docstring
stringlengths
52
499
function
stringlengths
67
35.2k
__index_level_0__
int64
52.6k
1.16M
apply the transformation Args: structure (Structure): structure to add site properties to
def apply_transformation(self, structure): new_structure = structure.copy() for prop in self.site_properties.keys(): new_structure.add_site_property(prop, self.site_properties[prop]) return new_structure
138,558
Writes all input files (input script, and data if needed). Other supporting files are not handled at this moment. Args: output_dir (str): Directory to output the input files. **kwargs: kwargs supported by LammpsData.write_file.
def write_inputs(self, output_dir, **kwargs): write_lammps_inputs(output_dir=output_dir, script_template=self.script_template, settings=self.settings, data=self.data, script_filename=self.script_filename, **kwargs)
138,561
Generate reciprocal vector magnitudes within the cutoff along the specied lattice vectors. Args: a1: Lattice vector a (in Bohrs) a2: Lattice vector b (in Bohrs) a3: Lattice vector c (in Bohrs) encut: Reciprocal vector energy cutoff Returns: [[g1^2], [g2^2], ...] Square of reciprocal vectors (1/Bohr)^2 determined by a1, a2, a3 and whose magntidue is less than gcut^2.
def generate_reciprocal_vectors_squared(a1, a2, a3, encut): for vec in genrecip(a1, a2, a3, encut): yield np.dot(vec, vec)
138,564
Returns closest site to the input position for both bulk and defect structures Args: struct_blk: Bulk structure struct_def: Defect structure pos: Position Return: (site object, dist, index)
def closestsites(struct_blk, struct_def, pos): blk_close_sites = struct_blk.get_sites_in_sphere(pos, 5, include_index=True) blk_close_sites.sort(key=lambda x: x[1]) def_close_sites = struct_def.get_sites_in_sphere(pos, 5, include_index=True) def_close_sites.sort(key=lambda x: x[1]) return blk_close_sites[0], def_close_sites[0]
138,565
Reciprocal space model charge value for input squared reciprocal vector. Args: g2: Square of reciprocal vector Returns: Charge density at the reciprocal vector magnitude
def rho_rec(self, g2): return (self.expnorm / np.sqrt(1 + self.gamma2 * g2) + ( 1 - self.expnorm) * np.exp(-0.25 * self.beta2 * g2))
138,569
Generate a sequence of supercells in which each supercell contains a single interstitial, except for the first supercell in the sequence which is a copy of the defect-free input structure. Args: scaling_matrix (3x3 integer array): scaling matrix to transform the lattice vectors. Returns: scs ([Structure]): sequence of supercells.
def make_supercells_with_defects(self, scaling_matrix): scs = [] sc = self._structure.copy() sc.make_supercell(scaling_matrix) scs.append(sc) for ids, defect_site in enumerate(self._defect_sites): sc_with_inter = sc.copy() sc_with_inter.append( defect_site.species_string, defect_site.frac_coords, coords_are_cartesian=False, validate_proximity=False, properties=None) if not sc_with_inter: raise RuntimeError( "could not generate supercell with" " interstitial {}".format( ids + 1)) scs.append(sc_with_inter.copy()) return scs
138,572
Cluster nodes that are too close together using a tol. Args: tol (float): A distance tolerance. PBC is taken into account.
def cluster_nodes(self, tol=0.2): lattice = self.structure.lattice vfcoords = [v.frac_coords for v in self.vnodes] # Manually generate the distance matrix (which needs to take into # account PBC. dist_matrix = np.array(lattice.get_all_distances(vfcoords, vfcoords)) dist_matrix = (dist_matrix + dist_matrix.T) / 2 for i in range(len(dist_matrix)): dist_matrix[i, i] = 0 condensed_m = squareform(dist_matrix) z = linkage(condensed_m) cn = fcluster(z, tol, criterion="distance") merged_vnodes = [] for n in set(cn): poly_indices = set() frac_coords = [] for i, j in enumerate(np.where(cn == n)[0]): poly_indices.update(self.vnodes[j].polyhedron_indices) if i == 0: frac_coords.append(self.vnodes[j].frac_coords) else: fcoords = self.vnodes[j].frac_coords # We need the image to combine the frac_coords properly. d, image = lattice.get_distance_and_image(frac_coords[0], fcoords) frac_coords.append(fcoords + image) merged_vnodes.append( VoronoiPolyhedron(lattice, np.average(frac_coords, axis=0), poly_indices, self.coords)) self.vnodes = merged_vnodes logger.debug("%d vertices after combination." % len(self.vnodes))
138,575
Remove vnodes that are too close to existing atoms in the structure Args: min_dist(float): The minimum distance that a vertex needs to be from existing atoms.
def remove_collisions(self, min_dist=0.5): vfcoords = [v.frac_coords for v in self.vnodes] sfcoords = self.structure.frac_coords dist_matrix = self.structure.lattice.get_all_distances(vfcoords, sfcoords) all_dist = np.min(dist_matrix, axis=1) new_vnodes = [] for i, v in enumerate(self.vnodes): if all_dist[i] > min_dist: new_vnodes.append(v) self.vnodes = new_vnodes
138,576
Initialization. Args: chgcar (pmg.Chgcar): input Chgcar object.
def __init__(self, chgcar): self.chgcar = chgcar self.structure = chgcar.structure self.extrema_coords = [] # list of frac_coords of local extrema self.extrema_type = None # "local maxima" or "local minima" self._extrema_df = None # extrema frac_coords - chg density table self._charge_distribution_df = None
138,584
Cluster nodes that are too close together using a tol. Args: tol (float): A distance tolerance. PBC is taken into account.
def cluster_nodes(self, tol=0.2): lattice = self.structure.lattice vf_coords = self.extrema_coords if len(vf_coords) == 0: if self.extrema_type is None: logger.warning( "Please run ChargeDensityAnalyzer.get_local_extrema first!") return new_f_coords = [] self._update_extrema(new_f_coords, self.extrema_type) return new_f_coords # Manually generate the distance matrix (which needs to take into # account PBC. dist_matrix = np.array(lattice.get_all_distances(vf_coords, vf_coords)) dist_matrix = (dist_matrix + dist_matrix.T) / 2 for i in range(len(dist_matrix)): dist_matrix[i, i] = 0 condensed_m = squareform(dist_matrix) z = linkage(condensed_m) cn = fcluster(z, tol, criterion="distance") merged_fcoords = [] for n in set(cn): frac_coords = [] for i, j in enumerate(np.where(cn == n)[0]): if i == 0: frac_coords.append(self.extrema_coords[j]) else: f_coords = self.extrema_coords[j] # We need the image to combine the frac_coords properly. d, image = lattice.get_distance_and_image(frac_coords[0], f_coords) frac_coords.append(f_coords + image) merged_fcoords.append(np.average(frac_coords, axis=0)) merged_fcoords = [f - np.floor(f) for f in merged_fcoords] merged_fcoords = [f * (np.abs(f - 1) > 1E-15) for f in merged_fcoords] # the second line for fringe cases like # np.array([ 5.0000000e-01 -4.4408921e-17 5.0000000e-01]) # where the shift to [0,1) does not work due to float precision self._update_extrema(merged_fcoords, extrema_type=self.extrema_type) logger.debug( "{} vertices after combination.".format(len(self.extrema_coords)))
138,589
Remove predicted sites that are too close to existing atoms in the structure. Args: min_dist (float): The minimum distance (in Angstrom) that a predicted site needs to be from existing atoms. A min_dist with value <= 0 returns all sites without distance checking.
def remove_collisions(self, min_dist=0.5): s_f_coords = self.structure.frac_coords f_coords = self.extrema_coords if len(f_coords) == 0: if self.extrema_type is None: logger.warning( "Please run ChargeDensityAnalyzer.get_local_extrema first!") return new_f_coords = [] self._update_extrema(new_f_coords, self.extrema_type) return new_f_coords dist_matrix = self.structure.lattice.get_all_distances(f_coords, s_f_coords) all_dist = np.min(dist_matrix, axis=1) new_f_coords = [] for i, f in enumerate(f_coords): if all_dist[i] > min_dist: new_f_coords.append(f) self._update_extrema(new_f_coords, self.extrema_type) return new_f_coords
138,590
Get the average charge density around each local minima in the charge density and store the result in _extrema_df Args: r (float): radius of sphere around each site to evaluate the average
def sort_sites_by_integrated_chg(self, r=0.4): if self.extrema_type is None: self.get_local_extrema() int_den = [] for isite in self.extrema_coords: mask = self._dist_mat(isite) < r vol_sphere = self.chgcar.structure.volume * (mask.sum()/self.chgcar.ngridpts) chg_in_sphere = np.sum(self.chgcar.data['total'] * mask) / mask.size / vol_sphere int_den.append(chg_in_sphere) self._extrema_df['avg_charge_den'] = int_den self._extrema_df.sort_values(by=['avg_charge_den'], inplace=True) self._extrema_df.reset_index(drop=True, inplace=True)
138,592
Queries the COD for all cod ids associated with a formula. Requires mysql executable to be in the path. Args: formula (str): Formula. Returns: List of cod ids.
def get_cod_ids(self, formula): # TODO: Remove dependency on external mysql call. MySQL-python package does not support Py3! # Standardize formula to the version used by COD. sql = 'select file from data where formula="- %s -"' % \ Composition(formula).hill_formula text = self.query(sql).split("\n") cod_ids = [] for l in text: m = re.search(r"(\d+)", l) if m: cod_ids.append(int(m.group(1))) return cod_ids
138,609
Queries the COD for a structure by id. Args: cod_id (int): COD id. kwargs: All kwargs supported by :func:`pymatgen.core.structure.Structure.from_str`. Returns: A Structure.
