docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Checks if the tensor's elements are all near zero.
Args:
a: Tensor of elements that could all be near zero.
atol: Absolute tolerance. | def all_near_zero(a: Union[float, complex, Iterable[float], np.ndarray],
*,
atol: float = 1e-8) -> bool:
return np.all(np.less_equal(np.abs(a), atol)) | 126,896 |
Checks if the tensor's elements are all near multiples of the period.
Args:
a: Tensor of elements that could all be near multiples of the period.
period: The period, e.g. 2 pi when working in radians.
atol: Absolute tolerance. | def all_near_zero_mod(a: Union[float, complex, Iterable[float], np.ndarray],
period: float,
*,
atol: float = 1e-8) -> bool:
b = (np.asarray(a) + period / 2) % period - period / 2
return np.all(np.less_equal(np.abs(b), atol)) | 126,897 |
Uses content from github to create a dir for testing and comparisons.
Args:
destination_directory: The location to fetch the contents into.
repository: The github repository that the commit lives under.
pull_request_number: The id of the pull request to clone. If None, then
the master branch is cloned instead.
verbose: When set, more progress output is produced.
Returns:
Commit ids corresponding to content to test/compare. | def fetch_github_pull_request(destination_directory: str,
repository: github_repository.GithubRepository,
pull_request_number: int,
verbose: bool
) -> prepared_env.PreparedEnv:
branch = 'pull/{}/head'.format(pull_request_number)
os.chdir(destination_directory)
print('chdir', destination_directory, file=sys.stderr)
shell_tools.run_cmd(
'git',
'init',
None if verbose else '--quiet',
out=sys.stderr)
result = _git_fetch_for_comparison(remote=repository.as_remote(),
actual_branch=branch,
compare_branch='master',
verbose=verbose)
shell_tools.run_cmd(
'git',
'branch',
None if verbose else '--quiet',
'compare_commit',
result.compare_commit_id,
log_run_to_stderr=verbose)
shell_tools.run_cmd(
'git',
'checkout',
None if verbose else '--quiet',
'-b',
'actual_commit',
result.actual_commit_id,
log_run_to_stderr=verbose)
return prepared_env.PreparedEnv(
github_repo=repository,
actual_commit_id=result.actual_commit_id,
compare_commit_id=result.compare_commit_id,
destination_directory=destination_directory,
virtual_env_path=None) | 126,902 |
Uses local files to create a directory for testing and comparisons.
Args:
destination_directory: The directory where the copied files should go.
verbose: When set, more progress output is produced.
Returns:
Commit ids corresponding to content to test/compare. | def fetch_local_files(destination_directory: str,
verbose: bool) -> prepared_env.PreparedEnv:
staging_dir = destination_directory + '-staging'
try:
shutil.copytree(get_repo_root(), staging_dir)
os.chdir(staging_dir)
if verbose:
print('chdir', staging_dir, file=sys.stderr)
shell_tools.run_cmd(
'git',
'add',
'--all',
out=sys.stderr,
log_run_to_stderr=verbose)
shell_tools.run_cmd(
'git',
'commit',
'-m', 'working changes',
'--allow-empty',
'--no-gpg-sign',
None if verbose else '--quiet',
out=sys.stderr,
log_run_to_stderr=verbose)
cur_commit = shell_tools.output_of('git', 'rev-parse', 'HEAD')
os.chdir(destination_directory)
if verbose:
print('chdir', destination_directory, file=sys.stderr)
shell_tools.run_cmd('git',
'init',
None if verbose else '--quiet',
out=sys.stderr,
log_run_to_stderr=verbose)
result = _git_fetch_for_comparison(staging_dir,
cur_commit,
'master',
verbose=verbose)
finally:
shutil.rmtree(staging_dir, ignore_errors=True)
shell_tools.run_cmd(
'git',
'branch',
None if verbose else '--quiet',
'compare_commit',
result.compare_commit_id,
log_run_to_stderr=verbose)
shell_tools.run_cmd(
'git',
'checkout',
None if verbose else '--quiet',
'-b',
'actual_commit',
result.actual_commit_id,
log_run_to_stderr=verbose)
return prepared_env.PreparedEnv(
github_repo=None,
actual_commit_id=result.actual_commit_id,
compare_commit_id=result.compare_commit_id,
destination_directory=destination_directory,
virtual_env_path=None) | 126,903 |
Transforms a circuit into a series of GroupMatrix+CZ layers.
Args:
circuit: The circuit to transform.
grouping: How the circuit's qubits are combined into groups.
Returns:
A list of layers. Each layer has a matrix to apply to each group of
qubits, and a list of CZs to apply to pairs of qubits crossing
between groups. | def _circuit_as_layers(circuit: circuits.Circuit,
grouping: _QubitGrouping) -> List[_TransformsThenCzs]:
frontier = {q: 0 for q in circuit.all_qubits()}
layers = []
while True:
# Pull within-group operations into per-group matrices.
any_group_matrices = False
group_matrices = []
for g in grouping.groups:
# Scan for reachable operations contained within the group qubits.
start_frontier = {q: frontier[q] for q in g}
end_frontier = circuit.reachable_frontier_from(start_frontier)
mergeable_ops = circuit.findall_operations_between(start_frontier,
end_frontier)
# Advance frontier.
for q, v in end_frontier.items():
frontier[q] = v
# Fold reachable operations into a single group matrix.
group_matrix = np.eye(1 << len(g)).reshape((2, 2) * len(g))
if mergeable_ops:
any_group_matrices = True
for _, op in mergeable_ops:
group_matrix = linalg.targeted_left_multiply(
left_matrix=protocols.unitary(op).reshape(
(2, 2) * len(op.qubits)),
right_target=group_matrix,
target_axes=[grouping.loc(q)[1] for q in op.qubits])
group_matrices.append(np.transpose(group_matrix.reshape(
1 << len(g), 1 << len(g))))
# Scan for reachable CZ operations between groups.
end_frontier = circuit.reachable_frontier_from(
frontier,
is_blocker=lambda op: grouping.all_in_same_group(*op.qubits))
cz_ops = circuit.findall_operations_between(frontier, end_frontier)
# Advance frontier.
frontier = end_frontier
# List out qubit index pairs for each CZ.
cz_indices = []
for _, cz in cz_ops:
a, b = cz.qubits
assert cz == ops.CZ(a, b)
cz_indices.append((grouping.ind(a), grouping.ind(b)))
# Combine group and CZ operations into a simulation layer.
if not any_group_matrices and not cz_indices:
break
layer = _TransformsThenCzs(group_matrices=group_matrices,
cz_indices=cz_indices)
layers.append(layer)
# We should have processed the whole circuit.
assert frontier == {q: len(circuit) for q in circuit.all_qubits()}
return layers | 126,916 |
Samples from the given Circuit or Schedule.
Args:
program: The circuit or schedule to simulate.
param_resolver: Parameters to run with the program.
repetitions: The number of repetitions to simulate.
Returns:
TrialResult for a run. | def run(
self,
program: Union[circuits.Circuit, schedules.Schedule],
param_resolver: 'study.ParamResolverOrSimilarType' = None,
repetitions: int = 1,
) -> study.TrialResult:
return self.run_sweep(program, study.ParamResolver(param_resolver),
repetitions)[0] | 126,933 |
Samples from the given Circuit or Schedule.
In contrast to run, this allows for sweeping over different parameter
values.
Args:
program: The circuit or schedule to simulate.
params: Parameters to run with the program.
repetitions: The number of repetitions to simulate.
Returns:
TrialResult list for this run; one for each possible parameter
resolver. | def run_sweep(
self,
program: Union[circuits.Circuit, schedules.Schedule],
params: study.Sweepable,
repetitions: int = 1,
) -> List[study.TrialResult]:
| 126,934 |
Returns a list of operations individually measuring the given qubits.
The qubits are measured in the computational basis.
Args:
*qubits: The qubits to measure.
key_func: Determines the key of the measurements of each qubit. Takes
the qubit and returns the key for that qubit. Defaults to str.
Returns:
A list of operations individually measuring the given qubits. | def measure_each(*qubits: raw_types.Qid,
key_func: Callable[[raw_types.Qid], str] = str
) -> List[gate_operation.GateOperation]:
return [MeasurementGate(1, key_func(q)).on(q) for q in qubits] | 126,939 |
Checks if this gate can be applied to the given qubits.
By default checks if input is of type Qid and qubit count.
Child classes can override.
Args:
qubits: The collection of qubits to potentially apply the gate to.
Throws:
ValueError: The gate can't be applied to the qubits. | def validate_args(self, qubits: Sequence[Qid]) -> None:
if len(qubits) == 0:
raise ValueError(
"Applied a gate to an empty set of qubits. Gate: {}".format(
repr(self)))
if len(qubits) != self.num_qubits():
raise ValueError(
'Wrong number of qubits for <{!r}>. '
'Expected {} qubits but got <{!r}>.'.format(
self,
self.num_qubits(),
qubits))
if any([not isinstance(qubit, Qid)
for qubit in qubits]):
raise ValueError(
'Gate was called with type different than Qid.') | 126,966 |
Returns an application of this gate to the given qubits.
