docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Flip an image horizontally or vertically.
Args:
img (ndarray): Image to be flipped.
direction (str): The flip direction, either "horizontal" or "vertical".
Returns:
ndarray: The flipped image. | def imflip(img, direction='horizontal'):
assert direction in ['horizontal', 'vertical']
if direction == 'horizontal':
return np.flip(img, axis=1)
else:
return np.flip(img, axis=0) | 126,348 |
Clip bboxes to fit the image shape.
Args:
bboxes (ndarray): Shape (..., 4*k)
img_shape (tuple): (height, width) of the image.
Returns:
ndarray: Clipped bboxes. | def bbox_clip(bboxes, img_shape):
assert bboxes.shape[-1] % 4 == 0
clipped_bboxes = np.empty_like(bboxes, dtype=bboxes.dtype)
clipped_bboxes[..., 0::2] = np.maximum(
np.minimum(bboxes[..., 0::2], img_shape[1] - 1), 0)
clipped_bboxes[..., 1::2] = np.maximum(
np.minimum(bboxes[..., 1::2], img_shape[0] - 1), 0)
return clipped_bboxes | 126,350 |
Scaling bboxes w.r.t the box center.
Args:
bboxes (ndarray): Shape(..., 4).
scale (float): Scaling factor.
clip_shape (tuple, optional): If specified, bboxes that exceed the
boundary will be clipped according to the given shape (h, w).
Returns:
ndarray: Scaled bboxes. | def bbox_scaling(bboxes, scale, clip_shape=None):
if float(scale) == 1.0:
scaled_bboxes = bboxes.copy()
else:
w = bboxes[..., 2] - bboxes[..., 0] + 1
h = bboxes[..., 3] - bboxes[..., 1] + 1
dw = (w * (scale - 1)) * 0.5
dh = (h * (scale - 1)) * 0.5
scaled_bboxes = bboxes + np.stack((-dw, -dh, dw, dh), axis=-1)
if clip_shape is not None:
return bbox_clip(scaled_bboxes, clip_shape)
else:
return scaled_bboxes | 126,351 |
Crop image patches.
3 steps: scale the bboxes -> clip bboxes -> crop and pad.
Args:
img (ndarray): Image to be cropped.
bboxes (ndarray): Shape (k, 4) or (4, ), location of cropped bboxes.
scale (float, optional): Scale ratio of bboxes, the default value
1.0 means no padding.
pad_fill (number or list): Value to be filled for padding, None for
no padding.
Returns:
list or ndarray: The cropped image patches. | def imcrop(img, bboxes, scale=1.0, pad_fill=None):
chn = 1 if img.ndim == 2 else img.shape[2]
if pad_fill is not None:
if isinstance(pad_fill, (int, float)):
pad_fill = [pad_fill for _ in range(chn)]
assert len(pad_fill) == chn
_bboxes = bboxes[None, ...] if bboxes.ndim == 1 else bboxes
scaled_bboxes = bbox_scaling(_bboxes, scale).astype(np.int32)
clipped_bbox = bbox_clip(scaled_bboxes, img.shape)
patches = []
for i in range(clipped_bbox.shape[0]):
x1, y1, x2, y2 = tuple(clipped_bbox[i, :])
if pad_fill is None:
patch = img[y1:y2 + 1, x1:x2 + 1, ...]
else:
_x1, _y1, _x2, _y2 = tuple(scaled_bboxes[i, :])
if chn == 2:
patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1)
else:
patch_shape = (_y2 - _y1 + 1, _x2 - _x1 + 1, chn)
patch = np.array(
pad_fill, dtype=img.dtype) * np.ones(
patch_shape, dtype=img.dtype)
x_start = 0 if _x1 >= 0 else -_x1
y_start = 0 if _y1 >= 0 else -_y1
w = x2 - x1 + 1
h = y2 - y1 + 1
patch[y_start:y_start + h, x_start:x_start +
w, ...] = img[y1:y1 + h, x1:x1 + w, ...]
patches.append(patch)
if bboxes.ndim == 1:
return patches[0]
else:
return patches | 126,352 |
Pad an image to a certain shape.
Args:
img (ndarray): Image to be padded.
shape (tuple): Expected padding shape.
pad_val (number or sequence): Values to be filled in padding areas.
Returns:
ndarray: The padded image. | def impad(img, shape, pad_val=0):
if not isinstance(pad_val, (int, float)):
assert len(pad_val) == img.shape[-1]
if len(shape) < len(img.shape):
shape = shape + (img.shape[-1], )
assert len(shape) == len(img.shape)
for i in range(len(shape) - 1):
assert shape[i] >= img.shape[i]
pad = np.empty(shape, dtype=img.dtype)
pad[...] = pad_val
pad[:img.shape[0], :img.shape[1], ...] = img
return pad | 126,353 |
Pad an image to ensure each edge to be multiple to some number.
Args:
img (ndarray): Image to be padded.
divisor (int): Padded image edges will be multiple to divisor.
pad_val (number or sequence): Same as :func:`impad`.
Returns:
ndarray: The padded image. | def impad_to_multiple(img, divisor, pad_val=0):
pad_h = int(np.ceil(img.shape[0] / divisor)) * divisor
pad_w = int(np.ceil(img.shape[1] / divisor)) * divisor
return impad(img, (pad_h, pad_w), pad_val) | 126,354 |
Rescale a size by a ratio.
Args:
size (tuple): w, h.
scale (float): Scaling factor.
Returns:
tuple[int]: scaled size. | def _scale_size(size, scale):
w, h = size
return int(w * float(scale) + 0.5), int(h * float(scale) + 0.5) | 126,355 |
Resize image to a given size.
Args:
img (ndarray): The input image.
size (tuple): Target (w, h).
return_scale (bool): Whether to return `w_scale` and `h_scale`.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos".
Returns:
tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or
`resized_img`. | def imresize(img, size, return_scale=False, interpolation='bilinear'):
h, w = img.shape[:2]
resized_img = cv2.resize(
img, size, interpolation=interp_codes[interpolation])
if not return_scale:
return resized_img
else:
w_scale = size[0] / w
h_scale = size[1] / h
return resized_img, w_scale, h_scale | 126,356 |
Resize image to the same size of a given image.
Args:
img (ndarray): The input image.
dst_img (ndarray): The target image.
return_scale (bool): Whether to return `w_scale` and `h_scale`.
interpolation (str): Same as :func:`resize`.
Returns:
tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or
`resized_img`. | def imresize_like(img, dst_img, return_scale=False, interpolation='bilinear'):
h, w = dst_img.shape[:2]
return imresize(img, (w, h), return_scale, interpolation) | 126,357 |
Register a handler for some file extensions.
Args:
handler (:obj:`BaseFileHandler`): Handler to be registered.
file_formats (str or list[str]): File formats to be handled by this
handler. | def _register_handler(handler, file_formats):
if not isinstance(handler, BaseFileHandler):
raise TypeError(
'handler must be a child of BaseFileHandler, not {}'.format(
type(handler)))
if isinstance(file_formats, str):
file_formats = [file_formats]
if not is_list_of(file_formats, str):
raise TypeError('file_formats must be a str or a list of str')
for ext in file_formats:
file_handlers[ext] = handler | 126,361 |
Get priority value.
Args:
priority (int or str or :obj:`Priority`): Priority.
Returns:
int: The priority value. | def get_priority(priority):
if isinstance(priority, int):
if priority < 0 or priority > 100:
raise ValueError('priority must be between 0 and 100')
return priority
elif isinstance(priority, Priority):
return priority.value
elif isinstance(priority, str):
return Priority[priority.upper()].value
else:
raise TypeError('priority must be an integer or Priority enum value') | 126,363 |
Quantize an array of (-inf, inf) to [0, levels-1].
Args:
arr (ndarray): Input array.
min_val (scalar): Minimum value to be clipped.
max_val (scalar): Maximum value to be clipped.
levels (int): Quantization levels.
dtype (np.type): The type of the quantized array.
Returns:
tuple: Quantized array. | def quantize(arr, min_val, max_val, levels, dtype=np.int64):
if not (isinstance(levels, int) and levels > 1):
raise ValueError(
'levels must be a positive integer, but got {}'.format(levels))
if min_val >= max_val:
raise ValueError(
'min_val ({}) must be smaller than max_val ({})'.format(
min_val, max_val))
arr = np.clip(arr, min_val, max_val) - min_val
quantized_arr = np.minimum(
np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1)
return quantized_arr | 126,364 |
Dequantize an array.
Args:
arr (ndarray): Input array.
min_val (scalar): Minimum value to be clipped.
max_val (scalar): Maximum value to be clipped.
levels (int): Quantization levels.
dtype (np.type): The type of the dequantized array.
Returns:
tuple: Dequantized array. | def dequantize(arr, min_val, max_val, levels, dtype=np.float64):
if not (isinstance(levels, int) and levels > 1):
raise ValueError(
'levels must be a positive integer, but got {}'.format(levels))
if min_val >= max_val:
raise ValueError(
'min_val ({}) must be smaller than max_val ({})'.format(
min_val, max_val))
dequantized_arr = (arr + 0.5).astype(dtype) * (
max_val - min_val) / levels + min_val
return dequantized_arr | 126,365 |
Show an image.