def get_structure_by_id(self, cod_id, **kwargs): r = requests.get("http://www.crystallography.net/cod/%s.cif" % cod_id) return Structure.from_str(r.text, fmt="cif", **kwargs)
138,610
Queries the COD for structures by formula. Requires mysql executable to be in the path. Args: cod_id (int): COD id. kwargs: All kwargs supported by :func:`pymatgen.core.structure.Structure.from_str`. Returns: A list of dict of the format [{"structure": Structure, "cod_id": cod_id, "sg": "P n m a"}]
def get_structure_by_formula(self, formula, **kwargs): structures = [] sql = 'select file, sg from data where formula="- %s -"' % \ Composition(formula).hill_formula text = self.query(sql).split("\n") text.pop(0) for l in text: if l.strip(): cod_id, sg = l.split("\t") r = requests.get("http://www.crystallography.net/cod/%s.cif" % cod_id.strip()) try: s = Structure.from_str(r.text, fmt="cif", **kwargs) structures.append({"structure": s, "cod_id": int(cod_id), "sg": sg}) except Exception: import warnings warnings.warn("\nStructure.from_str failed while parsing CIF file:\n%s" % r.text) raise return structures
138,611
get a Structure with Mulliken and Loewdin charges as site properties Args: structure_filename: filename of POSCAR Returns: Structure Object with Mulliken and Loewdin charges as site properties
def get_structure_with_charges(self, structure_filename): struct = Structure.from_file(structure_filename) Mulliken = self.Mulliken Loewdin = self.Loewdin site_properties = {"Mulliken Charges": Mulliken, "Loewdin Charges": Loewdin} new_struct = struct.copy(site_properties=site_properties) return new_struct
138,662
Get the decomposition leading to lowest cost Args: composition: Composition as a pymatgen.core.structure.Composition Returns: Decomposition as a dict of {Entry: amount}
def get_lowest_decomposition(self, composition): entries_list = [] elements = [e.symbol for e in composition.elements] for i in range(len(elements)): for combi in itertools.combinations(elements, i + 1): chemsys = [Element(e) for e in combi] x = self.costdb.get_entries(chemsys) entries_list.extend(x) try: pd = PhaseDiagram(entries_list) return pd.get_decomposition(composition) except IndexError: raise ValueError("Error during PD building; most likely, " "cost data does not exist!")
138,680
Get best estimate of minimum cost/mol based on known data Args: comp: Composition as a pymatgen.core.structure.Composition Returns: float of cost/mol
def get_cost_per_mol(self, comp): comp = comp if isinstance(comp, Composition) else Composition(comp) decomp = self.get_lowest_decomposition(comp) return sum(k.energy_per_atom * v * comp.num_atoms for k, v in decomp.items())
138,681
Get best estimate of minimum cost/kg based on known data Args: comp: Composition as a pymatgen.core.structure.Composition Returns: float of cost/kg
def get_cost_per_kg(self, comp): comp = comp if isinstance(comp, Composition) else Composition(comp) return self.get_cost_per_mol(comp) / ( comp.weight.to("kg") * const.N_A)
138,682
Return the list of absolute filepaths in the directory. Args: wildcard: String of tokens separated by "|". Each token represents a pattern. If wildcard is not None, we return only those files that match the given shell pattern (uses fnmatch). Example: wildcard="*.nc|*.pdf" selects only those files that end with .nc or .pdf
def list_filepaths(self, wildcard=None): # Select the files in the directory. fnames = [f for f in os.listdir(self.path)] filepaths = filter(os.path.isfile, [os.path.join(self.path, f) for f in fnames]) # Filter using the shell patterns. if wildcard is not None: filepaths = WildCard(wildcard).filter(filepaths) return filepaths
138,691
Finds the lowest entry energy for entries matching the composition. Entries with non-negative formation energies are excluded. If no entry is found, use the convex hull energy for the composition. Args: pd (PhaseDiagram): PhaseDiagram object. composition (Composition): Composition object that the target entry should match. Returns: The lowest entry energy among entries matching the composition.
def _get_entry_energy(pd, composition): candidate = [i.energy_per_atom for i in pd.qhull_entries if i.composition.fractional_composition == composition.fractional_composition] if not candidate: warnings.warn("The reactant " + composition.reduced_formula + " has no matching entry with negative formation" " energy, instead convex hull energy for this" " composition will be used for reaction energy " "calculation. ") return pd.get_hull_energy(composition) else: min_entry_energy = min(candidate) return min_entry_energy * composition.num_atoms
138,715
Computes the grand potential Phi at a given composition and chemical potential(s). Args: composition (Composition): Composition object. Returns: Grand potential at a given composition at chemical potential(s).
def _get_grand_potential(self, composition): if self.use_hull_energy: grand_potential = self.pd_non_grand.get_hull_energy(composition) else: grand_potential = InterfacialReactivity._get_entry_energy( self.pd_non_grand, composition) grand_potential -= sum([composition[e] * mu for e, mu in self.pd.chempots.items()]) if self.norm: # Normalizes energy to the composition excluding element(s) # from reservoir. grand_potential /= sum([composition[el] for el in composition if el not in self.pd.chempots]) return grand_potential
138,716
Computes reaction energy in eV/atom at mixing ratio x : (1-x) for self.comp1 : self.comp2. Args: x (float): Mixing ratio x of reactants, a float between 0 and 1. Returns: Reaction energy.
def _get_energy(self, x): return self.pd.get_hull_energy(self.comp1 * x + self.comp2 * (1-x)) - \ self.e1 * x - self.e2 * (1-x)
138,717
Generates balanced reaction at mixing ratio x : (1-x) for self.comp1 : self.comp2. Args: x (float): Mixing ratio x of reactants, a float between 0 and 1. Returns: Reaction object.
def _get_reaction(self, x): mix_comp = self.comp1 * x + self.comp2 * (1-x) decomp = self.pd.get_decomposition(mix_comp) # Uses original composition for reactants. if np.isclose(x, 0): reactant = [self.c2_original] elif np.isclose(x, 1): reactant = [self.c1_original] else: reactant = list(set([self.c1_original, self.c2_original])) if self.grand: reactant += [Composition(e.symbol) for e, v in self.pd.chempots.items()] product = [Composition(k.name) for k, v in decomp.items()] reaction = Reaction(reactant, product) x_original = self._get_original_composition_ratio(reaction) if np.isclose(x_original, 1): reaction.normalize_to(self.c1_original, x_original) else: reaction.normalize_to(self.c2_original, 1-x_original) return reaction
138,718
Computes total number of atoms in a reaction formula for elements not in external reservoir. This method is used in the calculation of reaction energy per mol of reaction formula. Args: rxt (Reaction): a reaction. Returns: Total number of atoms for non_reservoir elements.
def _get_elmt_amt_in_rxt(self, rxt): return sum([rxt.get_el_amount(e) for e in self.pd.elements])
138,719
Returns the molar mixing ratio between the reactants with ORIGINAL ( instead of processed) compositions for a reaction. Args: reaction (Reaction): Reaction object that contains the original reactant compositions. Returns: The molar mixing ratio between the original reactant compositions for a reaction.
def _get_original_composition_ratio(self, reaction): if self.c1_original == self.c2_original: return 1 c1_coeff = reaction.get_coeff(self.c1_original) \ if self.c1_original in reaction.reactants else 0 c2_coeff = reaction.get_coeff(self.c2_original) \ if self.c2_original in reaction.reactants else 0 return c1_coeff * 1.0 / (c1_coeff + c2_coeff)
138,725
Returns a dict that maps each atomic symbol to a unique integer starting from 1. Args: structure (Structure) Returns: dict
def get_atom_map(structure): syms = [site.specie.symbol for site in structure] unique_pot_atoms = [] [unique_pot_atoms.append(i) for i in syms if not unique_pot_atoms.count(i)] atom_map = {} for i, atom in enumerate(unique_pot_atoms): atom_map[atom] = i + 1 return atom_map
138,736
Return the absorbing atom symboll and site index in the given structure. Args: absorbing_atom (str/int): symbol or site index structure (Structure) Returns: str, int: symbol and site index
def get_absorbing_atom_symbol_index(absorbing_atom, structure): if isinstance(absorbing_atom, str): return absorbing_atom, structure.indices_from_symbol(absorbing_atom)[0] elif isinstance(absorbing_atom, int): return str(structure[absorbing_atom].specie), absorbing_atom else: raise ValueError("absorbing_atom must be either specie symbol or site index")
138,737
Static method to create Header object from cif_file Args: cif_file: cif_file path and name source: User supplied identifier, i.e. for Materials Project this would be the material ID number comment: User comment that goes in header Returns: Header Object
def from_cif_file(cif_file, source='', comment=''): r = CifParser(cif_file) structure = r.get_structures()[0] return Header(structure, source, comment)
138,739
Reads Header string from either a HEADER file or feff.inp file Will also read a header from a non-pymatgen generated feff.inp file Args: filename: File name containing the Header data. Returns: Reads header string.
def header_string_from_file(filename='feff.inp'): with zopen(filename, "r") as fobject: f = fobject.readlines() feff_header_str = [] ln = 0 # Checks to see if generated by pymatgen try: feffpmg = f[0].find("pymatgen") except IndexError: feffpmg = False # Reads pymatgen generated header or feff.inp file if feffpmg: nsites = int(f[8].split()[2]) for line in f: ln += 1 if ln <= nsites + 9: feff_header_str.append(line) else: # Reads header from header from feff.inp file from unknown # source end = 0 for line in f: if (line[0] == "*" or line[0] == "T") and end == 0: feff_header_str.append(line.replace("\r", "")) else: end = 1 return ''.join(feff_header_str)
138,740
Reads Header string and returns Header object if header was generated by pymatgen. Note: Checks to see if generated by pymatgen, if not it is impossible to generate structure object so it is not possible to generate header object and routine ends Args: header_str: pymatgen generated feff.inp header Returns: Structure object.
