothing_factor=0.1, likelihood_model='Gaussian', use_random_seed=use_random_seed), name='01_atropos', n_procs=omp_nthreads, mem_gb=mem_gb) # massage outputs pad_segm = pe.Node(ImageMath(operation='PadImage', op2='%d' % padding), name='02_pad_segm') pad_mask = pe.Node(ImageMath(operation='PadImage', op2='%d' % padding), name='03_pad_mask') # Split segmentation in binary masks sel_labels = pe.Node(niu.Function(function=_select_labels, output_names=['out_wm', 'out_gm', 'out_csf']), name='04_sel_labels') sel_labels.inputs.labels = list(reversed(in_segmentation_model[1:])) # Select largest components (GM, WM) # ImageMath ${DIMENSION} ${EXTRACTION_WM} GetLargestComponent ${EXTRACTION_WM} get_wm = pe.Node(ImageMath(operation='GetLargestComponent'), name='05_get_wm') get_gm = pe.Node(ImageMath(operation='GetLargestComponent'), name='06_get_gm') # Fill holes and calculate intersection # ImageMath ${DIMENSION} ${EXTRACTION_TMP} FillHoles ${EXTRACTION_GM} 2 # MultiplyImages ${DIMENSION} ${EXTRACTION_GM} ${EXTRACTION_TMP} ${EXTRACTION_GM} fill_gm = pe.Node(ImageMath(operation='FillHoles', op2='2'), name='07_fill_gm') mult_gm = pe.Node(MultiplyImages(dimension=3), name='08_mult_gm') # MultiplyImages ${DIMENSION} ${EXTRACTION_WM} ${ATROPOS_WM_CLASS_LABEL} ${EXTRACTION_WM} # ImageMath ${DIMENSION} ${EXTRACTION_TMP} ME ${EXTRACTION_CSF} 10 relabel_wm = pe.Node(MultiplyImages(dimension=3, second_input=in_segmentation_model[-1]), name='09_relabel_wm') me_csf = pe.Node(ImageMath(operation='ME', op2='10'), name='10_me_csf') # ImageMath ${DIMENSION} ${EXTRACTION_GM} addtozero ${EXTRACTION_GM} ${EXTRACTION_TMP} # MultiplyImages ${DIMENSION} ${EXTRACTION_GM} ${ATROPOS_GM_CLASS_LABEL} ${EXTRACTION_GM} # ImageMath ${DIMENSION} ${EXTRACTION_SEGMENTATION} addtozero ${EXTRACTION_WM} ${EXTRACTION_GM} add_gm = pe.Node(ImageMath(operation='addtozero'), name='11_add_gm') relabel_gm = pe.Node(MultiplyImages(dimension=3, second_input=in_segmentation_model[-2]), name='12_relabel_gm') add_gm_wm = pe.Node(ImageMath(operation='addtozero'), name='13_add_gm_wm') # Superstep 7 # Split segmentation in binary masks sel_labels2 = pe.Node(niu.Function(function=_select_labels, output_names=['out_wm', 'out_gm', 'out_csf']), name='14_sel_labels2') sel_labels2.inputs.labels = list(reversed(in_segmentation_model[1:])) # ImageMath ${DIMENSION} ${EXTRACTION_MASK} addtozero ${EXTRACTION_MASK} ${EXTRACTION_TMP} add_7 = pe.Node(ImageMath(operation='addtozero'), name='15_add_7') # ImageMath ${DIMENSION} ${EXTRACTION_MASK} ME ${EXTRACTION_MASK} 2 me_7 = pe.Node(ImageMath(operation='ME', op2='2'), name='16_me_7') # ImageMath ${DIMENSION} ${EXTRACTION_MASK} GetLargestComponent ${EXTRACTION_MASK} comp_7 = pe.Node(ImageMath(operation='GetLargestComponent'), name='17_comp_7') # ImageMath ${DIMENSION} ${EXTRACTION_MASK} MD ${EXTRACTION_MASK} 4 md_7 = pe.Node(ImageMath(operation='MD', op2='4'), name='18_md_7') # ImageMath ${DIMENSION} ${EXTRACTION_MASK} FillHoles ${EXTRACTION_MASK} 2 fill_7 = pe.Node(ImageMath(operation='FillHoles', op2='2'), name='19_fill_7') # ImageMath ${DIMENSION} ${EXTRACTION_MASK} addtozero ${EXTRACTION_MASK} \ # ${EXTRACTION_MASK_PRIOR_WARPED} add_7_2 = pe.Node(ImageMath(operation='addtozero'), name='20_add_7_2') # ImageMath ${DIMENSION} ${EXTRACTION_MASK} MD ${EXTRACTION_MASK} 5 md_7_2 = pe.Node(ImageMath(operation='MD', op2='5'), name='21_md_7_2') # ImageMath ${DIMENSION} ${EXTRACTION_MASK} ME ${EXTRACTION_MASK} 5 me_7_2 = pe.Node(ImageMath(operation='ME', op2='5'), name='22_me_7_2') # De-pad depad_mask = pe.Node(ImageMath(operation='PadImage', op2='-%d' % padding), name='23_depad_mask') depad_segm = pe.Node(ImageMath(operation='PadImage', op2='-%d' % padding), name='24_depad_segm') depad_gm = pe.Node(ImageMath(operation='PadImage', op2='-%d' % padding), name='25_depad_gm') depad_wm = pe.Node(ImageMath(operation='PadImage', op2='-%d' % padding), name='26_depad_wm') depad_csf = pe.Node(ImageMath(operation='PadImage', op2='-%d' % padding), name='27_depad_csf') merge_tpms = pe.Node(niu.Merge(in_segmentation_model[0]), name='merge_tpms') wf.connect([ (inputnode, pad_mask, [('in_mask', 'op1')]), (inputnode, atropos, [('in_files', 'intensity_images'), ('in_mask', 'mask_image')]), (atropos, pad_segm, [('classified_image', 'op1')]), (pad_segm, sel_labels, [('output_image', 'in_segm')]), (sel_labels, get_wm, [('out_wm', 'op1')]), (sel_labels, get_gm, [('out_gm', 'op1')]), (get_gm, fill_gm, [('output_image', 'op1')]), (get_gm, mult_gm, [('output_image', 'first_input'), (('output_image', _gen_name), 'output_product_image')]), (fill_gm, mult_gm, [('output_image', 'second_input')]), (get_wm, relabel_wm, [('output_image', 'first_input'), (('output_image', _gen_name), 'output_product_image')]), (sel_labels, me_csf, [('out_csf', 'op1')]), (mult_gm, add_gm, [('output_product_image', 'op1')]), (me_csf, add_gm, [('output_image', 'op2')]), (add_gm, relabel_gm, [('output_image', 'first_input'), (('output_image', _gen_name), 'output_product_image')]), (relabel_wm, add_gm_wm, [('output_product_image', 'op1')]), (relabel_gm, add_gm_wm, [('output_product_image', 'op2')]), (add_gm_wm, sel_labels2, [('output_image', 'in_segm')]), (sel_labels2, add_7, [('out_wm', 'op1'), ('out_gm', 'op2')]), (add_7, me_7, [('output_image', 'op1')]), (me_7, comp_7, [('output_image', 'op1')]), (comp_7, md_7, [('output_image', 'op1')]), (md_7, fill_7, [('output_image', 'op1')]), (fill_7, add_7_2, [('output_image', 'op1')]), (pad_mask, add_7_2, [('output_image', 'op2')]), (add_7_2, md_7_2, [('output_image', 'op1')]), (md_7_2, me_7_2, [('output_image', 'op1')]), (me_7_2, depad_mask, [('output_image', 'op1')]), (add_gm_wm, depad_segm, [('output_image', 'op1')]), (relabel_wm, depad_wm, [('output_product_image', 'op1')]), (relabel_gm, depad_gm, [('output_product_image', 'op1')]), (sel_labels, depad_csf, [('out_csf', 'op1')]), (depad_csf, merge_tpms, [('output_image', 'in1')]), (depad_gm, merge_tpms, [('output_image', 'in2')]), (depad_wm, merge_tpms, [('output_image', 'in3')]), (depad_mask, outputnode, [('output_image', 'out_mask')]), (depad_segm, outputnode, [('output_image', 'out_segm')]), (merge_tpms, outputnode, [('out', 'out_tpms')]), ]) return wf def _select_labels(in_segm, labels): from os import getcwd import numpy as np import nibabel as nb from nipype.utils.filemanip import fname_presuffix out_files = [] cwd = getcwd() nii = nb.load(in_segm) for l in labels: data = (nii.get_data() == l).astype(np.uint8) newnii = nii.__class__(data, nii.affine, nii.header) newnii.set_data_dtype('uint8') out_file = fname_presuffix(in_segm, suffix='class-%02d' % l, newpath=cwd) newnii.to_filename(out_file) out_files.append(out_file) return out_files def _gen_name(in_file): import os from nipype.utils.filemanip import fname_presuffix return os.path.basename(fname_presuffix(in_file, suffix='processed'))
2.171875
2
public/pylib/holdoutgroup.py
shaileshakarte28/SFMC
0
12797904
<filename>public/pylib/holdoutgroup.py import requests import json import xmltodict import datetime from math import ceil import jxmlease import operator import random from operator import itemgetter import time from json import loads, dumps def auth(clientId: str, clientSecret: str, accountId:str ) -> requests.Response: end_point = "https://mc4pytkknrp1gsz0v23m93b3055y.auth.marketingcloudapis.com/v2/token" headers = {'Content-type': 'application/json;charset=UTF-8'} payload = { "grant_type":"client_credentials", "client_id": clientId, "client_secret": clientSecret, "account_id": accountId, } req = requests.post( end_point, payload, {"headers" : headers} # verify=False ) # req.close() return req.json() cred = auth('<KEY>','<KEY>','6291063') token = (cred["access_token"]) print("Access Token : ",token) def dataextension2(): try: accessToken = token account_id = "6291063" de_name = "Test_HoldOut_Group" de_external_key = "5E4FE032-6C0E-42E8-8B81-99F167D7DFC9" except Exception as e: return "There is some problem with the Credentials Provided...",e try: descbody =f""" <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <s:Header> <a:Action s:mustUnderstand="1">Retrieve</a:Action> <a:To s:mustUnderstand="1">https://webservice.s6.exacttarget.com/Service.asmx</a:To> <fueloauth xmlns="http://exacttarget.com">{accessToken}</fueloauth> </s:Header> <s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <RetrieveRequestMsg xmlns="http://exacttarget.com/wsdl/partnerAPI"> <RetrieveRequest> <ObjectType>DataExtensionObject[{de_name}]</ObjectType> <Properties>NAME</Properties> <Properties>Flag</Properties> <Properties>Status</Properties> <Filter xsi:type="SimpleFilterPart"> <Property>Status</Property> <SimpleOperator>equals</SimpleOperator> <Value>Unprocessed</Value> </Filter> </RetrieveRequest> </RetrieveRequestMsg> </s:Body> </s:Envelope> """ url = "https://webservice.s6.exacttarget.com/Service.asmx" headers = {'content-type': 'text/xml'} body = descbody resp = requests.post(url, data=body, headers=headers) response = resp.text # print(response) data = jxmlease.parse(response) status1=data["soap:Envelope"]["soap:Body"]["RetrieveResponseMsg"]["Results"] status2 = loads(dumps(status1)) except Exception as e: return "There are no records for holding out...",e else: cust_list=[] # print(status2) for item in status2: cust_key= item["Properties"]["Property"][0]['Value'] cust_list.append(cust_key) print("UnProcessed List",cust_list) n= len(cust_list)%10 print(n) cust_1 = [] for i in range(0,n): cust_1.append(cust_list.pop()) print(cust_1) cust_2 = [ele for ele in cust_list if ele not in cust_1] print(cust_2) if len(cust_2) > 9: # hold_list = cust_list[::10] hold_list = [cust_2[x*10-1] for x in range(1,len(cust_2)) if x*10<=len(cust_2)] print(hold_list) for element in hold_list: soapbody = f""" <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <s:Header> <a:Action s:mustUnderstand="1">Update</a:Action> <a:MessageID>urn:uuid:7e0cca04-57bd-4481-864c-6ea8039d2ea0</a:MessageID> <a:ReplyTo> <a:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</a:Address> </a:ReplyTo> <a:To s:mustUnderstand="1">https://webservice.s6.exacttarget.com/Service.asmx</a:To> <fueloauth xmlms="http://exacttarget.com">{accessToken}</fueloauth> </s:Header> <s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <UpdateRequest xmlns="http://exacttarget.com/wsdl/partnerAPI"> <Objects xsi:type="DataExtensionObject"> <PartnerKey xsi:nil="true"/> <Client> <ID>{account_id}</ID> </Client> <ObjectID xsi:nil="true"/> <CustomerKey>{de_external_key}</CustomerKey> <Properties> <Property> <Name>Name</Name> <Value>{element}</Value> </Property> <Property> <Name>Flag</Name> <Value>False</Value> </Property> <Property> <Name>Status</Name> <Value>Hold Out</Value> </Property> </Properties> </Objects> </UpdateRequest> </s:Body> </s:Envelope> """ url = "https://webservice.s6.exacttarget.com/Service.asmx" headers = {'content-type': 'text/xml'} body = soapbody resp = requests.post(url, data=body, headers=headers) print(resp.status_code) # print(resp.text) holdout_rec = hold_list # print("HoldOut Records: ", holdout_rec) res_list = tuple(set(holdout_rec)^set(cust_2)) print("Without Holdout: ", res_list) for element in res_list: soapbody = f""" <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <s:Header> <a:Action s:mustUnderstand="1">Update</a:Action> <a:MessageID>urn:uuid:7e0cca04-57bd-4481-864c-6ea8039d2ea0</a:MessageID> <a:ReplyTo> <a:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</a:Address> </a:ReplyTo> <a:To s:mustUnderstand="1">https://webservice.s6.exacttarget.com/Service.asmx</a:To> <fueloauth xmlms="http://exacttarget.com">{accessToken}</fueloauth> </s:Header> <s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <UpdateRequest xmlns="http://exacttarget.com/wsdl/partnerAPI"> <Objects xsi:type="DataExtensionObject"> <PartnerKey xsi:nil="true"/> <Client> <ID>{account_id}</ID> </Client> <ObjectID xsi:nil="true"/> <CustomerKey>{de_external_key}</CustomerKey> <Properties> <Property> <Name>Name</Name> <Value>{element}</Value> </Property> <Property> <Name>Flag</Name> <Value>True</Value> </Property> <Property> <Name>Status</Name> <Value>Processed</Value> </Property> </Properties> </Objects> </UpdateRequest> </s:Body> </s:Envelope> """ url = "https://webservice.s6.exacttarget.com/Service.asmx" headers = {'content-type': 'text/xml'} body = soapbody resp = requests.post(url, data=body, headers=headers) print(resp.status_code) # print(resp.text) if len(cust_1) > 0: for element in cust_1: soapbody = f""" <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:a="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <s:Header> <a:Action s:mustUnderstand="1">Update</a:Action> <a:MessageID>urn:uuid:7e0cca04-57bd-4481-864c-6ea8039d2ea0</a:MessageID> <a:ReplyTo> <a:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</a:Address> </a:ReplyTo> <a:To s:mustUnderstand="1">https://webservice.s6.exacttarget.com/Service.asmx</a:To> <fueloauth xmlms="http://exacttarget.com">{accessToken}</fueloauth> </s:Header> <s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <UpdateRequest xmlns="http://exacttarget.com/wsdl/partnerAPI"> <Objects xsi:type="DataExtensionObject"> <PartnerKey xsi:nil="true"/> <Client> <ID>{account_id}</ID> </Client> <ObjectID xsi:nil="true"/> <CustomerKey>{de_external_key}</CustomerKey> <Properties> <Property> <Name>Name</Name> <Value>{element}</Value> </Property> <Property> <Name>Flag</Name> <Value>True</Value> </Property> <Property> <Name>Status</Name> <Value>Unprocessed</Value> </Property> </Properties> </Objects> </UpdateRequest> </s:Body> </s:Envelope> """ url = "https://webservice.s6.exacttarget.com/Service.asmx" headers = {'content-type': 'text/xml'} body = soapbody resp = requests.post(url, data=body, headers=headers) print(resp.status_code) # print(resp.text) return "All Records Processed Sucessfully..." dataextension2()
2.625
3
python/submit_jobstream_byid.py
WorkloadAutomation/TWSzOS_REST_API_Python_samples
2
12797905
#!/usr/bin/python ############################################################################# # Licensed Materials - Property of HCL* # (C) Copyright HCL Technologies Ltd. 2017, 2018 All rights reserved. # * Trademark of HCL Technologies Limited ############################################################################# import waconn import argparse import datetime # ----------------------------------------------------- # Define and parse command line arguments # ----------------------------------------------------- parser = argparse.ArgumentParser(description='Submit a job stream to the TWSz plan') parser.add_argument('-e','--engineName', help='name of the engine as defined in the TWSz Connector', required=True, metavar="<engine_name>") parser.add_argument('-j','--jsName', help='job stream', required=True, metavar="<job_stream_name>") args = parser.parse_args() now = datetime.datetime.utcnow().isoformat() # ----------------------------------------------------- # Intialize the client utility module # ----------------------------------------------------- conn = waconn.WAConn('waconn.ini','/twsz/v1/'+args.engineName) # ----------------------------------------------------- # Query the model and get the js id # ----------------------------------------------------- resp = conn.post('/model/jobstream/header/query', json={"filters": {"jobstreamFilter": {"jobStreamName": args.jsName,"validIn": now}}}, headers={'How-Many': '1'}) r = resp.json() if len(r) == 0: print('job stream not found') exit(2) jsId=r[0]["id"] print("the js id is: " + jsId) # ----------------------------------------------------- # Now submit the jobstream to the plan # ----------------------------------------------------- submit = {"inputArrivalTime": now} # now we can submit the js print "submit parameters: " +str(submit) resp = conn.post('/plan/current/jobstream/' + jsId + '/action/submit_jobstream', json=submit) r = resp.json() for js in r: print ('Submitted: '+js)
2.15625
2
gans/ops/misc.py
gobrewers14/gans
0
12797906
<reponame>gobrewers14/gans # ============================================================================ # Author: <NAME> # Email: <<EMAIL>> # Date: 2018-09-02 17:13:47 # Brief: # ============================================================================ import tensorflow as tf def attention(x, l=1.0, norm=None, name="att"): """ Args: Returns: Notes: """ with tf.variable_scope(name): orig_shp = x.get_shape().as_list() # make f, g, h f = conv2d(x, num_filters=orig_shp[-1], norm=norm, filter_size=(1, 1), pad="SAME", name="fconv1x1") g = conv2d(x, num_filters=orig_shp[-1], norm=norm, filter_size=(1, 1), pad="SAME", name="gconv1x1") h = conv2d(x, num_filters=orig_shp[-1], norm=norm, filter_size=(1, 1), pad="SAME", name="hconv1x1") f = tf.reshape(f, [-1, orig_shp[-1]]) g = tf.reshape(g, [-1, orig_shp[-1]]) h = tf.reshape(h, [-1, orig_shp[-1]]) beta = tf.nn.softmax(tf.matmul(g, tf.transpose(f, [1, 0]))) o = tf.matmul(beta, h) o = tf.reshape(o, [-1] + orig_shp[1:]) out = l * o + x return out
2.296875
2
training_dataset_maker1.py
deepakrana47/DT-RAE
1
12797907
