docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Create from dict.
Args:
A dict with all data for a band structure object.
Returns:
A BandStructure object | def from_dict(cls, d):
labels_dict = d['labels_dict']
projections = {}
structure = None
if isinstance(list(d['bands'].values())[0], dict):
eigenvals = {Spin(int(k)): np.array(d['bands'][k]['data'])
for k in d['bands']}
else:
eigenvals = {Spin(int(k)): d['bands'][k] for k in d['bands']}
if 'structure' in d:
structure = Structure.from_dict(d['structure'])
if d.get('projections'):
projections = {Spin(int(spin)): np.array(v)
for spin, v in d["projections"].items()}
return BandStructure(
d['kpoints'], eigenvals,
Lattice(d['lattice_rec']['matrix']), d['efermi'],
labels_dict, structure=structure, projections=projections) | 139,572 |
Returns the list of kpoint indices equivalent (meaning they are the
same frac coords) to the given one.
Args:
index: the kpoint index
Returns:
a list of equivalent indices
TODO: now it uses the label we might want to use coordinates instead
(in case there was a mislabel) | def get_equivalent_kpoints(self, index):
# if the kpoint has no label it can"t have a repetition along the band
# structure line object
if self.kpoints[index].label is None:
return [index]
list_index_kpoints = []
for i in range(len(self.kpoints)):
if self.kpoints[i].label == self.kpoints[index].label:
list_index_kpoints.append(i)
return list_index_kpoints | 139,574 |
Apply a scissor operator (shift of the CBM) to fit the given band gap.
If it's a metal. We look for the band crossing the fermi level
and shift this one up. This will not work all the time for metals!
Args:
new_band_gap: the band gap the scissor band structure need to have.
Returns:
a BandStructureSymmLine object with the applied scissor shift | def apply_scissor(self, new_band_gap):
if self.is_metal():
# moves then the highest index band crossing the fermi level
# find this band...
max_index = -1000
# spin_index = None
for i in range(self.nb_bands):
below = False
above = False
for j in range(len(self.kpoints)):
if self.bands[Spin.up][i][j] < self.efermi:
below = True
if self.bands[Spin.up][i][j] > self.efermi:
above = True
if above and below:
if i > max_index:
max_index = i
# spin_index = Spin.up
if self.is_spin_polarized:
below = False
above = False
for j in range(len(self.kpoints)):
if self.bands[Spin.down][i][j] < self.efermi:
below = True
if self.bands[Spin.down][i][j] > self.efermi:
above = True
if above and below:
if i > max_index:
max_index = i
# spin_index = Spin.down
old_dict = self.as_dict()
shift = new_band_gap
for spin in old_dict['bands']:
for k in range(len(old_dict['bands'][spin])):
for v in range(len(old_dict['bands'][spin][k])):
if k >= max_index:
old_dict['bands'][spin][k][v] = \
old_dict['bands'][spin][k][v] + shift
else:
shift = new_band_gap - self.get_band_gap()['energy']
old_dict = self.as_dict()
for spin in old_dict['bands']:
for k in range(len(old_dict['bands'][spin])):
for v in range(len(old_dict['bands'][spin][k])):
if old_dict['bands'][spin][k][v] >= \
old_dict['cbm']['energy']:
old_dict['bands'][spin][k][v] = \
old_dict['bands'][spin][k][v] + shift
old_dict['efermi'] = old_dict['efermi'] + shift
return LobsterBandStructureSymmLine.from_dict(old_dict) | 139,578 |
The equation of state function with the paramters other than volume set
to the ones obtained from fitting.
Args:
volume (list/numpy.array)
Returns:
numpy.array | def func(self, volume):
return self._func(np.array(volume), self.eos_params) | 139,584 |
Plot the equation of state on axis `ax`
Args:
ax: matplotlib :class:`Axes` or None if a new figure should be created.
fontsize: Legend fontsize.
color (str): plot color.
label (str): Plot label
text (str): Legend text (options)
Returns:
Matplotlib figure object. | def plot_ax(self, ax=None, fontsize=12, **kwargs):
ax, fig, plt = get_ax_fig_plt(ax=ax)
color = kwargs.get("color", "r")
label = kwargs.get("label", "{} fit".format(self.__class__.__name__))
lines = ["Equation of State: %s" % self.__class__.__name__,
"Minimum energy = %1.2f eV" % self.e0,
"Minimum or reference volume = %1.2f Ang^3" % self.v0,
"Bulk modulus = %1.2f eV/Ang^3 = %1.2f GPa" %
(self.b0, self.b0_GPa),
"Derivative of bulk modulus wrt pressure = %1.2f" % self.b1]
text = "\n".join(lines)
text = kwargs.get("text", text)
# Plot input data.
ax.plot(self.volumes, self.energies, linestyle="None", marker="o", color=color)
# Plot eos fit.
vmin, vmax = min(self.volumes), max(self.volumes)
vmin, vmax = (vmin - 0.01 * abs(vmin), vmax + 0.01 * abs(vmax))
vfit = np.linspace(vmin, vmax, 100)
ax.plot(vfit, self.func(vfit), linestyle="dashed", color=color, label=label)
ax.grid(True)
ax.set_xlabel("Volume $\\AA^3$")
ax.set_ylabel("Energy (eV)")
ax.legend(loc="best", shadow=True)
# Add text with fit parameters.
ax.text(0.5, 0.5, text, fontsize=fontsize, horizontalalignment='center',
verticalalignment='center', transform=ax.transAxes)
return fig | 139,587 |
Fit energies as function of volumes.
Args:
volumes (list/np.array)
energies (list/np.array)
Returns:
EOSBase: EOSBase object | def fit(self, volumes, energies):
eos_fit = self.model(np.array(volumes), np.array(energies))
eos_fit.fit()
return eos_fit | 139,597 |
Vibrational Helmholtz free energy, A_vib(V, T).
Eq(4) in doi.org/10.1016/j.comphy.2003.12.001
Args:
temperature (float): temperature in K
volume (float)
Returns:
float: vibrational free energy in eV | def vibrational_free_energy(self, temperature, volume):
y = self.debye_temperature(volume) / temperature
return self.kb * self.natoms * temperature * (
9./8. * y + 3 * np.log(1 - np.exp(-y)) - self.debye_integral(y)) | 139,606 |
Vibrational internal energy, U_vib(V, T).
Eq(4) in doi.org/10.1016/j.comphy.2003.12.001
Args:
temperature (float): temperature in K
volume (float): in Ang^3
Returns:
float: vibrational internal energy in eV | def vibrational_internal_energy(self, temperature, volume):
y = self.debye_temperature(volume) / temperature
return self.kb * self.natoms * temperature * (9./8. * y +
3*self.debye_integral(y)) | 139,607 |
Debye integral. Eq(5) in doi.org/10.1016/j.comphy.2003.12.001
Args:
y (float): debye temperature/T, upper limit
Returns:
float: unitless | def debye_integral(y):
# floating point limit is reached around y=155, so values beyond that
# are set to the limiting value(T-->0, y --> \infty) of
# 6.4939394 (from wolfram alpha).
factor = 3. / y ** 3
if y < 155:
integral = quadrature(lambda x: x ** 3 / (np.exp(x) - 1.), 0, y)
return list(integral)[0] * factor
else:
return 6.493939 * factor | 139,609 |
Eq(17) in 10.1103/PhysRevB.90.174107
Args:
temperature (float): temperature in K
volume (float): in Ang^3
Returns:
float: thermal conductivity in W/K/m | def thermal_conductivity(self, temperature, volume):
gamma = self.gruneisen_parameter(temperature, volume)
theta_d = self.debye_temperature(volume) # K
theta_a = theta_d * self.natoms**(-1./3.) # K
prefactor = (0.849 * 3 * 4**(1./3.)) / (20. * np.pi**3)
# kg/K^3/s^3
prefactor = prefactor * (self.kb/self.hbar)**3 * self.avg_mass
kappa = prefactor / (gamma**2 - 0.514 * gamma + 0.228)
# kg/K/s^3 * Ang = (kg m/s^2)/(Ks)*1e-10
# = N/(Ks)*1e-10 = Nm/(Kms)*1e-10 = W/K/m*1e-10
kappa = kappa * theta_a**2 * volume**(1./3.) * 1e-10
return kappa | 139,611 |
Set all frac_coords of the input structure within [0,1].
Args:
structure (pymatgen structure object):
input structure
matrix (lattice matrix, 3 by 3 array/matrix)
new structure's lattice matrix, if none, use
input structure's matrix
Return:
new structure with fixed frac_coords and lattice matrix | def fix_pbc(structure, matrix=None):
spec = []
coords = []
if matrix is None:
latte = Lattice(structure.lattice.matrix)
else:
latte = Lattice(matrix)
for site in structure:
spec.append(site.specie)
coord = np.array(site.frac_coords)
for i in range(3):
coord[i] -= floor(coord[i])
if np.allclose(coord[i], 1):
coord[i] = 0
elif np.allclose(coord[i], 0):
coord[i] = 0
else:
coord[i] = round(coord[i], 7)
coords.append(coord)
return Structure(latte, spec, coords, site_properties=structure.site_properties) | 139,613 |
obtain cubic symmetric eqivalents of the list of vectors.
Args:
matrix (lattice matrix, n by 3 array/matrix)
Return:
cubic symmetric eqivalents of the list of vectors. | def symm_group_cubic(mat):
sym_group = np.zeros([24, 3, 3])
sym_group[0, :] = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
sym_group[1, :] = [[1, 0, 0], [0, -1, 0], [0, 0, -1]]
sym_group[2, :] = [[-1, 0, 0], [0, 1, 0], [0, 0, -1]]
sym_group[3, :] = [[-1, 0, 0], [0, -1, 0], [0, 0, 1]]
sym_group[4, :] = [[0, -1, 0], [-1, 0, 0], [0, 0, -1]]
sym_group[5, :] = [[0, -1, 0], [1, 0, 0], [0, 0, 1]]
sym_group[6, :] = [[0, 1, 0], [-1, 0, 0], [0, 0, 1]]
sym_group[7, :] = [[0, 1, 0], [1, 0, 0], [0, 0, -1]]
sym_group[8, :] = [[-1, 0, 0], [0, 0, -1], [0, -1, 0]]
sym_group[9, :] = [[-1, 0, 0], [0, 0, 1], [0, 1, 0]]
sym_group[10, :] = [[1, 0, 0], [0, 0, -1], [0, 1, 0]]
sym_group[11, :] = [[1, 0, 0], [0, 0, 1], [0, -1, 0]]
sym_group[12, :] = [[0, 1, 0], [0, 0, 1], [1, 0, 0]]
sym_group[13, :] = [[0, 1, 0], [0, 0, -1], [-1, 0, 0]]
sym_group[14, :] = [[0, -1, 0], [0, 0, 1], [-1, 0, 0]]
sym_group[15, :] = [[0, -1, 0], [0, 0, -1], [1, 0, 0]]
sym_group[16, :] = [[0, 0, 1], [1, 0, 0], [0, 1, 0]]
sym_group[17, :] = [[0, 0, 1], [-1, 0, 0], [0, -1, 0]]
sym_group[18, :] = [[0, 0, -1], [1, 0, 0], [0, -1, 0]]
sym_group[19, :] = [[0, 0, -1], [-1, 0, 0], [0, 1, 0]]
sym_group[20, :] = [[0, 0, -1], [0, -1, 0], [-1, 0, 0]]
sym_group[21, :] = [[0, 0, -1], [0, 1, 0], [1, 0, 0]]
sym_group[22, :] = [[0, 0, 1], [0, -1, 0], [1, 0, 0]]
sym_group[23, :] = [[0, 0, 1], [0, 1, 0], [-1, 0, 0]]
mat = np.atleast_2d(mat)
all_vectors = []
for sym in sym_group:
for vec in mat:
all_vectors.append(np.dot(sym, vec))
return np.unique(np.array(all_vectors), axis=0) | 139,614 |
find the axial ratio needed for GB generator input.