def from_string(header_str): lines = tuple(clean_lines(header_str.split("\n"), False)) comment1 = lines[0] feffpmg = comment1.find("pymatgen") if feffpmg: comment2 = ' '.join(lines[1].split()[2:]) source = ' '.join(lines[2].split()[2:]) basis_vec = lines[6].split(":")[-1].split() # a, b, c a = float(basis_vec[0]) b = float(basis_vec[1]) c = float(basis_vec[2]) lengths = [a, b, c] # alpha, beta, gamma basis_ang = lines[7].split(":")[-1].split() alpha = float(basis_ang[0]) beta = float(basis_ang[1]) gamma = float(basis_ang[2]) angles = [alpha, beta, gamma] lattice = Lattice.from_lengths_and_angles(lengths, angles) natoms = int(lines[8].split(":")[-1].split()[0]) atomic_symbols = [] for i in range(9, 9 + natoms): atomic_symbols.append(lines[i].split()[2]) # read the atomic coordinates coords = [] for i in range(natoms): toks = lines[i + 9].split() coords.append([float(s) for s in toks[3:]]) struct = Structure(lattice, atomic_symbols, coords, False, False, False) h = Header(struct, source, comment2) return h else: return "Header not generated by pymatgen, cannot return header object"
138,741
Writes Header into filename on disk. Args: filename: Filename and path for file to be written to disk
def write_file(self, filename='HEADER'): with open(filename, "w") as f: f.write(str(self) + "\n")
138,743
Reads atomic shells from file such as feff.inp or ATOMS file The lines are arranged as follows: x y z ipot Atom Symbol Distance Number with distance being the shell radius and ipot an integer identifying the potential used. Args: filename: File name containing atomic coord data. Returns: Atoms string.
def atoms_string_from_file(filename): with zopen(filename, "rt") as fobject: f = fobject.readlines() coords = 0 atoms_str = [] for line in f: if coords == 0: find_atoms = line.find("ATOMS") if find_atoms >= 0: coords = 1 if coords == 1 and not ("END" in line): atoms_str.append(line.replace("\r", "")) return ''.join(atoms_str)
138,746
Parse the feff input file and return the atomic cluster as a Molecule object. Args: filename (str): path the feff input file Returns: Molecule: the atomic cluster as Molecule object. The absorbing atom is the one at the origin.
def cluster_from_file(filename): atoms_string = Atoms.atoms_string_from_file(filename) line_list = [l.split() for l in atoms_string.splitlines()[3:]] coords = [] symbols = [] for l in line_list: if l: coords.append([float(i) for i in l[:3]]) symbols.append(l[4]) return Molecule(symbols, coords)
138,747
Creates Tags object from a dictionary. Args: d: Dict of feff parameters and values. Returns: Tags object
def from_dict(d): i = Tags() for k, v in d.items(): if k not in ("@module", "@class"): i[k] = v return i
138,752
Returns a string representation of the Tags. The reason why this method is different from the __str__ method is to provide options for pretty printing. Args: sort_keys: Set to True to sort the Feff parameters alphabetically. Defaults to False. pretty: Set to True for pretty aligned output. Defaults to False. Returns: String representation of Tags.
def get_string(self, sort_keys=False, pretty=False): keys = self.keys() if sort_keys: keys = sorted(keys) lines = [] for k in keys: if isinstance(self[k], dict): if k in ["ELNES", "EXELFS"]: lines.append([k, self._stringify_val(self[k]["ENERGY"])]) beam_energy = self._stringify_val(self[k]["BEAM_ENERGY"]) beam_energy_list = beam_energy.split() if int(beam_energy_list[1]) == 0: # aver=0, specific beam direction lines.append([beam_energy]) lines.append([self._stringify_val(self[k]["BEAM_DIRECTION"])]) else: # no cross terms for orientation averaged spectrum beam_energy_list[2] = str(0) lines.append([self._stringify_val(beam_energy_list)]) lines.append([self._stringify_val(self[k]["ANGLES"])]) lines.append([self._stringify_val(self[k]["MESH"])]) lines.append([self._stringify_val(self[k]["POSITION"])]) else: lines.append([k, self._stringify_val(self[k])]) if pretty: return tabulate(lines) else: return str_delimited(lines, None, " ")
138,753
Creates a Feff_tag dictionary from a PARAMETER or feff.inp file. Args: filename: Filename for either PARAMETER or feff.inp file Returns: Feff_tag object
def from_file(filename="feff.inp"): with zopen(filename, "rt") as f: lines = list(clean_lines(f.readlines())) params = {} eels_params = [] ieels = -1 ieels_max = -1 for i, line in enumerate(lines): m = re.match(r"([A-Z]+\d*\d*)\s*(.*)", line) if m: key = m.group(1).strip() val = m.group(2).strip() val = Tags.proc_val(key, val) if key not in ("ATOMS", "POTENTIALS", "END", "TITLE"): if key in ["ELNES", "EXELFS"]: ieels = i ieels_max = ieels + 5 else: params[key] = val if ieels >= 0: if i >= ieels and i <= ieels_max: if i == ieels + 1: if int(line.split()[1]) == 1: ieels_max -= 1 eels_params.append(line) if eels_params: if len(eels_params) == 6: eels_keys = ['BEAM_ENERGY', 'BEAM_DIRECTION', 'ANGLES', 'MESH', 'POSITION'] else: eels_keys = ['BEAM_ENERGY', 'ANGLES', 'MESH', 'POSITION'] eels_dict = {"ENERGY": Tags._stringify_val(eels_params[0].split()[1:])} for k, v in zip(eels_keys, eels_params[1:]): eels_dict[k] = str(v) params[str(eels_params[0].split()[0])] = eels_dict return Tags(params)
138,755
Static helper method to convert Feff parameters to proper types, e.g. integers, floats, lists, etc. Args: key: Feff parameter key val: Actual value of Feff parameter.
def proc_val(key, val): list_type_keys = list(VALID_FEFF_TAGS) del list_type_keys[list_type_keys.index("ELNES")] del list_type_keys[list_type_keys.index("EXELFS")] boolean_type_keys = () float_type_keys = ("S02", "EXAFS", "RPATH") def smart_int_or_float(numstr): if numstr.find(".") != -1 or numstr.lower().find("e") != -1: return float(numstr) else: return int(numstr) try: if key.lower() == 'cif': m = re.search(r"\w+.cif", val) return m.group(0) if key in list_type_keys: output = list() toks = re.split(r"\s+", val) for tok in toks: m = re.match(r"(\d+)\*([\d\.\-\+]+)", tok) if m: output.extend([smart_int_or_float(m.group(2))] * int(m.group(1))) else: output.append(smart_int_or_float(tok)) return output if key in boolean_type_keys: m = re.search(r"^\W+([TtFf])", val) if m: if m.group(1) == "T" or m.group(1) == "t": return True else: return False raise ValueError(key + " should be a boolean type!") if key in float_type_keys: return float(val) except ValueError: return val.capitalize() return val.capitalize()
138,756
Reads Potential parameters from a feff.inp or FEFFPOT file. The lines are arranged as follows: ipot Z element lmax1 lmax2 stoichometry spinph Args: filename: file name containing potential data. Returns: FEFFPOT string.
def pot_string_from_file(filename='feff.inp'): with zopen(filename, "rt") as f_object: f = f_object.readlines() ln = -1 pot_str = ["POTENTIALS\n"] pot_tag = -1 pot_data = 0 pot_data_over = 1 sep_line_pattern = [re.compile('ipot.*Z.*tag.*lmax1.*lmax2.*spinph'), re.compile('^[*]+.*[*]+$')] for line in f: if pot_data_over == 1: ln += 1 if pot_tag == -1: pot_tag = line.find("POTENTIALS") ln = 0 if pot_tag >= 0 and ln > 0 and pot_data_over > 0: try: if len(sep_line_pattern[0].findall(line)) > 0 or \ len(sep_line_pattern[1].findall(line)) > 0: pot_str.append(line) elif int(line.split()[0]) == pot_data: pot_data += 1 pot_str.append(line.replace("\r", "")) except (ValueError, IndexError): if pot_data > 0: pot_data_over = 0 return ''.join(pot_str).rstrip('\n')
138,759
Returns a `Lattice` object from a dictionary with the Abinit variables `acell` and either `rprim` in Bohr or `angdeg` If acell is not given, the Abinit default is used i.e. [1,1,1] Bohr Args: cls: Lattice class to be instantiated. pymatgen.core.lattice.Lattice if `cls` is None Example: lattice_from_abivars(acell=3*[10], rprim=np.eye(3))
def lattice_from_abivars(cls=None, *args, **kwargs): cls = Lattice if cls is None else cls kwargs.update(dict(*args)) d = kwargs rprim = d.get("rprim", None) angdeg = d.get("angdeg", None) acell = d["acell"] if rprim is not None: if angdeg is not None: raise ValueError("angdeg and rprimd are mutually exclusive") rprim = np.reshape(rprim, (3,3)) rprimd = [float(acell[i]) * rprim[i] for i in range(3)] # Call pymatgen constructors (note that pymatgen uses Angstrom instead of Bohr). return cls(ArrayWithUnit(rprimd, "bohr").to("ang")) elif angdeg is not None: angdeg = np.reshape(angdeg, 3) if np.any(angdeg <= 0.): raise ValueError("Angles must be > 0 but got %s" % str(angdeg)) if angdeg.sum() >= 360.: raise ValueError("The sum of angdeg must be lower that 360, angdeg %s" % str(angdeg)) # This code follows the implementation in ingeo.F90 # See also http://www.abinit.org/doc/helpfiles/for-v7.8/input_variables/varbas.html#angdeg tol12 = 1e-12 pi, sin, cos, sqrt = np.pi, np.sin, np.cos, np.sqrt rprim = np.zeros((3,3)) if (abs(angdeg[0] -angdeg[1]) < tol12 and abs(angdeg[1] - angdeg[2]) < tol12 and abs(angdeg[0]-90.) + abs(angdeg[1]-90.) + abs(angdeg[2] -90) > tol12): # Treat the case of equal angles (except all right angles): # generates trigonal symmetry wrt third axis cosang = cos(pi * angdeg[0]/180.0) a2 = 2.0/3.0*(1.0 - cosang) aa = sqrt(a2) cc = sqrt(1.0-a2) rprim[0,0] = aa ; rprim[0,1] = 0.0 ; rprim[0,2] = cc rprim[1,0] = -0.5*aa; rprim[1,1] = sqrt(3.0)*0.5*aa ; rprim[1,2] = cc rprim[2,0] = -0.5*aa; rprim[2,1] = -sqrt(3.0)*0.5*aa; rprim[2,2] = cc else: # Treat all the other cases rprim[0,0] = 1.0 rprim[1,0] = cos(pi*angdeg[2]/180.) rprim[1,1] = sin(pi*angdeg[2]/180.) rprim[2,0] = cos(pi*angdeg[1]/180.) rprim[2,1] = (cos(pi*angdeg[0]/180.0)-rprim[1,0]*rprim[2,0])/rprim[1,1] rprim[2,2] = sqrt(1.0-rprim[2,0]**2-rprim[2,1]**2) # Call pymatgen constructors (note that pymatgen uses Angstrom instead of Bohr). rprimd = [float(acell[i]) * rprim[i] for i in range(3)] return cls(ArrayWithUnit(rprimd, "bohr").to("ang")) raise ValueError("Don't know how to construct a Lattice from dict:\n%s" % pformat(d))
138,765
Constructor for Electrons object. Args: comment: String comment for Electrons charge: Total charge of the system. Default is 0.