Args:
img (str or ndarray): The image to be displayed.
win_name (str): The window name.
wait_time (int): Value of waitKey param. | def imshow(img, win_name='', wait_time=0):
cv2.imshow(win_name, imread(img))
cv2.waitKey(wait_time) | 126,392 |
Read an optical flow map.
Args:
flow_or_path (ndarray or str): A flow map or filepath.
quantize (bool): whether to read quantized pair, if set to True,
remaining args will be passed to :func:`dequantize_flow`.
concat_axis (int): The axis that dx and dy are concatenated,
can be either 0 or 1. Ignored if quantize is False.
Returns:
ndarray: Optical flow represented as a (h, w, 2) numpy array | def flowread(flow_or_path, quantize=False, concat_axis=0, *args, **kwargs):
if isinstance(flow_or_path, np.ndarray):
if (flow_or_path.ndim != 3) or (flow_or_path.shape[-1] != 2):
raise ValueError('Invalid flow with shape {}'.format(
flow_or_path.shape))
return flow_or_path
elif not is_str(flow_or_path):
raise TypeError(
'"flow_or_path" must be a filename or numpy array, not {}'.format(
type(flow_or_path)))
if not quantize:
with open(flow_or_path, 'rb') as f:
try:
header = f.read(4).decode('utf-8')
except Exception:
raise IOError('Invalid flow file: {}'.format(flow_or_path))
else:
if header != 'PIEH':
raise IOError(
'Invalid flow file: {}, header does not contain PIEH'.
format(flow_or_path))
w = np.fromfile(f, np.int32, 1).squeeze()
h = np.fromfile(f, np.int32, 1).squeeze()
flow = np.fromfile(f, np.float32, w * h * 2).reshape((h, w, 2))
else:
assert concat_axis in [0, 1]
cat_flow = imread(flow_or_path, flag='unchanged')
if cat_flow.ndim != 2:
raise IOError(
'{} is not a valid quantized flow file, its dimension is {}.'.
format(flow_or_path, cat_flow.ndim))
assert cat_flow.shape[concat_axis] % 2 == 0
dx, dy = np.split(cat_flow, 2, axis=concat_axis)
flow = dequantize_flow(dx, dy, *args, **kwargs)
return flow.astype(np.float32) | 126,395 |
Quantize flow to [0, 255].
After this step, the size of flow will be much smaller, and can be
dumped as jpeg images.
Args:
flow (ndarray): (h, w, 2) array of optical flow.
max_val (float): Maximum value of flow, values beyond
[-max_val, max_val] will be truncated.
norm (bool): Whether to divide flow values by image width/height.
Returns:
tuple[ndarray]: Quantized dx and dy. | def quantize_flow(flow, max_val=0.02, norm=True):
h, w, _ = flow.shape
dx = flow[..., 0]
dy = flow[..., 1]
if norm:
dx = dx / w # avoid inplace operations
dy = dy / h
# use 255 levels instead of 256 to make sure 0 is 0 after dequantization.
flow_comps = [
quantize(d, -max_val, max_val, 255, np.uint8) for d in [dx, dy]
]
return tuple(flow_comps) | 126,397 |
Recover from quantized flow.
Args:
dx (ndarray): Quantized dx.
dy (ndarray): Quantized dy.
max_val (float): Maximum value used when quantizing.
denorm (bool): Whether to multiply flow values with width/height.
Returns:
ndarray: Dequantized flow. | def dequantize_flow(dx, dy, max_val=0.02, denorm=True):
assert dx.shape == dy.shape
assert dx.ndim == 2 or (dx.ndim == 3 and dx.shape[-1] == 1)
dx, dy = [dequantize(d, -max_val, max_val, 255) for d in [dx, dy]]
if denorm:
dx *= dx.shape[1]
dy *= dx.shape[0]
flow = np.dstack((dx, dy))
return flow | 126,398 |
Load checkpoint from a file or URI.
Args:
model (Module): Module to load checkpoint.
filename (str): Either a filepath or URL or modelzoo://xxxxxxx.
map_location (str): Same as :func:`torch.load`.
strict (bool): Whether to allow different params for the model and
checkpoint.
logger (:mod:`logging.Logger` or None): The logger for error message.
Returns:
dict or OrderedDict: The loaded checkpoint. | def load_checkpoint(model,
filename,
map_location=None,
strict=False,
logger=None):
# load checkpoint from modelzoo or file or url
if filename.startswith('modelzoo://'):
import torchvision
model_urls = dict()
for _, name, ispkg in pkgutil.walk_packages(
torchvision.models.__path__):
if not ispkg:
_zoo = import_module('torchvision.models.{}'.format(name))
_urls = getattr(_zoo, 'model_urls')
model_urls.update(_urls)
model_name = filename[11:]
checkpoint = model_zoo.load_url(model_urls[model_name])
elif filename.startswith('open-mmlab://'):
model_name = filename[13:]
checkpoint = model_zoo.load_url(open_mmlab_model_urls[model_name])
elif filename.startswith(('http://', 'https://')):
checkpoint = model_zoo.load_url(filename)
else:
if not osp.isfile(filename):
raise IOError('{} is not a checkpoint file'.format(filename))
checkpoint = torch.load(filename, map_location=map_location)
# get state_dict from checkpoint
if isinstance(checkpoint, OrderedDict):
state_dict = checkpoint
elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
else:
raise RuntimeError(
'No state_dict found in checkpoint file {}'.format(filename))
# strip prefix of state_dict
if list(state_dict.keys())[0].startswith('module.'):
state_dict = {k[7:]: v for k, v in checkpoint['state_dict'].items()}
# load state_dict
if hasattr(model, 'module'):
load_state_dict(model.module, state_dict, strict, logger)
else:
load_state_dict(model, state_dict, strict, logger)
return checkpoint | 126,417 |
Copy a model state_dict to cpu.
Args:
state_dict (OrderedDict): Model weights on GPU.
Returns:
OrderedDict: Model weights on GPU. | def weights_to_cpu(state_dict):
state_dict_cpu = OrderedDict()
for key, val in state_dict.items():
state_dict_cpu[key] = val.cpu()
return state_dict_cpu | 126,418 |
Save checkpoint to file.
The checkpoint will have 3 fields: ``meta``, ``state_dict`` and
``optimizer``. By default ``meta`` will contain version and time info.
Args:
model (Module): Module whose params are to be saved.
filename (str): Checkpoint filename.
optimizer (:obj:`Optimizer`, optional): Optimizer to be saved.
meta (dict, optional): Metadata to be saved in checkpoint. | def save_checkpoint(model, filename, optimizer=None, meta=None):
if meta is None:
meta = {}
elif not isinstance(meta, dict):
raise TypeError('meta must be a dict or None, but got {}'.format(
type(meta)))
meta.update(mmcv_version=mmcv.__version__, time=time.asctime())
mmcv.mkdir_or_exist(osp.dirname(filename))
if hasattr(model, 'module'):
model = model.module
checkpoint = {
'meta': meta,
'state_dict': weights_to_cpu(model.state_dict())
}
if optimizer is not None:
checkpoint['optimizer'] = optimizer.state_dict()
torch.save(checkpoint, filename) | 126,419 |
Init the optimizer.
Args:
optimizer (dict or :obj:`~torch.optim.Optimizer`): Either an
optimizer object or a dict used for constructing the optimizer.
Returns:
:obj:`~torch.optim.Optimizer`: An optimizer object.
Examples:
>>> optimizer = dict(type='SGD', lr=0.01, momentum=0.9)
>>> type(runner.init_optimizer(optimizer))
<class 'torch.optim.sgd.SGD'> | def init_optimizer(self, optimizer):
if isinstance(optimizer, dict):
optimizer = obj_from_dict(
optimizer, torch.optim, dict(params=self.model.parameters()))
elif not isinstance(optimizer, torch.optim.Optimizer):
raise TypeError(
'optimizer must be either an Optimizer object or a dict, '
'but got {}'.format(type(optimizer)))
return optimizer | 126,422 |
Init the logger.
Args:
log_dir(str, optional): Log file directory. If not specified, no
log file will be used.
level (int or str): See the built-in python logging module.
Returns:
:obj:`~logging.Logger`: Python logger. | def init_logger(self, log_dir=None, level=logging.INFO):
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s', level=level)
logger = logging.getLogger(__name__)
if log_dir and self.rank == 0:
filename = '{}.log'.format(self.timestamp)
log_file = osp.join(log_dir, filename)
self._add_file_handler(logger, log_file, level=level)
return logger | 126,424 |
Register a hook into the hook list.
Args:
hook (:obj:`Hook`): The hook to be registered.
priority (int or str or :obj:`Priority`): Hook priority.
Lower value means higher priority. | def register_hook(self, hook, priority='NORMAL'):
assert isinstance(hook, Hook)
if hasattr(hook, 'priority'):
raise ValueError('"priority" is a reserved attribute for hooks')
priority = get_priority(priority)
hook.priority = priority
# insert the hook to a sorted list
inserted = False
for i in range(len(self._hooks) - 1, -1, -1):
if priority >= self._hooks[i].priority:
self._hooks.insert(i + 1, hook)
inserted = True
break
if not inserted:
self._hooks.insert(0, hook) | 126,426 |
Start running.