Args:
*qubits: The collection of qubits to potentially apply the gate to. | def on(self, *qubits: Qid) -> 'gate_operation.GateOperation':
# Avoids circular import.
from cirq.ops import gate_operation
return gate_operation.GateOperation(self, list(qubits)) | 126,967 |
Returns a controlled version of this gate.
Args:
control_qubits: Optional qubits to control the gate by. | def controlled_by(self, *control_qubits: Qid) -> 'Gate':
# Avoids circular import.
from cirq.ops import ControlledGate
return ControlledGate(self, control_qubits,
len(control_qubits) if control_qubits is not None
else 1) | 126,973 |
Returns the same operation, but with different qubits.
Args:
func: The function to use to turn each current qubit into a desired
new qubit.
Returns:
The receiving operation but with qubits transformed by the given
function. | def transform_qubits(self: TSelf_Operation,
func: Callable[[Qid], Qid]) -> TSelf_Operation:
return self.with_qubits(*(func(q) for q in self.qubits)) | 126,974 |
Returns a controlled version of this operation.
Args:
control_qubits: Qubits to control the operation by. Required. | def controlled_by(self, *control_qubits: Qid) -> 'Operation':
# Avoids circular import.
from cirq.ops import ControlledOperation
if control_qubits is None or len(control_qubits) is 0:
raise ValueError(
"Can't get controlled operation without control qubit. Op: {}"
.format(repr(self)))
else:
return ControlledOperation(control_qubits, self) | 126,975 |
The value of the display, derived from the full wavefunction.
Args:
state: The wavefunction.
qubit_map: A dictionary from qubit to qubit index in the
ordering used to define the wavefunction. | def value_derived_from_wavefunction(self,
state: np.ndarray,
qubit_map: Dict[raw_types.Qid, int]
) -> Any:
| 126,977 |
Evaluates the status check and returns a pass/fail with message.
Args:
env: Describes a prepared python 3 environment in which to run.
verbose: When set, more progress output is produced.
Returns:
A tuple containing a pass/fail boolean and then a details message. | def perform_check(self,
env: env_tools.PreparedEnv,
verbose: bool) -> Tuple[bool, str]:
| 126,981 |
Evaluates this check.
Args:
env: The prepared python environment to run the check in.
verbose: When set, more progress output is produced.
previous_failures: Checks that have already run and failed.
Returns:
A CheckResult instance. | def run(self,
env: env_tools.PreparedEnv,
verbose: bool,
previous_failures: Set['Check']) -> CheckResult:
# Skip if a dependency failed.
if previous_failures.intersection(self.dependencies):
print(shell_tools.highlight(
'Skipped ' + self.command_line_switch(),
shell_tools.YELLOW))
return CheckResult(
self, False, 'Skipped due to dependency failing.', None)
print(shell_tools.highlight(
'Running ' + self.command_line_switch(),
shell_tools.GREEN))
try:
success, message = self.perform_check(env, verbose=verbose)
result = CheckResult(self, success, message, None)
except Exception as ex:
result = CheckResult(self, False, 'Unexpected error.', ex)
print(shell_tools.highlight(
'Finished ' + self.command_line_switch(),
shell_tools.GREEN if result.success else shell_tools.RED))
if verbose:
print(result)
return result | 126,982 |
Returns a QCircuit-based latex diagram of the given circuit.
Args:
circuit: The circuit to represent in latex.
qubit_order: Determines the order of qubit wires in the diagram.
Returns:
Latex code for the diagram. | def circuit_to_latex_using_qcircuit(
circuit: circuits.Circuit,
qubit_order: ops.QubitOrderOrList = ops.QubitOrder.DEFAULT) -> str:
diagram = circuit.to_text_diagram_drawer(
qubit_namer=qcircuit_qubit_namer,
qubit_order=qubit_order,
get_circuit_diagram_info=get_qcircuit_diagram_info)
return _render(diagram) | 127,000 |
Computes the kronecker product of a sequence of matrices.
A *args version of lambda args: functools.reduce(np.kron, args).
Args:
*matrices: The matrices and controls to combine with the kronecker
product.
Returns:
The resulting matrix. | def kron(*matrices: np.ndarray) -> np.ndarray:
product = np.eye(1)
for m in matrices:
product = np.kron(product, m)
return np.array(product) | 127,001 |
Computes the dot/matrix product of a sequence of values.
A *args version of np.linalg.multi_dot.
Args:
*values: The values to combine with the dot/matrix product.
Returns:
The resulting value or matrix. | def dot(*values: Union[float, complex, np.ndarray]
) -> Union[float, complex, np.ndarray]:
if len(values) == 1:
if isinstance(values[0], np.ndarray):
return np.array(values[0])
return values[0]
return np.linalg.multi_dot(values) | 127,003 |
Concatenates blocks into a block diagonal matrix.
Args:
*blocks: Square matrices to place along the diagonal of the result.
Returns:
A block diagonal matrix with the given blocks along its diagonal.
Raises:
ValueError: A block isn't square. | def block_diag(*blocks: np.ndarray) -> np.ndarray:
for b in blocks:
if b.shape[0] != b.shape[1]:
raise ValueError('Blocks must be square.')
if not blocks:
return np.zeros((0, 0), dtype=np.complex128)
n = sum(b.shape[0] for b in blocks)
dtype = functools.reduce(_merge_dtypes, (b.dtype for b in blocks))
result = np.zeros(shape=(n, n), dtype=dtype)
i = 0
for b in blocks:
j = i + b.shape[0]
result[i:j, i:j] = b
i = j
return result | 127,005 |
Finds the first index of a target item within a list of lists.
Args:
seqs: The list of lists to search.
target: The item to find.
Raises:
ValueError: Item is not present. | def index_2d(seqs: List[List[Any]], target: Any) -> Tuple[int, int]:
for i in range(len(seqs)):
for j in range(len(seqs[i])):
if seqs[i][j] == target:
return i, j
raise ValueError('Item not present.') | 127,006 |
Greedy sequence search constructor.
Args:
device: Chip description.
seed: Optional seed value for random number generator. | def __init__(self, device: 'cirq.google.XmonDevice', seed=None) -> None:
self._c = device.qubits
self._c_adj = chip_as_adjacency_list(device)
self._rand = np.random.RandomState(seed) | 127,007 |
Cost function that sums squares of lengths of sequences.
Args:
state: Search state, not mutated.
Returns:
Cost which is minus the normalized quadratic sum of each linear
sequence section in the state. This promotes single, long linear
sequence solutions and converges to number -1. The solution with a
lowest cost consists of every node being a single sequence and is
always less than 0. | def _quadratic_sum_cost(self, state: _STATE) -> float:
cost = 0.0
total_len = float(len(self._c))
seqs, _ = state
for seq in seqs:
cost += (len(seq) / total_len) ** 2
return -cost | 127,009 |
Move function which repeats _force_edge_active_move a few times.
Args:
state: Search state, not mutated.
Returns:
New search state which consists of incremental changes of the
original state. | def _force_edges_active_move(self, state: _STATE) -> _STATE:
for _ in range(self._rand.randint(1, 4)):
state = self._force_edge_active_move(state)
return state | 127,010 |
Move which forces a random edge to appear on some sequence.
This move chooses random edge from the edges which do not belong to any
sequence and modifies state in such a way, that this chosen edge
appears on some sequence of the search state.
Args:
state: Search state, not mutated.
Returns:
New search state with one of the unused edges appearing in some
sequence. | def _force_edge_active_move(self, state: _STATE) -> _STATE:
seqs, edges = state
unused_edges = edges.copy()
# List edges which do not belong to any linear sequence.
for seq in seqs:
for i in range(1, len(seq)):
unused_edges.remove(self._normalize_edge((seq[i - 1], seq[i])))
edge = self._choose_random_edge(unused_edges)
if not edge:
return seqs, edges
return (
self._force_edge_active(seqs,
edge,
lambda: bool(self._rand.randint(2))),
edges) | 127,011 |
Move which forces given edge to appear on some sequence.
Args:
seqs: List of linear sequences covering chip.
edge: Edge to be activated.
sample_bool: Callable returning random bool.