<filename>training_dataset_maker1.py import os from utility1 import extract_batchfeature_using_senna, get_parents, get_dep, get_words_id, pdep_2_deporder_dep, dep_2_hid_var from score_calc import get_rae_score_by_wd, get_rae_score_by_wd_dep from dynamic_pooling import get_dynamic_pool from text_process1 import line_processing, get_n_feature import numpy as np import pickle def get_vect_data_by_dep(fname, pool_size, mtype, pf): # # # print fname, 'file processing' sent_fd = open(fname) sents = sent_fd.read().split('\n') slen = len(sents) # slen = 3 schk = 20 scount = 0 asents_vect = [] asent_score = [] asents = [] nscore = [] nfeat = [] while scount < slen: lscount = scount + schk if slen - scount > schk else slen all_sents = [] score = [] try: for sent in sents[scount:lscount]: a = sent.split('\t') if len(a) < 3: continue score.append(float(a[0])) line1 = line_processing(a[1]) line2 = line_processing(a[2]) all_sents += [line1, line2] nfeat.append(get_n_feature(line1, line2)) except IndexError: pass wds = extract_batchfeature_using_senna(all_sents) wd_len = len(wds) wd_count = 0 scor_count = 0 while wd_count < wd_len: try: temp_score, _, s_matrix = get_rae_score_by_wd_dep(wds[wd_count], wds[wd_count + 1],mtype=mtype) except KeyError: scor_count += 1 wd_count += 2 continue except IndexError: pass sents_vect = get_dynamic_pool(s_matrix, pool_size=pool_size, pf=pf) if not np.any(sents_vect): scor_count += 1 wd_count += 2 continue asents_vect.append(sents_vect) asent_score.append(score[scor_count]) nscore.append(temp_score) asents.append(all_sents[wd_count]+'\t'+all_sents[wd_count+1]) scor_count += 1 wd_count += 2 scount = lscount # print scount, # print sent_fd.close() return asents, asents_vect, asent_score, nscore, nfeat def test_get_vect_data_by_dep(fsent, fpickle, fscore, fnfeat, pool_size, mtype, pf): # print pf # # # print fname, 'file processing' asents_vect = [] asent_score = [] asents = [] nscore = [] nfeat = [] wds = pickle.load(open(fpickle,'rb')) sents = pickle.load(open(fsent,'rb')) scores = pickle.load(open(fscore,'rb')) nfeats = pickle.load(open(fnfeat,'rb')) for i in range(len(sents)): temp_score, _, s_matrix = get_rae_score_by_wd_dep(wds[i][0], wds[i][1],mtype=mtype) sents_vect = get_dynamic_pool(s_matrix, pool_size=pool_size, pf=pf) if not np.any(sents_vect): continue asents_vect.append(sents_vect) asent_score.append(scores[i]) nscore.append(temp_score) asents.append(sents[i][0]+'\t'+sents[i][1]) nfeat.append(nfeats[i]) return asents, asents_vect, asent_score, nscore, nfeat def get_vect_data(fname, pool_size, pf): # # print fname, 'th sentence processing' sent_fd = open(fname) sents = sent_fd.read().split('\n') slen = len(sents) # slen = 3000 schk = 10 scount = 0 asents_vect = [] asent_score = [] nscore = [] asents = [] while scount < slen: lscount = scount + schk if slen - scount > schk else slen all_sents = [] score = [] try: for sent in sents[scount:lscount]: a = sent.split('\t') if len(a) < 3: continue score.append(float(a[0])) all_sents += [line_processing(a[1]), line_processing(a[2])] except IndexError: pass wds = extract_batchfeature_using_senna(all_sents) wd_len = len(wds) wd_count = 0 scor_count = 0 while wd_count < wd_len: try: temp_score, _, s_matrix = get_rae_score_by_wd(wds[wd_count], wds[wd_count + 1], mtype='deep') except KeyError: scor_count += 1 wd_count += 2 continue except IndexError: pass sents_vect = get_dynamic_pool(s_matrix, pool_size=pool_size, pf=pf) if not np.any(sents_vect): scor_count += 1 wd_count += 2 continue asents_vect.append(sents_vect) asent_score.append(score[scor_count]) nscore.append(temp_score) asents.append(all_sents[wd_count]+'\t'+all_sents[wd_count+1]) scor_count += 1 wd_count += 2 scount = lscount # # print scount, # # print sent_fd.close() return asents, asents_vect, asent_score, nscore def test_data_set_maker_by_wd(flag=None, base_dir = None, out_dir=None, pool_size=10, num_feat=1, stp=None, mtype='Normal', pf=None): if flag == 'train': v_csv_file = out_dir + 'train_vector_dataset.csv' sent_file = out_dir + 'train_sent_dataset.txt' nscore_txt = out_dir + 'training_orig_score.pickle' src_dir = base_dir + 'train/' tpickle = src_dir + 'msr_paraphrase_train' + str(stp) + '.pickle' tsent= src_dir+ 'msr_paraphrase_trainsent'+ str(stp) + '.pickle' tscore= src_dir+ 'msr_paraphrase_trainscore'+ str(stp) + '.pickle' tnfeat= src_dir+ 'msr_paraphrase_trainnfeat'+ str(stp) + '.pickle' elif flag == 'test': v_csv_file = out_dir + 'test_vector_dataset.csv' sent_file = out_dir + 'test_sent_dataset.csv' nscore_txt = out_dir + 'test_orig_score.pickle' src_dir = base_dir + 'test/' tpickle = src_dir+'msr_paraphrase_test'+str(stp)+'.pickle' tsent = src_dir + 'msr_paraphrase_testsent' + str(stp) + '.pickle' tscore = src_dir + 'msr_paraphrase_testscore' + str(stp) + '.pickle' tnfeat = src_dir + 'msr_paraphrase_testnfeat' + str(stp) + '.pickle' if os.path.isfile(v_csv_file): if open(v_csv_file,'r').readline(): # print "Already present :" return v_csv_file, sent_file data_csv_fd = open(v_csv_file,'w') sents_fd = open(sent_file,'w') all_nscore = [] all_nfeat = [] sents, sents_vect, score, nscore, nfeat = test_get_vect_data_by_dep(fpickle = tpickle,fsent=tsent, fscore=tscore, fnfeat=tnfeat, pool_size=pool_size, mtype=mtype, pf=pf) all_nscore += score all_nfeat += nfeat csv_txt = '' sent_txt = '' for i in range(len(sents_vect)): csv_txt += str(score[i]) sent_txt += sents[i]+'\n' for j in sents_vect[i].reshape(pool_size*pool_size): csv_txt += ','+str(j) if num_feat == 1: for j in nfeat[i]: csv_txt += ',' + str(j) csv_txt += '\n' data_csv_fd.write(csv_txt) sents_fd.write(sent_txt) pickle.dump(all_nscore,open(nscore_txt, 'wb')) data_csv_fd.close() sents_fd.close() return v_csv_file, sent_file def data_set_maker_by_wd(flag=None, base_dir = None, out_dir=None, pool_size=10, num_feat=1, mtype='Normal', pf=None): if flag == 'train': v_csv_file = out_dir + 'train_vector_dataset.csv' sent_file = out_dir + 'train_sent_dataset.txt' nscore_txt = out_dir + 'training_orig_score.pickle' src_dir = base_dir + 'train/' file_list = os.listdir(src_dir) elif flag == 'test': v_csv_file = out_dir + 'test_vector_dataset.csv' sent_file = out_dir + 'test_sent_dataset.csv' nscore_txt = out_dir + 'test_orig_score.pickle' src_dir = base_dir + 'test/' file_list = os.listdir(src_dir) if os.path.isfile(v_csv_file): if open(v_csv_file,'r').readline(): # print "Already present :" return v_csv_file, sent_file data_csv_fd = open(v_csv_file,'w') sents_fd = open(sent_file,'w') all_nscore = [] all_nfeat = [] for i in range(len(file_list)): sents, sents_vect, score, nscore, nfeat = get_vect_data_by_dep(src_dir +file_list[i], pool_size=pool_size, mtype=mtype, pf=pf) all_nscore += score all_nfeat += nfeat csv_txt = '' sent_txt = '' for i in range(len(sents_vect)): csv_txt += str(score[i]) sent_txt += sents[i]+'\n' for j in sents_vect[i].reshape(pool_size*pool_size): csv_txt += ','+str(j) if num_feat == 1: for j in nfeat[i]: csv_txt += ',' + str(j) csv_txt += '\n' data_csv_fd.write(csv_txt) sents_fd.write(sent_txt) pickle.dump(all_nscore,open(nscore_txt, 'wb')) data_csv_fd.close() sents_fd.close() return v_csv_file, sent_file def wd_making(fname,stp): sent_fd = open(fname) sents = sent_fd.read().rstrip(' |\n').split('\n') count = 1 nfeat = [] wds = [] all_sents = [] score = [] for sent in sents: a = sent.split('\t') if len(a) < 3: continue score.append(float(a[0])) line1 = line_processing(a[1]) line2 = line_processing(a[2]) all_sents.append([line1, line2]) nfeat.append(get_n_feature(line1, line2)) temp = extract_batchfeature_using_senna([line1, line2]) print count, if len(temp) !=2: print "not all sentences parsed !!" pass wds.append(temp) count +=1 pickle.dump(wds,open(fname.split('.')[0]+str(stp)+'.pickle','wb')) pickle.dump(all_sents,open(fname.split('.')[0]+'sent'+str(stp)+'.pickle','wb')) pickle.dump(score,open(fname.split('.')[0]+'score'+str(stp)+'.pickle','wb')) pickle.dump(nfeat,open(fname.split('.')[0]+'nfeat'+str(stp)+'.pickle','wb')) return import Global if __name__=='__main__': testf = '/media/zero/41FF48D81730BD9B/Final_Thesies/data/NN-dataset/MSRParaphraseCorpus/test/msr_paraphrase_test.txt' trainf = '/media/zero/41FF48D81730BD9B/Final_Thesies/data/NN-dataset/MSRParaphraseCorpus/train/msr_paraphrase_train.txt' Global.init() # Global.init_wv_self(0,50) # wd_making(testf,0) # wd_making(trainf,0) Global.init_wv_self(1,50) wd_making(testf,1) wd_making(trainf,1)
2.15625
2
nemo_benchmark.py
KaySackey/Nemo
9
12797908
<reponame>KaySackey/Nemo<filename>nemo_benchmark.py<gh_stars>1-10 import sys import timeit from nemo.parser import NemoParser from mako.template import Template if len(sys.argv) > 1: filename = sys.argv[1] else: print 'A filename is required' exit() def nemo(str, debug=False): NemoParser(debug=debug).parse(str) # Return Nothing so mako won't render a result return '' def nemo_render(str, debug=False): return NemoParser(debug=debug).parse(str) mako_temp = Template(filename=filename, input_encoding='utf-8', output_encoding='utf-8',) nemo_temp = Template(filename=filename, preprocessor=nemo, input_encoding='utf-8', output_encoding='utf-8',) nemo_temp_render = Template(filename=filename, preprocessor=nemo_render, input_encoding='utf-8', output_encoding='utf-8',) number = 10000 t_mako = timeit.Timer('mako_temp.render()', 'from __main__ import mako_temp') t_nemo = timeit.Timer('nemo_temp.render()', 'from __main__ import nemo_temp') t_nemo_render = timeit.Timer('nemo_temp_render.render()', 'from __main__ import nemo_temp_render') mako_time = t_mako.timeit(number=number) / number nemo_time = t_nemo.timeit(number=number) / number nemo_time_render = t_nemo_render.timeit(number=number) / number print 'Mako (full render w/o nemo): %.2f ms' % (1000 * mako_time) print 'Nemo (w/o mako render): %.2f ms' % (1000 * nemo_time) print 'Nemo (w/ mako render): %.2f ms' % (1000 * nemo_time_render)
2.625
3
main.py
piotrek-szczygiel/orchlang
11
12797909
import argparse import sys import copy from graphviz import Digraph from rply import LexingError, ParsingError from lang.lexer import Lexer from lang.parser import Parser from lang.scope import Scope lexer = Lexer() parser = Parser(lexer.tokens) def execute(scope, source, draw=False, lexer_output=False, opt=False): try: tokens = lexer.lex(source) if lexer_output: print("LEXER OUTPUT") for token in copy.copy(tokens): print(token) print() print("PROGRAM OUTPUT") ast = parser.parse(tokens) # Optimize if opt: ast.eval(True, scope) result = ast.eval(False, scope) # Draw AST graph if draw: g = Digraph() ast.draw(g) g.render("ast", format="png", view=True, cleanup=True) return result except ValueError as err: print(err) except LexingError: print("Lexing error") except ParsingError: print("Parsing error") def run_repl(): scope = Scope() while True: try: source = input("> ") result = execute(scope, source) if result is not None: print(result) if scope.last_pop is not None: scope.symbols_stack.insert(0, scope.last_pop) except KeyboardInterrupt: break def run_file(path, draw=False, lexer_output=False): scope = Scope() with open(path, "r") as f: source = f.read() execute(scope, source, draw=draw, lexer_output=lexer_output) if __name__ == "__main__": arg_parser = argparse.ArgumentParser() arg_parser.add_argument("file", nargs="?", help="path to script") arg_parser.add_argument( "-a", "--ast", help="draw abstract syntax tree", action="store_true" ) arg_parser.add_argument( "-l", "--lexer", help="print lexer output", action="store_true" ) args = arg_parser.parse_args() if args.file: run_file(args.file, draw=args.ast, lexer_output=args.lexer) else: run_repl()
2.609375
3
empty7v2.0.py
elecalle/Note-Taking_App
0
12797910
<filename>empty7v2.0.py #################################################################################### # Version: January 2022 # # Purpose: # This is a note-taking app, useful for people working on several projects at # the same time and who want to be able to update multiple documents at the same # time and from the same window. # # Structure: # There are six text widgets in total: 5 corresponding to 5 different projects, 1 # ("Misc", from "Miscellaneous"for taking impromptu notes on anything else that is # not related to those 5 projects. # You write your notes on the desired text widget. Once you're done, you click on # the green tick button, which saves what you've written in a corresponding .txt # file, and automatically clears the text widget for you. On the txt file, entries # appear together with the date and time of writing, unless there is already an entry # on that txt file with the same data, in which case only the time of writing is # indicated. Above every widget there's a button with the name of the corresponding # project. If clicked, that button opens the .txt document associated with that # widget. # The red cross button clears the text widget (note: I had that link to a function in # a previous version of this code, then I removed the function but left the button, # and I still haven't gotten around to linking it again) # #################################################################################### import tkinter as tk from tkinter import ttk from PIL import ImageTk, Image from tkinter import filedialog import os import ctypes import functions from functools import partial import pdb; #pdb.set_trace() ctypes.windll.shcore.SetProcessDpiAwareness(1) # this improves resolution of GUI root = tk.Tk() root.title("Elena's Notes") #root.geometry('200x150') # this adjusts the size of the GUI to 200X150 # I want the border of the text widgets to change color if the cursor is over those widgets, # so I am using two base64-encoded gifs of a rounded-corner square, one is green (accent color), # the other one is black (no-selection color). # CALLING A FUNCTION TO USE A BASE64-ENCODED GIF OF A ROUNDED-CORNER SQUARE WITH A GREEN BORDER focusBorderImageData = functions.focusborder_string() # CALLING A FUNCTION TO USE A BASE64-ENCODED GIF OF A ROUNDED-CORNER SQUARE WITH A BLACK BORDER borderImageData = functions.border_string() style = ttk.Style() borderImage = tk.PhotoImage("borderImage", data=borderImageData) focusBorderImage = tk.PhotoImage("focusBorderImage", data=focusBorderImageData) style.element_create("RoundedFrame", "image", borderImage, ("focus", focusBorderImage), border=20, sticky="nsew") style.layout("RoundedFrame", [("RoundedFrame", {"sticky": "nsew"})]) style.configure('TFrame', background= 'black') # CREATING 2 FRAMES, A LEFT AND A RIGHT FRAME, WHERE TO HOST 3 TEXT WIDGETS EACH frameL = tk.Frame(root, bg="#BAD9D0") # cD4F1B2 is a light green color frameR = tk.Frame(root, bg="#BAD9D0") # DECLARING LISTS TO POPULATE WITH OBJECTS THAT WILL BE ACCESSED LATER USING THE INDEX ("i") frames = [] texts = [] # SETTING BUTTON IMAGES: MAIN BUTTON img = functions.image(3) # SETTING BUTTON IMAGES: SECONDARY BUTTONS img_cross = Image.open('cross1.png') img_cross = img_cross.resize((30,30), Image.ANTIALIAS) img_photo_crs = ImageTk.PhotoImage(img_cross) img_check = Image.open('check1.png') img_check = img_check.resize((30,30), Image.ANTIALIAS) img_photo_chk = ImageTk.PhotoImage(img_check) for i in range(6): # THE FIRST 3 SUBFRAMES GO TO THE LEFT if i <= 2: frame = ttk.Frame(frameL, style="RoundedFrame", padding=10) # THE LAST 3 SUBFRAMES GO TO THE RIGHT else: frame = ttk.Frame(frameR, style="RoundedFrame", padding=10) # APPEND EVERY SINGLE FRAME TO THE LIST TO ACCESS THEM LATER frames.append(frame) # CREATING THE TEXT WIDGETS (I.E. THE INPUT FIELDS) text = tk.Text(frames[i], borderwidth = 0, highlightthickness = 0, wrap = "word", width = 10, height = 5) text.pack(fill = "both", expand = True) text.bind("<FocusIn>", lambda event: frames[i].state(["focus"])) text.bind("<FocusOut>", lambda event: frames[i].state(["!focus"])) text.insert("end", "") texts.append(text) # CREATING THE BUTTONS FOLLOWING THE GIVEN ORDER CHECKING THE LOOP INDEX if i == 0: main_button = functions.create_buttons(frameL, functions.openprobus, "Probus", i) elif i == 1: main_button = functions.create_buttons(frameL, functions.opensage, "Sage", i) elif i == 2: main_button = functions.create_buttons(frameL, functions.openJALL, "JALL", i) #Journal African Languages & Linguistics elif i == 3: main_button = functions.create_buttons(frameR, functions.openheaviness, "Heavi", i) # Topicalization Study elif i == 4: main_button = functions.create_buttons(frameR, functions.openacode, "ACoDe", i) elif i == 5: main_button = functions.create_buttons(frameR, functions.openmisc, "MISC", i) main_button.config(image = img) main_button.pack(pady = 5) # SHOWING THE FRAMES (MOVE TO BOTTOM?) frames[i].pack(side = tk.TOP, fill = "both", expand = True, padx = 30) # ADDING THE BUTTONS INSIDE THE INPUT FIELDS # PARTIAL (IN "command") ALLOW US TO SET A COMMAND FOR THE BUTTON USING THE INDEX ("i") AS ARGUMENT button_check = tk.Button(frames[i], image = img_photo_chk, command = partial(functions.compile, texts , i), background = "white", borderwidth = 0, height = 30, width = 30) button_check.image = img_photo_chk button_check.pack(side = tk.LEFT) button_cross = tk.Button(frames[i], image = img_photo_crs, background = "white", borderwidth = 0, height = 30, width = 30) button_cross.image = img_photo_crs button_cross.pack(side = tk.RIGHT) root.configure(background="#BAD9D0") #BAD9D0 #cfffff #D4F1B2 frameL.pack(side=tk.LEFT, fill="both", expand=True) # side=tk.LEFT places frames side by side frameR.pack(side=tk.LEFT, fill="both", expand=True) # side=tk.LEFT places frames side by side # SET FOCUS TO THE FIRST FRAME frames[0].focus_set() font_tuple = ("Garamond", 14) root.mainloop()
3.515625
4
estimators/train_nocs.py
ArvindSoma/HumanEstimation
0
12797911