Args:
data_loaders (list[:obj:`DataLoader`]): Dataloaders for training
and validation.
workflow (list[tuple]): A list of (phase, epochs) to specify the
running order and epochs. E.g, [('train', 2), ('val', 1)] means
running 2 epochs for training and 1 epoch for validation,
iteratively.
max_epochs (int): Total training epochs. | def run(self, data_loaders, workflow, max_epochs, **kwargs):
assert isinstance(data_loaders, list)
assert mmcv.is_list_of(workflow, tuple)
assert len(data_loaders) == len(workflow)
self._max_epochs = max_epochs
work_dir = self.work_dir if self.work_dir is not None else 'NONE'
self.logger.info('Start running, host: %s, work_dir: %s',
get_host_info(), work_dir)
self.logger.info('workflow: %s, max: %d epochs', workflow, max_epochs)
self.call_hook('before_run')
while self.epoch < max_epochs:
for i, flow in enumerate(workflow):
mode, epochs = flow
if isinstance(mode, str): # self.train()
if not hasattr(self, mode):
raise ValueError(
'runner has no method named "{}" to run an epoch'.
format(mode))
epoch_runner = getattr(self, mode)
elif callable(mode): # custom train()
epoch_runner = mode
else:
raise TypeError('mode in workflow must be a str or '
'callable function, not {}'.format(
type(mode)))
for _ in range(epochs):
if mode == 'train' and self.epoch >= max_epochs:
return
epoch_runner(data_loaders[i], **kwargs)
time.sleep(1) # wait for some hooks like loggers to finish
self.call_hook('after_run') | 126,434 |
Resize a video.
Args:
in_file (str): Input video filename.
out_file (str): Output video filename.
size (tuple): Expected size (w, h), eg, (320, 240) or (320, -1).
ratio (tuple or float): Expected resize ratio, (2, 0.5) means
(w*2, h*0.5).
keep_ar (bool): Whether to keep original aspect ratio.
log_level (str): Logging level of ffmpeg.
print_cmd (bool): Whether to print the final ffmpeg command. | def resize_video(in_file,
out_file,
size=None,
ratio=None,
keep_ar=False,
log_level='info',
print_cmd=False,
**kwargs):
if size is None and ratio is None:
raise ValueError('expected size or ratio must be specified')
elif size is not None and ratio is not None:
raise ValueError('size and ratio cannot be specified at the same time')
options = {'log_level': log_level}
if size:
if not keep_ar:
options['vf'] = 'scale={}:{}'.format(size[0], size[1])
else:
options['vf'] = ('scale=w={}:h={}:force_original_aspect_ratio'
'=decrease'.format(size[0], size[1]))
else:
if not isinstance(ratio, tuple):
ratio = (ratio, ratio)
options['vf'] = 'scale="trunc(iw*{}):trunc(ih*{})"'.format(
ratio[0], ratio[1])
convert_video(in_file, out_file, print_cmd, **options) | 126,444 |
Cut a clip from a video.
Args:
in_file (str): Input video filename.
out_file (str): Output video filename.
start (None or float): Start time (in seconds).
end (None or float): End time (in seconds).
vcodec (None or str): Output video codec, None for unchanged.
acodec (None or str): Output audio codec, None for unchanged.
log_level (str): Logging level of ffmpeg.
print_cmd (bool): Whether to print the final ffmpeg command. | def cut_video(in_file,
out_file,
start=None,
end=None,
vcodec=None,
acodec=None,
log_level='info',
print_cmd=False,
**kwargs):
options = {'log_level': log_level}
if vcodec is None:
options['vcodec'] = 'copy'
if acodec is None:
options['acodec'] = 'copy'
if start:
options['ss'] = start
else:
start = 0
if end:
options['t'] = end - start
convert_video(in_file, out_file, print_cmd, **options) | 126,445 |
Concatenate multiple videos into a single one.
Args:
video_list (list): A list of video filenames
out_file (str): Output video filename
vcodec (None or str): Output video codec, None for unchanged
acodec (None or str): Output audio codec, None for unchanged
log_level (str): Logging level of ffmpeg.
print_cmd (bool): Whether to print the final ffmpeg command. | def concat_video(video_list,
out_file,
vcodec=None,
acodec=None,
log_level='info',
print_cmd=False,
**kwargs):
_, tmp_filename = tempfile.mkstemp(suffix='.txt', text=True)
with open(tmp_filename, 'w') as f:
for filename in video_list:
f.write('file {}\n'.format(osp.abspath(filename)))
options = {'log_level': log_level}
if vcodec is None:
options['vcodec'] = 'copy'
if acodec is None:
options['acodec'] = 'copy'
convert_video(
tmp_filename,
out_file,
print_cmd,
pre_options='-f concat -safe 0',
**options)
os.remove(tmp_filename) | 126,446 |
Load a text file and parse the content as a list of strings.
Args:
filename (str): Filename.
prefix (str): The prefix to be inserted to the begining of each item.
offset (int): The offset of lines.
max_num (int): The maximum number of lines to be read,
zeros and negatives mean no limitation.
Returns:
list[str]: A list of strings. | def list_from_file(filename, prefix='', offset=0, max_num=0):
cnt = 0
item_list = []
with open(filename, 'r') as f:
for _ in range(offset):
f.readline()
for line in f:
if max_num > 0 and cnt >= max_num:
break
item_list.append(prefix + line.rstrip('\n'))
cnt += 1
return item_list | 126,447 |
Load a text file and parse the content as a dict.
Each line of the text file will be two or more columns splited by
whitespaces or tabs. The first column will be parsed as dict keys, and
the following columns will be parsed as dict values.
Args:
filename(str): Filename.
key_type(type): Type of the dict's keys. str is user by default and
type conversion will be performed if specified.
Returns:
dict: The parsed contents. | def dict_from_file(filename, key_type=str):
mapping = {}
with open(filename, 'r') as f:
for line in f:
items = line.rstrip('\n').split()
assert len(items) >= 2
key = key_type(items[0])
val = items[1:] if len(items) > 2 else items[1]
mapping[key] = val
return mapping | 126,448 |
Read an image.
Args:
img_or_path (ndarray or str): Either a numpy array or image path.
If it is a numpy array (loaded image), then it will be returned
as is.
flag (str): Flags specifying the color type of a loaded image,
candidates are `color`, `grayscale` and `unchanged`.
Returns:
ndarray: Loaded image array. | def imread(img_or_path, flag='color'):
if isinstance(img_or_path, np.ndarray):
return img_or_path
elif is_str(img_or_path):
flag = imread_flags[flag] if is_str(flag) else flag
check_file_exist(img_or_path,
'img file does not exist: {}'.format(img_or_path))
return cv2.imread(img_or_path, flag)
else:
raise TypeError('"img" must be a numpy array or a filename') | 126,462 |
Read an image from bytes.
Args:
content (bytes): Image bytes got from files or other streams.
flag (str): Same as :func:`imread`.
Returns:
ndarray: Loaded image array. | def imfrombytes(content, flag='color'):
img_np = np.frombuffer(content, np.uint8)
flag = imread_flags[flag] if is_str(flag) else flag
img = cv2.imdecode(img_np, flag)
return img | 126,463 |
Write image to file
Args:
img (ndarray): Image array to be written.
file_path (str): Image file path.
params (None or list): Same as opencv's :func:`imwrite` interface.
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
whether to create it automatically.
Returns:
bool: Successful or not. | def imwrite(img, file_path, params=None, auto_mkdir=True):
if auto_mkdir:
dir_name = osp.abspath(osp.dirname(file_path))
mkdir_or_exist(dir_name)
return cv2.imwrite(file_path, img, params) | 126,464 |
Convert a BGR image to grayscale image.
Args:
img (ndarray): The input image.
keepdim (bool): If False (by default), then return the grayscale image
with 2 dims, otherwise 3 dims.
Returns:
ndarray: The converted grayscale image. | def bgr2gray(img, keepdim=False):
out_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if keepdim:
out_img = out_img[..., None]
return out_img | 126,468 |
Convert a grayscale image to BGR image.
Args:
img (ndarray or str): The input image.
Returns:
ndarray: The converted BGR image. | def gray2bgr(img):
img = img[..., None] if img.ndim == 2 else img
out_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
return out_img | 126,469 |
Cast elements of an iterable object into some type.
Args:
inputs (Iterable): The input object.
dst_type (type): Destination type.
return_type (type, optional): If specified, the output object will be
converted to this type, otherwise an iterator.
Returns:
iterator or specified type: The converted object. | def iter_cast(inputs, dst_type, return_type=None):
if not isinstance(inputs, collections_abc.Iterable):
raise TypeError('inputs must be an iterable object')
if not isinstance(dst_type, type):
raise TypeError('"dst_type" must be a valid type')
out_iterable = six.moves.map(dst_type, inputs)
if return_type is None:
return out_iterable
else:
return return_type(out_iterable) | 126,471 |
Check whether it is a sequence of some type.
Args:
seq (Sequence): The sequence to be checked.
expected_type (type): Expected type of sequence items.
seq_type (type, optional): Expected sequence type.