Returns:
New list of linear sequences with given edge on some of the
sequences. | def _force_edge_active(self, seqs: List[List[GridQubit]], edge: EDGE,
sample_bool: Callable[[], bool]
) -> List[List[GridQubit]]:
n0, n1 = edge
# Make a copy of original sequences.
seqs = list(seqs)
# Localize edge nodes within current solution.
i0, j0 = index_2d(seqs, n0)
i1, j1 = index_2d(seqs, n1)
s0 = seqs[i0]
s1 = seqs[i1]
# Handle case when nodes belong to different linear sequences,
# separately from the case where they belong to a single linear
# sequence.
if i0 != i1:
# Split s0 and s1 in two parts: s0 in parts before n0, and after n0
# (without n0); s1 in parts before n1, and after n1 (without n1).
part = [s0[:j0], s0[j0 + 1:]], [s1[:j1], s1[j1 + 1:]]
# Remove both sequences from original list.
del seqs[max(i0, i1)]
del seqs[min(i0, i1)]
# Choose part of s0 which will be attached to n0, and make sure it
# can be attached in the end.
c0 = 0 if not part[0][1] else 1 if not part[0][
0] else sample_bool()
if c0:
part[0][c0].reverse()
# Choose part of s1 which will be attached to n1, and make sure it
# can be attached in the beginning.
c1 = 0 if not part[1][1] else 1 if not part[1][
0] else sample_bool()
if not c1:
part[1][c1].reverse()
# Append newly formed sequence from the chosen parts and new edge.
seqs.append(part[0][c0] + [n0, n1] + part[1][c1])
# Append the left-overs to the solution, if they exist.
other = [1, 0]
seqs.append(part[0][other[c0]])
seqs.append(part[1][other[c1]])
else:
# Swap nodes so that n0 always preceeds n1 on sequence.
if j0 > j1:
j0, j1 = j1, j0
n0, n1 = n1, n0
# Split sequence in three parts, without nodes n0 an n1 present:
# head might end with n0, inner might begin with n0 and end with
# n1, tail might begin with n1.
head = s0[:j0]
inner = s0[j0 + 1:j1]
tail = s0[j1 + 1:]
# Remove original sequence from sequences list.
del seqs[i0]
# Either append edge to inner section, or attach it between head
# and tail.
if sample_bool():
# Append edge either before or after inner section.
if sample_bool():
seqs.append(inner + [n1, n0] + head[::-1])
seqs.append(tail)
else:
seqs.append(tail[::-1] + [n1, n0] + inner)
seqs.append(head)
else:
# Form a new sequence from head, tail, and new edge.
seqs.append(head + [n0, n1] + tail)
seqs.append(inner)
return [e for e in seqs if e] | 127,012 |
Gives unique representative of the edge.
Two edges are equivalent if they form an edge between the same nodes.
This method returns representative of this edge which can be compared
using equality operator later.
Args:
edge: Edge to normalize.
Returns:
Normalized edge with lexicographically lower node on the first
position. | def _normalize_edge(self, edge: EDGE) -> EDGE:
def lower(n: GridQubit, m: GridQubit) -> bool:
return n.row < m.row or (n.row == m.row and n.col < m.col)
n1, n2 = edge
return (n1, n2) if lower(n1, n2) else (n2, n1) | 127,014 |
Picks random edge from the set of edges.
Args:
edges: Set of edges to pick from.
Returns:
Random edge from the supplied set, or None for empty set. | def _choose_random_edge(self, edges: Set[EDGE]) -> Optional[EDGE]:
if edges:
index = self._rand.randint(len(edges))
for e in edges:
if not index:
return e
index -= 1
return None | 127,015 |
Runs line sequence search.
Args:
device: Chip description.
length: Required line length.
Returns:
List of linear sequences on the chip found by simulated annealing
method. | def place_line(self,
device: 'cirq.google.XmonDevice',
length: int) -> GridQubitLineTuple:
seqs = AnnealSequenceSearch(device, self.seed).search(self.trace_func)
return GridQubitLineTuple.best_of(seqs, length) | 127,017 |
Projects state shards onto the appropriate post measurement state.
This function makes no assumptions about the interpretation of quantum
theory.
Args:
args: The args from shard_num_args. | def _collapse_state(args: Dict[str, Any]):
index = args['index']
result = args['result']
prob_one = args['prob_one']
state = _state_shard(args)
normalization = np.sqrt(prob_one if result else 1 - prob_one)
state *= (_one_projector(args, index) * result +
(1 - _one_projector(args, index)) * (1 - result))
state /= normalization | 127,055 |
Simulate a single qubit rotation gate about a X + b Y.
The gate simulated is U = exp(-i pi/2 W half_turns)
where W = cos(pi axis_half_turns) X + sin(pi axis_half_turns) Y
Args:
index: The qubit to act on.
half_turns: The amount of the overall rotation, see the formula
above.
axis_half_turns: The angle between the pauli X and Y operators,
see the formula above. | def simulate_w(self,
index: int,
half_turns: float,
axis_half_turns: float):
args = self._shard_num_args({
'index': index,
'half_turns': half_turns,
'axis_half_turns': axis_half_turns
})
if index >= self._num_shard_qubits:
# W gate spans shards.
self._pool.map(_clear_scratch, args)
self._pool.map(_w_between_shards, args)
self._pool.map(_copy_scratch_to_state, args)
else:
# W gate is within a shard.
self._pool.map(_w_within_shard, args)
# Normalize after every w.
norm_squared = np.sum(self._pool.map(_norm_squared, args))
args = self._shard_num_args({
'norm_squared': norm_squared
})
self._pool.map(_renorm, args) | 127,068 |
Simulates a single qubit measurement in the computational basis.
Args:
index: Which qubit is measured.
Returns:
True iff the measurement result corresponds to the |1> state. | def simulate_measurement(self, index: int) -> bool:
args = self._shard_num_args({'index': index})
prob_one = np.sum(self._pool.map(_one_prob_per_shard, args))
result = bool(np.random.random() <= prob_one)
args = self._shard_num_args({
'index': index,
'result': result,
'prob_one': prob_one
})
self._pool.map(_collapse_state, args)
return result | 127,069 |
Samples from measurements in the computational basis.
Note that this does not collapse the wave function.
Args:
indices: Which qubits are measured.
Returns:
Measurement results with True corresponding to the |1> state.
The outer list is for repetitions, and the inner corresponds to
measurements ordered by the input indices.
Raises:
ValueError if repetitions is less than one. | def sample_measurements(
self,
indices: List[int],
repetitions: int=1) -> List[List[bool]]:
# Stepper uses little endian while sample_state uses big endian.
reversed_indices = [self._num_qubits - 1 - index for index in indices]
return sim.sample_state_vector(self._current_state(), reversed_indices,
repetitions) | 127,070 |
Decompose the Fermionic SWAP gate into two single-qubit gates and
one iSWAP gate.
Args:
p: the id of the first qubit
q: the id of the second qubit | def fswap(p, q):
yield cirq.ISWAP(q, p), cirq.Z(p) ** 1.5
yield cirq.Z(q) ** 1.5 | 127,074 |
The reverse fermionic Fourier transformation implemented on 4 qubits
on a line, which maps the momentum picture to the position picture.
Using the fast Fourier transformation algorithm, the circuit can be
decomposed into 2-mode fermionic Fourier transformation, the fermionic
SWAP gates, and single-qubit rotations.
Args:
qubits: list of four qubits | def fermi_fourier_trans_inverse_4(qubits):
yield fswap(qubits[1], qubits[2]),
yield fermi_fourier_trans_2(qubits[0], qubits[1])
yield fermi_fourier_trans_2(qubits[2], qubits[3])
yield fswap(qubits[1], qubits[2])
yield fermi_fourier_trans_2(qubits[0], qubits[1])
yield cirq.S(qubits[2])
yield fermi_fourier_trans_2(qubits[2], qubits[3])
yield fswap(qubits[1], qubits[2]) | 127,077 |
We will need to map the momentum states in the reversed order for
spin-down states to the position picture. This transformation can be
simply implemented the complex conjugate of the former one. We only
need to change the S gate to S* = S ** 3.
Args:
qubits: list of four qubits | def fermi_fourier_trans_inverse_conjugate_4(qubits):
yield fswap(qubits[1], qubits[2]),
yield fermi_fourier_trans_2(qubits[0], qubits[1])
yield fermi_fourier_trans_2(qubits[2], qubits[3])
yield fswap(qubits[1], qubits[2])
yield fermi_fourier_trans_2(qubits[0], qubits[1])
yield cirq.S(qubits[2]) ** 3
yield fermi_fourier_trans_2(qubits[2], qubits[3])
yield fswap(qubits[1], qubits[2]) | 127,078 |
Generate the parameters for the BCS ground state, i.e., the
superconducting gap and the rotational angles in the Bogoliubov
transformation.
Args:
n_site: the number of sites in the Hubbard model
n_fermi: the number of fermions
u: the interaction strength
t: the tunneling strength
Returns:
float delta, List[float] bog_theta | def bcs_parameters(n_site, n_fermi, u, t) :
# The wave numbers satisfy the periodic boundary condition.
wave_num = np.linspace(0, 1, n_site, endpoint=False)
# The hopping energy as a function of wave numbers
hop_erg = -2 * t * np.cos(2 * np.pi * wave_num)
# Finding the Fermi energy
fermi_erg = hop_erg[n_fermi // 2]
# Set the Fermi energy to zero
hop_erg = hop_erg - fermi_erg
def _bcs_gap(x):
s = 0.
for i in range(n_site):
s += 1. / np.sqrt(hop_erg[i] ** 2 + x ** 2)
return 1 + s * u / (2 * n_site)
# Superconducting gap
delta = scipy.optimize.bisect(_bcs_gap, 0.01, 10000. * abs(u))
# The amplitude of the double excitation state
bcs_v = np.sqrt(0.5 * (1 - hop_erg / np.sqrt(hop_erg ** 2 + delta ** 2)))
# The rotational angle in the Bogoliubov transformation.
bog_theta = np.arcsin(bcs_v)
return delta, bog_theta | 127,079 |
Greedy sequence search constructor.
Args:
device: Chip description.
start: Starting qubit.