<reponame>ArvindSoma/HumanEstimation """ Train NOC class """ import os import cv2 from recordclass import recordclass from torchstat import stat from math import log10 from models.networks import * from utils.common import * def visualize(batch, output, writer, name, niter, foreground=False, test=False): output_image = output[0] if foreground: output_image = output[0][1] foreground = output[0][0] write_image(writer, name="{}/Ground Truth Foreground".format(name), sample=((1 - batch['background']).long() * 2 - 1), niter=niter) write_image(writer, name="{}/Output_Foreground".format(name), sample=((torch.softmax(foreground, 1)[:, 1:2, :, :] > 0.5).long() * 2) - 1, niter=niter) final_noc = output_image * (torch.softmax(output[0][0], 1)[:, 1:2, :, :] > 0.5).float() write_image(writer, name="{}/Output_Final_NOC".format(name), sample=(final_noc * 2) - 1, niter=niter) writer.add_scalar('L1-Loss', output[1].total_loss, niter) writer.add_scalar('NOC-Loss', output[1].NOC_loss, niter) writer.add_scalar('Background-Loss', output[1].background_loss, niter) write_image(writer, name="{}/Output_NOC".format(name), sample=(output_image * 2) - 1, niter=niter) write_image(writer, name="{}/Input".format(name), sample=batch['image'], niter=niter) if not test: write_image(writer, name="{}/Ground Truth NOC".format(name), sample=batch['noc_image'], niter=niter) return True class UnNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) # The normalize code -> t.sub_(m).div_(s) return tensor class TrainNOCs: def __init__(self, save_dir='Trial', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), num_downs=5, lr=2e-4, betas=(0.5, 0.999), batch_size=8, checkpoint=None, model_type='res', output_heads='two'): if output_heads == 'one': self.forward = self.forward_sparse self.seg_net = ResNetGenerator(out_channels=3, last_layer=nn.ReLU()) if model_type == 'res_unet': self.seg_net = ResUnetGenerator(output_nc=3, last_layer=nn.ReLU()) # self.seg_net = UnetGenerator(input_nc=3, output_nc=3, num_downs=num_downs, # use_dropout=False, norm_layer=torch.nn.BatchNorm2d, # last_layer=nn.LeakyReLU(0.2)) self.foreground = False elif output_heads == 'two': self.forward = self.forward_2_heads self.seg_net = ResNet2HeadGenerator(out_channels=3, last_layer=nn.ReLU()) if model_type == 'res_unet': self.seg_net = ResUnet2HeadGenerator(output_nc=3, last_layer=nn.ReLU()) # self.seg_net = Unet2HeadGenerator(input_nc=3, output_nc=3, num_downs=num_downs, # use_dropout=False, norm_layer=torch.nn.BatchNorm2d, # last_layer=nn.ReLU()) self.foreground = True else: self.foreground = None print("Error! Unknown number of heads!") exit(256) print("Using model {}.".format(self.seg_net.__class__.__name__)) # self.seg_net.apply(init_weights) # stat(model=self.seg_net, input_size=(3, 256, 256)) self.sparse_l1 = torch.nn.SmoothL1Loss(reduction='none') self.l1 = torch.nn.SmoothL1Loss() self.l2 = torch.nn.MSELoss() self.bce = torch.nn.BCEWithLogitsLoss() self.seg_net.cuda() self.sparse_l1.cuda() self.l1.cuda() self.bce.cuda() self.seg_net.train() self.criterion_selection = None self.lr = lr self.optimizer = torch.optim.Adam(params=self.seg_net.parameters(), lr=lr, betas=betas) # self.optimizer = torch.optim.SGD(params=self.seg_net.parameters(), lr=lr, momentum=0.5) if checkpoint is not None: checkpoint = torch.load(checkpoint) self.seg_net.load_state_dict(checkpoint['model']) self.optimizer.load_state_dict(checkpoint['optimizer']) self.save_path = os.path.join("../saves", save_dir) if not os.path.exists(self.save_path): os.mkdir(self.save_path) self.batch_size = batch_size self.mean = mean self.std = std self.loss_tuple = recordclass('losses', ('total_loss', 'NOC_loss', 'background_loss', 'NOC_mse')) self.ply_start = '''ply format ascii 1.0 element vertex {} property float x property float y property float z property uchar red property uchar green property uchar blue end_header\n''' self.un_norm = UnNormalize(mean=self.mean, std=self.std) def criterion_mse(self, output, batch): batch_size = batch['num_points'].shape[0] batch['num_points'] = batch['num_points'].long() num = batch['num_points'].view(batch_size, 1) batch['yx_loc'] = batch['yx_loc'].long() sub = 0 for idx in range(batch_size): if num[idx, 0] == 0: batch_size -= 1 continue noc_points = batch['noc_points'][idx, :num[idx, 0], :] noc_points = torch.transpose(noc_points, 0, 1) sub += self.l2(output[idx, :, batch['yx_loc'][idx, :num[idx, 0], 0], batch['yx_loc'][idx, :num[idx, 0], 1]], noc_points) return sub / batch_size def criterion_l1_sparse(self, output, batch): batch_size = batch['num_points'].shape[0] # num_points[num_points == 0] = 1 # sub = torch.abs(output - target) # sub = self.sparse_l1(output, target) # sub_batch = torch.sum(sub, dim=(1, 2, 3)) # sub_batch = sub_batch / (num_points * 3) batch['num_points'] = batch['num_points'].long() num = batch['num_points'].view(batch_size, 1) batch['yx_loc'] = batch['yx_loc'].long() sub = 0 for idx in range(batch_size): if num[idx, 0] == 0: batch_size -= 1 continue noc_points = batch['noc_points'][idx, :num[idx, 0], :] noc_points = torch.transpose(noc_points, 0, 1) sub += self.l1(output[idx, :, batch['yx_loc'][idx, :num[idx, 0], 0], batch['yx_loc'][idx, :num[idx, 0], 1]], noc_points) return sub / batch_size def forward_sparse(self, batch): total_loss = 0 output = self.seg_net(batch['image']) # if 'mask_image' in batch.keys(): # masked_output = output * (batch['mask_image'] > 0).float() noc_loss = self.criterion_l1_sparse(output=output, batch=batch) total_loss += noc_loss * 10 # loss = self.l1(masked_output, batch['noc_image']) background_target = torch.zeros_like(output) background_loss = self.l1(output * batch['background'], background_target) total_loss += background_loss mse = self.criterion_mse(output=output, batch=batch) losses = self.loss_tuple(total_loss=total_loss, NOC_loss=noc_loss, background_loss=background_loss, NOC_mse=mse) return output, losses def forward_2_heads(self, batch): total_loss = 0 output = self.seg_net(batch['image']) # masked_output = output[1] * (batch['mask_image'] > 0).float() noc_loss = self.criterion_l1_sparse(output=output[1], batch=batch) total_loss += noc_loss * 70 # print(torch.max(((1 - batch['background'][:, 0:1, :, :]) > 0).float())) foreground = (1 - batch['background'][:, 0:2, :, :]).float() foreground[:, 0, :, :] = batch['background'][:, 0, :, :] background_loss = self.bce(input=output[0], target=foreground) total_loss += background_loss mse = self.criterion_mse(output=output[1], batch=batch) losses = self.loss_tuple(total_loss=total_loss, NOC_loss=noc_loss, background_loss=background_loss, NOC_mse=mse) return output, losses def train(self, batch): output, losses = self.forward(batch=batch) # output = self.seg_net(batch['image']) # # # if 'mask_image' in batch.keys(): # masked_output = output * batch['mask_image'] # # loss = self.criterion_l1(output=masked_output, batch=batch) # l1_loss = self.loss_l1(masked_output, batch['noc_image']) / ( # torch.sum(batch['num_points']) + 1 * (torch.sum(batch['num_points'] == 0).float())) # self.optimizer.zero_grad() losses.total_loss.backward() self.optimizer.step() return output, losses def write_noc_ply(self, output, batch, idx, ply_dir): batch_size = batch['num_points'].shape[0] idx = idx * self.batch_size # masked_output = output[1] * (batch['mask_image'] > 0).float() batch['num_points'] = batch['num_points'].long() num = batch['num_points'].view(batch_size, 1) for pdx in range(batch_size): image = batch['image'][pdx, :, batch['yx_loc'][pdx, :num[pdx, 0], 0], batch['yx_loc'][pdx, :num[pdx, 0], 1]] if self.foreground: out_arr = output[1] else: out_arr = output output_arr = out_arr[pdx, :, batch['yx_loc'][pdx, :num[pdx, 0], 0], batch['yx_loc'][pdx, :num[pdx, 0], 1]] noc_gt = batch['noc_points'][pdx, :num[pdx, 0]].cpu().numpy() image = image.cpu().numpy().T image = image[:, [2, 1, 0]] * 255 output_arr = output_arr.cpu().numpy().T start = self.ply_start.format(num[pdx, 0].item()) concatenated_out = np.concatenate((output_arr, image), axis=1) concatenated_gt = np.concatenate((noc_gt, image), axis=1) image = batch['image'][pdx, :, :, :].cpu().numpy() image = image.transpose(1, 2, 0) * 255 cv2.imwrite(os.path.join(ply_dir, 'Output_{}.png'.format(idx + pdx)), image.astype('uint8')) with open(os.path.join(ply_dir, 'Output_{}.ply'.format(idx + pdx)), 'w') as write_file: write_file.write(start) np.savetxt(write_file, concatenated_out, fmt=' '.join(['%0.8f'] * 3 + ['%d'] * 3)) with open(os.path.join(ply_dir, 'Ground_truth_{}.ply'.format(idx + pdx)), 'w') as write_file: write_file.write(start) np.savetxt(write_file, concatenated_gt, fmt=' '.join(['%0.8f'] * 3 + ['%d'] * 3)) def validate(self, test_loader, niter, test_writer, write_ply=False, ply_dir=''): total_losses = self.loss_tuple(0, 0, 0, 0) if write_ply: if not os.path.exists(ply_dir): os.mkdir(ply_dir) with torch.no_grad(): self.seg_net.eval() for idx, batch in enumerate(test_loader): for keys in batch: batch[keys] = batch[keys].float().cuda() output, losses = self.forward(batch=batch) # View NOC as PLY if write_ply: self.write_noc_ply(output=output, batch=batch, idx=idx, ply_dir=ply_dir) for jdx, val in enumerate(losses): if jdx is 3: total_losses[jdx] += 10 * log10(1 / losses[jdx].item()) else: total_losses[jdx] += losses[jdx].item() # total_losses.total_loss += losses.total_loss.item() if idx == (len(test_loader) - 1): # print(len(test_loader)) for jdx, val in enumerate(total_losses): total_losses[jdx] /= len(test_loader) print("Validation loss: {}".format(total_losses.total_loss)) # batch['image'] = self.un_norm(batch['image']) batch['image'] = batch['image'] * 2 - 1 test_writer.add_scalar('PSNR', total_losses.NOC_mse, niter) visualize(writer=test_writer, batch=batch, output=(output, total_losses), name="Validation", niter=niter, foreground=self.foreground) def test(self, test_loader, niter, test_writer): with torch.no_grad(): self.seg_net.eval() for idx, batch in enumerate(test_loader): for keys in batch: batch[keys] = batch[keys].float().cuda() output = self.seg_net(batch['image']) batch['image'] = batch['image'] * 2 - 1 visualize(writer=test_writer, batch=batch, output=(output, self.loss_tuple(0, 0, 0, 0)), name="Validation", niter=niter, foreground=self.foreground, test=True) def run(self, opt, data_loader, writer, epoch=0): total_losses = self.loss_tuple(0, 0, 0, 0) data_length = len(data_loader.train) self.seg_net.train() if epoch > 0 and epoch % 15 == 0: self.lr *= 0.9 for param_group in self.optimizer.param_groups: param_group['lr'] = self.lr for idx, batch in enumerate(data_loader.train): for keys in batch: batch[keys] = batch[keys].float().cuda() # batch['image'] = batch['image'] * 2 - 1 output, losses = self.train(batch=batch) # print(batch['num_points'], torch.sum(batch['num_points'])) for jdx, val in enumerate(losses): if jdx is 3: total_losses[jdx] += 10 * log10(1 / losses[jdx].item()) else: total_losses[jdx] += losses[jdx].item() # total_loss += loss.item() niter = idx + (epoch * data_length) if idx % opt.log_iter == 0: print("Epoch: {} | Iteration: {} | Train Loss: {}".format(epoch, niter, losses.total_loss.item())) batch['image'] = batch['image'] * 2 - 1 visualize(writer=writer.train, batch=batch, output=(output, losses), name="Train Total", niter=niter, foreground=self.foreground) # batch['image'] = self.un_norm(batch['image']) # visualize(writer=writer.train, batch=batch, output=(output, loss), # name="Train", niter=niter) # Last Iteration if idx == (data_length - 1): for jdx, val in enumerate(total_losses): total_losses[jdx] /= data_length print("Epoch: {} | Final Iteration: {} | Train Loss: {}".format(epoch, niter, total_losses.total_loss)) batch['image'] = batch['image'] * 2 - 1 writer.train.add_scalar('PSNR', total_losses.NOC_mse, niter) torch.save({'epoch': epoch, 'model': self.seg_net.state_dict(), 'optimizer': self.optimizer.state_dict()}, os.path.join(self.save_path, 'save_{}.pth'.format(niter))) # visualize(writer=writer.train, batch=batch, output=(output, total_losses), # name="Train Total", niter=(epoch + 1) * data_length) # self.test(test_loader=data_loader.test, test_writer=writer.test, niter=(epoch + 1) * data_length) self.validate(test_loader=data_loader.validate, test_writer=writer.validate, niter=(epoch + 1) * data_length + 1) print("*" * 100) if __name__ == "__main__": noc_class = TrainNOCs()
2.421875
2
function/python/brightics/function/textanalytics/__init__.py
GSByeon/studio
0
12797912
<gh_stars>0 from .ngram import ngram from .lda import lda from .tfidf import tfidf
1.015625
1
src/ghaudit/__main__.py
scality/ghaudit
1
12797913
import logging import os from typing import Literal, Union from ghaudit.cli import cli LOGFILE = os.environ.get("LOGFILE") LOGLEVEL = os.environ.get("LOGLEVEL", "ERROR") # pylint: disable=line-too-long LOG_FORMAT = "{asctime} {levelname:8s} ghaudit <{filename}:{lineno} {module}.{funcName}> {message}" # noqa: E501 STYLE = "{" # type: Union[Literal["%"], Literal["{"], Literal["$"]] def main() -> None: if LOGFILE: handler = logging.FileHandler(LOGFILE) formatter = logging.Formatter(LOG_FORMAT, style=STYLE) handler.setFormatter(formatter) root = logging.getLogger() root.setLevel(LOGLEVEL) root.addHandler(handler) else: logging.basicConfig(level=LOGLEVEL, format=LOG_FORMAT, style=STYLE) # pylint: disable=no-value-for-parameter cli() if __name__ == "__main__": main()
2.375
2
crn_mc/mesh.py
elevien/crn-mc
0
12797914
import numpy as np class Mesh: """ Contains all the information about the spatial domain """ def __init__(self,dimension,topology,geometry): self.Nvoxels = len(topology) self.dimension = dimension self.topology = topology # adjaceny matrix (numpy array), 0 along main diagonal, 1 elsewhere # only really works for regular grids self.geometry = geometry # numpy array of Nvoxels pairs (volume,x,(y,(z))) def get_coarseMesh_voxel(voxel,coupling): # returns the coarse mesh voxel associated with # voxel by the coupling # by convention I take the coarse mesh voxel to by the smallest # index coupled to voxel according to coupling i = 0 while coupling[voxel,i]<1: i = i+1 return i def make_lattice1d(Nx,L): # generates uniform 1d lattice on [0,L] topology = np.zeros((Nx,Nx)) d = np.ones(Nx-1) topology = np.diag(d,1)+np.diag(d,-1) geometry = np.zeros((Nx,2)) h = L/Nx geometry[:,0] = h*np.ones(Nx) geometry[:,1] = np.linspace(0,L-h,Nx) mesh = Mesh(1,topology,geometry) return mesh def make_lattice1d_coupled(Nx,L,J): mesh = make_lattice1d(Nx,L) coupling = np.zeros((Nx,Nx)) for i in range(int(Nx/J)): coupling[i*J:(i+1)*J,i*J:(i+1)*J] = np.ones((J,J)) return mesh,coupling # need to implement def make_lattice2d(Nx,Ny,Lx,Ly): topology = np.zeros((Nx*Ny,Nx*Ny)) d1 = np.ones(Nx-1) d2 = np.ones(Nx*Ny-Ny) for i in range(Ny): topology[i*Ny:(i+1)*Ny,i*Ny:(i+1)*Ny] = np.diag(d1,1)+np.diag(d1,-1) topology = topology + np.diag(d2,Nx)+np.diag(d2,-Nx) geometry = np.zeros((Nx*Ny,2)) hx = Nx/Lx hy = Ny/Ly #geometry[:,0] = h*np.ones(Nx) #geometry[:,1] = linspace(0,L-h,Nx) mesh = Mesh(1,topology,geometry) return mesh def make_lattice3d(Nx,Ny): return None
3.171875
3
css-test/launch.py
savithruml/contrail-provisioning-tool
0
12797915
<reponame>savithruml/contrail-provisioning-tool from flask import Flask, flash, redirect, render_template, request, session, abort, Response import os, subprocess from shelljob import proc application = Flask(__name__) @application.route('/provision', methods=['POST', 'GET']) def provision(): target_node_ip = str(request.form['target-ip']) target_node_password = str(request.form['target-password']) base_image = str(request.form['image']) contrail_package_version = str(request.form['package']).split('contrail-')[1] contrail_package_release = str(request.form['release']) contrail_package_build = str(request.form['build']) testbed_file = request.files['testbed-file'].read() localfile = open("testbed.py", "w") localfile.write(testbed_file) localfile.close() if request.form["commit"] == "Provision": def generate(): for line in (subprocess.check_output("ssh root@{4} wget http://10.84.5.120/github-build/R{0}/{1}/{2}/{3}/artifacts/contrail-cloud-docker_4.0.0.0-{1}-{3}.tgz && \ ssh root@{4} wget http://10.84.5.120/github-build/R{0}/{1}/{2}/{3}/artifacts/contrail-server-manager-installer_4.0.0.0-{1}~{3}_all.deb && \ ssh root@{4} truncate -s 0 /etc/apt/sources.list && \ scp testbed.py root@{4}:~/ && \ ssh root@{4} dpkg -i contrail-server-manager*deb". \ format(contrail_package_version,contrail_package_build,base_image,contrail_package_release,target_node_ip), shell=True)).splitlines(): yield line + '\n' os.remove("testbed.py") return Response( generate(), mimetype= 'text/html' ) @application.route('/login', methods=['POST', 'GET']) def login(): usr_name = str(request.form['username']) usr_pass = str(request.form['password']) if usr_name == 'admin' and usr_pass == '<PASSWORD>': return render_template('provision.html') else: return render_template('login-fail.html') @application.route('/') def main(): return render_template('login.html') if __name__ == "__main__": application.run(debug=True, host='0.0.0.0', port=9000)
2.1875
2
python/snapy/netsnmp/unittests/test_netsnmp.py
marineam/nagcat
0
12797916
