docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Return the number of milliseconds to wait, based on the connection
state, before attempting to send data. When disconnected, this respects
the reconnect backoff time. When connecting, returns 0 to allow
non-blocking connect to finish. When connected, returns a very large
number to handle slow/stalled connections.
Arguments:
node_id (int): The id of the node to check
Returns:
int: The number of milliseconds to wait. | def connection_delay(self, node_id):
conn = self._conns.get(node_id)
if conn is None:
return 0
return conn.connection_delay() | 116,494 |
Check whether a node is ready to send more requests.
In addition to connection-level checks, this method also is used to
block additional requests from being sent during a metadata refresh.
Arguments:
node_id (int): id of the node to check
metadata_priority (bool): Mark node as not-ready if a metadata
refresh is required. Default: True
Returns:
bool: True if the node is ready and metadata is not refreshing | def is_ready(self, node_id, metadata_priority=True):
if not self._can_send_request(node_id):
return False
# if we need to update our metadata now declare all requests unready to
# make metadata requests first priority
if metadata_priority:
if self._metadata_refresh_in_progress:
return False
if self.cluster.ttl() == 0:
return False
return True | 116,495 |
Get the number of in-flight requests for a node or all nodes.
Arguments:
node_id (int, optional): a specific node to check. If unspecified,
return the total for all nodes
Returns:
int: pending in-flight requests for the node, or all nodes if None | def in_flight_request_count(self, node_id=None):
if node_id is not None:
conn = self._conns.get(node_id)
if conn is None:
return 0
return len(conn.in_flight_requests)
else:
return sum([len(conn.in_flight_requests)
for conn in list(self._conns.values())]) | 116,500 |
Set specific topics to track for metadata.
Arguments:
topics (list of str): topics to check for metadata
Returns:
Future: resolves after metadata request/response | def set_topics(self, topics):
if set(topics).difference(self._topics):
future = self.cluster.request_update()
else:
future = Future().success(set(topics))
self._topics = set(topics)
return future | 116,503 |
Add a topic to the list of topics tracked via metadata.
Arguments:
topic (str): topic to track
Returns:
Future: resolves after metadata request/response | def add_topic(self, topic):
if topic in self._topics:
return Future().success(set(self._topics))
self._topics.add(topic)
return self.cluster.request_update() | 116,504 |
Create a new buffer pool.
Arguments:
memory (int): maximum memory that this buffer pool can allocate
poolable_size (int): memory size per buffer to cache in the free
list rather than deallocating | def __init__(self, memory, poolable_size, metrics=None, metric_group_prefix='producer-metrics'):
self._poolable_size = poolable_size
self._lock = threading.RLock()
buffers = int(memory / poolable_size) if poolable_size else 0
self._free = collections.deque([io.BytesIO() for _ in range(buffers)])
self._waiters = collections.deque()
self.wait_time = None
if metrics:
self.wait_time = metrics.sensor('bufferpool-wait-time')
self.wait_time.add(metrics.metric_name(
'bufferpool-wait-ratio', metric_group_prefix,
'The fraction of time an appender waits for space allocation.'),
Rate()) | 116,549 |
Allocate a buffer of the given size. This method blocks if there is not
enough memory and the buffer pool is configured with blocking mode.
Arguments:
size (int): The buffer size to allocate in bytes [ignored]
max_time_to_block_ms (int): The maximum time in milliseconds to
block for buffer memory to be available
Returns:
io.BytesIO | def allocate(self, size, max_time_to_block_ms):
with self._lock:
# check if we have a free buffer of the right size pooled
if self._free:
return self._free.popleft()
elif self._poolable_size == 0:
return io.BytesIO()
else:
# we are out of buffers and will have to block
buf = None
more_memory = threading.Condition(self._lock)
self._waiters.append(more_memory)
# loop over and over until we have a buffer or have reserved
# enough memory to allocate one
while buf is None:
start_wait = time.time()
more_memory.wait(max_time_to_block_ms / 1000.0)
end_wait = time.time()
if self.wait_time:
self.wait_time.record(end_wait - start_wait)
if self._free:
buf = self._free.popleft()
else:
self._waiters.remove(more_memory)
raise Errors.KafkaTimeoutError(
"Failed to allocate memory within the configured"
" max blocking time")
# remove the condition for this thread to let the next thread
# in line start getting memory
removed = self._waiters.popleft()
assert removed is more_memory, 'Wrong condition'
# signal any additional waiters if there is more memory left
# over for them
if self._free and self._waiters:
self._waiters[0].notify()
# unlock and return the buffer
return buf | 116,550 |
Return buffers to the pool. If they are of the poolable size add them
to the free list, otherwise just mark the memory as free.
Arguments:
buffer_ (io.BytesIO): The buffer to return | def deallocate(self, buf):
with self._lock:
# BytesIO.truncate here makes the pool somewhat pointless
# but we stick with the BufferPool API until migrating to
# bytesarray / memoryview. The buffer we return must not
# expose any prior data on read().
buf.truncate(0)
self._free.append(buf)
if self._waiters:
self._waiters[0].notify() | 116,551 |
Encode an integer to a varint presentation. See
https://developers.google.com/protocol-buffers/docs/encoding?csw=1#varints
on how those can be produced.
Arguments:
value (int): Value to encode
write (function): Called per byte that needs to be writen
Returns:
int: Number of bytes written | def encode_varint(value, write):
value = (value << 1) ^ (value >> 63)
if value <= 0x7f: # 1 byte
write(value)
return 1
if value <= 0x3fff: # 2 bytes
write(0x80 | (value & 0x7f))
write(value >> 7)
return 2
if value <= 0x1fffff: # 3 bytes
write(0x80 | (value & 0x7f))
write(0x80 | ((value >> 7) & 0x7f))
write(value >> 14)
return 3
if value <= 0xfffffff: # 4 bytes
write(0x80 | (value & 0x7f))
write(0x80 | ((value >> 7) & 0x7f))
write(0x80 | ((value >> 14) & 0x7f))
write(value >> 21)
return 4
if value <= 0x7ffffffff: # 5 bytes
write(0x80 | (value & 0x7f))
write(0x80 | ((value >> 7) & 0x7f))
write(0x80 | ((value >> 14) & 0x7f))
write(0x80 | ((value >> 21) & 0x7f))
write(value >> 28)
return 5
else:
# Return to general algorithm
bits = value & 0x7f
value >>= 7
i = 0
while value:
write(0x80 | bits)
bits = value & 0x7f
value >>= 7
i += 1
write(bits)
return i | 116,569 |
Decode an integer from a varint presentation. See
https://developers.google.com/protocol-buffers/docs/encoding?csw=1#varints
on how those can be produced.
Arguments:
buffer (bytearry): buffer to read from.
pos (int): optional position to read from
Returns:
(int, int): Decoded int value and next read position | def decode_varint(buffer, pos=0):
result = buffer[pos]
if not (result & 0x81):
return (result >> 1), pos + 1
if not (result & 0x80):
return (result >> 1) ^ (~0), pos + 1
result &= 0x7f
pos += 1
shift = 7
while 1:
b = buffer[pos]
result |= ((b & 0x7f) << shift)
pos += 1
if not (b & 0x80):
return ((result >> 1) ^ -(result & 1), pos)
shift += 7
if shift >= 64:
raise ValueError("Out of int64 range") | 116,571 |
Encode and queue a kafka api request for sending.
Arguments:
request (object): An un-encoded kafka request.
correlation_id (int, optional): Optionally specify an ID to
correlate requests with responses. If not provided, an ID will
be generated automatically.
Returns:
correlation_id | def send_request(self, request, correlation_id=None):
log.debug('Sending request %s', request)
if correlation_id is None:
correlation_id = self._next_correlation_id()
header = RequestHeader(request,
correlation_id=correlation_id,
client_id=self._client_id)
message = b''.join([header.encode(), request.encode()])
size = Int32.encode(len(message))
data = size + message
self.bytes_to_send.append(data)
if request.expect_response():
ifr = (correlation_id, request)
self.in_flight_requests.append(ifr)
return correlation_id | 116,577 |
Converts from hex|rgb to rgba
Parameters:
-----------
color : string
Color representation on hex or rgb
alpha : float
Value from 0 to 1.0 that represents the
alpha value.