Args:
max_denominator (int): the maximum denominator for
the computed ratio, default to be 5.
index_none (int): specify the irrational axis.
0-a, 1-b, 2-c. Only may be needed for orthorombic system.
Returns:
axial ratio needed for GB generator (list of integers). | def get_ratio(self, max_denominator=5, index_none=None):
structure = self.initial_structure
lat_type = self.lat_type
if lat_type == 't' or lat_type == 'h':
# For tetragonal and hexagonal system, ratio = c2 / a2.
a, c = (structure.lattice.a, structure.lattice.c)
if c > a:
frac = Fraction(c ** 2 / a ** 2).limit_denominator(max_denominator)
ratio = [frac.numerator, frac.denominator]
else:
frac = Fraction(a ** 2 / c ** 2).limit_denominator(max_denominator)
ratio = [frac.denominator, frac.numerator]
elif lat_type == 'r':
# For rhombohedral system, ratio = (1 + 2 * cos(alpha)) / cos(alpha).
cos_alpha = cos(structure.lattice.alpha / 180 * np.pi)
frac = Fraction((1 + 2 * cos_alpha) / cos_alpha).limit_denominator(max_denominator)
ratio = [frac.numerator, frac.denominator]
elif lat_type == 'o':
# For orthorhombic system, ratio = c2:b2:a2.If irrational for one axis, set it to None.
ratio = [None] * 3
lat = (structure.lattice.c, structure.lattice.b, structure.lattice.a)
index = [0, 1, 2]
if index_none is None:
min_index = np.argmin(lat)
index.pop(min_index)
frac1 = Fraction(lat[index[0]] ** 2 / lat[min_index] ** 2).limit_denominator(max_denominator)
frac2 = Fraction(lat[index[1]] ** 2 / lat[min_index] ** 2).limit_denominator(max_denominator)
com_lcm = lcm(frac1.denominator, frac2.denominator)
ratio[min_index] = com_lcm
ratio[index[0]] = frac1.numerator * int(round((com_lcm / frac1.denominator)))
ratio[index[1]] = frac2.numerator * int(round((com_lcm / frac2.denominator)))
else:
index.pop(index_none)
if (lat[index[0]] > lat[index[1]]):
frac = Fraction(lat[index[0]] ** 2 / lat[index[1]] ** 2).limit_denominator(max_denominator)
ratio[index[0]] = frac.numerator
ratio[index[1]] = frac.denominator
else:
frac = Fraction(lat[index[1]] ** 2 / lat[index[0]] ** 2).limit_denominator(max_denominator)
ratio[index[1]] = frac.numerator
ratio[index[0]] = frac.denominator
elif lat_type == 'c':
raise RuntimeError('Cubic system does not need axial ratio.')
else:
raise RuntimeError('Lattice type not implemented.')
return ratio | 139,628 |
Reduce integer array mat's determinant mag times by linear combination
of its row vectors, so that the new array after rotation (r_matrix) is
still an integer array
Args:
mat (3 by 3 array): input matrix
mag (integer): reduce times for the determinant
r_matrix (3 by 3 array): rotation matrix
Return:
the reduced integer array | def reduce_mat(mat, mag, r_matrix):
max_j = abs(int(round(np.linalg.det(mat) / mag)))
reduced = False
for h in range(3):
k = h + 1 if h + 1 < 3 else abs(2 - h)
l = h + 2 if h + 2 < 3 else abs(1 - h)
j = np.arange(-max_j, max_j + 1)
for j1, j2 in itertools.product(j, repeat=2):
temp = mat[h] + j1 * mat[k] + j2 * mat[l]
if all([np.round(x, 5).is_integer() for x in list(temp / mag)]):
mat_copy = mat.copy()
mat_copy[h] = np.array([int(round(ele / mag)) for ele in temp])
new_mat = np.dot(mat_copy, np.linalg.inv(r_matrix.T))
if all([np.round(x, 5).is_integer() for x in list(np.ravel(new_mat))]):
reduced = True
mat[h] = np.array([int(round(ele / mag)) for ele in temp])
break
if reduced:
break
if not reduced:
warnings.warn("Matrix reduction not performed, may lead to non-primitive gb cell.")
return mat | 139,637 |
Transform a float vector to a surface miller index with integers.
Args:
vec (1 by 3 array float vector): input float vector
Return:
the surface miller index of the input vector. | def vec_to_surface(vec):
miller = [None] * 3
index = []
for i, value in enumerate(vec):
if abs(value) < 1.e-8:
miller[i] = 0
else:
index.append(i)
if len(index) == 1:
miller[index[0]] = 1
else:
min_index = np.argmin([i for i in vec if i != 0])
true_index = index[min_index]
index.pop(min_index)
frac = []
for i, value in enumerate(index):
frac.append(Fraction(vec[value] / vec[true_index]).limit_denominator(100))
if len(index) == 1:
miller[true_index] = frac[0].denominator
miller[index[0]] = frac[0].numerator
else:
com_lcm = lcm(frac[0].denominator, frac[1].denominator)
miller[true_index] = com_lcm
miller[index[0]] = frac[0].numerator * int(round((com_lcm / frac[0].denominator)))
miller[index[1]] = frac[1].numerator * int(round((com_lcm / frac[1].denominator)))
return miller | 139,638 |
Adds a Spectrum for plotting.
Args:
label (str): Label for the Spectrum. Must be unique.
spectrum: Spectrum object
color (str): This is passed on to matplotlib. E.g., "k--" indicates
a dashed black line. If None, a color will be chosen based on
the default color cycle. | def add_spectrum(self, label, spectrum, color=None):
self._spectra[label] = spectrum
self.colors.append(
color or
self.colors_cycle[len(self._spectra) % len(self.colors_cycle)]) | 139,640 |
Add a dictionary of doses, with an optional sorting function for the
keys.
Args:
dos_dict: dict of {label: Dos}
key_sort_func: function used to sort the dos_dict keys. | def add_spectra(self, spectra_dict, key_sort_func=None):
if key_sort_func:
keys = sorted(spectra_dict.keys(), key=key_sort_func)
else:
keys = spectra_dict.keys()
for label in keys:
self.add_spectra(label, spectra_dict[label]) | 139,641 |
Get a matplotlib plot showing the DOS.
Args:
xlim: Specifies the x-axis limits. Set to None for automatic
determination.
ylim: Specifies the y-axis limits. | def get_plot(self, xlim=None, ylim=None):
plt = pretty_plot(12, 8)
base = 0.0
i = 0
for key, sp in self._spectra.items():
if not self.stack:
plt.plot(sp.x, sp.y + self.yshift * i, color=self.colors[i],
label=str(key), linewidth=3)
else:
plt.fill_between(sp.x, base, sp.y + self.yshift * i,
color=self.colors[i],
label=str(key), linewidth=3)
base = sp.y + base
plt.xlabel(sp.XLABEL)
plt.ylabel(sp.YLABEL)
i += 1
if xlim:
plt.xlim(xlim)
if ylim:
plt.ylim(ylim)
plt.legend()
leg = plt.gca().get_legend()
ltext = leg.get_texts() # all the text.Text instance in the legend
plt.setp(ltext, fontsize=30)
plt.tight_layout()
return plt | 139,642 |
Save matplotlib plot to a file.
Args:
filename: Filename to write to.
img_format: Image format to use. Defaults to EPS. | def save_plot(self, filename, img_format="eps", **kwargs):
plt = self.get_plot(**kwargs)
plt.savefig(filename, format=img_format) | 139,643 |
Returns most primitive cell for structure.
Args:
structure: A structure
Returns:
The same structure in a conventional standard setting | def apply_transformation(self, structure):
sga = SpacegroupAnalyzer(structure, symprec=self.symprec,
angle_tolerance=self.angle_tolerance)
return sga.get_conventional_standard_structure(international_monoclinic=self.international_monoclinic) | 139,659 |
Discretizes the site occupancies in the structure.
Args:
structure: disordered Structure to discretize occupancies
Returns:
A new disordered Structure with occupancies discretized | def apply_transformation(self, structure):
if structure.is_ordered:
return structure
species = [dict(sp) for sp in structure.species_and_occu]
for sp in species:
for k, v in sp.items():
old_occ = sp[k]
new_occ = float(
Fraction(old_occ).limit_denominator(self.max_denominator))
if self.fix_denominator:
new_occ = around(old_occ*self.max_denominator)\
/ self.max_denominator
if round(abs(old_occ - new_occ), 6) > self.tol:
raise RuntimeError(
"Cannot discretize structure within tolerance!")
sp[k] = new_occ
return Structure(structure.lattice, species, structure.frac_coords) | 139,663 |
Converts a lattice object to LammpsBox, and calculates the symmetry
operation used.
Args:
lattice (Lattice): Input lattice.
origin: A (3,) array/list of floats setting lower bounds of
simulation box. Default to (0, 0, 0).
Returns:
LammpsBox, SymmOp | def lattice_2_lmpbox(lattice, origin=(0, 0, 0)):
a, b, c = lattice.abc
xlo, ylo, zlo = origin
xhi = a + xlo
m = lattice.matrix
xy = np.dot(m[1], m[0] / a)
yhi = np.sqrt(b ** 2 - xy ** 2) + ylo
xz = np.dot(m[2], m[0] / a)
yz = (np.dot(m[1], m[2]) - xy * xz) / (yhi - ylo)
zhi = np.sqrt(c ** 2 - xz ** 2 - yz ** 2) + zlo
tilt = None if lattice.is_orthogonal else [xy, xz, yz]
rot_matrix = np.linalg.solve([[xhi - xlo, 0, 0],
[xy, yhi - ylo, 0],
[xz, yz, zhi - zlo]], m)
bounds = [[xlo, xhi], [ylo, yhi], [zlo, zhi]]
symmop = SymmOp.from_rotation_and_translation(rot_matrix, origin)
return LammpsBox(bounds, tilt), symmop | 139,669 |
Converts a structure to a LammpsData object with no force field
parameters and topologies.
Args:
structure (Structure): Input structure.
ff_elements ([str]): List of strings of elements that must be
present due to force field settings but not necessarily in
the structure. Default to None.
atom_style (str): Choose between "atomic" (neutral) and
"charge" (charged). Default to "charge".
Returns:
LammpsData | def structure_2_lmpdata(structure, ff_elements=None, atom_style="charge"):
s = structure.get_sorted_structure()
a, b, c = s.lattice.abc
m = s.lattice.matrix
xhi = a
xy = np.dot(m[1], m[0] / xhi)
yhi = np.sqrt(b ** 2 - xy ** 2)
xz = np.dot(m[2], m[0] / xhi)
yz = (np.dot(m[1], m[2]) - xy * xz) / yhi
zhi = np.sqrt(c ** 2 - xz ** 2 - yz ** 2)
box_bounds = [[0.0, xhi], [0.0, yhi], [0.0, zhi]]
box_tilt = [xy, xz, yz]
box_tilt = None if not any(box_tilt) else box_tilt
box = LammpsBox(box_bounds, box_tilt)
new_latt = Lattice([[xhi, 0, 0], [xy, yhi, 0], [xz, yz, zhi]])
s.lattice = new_latt
symbols = list(s.symbol_set)
if ff_elements:
symbols.extend(ff_elements)
elements = sorted(Element(el) for el in set(symbols))
mass_info = [tuple([i.symbol] * 2) for i in elements]
ff = ForceField(mass_info)
topo = Topology(s)
return LammpsData.from_ff_and_topologies(box=box, ff=ff, topologies=[topo],
atom_style=atom_style) | 139,670 |
Returns the string representation of simulation box in LAMMPS
data file format.
Args:
significant_figures (int): No. of significant figures to
output for box settings. Default to 6.