def __init__(self, spin_mode="polarized", smearing="fermi_dirac:0.1 eV", algorithm=None, nband=None, fband=None, charge=0.0, comment=None): # occupancies=None, super().__init__() self.comment = comment self.smearing = Smearing.as_smearing(smearing) self.spin_mode = SpinMode.as_spinmode(spin_mode) self.nband = nband self.fband = fband self.charge = charge self.algorithm = algorithm
138,778
Convenient static constructor for a Monkhorst-Pack mesh. Args: ngkpt: Subdivisions N_1, N_2 and N_3 along reciprocal lattice vectors. shiftk: Shift to be applied to the kpoints. use_symmetries: Use spatial symmetries to reduce the number of k-points. use_time_reversal: Use time-reversal symmetry to reduce the number of k-points. Returns: :class:`KSampling` object.
def monkhorst(cls, ngkpt, shiftk=(0.5, 0.5, 0.5), chksymbreak=None, use_symmetries=True, use_time_reversal=True, comment=None): return cls( kpts=[ngkpt], kpt_shifts=shiftk, use_symmetries=use_symmetries, use_time_reversal=use_time_reversal, chksymbreak=chksymbreak, comment=comment if comment else "Monkhorst-Pack scheme with user-specified shiftk")
138,784
Convenient static constructor for an automatic Monkhorst-Pack mesh. Args: structure: :class:`Structure` object. ngkpt: Subdivisions N_1, N_2 and N_3 along reciprocal lattice vectors. use_symmetries: Use spatial symmetries to reduce the number of k-points. use_time_reversal: Use time-reversal symmetry to reduce the number of k-points. Returns: :class:`KSampling` object.
def monkhorst_automatic(cls, structure, ngkpt, use_symmetries=True, use_time_reversal=True, chksymbreak=None, comment=None): sg = SpacegroupAnalyzer(structure) #sg.get_crystal_system() #sg.get_point_group_symbol() # TODO nshiftk = 1 #shiftk = 3*(0.5,) # this is the default shiftk = 3*(0.5,) #if lattice.ishexagonal: #elif lattice.isbcc #elif lattice.isfcc return cls.monkhorst( ngkpt, shiftk=shiftk, use_symmetries=use_symmetries, use_time_reversal=use_time_reversal, chksymbreak=chksymbreak, comment=comment if comment else "Automatic Monkhorst-Pack scheme")
138,785
Static constructor for path in k-space. Args: structure: :class:`Structure` object. kpath_bounds: List with the reduced coordinates of the k-points defining the path. ndivsm: Number of division for the smallest segment. comment: Comment string. Returns: :class:`KSampling` object.
def _path(cls, ndivsm, structure=None, kpath_bounds=None, comment=None): if kpath_bounds is None: # Compute the boundaries from the input structure. from pymatgen.symmetry.bandstructure import HighSymmKpath sp = HighSymmKpath(structure) # Flat the array since "path" is a a list of lists! kpath_labels = [] for labels in sp.kpath["path"]: kpath_labels.extend(labels) kpath_bounds = [] for label in kpath_labels: red_coord = sp.kpath["kpoints"][label] #print("label %s, red_coord %s" % (label, red_coord)) kpath_bounds.append(red_coord) return cls(mode=KSamplingModes.path, num_kpts=ndivsm, kpts=kpath_bounds, comment=comment if comment else "K-Path scheme")
138,786
Returns an automatic Kpoint object based on a structure and a kpoint density. Uses Gamma centered meshes for hexagonal cells and Monkhorst-Pack grids otherwise. Algorithm: Uses a simple approach scaling the number of divisions along each reciprocal lattice vector proportional to its length. Args: structure: Input structure kppa: Grid density
def automatic_density(cls, structure, kppa, chksymbreak=None, use_symmetries=True, use_time_reversal=True, shifts=(0.5, 0.5, 0.5)): lattice = structure.lattice lengths = lattice.abc shifts = np.reshape(shifts, (-1, 3)) ngrid = kppa / structure.num_sites / len(shifts) mult = (ngrid * lengths[0] * lengths[1] * lengths[2]) ** (1 / 3.) num_div = [int(round(1.0 / lengths[i] * mult)) for i in range(3)] # ensure that num_div[i] > 0 num_div = [i if i > 0 else 1 for i in num_div] angles = lattice.angles hex_angle_tol = 5 # in degrees hex_length_tol = 0.01 # in angstroms right_angles = [i for i in range(3) if abs(angles[i] - 90) < hex_angle_tol] hex_angles = [i for i in range(3) if abs(angles[i] - 60) < hex_angle_tol or abs(angles[i] - 120) < hex_angle_tol] is_hexagonal = (len(right_angles) == 2 and len(hex_angles) == 1 and abs(lengths[right_angles[0]] - lengths[right_angles[1]]) < hex_length_tol) #style = KSamplingModes.gamma #if not is_hexagonal: # num_div = [i + i % 2 for i in num_div] # style = KSamplingModes.monkhorst comment = "pymatge.io.abinit generated KPOINTS with grid density = " + "{} / atom".format(kppa) return cls( mode="monkhorst", num_kpts=0, kpts=[num_div], kpt_shifts=shifts, use_symmetries=use_symmetries, use_time_reversal=use_time_reversal, chksymbreak=chksymbreak, comment=comment)
138,789
Return a Dos object interpolating bands Args: partial_dos: if True, projections will be interpolated as well and partial doses will be return. Projections must be available in the loader. npts_mu: number of energy points of the Dos T: parameter used to smooth the Dos
def get_dos(self, partial_dos=False, npts_mu=10000, T=None): spin = self.data.spin if isinstance(self.data.spin,int) else 1 energies, densities, vvdos, cdos = BL.BTPDOS(self.eband, self.vvband, npts=npts_mu) if T is not None: densities = BL.smoothen_DOS(energies, densities, T) tdos = Dos(self.efermi / units.eV, energies / units.eV, {Spin(spin): densities}) if partial_dos: tdos = self.get_partial_doses(tdos=tdos, npts_mu=npts_mu, T=T) return tdos
138,820
Reactants and products to be specified as dict of {Composition: coeff}. Args: reactants_coeffs ({Composition: float}): Reactants as dict of {Composition: amt}. products_coeffs ({Composition: float}): Products as dict of {Composition: amt}.
def __init__(self, reactants_coeffs, products_coeffs): # sum reactants and products all_reactants = sum([k * v for k, v in reactants_coeffs.items()], Composition({})) all_products = sum([k * v for k, v in products_coeffs.items()], Composition({})) if not all_reactants.almost_equals(all_products, rtol=0, atol=self.TOLERANCE): raise ReactionError("Reaction is unbalanced!") self._els = all_reactants.elements self.reactants_coeffs = reactants_coeffs self.products_coeffs = products_coeffs # calculate net reaction coefficients self._coeffs = [] self._els = [] self._all_comp = [] for c in set(list(reactants_coeffs.keys()) + list(products_coeffs.keys())): coeff = products_coeffs.get(c, 0) - reactants_coeffs.get(c, 0) if abs(coeff) > self.TOLERANCE: self._all_comp.append(c) self._coeffs.append(coeff)
138,830
Calculates the energy of the reaction. Args: energies ({Composition: float}): Energy for each composition. E.g ., {comp1: energy1, comp2: energy2}. Returns: reaction energy as a float.
def calculate_energy(self, energies): return sum([amt * energies[c] for amt, c in zip(self._coeffs, self._all_comp)])
138,831
Normalizes the reaction to one of the compositions. By default, normalizes such that the composition given has a coefficient of 1. Another factor can be specified. Args: comp (Composition): Composition to normalize to factor (float): Factor to normalize to. Defaults to 1.
def normalize_to(self, comp, factor=1): scale_factor = abs(1 / self._coeffs[self._all_comp.index(comp)] * factor) self._coeffs = [c * scale_factor for c in self._coeffs]
138,832
Normalizes the reaction to one of the elements. By default, normalizes such that the amount of the element is 1. Another factor can be specified. Args: element (Element/Specie): Element to normalize to. factor (float): Factor to normalize to. Defaults to 1.