Example:
to_rgba('#E1E5ED',0.6)
to_rgba('#f03',0.7)
to_rgba('rgb(23,23,23)',.5) | def to_rgba(color, alpha):
if type(color) == tuple:
color, alpha = color
color = color.lower()
if 'rgba' in color:
cl = list(eval(color.replace('rgba', '')))
if alpha:
cl[3] = alpha
return 'rgba' + str(tuple(cl))
elif 'rgb' in color:
r, g, b = eval(color.replace('rgb', ''))
return 'rgba' + str((r, g, b, alpha))
else:
return to_rgba(hex_to_rgb(color), alpha) | 117,409 |
Converts from hex to rgb
Parameters:
-----------
color : string
Color representation on hex or rgb
Example:
hex_to_rgb('#E1E5ED')
hex_to_rgb('#f03') | def hex_to_rgb(color):
color = normalize(color)
color = color[1:]
# return 'rgb'+str(tuple(ord(c) for c in color.decode('hex')))
return 'rgb' + str((int(color[0:2], base=16), int(color[2:4], base=16), int(color[4:6], base=16))) | 117,410 |
Returns an hex color
Parameters:
-----------
color : string
Color representation in rgba|rgb|hex
Example:
normalize('#f03') | def normalize(color):
if type(color) == tuple:
color = to_rgba(*color)
if 'rgba' in color:
return rgb_to_hex(rgba_to_rgb(color))
elif 'rgb' in color:
return rgb_to_hex(color)
elif '#' in color:
if len(color) == 7:
return color
else:
color = color[1:]
return '#' + ''.join([x * 2 for x in list(color)])
else:
try:
return normalize(cnames[color.lower()])
except:
raise CufflinksError('Not a valid color: ' + color) | 117,411 |
Converts from rgb to hex
Parameters:
-----------
color : string
Color representation on hex or rgb
Example:
rgb_to_hex('rgb(23,25,24)') | def rgb_to_hex(color):
rgb = eval(color.replace('rgb', ''))
# return '#'+''.join(map(chr, rgb)).encode('hex')
return '#' + ''.join(['{0:02x}'.format(x).upper() for x in rgb]) | 117,412 |
Converts from rgba to rgb
Parameters:
-----------
color : string
Color representation in rgba
bg : string
Color representation in rgb
Example:
rgba_to_rgb('rgb(23,25,24,.4)'' | def rgba_to_rgb(color, bg='rgb(255,255,255)'):
def c_tup(c):
return eval(c[c.find('('):])
color = c_tup(color)
bg = hex_to_rgb(normalize(bg))
bg = c_tup(bg)
a = color[3]
r = [int((1 - a) * bg[i] + a * color[i]) for i in range(3)]
return 'rgb' + str(tuple(r)) | 117,413 |
Converts from hex to hsv
Parameters:
-----------
color : string
Color representation on color
Example:
hex_to_hsv('#ff9933') | def hex_to_hsv(color):
color = normalize(color)
color = color[1:]
# color=tuple(ord(c)/255.0 for c in color.decode('hex'))
color = (int(color[0:2], base=16) / 255.0, int(color[2:4],
base=16) / 255.0, int(color[4:6], base=16) / 255.0)
return colorsys.rgb_to_hsv(*color) | 117,414 |
Generates a scale of colours from a base colour
Parameters:
-----------
color : string
Color representation in hex
N : int
number of colours to generate
Example:
color_range('#ff9933',20) | def color_range(color, N=20):
color = normalize(color)
org = color
color = hex_to_hsv(color)
HSV_tuples = [(color[0], x, color[2]) for x in np.arange(0, 1, 2.0 / N)]
HSV_tuples.extend([(color[0], color[1], x)
for x in np.arange(0, 1, 2.0 / N)])
hex_out = []
for c in HSV_tuples:
c = colorsys.hsv_to_rgb(*c)
c = [int(_ * 255) for _ in c]
# hex_out.append("#"+"".join([chr(x).encode('hex') for x in c]))
hex_out.append("#" + "".join(['{0:02x}'.format(x) for x in c]))
if org not in hex_out:
hex_out.append(org)
hex_out.sort()
return hex_out | 117,415 |
Returns a generator with a list of colors
and gradients of those colors
Parameters:
-----------
colors : list(colors)
List of colors to use
Example:
colorgen()
colorgen(['blue','red','pink'])
colorgen(['#f03','rgb(23,25,25)']) | def colorgen(colors=None, n=None, scale=None, theme=None):
from .themes import THEMES
step = .1
if not colors:
if not scale:
if not theme:
scale = get_config_file()['colorscale']
else:
scale = THEMES[theme]['colorscale']
colors = get_scales(scale)
dq = deque(colors)
if len(dq) == 0:
dq = deque(get_scales('ggplot'))
if n:
step = len(dq) * 0.8 / n if len(dq) * 8 < n else .1
for i in np.arange(.2, 1, step):
for y in dq:
yield to_rgba(y, 1 - i + .2)
dq.rotate(1) | 117,417 |
Displays a color scale (HTML)
Parameters:
-----------
scale : str
Color scale name
If no scale name is provided then all scales are returned
(max number for each scale)
If scale='all' then all scale combinations available
will be returned
Example:
scales('accent')
scales('all')
scales() | def scales(scale=None):
if scale:
if scale == 'all':
display(HTML(cl.to_html(_scales)))
else:
display(HTML(cl.to_html(get_scales(scale))))
else:
s = ''
keys = list(_scales_names.keys())
keys.sort()
for k in keys:
scale = get_scales(k)
s += '<div style="display:inline-block;padding:10px;"><div>{0}</div>{1}</div>'.format(
k, cl.to_html(scale))
display(HTML(s)) | 117,419 |
Returns a color scale to be used for a plotly figure
Parameters:
-----------
scale : str or list
Color scale name
If the color name is preceded by a minus (-)
then the scale is inversed.
Also accepts a list of colors (rgb,rgba,hex)
Example:
get_colorscale('accent')
get_colorscale(['rgb(127,201,127)','rgb(190,174,212)','rgb(253,192,134)']) | def get_colorscale(scale):
if type(scale) in string_types:
scale = get_scales(scale)
else:
if type(scale) != list:
raise Exception(
"scale needs to be either a scale name or list of colors")
cs = [[1.0 * c / (len(scale) - 1), scale[c]] for c in range(len(scale))]
cs.sort()
return cs | 117,422 |
Returns a dict with an item per key
Parameters:
-----------
items : string, list or dict
Items (ie line styles)
keys: list
List of keys
items_names : string
Name of items | def get_items_as_list(items,keys,items_names='styles'):
if type(items)!=dict:
if type(items)==list:
if len(items)!=len(keys):
raise Exception('List of {0} is not the same length as keys'.format(items_names))
else:
items=dict(zip(keys,items))
else:
items=dict(zip(keys,[items]*len(keys)))
return items | 117,428 |
Adds a study to QuantFigure.studies
Parameters:
study : dict
{'kind':study_kind,
'params':study_parameters,
'display':display_parameters} | def _add_study(self,study):
str='{study} {name}({period})' if study['params'].get('str',None)==None else study['params']['str']
study['params']['str']=str
if not study['name']:
study['name']=ta.get_column_name(study['kind'].upper(),study=study['kind'],
str=str,
period=study['params'].get('periods',None),
column=study['params'].get('column',None))
restore=study['display'].pop('restore',False)
if restore:
_=self.studies.pop(study['kind'],None)
if study['kind'] in self.studies:
try:
id='{0} ({1})'.format(study['kind'],study['params']['periods'])
except:
id='{0} ({1})'.format(study['kind'],'(2)')
else:
id=study['kind']
_id=id
n=1
while id in self.studies:
id='{0} ({1})'.format(_id,n)
n+=1
self.studies[id]=study | 117,449 |
Filters a DataFrame for columns that contain the given strings.
Parameters:
-----------
include : bool
If False then it will exclude items that match
the given filters.
This is the same as passing a regex ^keyword
kwargs :
Key value pairs that indicate the column and
value to screen for
Example:
df.screen(col1='string_to_match',col2=['string1','string2']) | def _screen(self,include=True,**kwargs):
df=self.copy()
for k,v in list(kwargs.items()):
v=[v] if type(v)!=list else v
if include:
df=df[df[k].str.contains('|'.join(v),flags=re.IGNORECASE).fillna(False)]
else:
df=df[df[k].str.contains('|'.join(v),flags=re.IGNORECASE).fillna(False)==False]
return df | 117,463 |
Returns a normalized series or DataFrame
Example:
Series.normalize()
Returns: series of DataFrame
Parameters:
-----------
asOf : string
Date format
'2015-02-29'
multiplier : int
Factor by which the results will be adjusted | def normalize(self,asOf=None,multiplier=100):
if not asOf:
x0=self.ix[0]
else:
x0=self.ix[asOf]
return self/x0*multiplier | 117,465 |
Returns a dictionary with the path in which each of the keys is found
Parameters:
from_d : dict
Dictionary that contains all the keys, values
to_d : dict
Dictionary to which the results will be appended
Example:
dict_path({'level1':{'level2':{'level3':'value'}}})
Returns
{'level1': [],
'level2': ['level1'],
'level3': ['level1', 'level2']
} | def dict_path(from_d,to_d={},l=[]):
for k,v in list(from_d.items()):
if isinstance(v,dict):
to_d[k]=l
_l=copy.deepcopy(l)
_l.append(k)
to_d=dict_path(from_d[k],to_d,_l)
else:
to_d[k]=l
_to_d=to_d.copy()
to_d={}
return _to_d | 117,467 |
Returns a dictionay indexed by values {value_k:key_k}
Parameters:
-----------
d : dictionary | def inverseDict(d):
dt={}
for k,v in list(d.items()):
if type(v) in (list,tuple):
for i in v:
dt[i]=k
else:
dt[v]=k
return dt | 117,470 |
Looks for keys of the format keyword_value.
And return a dictionary with {keyword:value} format
Parameters:
-----------
from_kwargs : dict
Original dictionary
to_kwargs : dict
Dictionary where the items will be appended
keyword : string
Keyword to look for in the orginal dictionary
clean_origin : bool
If True then the k,v pairs from the original
dictionary are deleted | def kwargs_from_keyword(from_kwargs,to_kwargs,keyword,clean_origin=True):
for k in list(from_kwargs.keys()):
if '{0}_'.format(keyword) in k:
to_kwargs[k.replace('{0}_'.format(keyword),'')]=from_kwargs[k]
if clean_origin:
del from_kwargs[k]
return to_kwargs | 117,471 |
Updates the values (deep form) of a given dictionary
Parameters:
-----------
d : dict
dictionary that contains the values to update
d_update : dict
dictionary to be updated | def deep_update(d,d_update):
for k,v in list(d_update.items()):
if isinstance(v,dict):
if k in d:
deep_update(d[k],v)
else:
d[k]=v
elif isinstance(d,list):
d.append({k:v})
else:
d[k]=v
return d | 117,474 |
Returns a string that represents a date n numbers of days from today.