# snapy - a python snmp library # # Copyright (C) 2009 ITA Software, Inc. # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # version 2 as published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. import time from twisted.trial import unittest from snapy.netsnmp.unittests import TestCase from snapy.netsnmp import Session, SnmpError, SnmpTimeout, OID class Result(object): """Container for async results""" value = None def set_result(value, result): result.value = value class TestSessionV1(TestCase): version = "1" bulk = False basics = [ (OID(".1.3.6.1.4.2.1.1"), 1), (OID(".1.3.6.1.4.2.1.2"), -1), (OID(".1.3.6.1.4.2.1.3"), 1), (OID(".1.3.6.1.4.2.1.4"), "test value"), ] def setUpSession(self, address): self.session = Session( version=self.version, community="public", peername=address, _use_bulk=self.bulk) self.session.open() def tearDownSession(self): self.session.close() def test_sget(self): result = self.session.sget([x for x,v in self.basics]) self.assertEquals(result, self.basics) return self.finishGet() def test_get_small(self): result = Result() self.session.get([x for x,v in self.basics], set_result, result) self.session.wait() self.assertEquals(result.value, self.basics) return self.finishGet() def test_get_big(self): oids = [] for i in xrange(1, 100): oids.append(OID((1,3,6,1,4,2,4,i))) result = Result() self.session.get(oids, set_result, result) self.session.wait() result = dict(result.value) for oid in oids: assert oid in result assert result[oid] == "data data data data" return self.finishGet() def test_walk_tree(self): result = Result() self.session.walk([".1.3.6.1.4.2.1"], set_result, result) self.session.wait() self.assertEquals(result.value, self.basics) return self.finishWalk() def test_walk_leaf(self): oid = OID(".1.3.6.1.4.2.1.1") result = Result() self.session.walk([oid], set_result, result) self.session.wait() self.assertEquals(result.value, [(oid, 1)]) return self.finishGet() def test_walk_strict(self): oid = OID(".1.3.6.1.4.2.1.1") result = Result() self.session.walk([oid], set_result, result, strict=True) self.session.wait() self.assertEquals(result.value, []) return self.finishStrictWalk() def test_sysDescr(self): result = self.session.sget([OID("SNMPv2-MIB::sysDescr.0")]) self.assert_(result) self.assertIsInstance(result[0][1], str) self.assert_(len(result[0][1]) > 0) return self.finishGet() class TestSessionV2c(TestSessionV1): version = "2c" def test_hrSystemDate(self): # This is a special string that gets formatted using the # MIB's DISPLAY-HINT value. Also, strip off everything # other than the date and hour to avoid a race condition. # And one more quirk, these dates are not zero padded # so we must format the date manually, whee... now = time.localtime() now = "%d-%d-%d,%d" % (now[0], now[1], now[2], now[3]) result = self.session.sget([OID(".1.3.6.1.2.1.25.1.2.0")]) self.assert_(result) value = result[0][1].split(':', 1)[0] self.assertEquals(value, now) return self.finishGet() class TestSessionV2cBulk(TestSessionV2c): bulk = True class TestTimeoutsV1(unittest.TestCase): version = "1" def setUp(self): self.session = Session( version=self.version, community="public", peername="udp:127.0.0.1:9", retries=0, timeout=0.1) self.session.open() def test_sget(self): self.assertRaises(SnmpError, self.session.sget, [".1.3.6.1.4.2.1.1"]) def test_get(self): result = Result() self.session.get([".1.3.6.1.4.2.1.1"], set_result, result) self.session.wait() assert isinstance(result.value, SnmpTimeout) def tearDown(self): self.session.close() class TestTimeoutsV2c(TestTimeoutsV1): version = "2c" class TestOID(unittest.TestCase): def test_oid_name(self): oid = OID("1.3.6.1.2.1.1.1.0") self.assertEquals(oid, OID("SNMPv2-MIB::sysDescr.0")) self.assertEquals(oid, OID("sysDescr.0"))
2.1875
2
adafruit_rgb_display/rgb.py
caternuson/Adafruit_CircuitPython_RGB_Display
0
12797917
# The MIT License (MIT) # # Copyright (c) 2017 <NAME> and Adafruit Industries # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ `adafruit_rgb_display.rgb` ==================================================== Base class for all RGB Display devices * Author(s): <NAME>, <NAME> """ import time try: import struct except ImportError: import ustruct as struct import adafruit_bus_device.spi_device as spi_device __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display.git" # This is the size of the buffer to be used for fill operations, in 16-bit # units. try: # If we're on CPython, try to set as large as possible import platform if "CPython" in platform.python_implementation(): # check for FT232H special case try: import os if os.environ['BLINKA_FT232H']: # we are limited by pyftdi's max SPI payload from pyftdi.spi import SpiController _BUFFER_SIZE = SpiController.PAYLOAD_MAX_LENGTH // 2 # max bytes / bytes per pixel except KeyError: # otherwise set it to blit the whole thing _BUFFER_SIZE = 320 * 240 else: # in case CircuitPython ever implements platform _BUFFER_SIZE = 256 except ImportError: # Otherwise set smaller MCU friendly size _BUFFER_SIZE = 256 def color565(r, g=0, b=0): """Convert red, green and blue values (0-255) into a 16-bit 565 encoding. As a convenience this is also available in the parent adafruit_rgb_display package namespace.""" try: r, g, b = r # see if the first var is a tuple/list except TypeError: pass return (r & 0xf8) << 8 | (g & 0xfc) << 3 | b >> 3 class DummyPin: """Can be used in place of a ``DigitalInOut()`` when you don't want to skip it.""" def deinit(self): """Dummy DigitalInOut deinit""" pass def switch_to_output(self, *args, **kwargs): """Dummy switch_to_output method""" pass def switch_to_input(self, *args, **kwargs): """Dummy switch_to_input method""" pass @property def value(self): """Dummy value DigitalInOut property""" pass @value.setter def value(self, val): pass @property def direction(self): """Dummy direction DigitalInOut property""" pass @direction.setter def direction(self, val): pass @property def pull(self): """Dummy pull DigitalInOut property""" pass @pull.setter def pull(self, val): pass class Display: #pylint: disable-msg=no-member """Base class for all RGB display devices :param width: number of pixels wide :param height: number of pixels high """ _PAGE_SET = None _COLUMN_SET = None _RAM_WRITE = None _RAM_READ = None _X_START = 0 # pylint: disable=invalid-name _Y_START = 0 # pylint: disable=invalid-name _INIT = () _ENCODE_PIXEL = ">H" _ENCODE_POS = ">HH" _DECODE_PIXEL = ">BBB" def __init__(self, width, height): self.width = width self.height = height self.init() def init(self): """Run the initialization commands.""" for command, data in self._INIT: self.write(command, data) #pylint: disable-msg=invalid-name,too-many-arguments def _block(self, x0, y0, x1, y1, data=None): """Read or write a block of data.""" self.write(self._COLUMN_SET, self._encode_pos(x0 + self._X_START, x1 + self._X_START)) self.write(self._PAGE_SET, self._encode_pos(y0 + self._Y_START, y1 + self._Y_START)) if data is None: size = struct.calcsize(self._DECODE_PIXEL) return self.read(self._RAM_READ, (x1 - x0 + 1) * (y1 - y0 + 1) * size) self.write(self._RAM_WRITE, data) return None #pylint: enable-msg=invalid-name,too-many-arguments def _encode_pos(self, x, y): """Encode a postion into bytes.""" return struct.pack(self._ENCODE_POS, x, y) def _encode_pixel(self, color): """Encode a pixel color into bytes.""" return struct.pack(self._ENCODE_PIXEL, color) def _decode_pixel(self, data): """Decode bytes into a pixel color.""" return color565(*struct.unpack(self._DECODE_PIXEL, data)) def pixel(self, x, y, color=None): """Read or write a pixel at a given position.""" if color is None: return self._decode_pixel(self._block(x, y, x, y)) if 0 <= x < self.width and 0 <= y < self.height: self._block(x, y, x, y, self._encode_pixel(color)) return None def image(self, img, rotation=0): """Set buffer to value of Python Imaging Library image. The image should be in 1 bit mode and a size equal to the display size.""" if not img.mode in ('RGB', 'RGBA'): raise ValueError('Image must be in mode RGB or RGBA') if rotation not in (0, 90, 180, 270): raise ValueError('Rotation must be 0/90/180/270') if rotation != 0: img = img.rotate(rotation, expand=True) imwidth, imheight = img.size if imwidth != self.width or imheight != self.height: raise ValueError('Image must be same dimensions as display ({0}x{1}).' \ .format(self.width, self.height)) pixels = bytearray(self.width * self.height * 2) # Iterate through the pixels for x in range(self.width): # yes this double loop is slow, for y in range(self.height): # but these displays are small! pix = color565(img.getpixel((x, y))) pixels[2*(y * self.width + x)] = pix >> 8 pixels[2*(y * self.width + x) + 1] = pix & 0xFF #print([hex(x) for x in pixels]) self._block(0, 0, self.width-1, self.height - 1, pixels) #pylint: disable-msg=too-many-arguments def fill_rectangle(self, x, y, width, height, color): """Draw a rectangle at specified position with specified width and height, and fill it with the specified color.""" x = min(self.width - 1, max(0, x)) y = min(self.height - 1, max(0, y)) width = min(self.width - x, max(1, width)) height = min(self.height - y, max(1, height)) self._block(x, y, x + width - 1, y + height - 1, b'') chunks, rest = divmod(width * height, _BUFFER_SIZE) pixel = self._encode_pixel(color) if chunks: data = pixel * _BUFFER_SIZE for _ in range(chunks): self.write(None, data) self.write(None, pixel * rest) #pylint: enable-msg=too-many-arguments def fill(self, color=0): """Fill the whole display with the specified color.""" self.fill_rectangle(0, 0, self.width, self.height, color) def hline(self, x, y, width, color): """Draw a horizontal line.""" self.fill_rectangle(x, y, width, 1, color) def vline(self, x, y, height, color): """Draw a vertical line.""" self.fill_rectangle(x, y, 1, height, color) class DisplaySPI(Display): """Base class for SPI type devices""" #pylint: disable-msg=too-many-arguments def __init__(self, spi, dc, cs, rst=None, width=1, height=1, baudrate=12000000, polarity=0, phase=0, *, x_offset=0, y_offset=0): self.spi_device = spi_device.SPIDevice(spi, cs, baudrate=baudrate, polarity=polarity, phase=phase) self.dc_pin = dc self.rst = rst self.dc_pin.switch_to_output(value=0) if self.rst: self.rst.switch_to_output(value=0) self.reset() self._X_START = x_offset # pylint: disable=invalid-name self._Y_START = y_offset # pylint: disable=invalid-name super().__init__(width, height) #pylint: enable-msg=too-many-arguments def reset(self): """Reset the device""" self.rst.value = 0 time.sleep(0.050) # 50 milliseconds self.rst.value = 1 time.sleep(0.050) # 50 milliseconds # pylint: disable=no-member def write(self, command=None, data=None): """SPI write to the device: commands and data""" if command is not None: self.dc_pin.value = 0 with self.spi_device as spi: spi.write(bytearray([command])) if data is not None: self.dc_pin.value = 1 with self.spi_device as spi: spi.write(data) def read(self, command=None, count=0): """SPI read from device with optional command""" data = bytearray(count) self.dc_pin.value = 0 with self.spi_device as spi: if command is not None: spi.write(bytearray([command])) if count: spi.readinto(data) return data
1.734375
2
app.py
lmbejaran/sqlalchemy-challenge
0
12797918
import numpy as np import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func import datetime as dt from flask import Flask, jsonify engine = create_engine("sqlite:///Resources/hawaii.sqlite") Base = automap_base() Base.prepare(engine, reflect=True) Measurement = Base.classes.measurement Station = Base.classes.station app = Flask(__name__) @app.route("/") def welcome(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/<start_date><br/>" f"/api/v1.0/<start_date>/<end_date><br/>" ) @app.route("/api/v1.0/precipitation") def precipitation(): session = Session(engine) first_date = session.query(Measurement.date).order_by(Measurement.date).first() last_date = session.query(Measurement.date).order_by(Measurement.date.desc()).first() year_ago = dt.date(2017, 8, 23) - dt.timedelta(days=365) date_prcp = session.query(Measurement.date, func.max(Measurement.prcp)).group_by(Measurement.date).\ filter(Measurement.date > year_ago) session.close() # Create a dictionary from the row data and append to a list of all_passengers all_dates = [] for date, prcp in date_prcp: dict = {} dict["date"] = date dict["prcp"] = prcp all_dates.append(dict) return jsonify(all_dates) @app.route("/api/v1.0/stations") def stations(): session = Session(engine) stations = session.query(Station.id, Station.station, Station.name, Station.latitude, Station.longitude, Station.elevation).all() all_stations = [] for id, station, name, latitude, longitude, elevation in stations: dict = {} dict["id"] = id dict["station"] = station dict["name"] = name dict["latitude"] = latitude dict["longitude"] = longitude dict["elevation"] = elevation all_stations.append(dict) return jsonify(all_stations) @app.route("/api/v1.0/tobs") def tobs(): session = Session(engine) year_ago = dt.date(2017, 8, 18) - dt.timedelta(days=365) most_active = session.query(Measurement.date, Measurement.tobs).\ filter(Measurement.station == 'USC00519281').\ filter(Measurement.date > year_ago).all() most_active_tobs = [] for date, tobs in most_active: dict = {} dict['date'] = date dict['tobs'] = tobs most_active_tobs.append(dict) return jsonify(most_active_tobs) @app.route("/api/v1.0/<start_date>") def calc_temps_start(start_date): tobs_stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).all() tobs_stats_all = [] for min, avg, max in tobs_stats: dict = {} dict['min'] = min dict['avg'] = avg dict['max'] = max tobs_stats_all.append(dict) return jsonify(tobs_stats_all) @app.route("/api/v1.0/<start_date>/<end_date>") def calc_temps_start_end(start_date, end_date): tobs_stats = session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= end_date).all() tobs_stats_all = [] for min, avg, max in tobs_stats: dict = {} dict['min'] = min dict['avg'] = avg dict['max'] = max tobs_stats_all.append(dict) return jsonify(tobs_stats_all) if __name__ == '__main__': app.run(debug=True)
3.125
3
main.py
marcpinet/maze-generator-and-solver
0
12797919
<reponame>marcpinet/maze-generator-and-solver import maze.maze as m import maze.maze_tools as mt import visual.colors as vc from abc import abstractmethod def ask_for_int(sentence: str) -> int: """ Ask the user for an integer. """ while True: try: return int(input(sentence)) except ValueError: print("Invalid input. Please try again.") def main(): # Intializing variables _ = mt.MazeGenerator(0) # Needed to init the MazeBuilder.ALGORITHMS list _ = mt.MazeSolver(0) # Needed to init the MazeSolver.ALGORITHMS list alg_gen, alg_sol, width, height = -1, -1, -1, -1 build_anim, solve_anim = "", "" # Getting the user's inputs for i in range(len(mt.MazeGenerator.ALGORITHMS)): print( f"{vc.CMDColors.YELLOW} {i}: {list(mt.MazeGenerator.ALGORITHMS.keys())[i]} {vc.CMDColors.RESET}" ) print() while alg_gen not in range(len(mt.MazeGenerator.ALGORITHMS)): alg_gen = ask_for_int("Input the n° of the algorithm for the generation: ") print() for i in range(len(mt.MazeSolver.ALGORITHMS)): print( f"{vc.CMDColors.YELLOW} {i}: {list(mt.MazeSolver.ALGORITHMS.keys())[i]} {vc.CMDColors.RESET}" ) print() while alg_sol not in range(len(mt.MazeSolver.ALGORITHMS)): alg_sol = ask_for_int("Input the n° of the algorithm for the solving: ") print() while width not in range(1000): width = ask_for_int("Width of the maze: ") while height not in range(1000): height = ask_for_int("Height of the maze: ") print() while build_anim.lower() not in ["y", "n"]: build_anim = input("Enable animation for building? (Y/N): ") while solve_anim.lower() not in ["y", "n"]: solve_anim = input("Enable animation for solving? (Y/N): ") print() # Setting animation properties for pygame window mt.Window.GENERATE_ANIMATION = True if build_anim.lower() == "y" else False mt.Window.SOLVE_ANIMATION = True if solve_anim.lower() == "y" else False # Showing the maze on the pygame window # Initializing maze = m.Maze(width, height) maze_generator = mt.MazeGenerator(alg_gen) maze_solver = mt.MazeSolver(alg_sol) # Drawing print( vc.CMDColors.CYAN + "Press " + vc.CMDColors.FAIL + "SPACE" + vc.CMDColors.CYAN + " to start building the maze.\nPress " + vc.CMDColors.FAIL + "SPACE" + vc.CMDColors.CYAN + " again to solve it.\nPress " + vc.CMDColors.HEADER + "CTRL+C" + vc.CMDColors.CYAN + " in the terminal to exit." + vc.CMDColors.RESET ) # Starting the animations maze_drawer = mt.MazeDrawer(maze_generator, maze_solver, maze) maze_drawer.start() if __name__ == "__main__": main()
3.859375
4
utils.py
quanhua92/vietnam_investment_fund
0
12797920
<gh_stars>0 import requests import json from datetime import datetime def get_all_products(): url = "https://api.fmarket.vn/res/products/filter" data = {"types":["NEW_FUND","TRADING_FUND"],"issuerIds":[],"page":1,"pageSize":1000,"fundAssetTypes":[],"bondRemainPeriods":[],"searchField":""} headers = {"Content-Type": "application/json; charset=utf-8"} x = requests.post(url, json=data, headers=headers) return json.loads(x.text) def get_history(product_id): url = "https://api.fmarket.vn/res/product/get-nav-history" toDate = datetime.now().strftime("%Y%m%d") data = {"isAllData":1,"productId":product_id,"fromDate": None, "toDate": toDate} headers = {"Content-Type": "application/json; charset=utf-8"} x = requests.post(url, json=data, headers=headers) return json.loads(x.text)
2.6875
3
OpenGLCffi/GL/EXT/NV/half_float.py
cydenix/OpenGLCffi
0
12797921