Raises:
ValueError: When start qubit is not part of a chip. | def __init__(self,
device: 'cirq.google.XmonDevice',
start: GridQubit) -> None:
if start not in device.qubits:
raise ValueError('Starting qubit must be a qubit on the chip')
self._c = device.qubits
self._c_adj = chip_as_adjacency_list(device)
self._start = start
self._sequence = None | 127,095 |
Tries to expand given sequence with more qubits.
Args:
seq: Linear sequence of qubits.
Returns:
New continuous linear sequence which contains all the qubits from
seq and possibly new qubits inserted in between. | def _expand_sequence(self, seq: List[GridQubit]) -> List[GridQubit]:
i = 1
while i < len(seq):
path = self._find_path_between(seq[i - 1], seq[i], set(seq))
if path:
seq = seq[:i] + path + seq[i:]
else:
i += 1
return seq | 127,099 |
Lists all the qubits that are reachable from given qubit.
Args:
start: The first qubit for which connectivity should be calculated.
Might be a member of used set.
used: Already used qubits, which cannot be used during the
collection.
Returns:
Set of qubits that are reachable from starting qubit without
traversing any of the used qubits. | def _collect_unused(self, start: GridQubit,
used: Set[GridQubit]) -> Set[GridQubit]:
def collect(n: GridQubit, visited: Set[GridQubit]):
visited.add(n)
for m in self._c_adj[n]:
if m not in used and m not in visited:
collect(m, visited)
visited = set() # type: Set[GridQubit]
collect(start, visited)
return visited | 127,104 |
Runs line sequence search.
Args:
device: Chip description.
length: Required line length.
Returns:
Linear sequences found on the chip.
Raises:
ValueError: If search algorithm passed on initialization is not
recognized. | def place_line(self,
device: 'cirq.google.XmonDevice',
length: int) -> GridQubitLineTuple:
if not device.qubits:
return GridQubitLineTuple()
start = min(device.qubits) # type: GridQubit
sequences = [] # type: List[LineSequence]
greedy_search = {
'minimal_connectivity': [
_PickFewestNeighbors(device, start),
],
'largest_area': [
_PickLargestArea(device, start),
],
'best': [
_PickFewestNeighbors(device, start),
_PickLargestArea(device, start),
]
} # type: Dict[str, List[GreedySequenceSearch]]
algos = greedy_search.get(self.algorithm)
if algos is None:
raise ValueError(
"Unknown greedy search algorithm %s" % self.algorithm)
for algorithm in algos:
sequences.append(algorithm.get_or_search())
return GridQubitLineTuple.best_of(sequences, length) | 127,105 |
Constructs a moment with the given operations.
Args:
operations: The operations applied within the moment.
Will be frozen into a tuple before storing.
Raises:
ValueError: A qubit appears more than once. | def __init__(self, operations: Iterable[raw_types.Operation] = ()) -> None:
self.operations = tuple(operations)
# Check that operations don't overlap.
affected_qubits = [q for op in self.operations for q in op.qubits]
self.qubits = frozenset(affected_qubits)
if len(affected_qubits) != len(self.qubits):
raise ValueError(
'Overlapping operations: {}'.format(self.operations)) | 127,108 |
Determines if the moment has operations touching the given qubits.
Args:
qubits: The qubits that may or may not be touched by operations.
Returns:
Whether this moment has operations involving the qubits. | def operates_on(self, qubits: Iterable[raw_types.Qid]) -> bool:
return any(q in qubits for q in self.qubits) | 127,109 |
Returns an equal moment, but without ops on the given qubits.
Args:
qubits: Operations that touch these will be removed.
Returns:
The new moment. | def without_operations_touching(self, qubits: Iterable[raw_types.Qid]):
qubits = frozenset(qubits)
if not self.operates_on(qubits):
return self
return Moment(
operation for operation in self.operations
if qubits.isdisjoint(frozenset(operation.qubits))) | 127,110 |
Convert a schedule into an iterable of proto dictionaries.
Args:
schedule: The schedule to convert to a proto dict. Must contain only
gates that can be cast to xmon gates.
Yields:
A proto dictionary corresponding to an Operation proto. | def schedule_to_proto_dicts(schedule: Schedule) -> Iterable[Dict]:
last_time_picos = None # type: Optional[int]
for so in schedule.scheduled_operations:
op = gate_to_proto_dict(
cast(ops.GateOperation, so.operation).gate,
so.operation.qubits)
time_picos = so.time.raw_picos()
if last_time_picos is None:
op['incremental_delay_picoseconds'] = time_picos
else:
op['incremental_delay_picoseconds'] = time_picos - last_time_picos
last_time_picos = time_picos
yield op | 127,136 |
Check if the gate corresponding to an operation is a native xmon gate.
Args:
op: Input operation.
Returns:
True if the operation is native to the xmon, false otherwise. | def is_native_xmon_op(op: ops.Operation) -> bool:
return (isinstance(op, ops.GateOperation) and
is_native_xmon_gate(op.gate)) | 127,140 |
Check if a gate is a native xmon gate.
Args:
gate: Input gate.
Returns:
True if the gate is native to the xmon, false otherwise. | def is_native_xmon_gate(gate: ops.Gate) -> bool:
return isinstance(gate, (ops.CZPowGate,
ops.MeasurementGate,
ops.PhasedXPowGate,
ops.XPowGate,
ops.YPowGate,
ops.ZPowGate)) | 127,141 |
Convert the proto dictionary to the corresponding operation.
See protos in api/google/v1 for specification of the protos.
Args:
proto_dict: Dictionary representing the proto. Keys are always
strings, but values may be types correspond to a raw proto type
or another dictionary (for messages).
Returns:
The operation.
Raises:
ValueError if the dictionary does not contain required values
corresponding to the proto. | def xmon_op_from_proto_dict(proto_dict: Dict) -> ops.Operation:
def raise_missing_fields(gate_name: str):
raise ValueError(
'{} missing required fields: {}'.format(gate_name, proto_dict))
param = _parameterized_value_from_proto_dict
qubit = devices.GridQubit.from_proto_dict
if 'exp_w' in proto_dict:
exp_w = proto_dict['exp_w']
if ('half_turns' not in exp_w or 'axis_half_turns' not in exp_w
or 'target' not in exp_w):
raise_missing_fields('ExpW')
return ops.PhasedXPowGate(
exponent=param(exp_w['half_turns']),
phase_exponent=param(exp_w['axis_half_turns']),
).on(qubit(exp_w['target']))
elif 'exp_z' in proto_dict:
exp_z = proto_dict['exp_z']
if 'half_turns' not in exp_z or 'target' not in exp_z:
raise_missing_fields('ExpZ')
return ops.Z(qubit(exp_z['target']))**param(exp_z['half_turns'])
elif 'exp_11' in proto_dict:
exp_11 = proto_dict['exp_11']
if ('half_turns' not in exp_11 or 'target1' not in exp_11
or 'target2' not in exp_11):
raise_missing_fields('Exp11')
return ops.CZ(qubit(exp_11['target1']),
qubit(exp_11['target2']))**param(exp_11['half_turns'])
elif 'measurement' in proto_dict:
meas = proto_dict['measurement']
invert_mask = cast(Tuple[Any, ...], ())
if 'invert_mask' in meas:
invert_mask = tuple(json.loads(x) for x in meas['invert_mask'])
if 'key' not in meas or 'targets' not in meas:
raise_missing_fields('Measurement')
return ops.MeasurementGate(
num_qubits=len(meas['targets']),
key=meas['key'],
invert_mask=invert_mask
).on(*[qubit(q) for q in meas['targets']])
else:
raise ValueError('invalid operation: {}'.format(proto_dict)) | 127,142 |
Initializes a new priority queue.
Args:
entries: Initial contents of the priority queue.
drop_duplicate_entries: If set, the priority queue will ignore
operations that enqueue a (priority, item) pair that is already
in the priority queue. Note that duplicates of an item may still
be enqueued, as long as they have different priorities. | def __init__(self,
entries: Iterable[Tuple[int, TItem]] = (),
*,
drop_duplicate_entries: bool=False):
self._buckets = [] # type: List[List[TItem]]
self._offset = 0
self._len = 0
self._drop_set = (set()
if drop_duplicate_entries
else None) # type: Optional[Set[Tuple[int, TItem]]]
for p, e in entries:
self.enqueue(p, e) | 127,175 |
Returns the previously created quantum program.
Params:
program_resource_name: A string of the form
`projects/project_id/programs/program_id`.
Returns:
A dictionary containing the metadata and the program. | def get_program(self, program_resource_name: str) -> Dict:
return self.service.projects().programs().get(
name=program_resource_name).execute() | 127,198 |
Returns metadata about a previously created job.
See get_job_result if you want the results of the job and not just
metadata about the job.
Params:
job_resource_name: A string of the form
`projects/project_id/programs/program_id/jobs/job_id`.
Returns:
A dictionary containing the metadata. | def get_job(self, job_resource_name: str) -> Dict:
return self.service.projects().programs().jobs().get(
name=job_resource_name).execute() | 127,199 |
Returns the actual results (not metadata) of a completed job.
Params:
job_resource_name: A string of the form
`projects/project_id/programs/program_id/jobs/job_id`.