Parameters:
-----------
delta : int
number of days
strfmt : string
format in which the date will be represented | def getDateFromToday(delta,strfmt='%Y%m%d'):
return (dt.date.today() + dt.timedelta(delta)).strftime(strfmt) | 117,477 |
Returns a DataFrame with the required format for
a pie plot
Parameters:
-----------
n_labels : int
Number of labels
mode : string
Format for each item
'abc' for alphabet columns
'stocks' for random stock names | def pie(n_labels=5,mode=None):
return pd.DataFrame({'values':np.random.randint(1,100,n_labels),
'labels':getName(n_labels,mode=mode)}) | 117,500 |
Returns a DataFrame with the required format for
a scatter plot
Parameters:
-----------
n_categories : int
Number of categories
n : int
Number of points for each category
prefix : string
Name for each category
mode : string
Format for each item
'abc' for alphabet columns
'stocks' for random stock names | def scatter(n_categories=5,n=10,prefix='category',mode=None):
categories=[]
for i in range(n_categories):
categories.extend([prefix+str(i+1)]*n)
return pd.DataFrame({'x':np.random.randn(n*n_categories),
'y':np.random.randn(n*n_categories),
'text':getName(n*n_categories,mode=mode),
'categories':categories}) | 117,501 |
Returns a DataFrame with the required format for
a heatmap plot
Parameters:
-----------
n_x : int
Number of x categories
n_y : int
Number of y categories | def heatmap(n_x=5,n_y=10):
x=['x_'+str(_) for _ in range(n_x)]
y=['y_'+str(_) for _ in range(n_y)]
return pd.DataFrame(surface(n_x-1,n_y-1).values,index=x,columns=y) | 117,502 |
Returns a DataFrame with the required format for
a scatter (lines) plot
Parameters:
-----------
n_traces : int
Number of traces
n : int
Number of points for each trace
columns : [str]
List of column names
dateIndex : bool
If True it will return a datetime index
if False it will return a enumerated index
mode : string
Format for each item
'abc' for alphabet columns
'stocks' for random stock names | def lines(n_traces=5,n=100,columns=None,dateIndex=True,mode=None):
index=pd.date_range('1/1/15',periods=n) if dateIndex else list(range(n))
df=pd.DataFrame(np.random.randn(n,n_traces),index=index,
columns=getName(n_traces,columns=columns,mode=mode))
return df.cumsum() | 117,503 |
Returns a DataFrame with the required format for
a bar plot
Parameters:
-----------
n : int
Number of points for each trace
n_categories : int
Number of categories for each point
prefix : string
Name for each category
columns : [str]
List of column names
mode : string
Format for each item
'abc' for alphabet columns
'stocks' for random stock names | def bars(n=3,n_categories=3,prefix='category',columns=None,mode='abc'):
categories=[]
if not columns:
columns=getName(n,mode=mode)
for i in range(n_categories):
categories.extend([prefix+str(i+1)])
data=dict([(x,np.random.randint(1,100,n_categories)) for x in columns])
return pd.DataFrame(data,index=categories) | 117,504 |
Returns a DataFrame with the required format for
a candlestick or ohlc plot
df[['open','high','low','close']]
Parameters:
-----------
n : int
Number of ohlc points | def ohlc(n=100):
index=pd.date_range('1/1/15',periods=n*288,freq='5min',tz='utc')
data=np.random.randn(n*288)
data[0]=np.array([100])
df=pd.DataFrame(data,index=index,
columns=['a'])
df=df.cumsum()
df=df.resample('1d').ohlc()
df.index=df.index.date
df.index=pd.to_datetime(df.index)
return df['a'] | 117,505 |
Returns a DataFrame with the required format for
a candlestick or ohlc plot
df[['open','high','low','close','volume']
Parameters:
-----------
n : int
Number of ohlc points | def ohlcv(n=100):
df=ohlc()
df['volume']=[np.random.randint(1000,10000) for _ in range(len(df))]
return df | 117,506 |
Returns a DataFrame with the required format for
a box plot
Parameters:
-----------
n_traces : int
Number of traces
n : int
Number of points for each trace
mode : string
Format for each item
'abc' for alphabet columns
'stocks' for random stock names | def box(n_traces=5,n=100,mode=None):
df=pd.DataFrame([np.random.chisquare(np.random.randint(2,10),n_traces) for _ in range(n)],
columns=getName(n_traces,mode=mode))
return df | 117,507 |
Returns a DataFrame with the required format for
a histogram plot
Parameters:
-----------
n_traces : int
Number of traces
n : int
Number of points for each trace
mode : string
Format for each item
'abc' for alphabet columns
'stocks' for random stock names | def histogram(n_traces=1,n=500,dispersion=2,mode=None):
df=pd.DataFrame(np.transpose([np.random.randn(n)+np.random.randint(-1*dispersion,dispersion) for _ in range(n_traces)]),
columns=getName(n_traces,mode=mode))
return df | 117,508 |
Returns a DataFrame with the required format for
a distribution plot (distplot)
Parameters:
-----------
n_traces : int
Number of traces
n : int
Number of points for each trace
mode : string
Format for each item
'abc' for alphabet columns
'stocks' for random stock names | def distplot(n_traces=1,n=500,dispersion=3,mode=None):
return histogram(n_traces,n,dispersion,mode) | 117,509 |
Returns a DataFrame with the required format for
a distribution plot (distplot)
Parameters:
-----------
n : int
Number of points
categories : bool or int
If True, then a column with categories is added
n_categories : int
Number of categories | def violin(n=500,dispersion=3,categories=True,n_categories=5):
df = histogram(1,n,dispersion,'abc')
df=df.rename(columns={'a':'data'})
if categories:
df['categories']=['category_{0}'.format(np.random.randint(n_categories)) for _ in range(n)]
return df | 117,510 |
Returns a DataFrame with the required format for
a surface plot
Parameters:
-----------
n_x : int
Number of points along the X axis
n_y : int
Number of points along the Y axis | def surface(n_x=20,n_y=20):
x=[float(np.random.randint(0,100))]
for i in range(n_x):
x.append(x[:1][0]+np.random.randn()*np.random.randint(1,10))
df=pd.DataFrame(x)
for i in range(n_y):
df[i+1]=df[i].map(lambda x:x+np.random.randn()*np.random.randint(1,10))
return df | 117,511 |
Returns a DataFrame with the required format for
a surface (sine wave) plot
Parameters:
-----------
n : int
Ranges for X and Y axis (-n,n)
n_y : int
Size of increment along the axis | def sinwave(n=4,inc=.25):
x=np.arange(-n,n,inc)
y=np.arange(-n,n,inc)
X,Y=np.meshgrid(x,y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)/(.5*R)
return pd.DataFrame(Z,index=x,columns=y) | 117,512 |
Generates an annotations object
Parameters:
-----------
df : DataFrame
Original DataFrame of values
annotations : dict or list
Dictionary of annotations
{x_point : text}
or
List of Plotly annotations | def get_annotations(df,annotations,kind='lines',theme=None,**kwargs):
for key in list(kwargs.keys()):
if key not in __ANN_KWARGS:
raise Exception("Invalid keyword : '{0}'".format(key))
theme_data = getTheme(theme)
kwargs['fontcolor']=kwargs.pop('fontcolor',theme_data['annotations']['fontcolor'])
kwargs['arrowcolor']=kwargs.pop('arrowcolor',theme_data['annotations']['arrowcolor'])
kwargs['fontsize']=kwargs.pop('fontsize',12)
def check_ann(annotation):
local_list=[]
if 'title' in annotation:
local_list.append(
dict(
text=annotation['title'],
showarrow=False,
x=0,
y=1,
xref='paper',
yref='paper',
font={'size':24 if not 'fontsize' in kwargs else kwargs['fontsize']}
)
)
del annotation['title']
local_list.append(ann)
elif 'x' in annotation:
ann=dict(
x=annotation['x'],
y=annotation.get('y',.5),
xref=annotation.get('xref','x'),
yref=annotation.get('yref',kwargs.get('yref','y1')),
text=annotation.get('text'),
showarrow=annotation.get('showarrow',True),
arrowhead=annotation.get('arrowhead',7),
arrowcolor=annotation.get('arrowcolor',kwargs.get('arrowcolor')),
ax=annotation.get('ax',0),
ay=annotation.get('ay',-100),
textangle=annotation.get('textangle',-90),
font = dict(
color = annotation.get('fontcolor',annotation.get('color',kwargs.get('fontcolor'))),
size = annotation.get('fontsize',annotation.get('size',kwargs.get('fontsize')))
)
)
local_list.append(ann)
else:
for k,v in list(annotation.items()):
if kind in ('candlestick','ohlc','candle'):
d=ta._ohlc_dict(df)
maxv=df[d['high']].ix[k]
yref='y2'
else:
maxv=df.ix[k].sum() if k in df.index else 0
yref='y1'
ann=dict(
x=k,
y=maxv,
xref='x',
yref=yref,
text=v,
showarrow=kwargs.get('showarrow',True),
arrowhead=kwargs.get('arrowhead',7),
arrowcolor = kwargs['arrowcolor'],
ax=kwargs.get('ax',0),
ay=kwargs.get('ay',-100),
textangle=kwargs.get('textangle',-90),
font = dict(
color = kwargs['fontcolor'],
size=kwargs['fontsize']
)
)
local_list.append(ann)
return local_list
annotations = make_list(annotations)
_list_ann=[]
for ann in annotations:
_list_ann.extend(check_ann(ann))
return _list_ann | 117,517 |
Strips a figure into multiple figures with a trace on each of them
Parameters:
-----------
figure : Figure
Plotly Figure | def strip_figures(figure):
fig=[]
for trace in figure['data']:
fig.append(dict(data=[trace],layout=figure['layout']))
return fig | 117,518 |
Generates a layout with the union of all properties of multiple
figures' layouts
Parameters:
-----------
fig : list(Figures)
List of Plotly Figures | def get_base_layout(figs):
layout={}
for fig in figs:
if not isinstance(fig,dict):
fig=fig.to_dict()
for k,v in list(fig['layout'].items()):
layout[k]=v
return layout | 117,519 |
Generates multiple Plotly figures for a given DataFrame
Parameters:
-----------
df : DataFrame
Pandas DataFrame
specs : list(dict)
List of dictionaries with the properties
of each figure.