<gh_stars>0 from OpenGLCffi.GL import params @params(api='gl', prms=['x', 'y']) def glVertex2hNV(x, y): pass @params(api='gl', prms=['v']) def glVertex2hvNV(v): pass @params(api='gl', prms=['x', 'y', 'z']) def glVertex3hNV(x, y, z): pass @params(api='gl', prms=['v']) def glVertex3hvNV(v): pass @params(api='gl', prms=['x', 'y', 'z', 'w']) def glVertex4hNV(x, y, z, w): pass @params(api='gl', prms=['v']) def glVertex4hvNV(v): pass @params(api='gl', prms=['nx', 'ny', 'nz']) def glNormal3hNV(nx, ny, nz): pass @params(api='gl', prms=['v']) def glNormal3hvNV(v): pass @params(api='gl', prms=['red', 'green', 'blue']) def glColor3hNV(red, green, blue): pass @params(api='gl', prms=['v']) def glColor3hvNV(v): pass @params(api='gl', prms=['red', 'green', 'blue', 'alpha']) def glColor4hNV(red, green, blue, alpha): pass @params(api='gl', prms=['v']) def glColor4hvNV(v): pass @params(api='gl', prms=['s']) def glTexCoord1hNV(s): pass @params(api='gl', prms=['v']) def glTexCoord1hvNV(v): pass @params(api='gl', prms=['s', 't']) def glTexCoord2hNV(s, t): pass @params(api='gl', prms=['v']) def glTexCoord2hvNV(v): pass @params(api='gl', prms=['s', 't', 'r']) def glTexCoord3hNV(s, t, r): pass @params(api='gl', prms=['v']) def glTexCoord3hvNV(v): pass @params(api='gl', prms=['s', 't', 'r', 'q']) def glTexCoord4hNV(s, t, r, q): pass @params(api='gl', prms=['v']) def glTexCoord4hvNV(v): pass @params(api='gl', prms=['target', 's']) def glMultiTexCoord1hNV(target, s): pass @params(api='gl', prms=['target', 'v']) def glMultiTexCoord1hvNV(target, v): pass @params(api='gl', prms=['target', 's', 't']) def glMultiTexCoord2hNV(target, s, t): pass @params(api='gl', prms=['target', 'v']) def glMultiTexCoord2hvNV(target, v): pass @params(api='gl', prms=['target', 's', 't', 'r']) def glMultiTexCoord3hNV(target, s, t, r): pass @params(api='gl', prms=['target', 'v']) def glMultiTexCoord3hvNV(target, v): pass @params(api='gl', prms=['target', 's', 't', 'r', 'q']) def glMultiTexCoord4hNV(target, s, t, r, q): pass @params(api='gl', prms=['target', 'v']) def glMultiTexCoord4hvNV(target, v): pass @params(api='gl', prms=['fog']) def glFogCoordhNV(fog): pass @params(api='gl', prms=['fog']) def glFogCoordhvNV(fog): pass @params(api='gl', prms=['red', 'green', 'blue']) def glSecondaryColor3hNV(red, green, blue): pass @params(api='gl', prms=['v']) def glSecondaryColor3hvNV(v): pass @params(api='gl', prms=['weight']) def glVertexWeighthNV(weight): pass @params(api='gl', prms=['weight']) def glVertexWeighthvNV(weight): pass @params(api='gl', prms=['index', 'x']) def glVertexAttrib1hNV(index, x): pass @params(api='gl', prms=['index', 'v']) def glVertexAttrib1hvNV(index, v): pass @params(api='gl', prms=['index', 'x', 'y']) def glVertexAttrib2hNV(index, x, y): pass @params(api='gl', prms=['index', 'v']) def glVertexAttrib2hvNV(index, v): pass @params(api='gl', prms=['index', 'x', 'y', 'z']) def glVertexAttrib3hNV(index, x, y, z): pass @params(api='gl', prms=['index', 'v']) def glVertexAttrib3hvNV(index, v): pass @params(api='gl', prms=['index', 'x', 'y', 'z', 'w']) def glVertexAttrib4hNV(index, x, y, z, w): pass @params(api='gl', prms=['index', 'v']) def glVertexAttrib4hvNV(index, v): pass @params(api='gl', prms=['index', 'n', 'v']) def glVertexAttribs1hvNV(index, n, v): pass @params(api='gl', prms=['index', 'n', 'v']) def glVertexAttribs2hvNV(index, n, v): pass @params(api='gl', prms=['index', 'n', 'v']) def glVertexAttribs3hvNV(index, n, v): pass @params(api='gl', prms=['index', 'n', 'v']) def glVertexAttribs4hvNV(index, n, v): pass
2.140625
2
mysite/core/views.py
gopal031119/Decision-tree-using-Gimi-index
0
12797922
from django.shortcuts import render, redirect from django.views.generic import TemplateView, ListView, CreateView from django.core.files.storage import FileSystemStorage from django.urls import reverse_lazy from django.core.files import File from .forms import BookForm from .models import Book # Load libraries import pandas as pd from sklearn.tree import DecisionTreeClassifier # Import Decision Tree Classifier from sklearn.model_selection import train_test_split # Import train_test_split function from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation from sklearn.tree import export_graphviz from six import StringIO from IPython.display import Image import os import pydotplus BASE_DIR = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) class Home(TemplateView): template_name = 'home.html' def upload(request): context = {} upload_file_name = "" image_url = "" if request.method == 'POST': uploaded_file = request.FILES['document'] image_url = "Tree_of_"+str(os.path.splitext(uploaded_file.name)[0]) + ".png" dataset_cols_name = [] pima = pd.read_csv(uploaded_file , header=0) dataset_cols_name = pima.columns.values.tolist() transet_cols_name = dataset_cols_name[:len(dataset_cols_name)-1] transet_cols_name.append("decisionCol") pima.columns = transet_cols_name #split dataset in features and target variable feature_cols = transet_cols_name[:len(transet_cols_name)-1] X = pima[feature_cols] # Features y = pima.decisionCol # Target variable # Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) # 70% training and 30% test # Create Decision Tree classifer object clf = DecisionTreeClassifier() # Train Decision Tree Classifer clf = clf.fit(X_train,y_train) #Predict the response for test dataset y_pred = clf.predict(X_test) # Model Accuracy, how often is the classifier correct? print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) dot_data = StringIO() export_graphviz(clf, out_file=dot_data, filled=True, rounded=True, special_characters=True,feature_names = feature_cols,class_names=['0','1']) graph = pydotplus.graph_from_dot_data(dot_data.getvalue()) graph.write_png(image_url) imge = Image(graph.create_png()) fs = FileSystemStorage() upload_file_name = uploaded_file path_to_generated_image = os.path.abspath(os.path.join(os.getcwd(), os.pardir))+"\\mining-assignment-master\\"+ image_url file = open(path_to_generated_image , "rb") django_file = File(file) name_of_image = "Tree_of_"+str(os.path.splitext(uploaded_file.name)[0]) + ".png" name = fs.save(name_of_image, django_file) print(path_to_generated_image) context['image_name'] = name_of_image return render(request, 'upload.html', context)
2.3125
2
ostaas.py
yadav19/simple-student-cloud
2
12797923
#!/usr/bin/python36 print("content-type: text/html") print("") import cgi import subprocess as sp form = cgi.FieldStorage() user_name = form.getvalue('user_name') lv_size = form.getvalue('lv_size') print(user_name) print(lv_size) output=sp.getstatusoutput("sudo ansible-playbook ostaas.yml --extra-vars='user_name={u} lv_size={l}'".format(u=user_name, l=lv_size)) if output[0] == 0 : print("<b> NFS-server succesfully created</b>") client_mount=sp.getstatusoutput("sudo ansible-playbook ostaasclient.yml --extra-vars='user_name={u} lv_size={l}'".format(u=user_name, l=lv_size)) if client_mount[0] == 0 : print("<b>Enjoy free cloud storage..</b>") else: print("Sorry, We're facing technical issue. please visit after some time")
2.375
2
src/backend/marsha/development/urls.py
insad/marsha
0
12797924
<gh_stars>0 """Marsha Development app URLs configuration.""" from django.urls import path from .views import DevelopmentLTIView app_name = "development" urlpatterns = [ path("development/", DevelopmentLTIView.as_view(), name="lti-development-view"), ]
1.335938
1
Neural Style Transfer/train_TensorFlow.py
Shashi456/Neural-Style
31
12797925
import tensorflow as tf from tensorflow.python.keras.preprocessing import image as kp_image # Keras is only used to load VGG19 model as a high level API to TensorFlow from keras.applications.vgg19 import VGG19 from keras.models import Model from keras import backend as K # pillow is used for loading and saving images from PIL import Image # numPy is used for manipulation of array of object i.e Image in our case import numpy as np ## ## ## # list of layers to be considered for calculation of Content and Style Loss content_layers = ['block3_conv3'] style_layers = ['block1_conv1','block2_conv2','block4_conv3'] num_content_layers = len(content_layers) num_style_layers = len(style_layers) # path where the content and style images are located content_path = 'content.jpg' style_path = 'style.jpg' # Save the result as save_name = 'generated.jpg' # path to where Vgg19 model weight is located vgg_weights = "vgg_weights/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5" ############################################################################################################ ############################################################################################################ # UTILS ############################################################################################################ ############################################################################################################ def load_img(path_to_img): max_dim = 512 img = Image.open(path_to_img) img_size = max(img.size) scale = max_dim/img_size img = img.resize((round(img.size[0]*scale), round(img.size[1]*scale)), Image.ANTIALIAS) img = kp_image.img_to_array(img) # We need to broadcast the image array such that it has a batch dimension img = np.expand_dims(img, axis=0) # preprocess raw images to make it suitable to be used by VGG19 model out = tf.keras.applications.vgg19.preprocess_input(img) return tf.convert_to_tensor(out) def deprocess_img(processed_img): x = processed_img.copy() # perform the inverse of the preprocessiing step x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x ############################################################################################################ ############################################################################################################ # Loss Function ############################################################################################################ ############################################################################################################ ### Content Loss Function def get_content_loss(content, target): return tf.reduce_mean(tf.square(content - target)) /2 ### Style Loss Fucntion def gram_matrix(input_tensor): # if input tensor is a 3D array of size Nh x Nw X Nc # we reshape it to a 2D array of Nc x (Nh*Nw) channels = int(input_tensor.shape[-1]) a = tf.reshape(input_tensor, [-1, channels]) n = tf.shape(a)[0] # get gram matrix gram = tf.matmul(a, a, transpose_a=True) return gram def get_style_loss(base_style, gram_target): height, width, channels = base_style.get_shape().as_list() gram_style = gram_matrix(base_style) # Original eqn as a constant to divide i.e 1/(4. * (channels ** 2) * (width * height) ** 2) return tf.reduce_mean(tf.square(gram_style - gram_target)) / (channels**2 * width * height) #(4.0 * (channels ** 2) * (width * height) ** 2) ### Use to pass content and style image through it def get_feature_representations(model, content_path, style_path, num_content_layers): # Load our images in content_image = load_img(content_path) style_image = load_img(style_path) # batch compute content and style features content_outputs = model(content_image) style_outputs = model(style_image) # Get the style and content feature representations from our model style_features = [ style_layer[0] for style_layer in style_outputs[num_content_layers:] ] content_features = [ content_layer[0] for content_layer in content_outputs[:num_content_layers] ] return style_features, content_features ### Total Loss def compute_loss(model, loss_weights, generated_output_activations, gram_style_features, content_features, num_content_layers, num_style_layers): generated_content_activations = generated_output_activations[:num_content_layers] generated_style_activations = generated_output_activations[num_content_layers:] style_weight, content_weight = loss_weights style_score = 0 content_score = 0 # Accumulate style losses from all layers # Here, we equally weight each contribution of each loss layer weight_per_style_layer = 1.0 / float(num_style_layers) for target_style, comb_style in zip(gram_style_features, generated_style_activations): temp = get_style_loss(comb_style[0], target_style) style_score += weight_per_style_layer * temp # Accumulate content losses from all layers weight_per_content_layer = 1.0 / float(num_content_layers) for target_content, comb_content in zip(content_features, generated_content_activations): temp = get_content_loss(comb_content[0], target_content) content_score += weight_per_content_layer* temp # Get total loss loss = style_weight*style_score + content_weight*content_score return loss, style_score, content_score ############################################################################################################ ############################################################################################################ # CREATE STYLE TRANFER ############################################################################################################ ############################################################################################################ # Using Keras Load VGG19 model def get_model(content_layers,style_layers): # Load our model. We load pretrained VGG, trained on imagenet data vgg19 = VGG19(weights=None, include_top=False) # We don't need to (or want to) train any layers of our pre-trained vgg model, so we set it's trainable to false. vgg19.trainable = False style_model_outputs = [vgg19.get_layer(name).output for name in style_layers] content_model_outputs = [vgg19.get_layer(name).output for name in content_layers] model_outputs = content_model_outputs + style_model_outputs # Build model return Model(inputs = vgg19.input, outputs = model_outputs), vgg19 def run_style_transfer(content_path, style_path, num_iterations=200, content_weight=0.1, style_weight=0.9): # Create a tensorflow session sess = tf.Session() # Assign keras back-end to the TF session which we created K.set_session(sess) model, vgg19 = get_model(content_layers,style_layers) # Get the style and content feature representations (from our specified intermediate layers) style_features, content_features = get_feature_representations(model, content_path, style_path, num_content_layers) gram_style_features = [gram_matrix(style_feature) for style_feature in style_features] # VGG default normalization norm_means = np.array([103.939, 116.779, 123.68]) min_vals = -norm_means max_vals = 255 - norm_means # In original paper, the initial stylized image is random matrix of same size as that of content image # but in later images content image was used instead on random values for first stylized image # because it proved to help to stylize faster generated_image = load_img(content_path) # generated_image = np.random.randint(0,255, size=generated_image.shape) # Create tensorflow variable to hold a stylized/generated image during the training generated_image = tf.Variable(generated_image, dtype=tf.float32) model_outputs = model(generated_image) # weightages of each content and style images i.e alpha & beta loss_weights = (style_weight, content_weight) # Create our optimizer loss = compute_loss(model, loss_weights, model_outputs, gram_style_features, content_features, num_content_layers, num_style_layers) opt = tf.train.AdamOptimizer(learning_rate=9, beta1=0.9, epsilon=1e-1).minimize( loss[0], var_list = [generated_image]) sess.run(tf.global_variables_initializer()) sess.run(generated_image.initializer) # loading the weights again because tf.global_variables_initializer() resets the weights vgg19.load_weights(vgg_weights) # Put loss as infinity before training starts and Create a variable to hold best image (i.e image with minimum loss) best_loss, best_img = float('inf'), None for i in range(num_iterations): # Do optimization sess.run(opt) # Make sure image values stays in the range of max-min value of VGG norm clipped = tf.clip_by_value(generated_image, min_vals, max_vals) # assign the clipped value to the tensor stylized image generated_image.assign(clipped) # Open the Tuple of tensors total_loss, style_score, content_score = loss total_loss = total_loss.eval(session=sess) if total_loss < best_loss: # Update best loss and best image from total loss. best_loss = total_loss # generated image is of shape (1, h, w, 3) convert it to (h, w, 3) temp_generated_image = sess.run(generated_image)[0] best_img = deprocess_img(temp_generated_image) s_loss = sess.run(style_score) c_loss = sess.run(content_score) # print best loss print('best: iteration: ', i ,'loss: ', total_loss ,' style_loss: ', s_loss,' content_loss: ', c_loss) # Save image after every 100 iterations if (i+1)%100 == 0: output = Image.fromarray(best_img) output.save(str(i+1)+'-'+save_name) # after num_iterations iterations are completed, close the TF session sess.close() return best_img, best_loss best, best_loss = run_style_transfer(content_path, style_path)
2.90625
3
ctwalker/utils/__init__.py
aphearin/ctwalker
0
12797926
# Licensed under a 3-clause BSD style license - see LICENSE.rst from .robust_file_opener import _compression_safe_opener
0.902344
1
tests/test_ml.py
ChuaHanChong/MLOps-Project
0
12797927
<reponame>ChuaHanChong/MLOps-Project """Test for loading ml module.""" import inspect import unittest from pathlib import Path class TestImportModule(unittest.TestCase): """Module testing.""" def test_import_ml(self): """Test ml module.""" import ml self.assertEqual( inspect.getfile(ml), str(Path.cwd().joinpath('src', 'ml', '__init__.py')), ) if __name__ == '__main__': unittest.main()
2.265625
2
Project 8/DeskNotification.py
ingwant/Python-Programs
0
12797928
<filename>Project 8/DeskNotification.py # pip install plyer from plyer import notification def send_desk_message(title, message): notification.notify( title=title, message=message, app_icon="circle-48.ico", timeout=5 ) send_desk_message("TITLE", "This is a message....")