Returns:
bool: Whether the sequence is valid. | def is_seq_of(seq, expected_type, seq_type=None):
if seq_type is None:
exp_seq_type = collections_abc.Sequence
else:
assert isinstance(seq_type, type)
exp_seq_type = seq_type
if not isinstance(seq, exp_seq_type):
return False
for item in seq:
if not isinstance(item, expected_type):
return False
return True | 126,472 |
Slice a list into several sub lists by a list of given length.
Args:
in_list (list): The list to be sliced.
lens(int or list): The expected length of each out list.
Returns:
list: A list of sliced list. | def slice_list(in_list, lens):
if not isinstance(lens, list):
raise TypeError('"indices" must be a list of integers')
elif sum(lens) != len(in_list):
raise ValueError(
'sum of lens and list length does not match: {} != {}'.format(
sum(lens), len(in_list)))
out_list = []
idx = 0
for i in range(len(lens)):
out_list.append(in_list[idx:idx + lens[i]])
idx += lens[i]
return out_list | 126,473 |
A decorator factory to check if prerequisites are satisfied.
Args:
prerequisites (str of list[str]): Prerequisites to be checked.
checker (callable): The checker method that returns True if a
prerequisite is meet, False otherwise.
msg_tmpl (str): The message template with two variables.
Returns:
decorator: A specific decorator. | def check_prerequisites(
prerequisites,
checker,
msg_tmpl='Prerequisites "{}" are required in method "{}" but not '
'found, please install them first.'):
def wrap(func):
@functools.wraps(func)
def wrapped_func(*args, **kwargs):
requirements = [prerequisites] if isinstance(
prerequisites, str) else prerequisites
missing = []
for item in requirements:
if not checker(item):
missing.append(item)
if missing:
print(msg_tmpl.format(', '.join(missing), func.__name__))
raise RuntimeError('Prerequisites not meet.')
else:
return func(*args, **kwargs)
return wrapped_func
return wrap | 126,474 |
Convert various input to color tuples.
Args:
color (:obj:`Color`/str/tuple/int/ndarray): Color inputs
Returns:
tuple[int]: A tuple of 3 integers indicating BGR channels. | def color_val(color):
if is_str(color):
return Color[color].value
elif isinstance(color, Color):
return color.value
elif isinstance(color, tuple):
assert len(color) == 3
for channel in color:
assert channel >= 0 and channel <= 255
return color
elif isinstance(color, int):
assert color >= 0 and color <= 255
return color, color, color
elif isinstance(color, np.ndarray):
assert color.ndim == 1 and color.size == 3
assert np.all((color >= 0) & (color <= 255))
color = color.astype(np.uint8)
return tuple(color)
else:
raise TypeError('Invalid type for color: {}'.format(type(color))) | 126,500 |
Add check points in a single line.
This method is suitable for running a task on a list of items. A timer will
be registered when the method is called for the first time.
:Example:
>>> import time
>>> import mmcv
>>> for i in range(1, 6):
>>> # simulate a code block
>>> time.sleep(i)
>>> mmcv.check_time('task1')
2.000
3.000
4.000
5.000
Args:
timer_id (str): Timer identifier. | def check_time(timer_id):
if timer_id not in _g_timers:
_g_timers[timer_id] = Timer()
return 0
else:
return _g_timers[timer_id].since_last_check() | 126,501 |
Show optical flow.
Args:
flow (ndarray or str): The optical flow to be displayed.
win_name (str): The window name.
wait_time (int): Value of waitKey param. | def flowshow(flow, win_name='', wait_time=0):
flow = flowread(flow)
flow_img = flow2rgb(flow)
imshow(rgb2bgr(flow_img), win_name, wait_time) | 126,507 |
Convert flow map to RGB image.
Args:
flow (ndarray): Array of optical flow.
color_wheel (ndarray or None): Color wheel used to map flow field to
RGB colorspace. Default color wheel will be used if not specified.
unknown_thr (str): Values above this threshold will be marked as
unknown and thus ignored.
Returns:
ndarray: RGB image that can be visualized. | def flow2rgb(flow, color_wheel=None, unknown_thr=1e6):
assert flow.ndim == 3 and flow.shape[-1] == 2
if color_wheel is None:
color_wheel = make_color_wheel()
assert color_wheel.ndim == 2 and color_wheel.shape[1] == 3
num_bins = color_wheel.shape[0]
dx = flow[:, :, 0].copy()
dy = flow[:, :, 1].copy()
ignore_inds = (np.isnan(dx) | np.isnan(dy) | (np.abs(dx) > unknown_thr) |
(np.abs(dy) > unknown_thr))
dx[ignore_inds] = 0
dy[ignore_inds] = 0
rad = np.sqrt(dx**2 + dy**2)
if np.any(rad > np.finfo(float).eps):
max_rad = np.max(rad)
dx /= max_rad
dy /= max_rad
[h, w] = dx.shape
rad = np.sqrt(dx**2 + dy**2)
angle = np.arctan2(-dy, -dx) / np.pi
bin_real = (angle + 1) / 2 * (num_bins - 1)
bin_left = np.floor(bin_real).astype(int)
bin_right = (bin_left + 1) % num_bins
w = (bin_real - bin_left.astype(np.float32))[..., None]
flow_img = (
1 - w) * color_wheel[bin_left, :] + w * color_wheel[bin_right, :]
small_ind = rad <= 1
flow_img[small_ind] = 1 - rad[small_ind, None] * (1 - flow_img[small_ind])
flow_img[np.logical_not(small_ind)] *= 0.75
flow_img[ignore_inds, :] = 0
return flow_img | 126,508 |
Build a color wheel.
Args:
bins(list or tuple, optional): Specify the number of bins for each
color range, corresponding to six ranges: red -> yellow,
yellow -> green, green -> cyan, cyan -> blue, blue -> magenta,
magenta -> red. [15, 6, 4, 11, 13, 6] is used for default
(see Middlebury).
Returns:
ndarray: Color wheel of shape (total_bins, 3). | def make_color_wheel(bins=None):
if bins is None:
bins = [15, 6, 4, 11, 13, 6]
assert len(bins) == 6
RY, YG, GC, CB, BM, MR = tuple(bins)
ry = [1, np.arange(RY) / RY, 0]
yg = [1 - np.arange(YG) / YG, 1, 0]
gc = [0, 1, np.arange(GC) / GC]
cb = [0, 1 - np.arange(CB) / CB, 1]
bm = [np.arange(BM) / BM, 0, 1]
mr = [1, 0, 1 - np.arange(MR) / MR]
num_bins = RY + YG + GC + CB + BM + MR
color_wheel = np.zeros((3, num_bins), dtype=np.float32)
col = 0
for i, color in enumerate([ry, yg, gc, cb, bm, mr]):
for j in range(3):
color_wheel[j, col:col + bins[i]] = color[j]
col += bins[i]
return color_wheel.T | 126,509 |
Validates that a probability is between 0 and 1 inclusively.
Args:
p: The value to validate.
p_str: What to call the probability in error messages.
Returns:
The probability p if the probability if valid.
Raises:
ValueError if the probability is invalid. | def validate_probability(p: float, p_str: str) -> float:
if p < 0:
raise ValueError('{} was less than 0.'.format(p_str))
elif p > 1:
raise ValueError('{} was greater than 1.'.format(p_str))
return p | 126,549 |
Returns a list of operations apply this gate to each of the targets.
Args:
*targets: The qubits to apply this gate to.
Returns:
Operations applying this gate to the target qubits.
Raises:
ValueError if targets are not instances of Qid. | def on_each(self, *targets: raw_types.Qid) -> op_tree.OP_TREE:
return [self.on(target) for target in targets] | 126,552 |
Initializes a Timestamp with a time specified in ns and/or ps.
The time is relative to some unspecified "time zero". If both picos and
nanos are specified, their contributions away from zero are added.
Args:
picos: How many picoseconds away from time zero?
nanos: How many nanoseconds away from time zero? | def __init__(self, *, # Forces keyword args.
picos: Union[int, float] = 0,
nanos: Union[int, float] = 0) -> None:
if picos and nanos:
self._picos = picos + nanos * 1000
else:
# Try to preserve type information.
self._picos = nanos * 1000 if nanos else picos | 126,553 |
Plot the state histogram from a single result with repetitions.
States is a bitstring representation of all the qubit states in a single
result.
Currently this function assumes each measurement gate applies to only
a single qubit.
Args:
result: The trial results to plot.
Returns:
The histogram. A list of values plotted on the y-axis. | def plot_state_histogram(result: trial_result.TrialResult) -> np.ndarray:
# pyplot import is deferred because it requires a system dependency
# (python3-tk) that `python -m pip install cirq` can't handle for the user.
# This allows cirq to be usable without python3-tk.
import matplotlib.pyplot as plt
num_qubits = len(result.measurements.keys())
states = 2**num_qubits
values = np.zeros(states)
# measurements is a dict of {measurement gate key:
# array(repetitions, boolean result)}
# Convert this to an array of repetitions, each with an array of booleans.
# e.g. {q1: array([[True, True]]), q2: array([[False, False]])}
# --> array([[True, False], [True, False]])
measurement_by_result = np.array([
v.transpose()[0] for k, v in result.measurements.items()]).transpose()
for meas in measurement_by_result:
# Convert each array of booleans to a string representation.
# e.g. [True, False] -> [1, 0] -> '10' -> 2
state_ind = int(''.join([str(x) for x in [int(x) for x in meas]]), 2)
values[state_ind] += 1
plot_labels = [bin(x)[2:].zfill(num_qubits) for x in range(states)]
plt.bar(np.arange(states), values, tick_label=plot_labels)
plt.xlabel('qubit state')
plt.ylabel('result count')
plt.show()
return values | 126,564 |
Initializes the equivalence class.