All properties avaialbe can be seen with
help(cufflinks.pd.DataFrame.iplot)
asList : boolean
If True, then a list of figures is returned.
Otherwise a single (merged) figure is returned.
Default : False | def figures(df,specs,asList=False):
figs=[]
for spec in specs:
figs.append(df.figure(**spec))
if asList:
return figs
else:
return merge_figures(figs) | 117,520 |
Generates a single Figure from a list of figures
Parameters:
-----------
figures : list(Figures)
List of figures to be merged. | def merge_figures(figures):
figure={}
data=[]
for fig in figures:
for trace in fig['data']:
data.append(trace)
layout=get_base_layout(figures)
figure['data']=data
figure['layout']=layout
return figure | 117,521 |
Displays a matrix with scatter plot for each pair of
Series in the DataFrame.
The diagonal shows a histogram for each of the Series
Parameters:
-----------
df : DataFrame
Pandas DataFrame
theme : string
Theme to be used (if not the default)
bins : int
Number of bins to use for histogram
color : string
Color to be used for each scatter plot
size : int
Size for each marker on the scatter plot | def scatter_matrix(df,theme=None,bins=10,color='grey',size=2):
if not theme:
theme = auth.get_config_file()['theme']
figs=[]
for i in df.columns:
for j in df.columns:
if i==j:
fig=df.iplot(kind='histogram',keys=[i],asFigure=True,bins=bins)
figs.append(fig)
else:
figs.append(df.iplot(kind='scatter',mode='markers',x=j,y=i,asFigure=True,size=size,colors=[color]))
layout=getLayout(theme)
layout['xaxis'].update(showgrid=False)
layout['yaxis'].update(showgrid=False)
sm=subplots(figs,shape=(len(df.columns),len(df.columns)),shared_xaxes=False,shared_yaxes=False,
horizontal_spacing=.05,vertical_spacing=.07,base_layout=layout)
sm['layout'].update(bargap=.02,showlegend=False)
return sm | 117,526 |
Sets the axis in which each trace should appear
If the axis doesn't exist then a new axis is created
Parameters:
-----------
traces : list(str)
List of trace names
on : string
The axis in which the traces should be placed.
If this is not indicated then a new axis will be
created
side : string
Side where the axis will be placed
'left'
'right'
title : string
Sets the title of the axis
Applies only to new axis | def _set_axis(self,traces,on=None,side='right',title=''):
fig={}
fig_cpy=fig_to_dict(self).copy()
fig['data']=fig_cpy['data']
fig['layout']=fig_cpy['layout']
fig=Figure(fig)
traces=make_list(traces)
def update_data(trace,y):
anchor=fig.axis['def'][y]['anchor'] if 'anchor' in fig.axis['def'][y] else 'x1'
idx=fig.trace_dict[trace] if isinstance(trace,str) else trace
fig['data'][idx]['xaxis']=anchor
fig['data'][idx]['yaxis']=y
for trace in traces:
if on:
if on not in fig.axis['def']:
raise Exception('"on" axis does not exists: {0}'.format(on))
update_data(trace,y=on)
else:
curr_x,curr_y=fig.axis['ref'][trace]
domain='[0.0, 1.0]' if 'domain' not in fig.axis['def'][curr_y] else str(fig.axis['def'][curr_y]['domain'])
try:
new_axis=fig.axis['dom']['y'][domain][side]
except KeyError:
axis=fig.axis['def'][curr_y].copy()
### check overlaying values
axis.update(title=title,overlaying=curr_y,side=side,anchor=curr_x)
axis_idx=str(fig.axis['len']['y']+1)
fig['layout']['yaxis{0}'.format(axis_idx)]=axis
new_axis='y{0}'.format(axis_idx)
update_data(trace,y=new_axis)
for k in list(fig.axis['def'].keys()):
id='{0}axis{1}'.format(k[0],k[-1:])
if k not in fig.axis['ref_axis']:
try:
del fig['layout'][id]
except KeyError:
pass
return fig | 117,535 |
Plot a histogram from a numpy array of probabilities
Args:
Y_p: An [n] or [n, 1] np.ndarray of probabilities (floats in [0,1]) | def plot_probabilities_histogram(Y_p, title=None):
if Y_p.ndim > 1:
msg = (
f"Arg Y_p should be a 1-dimensional np.ndarray, not of shape "
f"{Y_p.shape}."
)
raise ValueError(msg)
plt.hist(Y_p, bins=20)
plt.xlim((0, 1.025))
plt.xlabel("Probability")
plt.ylabel("# Predictions")
if isinstance(title, str):
plt.title(title)
plt.show() | 117,552 |
Plot a histogram comparing int predictions vs true labels by class
Args:
Y_ph: An [n] or [n, 1] np.ndarray of predicted int labels
Y: An [n] or [n, 1] np.ndarray of gold labels | def plot_predictions_histogram(Y_ph, Y, title=None):
labels = list(set(Y).union(set(Y_ph)))
edges = [x - 0.5 for x in range(min(labels), max(labels) + 2)]
plt.hist([Y_ph, Y], bins=edges, label=["Predicted", "Gold"])
ax = plt.gca()
ax.set_xticks(labels)
plt.xlabel("Label")
plt.ylabel("# Predictions")
plt.legend(loc="upper right")
if isinstance(title, str):
plt.title(title)
plt.show() | 117,553 |
Reduces the output of an LSTM step
Args:
outputs: (torch.FloatTensor) the hidden state outputs from the
lstm, with shape [batch_size, max_seq_length, hidden_size] | def _reduce_output(self, outputs, seq_lengths):
batch_size = outputs.shape[0]
reduced = []
# Necessary to iterate over batch because of different sequence lengths
for i in range(batch_size):
if self.lstm_reduction == "mean":
# Average over all non-padding reduced
# Use dim=0 because first dimension disappears after indexing
reduced.append(outputs[i, : seq_lengths[i], :].mean(dim=0))
elif self.lstm_reduction == "max":
# Max-pool over all non-padding reduced
# Use dim=0 because first dimension disappears after indexing
reduced.append(outputs[i, : seq_lengths[i], :].max(dim=0)[0])
elif self.lstm_reduction == "last":
# Take the last output of the sequence (before padding starts)
# NOTE: maybe better to take first and last?
reduced.append(outputs[i, seq_lengths[i] - 1, :])
elif self.lstm_reduction == "attention":
reduced.append(self._attention(outputs[i, : seq_lengths[i], :]))
else:
msg = (
f"Did not recognize lstm kwarg 'lstm_reduction' == "
f"{self.lstm_reduction}"
)
raise ValueError(msg)
return torch.stack(reduced, dim=0) | 117,572 |
Builds a vocabulary object based on the tokens in the input.
Args:
sents: A list of lists of tokens (representing sentences)
Vocab kwargs include:
max_size
min_freq
specials
unk_init | def fit(self, sents, **kwargs):
tokens = list(itertools.chain.from_iterable(sents))
counter = Counter(tokens)
self.vocab = self.build_vocab(counter, **kwargs) | 117,587 |
Converts lists of tokens into a Tensor of embedding indices.
Args:
sents: A list of lists of tokens (representing sentences)
NOTE: These sentences should already be marked using the
mark_entities() helper.
Returns:
X: A Tensor of shape (num_items, max_seq_len) | def transform(self, sents):
def convert(tokens):
return torch.tensor([self.vocab.stoi[t] for t in tokens], dtype=torch.long)
if self.vocab is None:
raise Exception(
"Must run .fit() for .fit_transform() before " "calling .transform()."