2.4375
2
src/graphics/panels.py
ukitinu/ttfh
1
12797929
from __future__ import annotations import tkinter as tk from typing import Callable from src.graphics import utils from src.graphics.interfaces import Panel from src.timer import Clock class PanelStyle: """ This class holds the immutable style properties of the TextPanel """ def __init__(self, width: int, height: int, bg_colour: str, font: str): self.width: int = width self.height: int = height self.bg_colour: str = bg_colour self.font: str = font class TextPanel(Panel): """ Represents a canvas containing one or more texts with, possibly, some variable styles and content. """ def __init__(self, root: tk.Tk, clock: Clock, style: PanelStyle, var_callback: Callable[[Clock], str]): self.root: tk.Tk = root self.clock: Clock = clock self.style: PanelStyle = style self.var_callback: Callable = var_callback self.style_var = tk.StringVar(self.root, self.var_callback(self.clock)) def draw(self) -> None: canvas = tk.Canvas(self.root, width=self.style.width, height=self.style.height, bg=self.style.bg_colour, highlightthickness=0) text_id = canvas.create_text(self.style.width / 2, self.style.height / 2, anchor=tk.CENTER, text=self.style_var.get().split(":")[0], fill=self.style_var.get().split(":")[1], font=self.style.font) canvas.pack() def on_change(varname, index, mode): """ The signature of the method must stay as is to work properly with tkinter. It also seems I can't move it from here to a more sensible place. """ canvas.itemconfigure(text_id, text=self.style_var.get().split(":")[0], fill=self.style_var.get().split(":")[1]) self.style_var.trace_add('write', on_change) def tick(self) -> None: self.style_var.set(self.var_callback(self.clock)) class ClockPanel(Panel): """ Represents the canvas containing the clock with the hours and the circle. """ def __init__(self, root: tk.Tk, clock: Clock, style: PanelStyle, var_callback: Callable[[Clock], str]): self.root: tk.Tk = root self.clock: Clock = clock self.style: PanelStyle = style self.var_callback: Callable = var_callback self.style_var = tk.StringVar(self.root, self.var_callback(self.clock)) def draw(self) -> None: canvas = tk.Canvas(self.root, width=self.style.width, height=self.style.height, bg=self.style.bg_colour, highlightthickness=0) text_id = canvas.create_text(self.style.width / 2, self.style.height / 2, anchor=tk.CENTER, text=self.style_var.get().split(":")[0], # fill=self.style_var.get().split(":")[1], # 'white', fill='white', font=self.style.font) utils.draw_circle(canvas, self.style.width // 2, self.style.height // 2, self.style.width // 3, outline='white', width=8) arc_id = utils.draw_circle(canvas, self.style.width // 2, self.style.height // 2, self.style.width // 3, outline='red', width=6, extent=-1 * int(self.style_var.get().split(":")[1]) * 6) canvas.pack() def on_change(varname, index, mode): """ The signature of the method must stay as is to work properly with tkinter. It also seems I can't move it from here to a more sensible place. """ hour = self.style_var.get().split(":")[0] canvas.itemconfigure(text_id, text=hour) minutes = int(self.style_var.get().split(":")[1]) extent = utils.calc_arc_extent(self.clock.day, self.clock.hour, minutes) canvas.itemconfigure(arc_id, extent=extent) self.style_var.trace_add('write', on_change) def tick(self) -> None: self.style_var.set(self.var_callback(self.clock))
3.015625
3
subt/octomap.py
robotika/osgar
12
12797930
<reponame>robotika/osgar<filename>subt/octomap.py """ ROS Binary Octomap parsing and processing """ import struct import math import numpy as np import cv2 from osgar.node import Node from osgar.lib.pplanner import find_path # http://www.arminhornung.de/Research/pub/hornung13auro.pdf # 00: unknown; 01: occupied; 10: free; 11: inner node with child next in the stream STATE_UNKNOWN = 128 # color=(0, 0xFF, 0) STATE_FREE = 255 # color=(0xFF, 0xFF, 0xFF) STATE_OCCUPIED = 1 # color=(0x00, 0x00, 0xFF) ... just to be != 0, which is original unknown/black/undefined STATE_FRONTIER = 196 # color=(0xFF, 0x00, 0xFF) STATE_PATH = 64 # color=(0xFF, 0x00, 0x00) SLICE_OCTOMAP_SIZE = 1024 # size of slice/image in XY octomap coordinates (for given Z) def seq2xyz(seq_arr): """ Convert octomap sequence (0..7) into XYZ coordinate :param seq_arr: list of parent-child sequences for one of given type (free, occupied, unknown) :return: list of XYZ boxes with their "size category" (shorted the sequence bigger the voxel) """ xyz = [] if len(seq_arr) == 0: return xyz max_len = max([len(s) for s in seq_arr]) for seq in seq_arr: d = 2 ** (max_len - 1) x, y, z = -32767, -32767, -32767 for code in seq: if code in [1, 3, 5, 7]: x += d if code in [2, 3, 6, 7]: y += d if code in [4, 5, 6, 7]: z += d d //= 2 xyz.append(((x, y, z), len(seq))) return xyz def xyz2img(img, xyz, color, level=2): """ Draw given list of voxels into existing image :param img: I/O image :param xyz: list of voxels (xyz and "size") :param color: value 0..255 to be assigned to voxels at given level :param level: Z-level for the cut :return: updated image """ for pos, size in xyz: x, y, z = pos assert 1 <= size <= 16, size d = 2 ** (16 - size) if z <= level < z + d: if d > 100: # do not try to fill extra large (unknown) squares, for now continue px = SLICE_OCTOMAP_SIZE//2 + x py = SLICE_OCTOMAP_SIZE//2 - y img[max(0, py-d+1):min(SLICE_OCTOMAP_SIZE, py+1), max(0, px):min(SLICE_OCTOMAP_SIZE, px+d)] = color return img def data2stack(data): """ Convert binary ocotomap data into three lists (occupied, free, unknown) :param data: binary octomap data (depth first) :return: (occupied, free, unknown) lists of sequences """ stack = [[]] unknown = [] free = [] occupied = [] for i in range(len(data) // 2): prefix = stack.pop(0) d = struct.unpack_from('<H', data, i * 2)[0] for rot in range(14, -2, -2): # range(0, 16, 2): val = (d & (0x3 << rot)) >> rot if val == 3: stack.insert(0, prefix + [rot // 2]) elif val == 2: occupied.append(prefix + [rot // 2]) elif val == 1: free.append(prefix + [rot // 2]) elif val == 0: unknown.append(prefix + [rot // 2]) assert len(stack) == 0, len(stack) return occupied, free, unknown def data2maplevel(data, level): """ Convert Octomap data to image/level """ img = np.zeros((SLICE_OCTOMAP_SIZE, SLICE_OCTOMAP_SIZE), dtype=np.uint8) occupied, free, unknown = data2stack(data) xyz = seq2xyz(free) xyz2img(img, xyz, color=STATE_FREE, level=level) xyz = seq2xyz(occupied) xyz2img(img, xyz, color=STATE_OCCUPIED, level=level) xyz = seq2xyz(unknown) xyz2img(img, xyz, color=STATE_UNKNOWN, level=level) return img def frontiers(img, start, draw=False): """ Find path to the best frontier (free-unknown transition) :param img: color image with free=white, unknown=green :param start: start pixel :param draw: debug frontiers in pyplot :return: extended image with drawn start and path, path """ size = img.shape green = img[:, :, :] == STATE_UNKNOWN white = img[:, :, :] == STATE_FREE mask_right = green[:, 2:, :] & white[:, 1:-1, :] mask_left = green[:, :-2, :] & white[:, 1:-1, :] mask = mask_left | mask_right z = np.zeros((size[0], 1, size[2]), dtype=np.bool) mask = np.hstack([z, mask, z]) mask_up = green[2:, :, :] & white[1:-1, :, :] mask_down = green[:-2, :, :] & white[1:-1, :, :] z = np.zeros((1, size[1], size[2]), dtype=np.bool) mask2 = mask_up | mask_down mask = np.vstack([z, mask2, z]) | mask z_mask_up = green[:, :, 2:] & white[:, :, 1:-1] z_mask_down = green[:, :, :-2] & white[:, :, 1:-1] z = np.zeros((size[0], size[1], 1), dtype=np.bool) mask3 = z_mask_up | z_mask_down # mask = np.concatenate([z, mask3, z], axis=2) | mask xy = np.where(mask) if len(xy[0]) == 0: # there are no frontiers, i.e. no exploration path return img, None score = np.zeros(len(xy[0])) for i in range(len(xy[0])): x, y = xy[1][i]-SLICE_OCTOMAP_SIZE//2, SLICE_OCTOMAP_SIZE//2-xy[0][i] if x > 4: # TODO - resolution and detect gate as one way only (0 is not sufficient due to impecise position score[i] = math.hypot(x, y) * 0.03 else: score[i] = 0 # too cruel cut for X positive semi-space, but let's move INSIDE! for i in range(len(xy[0])): x, y = xy[1][i]-SLICE_OCTOMAP_SIZE//2, SLICE_OCTOMAP_SIZE//2-xy[0][i] for j in range(len(xy[0])): x2, y2 = xy[1][j]-SLICE_OCTOMAP_SIZE//2, SLICE_OCTOMAP_SIZE//2-xy[0][j] dist = math.hypot(x - x2, y - y2) if dist < 10 and score[i] > 0: # ~ 5 meters, only inside score[i] += 1.0 if draw: import matplotlib.pyplot as plt line = plt.plot(xy[1]-SLICE_OCTOMAP_SIZE//2, SLICE_OCTOMAP_SIZE//2-xy[0], 'bo') m = score > 3*max(score)/4 plt.plot(xy[1][m] - SLICE_OCTOMAP_SIZE//2, SLICE_OCTOMAP_SIZE//2 - xy[0][m], 'ro') plt.axes().set_aspect('equal', 'datalim') plt.show() drivable = white # use 1 pixel surrounding drivable_safe_y = drivable[2:, :] & drivable[1:-1, :] & drivable[:-2, :] drivable_safe_xy = drivable_safe_y[:, 2:] & drivable_safe_y[:, 1:-1] & drivable_safe_y[:, :-2] # add non-drivable frame to match original image size z = np.zeros((size[0] - 2, 1, size[2]), dtype=np.bool) tmp = np.hstack([z, drivable_safe_xy, z]) z = np.zeros((1, size[1], size[2]), dtype=np.bool) drivable = np.vstack([z, tmp, z]) for limit_score in [3*max(score)/4, max(score)/4, 0]: # select goal positions above the limit_score # note, that the "safe path" does not touch external boundary so it would never find path # to frontier. As a workaround add also all 8-neighbors of frontiers. goals = [] xy2 = np.array(xy)[:, score > limit_score] for dx in [-1, 0, 1]: for dy in [-1, 0, 1]: for dz in [0]: #[-1, 0, 1]: goals.append(xy2 + np.repeat(np.asarray([[dy], [dx], [dz]]), xy2.shape[1], axis=1)) goals = np.hstack(goals).T[:, [1, 0, 2]] # the path planner currently expects goals as tuple (x, y) and operation "in" goals = set(map(tuple, goals)) path = find_path(drivable, start, goals, verbose=False) if path is not None: break img[mask] = STATE_FRONTIER if path is not None: for x, y, z in path: img[y][x] = STATE_PATH else: print('Path not found!') return img, path class Octomap(Node): def __init__(self, config, bus): super().__init__(config, bus) bus.register('waypoints', 'dropped') self.prev_data = None self.time_limit_sec = None # initialized with the first sim_time_sec self.debug_arr = [] self.waypoints = None # experimental trigger of navigation self.waypoints_sent_time = None # unknown self.sim_time_sec = None self.pose3d = None self.video_writer = None self.video_outfile = None # 'octo.mp4' # optional video output generation self.min_z = config.get('min_z', 0.5) # should be multiply of "resolution" self.max_z = config.get('max_z', 0.5) # the limits are included self.resolution = config.get('resolution', 0.5) self.verbose = False def on_sim_time_sec(self, data): if self.time_limit_sec is None: self.time_limit_sec = data def on_pose3d(self, data): if self.waypoints is not None: print('Waypoints', data[0], self.waypoints[0], self.waypoints[-1]) self.waypoints_sent_time = self.publish('waypoints', self.waypoints) self.waypoints = None def on_octomap(self, data): if self.sim_time_sec is None or self.pose3d is None or self.sim_time_sec < self.time_limit_sec: return self.time_limit_sec += 1 # simulated seconds if self.waypoints_sent_time is not None and self.waypoints_sent_time > self.time: self.publish('dropped', self.time_limit_sec) # log skipped sim_time return # bit unlucky conversion from existing Python2 data assert len(data) % 2 == 0, len(data) data = bytes([(d + 256) % 256 for d in data]) x, y, z = self.pose3d[0] start = int(SLICE_OCTOMAP_SIZE//2 + x/self.resolution), int(SLICE_OCTOMAP_SIZE//2 - y/self.resolution), int((z - self.min_z)/self.resolution) num_z_levels = int(round((self.max_z - self.min_z)/self.resolution)) + 1 img3d = np.zeros((SLICE_OCTOMAP_SIZE, SLICE_OCTOMAP_SIZE, num_z_levels), dtype=np.uint8) for level in range(num_z_levels): img3d[:, :, level] = data2maplevel(data, level=level + int(round(self.min_z/self.resolution))) if self.verbose: for i in range(num_z_levels): cv2.imwrite('octo_%03d.png' % i, img3d[:, :, i]) img2 = np.zeros((SLICE_OCTOMAP_SIZE, SLICE_OCTOMAP_SIZE, 3), dtype=np.uint8) level = max(0, min(num_z_levels - 1, start[2])) img2[:, :, 0] = img3d[:, :, level] img2[:, :, 1] = img3d[:, :, level] img2[:, :, 2] = img3d[:, :, level] __, path = frontiers(img3d, start) # this image is modified in place anyway if self.verbose: f = (img3d == STATE_FRONTIER).nonzero() for x, y, z in zip(f[1], f[0], f[2]): if z == start[2]: cv2.circle(img2, (x, y), radius=0, color=(255, 0, 255), thickness=-1) if path is not None: for x, y, z in path: cv2.circle(img2, (x, y), radius=0, color=(255, 0, 0), thickness=-1) cv2.circle(img2, start[:2], radius=0, color=(39, 127, 255), thickness=-1) cv2.imwrite('octo_cut.png', img2) # used for replay debugging if self.video_outfile is not None: if self.video_writer is None: fps = 1 height, width = img2.shape[:2] self.video_writer = cv2.VideoWriter(self.video_outfile, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) self.video_writer.write(img2) if path is not None: self.waypoints = [[(x - SLICE_OCTOMAP_SIZE//2)/2, (SLICE_OCTOMAP_SIZE//2 - y)/2, z * self.resolution + self.min_z] for x, y, z in path] def update(self): channel = super().update() handler = getattr(self, "on_" + channel, None) if handler is not None: handler(getattr(self, channel)) else: assert False, channel # unknown channel def draw_iteration(data, waypoints=None, paused=False): global level, scaled if waypoints is None: waypoints = [] while True: img = data2maplevel(data, level=level) cv2.circle(img, start[:2], radius=0, color=(39, 127, 255), thickness=-1) if scaled: img = cv2.resize(img[256 + 128:-256 - 128, 256 + 128:-256 - 128], img.shape) cv2.imshow('Octomap', img) pose_str = '(%.02f, %.02f, %.02f)' % tuple(pose3d[0]) if pose3d is not None else 'None' cv2.setWindowTitle('Octomap', f'Octomap {time}, {pose_str}, level={level}' + (' (paused)' if paused else '')) key = cv2.waitKey(1) & 0xFF KEY_Q = ord('q') if key == KEY_Q: break if key == ord(' '): paused = not paused if ord('0') <= key <= ord('9'): level = key - ord('0') if key == ord('m'): level -= 1 if key == ord('p'): level += 1 if key == ord('s'): scaled = not scaled if key == ord('d'): import open3d as o3d res = 0.5 all = [] for lev in range(-3, 10): img = data2maplevel(data, level=lev) xy = np.where(img == STATE_OCCUPIED) xyz = np.array( [xy[1] - SLICE_OCTOMAP_SIZE / 2, SLICE_OCTOMAP_SIZE / 2 - xy[0], np.full(len(xy[0]), lev)]).T * res all.extend(xyz.tolist()) pcd = o3d.geometry.PointCloud() xyz = np.array(all) pcd.points = o3d.utility.Vector3dVector(xyz) voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=0.1) lines = [[i, i + 1] for i in range(len(waypoints) - 1)] colors = [[1, 0, 0] for i in range(len(lines))] line_set = o3d.geometry.LineSet() line_set.points = o3d.utility.Vector3dVector(waypoints) line_set.lines = o3d.utility.Vector2iVector(lines) line_set.colors = o3d.utility.Vector3dVector(colors) o3d.visualization.draw_geometries([line_set, voxel_grid]) if not paused: break return key if __name__ == "__main__": import argparse from osgar.lib.serialize import deserialize from osgar.logger import LogReader, lookup_stream_id parser = argparse.ArgumentParser("Analyze ocotomap data") parser.add_argument('logfile', help='path to logfile with octomap data') parser.add_argument('--out', help='output path to PNG image', default='out.png') parser.add_argument('--draw', action='store_true', help='draw pyplot frontiers') args = parser.parse_args() octomap_stream_id = lookup_stream_id(args.logfile, 'fromrospy.octomap') pose3d_stream_id = lookup_stream_id(args.logfile, 'fromrospy.pose3d') waypoints_stream_id = lookup_stream_id(args.logfile, 'octomap.waypoints') pose3d = None x, y, z = 0, 0, 0 resolution = 0.5 waypoints = None last_octo_data = None with LogReader(args.logfile, only_stream_id=[octomap_stream_id, pose3d_stream_id, waypoints_stream_id]) as logreader: level = 2 scaled = True for time, stream, data in logreader: data = deserialize(data) if stream == pose3d_stream_id: pose3d = data x, y, z = pose3d[0] start = int(SLICE_OCTOMAP_SIZE//2 + x/resolution), int(SLICE_OCTOMAP_SIZE//2 - y/resolution), int(z / resolution) continue if stream == waypoints_stream_id: waypoints = data continue if waypoints is None: # speed up display/processing - maybe optional? continue assert len(data) % 2 == 0, len(data) # TODO fix this in cloudsim2osgar data = bytes([(d + 256) % 256 for d in data]) last_octo_data = data key = draw_iteration(data, waypoints) if key == ord('q'): break waypoints = None # force wait for next waypoints message if last_octo_data is not None: draw_iteration(last_octo_data, waypoints, paused=True) # vim: expandtab sw=4 ts=4
2.5625
3
src/complex_constraints/sushi_net.py
samarthbhargav/symstat
0
12797931