Returns:
String representation | def get_string(self, significant_figures=6):
ph = "{:.%df}" % significant_figures
lines = []
for bound, d in zip(self.bounds, "xyz"):
fillers = bound + [d] * 2
bound_format = " ".join([ph] * 2 + [" {}lo {}hi"])
lines.append(bound_format.format(*fillers))
if self.tilt:
tilt_format = " ".join([ph] * 3 + [" xy xz yz"])
lines.append(tilt_format.format(*self.tilt))
return "\n".join(lines) | 139,673 |
Writes LammpsData to file.
Args:
filename (str): Filename.
distance (int): No. of significant figures to output for
box settings (bounds and tilt) and atomic coordinates.
Default to 6.
velocity (int): No. of significant figures to output for
velocities. Default to 8.
charge (int): No. of significant figures to output for
charges. Default to 3. | def write_file(self, filename, distance=6, velocity=8, charge=3):
with open(filename, "w") as f:
f.write(self.get_string(distance=distance, velocity=velocity,
charge=charge)) | 139,677 |
Constructor that parses a file.
Args:
filename (str): Filename to read.
atom_style (str): Associated atom_style. Default to "full".
sort_id (bool): Whether sort each section by id. Default to
True. | def from_file(cls, filename, atom_style="full", sort_id=False):
with open(filename) as f:
lines = f.readlines()
kw_pattern = r"|".join(itertools.chain(*SECTION_KEYWORDS.values()))
section_marks = [i for i, l in enumerate(lines)
if re.search(kw_pattern, l)]
parts = np.split(lines, section_marks)
float_group = r"([0-9eE.+-]+)"
header_pattern = dict()
header_pattern["counts"] = r"^\s*(\d+)\s+([a-zA-Z]+)$"
header_pattern["types"] = r"^\s*(\d+)\s+([a-zA-Z]+)\s+types$"
header_pattern["bounds"] = r"^\s*{}$".format(r"\s+".join(
[float_group] * 2 + [r"([xyz])lo \3hi"]))
header_pattern["tilt"] = r"^\s*{}$".format(r"\s+".join(
[float_group] * 3 + ["xy xz yz"]))
header = {"counts": {}, "types": {}}
bounds = {}
for l in clean_lines(parts[0][1:]): # skip the 1st line
match = None
for k, v in header_pattern.items():
match = re.match(v, l)
if match:
break
else:
continue
if match and k in ["counts", "types"]:
header[k][match.group(2)] = int(match.group(1))
elif match and k == "bounds":
g = match.groups()
bounds[g[2]] = [float(i) for i in g[:2]]
elif match and k == "tilt":
header["tilt"] = [float(i) for i in match.groups()]
header["bounds"] = [bounds.get(i, [-0.5, 0.5]) for i in "xyz"]
box = LammpsBox(header["bounds"], header.get("tilt"))
def parse_section(sec_lines):
title_info = sec_lines[0].split("#", 1)
kw = title_info[0].strip()
sio = StringIO("".join(sec_lines[2:])) # skip the 2nd line
df = pd.read_csv(sio, header=None, comment="#",
delim_whitespace=True)
if kw.endswith("Coeffs") and not kw.startswith("PairIJ"):
names = ["id"] + ["coeff%d" % i
for i in range(1, df.shape[1])]
elif kw == "PairIJ Coeffs":
names = ["id1", "id2"] + ["coeff%d" % i
for i in range(1, df.shape[1] - 1)]
df.index.name = None
elif kw in SECTION_HEADERS:
names = ["id"] + SECTION_HEADERS[kw]
elif kw == "Atoms":
names = ["id"] + ATOMS_HEADERS[atom_style]
if df.shape[1] == len(names):
pass
elif df.shape[1] == len(names) + 3:
names += ["nx", "ny", "nz"]
else:
raise ValueError("Format in Atoms section inconsistent"
" with atom_style %s" % atom_style)
else:
raise NotImplementedError("Parser for %s section"
" not implemented" % kw)
df.columns = names
if sort_id:
sort_by = "id" if kw != "PairIJ Coeffs" else ["id1", "id2"]
df.sort_values(sort_by, inplace=True)
if "id" in df.columns:
df.set_index("id", drop=True, inplace=True)
df.index.name = None
return kw, df
err_msg = "Bad LAMMPS data format where "
body = {}
seen_atoms = False
for part in parts[1:]:
name, section = parse_section(part)
if name == "Atoms":
seen_atoms = True
if name in ["Velocities"] + SECTION_KEYWORDS["topology"] and \
not seen_atoms: # Atoms must appear earlier than these
raise RuntimeError(err_msg + "%s section appears before"
" Atoms section" % name)
body.update({name: section})
err_msg += "Nos. of {} do not match between header and {} section"
assert len(body["Masses"]) == header["types"]["atom"], \
err_msg.format("atom types", "Masses")
atom_sections = ["Atoms", "Velocities"] \
if "Velocities" in body else ["Atoms"]
for s in atom_sections:
assert len(body[s]) == header["counts"]["atoms"], \
err_msg.format("atoms", s)
for s in SECTION_KEYWORDS["topology"]:
if header["counts"].get(s.lower(), 0) > 0:
assert len(body[s]) == header["counts"][s.lower()], \
err_msg.format(s.lower(), s)
items = {k.lower(): body[k] for k in ["Masses", "Atoms"]}
items["velocities"] = body.get("Velocities")
ff_kws = [k for k in body if k
in SECTION_KEYWORDS["ff"] + SECTION_KEYWORDS["class2"]]
items["force_field"] = {k: body[k] for k in ff_kws} if ff_kws \
else None
topo_kws = [k for k in body if k in SECTION_KEYWORDS["topology"]]
items["topology"] = {k: body[k] for k in topo_kws} \
if topo_kws else None
items["atom_style"] = atom_style
items["box"] = box
return cls(**items) | 139,679 |
Simple constructor building LammpsData from a structure without
force field parameters and topologies.
Args:
structure (Structure): Input structure.
ff_elements ([str]): List of strings of elements that must
be present due to force field settings but not
necessarily in the structure. Default to None.
atom_style (str): Choose between "atomic" (neutral) and
"charge" (charged). Default to "charge". | def from_structure(cls, structure, ff_elements=None, atom_style="charge"):
s = structure.get_sorted_structure()
box, symmop = lattice_2_lmpbox(s.lattice)
coords = symmop.operate_multi(s.cart_coords)
site_properties = s.site_properties
if "velocities" in site_properties:
velos = np.array(s.site_properties["velocities"])
rot = SymmOp.from_rotation_and_translation(symmop.rotation_matrix)
rot_velos = rot.operate_multi(velos)
site_properties.update({"velocities": rot_velos})
boxed_s = Structure(box.to_lattice(), s.species, coords,
site_properties=site_properties,
coords_are_cartesian=True)
symbols = list(s.symbol_set)
if ff_elements:
symbols.extend(ff_elements)
elements = sorted(Element(el) for el in set(symbols))
mass_info = [tuple([i.symbol] * 2) for i in elements]
ff = ForceField(mass_info)
topo = Topology(boxed_s)
return cls.from_ff_and_topologies(box=box, ff=ff, topologies=[topo],
atom_style=atom_style) | 139,681 |
Saves object to a file in YAML format.
Args:
filename (str): Filename. | def to_file(self, filename):
d = {"mass_info": self.mass_info,
"nonbond_coeffs": self.nonbond_coeffs,
"topo_coeffs": self.topo_coeffs}
yaml = YAML(typ="safe")
with open(filename, "w") as f:
yaml.dump(d, f) | 139,689 |
Constructor that reads in a file in YAML format.
Args:
filename (str): Filename. | def from_file(cls, filename):
yaml = YAML(typ="safe")
with open(filename, "r") as f:
d = yaml.load(f)
return cls.from_dict(d) | 139,690 |
Copy the pseudopotential to a temporary a file and returns a new pseudopotential object.
Useful for unit tests in which we have to change the content of the file.
Args:
tmpdir: If None, a new temporary directory is created and files are copied here
else tmpdir is used. | def as_tmpfile(self, tmpdir=None):
import tempfile, shutil
tmpdir = tempfile.mkdtemp() if tmpdir is None else tmpdir
new_path = os.path.join(tmpdir, self.basename)
shutil.copy(self.filepath, new_path)
# Copy dojoreport file if present.
root, ext = os.path.splitext(self.filepath)
djrepo = root + ".djrepo"
if os.path.exists(djrepo):
shutil.copy(djrepo, os.path.join(tmpdir, os.path.basename(djrepo)))
# Build new object and copy dojo_report if present.
new = self.__class__.from_file(new_path)
if self.has_dojo_report: new.dojo_report = self.dojo_report.deepcopy()
return new | 139,704 |
Returns a :class:`Hint` object with the suggested value of ecut [Ha] and
pawecutdg [Ha] for the given accuracy.
ecut and pawecutdg are set to zero if no hint is available.
Args:
accuracy: ["low", "normal", "high"] | def hint_for_accuracy(self, accuracy="normal"):
if not self.has_dojo_report:
return Hint(ecut=0., pawecutdg=0.)
# Get hints from dojoreport. Try first in hints then in ppgen_hints.
if "hints" in self.dojo_report:
return Hint.from_dict(self.dojo_report["hints"][accuracy])
elif "ppgen_hints" in self.dojo_report:
return Hint.from_dict(self.dojo_report["ppgen_hints"][accuracy])
return Hint(ecut=0., pawecutdg=0.) | 139,706 |
Calls Abinit to compute the internal tables for the application of the
pseudopotential part. Returns :class:`PspsFile` object providing methods
to plot and analyze the data or None if file is not found or it's not readable.
Args:
ecut: Cutoff energy in Hartree.
pawecutdg: Cutoff energy for the PAW double grid. | def open_pspsfile(self, ecut=20, pawecutdg=None):
from pymatgen.io.abinit.tasks import AbinitTask
from abipy.core.structure import Structure
from abipy.abio.factories import gs_input
from abipy.electrons.psps import PspsFile
# Build fake structure.
lattice = 10 * np.eye(3)
structure = Structure(lattice, [self.element], coords=[[0, 0, 0]])
if self.ispaw and pawecutdg is None: pawecutdg = ecut * 4
inp = gs_input(structure, pseudos=[self], ecut=ecut, pawecutdg=pawecutdg,
spin_mode="unpolarized", kppa=1)
# Add prtpsps = -1 to make Abinit print the PSPS.nc file and stop.
inp["prtpsps"] = -1
# Build temporary task and run it (ignore retcode because we don't exit cleanly)
task = AbinitTask.temp_shell_task(inp)
task.start_and_wait()
filepath = task.outdir.has_abiext("_PSPS.nc")
if not filepath:
logger.critical("Cannot find PSPS.nc file in %s" % task.outdir)
return None
# Open the PSPS.nc file.
try:
return PspsFile(filepath)
except Exception as exc:
logger.critical("Exception while reading PSPS file at %s:\n%s" % (filepath, str(exc)))
return None | 139,708 |
Analyze the files contained in directory dirname.
Args:
dirname: directory path
exclude_exts: list of file extensions that should be skipped.
exclude_fnames: list of file names that should be skipped.
Returns:
List of pseudopotential objects. | def scan_directory(self, dirname, exclude_exts=(), exclude_fnames=()):
for i, ext in enumerate(exclude_exts):
if not ext.strip().startswith("."):
exclude_exts[i] = "." + ext.strip()
# Exclude files depending on the extension.
paths = []
for fname in os.listdir(dirname):
root, ext = os.path.splitext(fname)
path = os.path.join(dirname, fname)
if (ext in exclude_exts or fname in exclude_fnames or
fname.startswith(".") or not os.path.isfile(path)): continue
paths.append(path)
pseudos = []
for path in paths:
# Parse the file and generate the pseudo.
try:
pseudo = self.parse(path)
except:
pseudo = None
if pseudo is not None:
pseudos.append(pseudo)
self._parsed_paths.extend(path)
else:
self._wrong_paths.extend(path)
return pseudos | 139,719 |
Plot the PAW densities.