)
seqs = sorted([convert(s) for s in sents], key=lambda x: -len(x))
X = torch.LongTensor(pad_sequence(seqs, batch_first=True))
return X | 117,588 |
Argmax with random tie-breaking
Args:
x: a 1-dim numpy array
Returns:
the argmax index | def rargmax(x, eps=1e-8):
idxs = np.where(abs(x - np.max(x, axis=0)) < eps)[0]
return np.random.choice(idxs) | 117,590 |
Converts a 1D tensor of predicted labels into a 2D tensor of probabilistic labels
Args:
Y_h: an [n], or [n,1] tensor of predicted (int) labels in {1,...,k}
k: the largest possible label in Y_h
Returns:
Y_s: a torch.FloatTensor of shape [n, k] where Y_s[i, j-1] is the probabilistic
label for item i and label j | def pred_to_prob(Y_h, k):
Y_h = Y_h.clone()
if Y_h.dim() > 1:
Y_h = Y_h.squeeze()
assert Y_h.dim() == 1
assert (Y_h >= 1).all()
assert (Y_h <= k).all()
n = Y_h.shape[0]
Y_s = torch.zeros((n, k), dtype=Y_h.dtype, device=Y_h.device)
for i, j in enumerate(Y_h):
Y_s[i, j - 1] = 1.0
return Y_s | 117,591 |
Converts a 2D [n,m] label matrix into an [n,m,k] one hot 3D tensor
Note that in the returned 3D matrix, abstain votes continue to be
represented by 0s, not 1s.
Args:
L: a [n,m] label matrix with categorical labels (0 = abstain)
k: the number of classes that could appear in L
if None, k is inferred as the max element in L | def label_matrix_to_one_hot(L, k=None):
n, m = L.shape
if k is None:
k = L.max()
L_onehot = torch.zeros(n, m, k + 1)
for i, row in enumerate(L):
for j, k in enumerate(row):
if k > 0:
L_onehot[i, j, k - 1] = 1
return L_onehot | 117,594 |
Returns a list of outputs for tasks 0,...t-1
Args:
x: a [batch_size, ...] batch from X | def forward(self, x):
head_outputs = [None] * self.t
# Execute input layer
if isinstance(self.input_layer, list): # One input_module per task
input_outputs = [mod(x) for mod, x in zip(self.input_layer, x)]
x = torch.stack(input_outputs, dim=1)
# Execute level-0 task heads from their respective input modules
for t in self.task_map[0]:
head = self.heads[t]
head_outputs[t] = head(input_outputs[t])
else: # One input_module for all tasks
x = self.input_layer(x)
# Execute level-0 task heads from the single input module
for t in self.task_map[0]:
head = self.heads[t]
head_outputs[t] = head(x)
# Execute middle layers
for i, layer in enumerate(self.middle_layers, start=1):
x = layer(x)
# Attach level-i task heads from the ith middle module
for t in self.task_map[i]:
head = self.heads[t]
# Optionally include as input the predictions of parent tasks
if self.config["pass_predictions"] and bool(self.task_graph.parents[t]):
task_input = [x]
for p in self.task_graph.parents[t]:
task_input.append(head_outputs[p])
task_input = torch.stack(task_input, dim=1)
else:
task_input = x
head_outputs[t] = head(task_input)
return head_outputs | 117,606 |
Convert T label matrices with labels in 0...K_t to a one-hot format
Here we can view e.g. the $(i,j)$ entries of the $T$ label matrices as
a _label vector_ emitted by LF j for data point i.
Args:
L: a T-length list of [n,m] scipy.sparse label matrices with values
in {0,1,...,k}
Returns:
L_ind: An [n,m*k] dense np.ndarray with values in {0,1}
Note that no column is required for 0 (abstain) labels. | def _create_L_ind(self, L):
# TODO: Update LabelModel to keep L, L_ind, L_aug as sparse matrices
# throughout and remove this line.
if issparse(L[0]):
L = [L_t.todense() for L_t in L]
# Make sure converted to numpy here
L = self._to_numpy(L)
L_ind = np.ones((self.n, self.m * self.k))
for yi, y in enumerate(self.task_graph.feasible_set()):
for t in range(self.t):
# A[x::y] slices A starting at x at intervals of y
# e.g., np.arange(9)[0::3] == np.array([0,3,6])
L_ind[:, yi :: self.k] *= np.where(
np.logical_or(L[t] == y[t], L[t] == 0), 1, 0
)
# Set LFs that abstained on all feasible label vectors to all 0s
L_ind[:, yi :: self.k] *= np.where(sum(L) != 0, 1, 0)
return L_ind | 117,611 |
Returns the task marginals estimated by the model: a t-length list of
[n,k_t] matrices where the (i,j) entry of the sth matrix represents the
estimated P((Y_i)_s | \lambda_j(x_i))
Args:
L: A t-length list of [n,m] scipy.sparse label matrices with values
in {0,1,...,k} | def predict_proba(self, L):
# First, get the estimated probability distribution over the feasible
# set defined by the TaskGraph
# This is an [n,k] array, where k = |(feasible set)|
Y_pf = LabelModel.predict_proba(self, L)
n, k = Y_pf.shape
# Now get the per-task marginals
# TODO: Make this optional, versus just returning the above
Y_p = [np.zeros((n, k_t)) for k_t in self.task_graph.K]
for yi, y in enumerate(self.task_graph.feasible_set()):
for t in range(self.t):
k_t = int(y[t])
Y_p[t][:, k_t - 1] += Y_pf[:, yi]
return Y_p | 117,612 |
Predicts (int) labels for an input X on all tasks
Args:
X: The input for the predict_proba method
break_ties: A tie-breaking policy (see Classifier._break_ties())
return_probs: Return the predicted probabilities as well
Returns:
Y_p: An n-dim np.ndarray of predictions in {1,...k}
[Optionally: Y_s: An [n, k] np.ndarray of predicted probabilities] | def predict(self, X, break_ties="random", return_probs=False, **kwargs):
Y_s = self._to_numpy(self.predict_proba(X, **kwargs))
Y_p = self._break_ties(Y_s, break_ties).astype(np.int)
if return_probs:
return Y_p, Y_s
else:
return Y_p | 117,614 |
This model resume training of a classifier by reloading the appropriate state_dicts for each model
Args:
train_data: a tuple of Tensors (X,Y), a Dataset, or a DataLoader of
X (data) and Y (labels) for the train split
model_path: the path to the saved checpoint for resuming training
valid_data: a tuple of Tensors (X,Y), a Dataset, or a DataLoader of
X (data) and Y (labels) for the dev split | def resume_training(self, train_data, model_path, valid_data=None):
restore_state = self.checkpointer.restore(model_path)
loss_fn = self._get_loss_fn()
self.train()
self._train_model(
train_data=train_data,
loss_fn=loss_fn,
valid_data=valid_data,
restore_state=restore_state,
) | 117,619 |
Restores the model and optimizer states
This helper function restores the model's state to a given iteration so
that a user can resume training at any epoch.
Args:
restore_state: a state_dict dictionary | def _restore_training_state(self, restore_state):
self.load_state_dict(restore_state["model"])
self.optimizer.load_state_dict(restore_state["optimizer"])
self.lr_scheduler.load_state_dict(restore_state["lr_scheduler"])
start_iteration = restore_state["iteration"] + 1
if self.config["verbose"]:
print(f"Restored checkpoint to iteration {start_iteration}.")
if restore_state["best_model_found"]:
# Update checkpointer with appropriate information about best model
# Note that the best model found so far may not be the model in the
# checkpoint that is currently being loaded.
self.checkpointer.best_model_found = True
self.checkpointer.best_iteration = restore_state["best_iteration"]
self.checkpointer.best_score = restore_state["best_score"]
if self.config["verbose"]:
print(
f"Updated checkpointer: "
f"best_score={self.checkpointer.best_score:.3f}, "
f"best_iteration={self.checkpointer.best_iteration}"
)
return start_iteration | 117,620 |
Prints a warning statement just once
Args:
msg: The warning message
msg_name: [optional] The name of the warning. If None, the msg_name
will be the msg itself. | def warn_once(self, msg, msg_name=None):
assert isinstance(msg, str)
msg_name = msg_name if msg_name else msg
if msg_name not in warnings_given:
warnings.warn(msg)
warnings_given.add(msg_name) | 117,638 |
Execute sparse linear layer
Args:
X: an [n, h] torch.LongTensor containing up to h indices of features
whose weights should be looked up and used in a sparse linear
multiplication. | def forward(self, X):
return self.W(X).sum(dim=1) + self.b | 117,659 |
Saves checkpoints as applicable based on a reported metric.
Args:
checkpoint_runway (int): don't save any checkpoints for the first
this many iterations
checkpoint_dir (str): the directory for saving checkpoints | def __init__(self, config, verbose=True):
self.best_model_found = None
self.best_iteration = None
self.best_score = None
self.verbose = verbose
self.checkpoint_best = config["checkpoint_best"]
self.checkpoint_every = config["checkpoint_every"]
self.checkpoint_metric = config["checkpoint_metric"]
self.checkpoint_metric_mode = config["checkpoint_metric_mode"]
self.checkpoint_dir = config["checkpoint_dir"]
self.checkpoint_runway = config["checkpoint_runway"]
# If abbreviated metric name was used, expand here to valid/ by default
if "/" not in self.checkpoint_metric:
self.checkpoint_metric = "valid/" + self.checkpoint_metric
# Create checkpoint directory if necessary
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
# Remind about checkpoint runway
if self.checkpoint_runway and verbose:
print(
f"No checkpoints will be saved in the first "
f"checkpoint_runway={self.checkpoint_runway} iterations."
) | 117,660 |
Convert a label matrix with labels in 0...k to a one-hot format
Args:
L: An [n,m] scipy.sparse label matrix with values in {0,1,...,k}
Returns:
L_ind: An [n,m*k] dense np.ndarray with values in {0,1}
Note that no column is required for 0 (abstain) labels. | def _create_L_ind(self, L):
# TODO: Update LabelModel to keep L variants as sparse matrices
# throughout and remove this line.
if issparse(L):
L = L.todense()
L_ind = np.zeros((self.n, self.m * self.k))
for y in range(1, self.k + 1):
# A[x::y] slices A starting at x at intervals of y
# e.g., np.arange(9)[0::3] == np.array([0,3,6])
L_ind[:, (y - 1) :: self.k] = np.where(L == y, 1, 0)
return L_ind | 117,673 |
Returns an augmented version of L where each column is an indicator
for whether a certain source or clique of sources voted in a certain
pattern.