Returns:
An iterable over the TrialResult, one per parameter in the
parameter sweep. | def get_job_results(self, job_resource_name: str) -> List[TrialResult]:
response = self.service.projects().programs().jobs().getResult(
parent=job_resource_name).execute()
trial_results = []
for sweep_result in response['result']['sweepResults']:
sweep_repetitions = sweep_result['repetitions']
key_sizes = [(m['key'], len(m['qubits']))
for m in sweep_result['measurementKeys']]
for result in sweep_result['parameterizedResults']:
data = base64.standard_b64decode(result['measurementResults'])
measurements = unpack_results(data, sweep_repetitions,
key_sizes)
trial_results.append(TrialResult(
params=ParamResolver(
result.get('params', {}).get('assignments', {})),
repetitions=sweep_repetitions,
measurements=measurements))
return trial_results | 127,200 |
Cancels the given job.
See also the cancel method on EngineJob.
Params:
job_resource_name: A string of the form
`projects/project_id/programs/program_id/jobs/job_id`. | def cancel_job(self, job_resource_name: str):
self.service.projects().programs().jobs().cancel(
name=job_resource_name, body={}).execute() | 127,201 |
A job submitted to the engine.
Args:
job_config: The JobConfig used to create the job.
job: A full Job Dict.
engine: Engine connected to the job. | def __init__(self,
job_config: JobConfig,
job: Dict,
engine: Engine) -> None:
self.job_config = job_config
self._job = job
self._engine = engine
self.job_resource_name = job['name']
self.program_resource_name = self.job_resource_name.split('/jobs')[0]
self._results = None | 127,210 |
Performs an in-order iteration of the operations (leaves) in an OP_TREE.
Args:
root: The operation or tree of operations to iterate.
preserve_moments: Whether to yield Moments intact instead of
flattening them
Yields:
Operations from the tree.
Raises:
TypeError: root isn't a valid OP_TREE. | def flatten_op_tree(root: OP_TREE,
preserve_moments: bool = False
) -> Iterable[Union[Operation, Moment]]:
if (isinstance(root, Operation)
or preserve_moments and isinstance(root, Moment)):
yield root
return
if isinstance(root, collections.Iterable):
for subtree in root:
for item in flatten_op_tree(subtree, preserve_moments):
yield item
return
raise TypeError('Not a collections.Iterable or an Operation: {} {}'.format(
type(root), root)) | 127,213 |
Canonicalizes runs of single-qubit rotations in a circuit.
Specifically, any run of non-parameterized circuits will be replaced by an
optional PhasedX operation followed by an optional Z operation.
Args:
circuit: The circuit to rewrite. This value is mutated in-place.
atol: Absolute tolerance to angle error. Larger values allow more
negligible gates to be dropped, smaller values increase accuracy. | def merge_single_qubit_gates_into_phased_x_z(
circuit: circuits.Circuit,
atol: float = 1e-8) -> None:
def synth(qubit: ops.Qid, matrix: np.ndarray) -> List[ops.Operation]:
out_gates = decompositions.single_qubit_matrix_to_phased_x_z(
matrix, atol)
return [gate(qubit) for gate in out_gates]
MergeSingleQubitGates(synthesizer=synth).optimize_circuit(circuit) | 127,231 |
Wraps the given string with terminal color codes.
Args:
text: The content to highlight.
color_code: The color to highlight with, e.g. 'shelltools.RED'.
bold: Whether to bold the content in addition to coloring.
Returns:
The highlighted string. | def highlight(text: str, color_code: int, bold: bool=False) -> str:
return '{}\033[{}m{}\033[0m'.format(
'\033[1m' if bold else '',
color_code,
text,) | 127,235 |
Prints/captures output from the given asynchronous iterable.
Args:
async_chunks: An asynchronous source of bytes or str.
out: Where to put the chunks.
Returns:
The complete captured output, or else None if the out argument wasn't a
TeeCapture instance. | async def _async_forward(async_chunks: collections.AsyncIterable,
out: Optional[Union[TeeCapture, IO[str]]]
) -> Optional[str]:
capture = isinstance(out, TeeCapture)
out_pipe = out.out_pipe if isinstance(out, TeeCapture) else out
chunks = [] if capture else None # type: Optional[List[str]]
async for chunk in async_chunks:
if not isinstance(chunk, str):
chunk = chunk.decode()
if out_pipe:
print(chunk, file=out_pipe, end='')
if chunks is not None:
chunks.append(chunk)
return ''.join(chunks) if chunks is not None else None | 127,236 |
Awaits the creation and completion of an asynchronous process.
Args:
future_process: The eventually created process.
out: Where to write stuff emitted by the process' stdout.
err: Where to write stuff emitted by the process' stderr.
Returns:
A (captured output, captured error output, return code) triplet. | async def _async_wait_for_process(
future_process: Any,
out: Optional[Union[TeeCapture, IO[str]]] = sys.stdout,
err: Optional[Union[TeeCapture, IO[str]]] = sys.stderr
) -> CommandOutput:
process = await future_process
future_output = _async_forward(process.stdout, out)
future_err_output = _async_forward(process.stderr, err)
output, err_output = await asyncio.gather(future_output, future_err_output)
await process.wait()
return CommandOutput(output, err_output, process.returncode) | 127,237 |
Returns a half_turns value based on the given arguments.
At most one of half_turns, rads, degs must be specified. If none are
specified, the output defaults to half_turns=1.
Args:
half_turns: The number of half turns to rotate by.
rads: The number of radians to rotate by.
degs: The number of degrees to rotate by
default: The half turns angle to use if nothing else is specified.
Returns:
A number of half turns. | def chosen_angle_to_half_turns(
half_turns: Optional[Union[sympy.Basic, float]] = None,
rads: Optional[float] = None,
degs: Optional[float] = None,
default: float = 1.0,
) -> Union[sympy.Basic, float]:
if len([1 for e in [half_turns, rads, degs] if e is not None]) > 1:
raise ValueError('Redundant angle specification. '
'Use ONE of half_turns, rads, or degs.')
if rads is not None:
return rads / np.pi
if degs is not None:
return degs / 180
if half_turns is not None:
return half_turns
return default | 127,242 |
Returns a canonicalized half_turns based on the given arguments.
At most one of half_turns, rads, degs must be specified. If none are
specified, the output defaults to half_turns=1.
Args:
half_turns: The number of half turns to rotate by.
rads: The number of radians to rotate by.
degs: The number of degrees to rotate by
default: The half turns angle to use if nothing else is specified.
Returns:
A number of half turns. | def chosen_angle_to_canonical_half_turns(
half_turns: Optional[Union[sympy.Basic, float]] = None,
rads: Optional[float] = None,
degs: Optional[float] = None,
default: float = 1.0,
) -> Union[sympy.Basic, float]:
return canonicalize_half_turns(
chosen_angle_to_half_turns(
half_turns=half_turns,
rads=rads,
degs=degs,
default=default)) | 127,243 |
Implements a single-qubit operation with few rotations.
Args:
mat: The 2x2 unitary matrix of the operation to implement.
atol: A limit on the amount of absolute error introduced by the
construction.
Returns:
A list of (Pauli, half_turns) tuples that, when applied in order,
perform the desired operation. | def single_qubit_matrix_to_pauli_rotations(
mat: np.ndarray, atol: float = 0
) -> List[Tuple[ops.Pauli, float]]:
def is_clifford_rotation(half_turns):
return near_zero_mod(half_turns, 0.5, atol=atol)
def to_quarter_turns(half_turns):
return round(2 * half_turns) % 4
def is_quarter_turn(half_turns):
return (is_clifford_rotation(half_turns) and
to_quarter_turns(half_turns) % 2 == 1)
def is_half_turn(half_turns):
return (is_clifford_rotation(half_turns) and
to_quarter_turns(half_turns) == 2)
def is_no_turn(half_turns):
return (is_clifford_rotation(half_turns) and
to_quarter_turns(half_turns) == 0)
# Decompose matrix
z_rad_before, y_rad, z_rad_after = (
linalg.deconstruct_single_qubit_matrix_into_angles(mat))
z_ht_before = z_rad_before / np.pi - 0.5
m_ht = y_rad / np.pi
m_pauli = ops.pauli_gates.X # type: ops.pauli_gates.Pauli
z_ht_after = z_rad_after / np.pi + 0.5
# Clean up angles
if is_clifford_rotation(z_ht_before):
if ((is_quarter_turn(z_ht_before) or is_quarter_turn(z_ht_after)) ^
(is_half_turn(m_ht) and is_no_turn(z_ht_before-z_ht_after))):
z_ht_before += 0.5
z_ht_after -= 0.5
m_pauli = ops.pauli_gates.Y
if is_half_turn(z_ht_before) or is_half_turn(z_ht_after):
z_ht_before -= 1
z_ht_after += 1
m_ht = -m_ht
if is_no_turn(m_ht):
z_ht_before += z_ht_after
z_ht_after = 0
elif is_half_turn(m_ht):
z_ht_after -= z_ht_before
z_ht_before = 0
# Generate operations
rotation_list = [
(ops.pauli_gates.Z, z_ht_before),
(m_pauli, m_ht),
(ops.pauli_gates.Z, z_ht_after)]
return [(pauli, ht) for pauli, ht in rotation_list if not is_no_turn(ht)] | 127,246 |
Implements a single-qubit operation with few gates.