Args:
value: numerical value to wrap.
period: periodicity of the numerical value. | def __init__(self, value: Union[int, float], period: Union[int, float]):
self.value = value % period
self.period = period | 126,572 |
Construct the optimization pass.
Args:
no_decomp: A predicate that determines whether an operation should
be decomposed or not. Defaults to decomposing everything. | def __init__(self,
no_decomp: Callable[[ops.Operation], bool]=(lambda _: False)
) -> None:
super().__init__()
self.no_decomp = no_decomp | 126,578 |
Runs the supplied Circuit or Schedule, mimicking quantum hardware.
In contrast to run, this allows for sweeping over different parameter
values.
Args:
program: The circuit or schedule to simulate.
params: Parameters to run with the program.
repetitions: The number of repetitions to simulate.
Returns:
TrialResult list for this run; one for each possible parameter
resolver. | def run_sweep(
self,
program: Union[circuits.Circuit, schedules.Schedule],
params: study.Sweepable,
repetitions: int = 1,
) -> List[study.TrialResult]:
circuit = (program if isinstance(program, circuits.Circuit)
else program.to_circuit())
param_resolvers = study.to_resolvers(params)
trial_results = [] # type: List[study.TrialResult]
for param_resolver in param_resolvers:
measurements = self._run(circuit=circuit,
param_resolver=param_resolver,
repetitions=repetitions)
trial_results.append(study.TrialResult(params=param_resolver,
repetitions=repetitions,
measurements=measurements))
return trial_results | 126,595 |
Computes SamplesDisplays in the supplied Circuit or Schedule.
Args:
program: The circuit or schedule to simulate.
param_resolver: Parameters to run with the program.
Returns:
ComputeDisplaysResult for the simulation. | def compute_samples_displays(
self,
program: Union[circuits.Circuit, schedules.Schedule],
param_resolver: 'study.ParamResolverOrSimilarType' = None,
) -> study.ComputeDisplaysResult:
return self.compute_samples_displays_sweep(
program,
study.ParamResolver(param_resolver))[0] | 126,597 |
Computes SamplesDisplays in the supplied Circuit or Schedule.
In contrast to `compute_displays`, this allows for sweeping
over different parameter values.
Args:
program: The circuit or schedule to simulate.
params: Parameters to run with the program.
Returns:
List of ComputeDisplaysResults for this run, one for each
possible parameter resolver. | def compute_samples_displays_sweep(
self,
program: Union[circuits.Circuit, schedules.Schedule],
params: Optional[study.Sweepable] = None
) -> List[study.ComputeDisplaysResult]:
circuit = (program if isinstance(program, circuits.Circuit)
else program.to_circuit())
param_resolvers = study.to_resolvers(params or study.ParamResolver({}))
compute_displays_results = [] # type: List[study.ComputeDisplaysResult]
for param_resolver in param_resolvers:
display_values = {} # type: Dict[Hashable, Any]
preceding_circuit = circuits.Circuit()
for i, moment in enumerate(circuit):
displays = (op for op in moment
if isinstance(op, ops.SamplesDisplay))
for display in displays:
measurement_key = str(display.key)
measurement_circuit = circuits.Circuit.from_ops(
display.measurement_basis_change(),
ops.measure(*display.qubits,
key=measurement_key)
)
measurements = self._run(
preceding_circuit + measurement_circuit,
param_resolver,
display.num_samples)
display_values[display.key] = (
display.value_derived_from_samples(
measurements[measurement_key]))
preceding_circuit.append(circuit[i])
compute_displays_results.append(study.ComputeDisplaysResult(
params=param_resolver,
display_values=display_values))
return compute_displays_results | 126,598 |
This method can be overridden to creation of a trial result.
Args:
params: The ParamResolver for this trial.
measurements: The measurement results for this trial.
final_simulator_state: The final state of the simulator for the
StepResult.
Returns:
The SimulationTrialResult. | def _create_simulator_trial_result(self,
params: study.ParamResolver,
measurements: Dict[str, np.ndarray],
final_simulator_state: Any) \
-> 'SimulationTrialResult':
return SimulationTrialResult(
params=params,
measurements=measurements,
final_simulator_state=final_simulator_state) | 126,604 |
Plots excited state probability vs the Rabi angle (angle of rotation
around the x-axis).
Args:
**plot_kwargs: Arguments to be passed to matplotlib.pyplot.plot. | def plot(self, **plot_kwargs: Any) -> None:
fig = plt.figure()
plt.plot(self._rabi_angles, self._excited_state_probs, 'ro-',
figure=fig, **plot_kwargs)
plt.xlabel(r"Rabi Angle (Radian)", figure=fig)
plt.ylabel('Excited State Probability', figure=fig)
fig.show() | 126,628 |
Plots the average ground state probability vs the number of
Cliffords in the RB study.
Args:
**plot_kwargs: Arguments to be passed to matplotlib.pyplot.plot. | def plot(self, **plot_kwargs: Any) -> None:
fig = plt.figure()
plt.plot(self._num_cfds_seq, self._gnd_state_probs, 'ro-',
figure=fig, **plot_kwargs)
plt.xlabel(r"Number of Cliffords", figure=fig)
plt.ylabel('Ground State Probability', figure=fig)
fig.show() | 126,631 |
Raises a matrix with two opposing eigenvalues to a power.
Args:
reflection_matrix: The matrix to raise to a power.
exponent: The power to raise the matrix to.
Returns:
The given matrix raised to the given power. | def reflection_matrix_pow(reflection_matrix: np.ndarray, exponent: float):
# The eigenvalues are x and -x for some complex unit x. Determine x.
squared_phase = np.dot(reflection_matrix[:, 0],
reflection_matrix[0, :])
phase = complex(np.sqrt(squared_phase))
# Extract +x and -x eigencomponents of the matrix.
i = np.eye(reflection_matrix.shape[0]) * phase
pos_part = (i + reflection_matrix) * 0.5
neg_part = (i - reflection_matrix) * 0.5
# Raise the matrix to a power by raising its eigencomponents to that power.
pos_factor = phase**(exponent - 1)
neg_factor = pos_factor * complex(-1)**exponent
pos_part_raised = pos_factor * pos_part
neg_part_raised = neg_part * neg_factor
return pos_part_raised + neg_part_raised | 126,632 |
Phases the given matrices so that they agree on the phase of one entry.
To maximize precision, the position with the largest entry from one of the
matrices is used when attempting to compute the phase difference between
the two matrices.
Args:
a: A numpy array.
b: Another numpy array.
Returns:
A tuple (a', b') where a' == b' implies a == b*exp(i t) for some t. | def match_global_phase(a: np.ndarray,
b: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
# Not much point when they have different shapes.
if a.shape != b.shape:
return a, b
# Find the entry with the largest magnitude in one of the matrices.
k = max(np.ndindex(*a.shape), key=lambda t: abs(b[t]))
def dephase(v):
r = np.real(v)
i = np.imag(v)
# Avoid introducing floating point error when axis-aligned.
if i == 0:
return -1 if r < 0 else 1
if r == 0:
return 1j if i < 0 else -1j
return np.exp(-1j * np.arctan2(i, r))
# Zero the phase at this entry in both matrices.
return a * dephase(a[k]), b * dephase(b[k]) | 126,633 |
Determines if a matrix is a approximately diagonal.
A matrix is diagonal if i!=j implies m[i,j]==0.
Args:
matrix: The matrix to check.
atol: The per-matrix-entry absolute tolerance on equality.
Returns:
Whether the matrix is diagonal within the given tolerance. | def is_diagonal(matrix: np.ndarray, *, atol: float = 1e-8) -> bool:
matrix = np.copy(matrix)
for i in range(min(matrix.shape)):
matrix[i, i] = 0
return tolerance.all_near_zero(matrix, atol=atol) | 126,642 |
Determines if a matrix is approximately Hermitian.
A matrix is Hermitian if it's square and equal to its adjoint.
Args:
matrix: The matrix to check.
rtol: The per-matrix-entry relative tolerance on equality.
atol: The per-matrix-entry absolute tolerance on equality.
Returns:
Whether the matrix is Hermitian within the given tolerance. | def is_hermitian(
matrix: np.ndarray,
*,
rtol: float = 1e-5,
atol: float = 1e-8) -> bool:
return (matrix.shape[0] == matrix.shape[1] and
np.allclose(matrix, np.conj(matrix.T), rtol=rtol, atol=atol)) | 126,643 |
Determines if a matrix is approximately orthogonal.
A matrix is orthogonal if it's square and real and its transpose is its
inverse.
Args:
matrix: The matrix to check.
rtol: The per-matrix-entry relative tolerance on equality.
atol: The per-matrix-entry absolute tolerance on equality.