import argparse import sys import numpy as np from sushi_data import SushiData, to_pairwise_comp from compute_mpe import CircuitMPE import tensorflow as tf FLAGS =None def weight_variable(shape): return tf.Variable(tf.truncated_normal(shape, 0.1)) def bias_variable(shape): return tf.Variable(tf.truncated_normal(shape, 0.1)) def main(_): # Get data sushi_data = SushiData('sushi.soc') INPUT_SIZE = sushi_data.train_data.shape[1] OUTPUT_SIZE = sushi_data.train_labels.shape[1] # Create the model # Input(25) - Layer 1(units) x = tf.placeholder(tf.float32, [None, INPUT_SIZE]) W = [] b = [] ys = [] W.append(weight_variable([INPUT_SIZE, FLAGS.units])) b.append(bias_variable([FLAGS.units])) ys.append(tf.nn.sigmoid(tf.matmul(x, W[0]) + b[0])) for i in range(1, FLAGS.layers): # Layer i(units) - Layer i+1(units) W.append(weight_variable([FLAGS.units, FLAGS.units])) b.append(bias_variable([FLAGS.units])) ys.append(tf.nn.sigmoid(tf.matmul(ys[i-1], W[i]) + b[i])) # Layer n(units) - Output(25) W.append(weight_variable([FLAGS.units, OUTPUT_SIZE])) b.append(bias_variable([OUTPUT_SIZE])) y = tf.matmul(ys[-1], W[-1]) + b[-1] + np.finfo(float).eps * 10 # Define loss and optimizer y_ = tf.placeholder(tf.float32, [None, OUTPUT_SIZE]) yu = tf.unstack(tf.nn.sigmoid(y), axis=1) # Create AC # yleaves = [[ny, 1.0 - ny] for ny in yu] # ac = AC('permutation-4.ac',yleaves) # Create CircuitMPE instance for our predictions cmpe = CircuitMPE('permutation-4.vtree', 'permutation-4.sdd') wmc = cmpe.get_tf_ac([[1.0 - ny,ny] for ny in yu]) cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_, logits=y)) loss = cross_entropy - FLAGS.wmc * tf.log(tf.reduce_mean(wmc)) # train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) # train_step = tf.train.AdagradOptimizer(0.1).minimize(loss) # train_step = tf.train.MomentumOptimizer(0.1, 0.5).minimize(loss) train_step = tf.train.AdamOptimizer().minimize(loss) # Train loop sess = tf.InteractiveSession() tf.global_variables_initializer().run() # Should only compute pairwise comparisons once for labels train_pw = to_pairwise_comp(sushi_data.train_labels, np.sqrt(OUTPUT_SIZE)) valid_pw = to_pairwise_comp(sushi_data.valid_labels, np.sqrt(OUTPUT_SIZE)) test_pw = to_pairwise_comp(sushi_data.test_labels, np.sqrt(OUTPUT_SIZE)) print train_pw.shape print train_pw # For early stopping prev_loss = 1e15 # Train for i in range(FLAGS.iters): # batch_xs, batch_ys = sushi_data.get_batch(400) batch_xs, batch_ys = sushi_data.train_data, sushi_data.train_labels sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) # Every 1k iterations check accuracy if i % 100 == 0: print("After %d iterations" % i) # Computing "true" accuracies correct_prediction = tf.equal(tf.reduce_sum(tf.abs(tf.to_int32(tf.nn.sigmoid(y)+0.5) - tf.to_int32(y_)), 1), 0) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print "Train accuracy: %f" % sess.run(accuracy, feed_dict={x: sushi_data.train_data, y_: sushi_data.train_labels}) print "Validation accuracy: %f" % sess.run(accuracy, feed_dict={x: sushi_data.valid_data, y_: sushi_data.valid_labels}) # Computing MPE instiation accuracies pred = sess.run(tf.nn.sigmoid(y), feed_dict={x: sushi_data.train_data, y_: sushi_data.train_labels}) mpe_pred = np.array([cmpe.compute_mpe_inst([(1-p, p) for p in o]) for o in pred]) print "Train mpe accuracy: %f" % (float(np.sum(np.equal(np.sum(np.abs(mpe_pred - sushi_data.train_labels), axis=1), 0))) / float(sushi_data.train_data.shape[0])) valid_pred = sess.run(tf.nn.sigmoid(y), feed_dict={x: sushi_data.valid_data, y_: sushi_data.valid_labels}) valid_mpe_pred = np.array([cmpe.compute_mpe_inst([(1-p, p) for p in o]) for o in valid_pred]) print "Validation mpe accuracy: %f" % (float(np.sum(np.equal(np.sum(np.abs(valid_mpe_pred - sushi_data.valid_labels), axis=1), 0))) / float(sushi_data.valid_data.shape[0])) # Percentage of individual labels that are right print("Percentage of individual labels in training that are right: %f" % (1. - np.sum(np.abs(np.array(pred + 0.5, int) - sushi_data.train_labels))/float(sushi_data.train_labels.shape[0] * sushi_data.train_labels.shape[1]))) print("Percentage of individual labels in validation that are right: %f" % (1. - np.sum(np.abs(np.array(valid_pred + 0.5, int) - sushi_data.valid_labels))/float(sushi_data.valid_labels.shape[0] * sushi_data.valid_labels.shape[1]))) # Compute pairwise accuracies using MPE mpe_pred_pw = to_pairwise_comp(mpe_pred, 5) print "Train pairwise mpe accuracy: %f" % (1. - float(np.sum(np.abs(mpe_pred_pw - train_pw)))/float(10*sushi_data.train_data.shape[0])) valid_mpe_pred_pw = to_pairwise_comp(valid_mpe_pred, 5) print "Validation pairwise mpe accuracy: %f" % (1. - float(np.sum(np.abs(valid_mpe_pred_pw - valid_pw)))/float(10*sushi_data.valid_data.shape[0])) # Print loss print "Train loss: %f" % sess.run(loss, feed_dict={x: sushi_data.train_data, y_: sushi_data.train_labels}) valid_loss = sess.run(loss, feed_dict={x: sushi_data.valid_data, y_: sushi_data.valid_labels}) print "Validation loss: %f" % valid_loss # Print WMC print "Train WMC: %f" % sess.run(tf.reduce_mean(wmc), feed_dict={x: sushi_data.train_data, y_: sushi_data.train_labels}) print "Validation WMC: %f" % sess.run(tf.reduce_mean(wmc), feed_dict={x: sushi_data.valid_data, y_: sushi_data.valid_labels}) print("Percentage of predictions that follow constraint: %f" % (float(np.sum([cmpe.weighted_model_count([(1-p, p) for p in o]) for o in np.array(valid_pred + 0.5, int)]))/float(sushi_data.valid_data.shape[0]))) # Early stopping if prev_loss < valid_loss: print "Stopping early" print "Test accuracy: %f" % sess.run(accuracy, feed_dict={x: sushi_data.test_data, y_: sushi_data.test_labels}) test_pred = sess.run(tf.nn.sigmoid(y), feed_dict={x: sushi_data.test_data, y_: sushi_data.test_labels}) test_mpe_pred = np.array([cmpe.compute_mpe_inst([(1-p, p) for p in o]) for o in test_pred]) print "Test mpe accuracy: %f" % (float(np.sum(np.equal(np.sum(np.abs(test_mpe_pred - sushi_data.test_labels), axis=1), 0))) / float(sushi_data.test_data.shape[0])) print("Percentage of individual labels in test that are right: %f" % (1. - np.sum(np.abs(np.array(test_pred + 0.5, int) - sushi_data.test_labels))/float(sushi_data.test_labels.shape[0] * sushi_data.test_labels.shape[1]))) test_mpe_pred_pw = to_pairwise_comp(test_mpe_pred, 5) print "Test pairwise mpe accuracy: %f" % (1. - float(np.sum(np.abs(test_mpe_pred_pw - test_pw)))/float(10*sushi_data.test_data.shape[0])) sys.exit() else: prev_loss = valid_loss if __name__ == '__main__': parser = argparse.ArgumentParser() # Args go here parser.add_argument('--units', type=int, default=100, help='Number of units per hidden layer') parser.add_argument('--layers', type=int, default=3, help='Number of hidden layers') parser.add_argument('--wmc', type=float, default=0.0, help='Coefficient of WMC in loss') parser.add_argument('--iters', type=int, default=10000, help='Number of minibatch steps to do') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
2.3125
2
auth-center/App/decorator/role_check_dec.py
Basic-Components/auth-center
1
12797932
<gh_stars>1-10 from functools import wraps from sanic.response import json from App.model import User def role_check(): def decorator(func): @wraps(func) async def handler(request, *args, **kwargs): if (request.app.name not in request.args['auth_roles']): return json({"message":"没有权限查看"},401) else: return await func(request, *args, **kwargs) return handler return decorator def role_or_self_check(): def decorator(func): @wraps(func) async def handler(request, *args, **kwargs): try: _id = kwargs["_id"] except: return json({"message":"url中需要有`_id`"},400) if not ((request.app.name in request.args['auth_roles']) or _id == request.args['auth_id']): return json({"message":"没有权限查看"},401) else: return await func(request, *args, **kwargs) return handler return decorator
2.375
2
moire/array.py
speedcell4/moire
2
12797933
import dynet as dy import numpy as np import moire from moire import Expression __all__ = [ 'zeros', 'ones', 'full', 'normal', 'bernoulli', 'uniform', 'gumbel', 'zeros_like', 'ones_like', 'full_like', 'normal_like', 'bernoulli_like', 'uniform_like', 'gumbel_like', 'eye', 'diagonal', 'where', ] def zeros(*dim, batch_size: int = 1) -> Expression: a = np.zeros((*dim, batch_size), dtype=np.float32) return dy.inputTensor(a, batched=True, device=moire.config.device) def zeros_like(x: Expression) -> Expression: dim, batch_size = x.dim() return zeros(*dim, batch_size=batch_size) def ones(*dim, batch_size: int = 1) -> Expression: a = np.ones((*dim, batch_size), dtype=np.float32) return dy.inputTensor(a, batched=True, device=moire.config.device) def ones_like(x: Expression) -> Expression: dim, batch_size = x.dim() return ones(*dim, batch_size=batch_size) def eye(N: int, M: int = None, k: int = 0) -> Expression: return dy.inputTensor(np.eye(N, M, k), batched=False, device=moire.config.device) def diagonal(x: Expression) -> Expression: (dim0, dim1), batch_size = x.dim() return dy.cmult(x, eye(dim0, dim1)) def full(*dim, value, batch_size: int = 1) -> Expression: a = np.full((*dim, batch_size), fill_value=value, dtype=np.float32) return dy.inputTensor(a, batched=True, device=moire.config.device) def full_like(x: Expression, value) -> Expression: dim, batch_size = x.dim() return full(*dim, value=value, batch_size=batch_size) def normal(*dim, mean: float = 0.0, stddev: float = 1.0, batch_size: int = 1) -> Expression: a = np.random.normal(loc=mean, scale=stddev, size=(*dim, batch_size)).astype(np.float32) return dy.inputTensor(a, batched=True, device=moire.config.device) def normal_like(x: Expression, mean: float = 0.0, stddev: float = 1.0) -> Expression: dim, batch_size = x.dim() return normal(*dim, mean=mean, stddev=stddev, batch_size=batch_size) def bernoulli(*dim, p: float, batch_size: int = 1) -> Expression: a = np.random.uniform(low=0, high=1.0, size=(*dim, batch_size)) < p return dy.inputTensor(a.astype(np.int32), batched=True, device=moire.config.device) def bernoulli_like(x: Expression, p: float) -> Expression: dim, batch_size = x.dim() return bernoulli(*dim, p=p, batch_size=batch_size) def uniform(*dim, low: float, high: float, batch_size: int = 1) -> Expression: a = np.random.uniform(low=low, high=high, size=(*dim, batch_size)) return dy.inputTensor(a, batched=True, device=moire.config.device) def uniform_like(x: Expression, low: float, high: float) -> Expression: dim, batch_size = x.dim() return uniform(dim, low=low, high=high, batch_size=batch_size) def gumbel(*dim, mu: float = 0.0, beta: float = 1.0, batch_size: int = 1) -> Expression: a = np.random.gumbel(loc=mu, scale=beta, size=(*dim, batch_size)) return dy.inputTensor(a, batched=True, device=moire.config.device) def gumbel_like(x: Expression, mu: float = 0.0, beta: float = 1.0) -> Expression: dim, batch_size = x.dim() return gumbel(*dim, mu=mu, beta=beta, batch_size=batch_size) def where(cond: Expression, x: Expression, y: Expression) -> Expression: return dy.cmult(cond, x) + dy.cmult(1.0 - cond, y) if __name__ == '__main__': a = dy.inputTensor([[1, 2, 3], [2, 3, 4], ]) moire.debug(f'a :: {a.dim()} => {a.value()}') b = diagonal(a) moire.debug(f'b :: {b.dim()} => {b.value()}')
2.125
2
nemo/collections/common/losses/aggregator.py
hamjam/NeMo
4,145
12797934
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import torch from nemo.core.classes import Loss, typecheck from nemo.core.neural_types import LossType, NeuralType __all__ = ['AggregatorLoss'] class AggregatorLoss(Loss): """ Sums several losses into one. Args: num_inputs: number of input losses weights: a list of coefficient for merging losses """ @property def input_types(self): """Returns definitions of module input ports. """ input_types = {} for i in range(self._num_losses): input_types["loss_" + str(i + 1)] = NeuralType(elements_type=LossType()) return input_types @property def output_types(self): """Returns definitions of module output ports. """ return {"loss": NeuralType(elements_type=LossType())} def __init__(self, num_inputs: int = 2, weights: List[float] = None): super().__init__() self._num_losses = num_inputs if weights is not None and len(weights) != num_inputs: raise ValueError("Length of weights should be equal to the number of inputs (num_inputs)") self._weights = weights @typecheck() def forward(self, **kwargs): values = [kwargs[x] for x in sorted(kwargs.keys())] loss = torch.zeros_like(values[0]) for loss_idx, loss_value in enumerate(values): if self._weights is not None: loss = loss.add(loss_value, alpha=self._weights[loss_idx]) else: loss = loss.add(loss_value) return loss
2.25
2
PythonExercicios/ex070.py
Luis-Emanuel/Python
0
12797935
#Crie um programa que leia o nome e o preço de vários produtos. O program ddeverá perguntar se o usuário vai continuar. #No final, mostre: A) Qual é o total gasto na compra B)Quantos produtos custão mais que 1000 C)Qual é o nome do produto mais barato. cont = soma = produto_mais = produtovalor = 0 produto_menos = '' print(20*'-') print('{:^20}'.format('<NAME>')) print(20*'-') while True: nome = str(input('Nome do produto: ')).strip() preco = float(input('Preço R$: ')) soma += preco cont += 1 if preco > 1000: produto_mais += 1 if cont == 1 or produtovalor > preco: produto_menos = nome produtovalor = preco resp = str(input('Quer continuar? [S/N]')).upper().strip()[0] if resp == 'N': break print(20*'=') print(f'O total do valor foi R${soma:.2f}') print(f'Temos {produto_mais} produtos que custão mais de R$1000.00') print(f'O produto mais barato foi {produto_menos} que custa R${produtovalor:.2f}')
4
4
cinder/backup/drivers/sheepdog.py
AO-AO/cmss-cinder
0
12797936
<gh_stars>0 #coding:utf-8 import time import json import urllib2 from oslo.config import cfg from cinder import exception from oslo_log import log as logging from cinder.backup.driver import BackupDriver LOG = logging.getLogger(__name__) service_opts = [ cfg.StrOpt('cinder_ip', default='172.16.172.250:8776', help='ebs management node ip.'), ] CONF = cfg.CONF CONF.register_opts(service_opts) class SheepdogBackupDriver(BackupDriver): def __init__(self, context, db_driver=None): super(SheepdogBackupDriver, self).__init__(db_driver) self.context = context self._server_ip = self._utf8(CONF.cinder_ip) @staticmethod def _utf8(s): """Ensure string s is utf8 (i.e. not unicode).""" if isinstance(s, str): return s return s.encode('utf8') def backup(self, backup, volume_file): LOG.info('Starting backup...... Creating a new backup for volume:%s.' % backup['volume_id']) backup_id = backup['id'] url = 'http://' + self._server_ip + '/v2/admin/backups' data = { "backup":{ "container" : backup['container'], "description": backup['display_description'], "name" : backup['display_name'], "volume_id" : backup['volume_id'], "backupid" : backup_id } } jdata = json.dumps(data) req = urllib2.Request(url, jdata) req.add_header('Content-type', 'application/json') try: response = urllib2.urlopen(req) LOG.debug(response.read()) except urllib2.HTTPError, e: LOG.debug(e.code) msg = "redirect backup cmd failed!" raise exception.BackupOperationError(msg) while True: url = 'http://' + self._server_ip + '/v2/admin/backups/' + backup_id try: response = urllib2.urlopen(url) ret = response.read() LOG.debug("RET: %r" % ret) data = json.loads(ret) except urllib2.HTTPError, e: LOG.debug(e.code) msg = "confirm backup cmd failed!" raise exception.BackupOperationError(msg) if data['backup']['status'] == 'available': size = data['backup']['object_count'] LOG.debug("size %s MB." % size) LOG.info('backup finished.') break time.sleep(3) return size def restore(self, backup, target_volume_id, volume_file): LOG.info('Starting restore...... restore from src_volume:%(src)s to dst_volume:%(dst)s' % {'src': backup['volume_id'], 'dst': str("volume-" + target_volume_id)}) backup_id = backup['id'] url = 'http://' + self._server_ip + '/v2/admin/backups/' + backup_id + '/restore' data = { "restore":{ "volume_id": target_volume_id } } jdata = json.dumps(data) req = urllib2.Request(url, jdata) req.add_header('Content-type', 'application/json') try: response = urllib2.urlopen(req) LOG.debug(response.read()) except urllib2.HTTPError, e: LOG.debug(e.code) msg = "redirect restore cmd failed!" raise exception.BackupOperationError(msg) while True: url = 'http://' + self._server_ip + '/v2/admin/backups/' + backup_id try: response = urllib2.urlopen(url) ret = response.read() LOG.debug("RET: %r" % ret) data = json.loads(ret) except urllib2.HTTPError, e: LOG.debug(e.code) msg = "confirm restore cmd failed!" raise exception.BackupOperationError(msg) if data['backup']['status'] == 'available': LOG.info('restore finished.') break time.sleep(3) def delete(self, backup): LOG.info('Starting delete...... backupid:%s' % backup['id']) backup_id = backup['id'] url = 'http://' + self._server_ip + '/v2/admin/backups/' + backup_id req = urllib2.Request(url) req.add_header('Content-Type', 'application/json') req.get_method = lambda:'DELETE' try: response = urllib2.urlopen(req) LOG.debug(response.read()) except urllib2.HTTPError, e: LOG.debug(e.code) if e.code == 404: msg = "backup does not exist!" LOG.info(msg) raise exception.BackupOperationError(msg) #help to decide the volume whether belongs to ebs else: msg = "redirect delete cmd failed!" raise exception.BackupOperationError(msg) while True: url = 'http://' + self._server_ip + '/v2/admin/backups/' + backup_id try: urllib2.urlopen(url) except urllib2.HTTPError, e: LOG.debug(e.code) if e.code == 404: """backup does not exist! already success!""" LOG.info('delete finished.') break else: msg = "confirm delete cmd failed!" raise exception.BackupOperationError(msg) time.sleep(3) def get_backup_driver(context): return SheepdogBackupDriver(context) if __name__ == '__main__': driver = SheepdogBackupDriver()
2.125
2
app/common/helpers.py
citizensvs/cvc19backend
1
12797937
<filename>app/common/helpers.py<gh_stars>1-10 from app.common.conf import PHONE_NUMBER_VALIDATOR def phone_number_valid(phone_number): if phone_number.isdigit(): if PHONE_NUMBER_VALIDATOR.match(phone_number): return True raise ValueError def normalize_phone_number(phone): phone = phone.replace("+", "") phone = phone.replace(" ", "") if len(phone) == 10: phone = f"91{phone}" return phone
2.734375
3
sandbox/DS_registration_scripts/register_ap_ds.py
ska-sa/mkat-tango
0
12797938
<reponame>ska-sa/mkat-tango # register_ap_ds.py # -*- coding: utf8 -*- # vim:fileencoding=utf8 ai ts=4 sts=4 et sw=4 # Copyright 2016 National Research Foundation (South African Radio Astronomy Observatory) # BSD license - see LICENSE for details from __future__ import absolute_import, division, print_function from future import standard_library standard_library.install_aliases() import PyTango ap_name = "mkat_sim/ap/1" dev_info = PyTango.DbDevInfo() dev_info.server = "mkat-tango-AP-DS/test" dev_info._class = "MkatAntennaPositioner" dev_info.name = ap_name db = PyTango.Database() db.add_device(dev_info) print("Registration of antenna positioner Successful")
1.96875
2
src/get_gov.py
cannibalcheeseburger/covid-19-tracker
0
12797939
import urllib.request from bs4 import BeautifulSoup def get_go(): url = "https://www.mohfw.gov.in/" uClient = urllib.request.urlopen(url) page_html = uClient.read() uClient.close() page_soup = BeautifulSoup(page_html,"html.parser") news = page_soup.find_all('div',class_ = 'update-box') newz = [] for new in news: newz.append([new.strong.text,new.a.text.strip(),new.a['href']]) return newz
3.34375
3
Chap10/hello.py
RiddhiDamani/Python
0
12797940
<filename>Chap10/hello.py #!/usr/bin/env python3 # Copyright 2009-2017 BHG http://bw.org/ # Exceptions are powerful runtime error reporting mechanism commonly used in object oriented systems. # ValueError: is the token i.e. it is the name of the error that is being generated here. # sys has lot of constants in it. import sys def main(): print('Hello, World.') try: # x = int('foo') # x = 5 / 3 x = 5 / 0 # capturing the error gracefully # if you don't catch the errors it will stop the execution of your python script. except ValueError: print('I caught a ValueError!') except ZeroDivisionError: print('Don\'t divide by zero') # if you don't know which error it is! except: print(f'unknown error! : {sys.exc_info()[1]}') # else block gets executed only if you don't have any errors! else: print('Good Job!') print(x) if __name__ == '__main__': main()
4.03125
4
utils_batch.py
gregor8003/text_word_embed
0
12797941