def normalize_to_element(self, element, factor=1): all_comp = self._all_comp coeffs = self._coeffs current_el_amount = sum([all_comp[i][element] * abs(coeffs[i]) for i in range(len(all_comp))]) / 2 scale_factor = factor / current_el_amount self._coeffs = [c * scale_factor for c in coeffs]
138,833
Returns the amount of the element in the reaction. Args: element (Element/Specie): Element in the reaction Returns: Amount of that element in the reaction.
def get_el_amount(self, element): return sum([self._all_comp[i][element] * abs(self._coeffs[i]) for i in range(len(self._all_comp))]) / 2
138,834
Generates a balanced reaction from a string. The reaction must already be balanced. Args: rxn_string: The reaction string. For example, "4 Li + O2-> 2Li2O" Returns: BalancedReaction
def from_string(rxn_string): rct_str, prod_str = rxn_string.split("->") def get_comp_amt(comp_str): return {Composition(m.group(2)): float(m.group(1) or 1) for m in re.finditer(r"([\d\.]*(?:[eE]-?[\d\.]+)?)\s*([A-Z][\w\.\(\)]*)", comp_str)} return BalancedReaction(get_comp_amt(rct_str), get_comp_amt(prod_str))
138,843
Reactants and products to be specified as list of pymatgen.core.structure.Composition. e.g., [comp1, comp2] Args: reactants ([Composition]): List of reactants. products ([Composition]): List of products.
def __init__(self, reactants, products): self._input_reactants = reactants self._input_products = products self._all_comp = reactants + products els = set() for c in self.all_comp: els.update(c.elements) els = sorted(els) # Solving: # | 0 R | # [ x y ] | | = [ 1 .. 1 0 .. 0] # | C P | # x, y are the coefficients of the reactants and products # R, P the matrices of the element compositions of the reactants # and products # C is a constraint matrix that chooses which compositions to normalize to # try just normalizing to just the first product rp_mat = np.array([[c[el] for el in els] for c in self._all_comp]) f_mat = np.concatenate([np.zeros((len(rp_mat), 1)), rp_mat], axis=1) f_mat[len(reactants), 0] = 1 # set normalization by the first product b = np.zeros(len(els) + 1) b[0] = 1 coeffs, res, _, s = np.linalg.lstsq(f_mat.T, b, rcond=None) # for whatever reason the rank returned by lstsq isn't always correct # seems to be a problem with low-rank M but inconsistent system # M x = b. # the singular values seem ok, so checking based on those if sum(np.abs(s) > 1e-12) == len(f_mat): if res.size > 0 and res[0] > self.TOLERANCE ** 2: raise ReactionError("Reaction cannot be balanced.") else: ok = True else: # underdetermined, add product constraints to make non-singular ok = False n_constr = len(rp_mat) - np.linalg.matrix_rank(rp_mat) f_mat = np.concatenate([np.zeros((len(rp_mat), n_constr)), rp_mat], axis=1) b = np.zeros(f_mat.shape[1]) b[:n_constr] = 1 # try setting C to all n_constr combinations of products for inds in itertools.combinations(range(len(reactants), len(f_mat)), n_constr): f_mat[:, :n_constr] = 0 for j, i in enumerate(inds): f_mat[i, j] = 1 # try a solution coeffs, res, _, s = np.linalg.lstsq(f_mat.T, b, rcond=None) if sum(np.abs(s) > 1e-12) == len(self._all_comp) and \ (res.size == 0 or res[0] < self.TOLERANCE ** 2): ok = True break if not ok: r_mat = np.array([[c[el] for el in els] for c in reactants]) reactants_underdetermined = ( np.linalg.lstsq(r_mat.T, np.zeros(len(els)), rcond=None)[2] != len(reactants)) if reactants_underdetermined: raise ReactionError("Reaction cannot be balanced. " "Reactants are underdetermined.") raise ReactionError("Reaction cannot be balanced. " "Unknown error, please report.") self._els = els self._coeffs = coeffs
138,844
Compute the energy of a structure using Tersoff potential. Args: structure: pymatgen.core.structure.Structure gulp_cmd: GULP command if not in standard place
def get_energy_tersoff(structure, gulp_cmd='gulp'): gio = GulpIO() gc = GulpCaller(gulp_cmd) gin = gio.tersoff_input(structure) gout = gc.run(gin) return gio.get_energy(gout)
138,852
Compute the energy of a structure using Buckingham potential. Args: structure: pymatgen.core.structure.Structure gulp_cmd: GULP command if not in standard place keywords: GULP first line keywords valence_dict: {El: valence}. Needed if the structure is not charge neutral.
def get_energy_buckingham(structure, gulp_cmd='gulp', keywords=('optimise', 'conp', 'qok'), valence_dict=None): gio = GulpIO() gc = GulpCaller(gulp_cmd) gin = gio.buckingham_input( structure, keywords, valence_dict=valence_dict ) gout = gc.run(gin) return gio.get_energy(gout)
138,853
Relax a structure and compute the energy using Buckingham potential. Args: structure: pymatgen.core.structure.Structure gulp_cmd: GULP command if not in standard place keywords: GULP first line keywords valence_dict: {El: valence}. Needed if the structure is not charge neutral.
def get_energy_relax_structure_buckingham(structure, gulp_cmd='gulp', keywords=('optimise', 'conp'), valence_dict=None): gio = GulpIO() gc = GulpCaller(gulp_cmd) gin = gio.buckingham_input( structure, keywords, valence_dict=valence_dict ) gout = gc.run(gin) energy = gio.get_energy(gout) relax_structure = gio.get_relaxed_structure(gout) return energy, relax_structure
138,854
Specifies GULP library file to read species and potential parameters. If using library don't specify species and potential in the input file and vice versa. Make sure the elements of structure are in the library file. Args: file_name: Name of GULP library file Returns: GULP input string specifying library option
def library_line(self, file_name): gulplib_set = lambda: 'GULP_LIB' in os.environ.keys() readable = lambda f: os.path.isfile(f) and os.access(f, os.R_OK) #dirpath, fname = os.path.split(file_name) #if dirpath: # Full path specified # if readable(file_name): # gin = 'library ' + file_name # else: # raise GulpError('GULP Library not found') #else: # fpath = os.path.join(os.getcwd(), file_name) # Check current dir # if readable(fpath): # gin = 'library ' + fpath # elif gulplib_set(): # fpath = os.path.join(os.environ['GULP_LIB'], file_name) # if readable(fpath): # gin = 'library ' + file_name # else: # raise GulpError('GULP Library not found') # else: # raise GulpError('GULP Library not found') #gin += "\n" #return gin gin = "" dirpath, fname = os.path.split(file_name) if dirpath and readable(file_name): # Full path specified gin = 'library ' + file_name else: fpath = os.path.join(os.getcwd(), file_name) # Check current dir if readable(fpath): gin = 'library ' + fpath elif gulplib_set(): # Check the GULP_LIB path fpath = os.path.join(os.environ['GULP_LIB'], file_name) if readable(fpath): gin = 'library ' + file_name if gin: return gin + "\n" else: raise GulpError('GULP Library not found')
138,856
Gets a GULP input for an oxide structure and buckingham potential from library. Args: structure: pymatgen.core.structure.Structure keywords: GULP first line keywords. library (Default=None): File containing the species and potential. uc (Default=True): Unit Cell Flag. valence_dict: {El: valence}
def buckingham_input(self, structure, keywords, library=None, uc=True, valence_dict=None): gin = self.keyword_line(*keywords) gin += self.structure_lines(structure, symm_flg=not uc) if not library: gin += self.buckingham_potential(structure, valence_dict) else: gin += self.library_line(library) return gin
138,857
Gets a GULP input with Tersoff potential for an oxide structure Args: structure: pymatgen.core.structure.Structure periodic (Default=False): Flag denoting whether periodic boundary conditions are used library (Default=None): File containing the species and potential. uc (Default=True): Unit Cell Flag. keywords: GULP first line keywords.
def tersoff_input(self, structure, periodic=False, uc=True, *keywords): #gin="static noelectrostatics \n " gin = self.keyword_line(*keywords) gin += self.structure_lines( structure, cell_flg=periodic, frac_flg=periodic, anion_shell_flg=False, cation_shell_flg=False, symm_flg=not uc ) gin += self.tersoff_potential(structure) return gin
138,859
Generate the species, tersoff potential lines for an oxide structure Args: structure: pymatgen.core.structure.Structure
def tersoff_potential(self, structure): bv = BVAnalyzer() el = [site.specie.symbol for site in structure] valences = bv.get_valences(structure) el_val_dict = dict(zip(el, valences)) gin = "species \n" qerfstring = "qerfc\n" for key in el_val_dict.keys(): if key != "O" and el_val_dict[key] % 1 != 0: raise SystemError("Oxide has mixed valence on metal") specie_string = key + " core " + str(el_val_dict[key]) + "\n" gin += specie_string qerfstring += key + " " + key + " 0.6000 10.0000 \n" gin += "# noelectrostatics \n Morse \n" met_oxi_ters = TersoffPotential().data for key in el_val_dict.keys(): if key != "O": metal = key + "(" + str(int(el_val_dict[key])) + ")" ters_pot_str = met_oxi_ters[metal] gin += ters_pot_str gin += qerfstring return gin
138,860
Initialize with the executable if not in the standard path Args: cmd: Command. Defaults to gulp.