Returns:
Whether the matrix is orthogonal within the given tolerance. | def is_orthogonal(
matrix: np.ndarray,
*,
rtol: float = 1e-5,
atol: float = 1e-8) -> bool:
return (matrix.shape[0] == matrix.shape[1] and
np.all(np.imag(matrix) == 0) and
np.allclose(matrix.dot(matrix.T), np.eye(matrix.shape[0]),
rtol=rtol,
atol=atol)) | 126,644 |
Determines if a matrix is approximately special orthogonal.
A matrix is special orthogonal if it is square and real and its transpose
is its inverse and its determinant is one.
Args:
matrix: The matrix to check.
rtol: The per-matrix-entry relative tolerance on equality.
atol: The per-matrix-entry absolute tolerance on equality.
Returns:
Whether the matrix is special orthogonal within the given tolerance. | def is_special_orthogonal(
matrix: np.ndarray,
*,
rtol: float = 1e-5,
atol: float = 1e-8) -> bool:
return (is_orthogonal(matrix, rtol=rtol, atol=atol) and
(matrix.shape[0] == 0 or
np.allclose(np.linalg.det(matrix), 1, rtol=rtol, atol=atol))) | 126,645 |
Determines if a matrix is approximately unitary.
A matrix is unitary if it's square and its adjoint is its inverse.
Args:
matrix: The matrix to check.
rtol: The per-matrix-entry relative tolerance on equality.
atol: The per-matrix-entry absolute tolerance on equality.
Returns:
Whether the matrix is unitary within the given tolerance. | def is_unitary(
matrix: np.ndarray,
*,
rtol: float = 1e-5,
atol: float = 1e-8) -> bool:
return (matrix.shape[0] == matrix.shape[1] and
np.allclose(matrix.dot(np.conj(matrix.T)), np.eye(matrix.shape[0]),
rtol=rtol,
atol=atol)) | 126,646 |
Determines if a matrix is approximately unitary with unit determinant.
A matrix is special-unitary if it is square and its adjoint is its inverse
and its determinant is one.
Args:
matrix: The matrix to check.
rtol: The per-matrix-entry relative tolerance on equality.
atol: The per-matrix-entry absolute tolerance on equality.
Returns:
Whether the matrix is unitary with unit determinant within the given
tolerance. | def is_special_unitary(
matrix: np.ndarray,
*,
rtol: float = 1e-5,
atol: float = 1e-8) -> bool:
return (is_unitary(matrix, rtol=rtol, atol=atol) and
(matrix.shape[0] == 0 or
np.allclose(np.linalg.det(matrix), 1, rtol=rtol, atol=atol))) | 126,647 |
Determines if two matrices approximately commute.
Two matrices A and B commute if they are square and have the same size and
AB = BA.
Args:
m1: One of the matrices.
m2: The other matrix.
rtol: The per-matrix-entry relative tolerance on equality.
atol: The per-matrix-entry absolute tolerance on equality.
Returns:
Whether the two matrices have compatible sizes and a commutator equal
to zero within tolerance. | def commutes(
m1: np.ndarray,
m2: np.ndarray,
*,
rtol: float = 1e-5,
atol: float = 1e-8) -> bool:
return (m1.shape[0] == m1.shape[1] and
m1.shape == m2.shape and
np.allclose(m1.dot(m2), m2.dot(m1), rtol=rtol, atol=atol)) | 126,648 |
Determines if a ~= b * exp(i t) for some t.
Args:
a: A numpy array.
b: Another numpy array.
rtol: Relative error tolerance.
atol: Absolute error tolerance.
equal_nan: Whether or not NaN entries should be considered equal to
other NaN entries. | def allclose_up_to_global_phase(
a: np.ndarray,
b: np.ndarray,
*,
rtol: float = 1.e-5,
atol: float = 1.e-8,
equal_nan: bool = False
) -> bool:
a, b = transformations.match_global_phase(a, b)
# Should now be equivalent.
return np.allclose(a=a, b=b, rtol=rtol, atol=atol, equal_nan=equal_nan) | 126,649 |
Initializes the scheduled operation.
Args:
time: When the operation starts.
duration: How long the operation lasts.
operation: The operation. | def __init__(self, time: Timestamp, duration: Union[Duration, timedelta],
operation: ops.Operation) -> None:
self.time = time
self.duration = Duration.create(duration)
self.operation = operation | 126,651 |
Initializes linear combination from a collection of terms.
Args:
terms: Mapping of gates to coefficients in the linear combination
being initialized. | def __init__(self, terms: Mapping[raw_types.Gate, value.Scalar]) -> None:
super().__init__(terms, validator=self._is_compatible) | 126,657 |
Returns an application of this gate to the given qubits.
Args:
*qubits: The collection of qubits to potentially apply the gate to. | def on(self,
*qubits: raw_types.Qid) -> 'SingleQubitPauliStringGateOperation':
if len(qubits) != 1:
raise ValueError(
'Expected a single qubit, got <{!r}>.'.format(qubits))
from cirq.ops.pauli_string import SingleQubitPauliStringGateOperation
return SingleQubitPauliStringGateOperation(self, qubits[0]) | 126,671 |
A basis that orders qubits ascending based on a key function.
Args:
key: A function that takes a qubit and returns a key value. The
basis will be ordered ascending according to these key values.
Returns:
A basis that orders qubits ascending based on a key function. | def sorted_by(key: Callable[[raw_types.Qid], Any]) -> 'QubitOrder':
return QubitOrder(lambda qubits: tuple(sorted(qubits, key=key))) | 126,678 |
Returns a qubit tuple ordered corresponding to the basis.
Args:
qubits: Qubits that should be included in the basis. (Additional
qubits may be added into the output by the basis.)
Returns:
A tuple of qubits in the same order that their single-qubit
matrices would be passed into `np.kron` when producing a matrix for
the entire system. | def order_for(self, qubits: Iterable[raw_types.Qid]
) -> Tuple[raw_types.Qid, ...]:
return self._explicit_func(qubits) | 126,679 |
Converts a value into a basis.
Args:
val: An iterable or a basis.
Returns:
The basis implied by the value. | def as_qubit_order(val: 'qubit_order_or_list.QubitOrderOrList'
) -> 'QubitOrder':
if isinstance(val, collections.Iterable):
return QubitOrder.explicit(val)
if isinstance(val, QubitOrder):
return val
raise ValueError(
"Don't know how to interpret <{}> as a Basis.".format(val)) | 126,680 |
Returns a range of NamedQubits.
The range returned starts with the prefix, and followed by a qubit for
each number in the range, e.g.:
NamedQubit.range(3, prefix="a") -> ["a1", "a2", "a3]
NamedQubit.range(2, 4, prefix="a") -> ["a2", "a3]
Args:
*args: Args to be passed to Python's standard range function.
prefix: A prefix for constructed NamedQubits.
Returns:
A list of NamedQubits. | def range(*args, prefix: str):
return [NamedQubit(prefix + str(i)) for i in range(*args)] | 126,683 |
Tests if a circuit for an operator exp(i*rad*XX) (or YY, or ZZ) can
be performed with a whole CZ.
Args:
rad: The angle in radians, assumed to be in the range [-pi/4, pi/4] | def _is_trivial_angle(rad: float, atol: float) -> bool:
return abs(rad) < atol or abs(abs(rad) - np.pi / 4) < atol | 126,696 |
A sparse matrix simulator.
Args:
dtype: The `numpy.dtype` used by the simulation. One of
`numpy.complex64` or `numpy.complex128` | def __init__(self, *, dtype=np.complex64):
if dtype not in {np.complex64, np.complex128}:
raise ValueError(
'dtype must be complex64 or complex128 but was {}'.format(
dtype))
self._dtype = dtype | 126,703 |
Returns an acquaintance strategy capable of executing a gate corresponding
to any set of at most acquaintance_size qubits.
Args:
qubit_order: The qubits on which the strategy should be defined.
acquaintance_size: The maximum number of qubits to be acted on by
an operation.
Returns:
An circuit capable of implementing any set of k-local
operation. | def complete_acquaintance_strategy(qubit_order: Sequence[ops.Qid],
acquaintance_size: int=0,
) -> circuits.Circuit:
if acquaintance_size < 0:
raise ValueError('acquaintance_size must be non-negative.')
elif acquaintance_size == 0:
return circuits.Circuit(device=UnconstrainedAcquaintanceDevice)
if acquaintance_size > len(qubit_order):
return circuits.Circuit(device=UnconstrainedAcquaintanceDevice)
if acquaintance_size == len(qubit_order):
return circuits.Circuit.from_ops(
acquaint(*qubit_order), device=UnconstrainedAcquaintanceDevice)
strategy = circuits.Circuit.from_ops(
(acquaint(q) for q in qubit_order),
device=UnconstrainedAcquaintanceDevice)
for size_to_acquaint in range(2, acquaintance_size + 1):
expose_acquaintance_gates(strategy)
replace_acquaintance_with_swap_network(
strategy, qubit_order, size_to_acquaint)
return strategy | 126,722 |
Iterates through relevant python files within the given directory.
Args:
directory: The top-level directory to explore.
Yields:
File paths. | def get_unhidden_ungenerated_python_files(directory: str) -> Iterable[str]:
for dirpath, dirnames, filenames in os.walk(directory, topdown=True):
if os.path.split(dirpath)[-1].startswith('.'):
dirnames.clear()
continue
for filename in filenames:
if filename.endswith('.py') and not filename.endswith('_pb2.py'):
yield os.path.join(dirpath, filename) | 126,727 |
Creates a new virtual environment and then installs dependencies.