Args:
ax: matplotlib :class:`Axes` or None if a new figure should be created.
Returns:
`matplotlib` figure | def plot_densities(self, ax=None, **kwargs):
ax, fig, plt = get_ax_fig_plt(ax)
ax.grid(True)
ax.set_xlabel('r [Bohr]')
#ax.set_ylabel('density')
for i, den_name in enumerate(["ae_core_density", "pseudo_core_density"]):
rden = getattr(self, den_name)
label = "$n_c$" if i == 1 else r"$\tilde{n}_c$"
ax.plot(rden.mesh, rden.mesh * rden.values, label=label, lw=2)
ax.legend(loc="best")
return fig | 139,734 |
Plot the AE and the pseudo partial waves.
Args:
ax: matplotlib :class:`Axes` or None if a new figure should be created.
fontsize: fontsize for legends and titles
Returns: `matplotlib` figure | def plot_waves(self, ax=None, fontsize=12, **kwargs):
ax, fig, plt = get_ax_fig_plt(ax)
ax.grid(True)
ax.set_xlabel("r [Bohr]")
ax.set_ylabel(r"$r\phi,\, r\tilde\phi\, [Bohr]^{-\frac{1}{2}}$")
#ax.axvline(x=self.paw_radius, linewidth=2, color='k', linestyle="--")
#ax.annotate("$r_c$", xy=(self.paw_radius + 0.1, 0.1))
for state, rfunc in self.pseudo_partial_waves.items():
ax.plot(rfunc.mesh, rfunc.mesh * rfunc.values, lw=2, label="PS-WAVE: " + state)
for state, rfunc in self.ae_partial_waves.items():
ax.plot(rfunc.mesh, rfunc.mesh * rfunc.values, lw=2, label="AE-WAVE: " + state)
ax.legend(loc="best", shadow=True, fontsize=fontsize)
return fig | 139,735 |
Plot the PAW projectors.
Args:
ax: matplotlib :class:`Axes` or None if a new figure should be created.
Returns: `matplotlib` figure | def plot_projectors(self, ax=None, fontsize=12, **kwargs):
ax, fig, plt = get_ax_fig_plt(ax)
title = kwargs.pop("title", "Projectors")
ax.grid(True)
ax.set_xlabel('r [Bohr]')
ax.set_ylabel(r"$r\tilde p\, [Bohr]^{-\frac{1}{2}}$")
#ax.axvline(x=self.paw_radius, linewidth=2, color='k', linestyle="--")
#ax.annotate("$r_c$", xy=(self.paw_radius + 0.1, 0.1))
for state, rfunc in self.projector_functions.items():
ax.plot(rfunc.mesh, rfunc.mesh * rfunc.values, label="TPROJ: " + state)
ax.legend(loc="best", shadow=True, fontsize=fontsize)
return fig | 139,736 |
Find all pseudos in the directory tree starting from top.
Args:
top: Top of the directory tree
exts: List of files extensions. if exts == "all_files"
we try to open all files in top
exclude_dirs: Wildcard used to exclude directories.
return: :class:`PseudoTable` sorted by atomic number Z. | def from_dir(cls, top, exts=None, exclude_dirs="_*"):
pseudos = []
if exts == "all_files":
for f in [os.path.join(top, fn) for fn in os.listdir(top)]:
if os.path.isfile(f):
try:
p = Pseudo.from_file(f)
if p:
pseudos.append(p)
else:
logger.info('Skipping file %s' % f)
except:
logger.info('Skipping file %s' % f)
if not pseudos:
logger.warning('No pseudopotentials parsed from folder %s' % top)
return None
logger.info('Creating PseudoTable with %i pseudopotentials' % len(pseudos))
else:
if exts is None: exts=("psp8",)
for p in find_exts(top, exts, exclude_dirs=exclude_dirs):
try:
pseudos.append(Pseudo.from_file(p))
except Exception as exc:
logger.critical("Error in %s:\n%s" % (p, exc))
return cls(pseudos).sort_by_z() | 139,737 |
Return the pseudo with the given chemical symbol.
Args:
symbols: String with the chemical symbol of the element
allow_multi: By default, the method raises ValueError
if multiple occurrences are found. Use allow_multi to prevent this.
Raises:
ValueError if symbol is not found or multiple occurences are present and not allow_multi | def pseudo_with_symbol(self, symbol, allow_multi=False):
pseudos = self.select_symbols(symbol, ret_list=True)
if not pseudos or (len(pseudos) > 1 and not allow_multi):
raise ValueError("Found %d occurrences of symbol %s" % (len(pseudos), symbol))
if not allow_multi:
return pseudos[0]
else:
return pseudos | 139,745 |
Return a :class:`PseudoTable` with the pseudopotentials with the given list of chemical symbols.
Args:
symbols: str or list of symbols
Prepend the symbol string with "-", to exclude pseudos.
ret_list: if True a list of pseudos is returned instead of a :class:`PseudoTable` | def select_symbols(self, symbols, ret_list=False):
symbols = list_strings(symbols)
exclude = symbols[0].startswith("-")
if exclude:
if not all(s.startswith("-") for s in symbols):
raise ValueError("When excluding symbols, all strings must start with `-`")
symbols = [s[1:] for s in symbols]
symbols = set(symbols)
pseudos = []
for p in self:
if exclude:
if p.symbol in symbols: continue
else:
if p.symbol not in symbols: continue
pseudos.append(p)
if ret_list:
return pseudos
else:
return self.__class__(pseudos) | 139,747 |
A pretty ASCII printer for the periodic table, based on some filter_function.
Args:
stream: file-like object
filter_function:
A filtering function that take a Pseudo as input and returns a boolean.
For example, setting filter_function = lambda p: p.Z_val > 2 will print
a periodic table containing only pseudos with Z_val > 2. | def print_table(self, stream=sys.stdout, filter_function=None):
print(self.to_table(filter_function=filter_function), file=stream) | 139,748 |
Select only those pseudopotentials for which condition is True.
Return new class:`PseudoTable` object.
Args:
condition:
Function that accepts a :class:`Pseudo` object and returns True or False. | def select(self, condition):
return self.__class__([p for p in self if condition(p)]) | 139,752 |
Get a list of Structures corresponding to a chemical system, formula,
or materials_id.
Args:
chemsys_formula_id (str): A chemical system (e.g., Li-Fe-O),
or formula (e.g., Fe2O3) or materials_id (e.g., mp-1234).
final (bool): Whether to get the final structure, or the initial
(pre-relaxation) structure. Defaults to True.
Returns:
List of Structure objects. | def get_structures(self, chemsys_formula_id, final=True):
prop = "final_structure" if final else "initial_structure"
data = self.get_data(chemsys_formula_id, prop=prop)
return [d[prop] for d in data] | 139,759 |
Finds matching structures on the Materials Project site.
Args:
filename_or_structure: filename or Structure object
Returns:
A list of matching structures.
Raises:
MPRestError | def find_structure(self, filename_or_structure):
try:
if isinstance(filename_or_structure, str):
s = Structure.from_file(filename_or_structure)
elif isinstance(filename_or_structure, Structure):
s = filename_or_structure
else:
raise MPRestError("Provide filename or Structure object.")
payload = {'structure': json.dumps(s.as_dict(), cls=MontyEncoder)}
response = self.session.post(
'{}/find_structure'.format(self.preamble), data=payload
)
if response.status_code in [200, 400]:
resp = json.loads(response.text, cls=MontyDecoder)
if resp['valid_response']:
return resp['response']
else:
raise MPRestError(resp["error"])
raise MPRestError("REST error with status code {} and error {}"
.format(response.status_code, response.text))
except Exception as ex:
raise MPRestError(str(ex)) | 139,760 |
A helper function to get all entries necessary to generate
a pourbaix diagram from the rest interface.
Args:
chemsys ([str]): A list of elements comprising the chemical
system, e.g. ['Li', 'Fe'] | def get_pourbaix_entries(self, chemsys):
from pymatgen.analysis.pourbaix_diagram import PourbaixEntry, IonEntry
from pymatgen.analysis.phase_diagram import PhaseDiagram
from pymatgen.core.ion import Ion
from pymatgen.entries.compatibility import \
MaterialsProjectAqueousCompatibility
pbx_entries = []
# Get ion entries first, because certain ions have reference
# solids that aren't necessarily in the chemsys (Na2SO4)
url = '/pourbaix_diagram/reference_data/' + '-'.join(chemsys)
ion_data = self._make_request(url)
ion_ref_comps = [Composition(d['Reference Solid']) for d in ion_data]
ion_ref_elts = list(itertools.chain.from_iterable(
i.elements for i in ion_ref_comps))
ion_ref_entries = self.get_entries_in_chemsys(
list(set([str(e) for e in ion_ref_elts] + ['O', 'H'])),
property_data=['e_above_hull'], compatible_only=False)
compat = MaterialsProjectAqueousCompatibility("Advanced")
ion_ref_entries = compat.process_entries(ion_ref_entries)
ion_ref_pd = PhaseDiagram(ion_ref_entries)
# position the ion energies relative to most stable reference state
for n, i_d in enumerate(ion_data):
ion_entry = IonEntry(Ion.from_formula(i_d['Name']), i_d['Energy'])
refs = [e for e in ion_ref_entries
if e.composition.reduced_formula == i_d['Reference Solid']]
if not refs:
raise ValueError("Reference solid not contained in entry list")
stable_ref = sorted(refs, key=lambda x: x.data['e_above_hull'])[0]
rf = stable_ref.composition.get_reduced_composition_and_factor()[1]
solid_diff = ion_ref_pd.get_form_energy(stable_ref) \
- i_d['Reference solid energy'] * rf
elt = i_d['Major_Elements'][0]
correction_factor = ion_entry.ion.composition[elt] \
/ stable_ref.composition[elt]
ion_entry.energy += solid_diff * correction_factor
pbx_entries.append(PourbaixEntry(ion_entry, 'ion-{}'.format(n)))
# Construct the solid pourbaix entries from filtered ion_ref entries
extra_elts = set(ion_ref_elts) - {Element(s) for s in chemsys} \
- {Element('H'), Element('O')}
for entry in ion_ref_entries:
entry_elts = set(entry.composition.elements)
# Ensure no OH chemsys or extraneous elements from ion references
if not (entry_elts <= {Element('H'), Element('O')} or \
extra_elts.intersection(entry_elts)):
# replace energy with formation energy, use dict to
# avoid messing with the ion_ref_pd and to keep all old params
form_e = ion_ref_pd.get_form_energy(entry)
new_entry = deepcopy(entry)
new_entry.uncorrected_energy = form_e
new_entry.correction = 0.0
pbx_entry = PourbaixEntry(new_entry)
pbx_entries.append(pbx_entry)
return pbx_entries | 139,762 |
Get a Structure corresponding to a material_id.
Args:
material_id (str): Materials Project material_id (a string,
e.g., mp-1234).
final (bool): Whether to get the final structure, or the initial
(pre-relaxation) structure. Defaults to True.
conventional_unit_cell (bool): Whether to get the standard
conventional unit cell
Returns:
Structure object. | def get_structure_by_material_id(self, material_id, final=True,
conventional_unit_cell=False):
prop = "final_structure" if final else "initial_structure"
data = self.get_data(material_id, prop=prop)
if conventional_unit_cell:
data[0][prop] = SpacegroupAnalyzer(data[0][prop]). \
get_conventional_standard_structure()
return data[0][prop] | 139,763 |
Submits a list of StructureNL to the Materials Project site.
.. note::
As of now, this MP REST feature is open only to a select group of
users. Opening up submissions to all users is being planned for
the future.
Args:
snl (StructureNL/[StructureNL]): A single StructureNL, or a list
of StructureNL objects
Returns:
A list of inserted submission ids.