def __init__(self, cmd='gulp'): def is_exe(f): return os.path.isfile(f) and os.access(f, os.X_OK) fpath, fname = os.path.split(cmd) if fpath: if is_exe(cmd): self._gulp_cmd = cmd return else: for path in os.environ['PATH'].split(os.pathsep): path = path.strip('"') file = os.path.join(path, cmd) if is_exe(file): self._gulp_cmd = file return raise GulpError("Executable not found")
138,863
Run GULP using the gin as input Args: gin: GULP input string Returns: gout: GULP output string
def run(self, gin): with ScratchDir("."): p = subprocess.Popen( self._gulp_cmd, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE ) out, err = p.communicate(bytearray(gin, "utf-8")) out = out.decode("utf-8") err = err.decode("utf-8") if "Error" in err or "error" in err: print(gin) print("----output_0---------") print(out) print("----End of output_0------\n\n\n") print("----output_1--------") print(out) print("----End of output_1------") raise GulpError(err) # We may not need this if "ERROR" in out: raise GulpError(out) # Sometimes optimisation may fail to reach convergence conv_err_string = "Conditions for a minimum have not been satisfied" if conv_err_string in out: raise GulpConvergenceError() gout = "" for line in out.split("\n"): gout = gout + line + "\n" return gout
138,864
Basic constructor for :class:`AbinitEvent`. Args: message: String with human-readable message providing info on the event. src_file: String with the name of the Fortran file where the event is raised. src_line Integer giving the line number in src_file.
def __init__(self, src_file, src_line, message): #print("src_file", src_file, "src_line", src_line) self.message = message self.src_file = src_file self.src_line = src_line
138,871
List of ABINIT events. Args: filename: Name of the file events: List of Event objects
def __init__(self, filename, events=None): self.filename = os.path.abspath(filename) self.stat = os.stat(self.filename) self.start_datetime, self.end_datetime = None, None self._events = [] self._events_by_baseclass = collections.defaultdict(list) if events is not None: for ev in events: self.append(ev)
138,876
Give list of all concentrations at specified efermi in the DefectPhaseDiagram args: chemical_potentials = {Element: number} is dictionary of chemical potentials to provide formation energies for temperature = temperature to produce concentrations from fermi_level: (float) is fermi level relative to valence band maximum Default efermi = 0 = VBM energy returns: list of dictionaries of defect concentrations
def defect_concentrations(self, chemical_potentials, temperature=300, fermi_level=0.): concentrations = [] for dfct in self.all_stable_entries: concentrations.append({ 'conc': dfct.defect_concentration( chemical_potentials=chemical_potentials, temperature=temperature, fermi_level=fermi_level), 'name': dfct.name, 'charge': dfct.charge }) return concentrations
138,900
Suggest possible charges for defects to computee based on proximity of known transitions from entires to VBM and CBM Args: tolerance (float): tolerance with respect to the VBM and CBM to ` continue to compute new charges
def suggest_charges(self, tolerance=0.1): recommendations = {} for def_type in self.defect_types: test_charges = np.arange( np.min(self.stable_charges[def_type]) - 1, np.max(self.stable_charges[def_type]) + 2) test_charges = [charge for charge in test_charges if charge not in self.finished_charges[def_type]] if len(self.transition_level_map[def_type].keys()): # More positive charges will shift the minimum transition level down # Max charge is limited by this if its transition level is close to VBM min_tl = min(self.transition_level_map[def_type].keys()) if min_tl < tolerance: max_charge = max(self.transition_level_map[def_type][min_tl]) test_charges = [charge for charge in test_charges if charge < max_charge] # More negative charges will shift the maximum transition level up # Minimum charge is limited by this if transition level is near CBM max_tl = max(self.transition_level_map[def_type].keys()) if max_tl > (self.band_gap - tolerance): min_charge = min(self.transition_level_map[def_type][max_tl]) test_charges = [charge for charge in test_charges if charge > min_charge] else: test_charges = [charge for charge in test_charges if charge not in self.stable_charges[def_type]] recommendations[def_type] = test_charges return recommendations
138,901
Solve for the Fermi energy self-consistently as a function of T and p_O2 Observations are Defect concentrations, electron and hole conc Args: bulk_dos: bulk system dos (pymatgen Dos object) gap: Can be used to specify experimental gap. Will be useful if the self consistent Fermi level is > DFT gap Returns: Fermi energy
def solve_for_fermi_energy(self, temperature, chemical_potentials, bulk_dos): fdos = FermiDos(bulk_dos, bandgap=self.band_gap) def _get_total_q(ef): qd_tot = sum([ d['charge'] * d['conc'] for d in self.defect_concentrations( chemical_potentials=chemical_potentials, temperature=temperature, fermi_level=ef) ]) qd_tot += fdos.get_doping(fermi=ef + self.vbm, T=temperature) return qd_tot return bisect(_get_total_q, -1., self.band_gap + 1.)
138,902
This method should be called once we have fixed the problem associated to this event. It adds a new entry in the correction history of the node. Args: event: :class:`AbinitEvent` that triggered the correction. action (str): Human-readable string with info on the action perfomed to solve the problem.
def log_correction(self, event, action): # TODO: Create CorrectionObject action = str(action) self.history.info(action) self._corrections.append(dict( event=event.as_dict(), action=action, ))
138,962
Add a list of dependencies to the :class:`Node`. Args: deps: List of :class:`Dependency` objects specifying the dependencies of the node. or dictionary mapping nodes to file extensions e.g. {task: "DEN"}
def add_deps(self, deps): if isinstance(deps, collections.Mapping): # Convert dictionary into list of dependencies. deps = [Dependency(node, exts) for node, exts in deps.items()] # We want a list if not isinstance(deps, (list, tuple)): deps = [deps] assert all(isinstance(d, Dependency) for d in deps) # Add the dependencies to the node self._deps.extend(deps) if self.is_work: # The task in the work should inherit the same dependency. for task in self: task.add_deps(deps) # If we have a FileNode as dependency, add self to its children # Node.get_parents will use this list if node.is_isfile. for dep in (d for d in deps if d.node.is_file): dep.node.add_filechild(self)
138,963
Remove a list of dependencies from the :class:`Node`. Args: deps: List of :class:`Dependency` objects specifying the dependencies of the node.
def remove_deps(self, deps): if not isinstance(deps, (list, tuple)): deps = [deps] assert all(isinstance(d, Dependency) for d in deps) self._deps = [d for d in self._deps if d not in deps] if self.is_work: # remove the same list of dependencies from the task in the work for task in self: task.remove_deps(deps)
138,964
Install the `EventHandlers for this `Node`. If no argument is provided the default list of handlers is installed. Args: categories: List of categories to install e.g. base + can_change_physics handlers: explicit list of :class:`EventHandler` instances. This is the most flexible way to install handlers. .. note:: categories and handlers are mutually exclusive.
def install_event_handlers(self, categories=None, handlers=None): if categories is not None and handlers is not None: raise ValueError("categories and handlers are mutually exclusive!") from .events import get_event_handler_classes if categories: raise NotImplementedError() handlers = [cls() for cls in get_event_handler_classes(categories=categories)] else: handlers = handlers or [cls() for cls in get_event_handler_classes()] self._event_handlers = handlers
138,971
Return the message after merging any user-supplied arguments with the message. Args: metadata: True if function and module name should be added. asctime: True if time string should be added.
def get_message(self, metadata=False, asctime=True): msg = self.msg if is_string(self.msg) else str(self.msg) if self.args: try: msg = msg % self.args except: msg += str(self.args) if asctime: msg = "[" + self.asctime + "] " + msg # Add metadata if metadata: msg += "\nCalled by %s at %s:%s\n" % (self.func_name, self.pathname, self.lineno) return msg
138,979
Rotate the camera view. Args: axis_ind: Index of axis to rotate. Defaults to 0, i.e., a-axis. angle: Angle to rotate by. Defaults to 0.
def rotate_view(self, axis_ind=0, angle=0): camera = self.ren.GetActiveCamera() if axis_ind == 0: camera.Roll(angle) elif axis_ind == 1: camera.Azimuth(angle) else: camera.Pitch(angle) self.ren_win.Render()
138,992
Save render window to an image. Arguments: filename: filename to save to. Defaults to image.png. magnification: magnification. Use it to render high res images. image_format: choose between jpeg, png. Png is the default.
def write_image(self, filename="image.png", magnification=1, image_format="png"): render_large = vtk.vtkRenderLargeImage() render_large.SetInput(self.ren) if image_format == "jpeg": writer = vtk.vtkJPEGWriter() writer.SetQuality(80) else: writer = vtk.vtkPNGWriter() render_large.SetMagnification(magnification) writer.SetFileName(filename) writer.SetInputConnection(render_large.GetOutputPort()) self.ren_win.Render() writer.Write() del render_large
138,993
Redraw the render window. Args: reset_camera: Set to True to reset the camera to a pre-determined default for each structure. Defaults to False.
def redraw(self, reset_camera=False): self.ren.RemoveAllViewProps() self.picker = None self.add_picker_fixed() self.helptxt_mapper = vtk.vtkTextMapper() tprops = self.helptxt_mapper.GetTextProperty() tprops.SetFontSize(14) tprops.SetFontFamilyToTimes() tprops.SetColor(0, 0, 0) if self.structure is not None: self.set_structure(self.structure, reset_camera) self.ren_win.Render()
138,994
Add a structure to the visualizer. Args: structure: structure to visualize reset_camera: Set to True to reset the camera to a default determined based on the structure. to_unit_cell: Whether or not to fall back sites into the unit cell.