Args:
venv_path: Where to put the virtual environment's state.
requirements_paths: Location of requirements files to -r install.
python_path: The python binary to use.
verbose: When set, more progress output is produced. | def create_virtual_env(venv_path: str,
requirements_paths: Iterable[str],
python_path: str,
verbose: bool) -> None:
shell_tools.run_cmd('virtualenv',
None if verbose else '--quiet',
'-p',
python_path,
venv_path,
out=sys.stderr)
pip_path = os.path.join(venv_path, 'bin', 'pip')
for req_path in requirements_paths:
shell_tools.run_cmd(pip_path,
'install',
None if verbose else '--quiet',
'-r',
req_path,
out=sys.stderr) | 126,728 |
Creates a python 2.7 environment starting from a prepared python 3 one.
Args:
destination_directory: Where to put the python 2 environment.
python3_environment: The prepared environment to start from.
verbose: When set, more progress output is produced.
env_name: The name to use for the virtualenv directory.
python_path: The python binary to use.
Returns:
A description of the environment that was prepared. | def derive_temporary_python2_environment(
destination_directory: str,
python3_environment: PreparedEnv,
verbose: bool,
env_name: str = '.test_virtualenv_py2',
python_path: str = "/usr/bin/python2.7") -> PreparedEnv:
shutil.rmtree(destination_directory)
input_directory = cast(str, python3_environment.destination_directory)
os.chdir(input_directory)
conversion_script_path = os.path.join(
input_directory,
'dev_tools',
'python2.7-generate.sh')
shell_tools.run_cmd('bash',
conversion_script_path,
destination_directory,
input_directory,
python3_environment.virtual_env_path,
out=sys.stderr)
os.chdir(destination_directory)
# Create virtual environment.
env_path = os.path.join(destination_directory, env_name)
# (These files are output by dev_tools/python2.7-generate.sh.)
req_path = os.path.join(destination_directory, 'requirements.txt')
dev_req_path = os.path.join(destination_directory,
'pip-list-test-tools.txt')
contrib_req_path = os.path.join(destination_directory,
'cirq',
'contrib',
'contrib-requirements.txt')
req_paths = [req_path, dev_req_path, contrib_req_path]
create_virtual_env(venv_path=env_path,
python_path=python_path,
requirements_paths=req_paths,
verbose=verbose)
return PreparedEnv(github_repo=python3_environment.repository,
actual_commit_id=python3_environment.actual_commit_id,
compare_commit_id=python3_environment.compare_commit_id,
destination_directory=destination_directory,
virtual_env_path=env_path) | 126,730 |
Searches for linear sequence of qubits on device.
Args:
device: Google Xmon device instance.
length: Desired number of qubits making up the line.
method: Line placement method. Defaults to
cirq.greedy.GreedySequenceSearchMethod.
Returns:
Line sequences search results. | def line_on_device(
device: 'cirq.google.XmonDevice',
length: int,
method: LinePlacementStrategy = greedy.GreedySequenceSearchStrategy()
) -> GridQubitLineTuple:
return method.place_line(device, length) | 126,756 |
Returns a list of text lines representing the block's contents.
Args:
width: The width of the output text. Must be at least as large as
the block's minimum width.
height: The height of the output text. Must be at least as large as
the block's minimum height.
Returns:
Text pre-split into lines. | def render(self, width: int, height: int) -> List[str]:
if width == 0 or height == 0:
return [''] * height
out_chars = [[' '] * width for _ in range(height)]
mid_x = int((width - 1) * self.horizontal_alignment)
mid_y = (height - 1) // 2
# Horizontal line legs.
if self.left:
out_chars[mid_y][:mid_x + 1] = self.left * (mid_x + 1)
if self.right:
out_chars[mid_y][mid_x:] = self.right * (width - mid_x)
# Vertical line legs.
if self.top:
for y in range(mid_y + 1):
out_chars[y][mid_x] = self.top
if self.bottom:
for y in range(mid_y, height):
out_chars[y][mid_x] = self.bottom
# Central content.
mid = self.content or self.center
if self.content or self.center:
content_lines = mid.split('\n')
y = mid_y - (len(content_lines) - 1) // 2
for dy, content_line in enumerate(content_lines):
s = int((len(content_line) - 1) * self.horizontal_alignment)
x = mid_x - s
for dx, c in enumerate(content_line):
out_chars[y + dy][x + dx] = c
return [''.join(line) for line in out_chars] | 126,772 |
Returns the handle of a RawArray created from the given numpy array.
Args:
arr: A numpy ndarray.
Returns:
The handle (int) of the array.
Raises:
ValueError: if arr is not a ndarray or of an unsupported dtype. If
the array is of an unsupported type, using a view of the array to
another dtype and then converting on get is often a work around. | def _create_array(self, arr: np.ndarray) -> int:
if not isinstance(arr, np.ndarray):
raise ValueError('Array is not a numpy ndarray.')
try:
c_arr = np.ctypeslib.as_ctypes(arr)
except (KeyError, NotImplementedError):
raise ValueError(
'Array has unsupported dtype {}.'.format(arr.dtype))
# pylint: disable=protected-access
raw_arr = RawArray(c_arr._type_, c_arr)
with self._lock:
if self._count >= len(self._arrays):
self._arrays += len(self._arrays) * [None]
self._get_next_free()
# Note storing the shape is a workaround for an issue encountered
# when upgrading to numpy 1.15.
# See https://github.com/numpy/numpy/issues/11636
self._arrays[self._current] = (raw_arr, arr.shape)
self._count += 1
return self._current | 126,797 |
Frees the memory for the array with the given handle.
Args:
handle: The handle of the array whose memory should be freed. This
handle must come from the _create_array method. | def _free_array(self, handle: int):
with self._lock:
if self._arrays[handle] is not None:
self._arrays[handle] = None
self._count -= 1 | 126,799 |
Returns the array with the given handle.
Args:
handle: The handle of the array whose memory should be freed. This
handle must come from the _create_array method.
Returns:
The numpy ndarray with the handle given from _create_array. | def _get_array(self, handle: int) -> np.ndarray:
tup = self._arrays[handle]
assert tup is not None
c_arr, shape = tup
with warnings.catch_warnings():
warnings.simplefilter('ignore', RuntimeWarning)
result = np.ctypeslib.as_array(c_arr)
result.shape = shape
return result | 126,800 |
A QASM gate representing any single qubit unitary with a series of
three rotations, Z, Y, and Z.
The angles are normalized to the range [0, 2) half_turns.
Args:
lmda: Half turns to rotate about Z (applied first).
theta: Half turns to rotate about Y.
phi: Half turns to rotate about Z (applied last). | def __init__(self, lmda, theta, phi) -> None:
self.lmda = lmda % 2
self.theta = theta % 2
self.phi = phi % 2 | 126,802 |
Splits moments so that they contain either only acquaintance gates
or only permutation gates. Orders resulting moments so that the first one
is of the same type as the previous one.
Args:
circuit: The acquaintance strategy to rectify.
acquaint_first: Whether to make acquaintance moment first in when
splitting the first mixed moment. | def rectify_acquaintance_strategy(
circuit: circuits.Circuit,
acquaint_first: bool=True
) -> None:
if not is_acquaintance_strategy(circuit):
raise TypeError('not is_acquaintance_strategy(circuit)')
rectified_moments = []
for moment in circuit:
gate_type_to_ops = collections.defaultdict(list
) # type: Dict[bool, List[ops.GateOperation]]
for op in moment.operations:
gate_type_to_ops[isinstance(op.gate, AcquaintanceOpportunityGate)
].append(op)
if len(gate_type_to_ops) == 1:
rectified_moments.append(moment)
continue
for acquaint_first in sorted(gate_type_to_ops.keys(),
reverse=acquaint_first):
rectified_moments.append(
ops.Moment(gate_type_to_ops[acquaint_first]))
circuit._moments = rectified_moments | 126,814 |
Check if a gate is a native ion gate.
Args:
gate: Input gate.