Args:
mat: The 2x2 unitary matrix of the operation to implement.
tolerance: A limit on the amount of error introduced by the
construction.
Returns:
A list of gates that, when applied in order, perform the desired
operation. | def single_qubit_matrix_to_gates(
mat: np.ndarray, tolerance: float = 0
) -> List[ops.SingleQubitGate]:
rotations = single_qubit_matrix_to_pauli_rotations(mat, tolerance)
return [cast(ops.SingleQubitGate, pauli)**ht for pauli, ht in rotations] | 127,247 |
Breaks down a 2x2 unitary into gate parameters.
Args:
mat: The 2x2 unitary matrix to break down.
Returns:
A tuple containing the amount to rotate around an XY axis, the phase of
that axis, and the amount to phase around Z. All results will be in
fractions of a whole turn, with values canonicalized into the range
[-0.5, 0.5). | def _deconstruct_single_qubit_matrix_into_gate_turns(
mat: np.ndarray) -> Tuple[float, float, float]:
pre_phase, rotation, post_phase = (
linalg.deconstruct_single_qubit_matrix_into_angles(mat))
# Figure out parameters of the actual gates we will do.
tau = 2 * np.pi
xy_turn = rotation / tau
xy_phase_turn = 0.25 - pre_phase / tau
total_z_turn = (post_phase + pre_phase) / tau
# Normalize turns into the range [-0.5, 0.5).
return (_signed_mod_1(xy_turn), _signed_mod_1(xy_phase_turn),
_signed_mod_1(total_z_turn)) | 127,249 |
Implements a single-qubit operation with a PhasedX and Z gate.
If one of the gates isn't needed, it will be omitted.
Args:
mat: The 2x2 unitary matrix of the operation to implement.
atol: A limit on the amount of error introduced by the
construction.
Returns:
A list of gates that, when applied in order, perform the desired
operation. | def single_qubit_matrix_to_phased_x_z(
mat: np.ndarray,
atol: float = 0
) -> List[ops.SingleQubitGate]:
xy_turn, xy_phase_turn, total_z_turn = (
_deconstruct_single_qubit_matrix_into_gate_turns(mat))
# Build the intended operation out of non-negligible XY and Z rotations.
result = [
ops.PhasedXPowGate(exponent=2 * xy_turn,
phase_exponent=2 * xy_phase_turn),
ops.Z**(2 * total_z_turn)
]
result = [
g for g in result
if protocols.trace_distance_bound(g) > atol
]
# Special case: XY half-turns can absorb Z rotations.
if len(result) == 2 and abs(xy_turn) >= 0.5 - atol:
return [
ops.PhasedXPowGate(phase_exponent=2 * xy_phase_turn + total_z_turn)
]
return result | 127,250 |
Calculates probability and draws if solution should be accepted.
Based on exp(-Delta*E/T) formula.
Args:
random_sample: Uniformly distributed random number in the range [0, 1).
cost_diff: Cost difference between new and previous solutions.
temp: Current temperature.
Returns:
Tuple of boolean and float, with boolean equal to True if solution is
accepted, and False otherwise. The float value is acceptance
probability. | def _accept(random_sample: float, cost_diff: float,
temp: float) -> Tuple[bool, float]:
exponent = -cost_diff / temp
if exponent >= 0.0:
return True, 1.0
else:
probability = math.exp(exponent)
return probability > random_sample, probability | 127,297 |
Density matrix simulator.
Args:
dtype: The `numpy.dtype` used by the simulation. One of
`numpy.complex64` or `numpy.complex128`
noise: A noise model to apply while simulating. | def __init__(self,
*,
dtype: Type[np.number] = np.complex64,
noise: devices.NoiseModel = devices.NO_NOISE):
if dtype not in {np.complex64, np.complex128}:
raise ValueError(
'dtype must be complex64 or complex128, was {}'.format(dtype))
self._dtype = dtype
self.noise = noise | 127,312 |
DensityMatrixStepResult.
Args:
density_matrix: The density matrix at this step. Can be mutated.
measurements: The measurements for this step of the simulation.
qubit_map: A map from qid to index used to define the
ordering of the basis in density_matrix.
dtype: The numpy dtype for the density matrix. | def __init__(self,
density_matrix: np.ndarray,
measurements: Dict[str, np.ndarray],
qubit_map: Dict[ops.Qid, int],
dtype: Type[np.number] = np.complex64):
super().__init__(measurements)
self._density_matrix = density_matrix
self._qubit_map = qubit_map
self._dtype = dtype | 127,318 |
Return only the Clifford part of a circuit. See
convert_and_separate_circuit().
Args:
circuit: A Circuit with the gate set {SingleQubitCliffordGate,
PauliInteractionGate, PauliStringPhasor}.
Returns:
A Circuit with SingleQubitCliffordGate and PauliInteractionGate gates.
It also contains MeasurementGates if the given
circuit contains measurements. | def regular_half(circuit: circuits.Circuit) -> circuits.Circuit:
return circuits.Circuit(
ops.Moment(op
for op in moment.operations
if not isinstance(op, ops.PauliStringPhasor))
for moment in circuit) | 127,344 |
Return only the non-Clifford part of a circuit. See
convert_and_separate_circuit().
Args:
circuit: A Circuit with the gate set {SingleQubitCliffordGate,
PauliInteractionGate, PauliStringPhasor}.
Returns:
A Circuit with only PauliStringPhasor operations. | def pauli_string_half(circuit: circuits.Circuit) -> circuits.Circuit:
return circuits.Circuit.from_ops(
_pull_non_clifford_before(circuit),
strategy=circuits.InsertStrategy.EARLIEST) | 127,345 |
Initializes a circuit.
Args:
moments: The initial list of moments defining the circuit.
device: Hardware that the circuit should be able to run on. | def __init__(self,
moments: Iterable[ops.Moment] = (),
device: devices.Device = devices.UnconstrainedDevice) -> None:
self._moments = list(moments)
self._device = device
self._device.validate_circuit(self) | 127,361 |
Creates an empty circuit and appends the given operations.
Args:
operations: The operations to append to the new circuit.
strategy: How to append the operations.
device: Hardware that the circuit should be able to run on.
Returns:
The constructed circuit containing the operations. | def from_ops(*operations: ops.OP_TREE,
strategy: InsertStrategy = InsertStrategy.EARLIEST,
device: devices.Device = devices.UnconstrainedDevice
) -> 'Circuit':
result = Circuit(device=device)
result.append(operations, strategy)
return result | 127,363 |
Maps the current circuit onto a new device, and validates.
Args:
new_device: The new device that the circuit should be on.
qubit_mapping: How to translate qubits from the old device into
qubits on the new device.
Returns:
The translated circuit. | def with_device(
self,
new_device: devices.Device,
qubit_mapping: Callable[[ops.Qid], ops.Qid] = lambda e: e,
) -> 'Circuit':
return Circuit(
moments=[ops.Moment(operation.transform_qubits(qubit_mapping)
for operation in moment.operations)
for moment in self._moments],
device=new_device
) | 127,375 |
Finds the operation on a qubit within a moment, if any.
Args:
qubit: The qubit to check for an operation on.
moment_index: The index of the moment to check for an operation
within. Allowed to be beyond the end of the circuit.
Returns:
None if there is no operation on the qubit at the given moment, or
else the operation. | def operation_at(self,
qubit: ops.Qid,
moment_index: int) -> Optional[ops.Operation]:
if not 0 <= moment_index < len(self._moments):
return None
for op in self._moments[moment_index].operations:
if qubit in op.qubits:
return op
return None | 127,385 |
Find the locations of all gate operations of a given type.
Args:
gate_type: The type of gate to find, e.g. XPowGate or
MeasurementGate.
Returns:
An iterator (index, operation, gate)'s for operations with the given
gate type. | def findall_operations_with_gate_type(
self,
gate_type: Type[T_DESIRED_GATE_TYPE]
) -> Iterable[Tuple[int,
ops.GateOperation,
T_DESIRED_GATE_TYPE]]:
result = self.findall_operations(lambda operation: bool(
ops.op_gate_of_type(operation, gate_type)))
for index, op in result:
gate_op = cast(ops.GateOperation, op)
yield index, gate_op, cast(T_DESIRED_GATE_TYPE, gate_op.gate) | 127,387 |
Check whether all of the ops that satisfy a predicate are terminal.
Args:
predicate: A predicate on ops.Operations which is being checked.
Returns:
Whether or not all `Operation` s in a circuit that satisfy the
given predicate are terminal. | def are_all_matches_terminal(self,
predicate: Callable[[ops.Operation], bool]):
return all(
self.next_moment_operating_on(op.qubits, i + 1) is None for
(i, op) in self.findall_operations(predicate)
) | 127,388 |
Determines and prepares where an insertion will occur.
Args:
splitter_index: The index to insert at.
op: The operation that will be inserted.
strategy: The insertion strategy.
Returns:
The index of the (possibly new) moment where the insertion should
occur.