def set_structure(self, structure, reset_camera=True, to_unit_cell=True): self.ren.RemoveAllViewProps() has_lattice = hasattr(structure, "lattice") if has_lattice: s = Structure.from_sites(structure, to_unit_cell=to_unit_cell) s.make_supercell(self.supercell, to_unit_cell=to_unit_cell) else: s = structure inc_coords = [] for site in s: self.add_site(site) inc_coords.append(site.coords) count = 0 labels = ["a", "b", "c"] colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] if has_lattice: matrix = s.lattice.matrix if self.show_unit_cell and has_lattice: #matrix = s.lattice.matrix self.add_text([0, 0, 0], "o") for vec in matrix: self.add_line((0, 0, 0), vec, colors[count]) self.add_text(vec, labels[count], colors[count]) count += 1 for (vec1, vec2) in itertools.permutations(matrix, 2): self.add_line(vec1, vec1 + vec2) for (vec1, vec2, vec3) in itertools.permutations(matrix, 3): self.add_line(vec1 + vec2, vec1 + vec2 + vec3) if self.show_bonds or self.show_polyhedron: elements = sorted(s.composition.elements, key=lambda a: a.X) anion = elements[-1] def contains_anion(site): for sp in site.species.keys(): if sp.symbol == anion.symbol: return True return False anion_radius = anion.average_ionic_radius for site in s: exclude = False max_radius = 0 color = np.array([0, 0, 0]) for sp, occu in site.species.items(): if sp.symbol in self.excluded_bonding_elements \ or sp == anion: exclude = True break max_radius = max(max_radius, sp.average_ionic_radius) color = color + \ occu * np.array(self.el_color_mapping.get(sp.symbol, [0, 0, 0])) if not exclude: max_radius = (1 + self.poly_radii_tol_factor) * \ (max_radius + anion_radius) nn = structure.get_neighbors(site, float(max_radius)) nn_sites = [] for nnsite, dist in nn: if contains_anion(nnsite): nn_sites.append(nnsite) if not in_coord_list(inc_coords, nnsite.coords): self.add_site(nnsite) if self.show_bonds: self.add_bonds(nn_sites, site) if self.show_polyhedron: color = [i / 255 for i in color] self.add_polyhedron(nn_sites, site, color) if self.show_help: self.helptxt_actor = vtk.vtkActor2D() self.helptxt_actor.VisibilityOn() self.helptxt_actor.SetMapper(self.helptxt_mapper) self.ren.AddActor(self.helptxt_actor) self.display_help() camera = self.ren.GetActiveCamera() if reset_camera: if has_lattice: #Adjust the camera for best viewing lengths = s.lattice.abc pos = (matrix[1] + matrix[2]) * 0.5 + \ matrix[0] * max(lengths) / lengths[0] * 3.5 camera.SetPosition(pos) camera.SetViewUp(matrix[2]) camera.SetFocalPoint((matrix[0] + matrix[1] + matrix[2]) * 0.5) else: origin = s.center_of_mass max_site = max( s, key=lambda site: site.distance_from_point(origin)) camera.SetPosition(origin + 5 * (max_site.coords - origin)) camera.SetFocalPoint(s.center_of_mass) self.structure = structure self.title = s.composition.formula
138,997
Add a site to the render window. The site is displayed as a sphere, the color of which is determined based on the element. Partially occupied sites are displayed as a single element color, though the site info still shows the partial occupancy. Args: site: Site to add.
def add_site(self, site): start_angle = 0 radius = 0 total_occu = 0 for specie, occu in site.species.items(): radius += occu * (specie.ionic_radius if isinstance(specie, Specie) and specie.ionic_radius else specie.average_ionic_radius) total_occu += occu vis_radius = 0.2 + 0.002 * radius for specie, occu in site.species.items(): if not specie: color = (1, 1, 1) elif specie.symbol in self.el_color_mapping: color = [i / 255 for i in self.el_color_mapping[specie.symbol]] mapper = self.add_partial_sphere(site.coords, vis_radius, color, start_angle, start_angle + 360 * occu) self.mapper_map[mapper] = [site] start_angle += 360 * occu if total_occu < 1: mapper = self.add_partial_sphere(site.coords, vis_radius, (1,1,1), start_angle, start_angle + 360 * (1 - total_occu)) self.mapper_map[mapper] = [site]
139,000
Add text at a coordinate. Args: coords: Coordinates to add text at. text: Text to place. color: Color for text as RGB. Defaults to black.
def add_text(self, coords, text, color=(0, 0, 0)): source = vtk.vtkVectorText() source.SetText(text) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(source.GetOutputPort()) follower = vtk.vtkFollower() follower.SetMapper(mapper) follower.GetProperty().SetColor(color) follower.SetPosition(coords) follower.SetScale(0.5) self.ren.AddActor(follower) follower.SetCamera(self.ren.GetActiveCamera())
139,002
Adds a line. Args: start: Starting coordinates for line. end: Ending coordinates for line. color: Color for text as RGB. Defaults to grey. width: Width of line. Defaults to 1.
def add_line(self, start, end, color=(0.5, 0.5, 0.5), width=1): source = vtk.vtkLineSource() source.SetPoint1(start) source.SetPoint2(end) vertexIDs = vtk.vtkStringArray() vertexIDs.SetNumberOfComponents(1) vertexIDs.SetName("VertexIDs") # Set the vertex labels vertexIDs.InsertNextValue("a") vertexIDs.InsertNextValue("b") source.GetOutput().GetPointData().AddArray(vertexIDs) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(source.GetOutputPort()) actor = vtk.vtkActor() actor.SetMapper(mapper) actor.GetProperty().SetColor(color) actor.GetProperty().SetLineWidth(width) self.ren.AddActor(actor)
139,003
Adds a polyhedron. Args: neighbors: Neighbors of the polyhedron (the vertices). center: The atom in the center of the polyhedron. color: Color for text as RGB. opacity: Opacity of the polyhedron draw_edges: If set to True, the a line will be drawn at each edge edges_color: Color of the line for the edges edges_linewidth: Width of the line drawn for the edges
def add_polyhedron(self, neighbors, center, color, opacity=1.0, draw_edges=False, edges_color=[0.0, 0.0, 0.0], edges_linewidth=2): points = vtk.vtkPoints() conv = vtk.vtkConvexPointSet() for i in range(len(neighbors)): x, y, z = neighbors[i].coords points.InsertPoint(i, x, y, z) conv.GetPointIds().InsertId(i, i) grid = vtk.vtkUnstructuredGrid() grid.Allocate(1, 1) grid.InsertNextCell(conv.GetCellType(), conv.GetPointIds()) grid.SetPoints(points) dsm = vtk.vtkDataSetMapper() polysites = [center] polysites.extend(neighbors) self.mapper_map[dsm] = polysites if vtk.VTK_MAJOR_VERSION <= 5: dsm.SetInputConnection(grid.GetProducerPort()) else: dsm.SetInputData(grid) ac = vtk.vtkActor() #ac.SetMapper(mapHull) ac.SetMapper(dsm) ac.GetProperty().SetOpacity(opacity) if color == 'element': # If partial occupations are involved, the color of the specie with # the highest occupation is used myoccu = 0.0 for specie, occu in center.species.items(): if occu > myoccu: myspecie = specie myoccu = occu color = [i / 255 for i in self.el_color_mapping[myspecie.symbol]] ac.GetProperty().SetColor(color) else: ac.GetProperty().SetColor(color) if draw_edges: ac.GetProperty().SetEdgeColor(edges_color) ac.GetProperty().SetLineWidth(edges_linewidth) ac.GetProperty().EdgeVisibilityOn() self.ren.AddActor(ac)
139,004
Adds a triangular surface between three atoms. Args: atoms: Atoms between which a triangle will be drawn. color: Color for triangle as RGB. center: The "central atom" of the triangle opacity: opacity of the triangle draw_edges: If set to True, the a line will be drawn at each edge edges_color: Color of the line for the edges edges_linewidth: Width of the line drawn for the edges
def add_triangle(self, neighbors, color, center=None, opacity=0.4, draw_edges=False, edges_color=[0.0, 0.0, 0.0], edges_linewidth=2): points = vtk.vtkPoints() triangle = vtk.vtkTriangle() for ii in range(3): points.InsertNextPoint(neighbors[ii].x, neighbors[ii].y, neighbors[ii].z) triangle.GetPointIds().SetId(ii, ii) triangles = vtk.vtkCellArray() triangles.InsertNextCell(triangle) # polydata object trianglePolyData = vtk.vtkPolyData() trianglePolyData.SetPoints( points ) trianglePolyData.SetPolys( triangles ) # mapper mapper = vtk.vtkPolyDataMapper() mapper.SetInput(trianglePolyData) ac = vtk.vtkActor() ac.SetMapper(mapper) ac.GetProperty().SetOpacity(opacity) if color == 'element': if center is None: raise ValueError( 'Color should be chosen according to the central atom, ' 'and central atom is not provided') # If partial occupations are involved, the color of the specie with # the highest occupation is used myoccu = 0.0 for specie, occu in center.species.items(): if occu > myoccu: myspecie = specie myoccu = occu color = [i / 255 for i in self.el_color_mapping[myspecie.symbol]] ac.GetProperty().SetColor(color) else: ac.GetProperty().SetColor(color) if draw_edges: ac.GetProperty().SetEdgeColor(edges_color) ac.GetProperty().SetLineWidth(edges_linewidth) ac.GetProperty().EdgeVisibilityOn() self.ren.AddActor(ac)
139,005
Adds bonds for a site. Args: neighbors: Neighbors of the site. center: The site in the center for all bonds. color: Color of the tubes representing the bonds opacity: Opacity of the tubes representing the bonds radius: Radius of tube s representing the bonds
def add_bonds(self, neighbors, center, color=None, opacity=None, radius=0.1): points = vtk.vtkPoints() points.InsertPoint(0, center.x, center.y, center.z) n = len(neighbors) lines = vtk.vtkCellArray() for i in range(n): points.InsertPoint(i + 1, neighbors[i].coords) lines.InsertNextCell(2) lines.InsertCellPoint(0) lines.InsertCellPoint(i + 1) pd = vtk.vtkPolyData() pd.SetPoints(points) pd.SetLines(lines) tube = vtk.vtkTubeFilter() if vtk.VTK_MAJOR_VERSION <= 5: tube.SetInputConnection(pd.GetProducerPort()) else: tube.SetInputData(pd) tube.SetRadius(radius) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(tube.GetOutputPort()) actor = vtk.vtkActor() actor.SetMapper(mapper) if opacity is not None: actor.GetProperty().SetOpacity(opacity) if color is not None: actor.GetProperty().SetColor(color) self.ren.AddActor(actor)
139,008
Gets an extended surface mesh for to use for adsorption site finding by constructing supercell of surface sites Args: repeat (3-tuple): repeat for getting extended surface mesh
def get_extended_surface_mesh(self, repeat=(5, 5, 1)): surf_str = Structure.from_sites(self.surface_sites) surf_str.make_supercell(repeat) return surf_str
139,031
Reduces the set of adsorbate sites by finding removing symmetrically equivalent duplicates Args: coords_set: coordinate set in cartesian coordinates threshold: tolerance for distance equivalence, used as input to in_coord_list_pbc for dupl. checking
def symm_reduce(self, coords_set, threshold=1e-6): surf_sg = SpacegroupAnalyzer(self.slab, 0.1) symm_ops = surf_sg.get_symmetry_operations() unique_coords = [] # Convert to fractional coords_set = [self.slab.lattice.get_fractional_coords(coords) for coords in coords_set] for coords in coords_set: incoord = False for op in symm_ops: if in_coord_list_pbc(unique_coords, op.operate(coords), atol=threshold): incoord = True break if not incoord: unique_coords += [coords] # convert back to cartesian return [self.slab.lattice.get_cartesian_coords(coords) for coords in unique_coords]
139,033
Prunes coordinate set for coordinates that are within threshold Args: coords_set (Nx3 array-like): list or array of coordinates threshold (float): threshold value for distance
def near_reduce(self, coords_set, threshold=1e-4): unique_coords = [] coords_set = [self.slab.lattice.get_fractional_coords(coords) for coords in coords_set] for coord in coords_set: if not in_coord_list_pbc(unique_coords, coord, threshold): unique_coords += [coord] return [self.slab.lattice.get_cartesian_coords(coords) for coords in unique_coords]
139,034
Finds the center of an ensemble of sites selected from a list of sites. Helper method for the find_adsorption_sites algorithm. Args: site_list (list of sites): list of sites indices (list of ints): list of ints from which to select sites from site list cartesian (bool): whether to get average fractional or cartesian coordinate
def ensemble_center(self, site_list, indices, cartesian=True): if cartesian: return np.average([site_list[i].coords for i in indices], axis=0) else: return np.average([site_list[i].frac_coords for i in indices], axis=0)
139,035
Helper function to assign selective dynamics site_properties based on surface, subsurface site properties Args: slab (Slab): slab for which to assign selective dynamics
def assign_selective_dynamics(self, slab): sd_list = [] sd_list = [[False, False, False] if site.properties['surface_properties'] == 'subsurface' else [True, True, True] for site in slab.sites] new_sp = slab.site_properties new_sp['selective_dynamics'] = sd_list return slab.copy(site_properties=new_sp)
139,037
Returns angle specified by three sites. Args: i: Index of first site. j: Index of second site. k: Index of third site. Returns: Angle in degrees.