Args:
L: An [n,m] scipy.sparse label matrix with values in {0,1,...,k} | def _get_augmented_label_matrix(self, L, higher_order=False):
# Create a helper data structure which maps cliques (as tuples of member
# sources) --> {start_index, end_index, maximal_cliques}, where
# the last value is a set of indices in this data structure
self.c_data = {}
for i in range(self.m):
self.c_data[i] = {
"start_index": i * self.k,
"end_index": (i + 1) * self.k,
"max_cliques": set(
[
j
for j in self.c_tree.nodes()
if i in self.c_tree.node[j]["members"]
]
),
}
L_ind = self._create_L_ind(L)
# Get the higher-order clique statistics based on the clique tree
# First, iterate over the maximal cliques (nodes of c_tree) and
# separator sets (edges of c_tree)
if higher_order:
L_aug = np.copy(L_ind)
for item in chain(self.c_tree.nodes(), self.c_tree.edges()):
if isinstance(item, int):
C = self.c_tree.node[item]
C_type = "node"
elif isinstance(item, tuple):
C = self.c_tree[item[0]][item[1]]
C_type = "edge"
else:
raise ValueError(item)
members = list(C["members"])
nc = len(members)
# If a unary maximal clique, just store its existing index
if nc == 1:
C["start_index"] = members[0] * self.k
C["end_index"] = (members[0] + 1) * self.k
# Else add one column for each possible value
else:
L_C = np.ones((self.n, self.k ** nc))
for i, vals in enumerate(product(range(self.k), repeat=nc)):
for j, v in enumerate(vals):
L_C[:, i] *= L_ind[:, members[j] * self.k + v]
# Add to L_aug and store the indices
if L_aug is not None:
C["start_index"] = L_aug.shape[1]
C["end_index"] = L_aug.shape[1] + L_C.shape[1]
L_aug = np.hstack([L_aug, L_C])
else:
C["start_index"] = 0
C["end_index"] = L_C.shape[1]
L_aug = L_C
# Add to self.c_data as well
id = tuple(members) if len(members) > 1 else members[0]
self.c_data[id] = {
"start_index": C["start_index"],
"end_index": C["end_index"],
"max_cliques": set([item]) if C_type == "node" else set(item),
}
return L_aug
else:
return L_ind | 117,674 |
Returns the [n,k] matrix of label probabilities P(Y | \lambda)
Args:
L: An [n,m] scipy.sparse label matrix with values in {0,1,...,k} | def predict_proba(self, L):
self._set_constants(L)
L_aug = self._get_augmented_label_matrix(L)
mu = np.clip(self.mu.detach().clone().numpy(), 0.01, 0.99)
# Create a "junction tree mask" over the columns of L_aug / mu
if len(self.deps) > 0:
jtm = np.zeros(L_aug.shape[1])
# All maximal cliques are +1
for i in self.c_tree.nodes():
node = self.c_tree.node[i]
jtm[node["start_index"] : node["end_index"]] = 1
# All separator sets are -1
for i, j in self.c_tree.edges():
edge = self.c_tree[i][j]
jtm[edge["start_index"] : edge["end_index"]] = 1
else:
jtm = np.ones(L_aug.shape[1])
# Note: We omit abstains, effectively assuming uniform distribution here
X = np.exp(L_aug @ np.diag(jtm) @ np.log(mu) + np.log(self.p))
Z = np.tile(X.sum(axis=1).reshape(-1, 1), self.k)
return X / Z | 117,680 |
L2 loss centered around mu_init, scaled optionally per-source.
In other words, diagonal Tikhonov regularization,
||D(\mu-\mu_{init})||_2^2
where D is diagonal.
Args:
- l2: A float or np.array representing the per-source regularization
strengths to use | def loss_l2(self, l2=0):
if isinstance(l2, (int, float)):
D = l2 * torch.eye(self.d)
else:
D = torch.diag(torch.from_numpy(l2))
# Note that mu is a matrix and this is the *Frobenius norm*
return torch.norm(D @ (self.mu - self.mu_init)) ** 2 | 117,682 |
Calculate (micro) accuracy.
Args:
gold: A 1d array-like of gold labels
pred: A 1d array-like of predicted labels (assuming abstain = 0)
ignore_in_gold: A list of labels for which elements having that gold
label will be ignored.
ignore_in_pred: A list of labels for which elements having that pred
label will be ignored.
Returns:
A float, the (micro) accuracy score | def accuracy_score(gold, pred, ignore_in_gold=[], ignore_in_pred=[]):
gold, pred = _preprocess(gold, pred, ignore_in_gold, ignore_in_pred)
if len(gold) and len(pred):
acc = np.sum(gold == pred) / len(gold)
else:
acc = 0
return acc | 117,714 |
Calculate (global) coverage.
Args:
gold: A 1d array-like of gold labels
pred: A 1d array-like of predicted labels (assuming abstain = 0)
ignore_in_gold: A list of labels for which elements having that gold
label will be ignored.
ignore_in_pred: A list of labels for which elements having that pred
label will be ignored.
Returns:
A float, the (global) coverage score | def coverage_score(gold, pred, ignore_in_gold=[], ignore_in_pred=[]):
gold, pred = _preprocess(gold, pred, ignore_in_gold, ignore_in_pred)
return np.sum(pred != 0) / len(pred) | 117,715 |
Compute the ROC AUC score, given the gold labels and predicted probs.
Args:
gold: A 1d array-like of gold labels
probs: A 2d array-like of predicted probabilities
ignore_in_gold: A list of labels for which elements having that gold
label will be ignored.
Returns:
roc_auc_score: The (float) roc_auc score | def roc_auc_score(gold, probs, ignore_in_gold=[], ignore_in_pred=[]):
gold = arraylike_to_numpy(gold)
# Filter out the ignore_in_gold (but not ignore_in_pred)
# Note the current sub-functions (below) do not handle this...
if len(ignore_in_pred) > 0:
raise ValueError("ignore_in_pred not defined for ROC-AUC score.")
keep = [x not in ignore_in_gold for x in gold]
gold = gold[keep]
probs = probs[keep, :]
# Convert gold to one-hot indicator format, using the k inferred from probs
gold_s = pred_to_prob(torch.from_numpy(gold), k=probs.shape[1]).numpy()
return skm.roc_auc_score(gold_s, probs) | 117,719 |
Predicts int labels for an input X on all tasks
Args:
X: The input for the predict_proba method
break_ties: A tie-breaking policy
return_probs: Return the predicted probabilities as well
Returns:
Y_p: A t-length list of n-dim np.ndarrays of predictions in [1, K_t]
[Optionally: Y_s: A t-length list of [n, K_t] np.ndarrays of
predicted probabilities] | def predict(self, X, break_ties="random", return_probs=False, **kwargs):
Y_s = self.predict_proba(X, **kwargs)
self._check(Y_s, typ=list)
self._check(Y_s[0], typ=np.ndarray)
Y_p = []
for Y_ts in Y_s:
Y_tp = self._break_ties(Y_ts, break_ties)
Y_p.append(Y_tp.astype(np.int))
if return_probs:
return Y_p, Y_s
else:
return Y_p | 117,728 |
Scores the predictive performance of the Classifier on task t
Args:
X: The input for the predict_task method
Y: A [n] or [n, 1] np.ndarray or torch.Tensor of gold labels in
{1,...,K_t}
t: The task index to score
metric: The metric with which to score performance on this task
Returns:
The (float) score of the Classifier for the specified task and
metric | def score_task(self, X, Y, t=0, metric="accuracy", verbose=True, **kwargs):
Y = self._to_numpy(Y)
Y_tp = self.predict_task(X, t=t, **kwargs)
probs = self.predict_proba(X)[t]
score = metric_score(
Y[t], Y_tp, metric, ignore_in_gold=[0], probs=probs, **kwargs
)
if verbose:
print(f"[t={t}] {metric.capitalize()}: {score:.3f}")
return score | 117,730 |
Predicts int labels for an input X on task t
Args:
X: The input for the predict_task_proba method
t: The task index to predict
Returns:
An n-dim tensor of int predictions for the specified task | def predict_task(self, X, t=0, break_ties="random", **kwargs):
Y_tp = self.predict_task_proba(X, t=t, **kwargs)
Y_tph = self._break_ties(Y_tp, break_ties)
return Y_tph | 117,731 |
Predicts probabilistic labels for an input X on task t
Args:
X: The input for the predict_proba method
t: The task index to predict for which to predict probabilities
Returns:
An [n, K_t] tensor of predictions for task t
NOTE: By default, this method calls predict_proba and extracts element
t. If it is possible to predict individual tasks in isolation, however,
this method may be overriden for efficiency's sake. | def predict_task_proba(self, X, t=0, **kwargs):
return self.predict_proba(X, **kwargs)[t] | 117,732 |
Gets the largest hyperband schedule within target_budget.
This is required since the original hyperband algorithm uses R,
the maximum number of resources per configuration.
TODO(maxlam): Possibly binary search it if this becomes a bottleneck.