Raises:
ValueError: Unrecognized append strategy. | def _pick_or_create_inserted_op_moment_index(
self, splitter_index: int, op: ops.Operation,
strategy: InsertStrategy) -> int:
if (strategy is InsertStrategy.NEW or
strategy is InsertStrategy.NEW_THEN_INLINE):
self._moments.insert(splitter_index, ops.Moment())
return splitter_index
if strategy is InsertStrategy.INLINE:
if (0 <= splitter_index - 1 < len(self._moments) and
self._can_add_op_at(splitter_index - 1, op)):
return splitter_index - 1
return self._pick_or_create_inserted_op_moment_index(
splitter_index, op, InsertStrategy.NEW)
if strategy is InsertStrategy.EARLIEST:
if self._can_add_op_at(splitter_index, op):
p = self._prev_moment_available(op, splitter_index)
return p or 0
return self._pick_or_create_inserted_op_moment_index(
splitter_index, op, InsertStrategy.INLINE)
raise ValueError('Unrecognized append strategy: {}'.format(strategy)) | 127,389 |
Inserts operations inline at frontier.
Args:
operations: the operations to insert
start: the moment at which to start inserting the operations
frontier: frontier[q] is the earliest moment in which an operation
acting on qubit q can be placed. | def insert_at_frontier(self,
operations: ops.OP_TREE,
start: int,
frontier: Dict[ops.Qid, int] = None
) -> Dict[ops.Qid, int]:
if frontier is None:
frontier = defaultdict(lambda: 0)
operations = tuple(ops.flatten_op_tree(operations))
if not operations:
return frontier
qubits = set(q for op in operations for q in op.qubits)
if any(frontier[q] > start for q in qubits):
raise ValueError('The frontier for qubits on which the operations'
'to insert act cannot be after start.')
next_moments = self.next_moments_operating_on(qubits, start)
insertion_indices, _ = self._pick_inserted_ops_moment_indices(
operations, start, frontier)
self._push_frontier(frontier, next_moments)
self._insert_operations(operations, insertion_indices)
return frontier | 127,398 |
Appends operations onto the end of the circuit.
Moments within the operation tree are appended intact.
Args:
moment_or_operation_tree: The moment or operation tree to append.
strategy: How to pick/create the moment to put operations into. | def append(
self,
moment_or_operation_tree: Union[ops.Moment, ops.OP_TREE],
strategy: InsertStrategy = InsertStrategy.EARLIEST):
self.insert(len(self._moments), moment_or_operation_tree, strategy) | 127,402 |
Clears operations that are touching given qubits at given moments.
Args:
qubits: The qubits to check for operations on.
moment_indices: The indices of moments to check for operations
within. | def clear_operations_touching(self,
qubits: Iterable[ops.Qid],
moment_indices: Iterable[int]):
qubits = frozenset(qubits)
for k in moment_indices:
if 0 <= k < len(self._moments):
self._moments[k] = self._moments[k].without_operations_touching(
qubits) | 127,403 |
Returns text containing a diagram describing the circuit.
Args:
use_unicode_characters: Determines if unicode characters are
allowed (as opposed to ascii-only diagrams).
transpose: Arranges qubit wires vertically instead of horizontally.
precision: Number of digits to display in text diagram
qubit_order: Determines how qubits are ordered in the diagram.
Returns:
The text diagram. | def to_text_diagram(
self,
*,
use_unicode_characters: bool = True,
transpose: bool = False,
precision: Optional[int] = 3,
qubit_order: ops.QubitOrderOrList = ops.QubitOrder.DEFAULT) -> str:
diagram = self.to_text_diagram_drawer(
use_unicode_characters=use_unicode_characters,
precision=precision,
qubit_order=qubit_order,
transpose=transpose)
return diagram.render(
crossing_char=(None
if use_unicode_characters
else ('-' if transpose else '|')),
horizontal_spacing=1 if transpose else 3,
use_unicode_characters=use_unicode_characters) | 127,409 |
Returns a QASM object equivalent to the circuit.
Args:
header: A multi-line string that is placed in a comment at the top
of the QASM. Defaults to a cirq version specifier.
precision: Number of digits to use when representing numbers.
qubit_order: Determines how qubits are ordered in the QASM
register. | def _to_qasm_output(
self,
header: Optional[str] = None,
precision: int = 10,
qubit_order: ops.QubitOrderOrList = ops.QubitOrder.DEFAULT,
) -> QasmOutput:
if header is None:
header = 'Generated from Cirq v{}'.format(
cirq._version.__version__)
qubits = ops.QubitOrder.as_qubit_order(qubit_order).order_for(
self.all_qubits())
return QasmOutput(operations=self.all_operations(),
qubits=qubits,
header=header,
precision=precision,
version='2.0') | 127,413 |
Returns QASM equivalent to the circuit.
Args:
header: A multi-line string that is placed in a comment at the top
of the QASM. Defaults to a cirq version specifier.
precision: Number of digits to use when representing numbers.
qubit_order: Determines how qubits are ordered in the QASM
register. | def to_qasm(self,
header: Optional[str] = None,
precision: int = 10,
qubit_order: ops.QubitOrderOrList = ops.QubitOrder.DEFAULT,
) -> str:
return str(self._to_qasm_output(header, precision, qubit_order)) | 127,414 |
Save a QASM file equivalent to the circuit.
Args:
file_path: The location of the file where the qasm will be written.
header: A multi-line string that is placed in a comment at the top
of the QASM. Defaults to a cirq version specifier.
precision: Number of digits to use when representing numbers.
qubit_order: Determines how qubits are ordered in the QASM
register. | def save_qasm(self,
file_path: Union[str, bytes, int],
header: Optional[str] = None,
precision: int = 10,
qubit_order: ops.QubitOrderOrList = ops.QubitOrder.DEFAULT,
) -> None:
self._to_qasm_output(header, precision, qubit_order).save(file_path) | 127,415 |
Returns the big-endian integers specified by groups of bits.
Args:
bit_groups: Groups of descending bits, each specifying a big endian
integer with the 1s bit at the end.
Returns:
A tuple containing the integer for each group. | def _tuple_of_big_endian_int(bit_groups: Tuple[np.ndarray, ...]
) -> Tuple[int, ...]:
return tuple(_big_endian_int(bits) for bits in bit_groups) | 127,423 |
Returns the big-endian integer specified by the given bits.
For example, [True, False, False, True, False] becomes binary 10010 which
is 18 in decimal.
Args:
bits: Descending bits of the integer, with the 1s bit at the end.
Returns:
The integer. | def _big_endian_int(bits: np.ndarray) -> int:
result = 0
for e in bits:
result <<= 1
if e:
result |= 1
return result | 127,424 |
Gives adjacency list representation of a chip.
The adjacency list is constructed in order of above, left_of, below and
right_of consecutively.
Args:
device: Chip to be converted.
Returns:
Map from nodes to list of qubits which represent all the neighbours of
given qubit. | def chip_as_adjacency_list(device: 'cirq.google.XmonDevice',
) -> Dict[GridQubit, List[GridQubit]]:
c_set = set(device.qubits)
c_adj = {} # type: Dict[GridQubit, List[GridQubit]]
for n in device.qubits:
c_adj[n] = []
for m in [above(n), left_of(n), below(n), right_of(n)]:
if m in c_set:
c_adj[n].append(m)
return c_adj | 127,430 |
Adds possibly stateful noise to a series of moments.
Args:
moments: The moments to add noise to.
system_qubits: A list of all qubits in the system.
Returns:
A sequence of OP_TREEs, with the k'th tree corresponding to the
noisy operations for the k'th moment. | def noisy_moments(self, moments: 'Iterable[cirq.Moment]',
system_qubits: Sequence['cirq.Qid']
) -> Sequence['cirq.OP_TREE']:
if not hasattr(self.noisy_moment, '_not_overridden'):
result = []
for moment in moments:
result.append(self.noisy_moment(moment, system_qubits))
return result
if not hasattr(self.noisy_operation, '_not_overridden'):
result = []
for moment in moments:
result.append([self.noisy_operation(op) for op in moment])
return result
assert False, 'Should be unreachable.' | 127,455 |
Adds noise to the operations from a moment.
Args:
moment: The moment to add noise to.
system_qubits: A list of all qubits in the system.
Returns:
An OP_TREE corresponding to the noisy operations for the moment. | def noisy_moment(self, moment: 'cirq.Moment',
system_qubits: Sequence['cirq.Qid']) -> 'cirq.OP_TREE':
if not hasattr(self.noisy_moments, '_not_overridden'):
return self.noisy_moments([moment], system_qubits)
if not hasattr(self.noisy_operation, '_not_overridden'):
return [self.noisy_operation(op) for op in moment]
assert False, 'Should be unreachable.' | 127,456 |
Adds noise to an individual operation.
Args:
operation: The operation to make noisy.
Returns:
An OP_TREE corresponding to the noisy operations implementing the
noisy version of the given operation. | def noisy_operation(self, operation: 'cirq.Operation') -> 'cirq.OP_TREE':
if not hasattr(self.noisy_moments, '_not_overridden'):
return self.noisy_moments([ops.Moment([operation])],
operation.qubits)
if not hasattr(self.noisy_moment, '_not_overridden'):
return self.noisy_moment(ops.Moment([operation]), operation.qubits)
assert False, 'Should be unreachable.' | 127,457 |
Generates Google Random Circuits v2 as in github.com/sboixo/GRCS cz_v2.