def get_angle(self, i: int, j: int, k: int) -> float: v1 = self[i].coords - self[j].coords v2 = self[k].coords - self[j].coords return get_angle(v1, v2, units="degrees")
139,056
Returns dihedral angle specified by four sites. Args: i: Index of first site j: Index of second site k: Index of third site l: Index of fourth site Returns: Dihedral angle in degrees.
def get_dihedral(self, i: int, j: int, k: int, l: int) -> float: v1 = self[k].coords - self[l].coords v2 = self[j].coords - self[k].coords v3 = self[i].coords - self[j].coords v23 = np.cross(v2, v3) v12 = np.cross(v1, v2) return math.degrees(math.atan2(np.linalg.norm(v2) * np.dot(v1, v23), np.dot(v12, v23)))
139,057
True if SiteCollection does not contain atoms that are too close together. Note that the distance definition is based on type of SiteCollection. Cartesian distances are used for non-periodic Molecules, while PBC is taken into account for periodic structures. Args: tol (float): Distance tolerance. Default is 0.5A. Returns: (bool) True if SiteCollection does not contain atoms that are too close together.
def is_valid(self, tol: float = DISTANCE_TOLERANCE) -> bool: if len(self.sites) == 1: return True all_dists = self.distance_matrix[np.triu_indices(len(self), 1)] return bool(np.min(all_dists) > tol)
139,058
Adds a property to a site. Args: property_name (str): The name of the property to add. values (list): A sequence of values. Must be same length as number of sites.
def add_site_property(self, property_name, values): if len(values) != len(self.sites): raise ValueError("Values must be same length as sites.") for site, val in zip(self.sites, values): site.properties[property_name] = val
139,059
Swap species. Args: species_mapping (dict): dict of species to swap. Species can be elements too. E.g., {Element("Li"): Element("Na")} performs a Li for Na substitution. The second species can be a sp_and_occu dict. For example, a site with 0.5 Si that is passed the mapping {Element('Si): {Element('Ge'):0.75, Element('C'):0.25} } will have .375 Ge and .125 C.
def replace_species(self, species_mapping): species_mapping = {get_el_sp(k): v for k, v in species_mapping.items()} sp_to_replace = set(species_mapping.keys()) sp_in_structure = set(self.composition.keys()) if not sp_in_structure.issuperset(sp_to_replace): warnings.warn( "Some species to be substituted are not present in " "structure. Pls check your input. Species to be " "substituted = %s; Species in structure = %s" % (sp_to_replace, sp_in_structure)) for site in self._sites: if sp_to_replace.intersection(site.species): c = Composition() for sp, amt in site.species.items(): new_sp = species_mapping.get(sp, sp) try: c += Composition(new_sp) * amt except Exception: c += {new_sp: amt} site.species = c
139,060
Add oxidation states. Args: oxidation_states (dict): Dict of oxidation states. E.g., {"Li":1, "Fe":2, "P":5, "O":-2}
def add_oxidation_state_by_element(self, oxidation_states): try: for site in self.sites: new_sp = {} for el, occu in site.species.items(): sym = el.symbol new_sp[Specie(sym, oxidation_states[sym])] = occu site.species = new_sp except KeyError: raise ValueError("Oxidation state of all elements must be " "specified in the dictionary.")
139,061
Add oxidation states to a structure by site. Args: oxidation_states (list): List of oxidation states. E.g., [1, 1, 1, 1, 2, 2, 2, 2, 5, 5, 5, 5, -2, -2, -2, -2]
def add_oxidation_state_by_site(self, oxidation_states): if len(oxidation_states) != len(self.sites): raise ValueError("Oxidation states of all sites must be " "specified.") for site, ox in zip(self.sites, oxidation_states): new_sp = {} for el, occu in site.species.items(): sym = el.symbol new_sp[Specie(sym, ox)] = occu site.species = new_sp
139,062
Decorates the structure with oxidation state, guessing using Composition.oxi_state_guesses() Args: **kwargs: parameters to pass into oxi_state_guesses()
def add_oxidation_state_by_guess(self, **kwargs): oxid_guess = self.composition.oxi_state_guesses(**kwargs) oxid_guess = oxid_guess or \ [dict([(e.symbol, 0) for e in self.composition])] self.add_oxidation_state_by_element(oxid_guess[0])
139,064
Add spin states to a structure. Args: spisn (dict): Dict of spins associated with elements or species, e.g. {"Ni":+5} or {"Ni2+":5}
def add_spin_by_element(self, spins): for site in self.sites: new_sp = {} for sp, occu in site.species.items(): sym = sp.symbol oxi_state = getattr(sp, "oxi_state", None) new_sp[Specie(sym, oxidation_state=oxi_state, properties={'spin': spins.get(str(sp), spins.get(sym, None))})] = occu site.species = new_sp
139,065
Add spin states to a structure by site. Args: spins (list): List of spins E.g., [+5, -5, 0, 0]
def add_spin_by_site(self, spins): if len(spins) != len(self.sites): raise ValueError("Spin of all sites must be " "specified in the dictionary.") for site, spin in zip(self.sites, spins): new_sp = {} for sp, occu in site.species.items(): sym = sp.symbol oxi_state = getattr(sp, "oxi_state", None) new_sp[Specie(sym, oxidation_state=oxi_state, properties={'spin': spin})] = occu site.species = new_sp
139,066
Extracts a cluster of atoms based on bond lengths Args: target_sites ([Site]): List of initial sites to nucleate cluster. \\*\\*kwargs: kwargs passed through to CovalentBond.is_bonded. Returns: [Site/PeriodicSite] Cluster of atoms.
def extract_cluster(self, target_sites, **kwargs): cluster = list(target_sites) others = [site for site in self if site not in cluster] size = 0 while len(cluster) > size: size = len(cluster) new_others = [] for site in others: for site2 in cluster: if CovalentBond.is_bonded(site, site2, **kwargs): cluster.append(site) break else: new_others.append(site) others = new_others return cluster
139,068
Convenience method to quickly get the spacegroup of a structure. Args: symprec (float): Same definition as in SpacegroupAnalyzer. Defaults to 1e-2. angle_tolerance (float): Same definition as in SpacegroupAnalyzer. Defaults to 5 degrees. Returns: spacegroup_symbol, international_number
def get_space_group_info(self, symprec=1e-2, angle_tolerance=5.0): # Import within method needed to avoid cyclic dependency. from pymatgen.symmetry.analyzer import SpacegroupAnalyzer a = SpacegroupAnalyzer(self, symprec=symprec, angle_tolerance=angle_tolerance) return a.get_space_group_symbol(), a.get_space_group_number()
139,074
Check whether this structure is similar to another structure. Basically a convenience method to call structure matching fitting. Args: other (IStructure/Structure): Another structure. **kwargs: Same **kwargs as in :class:`pymatgen.analysis.structure_matcher.StructureMatcher`. Returns: (bool) True is the structures are similar under some affine transformation.
def matches(self, other, **kwargs): from pymatgen.analysis.structure_matcher import StructureMatcher m = StructureMatcher(**kwargs) return m.fit(Structure.from_sites(self), Structure.from_sites(other))
139,075