Raises:
MPRestError | def submit_snl(self, snl):
try:
snl = snl if isinstance(snl, list) else [snl]
jsondata = [s.as_dict() for s in snl]
payload = {"snl": json.dumps(jsondata, cls=MontyEncoder)}
response = self.session.post("{}/snl/submit".format(self.preamble),
data=payload)
if response.status_code in [200, 400]:
resp = json.loads(response.text, cls=MontyDecoder)
if resp["valid_response"]:
if resp.get("warning"):
warnings.warn(resp["warning"])
return resp['inserted_ids']
else:
raise MPRestError(resp["error"])
raise MPRestError("REST error with status code {} and error {}"
.format(response.status_code, response.text))
except Exception as ex:
raise MPRestError(str(ex)) | 139,769 |
Delete earlier submitted SNLs.
.. note::
As of now, this MP REST feature is open only to a select group of
users. Opening up submissions to all users is being planned for
the future.
Args:
snl_ids: List of SNL ids.
Raises:
MPRestError | def delete_snl(self, snl_ids):
try:
payload = {"ids": json.dumps(snl_ids)}
response = self.session.post(
"{}/snl/delete".format(self.preamble), data=payload)
if response.status_code in [200, 400]:
resp = json.loads(response.text, cls=MontyDecoder)
if resp["valid_response"]:
if resp.get("warning"):
warnings.warn(resp["warning"])
return resp
else:
raise MPRestError(resp["error"])
raise MPRestError("REST error with status code {} and error {}"
.format(response.status_code, response.text))
except Exception as ex:
raise MPRestError(str(ex)) | 139,770 |
Query for submitted SNLs.
.. note::
As of now, this MP REST feature is open only to a select group of
users. Opening up submissions to all users is being planned for
the future.
Args:
criteria (dict): Query criteria.
Returns:
A dict, with a list of submitted SNLs in the "response" key.
Raises:
MPRestError | def query_snl(self, criteria):
try:
payload = {"criteria": json.dumps(criteria)}
response = self.session.post("{}/snl/query".format(self.preamble),
data=payload)
if response.status_code in [200, 400]:
resp = json.loads(response.text)
if resp["valid_response"]:
if resp.get("warning"):
warnings.warn(resp["warning"])
return resp["response"]
else:
raise MPRestError(resp["error"])
raise MPRestError("REST error with status code {} and error {}"
.format(response.status_code, response.text))
except Exception as ex:
raise MPRestError(str(ex)) | 139,771 |
Gets the cohesive for a material (eV per formula unit). Cohesive energy
is defined as the difference between the bulk energy and the sum of
total DFT energy of isolated atoms for atom elements in the bulk.
Args:
material_id (str): Materials Project material_id, e.g. 'mp-123'.
per_atom (bool): Whether or not to return cohesive energy per atom
Returns:
Cohesive energy (eV). | def get_cohesive_energy(self, material_id, per_atom=False):
entry = self.get_entry_by_material_id(material_id)
ebulk = entry.energy / \
entry.composition.get_integer_formula_and_factor()[1]
comp_dict = entry.composition.reduced_composition.as_dict()
isolated_atom_e_sum, n = 0, 0
for el in comp_dict.keys():
e = self._make_request("/element/%s/tasks/isolated_atom" % (el),
mp_decode=False)[0]
isolated_atom_e_sum += e['output']["final_energy"] * comp_dict[el]
n += comp_dict[el]
ecoh_per_formula = isolated_atom_e_sum - ebulk
return ecoh_per_formula/n if per_atom else ecoh_per_formula | 139,773 |
Gets a reaction from the Materials Project.
Args:
reactants ([str]): List of formulas
products ([str]): List of formulas
Returns:
rxn | def get_reaction(self, reactants, products):
return self._make_request("/reaction",
payload={"reactants[]": reactants,
"products[]": products}, mp_decode=False) | 139,774 |
Constructs a Wulff shape for a material.
Args:
material_id (str): Materials Project material_id, e.g. 'mp-123'.
Returns:
pymatgen.analysis.wulff.WulffShape | def get_wulff_shape(self, material_id):
from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
from pymatgen.analysis.wulff import WulffShape, hkl_tuple_to_str
structure = self.get_structure_by_material_id(material_id)
surfaces = self.get_surface_data(material_id)["surfaces"]
lattice = (SpacegroupAnalyzer(structure)
.get_conventional_standard_structure().lattice)
miller_energy_map = {}
for surf in surfaces:
miller = tuple(surf["miller_index"])
# Prefer reconstructed surfaces, which have lower surface energies.
if (miller not in miller_energy_map) or surf["is_reconstructed"]:
miller_energy_map[miller] = surf["surface_energy"]
millers, energies = zip(*miller_energy_map.items())
return WulffShape(lattice, millers, energies) | 139,777 |
Returns an EntrySet containing only the set of entries belonging to
a particular chemical system (in this definition, it includes all sub
systems). For example, if the entries are from the
Li-Fe-P-O system, and chemsys=["Li", "O"], only the Li, O,
and Li-O entries are returned.
Args:
chemsys: Chemical system specified as list of elements. E.g.,
["Li", "O"]
Returns:
EntrySet | def get_subset_in_chemsys(self, chemsys: List[str]):
chemsys = set(chemsys)
if not chemsys.issubset(self.chemsys):
raise ValueError("%s is not a subset of %s" % (chemsys,
self.chemsys))
subset = set()
for e in self.entries:
elements = [sp.symbol for sp in e.composition.keys()]
if chemsys.issuperset(elements):
subset.add(e)
return EntrySet(subset) | 139,790 |
Exports PDEntries to a csv
Args:
filename: Filename to write to.
entries: PDEntries to export.
latexify_names: Format entry names to be LaTex compatible,
e.g., Li_{2}O | def to_csv(self, filename: str, latexify_names: bool = False):
elements = set()
for entry in self.entries:
elements.update(entry.composition.elements)
elements = sorted(list(elements), key=lambda a: a.X)
writer = csv.writer(open(filename, "w"), delimiter=unicode2str(","),
quotechar=unicode2str("\""),
quoting=csv.QUOTE_MINIMAL)
writer.writerow(["Name"] + elements + ["Energy"])
for entry in self.entries:
row = [entry.name if not latexify_names
else re.sub(r"([0-9]+)", r"_{\1}", entry.name)]
row.extend([entry.composition[el] for el in elements])
row.append(entry.energy)
writer.writerow(row) | 139,791 |
Imports PDEntries from a csv.
Args:
filename: Filename to import from.
Returns:
List of Elements, List of PDEntries | def from_csv(cls, filename: str):
with open(filename, "r", encoding="utf-8") as f:
reader = csv.reader(f, delimiter=unicode2str(","),
quotechar=unicode2str("\""),
quoting=csv.QUOTE_MINIMAL)
entries = list()
header_read = False
elements = None
for row in reader:
if not header_read:
elements = row[1:(len(row) - 1)]
header_read = True
else:
name = row[0]
energy = float(row[-1])
comp = dict()
for ind in range(1, len(row) - 1):
if float(row[ind]) > 0:
comp[Element(elements[ind - 1])] = float(row[ind])
entries.append(PDEntry(Composition(comp), energy, name))
return cls(entries) | 139,792 |
Helper function to convert a Vasprun parameter into the proper type.
Boolean, int and float types are converted.
Args:
val_type: Value type parsed from vasprun.xml.
val: Actual string value parsed for vasprun.xml. | def _parse_parameters(val_type, val):
if val_type == "logical":
return val == "T"
elif val_type == "int":
return int(val)
elif val_type == "string":
return val.strip()
else:
return float(val) | 139,793 |
Returns the grid for a particular axis.
Args:
ind (int): Axis index. | def get_axis_grid(self, ind):
ng = self.dim
num_pts = ng[ind]
lengths = self.structure.lattice.abc
return [i / num_pts * lengths[ind] for i in range(num_pts)] | 139,858 |
Method to do a linear sum of volumetric objects. Used by + and -
operators as well. Returns a VolumetricData object containing the
linear sum.
Args:
other (VolumetricData): Another VolumetricData object
scale_factor (float): Factor to scale the other data by.
Returns:
VolumetricData corresponding to self + scale_factor * other. | def linear_add(self, other, scale_factor=1.0):
if self.structure != other.structure:
raise ValueError("Adding or subtraction operations can only be "
"performed for volumetric data with the exact "
"same structure.")
# To add checks
data = {}
for k in self.data.keys():
data[k] = self.data[k] + scale_factor * other.data[k]
return VolumetricData(self.structure, data, self._distance_matrix) | 139,859 |
Convenience method to parse a generic volumetric data file in the vasp
like format. Used by subclasses for parsing file.
Args:
filename (str): Path of file to parse
Returns:
(poscar, data) | def parse_file(filename):
poscar_read = False
poscar_string = []
dataset = []
all_dataset = []
# for holding any strings in input that are not Poscar
# or VolumetricData (typically augmentation charges)
all_dataset_aug = {}
dim = None
dimline = None
read_dataset = False
ngrid_pts = 0
data_count = 0
poscar = None
with zopen(filename, "rt") as f:
for line in f:
original_line = line
line = line.strip()
if read_dataset:
toks = line.split()
for tok in toks:
if data_count < ngrid_pts:
# This complicated procedure is necessary because
# vasp outputs x as the fastest index, followed by y
# then z.
x = data_count % dim[0]
y = int(math.floor(data_count / dim[0])) % dim[1]
z = int(math.floor(data_count / dim[0] / dim[1]))
dataset[x, y, z] = float(tok)
data_count += 1
if data_count >= ngrid_pts:
read_dataset = False
data_count = 0
all_dataset.append(dataset)
elif not poscar_read:
if line != "" or len(poscar_string) == 0:
poscar_string.append(line)
elif line == "":
poscar = Poscar.from_string("\n".join(poscar_string))
poscar_read = True
elif not dim:
dim = [int(i) for i in line.split()]
ngrid_pts = dim[0] * dim[1] * dim[2]
dimline = line
read_dataset = True
dataset = np.zeros(dim)
elif line == dimline:
# when line == dimline, expect volumetric data to follow
# so set read_dataset to True
read_dataset = True
dataset = np.zeros(dim)
else:
# store any extra lines that were not part of the
# volumetric data so we know which set of data the extra
# lines are associated with
key = len(all_dataset) - 1
if key not in all_dataset_aug:
all_dataset_aug[key] = []
all_dataset_aug[key].append(original_line)
if len(all_dataset) == 4:
data = {"total": all_dataset[0], "diff_x": all_dataset[1],
"diff_y": all_dataset[2], "diff_z": all_dataset[3]}
data_aug = {"total": all_dataset_aug.get(0, None),
"diff_x": all_dataset_aug.get(1, None),
"diff_y": all_dataset_aug.get(2, None),
"diff_z": all_dataset_aug.get(3, None)}
# construct a "diff" dict for scalar-like magnetization density,
# referenced to an arbitrary direction (using same method as
# pymatgen.electronic_structure.core.Magmom, see
# Magmom documentation for justification for this)
# TODO: re-examine this, and also similar behavior in
# Magmom - @mkhorton
# TODO: does CHGCAR change with different SAXIS?
diff_xyz = np.array([data["diff_x"], data["diff_y"],
data["diff_z"]])
diff_xyz = diff_xyz.reshape((3, dim[0] * dim[1] * dim[2]))
ref_direction = np.array([1.01, 1.02, 1.03])
ref_sign = np.sign(np.dot(ref_direction, diff_xyz))
diff = np.multiply(np.linalg.norm(diff_xyz, axis=0), ref_sign)
data["diff"] = diff.reshape((dim[0], dim[1], dim[2]))
elif len(all_dataset) == 2:
data = {"total": all_dataset[0], "diff": all_dataset[1]}
data_aug = {"total": all_dataset_aug.get(0, None),
"diff": all_dataset_aug.get(1, None)}
else:
data = {"total": all_dataset[0]}
data_aug = {"total": all_dataset_aug.get(0, None)}
return poscar, data, data_aug | 139,860 |
Write the VolumetricData object to a vasp compatible file.