Args:
budget: total budget of the schedule.
proportion_discard: hyperband parameter that specifies
the proportion of configurations to discard per iteration. | def get_largest_schedule_within_budget(self, budget, proportion_discard):
# Exhaustively generate schedules and check if
# they're within budget, adding to a list.
valid_schedules_and_costs = []
for R in range(1, budget):
schedule = self.generate_hyperband_schedule(R, proportion_discard)
cost = self.compute_schedule_cost(schedule)
if cost <= budget:
valid_schedules_and_costs.append((schedule, cost))
# Choose a valid schedule that maximizes usage of the budget.
valid_schedules_and_costs.sort(key=lambda x: x[1], reverse=True)
return valid_schedules_and_costs[0][0] | 117,738 |
Generate hyperband schedule according to the paper.
Args:
R: maximum resources per config.
eta: proportion of configruations to discard per
iteration of successive halving.
Returns: hyperband schedule, which is represented
as a list of brackets, where each bracket
contains a list of (num configurations,
num resources to use per configuration).
See the paper for more details. | def generate_hyperband_schedule(self, R, eta):
schedule = []
s_max = int(math.floor(math.log(R, eta)))
# B = (s_max + 1) * R
for s in range(0, s_max + 1):
n = math.ceil(int((s_max + 1) / (s + 1)) * eta ** s)
r = R * eta ** (-s)
bracket = []
for i in range(0, s + 1):
n_i = int(math.floor(n * eta ** (-i)))
r_i = int(r * eta ** i)
bracket.append((n_i, r_i))
schedule = [bracket] + schedule
return schedule | 117,740 |
Given label matrix L_aug and labels Y, compute the true mu params.
Args:
L: (np.array {0,1}) [n, d] The augmented (indicator) label matrix
Y: (np.array int) [n] The true labels in {1,...,k}
k: (int) Cardinality
p: (np.array float) [k] The class balance | def compute_mu(L_aug, Y, k, p):
n, d = L_aug.shape
assert Y.shape[0] == n
# Compute mu
mu = np.zeros((d, k))
for y in range(1, k + 1):
L_y = L_aug[Y == y]
mu[:, y - 1] = L_y.sum(axis=0) / L_y.shape[0]
return mu | 117,753 |
Given label matrix L_aug and labels Y, compute the covariance.
Args:
L: (np.array {0,1}) [n, d] The augmented (indicator) label matrix
Y: (np.array int) [n] The true labels in {1,...,k}
k: (int) Cardinality
p: (np.array float) [k] The class balance | def compute_covariance(L_aug, Y, k, p):
n, d = L_aug.shape
assert Y.shape[0] == n
mu = compute_mu(L_aug, Y, k, p)
return (L_aug.T @ L_aug) / n - mu @ np.diag(p) @ mu.T | 117,754 |
Given label matrix L and labels Y, compute the covariance.
Args:
L: (np.array) [n, d] The augmented (indicator) label matrix
Y: (np.array int) [n] The true labels in {1,...,k} | def compute_inv_covariance(L_aug, Y, k, p):
return np.linalg.inv(compute_covariance(L_aug, Y, k, p)) | 117,755 |
Return the polarities of each LF based on evidence in a label matrix.
Args:
L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the
jth LF to the ith candidate | def lf_polarities(L):
polarities = [sorted(list(set(L[:, i].data))) for i in range(L.shape[1])]
return [p[0] if len(p) == 1 else p for p in polarities] | 117,758 |
Return the **empirical accuracy** against a set of labels Y (e.g. dev
set) for each LF.
Args:
L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the
jth LF to the ith candidate
Y: an [n] or [n, 1] np.ndarray of gold labels | def lf_empirical_accuracies(L, Y):
# Assume labeled set is small, work with dense matrices
Y = arraylike_to_numpy(Y)
L = L.toarray()
X = np.where(L == 0, 0, np.where(L == np.vstack([Y] * L.shape[1]).T, 1, -1))
return 0.5 * (X.sum(axis=0) / (L != 0).sum(axis=0) + 1) | 117,761 |
Returns a pandas DataFrame with the various per-LF statistics.
Args:
L: an n x m scipy.sparse matrix where L_{i,j} is the label given by the
jth LF to the ith candidate
Y: an [n] or [n, 1] np.ndarray of gold labels.
If provided, the empirical accuracy for each LF will be calculated | def lf_summary(L, Y=None, lf_names=None, est_accs=None):
n, m = L.shape
if lf_names is not None:
col_names = ["j"]
d = {"j": list(range(m))}
else:
lf_names = list(range(m))
col_names = []
d = {}
# Default LF stats
col_names.extend(["Polarity", "Coverage", "Overlaps", "Conflicts"])
d["Polarity"] = Series(data=lf_polarities(L), index=lf_names)
d["Coverage"] = Series(data=lf_coverages(L), index=lf_names)
d["Overlaps"] = Series(data=lf_overlaps(L), index=lf_names)
d["Conflicts"] = Series(data=lf_conflicts(L), index=lf_names)
if Y is not None:
col_names.extend(["Correct", "Incorrect", "Emp. Acc."])
confusions = [
confusion_matrix(Y, L[:, i], pretty_print=False) for i in range(m)
]
corrects = [np.diagonal(conf).sum() for conf in confusions]
incorrects = [
conf.sum() - correct for conf, correct in zip(confusions, corrects)
]
accs = lf_empirical_accuracies(L, Y)
d["Correct"] = Series(data=corrects, index=lf_names)
d["Incorrect"] = Series(data=incorrects, index=lf_names)
d["Emp. Acc."] = Series(data=accs, index=lf_names)
if est_accs is not None:
col_names.append("Learned Acc.")
d["Learned Acc."] = Series(est_accs, index=lf_names)
return DataFrame(data=d, index=lf_names)[col_names] | 117,762 |
Calculates coverage, overlap, conflicts, and accuracy for a single LF
Args:
Y_p: a np.array or torch.Tensor of predicted labels
Y: a np.array or torch.Tensor of true labels (if known) | def single_lf_summary(Y_p, Y=None):
L = sparse.csr_matrix(arraylike_to_numpy(Y_p).reshape(-1, 1))
return lf_summary(L, Y) | 117,763 |
A shortcut method for building a confusion matrix all at once.
Args:
gold: an array-like of gold labels (ints)
pred: an array-like of predictions (ints)
null_pred: If True, include the row corresponding to null predictions
null_gold: If True, include the col corresponding to null gold labels
normalize: if True, divide counts by the total number of items
pretty_print: if True, pretty-print the matrix before returning | def confusion_matrix(
gold, pred, null_pred=False, null_gold=False, normalize=False, pretty_print=True
):
conf = ConfusionMatrix(null_pred=null_pred, null_gold=null_gold)
gold = arraylike_to_numpy(gold)
pred = arraylike_to_numpy(pred)
conf.add(gold, pred)
mat = conf.compile()
if normalize:
mat = mat / len(gold)
if pretty_print:
conf.display(normalize=normalize)
return mat | 117,765 |
Return a list of suggestions based on grid search.
Params:
matrix: `dict` representing the {hyperparam: hyperparam matrix config}.
n_suggestions: number of suggestions to make. | def get_suggestions(self, iteration_config=None):
matrix = self.hptuning_config.matrix
suggestions = []
keys = list(matrix.keys())
values = [v.to_numpy() for v in matrix.values()]
for v in itertools.product(*values):
suggestions.append(dict(zip(keys, v)))
if self.hptuning_config.grid_search:
n_suggestions = self.hptuning_config.grid_search.n_experiments
if n_suggestions:
return suggestions[:n_suggestions]
return suggestions | 119,027 |
Return a list of suggestions based on random search.
Params:
matrix: `dict` representing the {hyperparam: hyperparam matrix config}.
n_suggestions: number of suggestions to make. | def get_suggestions(self, iteration_config=None):
matrix = self.hptuning_config.matrix
n_suggestions = self.hptuning_config.random_search.n_experiments
seed = self.hptuning_config.seed
return get_random_suggestions(matrix=matrix, n_suggestions=n_suggestions, seed=seed) | 119,478 |
Return a dag representation of the nodes passed.
This is equally used for pipelines and pipeline runs.
Params:
nodes: an instance of `Operation` | `OperationRun` the nodes to represent en dag.
downstream_fn: a function that returns the downstream nodes of the a node.
Returns:
tuple: (dag, dict(node_id: node)) | def get_dag(nodes, downstream_fn) -> Tuple[Dict, Dict]:
dag = {}
node_by_ids = {}
for node in nodes:
downstream_ops = downstream_fn(node)
dag[node.id] = set(downstream_ops)
node_by_ids[node.id] = node
return dag, node_by_ids | 119,608 |
Create resources requirements.
Args:
resources: `PodResourcesConfig`
Return:
`V1ResourceRequirements` | def get_resources(resources): # pylint:disable=too-many-branches
limits = {}
requests = {}
if resources is None:
return None
if resources.cpu:
if resources.cpu.limits:
limits['cpu'] = resources.cpu.limits
if resources.cpu.requests:
requests['cpu'] = resources.cpu.requests
if resources.memory:
if resources.memory.limits:
limits['memory'] = '{}Mi'.format(resources.memory.limits)
if resources.memory.requests:
requests['memory'] = '{}Mi'.format(resources.memory.requests)
if resources.gpu:
if resources.gpu.limits:
limits[conf.get('K8S_GPU_RESOURCE_KEY')] = resources.gpu.limits
if resources.gpu.requests:
requests[conf.get('K8S_GPU_RESOURCE_KEY')] = resources.gpu.requests
if resources.tpu:
if resources.tpu.limits:
limits[conf.get('K8S_TPU_RESOURCE_KEY')] = resources.tpu.limits
if resources.tpu.requests:
requests[conf.get('K8S_TPU_RESOURCE_KEY')] = resources.tpu.requests
return client.V1ResourceRequirements(limits=limits or None, requests=requests or None) | 119,762 |
Lookup equities by symbol.