Returns:
True if the gate is native to the ion, false otherwise. | def is_native_ion_gate(gate: ops.Gate) -> bool:
return isinstance(gate, (ops.XXPowGate,
ops.MeasurementGate,
ops.XPowGate,
ops.YPowGate,
ops.ZPowGate)) | 126,833 |
Convert a single (one- or two-qubit) operation
into ion trap native gates
Args:
op: gate operation to be converted
Returns:
the desired operation implemented with ion trap gates | def convert_one(self, op: ops.Operation) -> ops.OP_TREE:
# Known gate name
if not isinstance(op, ops.GateOperation):
raise TypeError("{!r} is not a gate operation.".format(op))
if is_native_ion_gate(op.gate):
return [op]
# one choice of known Hadamard gate decomposition
if isinstance(op.gate, ops.HPowGate) and op.gate.exponent == 1:
return [ops.Rx(np.pi).on(op.qubits[0]),
ops.Ry(-1 * np.pi/2).on(op.qubits[0])]
# one choice of known CNOT gate decomposition
if isinstance(op.gate, ops.CNotPowGate) and op.gate.exponent == 1:
return [ops.Ry(np.pi/2).on(op.qubits[0]),
MS(np.pi/4).on(op.qubits[0], op.qubits[1]),
ops.Rx(-1*np.pi/2).on(op.qubits[0]),
ops.Rx(-1*np.pi/2).on(op.qubits[1]),
ops.Ry(-1*np.pi/2).on(op.qubits[0])]
# Known matrix
mat = protocols.unitary(op, None) if len(
op.qubits) <= 2 else None
if mat is not None and len(op.qubits) == 1:
gates = optimizers.single_qubit_matrix_to_phased_x_z(mat)
return [g.on(op.qubits[0]) for g in gates]
elif mat is not None and len(op.qubits) == 2:
return two_qubit_matrix_to_ion_operations(
op.qubits[0], op.qubits[1], mat)
else:
if self.ignore_failures:
return [op]
else:
raise TypeError(
"Don't know how to work with {!r}. "
"It isn't a native Ion Trap operation, "
"a 1 or 2 qubit gate with a known unitary, "
"or composite.".format(op.gate)) | 126,835 |
Returns an orthogonal matrix that diagonalizes the given matrix.
Args:
matrix: A real symmetric matrix to diagonalize.
rtol: float = 1e-5,
atol: float = 1e-8
Returns:
An orthogonal matrix P such that P.T @ matrix @ P is diagonal.
Raises:
ValueError: Matrix isn't real symmetric. | def diagonalize_real_symmetric_matrix(
matrix: np.ndarray,
*,
rtol: float = 1e-5,
atol: float = 1e-8) -> np.ndarray:
# TODO: Determine if thresholds should be passed into is_hermitian
if np.any(np.imag(matrix) != 0) or not predicates.is_hermitian(matrix):
raise ValueError('Input must be real and symmetric.')
_, result = np.linalg.eigh(matrix)
return result | 126,837 |
Splits range(length) into approximate equivalence classes.
Args:
length: The length of the range to split.
comparator: Determines if two indices have approximately equal items.
Returns:
A list of (inclusive_start, exclusive_end) range endpoints. Each
corresponds to a run of approximately-equivalent items. | def _contiguous_groups(
length: int,
comparator: Callable[[int, int], bool]
) -> List[Tuple[int, int]]:
result = []
start = 0
while start < length:
past = start + 1
while past < length and comparator(start, past):
past += 1
result.append((start, past))
start = past
return result | 126,838 |
Initializes a new schedule.
Args:
device: The hardware this schedule will run on.
scheduled_operations: Initial list of operations to apply. These
will be moved into a sorted list, with a key equal to each
operation's start time. | def __init__(self,
device: Device,
scheduled_operations: Iterable[ScheduledOperation] = ()
) -> None:
self.device = device
self.scheduled_operations = SortedListWithKey(scheduled_operations,
key=lambda e: e.time)
self._max_duration = max(
[e.duration for e in self.scheduled_operations] or [Duration()]) | 126,846 |
Finds operations overlapping a given time or time slice.
Args:
item: Either a Timestamp or a slice containing start and stop
Timestamps.
Returns:
The scheduled operations that occurs during the given time. | def __getitem__(self, item: Union[Timestamp, slice]):
if isinstance(item, slice):
if item.step:
raise ValueError('Step not supported.')
start = cast(Timestamp, item.start)
stop = cast(Timestamp, item.stop)
return self.query(time=start, duration=stop - start)
return self.query(time=item, include_query_end_time=True) | 126,849 |
Finds operations happening at the same time as the given operation.
Args:
scheduled_operation: The operation specifying the time to query.
Returns:
Scheduled operations that overlap with the given operation. | def operations_happening_at_same_time_as(
self, scheduled_operation: ScheduledOperation
) -> List[ScheduledOperation]:
overlaps = self.query(
time=scheduled_operation.time,
duration=scheduled_operation.duration)
return [e for e in overlaps if e != scheduled_operation] | 126,850 |
Adds a scheduled operation to the schedule.
Args:
scheduled_operation: The operation to add.
Raises:
ValueError:
The operation collided with something already in the schedule. | def include(self, scheduled_operation: ScheduledOperation):
collisions = self.query(time=scheduled_operation.time,
duration=scheduled_operation.duration,
qubits=scheduled_operation.operation.qubits)
if collisions:
raise ValueError('Operation {} has collisions: {}'.format(
scheduled_operation.operation, collisions))
self.scheduled_operations.add(scheduled_operation)
self._max_duration = max(self._max_duration,
scheduled_operation.duration) | 126,851 |
Omits a scheduled operation from the schedule, if present.
Args:
scheduled_operation: The operation to try to remove.
Returns:
True if the operation was present and is now removed, False if it
was already not present. | def exclude(self, scheduled_operation: ScheduledOperation) -> bool:
try:
self.scheduled_operations.remove(scheduled_operation)
return True
except ValueError:
return False | 126,852 |
Breaks down a 2x2 unitary into more useful ZYZ angle parameters.
Args:
mat: The 2x2 unitary matrix to break down.
Returns:
A tuple containing the amount to phase around Z, then rotate around Y,
then phase around Z (all in radians). | def deconstruct_single_qubit_matrix_into_angles(
mat: np.ndarray) -> Tuple[float, float, float]:
# Anti-cancel left-vs-right phase along top row.
right_phase = cmath.phase(mat[0, 1] * np.conj(mat[0, 0])) + math.pi
mat = np.dot(mat, _phase_matrix(-right_phase))
# Cancel top-vs-bottom phase along left column.
bottom_phase = cmath.phase(mat[1, 0] * np.conj(mat[0, 0]))
mat = np.dot(_phase_matrix(-bottom_phase), mat)
# Lined up for a rotation. Clear the off-diagonal cells with one.
rotation = math.atan2(abs(mat[1, 0]), abs(mat[0, 0]))
mat = np.dot(_rotation_matrix(-rotation), mat)
# Cancel top-left-vs-bottom-right phase.
diagonal_phase = cmath.phase(mat[1, 1] * np.conj(mat[0, 0]))
# Note: Ignoring global phase.
return right_phase + diagonal_phase, rotation * 2, bottom_phase | 126,863 |
Combines similar items into groups.
Args:
items: The list of items to group.
comparer: Determines if two items are similar.
Returns:
A list of groups of items. | def _group_similar(items: List[T],
comparer: Callable[[T, T], bool]) -> List[List[T]]:
groups = [] # type: List[List[T]]
used = set() # type: Set[int]
for i in range(len(items)):
if i not in used:
group = [items[i]]
for j in range(i + 1, len(items)):
if j not in used and comparer(items[i], items[j]):
used.add(j)
group.append(items[j])
groups.append(group)
return groups | 126,864 |
Applies a function to the eigenvalues of a matrix.
Given M = sum_k a_k |v_k><v_k|, returns f(M) = sum_k f(a_k) |v_k><v_k|.
Args:
matrix: The matrix to modify with the function.
func: The function to apply to the eigenvalues of the matrix.
rtol: Relative threshold used when separating eigenspaces.
atol: Absolute threshold used when separating eigenspaces.
Returns:
The transformed matrix. | def map_eigenvalues(
matrix: np.ndarray,
func: Callable[[complex], complex],
*,
rtol: float = 1e-5,
atol: float = 1e-8) -> np.ndarray:
vals, vecs = _perp_eigendecompose(matrix,
rtol=rtol,
atol=atol)
pieces = [np.outer(vec, np.conj(vec.T)) for vec in vecs]
out_vals = np.vectorize(func)(vals.astype(complex))
total = np.zeros(shape=matrix.shape)
for piece, val in zip(pieces, out_vals):
total = np.add(total, piece * val)
return total | 126,866 |
Updates a mapping (in place) from qubits to logical indices according to
a set of permutation gates. Any gates other than permutation gates are
ignored.
Args:
mapping: The mapping to update.
operations: The operations to update according to. | def update_mapping(mapping: Dict[ops.Qid, LogicalIndex],
operations: ops.OP_TREE
) -> None:
for op in ops.flatten_op_tree(operations):
if (isinstance(op, ops.GateOperation) and
isinstance(op.gate, PermutationGate)):
op.gate.update_mapping(mapping, op.qubits) | 126,872 |
Updates a mapping (in place) from qubits to logical indices.
Args:
mapping: The mapping to update.
keys: The qubits acted on by the gate. | def update_mapping(self, mapping: Dict[ops.Qid, LogicalIndex],
keys: Sequence[ops.Qid]
) -> None:
permutation = self.permutation()
indices = tuple(permutation.keys())
new_keys = [keys[permutation[i]] for i in indices]
old_elements = [mapping[keys[i]] for i in indices]
mapping.update(zip(new_keys, old_elements)) | 126,874 |
Adds text to the given location.
Args:
x: The column in which to write the text.
y: The row in which to write the text.
text: The text to write at location (x, y).
transposed_text: Optional text to write instead, if the text
diagram is transposed. | def write(self,
x: int,
y: int,
text: str,
transposed_text: 'Optional[str]' = None):
entry = self.entries.get((x, y), _DiagramText('', ''))
self.entries[(x, y)] = _DiagramText(
entry.text + text,
entry.transposed_text + (transposed_text if transposed_text
else text)) | 126,882 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.