See also https://arxiv.org/abs/1807.10749
Args:
qubits: qubit grid in which to generate the circuit.
cz_depth: number of layers with CZ gates.
seed: seed for the random instance.
Returns:
A circuit corresponding to instance
inst_{n_rows}x{n_cols}_{cz_depth+1}_{seed}
The mapping of qubits is cirq.GridQubit(j,k) -> q[j*n_cols+k]
(as in the QASM mapping) | def generate_supremacy_circuit_google_v2(qubits: Iterable[devices.GridQubit],
cz_depth: int,
seed: int) -> circuits.Circuit:
non_diagonal_gates = [ops.pauli_gates.X**(1/2), ops.pauli_gates.Y**(1/2)]
rand_gen = random.Random(seed).random
circuit = circuits.Circuit()
# Add an initial moment of Hadamards
circuit.append(ops.common_gates.H(qubit) for qubit in qubits)
layer_index = 0
if cz_depth:
layer_index = _add_cz_layer(layer_index, circuit)
# In the first moment, add T gates when possible
for qubit in qubits:
if not circuit.operation_at(qubit, 1):
circuit.append(ops.common_gates.T(qubit),
strategy=InsertStrategy.EARLIEST)
for moment_index in range(2, cz_depth+1):
layer_index = _add_cz_layer(layer_index, circuit)
# Add single qubit gates in the same moment
for qubit in qubits:
if not circuit.operation_at(qubit, moment_index):
last_op = circuit.operation_at(qubit, moment_index-1)
if last_op:
gate = cast(ops.GateOperation, last_op).gate
# Add a random non diagonal gate after a CZ
if gate == ops.CZ:
circuit.append(_choice(rand_gen,
non_diagonal_gates).on(qubit),
strategy=InsertStrategy.EARLIEST)
# Add a T gate after a non diagonal gate
elif not gate == ops.T:
circuit.append(ops.common_gates.T(qubit),
strategy=InsertStrategy.EARLIEST)
# Add a final moment of Hadamards
circuit.append([ops.common_gates.H(qubit) for qubit in qubits],
strategy=InsertStrategy.NEW_THEN_INLINE)
return circuit | 127,460 |
Generates Google Random Circuits v2 in Bristlecone.
See also https://arxiv.org/abs/1807.10749
Args:
n_rows: number of rows in a Bristlecone lattice.
Note that we do not include single qubit corners.
cz_depth: number of layers with CZ gates.
seed: seed for the random instance.
Returns:
A circuit with given size and seed. | def generate_supremacy_circuit_google_v2_bristlecone(n_rows: int,
cz_depth: int, seed: int
) -> circuits.Circuit:
def get_qubits(n_rows):
def count_neighbors(qubits, qubit):
possibles = [
devices.GridQubit(qubit.row + 1, qubit.col),
devices.GridQubit(qubit.row - 1, qubit.col),
devices.GridQubit(qubit.row, qubit.col + 1),
devices.GridQubit(qubit.row, qubit.col - 1),
]
return len(list(e for e in possibles if e in qubits))
assert 1 <= n_rows <= 11
max_row = n_rows - 1
dev = google.Bristlecone
# we need a consistent order of qubits
qubits = list(dev.qubits)
qubits.sort()
qubits = [q for q in qubits
if q.row <= max_row and q.row + q.col < n_rows + 6
and q.row - q.col < n_rows - 5]
qubits = [q for q in qubits if count_neighbors(qubits, q) > 1]
return qubits
qubits = get_qubits(n_rows)
return generate_supremacy_circuit_google_v2(qubits, cz_depth, seed) | 127,462 |
Decomposes a two-qubit operation into MS/single-qubit rotation gates.
Args:
q0: The first qubit being operated on.
q1: The other qubit being operated on.
mat: Defines the operation to apply to the pair of qubits.
tolerance: A limit on the amount of error introduced by the
construction.
Returns:
A list of operations implementing the matrix. | def two_qubit_matrix_to_ion_operations(q0: ops.Qid,
q1: ops.Qid,
mat: np.ndarray,
atol: float = 1e-8
) -> List[ops.Operation]:
kak = linalg.kak_decomposition(mat, atol=atol)
operations = _kak_decomposition_to_operations(q0,
q1, kak, atol)
return _cleanup_operations(operations) | 127,486 |
Initializes the 2-qubit matrix gate.
Args:
matrix: The matrix that defines the gate. | def __init__(self, matrix: np.ndarray) -> None:
if matrix.shape != (2, 2) or not linalg.is_unitary(matrix):
raise ValueError('Not a 2x2 unitary matrix: {}'.format(matrix))
self._matrix = matrix | 127,492 |
Attempt to resolve a Symbol or name or float to its assigned value.
If unable to resolve a sympy.Symbol, returns it unchanged.
If unable to resolve a name, returns a sympy.Symbol with that name.
Args:
value: The sympy.Symbol or name or float to try to resolve into just
a float.
Returns:
The value of the parameter as resolved by this resolver. | def value_of(
self,
value: Union[sympy.Basic, float, str]
) -> Union[sympy.Basic, float]:
if isinstance(value, str):
return self.param_dict.get(value, sympy.Symbol(value))
if isinstance(value, sympy.Basic):
if sys.version_info.major < 3:
# coverage: ignore
# HACK: workaround https://github.com/sympy/sympy/issues/16087
d = {k.encode(): v for k, v in self.param_dict.items()}
v = value.subs(d)
else:
v = value.subs(self.param_dict)
return v if v.free_symbols else float(v)
return value | 127,503 |
Determines if a file should be included in incremental coverage analysis.
Args:
rel_path: The repo-relative file path being considered.
Returns:
Whether to include the file. | def is_applicable_python_file(rel_path: str) -> bool:
return (rel_path.endswith('.py') and
not any(re.search(pat, rel_path) for pat in IGNORED_FILE_PATTERNS)) | 127,515 |
Constructor.
Arguments:
year, month, day (required, base 1) | def __new__(cls, year, month=None, day=None):
# if month is None and isinstance(year, bytes) and len(year) == 4 and \
# 1 <= ord(year[2]) <= 12:
# # Pickle support
# self = object.__new__(cls)
# self.__setstate(year)
# self._hashcode = -1
# return self
year, month, day = _check_date_fields(year, month, day)
self = object.__new__(cls)
self._year = year
self._month = month
self._day = day
self._hashcode = -1
return self | 127,883 |
Constructor.
Arguments:
hour, minute (required)
second, microsecond (default to zero)
tzinfo (default to None) | def __new__(cls, hour=0, minute=0, second=0, microsecond=0, tzinfo=None):
# if isinstance(hour, bytes) and len(hour) == 6 and ord(hour[0]) < 24:
# # Pickle support
# self = object.__new__(cls)
# self.__setstate(hour, minute or None)
# self._hashcode = -1
# return self
hour, minute, second, microsecond = _check_time_fields(
hour, minute, second, microsecond)
_check_tzinfo_arg(tzinfo)
self = object.__new__(cls)
self._hour = hour
self._minute = minute
self._second = second
self._microsecond = microsecond
self._tzinfo = tzinfo
self._hashcode = -1
return self | 127,900 |
HtmlDiff instance initializer
Arguments:
tabsize -- tab stop spacing, defaults to 8.
wrapcolumn -- column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.
linejunk,charjunk -- keyword arguments passed into ndiff() (used to by
HtmlDiff() to generate the side by side HTML differences). See
ndiff() documentation for argument default values and descriptions. | def __init__(self,tabsize=8,wrapcolumn=None,linejunk=None,
charjunk=IS_CHARACTER_JUNK):
self._tabsize = tabsize
self._wrapcolumn = wrapcolumn
self._linejunk = linejunk
self._charjunk = charjunk | 128,068 |
Generates code that imports a module and binds it to a variable.
Args:
imp: Import object representing an import of the form "import x.y.z" or
"from x.y import z". Expects only a single binding. | def _import_and_bind(self, imp):
# Acquire handles to the Code objects in each Go package and call
# ImportModule to initialize all modules.
with self.block.alloc_temp() as mod, \
self.block.alloc_temp('[]*πg.Object') as mod_slice:
self.writer.write_checked_call2(
mod_slice, 'πg.ImportModule(πF, {})', util.go_str(imp.name))
# Bind the imported modules or members to variables in the current scope.
for binding in imp.bindings:
if binding.bind_type == imputil.Import.MODULE:
self.writer.write('{} = {}[{}]'.format(
mod.name, mod_slice.expr, binding.value))
self.block.bind_var(self.writer, binding.alias, mod.expr)
else:
self.writer.write('{} = {}[{}]'.format(
mod.name, mod_slice.expr, imp.name.count('.')))
# Binding a member of the imported module.
with self.block.alloc_temp() as member:
self.writer.write_checked_call2(
member, 'πg.GetAttr(πF, {}, {}, nil)',
mod.expr, self.block.root.intern(binding.value))
self.block.bind_var(self.writer, binding.alias, member.expr) | 128,123 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.