Parameters:
args (iterable[str]): List of ticker symbols for the asset.
Returns:
equities (List[Equity]): The equity lookuped by the ``symbol``.
Raises:
AssetNotFound: When could not resolve the ``Asset`` by ``symbol``. | def symbols(self, *args, **kwargs):
return [self.symbol(idendifier, **kwargs) for idendifier in args] | 122,973 |
Evaluate on voc dataset.
Args:
pred_boxlists(list[BoxList]): pred boxlist, has labels and scores fields.
gt_boxlists(list[BoxList]): ground truth boxlist, has labels field.
iou_thresh: iou thresh
use_07_metric: boolean
Returns:
dict represents the results | def eval_detection_voc(pred_boxlists, gt_boxlists, iou_thresh=0.5, use_07_metric=False):
assert len(gt_boxlists) == len(
pred_boxlists
), "Length of gt and pred lists need to be same."
prec, rec = calc_detection_voc_prec_rec(
pred_boxlists=pred_boxlists, gt_boxlists=gt_boxlists, iou_thresh=iou_thresh
)
ap = calc_detection_voc_ap(prec, rec, use_07_metric=use_07_metric)
return {"ap": ap, "map": np.nanmean(ap)} | 123,082 |
Apply algorith 2 in https://arxiv.org/pdf/1901.08910.pdf.
Args:
usv: matrix to reduce given in SVD form with the spectrum s in
increasing order.
num_rows: number of rows in the output matrix.
num_cols: number of columns in the output matrix.
Returns:
A resized version of (u, s, v) whose non zero singular values will be
identical to the largest singular values in s. | def resize_matrix(usv, num_rows, num_cols):
u, s, v = usv
k = min(num_rows, num_cols)
u_random_proj = transform.resize(u[:, :k], (num_rows, k))
v_random_proj = transform.resize(v[:k, :], (k, num_cols))
u_random_proj_orth = _closest_column_orthogonal_matrix(u_random_proj)
v_random_proj_orth = _closest_column_orthogonal_matrix(v_random_proj.T).T
return np.matmul(u_random_proj_orth,
np.matmul(np.diag(s[::-1][:k]), v_random_proj_orth)) | 123,097 |
Read and sort lines from the file sorted by decreasing length.
Args:
filename: String name of file to read inputs from.
Returns:
Sorted list of inputs, and dictionary mapping original index->sorted index
of each element. | def _get_sorted_inputs(filename):
with tf.gfile.Open(filename) as f:
records = f.read().split("\n")
inputs = [record.strip() for record in records]
if not inputs[-1]:
inputs.pop()
input_lens = [(i, len(line.split())) for i, line in enumerate(inputs)]
sorted_input_lens = sorted(input_lens, key=lambda x: x[1], reverse=True)
sorted_inputs = []
sorted_keys = {}
for i, (index, _) in enumerate(sorted_input_lens):
sorted_inputs.append(inputs[index])
sorted_keys[index] = i
return sorted_inputs, sorted_keys | 123,114 |
Translate lines in file, and save to output file if specified.
Args:
estimator: tf.Estimator used to generate the translations.
subtokenizer: Subtokenizer object for encoding and decoding source and
translated lines.
input_file: file containing lines to translate
output_file: file that stores the generated translations.
print_all_translations: If true, all translations are printed to stdout.
Raises:
ValueError: if output file is invalid. | def translate_file(
estimator, subtokenizer, input_file, output_file=None,
print_all_translations=True):
batch_size = _DECODE_BATCH_SIZE
# Read and sort inputs by length. Keep dictionary (original index-->new index
# in sorted list) to write translations in the original order.
sorted_inputs, sorted_keys = _get_sorted_inputs(input_file)
num_decode_batches = (len(sorted_inputs) - 1) // batch_size + 1
def input_generator():
for i, line in enumerate(sorted_inputs):
if i % batch_size == 0:
batch_num = (i // batch_size) + 1
print("Decoding batch %d out of %d." % (batch_num, num_decode_batches))
yield _encode_and_add_eos(line, subtokenizer)
def input_fn():
ds = tf.data.Dataset.from_generator(
input_generator, tf.int64, tf.TensorShape([None]))
ds = ds.padded_batch(batch_size, [None])
return ds
translations = []
for i, prediction in enumerate(estimator.predict(input_fn)):
translation = _trim_and_decode(prediction["outputs"], subtokenizer)
translations.append(translation)
if print_all_translations:
print("Translating:")
print("\tInput: %s" % sorted_inputs[i])
print("\tOutput: %s\n" % translation)
print("=" * 100)
# Write translations in the order they appeared in the original file.
if output_file is not None:
if tf.gfile.IsDirectory(output_file):
raise ValueError("File output is a directory, will not save outputs to "
"file.")
tf.logging.info("Writing to file %s" % output_file)
with tf.gfile.Open(output_file, "w") as f:
for index in xrange(len(sorted_keys)):
f.write("%s\n" % translations[sorted_keys[index]]) | 123,116 |
Upload benchmark run information to Bigquery.
Args:
dataset_name: string, the name of bigquery dataset where the data will be
uploaded.
table_name: string, the name of bigquery table under the dataset where
the data will be uploaded.
run_id: string, a unique ID that will be attached to the data, usually
this is a UUID4 format. | def upload_benchmark_run(self, dataset_name, table_name, run_id):
expected_file = os.path.join(
self._logging_dir, logger.BENCHMARK_RUN_LOG_FILE_NAME)
with tf.gfile.GFile(expected_file) as f:
benchmark_json = json.load(f)
benchmark_json["model_id"] = run_id
table_ref = self._bq_client.dataset(dataset_name).table(table_name)
errors = self._bq_client.insert_rows_json(table_ref, [benchmark_json])
if errors:
tf.logging.error(
"Failed to upload benchmark info to bigquery: {}".format(errors)) | 123,133 |
Upload metric information to Bigquery.
Args:
dataset_name: string, the name of bigquery dataset where the data will be
uploaded.
table_name: string, the name of bigquery table under the dataset where
the metric data will be uploaded. This is different from the
benchmark_run table.
run_id: string, a unique ID that will be attached to the data, usually
this is a UUID4 format. This should be the same as the benchmark run_id. | def upload_metric(self, dataset_name, table_name, run_id):
expected_file = os.path.join(
self._logging_dir, logger.METRIC_LOG_FILE_NAME)
with tf.gfile.GFile(expected_file) as f:
lines = f.readlines()
metrics = []
for line in filter(lambda l: l.strip(), lines):
metric = json.loads(line)
metric["run_id"] = run_id
metrics.append(metric)
table_ref = self._bq_client.dataset(dataset_name).table(table_name)
errors = self._bq_client.insert_rows_json(table_ref, metrics)
if errors:
tf.logging.error(
"Failed to upload benchmark info to bigquery: {}".format(errors)) | 123,134 |
Plays matches between two neural nets.
Args:
black_model: Path to the model for black player
white_model: Path to the model for white player | def play_match(black_model, white_model, games, sgf_dir):
with utils.logged_timer("Loading weights"):
black_net = dual_net.DualNetwork(black_model)
white_net = dual_net.DualNetwork(white_model)
readouts = FLAGS.num_readouts
black = MCTSPlayer(black_net, two_player_mode=True)
white = MCTSPlayer(white_net, two_player_mode=True)
black_name = os.path.basename(black_net.save_file)
white_name = os.path.basename(white_net.save_file)
for i in range(games):
num_move = 0 # The move number of the current game
for player in [black, white]:
player.initialize_game()
first_node = player.root.select_leaf()
prob, val = player.network.run(first_node.position)
first_node.incorporate_results(prob, val, first_node)
while True:
start = time.time()
active = white if num_move % 2 else black
inactive = black if num_move % 2 else white
current_readouts = active.root.N
while active.root.N < current_readouts + readouts:
active.tree_search()
# print some stats on the search
if FLAGS.verbose >= 3:
print(active.root.position)
# First, check the roots for hopeless games.
if active.should_resign(): # Force resign
active.set_result(-1 *
active.root.position.to_play, was_resign=True)
inactive.set_result(
active.root.position.to_play, was_resign=True)
if active.is_done():
fname = "{:d}-{:s}-vs-{:s}-{:d}.sgf".format(int(time.time()),
white_name, black_name, i)
active.set_result(active.root.position.result(), was_resign=False)
with gfile.GFile(os.path.join(sgf_dir, fname), 'w') as _file:
sgfstr = sgf_wrapper.make_sgf(active.position.recent,
active.result_string, black_name=black_name,
white_name=white_name)
_file.write(sgfstr)
print("Finished game", i, active.result_string)
break
move = active.pick_move()
active.play_move(move)
inactive.play_move(move)
dur = time.time() - start
num_move += 1
if (FLAGS.verbose > 1) or (FLAGS.verbose == 1 and num_move % 10 == 9):
timeper = (dur / readouts) * 100.0
print(active.root.position)
print("%d: %d readouts, %.3f s/100. (%.2f sec)" % (num_move,
readouts,
timeper,
dur)) | 123,151 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.