Args:
file_name (str): Path to a file
vasp4_compatible (bool): True if the format is vasp4 compatible | def write_file(self, file_name, vasp4_compatible=False):
def _print_fortran_float(f):
s = "{:.10E}".format(f)
if f >= 0:
return "0." + s[0] + s[2:12] + 'E' + "{:+03}".format(int(s[13:]) + 1)
else:
return "-." + s[1] + s[3:13] + 'E' + "{:+03}".format(int(s[14:]) + 1)
with zopen(file_name, "wt") as f:
p = Poscar(self.structure)
# use original name if it's been set (e.g. from Chgcar)
comment = getattr(self, 'name', p.comment)
lines = comment + "\n"
lines += " 1.00000000000000\n"
latt = self.structure.lattice.matrix
lines += " %12.6f%12.6f%12.6f\n" % tuple(latt[0, :])
lines += " %12.6f%12.6f%12.6f\n" % tuple(latt[1, :])
lines += " %12.6f%12.6f%12.6f\n" % tuple(latt[2, :])
if not vasp4_compatible:
lines += "".join(["%5s" % s for s in p.site_symbols]) + "\n"
lines += "".join(["%6d" % x for x in p.natoms]) + "\n"
lines += "Direct\n"
for site in self.structure:
lines += "%10.6f%10.6f%10.6f\n" % tuple(site.frac_coords)
lines += " \n"
f.write(lines)
a = self.dim
def write_spin(data_type):
lines = []
count = 0
f.write(" {} {} {}\n".format(a[0], a[1], a[2]))
for (k, j, i) in itertools.product(list(range(a[2])),
list(range(a[1])),
list(range(a[0]))):
lines.append(_print_fortran_float(self.data[data_type][i, j, k]))
count += 1
if count % 5 == 0:
f.write(" " + "".join(lines) + "\n")
lines = []
else:
lines.append(" ")
f.write(" " + "".join(lines) + " \n")
f.write("".join(self.data_aug.get(data_type, [])))
write_spin("total")
if self.is_spin_polarized and self.is_soc:
write_spin("diff_x")
write_spin("diff_y")
write_spin("diff_z")
elif self.is_spin_polarized:
write_spin("diff") | 139,861 |
Get the averaged total of the volumetric data a certain axis direction.
For example, useful for visualizing Hartree Potentials from a LOCPOT
file.
Args:
ind (int): Index of axis.
Returns:
Average total along axis | def get_average_along_axis(self, ind):
m = self.data["total"]
ng = self.dim
if ind == 0:
total = np.sum(np.sum(m, axis=1), 1)
elif ind == 1:
total = np.sum(np.sum(m, axis=0), 1)
else:
total = np.sum(np.sum(m, axis=0), 0)
return total / ng[(ind + 1) % 3] / ng[(ind + 2) % 3] | 139,863 |
Method returning a dictionary of projections on elements.
Args:
structure (Structure): Input structure.
Returns:
a dictionary in the {Spin.up:[k index][b index][{Element:values}]] | def get_projection_on_elements(self, structure):
dico = {}
for spin in self.data.keys():
dico[spin] = [[defaultdict(float)
for i in range(self.nkpoints)]
for j in range(self.nbands)]
for iat in range(self.nions):
name = structure.species[iat].symbol
for spin, d in self.data.items():
for k, b in itertools.product(range(self.nkpoints),
range(self.nbands)):
dico[spin][b][k][name] = np.sum(d[k, b, iat, :])
return dico | 139,871 |
Init a Xdatcar.
Args:
filename (str): Filename of input XDATCAR file.
ionicstep_start (int): Starting number of ionic step.
ionicstep_end (int): Ending number of ionic step. | def __init__(self, filename, ionicstep_start=1,
ionicstep_end=None, comment=None):
preamble = None
coords_str = []
structures = []
preamble_done = False
if (ionicstep_start < 1):
raise Exception('Start ionic step cannot be less than 1')
if (ionicstep_end is not None and
ionicstep_start < 1):
raise Exception('End ionic step cannot be less than 1')
ionicstep_cnt = 1
with zopen(filename, "rt") as f:
for l in f:
l = l.strip()
if preamble is None:
preamble = [l]
elif not preamble_done:
if l == "" or "Direct configuration=" in l:
preamble_done = True
tmp_preamble = [preamble[0]]
for i in range(1, len(preamble)):
if preamble[0] != preamble[i]:
tmp_preamble.append(preamble[i])
else:
break
preamble = tmp_preamble
else:
preamble.append(l)
elif l == "" or "Direct configuration=" in l:
p = Poscar.from_string("\n".join(preamble +
["Direct"] + coords_str))
if ionicstep_end is None:
if (ionicstep_cnt >= ionicstep_start):
structures.append(p.structure)
else:
if ionicstep_start <= ionicstep_cnt < ionicstep_end:
structures.append(p.structure)
ionicstep_cnt += 1
coords_str = []
else:
coords_str.append(l)
p = Poscar.from_string("\n".join(preamble +
["Direct"] + coords_str))
if ionicstep_end is None:
if ionicstep_cnt >= ionicstep_start:
structures.append(p.structure)
else:
if ionicstep_start <= ionicstep_cnt < ionicstep_end:
structures.append(p.structure)
self.structures = structures
self.comment = comment or self.structures[0].formula | 139,875 |
Write Xdatcar class into a file
Args:
filename (str): Filename of output XDATCAR file.
ionicstep_start (int): Starting number of ionic step.
ionicstep_end (int): Ending number of ionic step. | def get_string(self, ionicstep_start=1,
ionicstep_end=None,
significant_figures=8):
from pymatgen.io.vasp import Poscar
if (ionicstep_start < 1):
raise Exception('Start ionic step cannot be less than 1')
if (ionicstep_end is not None and
ionicstep_start < 1):
raise Exception('End ionic step cannot be less than 1')
latt = self.structures[0].lattice
if np.linalg.det(latt.matrix) < 0:
latt = Lattice(-latt.matrix)
lines = [self.comment, "1.0", str(latt)]
lines.append(" ".join(self.site_symbols))
lines.append(" ".join([str(x) for x in self.natoms]))
format_str = "{{:.{0}f}}".format(significant_figures)
ionicstep_cnt = 1
output_cnt = 1
for cnt, structure in enumerate(self.structures):
ionicstep_cnt = cnt + 1
if ionicstep_end is None:
if (ionicstep_cnt >= ionicstep_start):
lines.append("Direct configuration=" +
' ' * (7 - len(str(output_cnt))) + str(output_cnt))
for (i, site) in enumerate(structure):
coords = site.frac_coords
line = " ".join([format_str.format(c) for c in coords])
lines.append(line)
output_cnt += 1
else:
if ionicstep_start <= ionicstep_cnt < ionicstep_end:
lines.append("Direct configuration=" +
' ' * (7 - len(str(output_cnt))) + str(output_cnt))
for (i, site) in enumerate(structure):
coords = site.frac_coords
line = " ".join([format_str.format(c) for c in coords])
lines.append(line)
output_cnt += 1
return "\n".join(lines) + "\n" | 139,878 |
Information is extracted from the given WAVECAR
Args:
filename (str): input file (default: WAVECAR)
verbose (bool): determines whether processing information is shown
precision (str): determines how fine the fft mesh is (normal or
accurate), only the first letter matters | def __init__(self, filename='WAVECAR', verbose=False, precision='normal'):
self.filename = filename
# c = 0.26246582250210965422
# 2m/hbar^2 in agreement with VASP
self._C = 0.262465831
with open(self.filename, 'rb') as f:
# read the header information
recl, spin, rtag = np.fromfile(f, dtype=np.float64, count=3) \
.astype(np.int)
if verbose:
print('recl={}, spin={}, rtag={}'.format(recl, spin, rtag))
recl8 = int(recl / 8)
self.spin = spin
# check that ISPIN wasn't set to 2
# if spin == 2:
# raise ValueError('spin polarization not currently supported')
# check to make sure we have precision correct
if rtag != 45200 and rtag != 45210:
raise ValueError('invalid rtag of {}'.format(rtag))
# padding
np.fromfile(f, dtype=np.float64, count=(recl8 - 3))
# extract kpoint, bands, energy, and lattice information
self.nk, self.nb, self.encut = np.fromfile(f, dtype=np.float64,
count=3).astype(np.int)
self.a = np.fromfile(f, dtype=np.float64, count=9).reshape((3, 3))
self.efermi = np.fromfile(f, dtype=np.float64, count=1)[0]
if verbose:
print('kpoints = {}, bands = {}, energy cutoff = {}, fermi '
'energy= {:.04f}\n'.format(self.nk, self.nb, self.encut,
self.efermi))
print('primitive lattice vectors = \n{}'.format(self.a))
self.vol = np.dot(self.a[0, :],
np.cross(self.a[1, :], self.a[2, :]))
if verbose:
print('volume = {}\n'.format(self.vol))
# calculate reciprocal lattice
b = np.array([np.cross(self.a[1, :], self.a[2, :]),
np.cross(self.a[2, :], self.a[0, :]),
np.cross(self.a[0, :], self.a[1, :])])
b = 2 * np.pi * b / self.vol
self.b = b
if verbose:
print('reciprocal lattice vectors = \n{}'.format(b))
print('reciprocal lattice vector magnitudes = \n{}\n'
.format(np.linalg.norm(b, axis=1)))
# calculate maximum number of b vectors in each direction
self._generate_nbmax()
if verbose:
print('max number of G values = {}\n\n'.format(self._nbmax))
self.ng = self._nbmax * 3 if precision.lower()[0] == 'n' else \
self._nbmax * 4
# padding
np.fromfile(f, dtype=np.float64, count=recl8 - 13)
# reading records
# np.set_printoptions(precision=7, suppress=True)
self.Gpoints = [None for _ in range(self.nk)]
self.kpoints = []
if spin == 2:
self.coeffs = [[[None for i in range(self.nb)]
for j in range(self.nk)] for _ in range(spin)]
self.band_energy = [[] for _ in range(spin)]
else:
self.coeffs = [[None for i in range(self.nb)]
for j in range(self.nk)]
self.band_energy = []
for ispin in range(spin):
if verbose:
print('reading spin {}'.format(ispin))
for ink in range(self.nk):
# information for this kpoint
nplane = int(np.fromfile(f, dtype=np.float64, count=1)[0])
kpoint = np.fromfile(f, dtype=np.float64, count=3)
if ispin == 0:
self.kpoints.append(kpoint)
else:
assert np.allclose(self.kpoints[ink], kpoint)
if verbose:
print('kpoint {: 4} with {: 5} plane waves at {}'
.format(ink, nplane, kpoint))
# energy and occupation information
enocc = np.fromfile(f, dtype=np.float64,
count=3 * self.nb).reshape((self.nb, 3))
if spin == 2:
self.band_energy[ispin].append(enocc)
else:
self.band_energy.append(enocc)
if verbose:
print(enocc[:, [0, 2]])
# padding
np.fromfile(f, dtype=np.float64, count=(recl8 - 4 - 3 * self.nb))
# generate G integers
self.Gpoints[ink] = self._generate_G_points(kpoint)
if len(self.Gpoints[ink]) != nplane:
raise ValueError('failed to generate the correct '
'number of G points')
# extract coefficients
for inb in range(self.nb):
if rtag == 45200:
data = np.fromfile(f, dtype=np.complex64, count=nplane)
np.fromfile(f, dtype=np.float64, count=recl8 - nplane)
elif rtag == 45210:
# this should handle double precision coefficients
# but I don't have a WAVECAR to test it with
data = np.fromfile(f, dtype=np.complex128, count=nplane)
np.fromfile(f, dtype=np.float64, count=recl8 - 2 * nplane)
if spin == 2:
self.coeffs[ispin][ink][inb] = data
else:
self.coeffs[ink][inb] = data | 139,881 |
Helper function to generate G-points based on nbmax.