<reponame>gregor8003/text_word_embed<filename>utils_batch.py from bisect import bisect_left import itertools from numpy.lib.npyio import load as npload import numpy as np from utils import ( get_mdsd_csv_cbow_data_input_files_iter, get_mdsd_csv_cbow_data_output_files_iter, grouper, MDSD_MAIN_PATH, ) def closest_batch_size(total_size, seed_size): # produce all factors of total_size factors = [d for d in range(1, total_size // 2 + 1) if not total_size % d] # select number closest to seed size # https://stackoverflow.com/questions/12141150/from-list-of-integers-get-number-closest-to-a-given-value pos = bisect_left(factors, seed_size) if pos == 0: return factors[0] if pos == len(factors): return factors[-1] before = factors[pos - 1] after = factors[pos] closest = before if after - seed_size < seed_size - before: closest = after return closest def gen_array(array): for els in np.nditer(array, flags=['external_loop']): for el in grouper(els, 2): yield el def get_mdsd_csv_cbow_data_input_iter(batch_size, main_path=MDSD_MAIN_PATH): iterators = [] for path in get_mdsd_csv_cbow_data_input_files_iter(main_path=main_path): data = npload(path, mmap_mode='r') iterators.append(gen_array(data)) main_it = itertools.chain.from_iterable(iterators) for batch in grouper(main_it, batch_size): batch = np.stack(batch, axis=0) yield batch def get_mdsd_csv_cbow_data_output_iter(batch_size, main_path=MDSD_MAIN_PATH): iterators = [] for path in get_mdsd_csv_cbow_data_output_files_iter(main_path=main_path): data = npload(path, mmap_mode='r') iterators.append(gen_array(data)) main_it = itertools.chain.from_iterable(iterators) for batch in grouper(main_it, batch_size): batch = np.stack(batch, axis=0) yield batch def fit_generator(batch_size, main_path=MDSD_MAIN_PATH): while True: for res in fit_generator_it(batch_size, main_path): yield res def fit_generator_it(batch_size, main_path=MDSD_MAIN_PATH): gens = zip( get_mdsd_csv_cbow_data_input_iter(batch_size, main_path=main_path), get_mdsd_csv_cbow_data_output_iter(batch_size, main_path=main_path) ) for tr, lb in gens: yield tr, lb def get_mdsd_csv_cbow_data_input_size(main_path=MDSD_MAIN_PATH): total_size = 0 for path in get_mdsd_csv_cbow_data_input_files_iter(main_path=main_path): data = npload(path, mmap_mode='r') total_size = total_size + data.shape[0] return total_size def get_mdsd_csv_cbow_data_output_size(main_path=MDSD_MAIN_PATH): total_size = 0 for path in get_mdsd_csv_cbow_data_output_files_iter(main_path=main_path): data = npload(path, mmap_mode='r') total_size = total_size + data.shape[0] return total_size
2.78125
3
scripts/deploy_stack.py
sfuruya0612/snatch
3
12797942
# -*- coding: utf-8 -*- import glob import os import re import sys import logging from boto3.session import Session from botocore.exceptions import ClientError from argparse import ArgumentParser TEMPLATES = [ "/scripts/ec2.yml", ] logger = logging.getLogger() formatter = '%(levelname)s : %(asctime)s : %(message)s' logging.basicConfig(level=logging.INFO, format=formatter) class DeployStack: # Option parser. def get_option(self): usage = "python " + sys.argv[0] + " [-h | --help] [-a | --app <APP_NAME>] [-p | --profile <AWS_PROFILE>] [-r | --region <AWS_REGION>]" argparser = ArgumentParser(usage=usage) argparser.add_argument("-a", "--app", type=str, default="snatch", help="Target app name.") argparser.add_argument("-p", "--profile", type=str, default="default", help="~/.aws/config.") argparser.add_argument("-r", "--region", type=str, default="ap-northeast-1", help="AWs regions. e.g. ap-northeast-1, us-east-1, ...") return argparser.parse_args() # Update CFn stacks. def update_stack(self, stack_name, cfn, input): w = cfn.get_waiter("stack_update_complete") try: cfn.update_stack(**input) logger.info("Update %s.", stack_name) w.wait( StackName = stack_name, ) return logger.info("Update %s complete.", stack_name) except ClientError as e: return logger.warning("%s", e.response["Error"]["Message"]) # Create CFn stacks. def create_stack(self, stack_name, cfn, input): w = cfn.get_waiter("stack_create_complete") try: cfn.create_stack(**input) logger.info("Create %s.", stack_name) w.wait( StackName = stack_name, ) return logger.info("Create %s complete.", stack_name) except ClientError as e: if e.response["Error"]["Code"] == "AlreadyExistsException": self.update_stack(stack_name, cfn, input) return else: return logger.warning("%s", e.response["Error"]["Message"]) # Valid CFn template. def valid_template(self, template, body, cfn): logger.info("Validate checks %s", template) try: cfn.validate_template( TemplateBody = body, ) return logger.info("%s is validation OK.", template) except ClientError as e: return logger.warning("%s", e.response["Error"]["Message"]) # Create EC2 keypair. # 秘密鍵は ~/.ssh/ 配下に書き出す(file permission: 0600) def create_keypair(self, app_name, session): logger.info("Create %s KeyPair.", app_name) ec2 = session.client("ec2") try: ec2.describe_key_pairs( KeyNames=[ app_name, ], ) return logger.info("%s KeyPair already exists.", app_name) except ClientError as e: if e.response["Error"]["Code"] == "InvalidKeyPair.NotFound": res = ec2.create_key_pair( KeyName=app_name, ) private_key = res["KeyMaterial"] pem_file = open(os.environ["HOME"] + "/.ssh/" + app_name + ".pem", "w") pem_file.write(private_key) pem_file.close os.chmod(os.environ["HOME"] + "/.ssh/" + app_name + ".pem", 0o600) return logger.info("%s KeyPair created.", app_name) else: return logger.warning("%s", e.response["Error"]["Message"]) # Provisiond stack def provisiond(self, app_name, profile, region): session = Session(profile_name=profile, region_name=region) self.create_keypair(app_name, session) cfn = session.client("cloudformation") for t in TEMPLATES: path = os.getcwd() + t body = open(path).read() stack_name = app_name + "-" + re.sub('\/(.*)\/(.*)\.yml', '\\1-\\2', t) self.valid_template(t, body, cfn) input = { "StackName": stack_name, "TemplateBody": body, "Capabilities": [ 'CAPABILITY_NAMED_IAM', ], "Parameters": [ { "ParameterKey": "AppName", "ParameterValue": app_name, }, ], } try: self.create_stack(stack_name, cfn, input) except ClientError as e: logger.warning("%s", e.response["Error"]["Message"]) return @staticmethod def main(): logger.info("Start provision stacks.") self = DeployStack() options = self.get_option() app_name = options.app profile = options.profile region = options.region self.provisiond(app_name, profile, region) return logger.info("Finish provision stacks.") if __name__ == '__main__': DeployStack.main()
2.078125
2
tartiflette/directive/builtins/non_introspectable.py
alexchamberlain/tartiflette
0
12797943
<reponame>alexchamberlain/tartiflette<gh_stars>0 from typing import Any, Callable, Dict, Optional from tartiflette import Directive class NonIntrospectable: async def on_introspection( self, _directive_args: Dict[str, Any], _next_directive: Callable, _introspected_element: Any, _ctx: Optional[Dict[str, Any]], _info: "Info", ) -> None: return None class NonIntrospectableDeprecated: async def on_introspection( self, _directive_args: Dict[str, Any], _next_directive: Callable, _introspected_element: Any, _ctx: Optional[Dict[str, Any]], _info: "Info", ) -> None: print( "@non_introspectable is deprecated, please use @nonIntrospectable, will be removed in 0.12.0" ) return None def bake(schema_name, _config): sdl = """ directive @nonIntrospectable on FIELD_DEFINITION directive @non_introspectable on FIELD_DEFINITION """ Directive(name="nonIntrospectable", schema_name=schema_name)( NonIntrospectable() ) Directive(name="non_introspectable", schema_name=schema_name)( NonIntrospectableDeprecated() ) return sdl
2.078125
2
reading/book/migrations/0003_auto_20180613_1926.py
Family-TreeSY/reading
2
12797944
<reponame>Family-TreeSY/reading<gh_stars>1-10 # -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2018-06-13 11:26 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('book', '0002_auto_20180613_1914'), ] operations = [ migrations.AlterField( model_name='story', name='image', field=models.ImageField(blank=True, upload_to=b'', verbose_name='\u56fe\u7247'), ), ]
1.359375
1
TyphoonApi/suncreative/migrations/0008_auto_20210306_0049.py
ZhangDubhe/Tropical-Cyclone-Information-System
9
12797945
<gh_stars>1-10 # Generated by Django 2.2.13 on 2021-03-06 00:49 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('suncreative', '0007_postrecord_state'), ] operations = [ migrations.CreateModel( name='MediaFolder', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('parent', models.IntegerField(default=None, null=True)), ], ), migrations.AddField( model_name='media', name='folder', field=models.ForeignKey(default=None, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='文件夹', to='suncreative.MediaFolder'), ), ]
1.835938
2
lcms/parse_mzml.py
NetherlandsForensicInstitute/msmatcher
0
12797946
import glob from collections import namedtuple import dateutil.parser import numpy as np import pandas as pd import pymzml import config import lcms.utils as utils def create_spectrum_and_peak_tables(msrun_list, experiment_id): ''' fills the Spectrum table and for each spectrum the Peak table :param msrun_list: :param experiment_id: :return: ''' spectrum = namedtuple('spectrum', 'experiment_id ' + 'spectrum_id ' + 'total_ion_current ' + 'time_passed_since_start ' + 'ms_level ' + 'highest_observed_mz ' + 'lowest_observed_mz ' + 'scan_window_upper_limit ' + 'scan_window_lower_limit') measurement = namedtuple('measurement', 'experiment_id ' + 'spectrum_id' + ' mz' + ' intensity') spectrum_list = [] measurement_list = [] for i, spc in enumerate(msrun_list): if i % 100 == 0: print("Spectrum {}".format(i)) s = spectrum(experiment_id=experiment_id, spectrum_id=spc.ID, total_ion_current=spc['total ion current'], time_passed_since_start=spc['scan start time'], ms_level=spc['ms level'], highest_observed_mz=spc['highest observed m/z'], lowest_observed_mz=spc['lowest observed m/z'], scan_window_upper_limit=spc['scan window upper limit'], scan_window_lower_limit=spc['scan window lower limit']) spectrum_list.append(s) if i == 0: m = measurement(experiment_id=experiment_id, spectrum_id=spc.ID, mz=np.nan, intensity=np.nan) else: m = measurement(experiment_id=experiment_id, spectrum_id=spc.ID, mz=spc.mz, intensity=spc.i) # Fill peak table if experiment_id + spectrum_id do not already exist in table Peak check_peak = config.db_connection.execute( """SELECT experiment_id from "Peak" WHERE experiment_id = '{}' AND spectrum_id = '{}'"""\ .format(experiment_id, spc.ID)).fetchone() if check_peak is not None: print( ("Experiment_id {} + spectrum_id {} combination already exists in Peak table. " + "To avoid duplicates the spectra won't be added to the Peak table").format(experiment_id, spc.ID)) else: peak_table = pd.DataFrame({"mz": spc.mz, "intensity": spc.i}) peak_table['experiment_id'] = experiment_id peak_table['spectrum_id'] = spc.ID peak_table.to_sql('Peak', con=config.db_connection, index=False, if_exists='append') print("Appended to Peak table from experiment_id: {}, spectrum_id: {}".format(experiment_id, spc.ID)) measurement_list.append(m) # check if experiment_id already exists in Spectrum table. If not, append data to Spectrum table check_spectrum = config.db_connection.execute( """SELECT experiment_id from "Spectrum" WHERE experiment_id = '{}' """ .format(experiment_id)).fetchone() if check_spectrum is not None: print(("Experiment_id {} already exists in Spectrum table. " + "To avoid duplicates the spectra won't be added to the Spectrum table") .format(experiment_id)) else: spectrum_table = pd.DataFrame(spectrum_list) spectrum_table.to_sql('Spectrum', con=config.db_connection, index=False, if_exists='append') print("Appended to Spectrum table with info from experiment_id: {}".format(experiment_id)) def create_experiment(msrun_list, filename): """ Create a new experiment structure based on the information in the msrun_list. :param msrun_list: an open pymzml runner :param filename: name of the pymzml file :return: a dictionary containing the initialized experiment """ experiment = dict.fromkeys(['run_id', 'run_start_time', 'human_run_start_time', 'spectra_count', 'experimental_state_id', 'match_type_id', 'filename']) # Todo: waarden in onderstaande tabel moeten nog ingevuld worden experiment['run_id'] = msrun_list.info['run_id'] if "start_time" in msrun_list.info.keys(): start_time_str = msrun_list.info["start_time"] start_time = dateutil.parser.parse(start_time_str) experiment['run_start_time'] = start_time.timestamp() experiment['human_run_start_time'] = start_time else: experiment['run_start_time'] = None experiment['human_run_start_time'] = None experiment['spectra_count'] = msrun_list.info['spectrum_count'] experiment['experimental_state_id'] = None experiment['match_type_id'] = None experiment['filename'] = filename.split('/')[-1] return experiment def create_experiment_table(msrun_list, filename): """ fills the Experiment table. :param msrun_list: an open pymzml runner :param filename: name of the pymzml file :return: """ experiment = create_experiment(msrun_list, filename) utils.append_to_experiment('Experiment', experiment) experiment_id = config.db_connection.execute( """SELECT experiment_id from "Experiment" WHERE filename = '{}' """.format( filename.split('/')[-1])).fetchone()[0] return experiment_id def read_file(filename): msrun = pymzml.run.Reader(filename) msrun_list = list(msrun) # check if filename already in Experiment table check = config.db_connection.execute( """SELECT experiment_id from "Experiment" WHERE filename = '{}' """.format( filename.split('/')[-1])).fetchone() if check is not None: print("File already exists in DB. Continue to filling Spectrum table") experiment_id = check[0] else: # fill the Experiment table with data from file experiment_id = create_experiment_table(msrun_list, filename) # fill the Spectrum and Peak table with data from file create_spectrum_and_peak_tables(msrun_list, experiment_id) if __name__ == "__main__": for n, filename in enumerate(glob.iglob('{}Geconverteerd/*.mzML'.format(config.data_dir))): print("reading file {} ({})".format(n, filename.split('/')[-1])) if '+' in filename.split('/')[-1]: print("Raw data, will be skipped for now") continue read_file(filename)
2.390625
2
setup.py
ddolzhenko/dirutil
0
12797947
from setuptools import setup, find_packages ver = "0.4" setup( name = 'dirutil', version = ver, description = 'High level directory utilities', keywords = ['dir', 'directory', 'workdir', 'tempdir'], author = '<NAME>', author_email = '<EMAIL>', packages = find_packages(), test_suite = 'dirutil.get_tests', url = 'https://github.com/ddolzhenko/dirutil', download_url = 'https://github.com/ddolzhenko/dirutil/archive/v{}.tar.gz'.format(ver), classifiers = [], install_requires = [ # "checksumdir==1.0.5", ], )
1.34375
1
ingine/examples/eight_queens_puzzle.py
sqarrt/Ingine
0
12797948
<filename>ingine/examples/eight_queens_puzzle.py import random from pyeasyga import pyeasyga from ingine import ga # setup seed data data = [0, 1, 2, 3, 4, 5, 6, 7] # initialise the GA gaa = pyeasyga.GeneticAlgorithm(data, population_size = 200, generations = 100, crossover_probability = 0.8, mutation_probability = 0.2, elitism = True, maximise_fitness = False) # define and set function to create a candidate solution representation def create_individual(data): individual = data[:] random.shuffle(individual) return individual def crossover(parent_1, parent_2): crossover_index = random.randrange(1, len(parent_1)) child_1a = parent_1[:crossover_index] child_1b = [i for i in parent_2 if i not in child_1a] child_1 = child_1a + child_1b child_2a = parent_2[crossover_index:] child_2b = [i for i in parent_1 if i not in child_2a] child_2 = child_2a + child_2b return child_1, child_2 def mutate(individual): mutate_index1 = random.randrange(len(individual)) mutate_index2 = random.randrange(len(individual)) individual[mutate_index1], individual[mutate_index2] = individual[mutate_index2], individual[mutate_index1] def selection(population): return random.choice(population) def fitness(individual, data): collisions = 0 for item in individual: item_index = individual.index(item) for elem in individual: elem_index = individual.index(elem) if item_index != elem_index: if item - (elem_index - item_index) == elem\ or (elem_index - item_index) + item == elem: collisions += 1 return collisions def print_board(board_representation): def print_x_in_row(row_length, x_position): print('-' + ''.join(['----' for _ in range(row_length)])) print('|' + ''.join([' X |' if i == x_position else ' |' for i in range(row_length)])), def print_board_bottom(row_length): print('-' + ''.join(['----' for _ in range(row_length)])) num_of_rows = len(board_representation) row_length = num_of_rows #rows == columns in a chessboard for row in range(num_of_rows): print_x_in_row(row_length, board_representation[row]) print_board_bottom(row_length) print('\n') optimizer = ga.get_optimizer(data, population_size = 200, generations = 100, crossover_probability = 0.8, mutation_probability = 0.2, elitism = True, maximise_fitness = False, create_individual = create_individual, crossover = crossover, mutate = mutate, fitness = fitness, selection = selection) res = optimizer() # print the GA's best solution; a solution is valid only if there are no collisions if res[0] == 0: print(res) print_board(res[1]) else: print(None)
2.96875
3
dyn_agent.py
Journerist/PokerJohn
0
12797949
from collections import deque import random import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam class DYNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) self.gamma = 0.95 # discount future rewards less self.exploration_rate = 1 self.exploration_decay = 0.995 self.exploration_min = 0.01 self.model = self._build_model() def _build_model(self): model = Sequential() model.add(Dense(24, input_dim=self.state_size, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(self.action_size, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model
2.546875
3
tests/test_pandas_marc.py
cmsetzer/pandas-marc
2
12797950
#!/usr/bin/env python3 """Test suite for pandas-marc.""" from pandas_marc import MARCDataFrame def test_instantiate_marcdataframe(dataframe): kwargs = { 'dataframe': dataframe, 'occurrence_delimiter': '|', 'subfield_delimiter': '‡' } mdf = MARCDataFrame(**kwargs) for key, value in kwargs.items(): assert getattr(mdf, key) is value def test_marcdataframe_produces_correct_marc_records(dataframe, records): mdf = MARCDataFrame(dataframe) output = [record.as_marc() for record in mdf.records] expected = [record.as_marc() for record in records] assert output == expected def test_marcdataframe_with_other_occurrence_delimiter(dataframe, records): # Find and replace backslashes in original dataframe with pipes dataframe = dataframe.replace(r'\\', '|', regex=True) mdf = MARCDataFrame(dataframe, occurrence_delimiter='|') output = [record.as_marc() for record in mdf.records] expected = [record.as_marc() for record in records] assert output == expected def test_marcdataframe_with_other_subfield_delimiter(dataframe, records): # Find and replace double daggers in original dataframe with dollar signs dataframe = dataframe.replace(r'\$', '‡', regex=True) mdf = MARCDataFrame(dataframe, subfield_delimiter='‡') output = [record.as_marc() for record in mdf.records] expected = [record.as_marc() for record in records] assert output == expected
3.078125
3