This function iterates over possible G-point values and determines
if the energy is less than G_{cut}. Valid values are appended to
the output array. This function should not be called outside of
initialization.
Args:
kpoint (np.array): the array containing the current k-point value
Returns:
a list containing valid G-points | def _generate_G_points(self, kpoint):
gpoints = []
for i in range(2 * self._nbmax[2] + 1):
i3 = i - 2 * self._nbmax[2] - 1 if i > self._nbmax[2] else i
for j in range(2 * self._nbmax[1] + 1):
j2 = j - 2 * self._nbmax[1] - 1 if j > self._nbmax[1] else j
for k in range(2 * self._nbmax[0] + 1):
k1 = k - 2 * self._nbmax[0] - 1 if k > self._nbmax[0] else k
G = np.array([k1, j2, i3])
v = kpoint + G
g = np.linalg.norm(np.dot(v, self.b))
E = g ** 2 / self._C
if E < self.encut:
gpoints.append(G)
return np.array(gpoints, dtype=np.float64) | 139,883 |
Method returning a numpy array with elements
[cdum_x_real, cdum_x_imag, cdum_y_real, cdum_y_imag, cdum_z_real, cdum_z_imag]
between bands band_i and band_j (vasp 1-based indexing) for all kpoints.
Args:
band_i (Integer): Index of band i
band_j (Integer): Index of band j
Returns:
a numpy list of elements for each kpoint | def get_elements_between_bands(self, band_i, band_j):
if band_i < 1 or band_i > self.nb_bands or band_j < 1 or band_j > self.nb_bands:
raise ValueError("Band index out of bounds")
return self.data[:, band_i - 1, band_j - 1, :] | 139,888 |
Method returning a value
between bands band_i and band_j for k-point index, spin-channel and cartesian direction.
Args:
band_i (Integer): Index of band i
band_j (Integer): Index of band j
kpoint (Integer): Index of k-point
spin (Integer): Index of spin-channel (0 or 1)
cart_dir (Integer): Index of cartesian direction (0,1,2)
Returns:
a float value | def get_orbital_derivative_between_states(self, band_i, band_j, kpoint, spin, cart_dir):
if band_i < 0 or band_i > self.nbands - 1 or band_j < 0 or band_j > self.nelect - 1:
raise ValueError("Band index out of bounds")
if kpoint > self.nkpoints:
raise ValueError("K-point index out of bounds")
if cart_dir > 2 or cart_dir < 0:
raise ValueError("cart_dir index out of bounds")
return self.cder_data[band_i, band_j, kpoint, spin, cart_dir] | 139,890 |
Initializes the SymmOp from a 4x4 affine transformation matrix.
In general, this constructor should not be used unless you are
transferring rotations. Use the static constructors instead to
generate a SymmOp from proper rotations and translation.
Args:
affine_transformation_matrix (4x4 array): Representing an
affine transformation.
tol (float): Tolerance for determining if matrices are equal. | def __init__(self, affine_transformation_matrix, tol=0.01):
affine_transformation_matrix = np.array(affine_transformation_matrix)
if affine_transformation_matrix.shape != (4, 4):
raise ValueError("Affine Matrix must be a 4x4 numpy array!")
self.affine_matrix = affine_transformation_matrix
self.tol = tol | 139,891 |
Creates a symmetry operation from a rotation matrix and a translation
vector.
Args:
rotation_matrix (3x3 array): Rotation matrix.
translation_vec (3x1 array): Translation vector.
tol (float): Tolerance to determine if rotation matrix is valid.
Returns:
SymmOp object | def from_rotation_and_translation(
rotation_matrix=((1, 0, 0), (0, 1, 0), (0, 0, 1)),
translation_vec=(0, 0, 0), tol=0.1):
rotation_matrix = np.array(rotation_matrix)
translation_vec = np.array(translation_vec)
if rotation_matrix.shape != (3, 3):
raise ValueError("Rotation Matrix must be a 3x3 numpy array.")
if translation_vec.shape != (3,):
raise ValueError("Translation vector must be a rank 1 numpy array "
"with 3 elements.")
affine_matrix = np.eye(4)
affine_matrix[0:3][:, 0:3] = rotation_matrix
affine_matrix[0:3][:, 3] = translation_vec
return SymmOp(affine_matrix, tol) | 139,892 |
Apply the operation on a point.
Args:
point: Cartesian coordinate.
Returns:
Coordinates of point after operation. | def operate(self, point):
affine_point = np.array([point[0], point[1], point[2], 1])
return np.dot(self.affine_matrix, affine_point)[0:3] | 139,895 |
Apply the operation on a list of points.
Args:
points: List of Cartesian coordinates
Returns:
Numpy array of coordinates after operation | def operate_multi(self, points):
points = np.array(points)
affine_points = np.concatenate(
[points, np.ones(points.shape[:-1] + (1,))], axis=-1)
return np.inner(affine_points, self.affine_matrix)[..., :-1] | 139,896 |
Applies rotation portion to a tensor. Note that tensor has to be in
full form, not the Voigt form.
Args:
tensor (numpy array): a rank n tensor
Returns:
Transformed tensor. | def transform_tensor(self, tensor):
dim = tensor.shape
rank = len(dim)
assert all([i == 3 for i in dim])
# Build einstein sum string
lc = string.ascii_lowercase
indices = lc[:rank], lc[rank:2 * rank]
einsum_string = ','.join([a + i for a, i in zip(*indices)])
einsum_string += ',{}->{}'.format(*indices[::-1])
einsum_args = [self.rotation_matrix] * rank + [tensor]
return np.einsum(einsum_string, *einsum_args) | 139,897 |
Checks if two points are symmetrically related.
Args:
point_a (3x1 array): First point.
point_b (3x1 array): Second point.
tol (float): Absolute tolerance for checking distance.
Returns:
True if self.operate(point_a) == point_b or vice versa. | def are_symmetrically_related(self, point_a, point_b, tol=0.001):
if np.allclose(self.operate(point_a), point_b, atol=tol):
return True
if np.allclose(self.operate(point_b), point_a, atol=tol):
return True
return False | 139,898 |
Returns reflection symmetry operation.
Args:
normal (3x1 array): Vector of the normal to the plane of
reflection.
origin (3x1 array): A point in which the mirror plane passes
through.
Returns:
SymmOp for the reflection about the plane | def reflection(normal, origin=(0, 0, 0)):
# Normalize the normal vector first.
n = np.array(normal, dtype=float) / np.linalg.norm(normal)
u, v, w = n
translation = np.eye(4)
translation[0:3, 3] = -np.array(origin)
xx = 1 - 2 * u ** 2
yy = 1 - 2 * v ** 2
zz = 1 - 2 * w ** 2
xy = -2 * u * v
xz = -2 * u * w
yz = -2 * v * w
mirror_mat = [[xx, xy, xz, 0], [xy, yy, yz, 0], [xz, yz, zz, 0],
[0, 0, 0, 1]]
if np.linalg.norm(origin) > 1e-6:
mirror_mat = np.dot(np.linalg.inv(translation),
np.dot(mirror_mat, translation))
return SymmOp(mirror_mat) | 139,903 |
Inversion symmetry operation about axis.
Args:
origin (3x1 array): Origin of the inversion operation. Defaults
to [0, 0, 0].
Returns:
SymmOp representing an inversion operation about the origin. | def inversion(origin=(0, 0, 0)):
mat = -np.eye(4)
mat[3, 3] = 1
mat[0:3, 3] = 2 * np.array(origin)
return SymmOp(mat) | 139,904 |
Returns a roto-reflection symmetry operation
Args:
axis (3x1 array): Axis of rotation / mirror normal
angle (float): Angle in degrees
origin (3x1 array): Point left invariant by roto-reflection.
Defaults to (0, 0, 0).
Return:
Roto-reflection operation | def rotoreflection(axis, angle, origin=(0, 0, 0)):
rot = SymmOp.from_origin_axis_angle(origin, axis, angle)
refl = SymmOp.reflection(axis, origin)
m = np.dot(rot.affine_matrix, refl.affine_matrix)
return SymmOp(m) | 139,905 |
Apply time reversal operator on the magnetic moment. Note that
magnetic moments transform as axial vectors, not polar vectors.
See 'Symmetry and magnetic structures', Rodríguez-Carvajal and
Bourée for a good discussion. DOI: 10.1051/epjconf/20122200010
Args:
magmom: Magnetic moment as electronic_structure.core.Magmom
class or as list or np array-like
Returns:
Magnetic moment after operator applied as Magmom class | def operate_magmom(self, magmom):
magmom = Magmom(magmom) # type casting to handle lists as input
transformed_moment = self.apply_rotation_only(magmom.global_moment) * \
np.linalg.det(self.rotation_matrix) * self.time_reversal
# retains input spin axis if different from default
return Magmom.from_global_moment_and_saxis(transformed_moment, magmom.saxis) | 139,912 |
Initialize a MagSymmOp from a SymmOp and time reversal operator.
Args:
symmop (SymmOp): SymmOp
time_reversal (int): Time reversal operator, +1 or -1.
Returns:
MagSymmOp object | def from_symmop(cls, symmop, time_reversal):
magsymmop = cls(symmop.affine_matrix, time_reversal, symmop.tol)
return magsymmop | 139,913 |
Creates a symmetry operation from a rotation matrix, translation
vector and time reversal operator.
Args:
rotation_matrix (3x3 array): Rotation matrix.
translation_vec (3x1 array): Translation vector.
time_reversal (int): Time reversal operator, +1 or -1.
tol (float): Tolerance to determine if rotation matrix is valid.
Returns:
MagSymmOp object | def from_rotation_and_translation_and_time_reversal(
rotation_matrix=((1, 0, 0), (0, 1, 0), (0, 0, 1)),
translation_vec=(0, 0, 0), time_reversal=1, tol=0.1):
symmop = SymmOp.from_rotation_and_translation(rotation_matrix=rotation_matrix,
translation_vec=translation_vec,
tol=tol)
return MagSymmOp.from_symmop(symmop, time_reversal) | 139,914 |
A class method for quickly creating DFT tasks with optional
cosmo parameter .
Args:
mol: Input molecule
xc: Exchange correlation to use.
\\*\\*kwargs: Any of the other kwargs supported by NwTask. Note the
theory is always "dft" for a dft task. | def dft_task(cls, mol, xc="b3lyp", **kwargs):
t = NwTask.from_molecule(mol, theory="dft", **kwargs)
t.theory_directives.update({"xc": xc,
"mult": t.spin_multiplicity})
return t | 139,932 |
Read an NwInput from a string. Currently tested to work with
files generated from this class itself.
Args:
string_input: string_input to parse.
Returns:
NwInput object | def from_string(cls, string_input):
directives = []
tasks = []
charge = None
spin_multiplicity = None
title = None
basis_set = None
basis_set_option = None
theory_directives = {}
geom_options = None
symmetry_options = None
memory_options = None
lines = string_input.strip().split("\n")
while len(lines) > 0:
l = lines.pop(0).strip()
if l == "":
continue
toks = l.split()
if toks[0].lower() == "geometry":
geom_options = toks[1:]
l = lines.pop(0).strip()
toks = l.split()
if toks[0].lower() == "symmetry":
symmetry_options = toks[1:]
l = lines.pop(0).strip()
# Parse geometry
species = []
coords = []
while l.lower() != "end":
toks = l.split()
species.append(toks[0])
coords.append([float(i) for i in toks[1:]])
l = lines.pop(0).strip()
mol = Molecule(species, coords)
elif toks[0].lower() == "charge":
charge = int(toks[1])
elif toks[0].lower() == "title":
title = l[5:].strip().strip("\"")
elif toks[0].lower() == "basis":
# Parse basis sets
l = lines.pop(0).strip()
basis_set = {}
while l.lower() != "end":
toks = l.split()
basis_set[toks[0]] = toks[-1].strip("\"")
l = lines.pop(0).strip()
elif toks[0].lower() in NwTask.theories:
# read the basis_set_option
if len(toks) > 1:
basis_set_option = toks[1]
# Parse theory directives.
theory = toks[0].lower()
l = lines.pop(0).strip()
theory_directives[theory] = {}
while l.lower() != "end":
toks = l.split()
theory_directives[theory][toks[0]] = toks[-1]
if toks[0] == "mult":
spin_multiplicity = float(toks[1])
l = lines.pop(0).strip()
elif toks[0].lower() == "task":
tasks.append(
NwTask(charge=charge,
spin_multiplicity=spin_multiplicity,
title=title, theory=toks[1],
operation=toks[2], basis_set=basis_set,
basis_set_option=basis_set_option,
theory_directives=theory_directives.get(toks[1])))
elif toks[0].lower() == "memory":
memory_options = ' '.join(toks[1:])
else:
directives.append(l.strip().split())
return NwInput(mol, tasks=tasks, directives=directives,
geometry_options=geom_options,
symmetry_options=symmetry_options,
memory_options=memory_options) | 139,937 |
Generate an excitation spectra from the singlet roots of TDDFT
calculations.
Args:
width (float): Width for Gaussian smearing.
npoints (int): Number of energy points. More points => smoother
curve.
Returns:
(ExcitationSpectrum) which can be plotted using
pymatgen.vis.plotters.SpectrumPlotter. | def get_excitation_spectrum(self, width=0.1, npoints=2000):
roots = self.parse_tddft()
data = roots["singlet"]
en = np.array([d["energy"] for d in data])
osc = np.array([d["osc_strength"] for d in data])
epad = 20.0 * width
emin = en[0] - epad
emax = en[-1] + epad
de = (emax - emin) / npoints
# Use width of at least two grid points
if width < 2 * de:
width = 2 * de
energies = [emin + ie * de for ie in range(npoints)]
cutoff = 20.0 * width
gamma = 0.5 * width
gamma_sqrd = gamma * gamma
de = (energies[-1] - energies[0]) / (len(energies) - 1)
prefac = gamma / np.pi * de
x = []
y = []
for energy in energies:
xx0 = energy - en
stot = osc / (xx0 * xx0 + gamma_sqrd)
t = np.sum(stot[np.abs(xx0) <= cutoff])
x.append(energy)
y.append(t * prefac)
return ExcitationSpectrum(x, y) | 139,940 |
Generates an ion object from a dict created by as_dict().
Args:
d:
{symbol: amount} dict. | def from_dict(cls, d):
charge = d.pop('charge')
composition = Composition(d)
return Ion(composition, charge) | 139,949 |
Obtains a SpaceGroup name from its international number.
Args:
int_number (int): International number.
hexagonal (bool): For rhombohedral groups, whether to return the
hexagonal setting (default) or rhombohedral setting.
Returns:
(str) Spacegroup symbol | def sg_symbol_from_int_number(int_number, hexagonal=True):
syms = []
for n, v in get_symm_data("space_group_encoding").items():
if v["int_number"] == int_number:
syms.append(n)
if len(syms) == 0:
raise ValueError("Invalid international number!")
if len(syms) == 2:
if hexagonal:
syms = list(filter(lambda s: s.endswith("H"), syms))
else:
syms = list(filter(lambda s: not s.endswith("H"), syms))
return syms.pop() | 139,996 |
Extremely efficient nd-array comparison using numpy's broadcasting. This
function checks if a particular array a, is present in a list of arrays.
It works for arrays of any size, e.g., even matrix searches.
Args:
array_list ([array]): A list of arrays to compare to.
a (array): The test array for comparison.
tol (float): The tolerance. Defaults to 1e-5. If 0, an exact match is
done.
Returns:
(bool) | def in_array_list(array_list, a, tol=1e-5):
if len(array_list) == 0:
return False
axes = tuple(range(1, a.ndim + 1))
if not tol:
return np.any(np.all(np.equal(array_list, a[None, :]), axes))
else:
return np.any(np.sum(np.abs(array_list - a[None, :]), axes) < tol) | 139,997 |
True if this group is a subgroup of the supplied group.
Args:
supergroup (SymmetryGroup): Supergroup to test.
Returns:
True if this group is a subgroup of the supplied group. | def is_subgroup(self, supergroup):
warnings.warn("This is not fully functional. Only trivial subsets are tested right now. ")
return set(self.symmetry_ops).issubset(supergroup.symmetry_ops) | 139,999 |
True if this group is a supergroup of the supplied group.
Args:
subgroup (SymmetryGroup): Subgroup to test.
Returns:
True if this group is a supergroup of the supplied group. | def is_supergroup(self, subgroup):
warnings.warn("This is not fully functional. Only trivial subsets are "
"tested right now. ")
return set(subgroup.symmetry_ops).issubset(self.symmetry_ops) | 140,000 |
Strips whitespace, carriage returns and empty lines from a list of strings.
Args:
string_list: List of strings
remove_empty_lines: Set to True to skip lines which are empty after
stripping.
Returns:
List of clean strings with no whitespaces. | def clean_lines(string_list, remove_empty_lines=True):
for s in string_list:
clean_s = s
if '#' in s:
ind = s.index('#')
clean_s = s[:ind]
clean_s = clean_s.strip()
if (not remove_empty_lines) or clean_s != '':
yield clean_s | 140,003 |
Convert a PhonopyAtoms object to pymatgen Structure object.
Args:
phonopy_structure (PhonopyAtoms): A phonopy structure object. | def get_pmg_structure(phonopy_structure):
lattice = phonopy_structure.get_cell()
frac_coords = phonopy_structure.get_scaled_positions()
symbols = phonopy_structure.get_chemical_symbols()
masses = phonopy_structure.get_masses()
mms = phonopy_structure.get_magnetic_moments()
mms = mms or [0] * len(symbols)
return Structure(lattice, symbols, frac_coords,
site_properties={"phonopy_masses": masses,
"magnetic_moments": mms}) | 140,009 |
Convert a pymatgen Structure object to a PhonopyAtoms object.
Args:
pmg_structure (pymatgen Structure): A Pymatgen structure object. | def get_phonopy_structure(pmg_structure):
symbols = [site.specie.symbol for site in pmg_structure]
return PhonopyAtoms(symbols=symbols, cell=pmg_structure.lattice.matrix,
scaled_positions=pmg_structure.frac_coords) | 140,010 |
Creates a pymatgen CompletePhononDos from a partial_dos.dat and
phonopy.yaml files.
The second is produced when generating a Dos and is needed to extract
the structure.
Args:
partial_dos_path: path to the partial_dos.dat file.
phonopy_yaml_path: path to the phonopy.yaml file. | def get_complete_ph_dos(partial_dos_path, phonopy_yaml_path):
a = np.loadtxt(partial_dos_path).transpose()
d = loadfn(phonopy_yaml_path)
structure = get_structure_from_dict(d['primitive_cell'])
total_dos = PhononDos(a[0], a[1:].sum(axis=0))
pdoss = {}
for site, pdos in zip(structure, a[1:]):
pdoss[site] = pdos.tolist()
return CompletePhononDos(structure, total_dos, pdoss) | 140,015 |
Returns unique families of Miller indices. Families must be permutations
of each other.
Args:
hkls ([h, k, l]): List of Miller indices.
Returns:
{hkl: multiplicity}: A dict with unique hkl and multiplicity. | def get_unique_families(hkls):
# TODO: Definitely can be sped up.
def is_perm(hkl1, hkl2):
h1 = np.abs(hkl1)
h2 = np.abs(hkl2)
return all([i == j for i, j in zip(sorted(h1), sorted(h2))])
unique = collections.defaultdict(list)
for hkl1 in hkls:
found = False
for hkl2 in unique.keys():
if is_perm(hkl1, hkl2):
found = True
unique[hkl2].append(hkl1)
break
if not found:
unique[hkl1].append(hkl1)
pretty_unique = {}
for k, v in unique.items():
pretty_unique[sorted(v)[-1]] = len(v)
return pretty_unique | 140,017 |
Normalize the spectrum with respect to the sum of intensity
Args:
mode (str): Normalization mode. Supported modes are "max" (set the
max y value to value, e.g., in XRD patterns), "sum" (set the
sum of y to a value, i.e., like a probability density).
value (float): Value to normalize to. Defaults to 1. | def normalize(self, mode="max", value=1):
if mode.lower() == "sum":
factor = np.sum(self.y, axis=0)
elif mode.lower() == "max":
factor = np.max(self.y, axis=0)
else:
raise ValueError("Unsupported normalization mode %s!" % mode)
self.y /= factor / value | 140,028 |
Apply Gaussian smearing to spectrum y value.
Args:
sigma: Std dev for Gaussian smear function | def smear(self, sigma):
diff = [self.x[i + 1] - self.x[i] for i in range(len(self.x) - 1)]
avg_x_per_step = np.sum(diff) / len(diff)
if len(self.ydim) == 1:
self.y = gaussian_filter1d(self.y, sigma / avg_x_per_step)
else:
self.y = np.array([
gaussian_filter1d(self.y[:, k], sigma / avg_x_per_step)
for k in range(self.ydim[1])]).T | 140,029 |
Returns an interpolated y value for a particular x value.
Args:
x: x value to return the y value for
Returns:
Value of y at x | def get_interpolated_value(self, x):
if len(self.ydim) == 1:
return get_linear_interpolated_value(self.x, self.y, x)
else:
return [get_linear_interpolated_value(self.x, self.y[:, k], x)
for k in range(self.ydim[1])] | 140,030 |
Add two Spectrum object together. Checks that x scales are the same.
Otherwise, a ValueError is thrown.
Args:
other: Another Spectrum object
Returns:
Sum of the two Spectrum objects | def __add__(self, other):
if not all(np.equal(self.x, other.x)):
raise ValueError("X axis values are not compatible!")
return self.__class__(self.x, self.y + other.y, *self._args,
**self._kwargs) | 140,032 |
Scale the Spectrum's y values
Args:
other: scalar, The scale amount
Returns:
Spectrum object with y values scaled | def __mul__(self, other):
return self.__class__(self.x, other * self.y, *self._args,
**self._kwargs) | 140,033 |
True division of y
Args:
other: The divisor
Returns:
Spectrum object with y values divided | def __truediv__(self, other):
return self.__class__(self.x, self.y.__truediv__(other), *self._args,
**self._kwargs) | 140,034 |
True division of y
Args:
other: The divisor
Returns:
Spectrum object with y values divided | def __floordiv__(self, other):
return self.__class__(self.x, self.y.__floordiv__(other), *self._args,
**self._kwargs) | 140,035 |
Setup of the options for the spline interpolation
Args:
spline_options (dict): Options for cubic spline. For example,
{"saddle_point": "zero_slope"} forces the slope at the saddle to
be zero. | def setup_spline(self, spline_options=None):
self.spline_options = spline_options
relative_energies = self.energies - self.energies[0]
if scipy_old_piecewisepolynomial:
if self.spline_options:
raise RuntimeError('Option for saddle point not available with'
'old scipy implementation')
self.spline = PiecewisePolynomial(
self.r, np.array([relative_energies, -self.forces]).T,
orders=3)
else:
# New scipy implementation for scipy > 0.18.0
if self.spline_options.get('saddle_point', '') == 'zero_slope':
imax = np.argmax(relative_energies)
self.spline = CubicSpline(x=self.r[:imax + 1],
y=relative_energies[:imax + 1],
bc_type=((1, 0.0), (1, 0.0)))
cspline2 = CubicSpline(x=self.r[imax:], y=relative_energies[imax:],
bc_type=((1, 0.0), (1, 0.0)))
self.spline.extend(c=cspline2.c, x=cspline2.x[1:])
else:
self.spline = CubicSpline(x=self.r, y=relative_energies,
bc_type=((1, 0.0), (1, 0.0))) | 140,040 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.