docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Initializes a covalent bond between two sites.
Args:
site1 (Site): First site.
site2 (Site): Second site. | def __init__(self, site1, site2):
self.site1 = site1
self.site2 = site2 | 140,576 |
Sends an e-mail with unix sendmail.
Args:
subject: String with the subject of the mail.
text: String with the body of the mail.
mailto: String or list of string with the recipients.
sender: string with the sender address.
If sender is None, username@hostname is used.
Returns:
Exit status | def sendmail(subject, text, mailto, sender=None):
def user_at_host():
from socket import gethostname
return os.getlogin() + "@" + gethostname()
# Body of the message.
try:
sender = user_at_host() if sender is None else sender
except OSError:
sender = 'abipyscheduler@youknowwhere'
if is_string(mailto): mailto = [mailto]
from email.mime.text import MIMEText
mail = MIMEText(text)
mail["Subject"] = subject
mail["From"] = sender
mail["To"] = ", ".join(mailto)
msg = mail.as_string()
# sendmail works much better than the python interface.
# Note that sendmail is available only on Unix-like OS.
from subprocess import Popen, PIPE
import sys
sendmail = which("sendmail")
if sendmail is None: return -1
if sys.version_info[0] < 3:
p = Popen([sendmail, "-t"], stdin=PIPE, stderr=PIPE)
else:
# msg is string not bytes so must use universal_newlines
p = Popen([sendmail, "-t"], stdin=PIPE, stderr=PIPE, universal_newlines=True)
outdata, errdata = p.communicate(msg)
return len(errdata) | 140,581 |
Initialize the object
Args:
flow: :class:`Flow` object
max_njobs_inqueue: The launcher will stop submitting jobs when the
number of jobs in the queue is >= Max number of jobs | def __init__(self, flow, **kwargs):
self.flow = flow
self.max_njobs_inqueue = kwargs.get("max_njobs_inqueue", 200) | 140,588 |
Keeps submitting `Tasks` until we are out of jobs or no job is ready to run.
Args:
max_nlaunch: Maximum number of launches. default: no limit.
max_loops: Maximum number of loops
sleep_time: seconds to sleep between rapidfire loop iterations
Returns:
The number of tasks launched. | def rapidfire(self, max_nlaunch=-1, max_loops=1, sleep_time=5):
num_launched, do_exit, launched = 0, False, []
for count in range(max_loops):
if do_exit:
break
if count > 0:
time.sleep(sleep_time)
tasks = self.fetch_tasks_to_run()
# I don't know why but we receive duplicated tasks.
if any(task in launched for task in tasks):
logger.critical("numtasks %d already in launched list:\n%s" % (len(tasks), launched))
# Preventive test.
tasks = [t for t in tasks if t not in launched]
if not tasks:
continue
for task in tasks:
fired = task.start()
if fired:
launched.append(task)
num_launched += 1
if num_launched >= max_nlaunch > 0:
logger.info('num_launched >= max_nlaunch, going back to sleep')
do_exit = True
break
# Update the database.
self.flow.pickle_dump()
return num_launched | 140,590 |
Loads the object from a pickle file.
Args:
filepath: Filename or directory name. It filepath is a directory, we
scan the directory tree starting from filepath and we
read the first pickle database. Raise RuntimeError if multiple
databases are found. | def pickle_load(cls, filepath):
if os.path.isdir(filepath):
# Walk through each directory inside path and find the pickle database.
for dirpath, dirnames, filenames in os.walk(filepath):
fnames = [f for f in filenames if f == cls.PICKLE_FNAME]
if fnames:
if len(fnames) == 1:
filepath = os.path.join(dirpath, fnames[0])
break # Exit os.walk
else:
err_msg = "Found multiple databases:\n %s" % str(fnames)
raise RuntimeError(err_msg)
else:
err_msg = "Cannot find %s inside directory %s" % (cls.PICKLE_FNAME, filepath)
raise ValueError(err_msg)
with open(filepath, "rb") as fh:
new = pickle.load(fh)
# new.flows is a list of strings with the workdir of the flows (see __getstate__).
# Here we read the Flow from the pickle file so that we have
# and up-to-date version and we set the flow in visitor_mode
from .flows import Flow
flow_workdirs, new.flows = new.flows, []
for flow in map(Flow.pickle_load, flow_workdirs):
new.add_flow(flow)
return new | 140,611 |
Creates a CTRL file object from an existing file.
Args:
filename: The name of the CTRL file. Defaults to 'CTRL'.
Returns:
An LMTOCtrl object. | def from_file(cls, filename="CTRL", **kwargs):
with zopen(filename, "rt") as f:
contents = f.read()
return LMTOCtrl.from_string(contents, **kwargs) | 140,622 |
Creates a CTRL file object from a string. This will mostly be
used to read an LMTOCtrl object from a CTRL file. Empty spheres
are ignored.
Args:
data: String representation of the CTRL file.
Returns:
An LMTOCtrl object. | def from_string(cls, data, sigfigs=8):
lines = data.split("\n")[:-1]
struc_lines = {"HEADER": [], "VERS": [], "SYMGRP": [],
"STRUC": [], "CLASS": [], "SITE": []}
for line in lines:
if line != "" and not line.isspace():
if not line[0].isspace():
cat = line.split()[0]
if cat in struc_lines:
struc_lines[cat].append(line)
else:
pass
for cat in struc_lines:
struc_lines[cat] = " ".join(struc_lines[cat]).replace("= ", "=")
structure_tokens = {"ALAT": None,
"PLAT": [],
"CLASS": [],
"SITE": []}
for cat in ["STRUC", "CLASS", "SITE"]:
fields = struc_lines[cat].split("=")
for f, field in enumerate(fields):
token = field.split()[-1]
if token == "ALAT":
alat = round(float(fields[f+1].split()[0]), sigfigs)
structure_tokens["ALAT"] = alat
elif token == "ATOM":
atom = fields[f+1].split()[0]
if not bool(re.match("E[0-9]*$", atom)):
if cat == "CLASS":
structure_tokens["CLASS"].append(atom)
else:
structure_tokens["SITE"].append({"ATOM": atom})
else:
pass
elif token in ["PLAT", "POS"]:
try:
arr = np.array([round(float(i), sigfigs)
for i in fields[f+1].split()])
except ValueError:
arr = np.array([round(float(i), sigfigs)
for i in fields[f+1].split()[:-1]])
if token == "PLAT":
structure_tokens["PLAT"] = arr.reshape([3, 3])
elif not bool(re.match("E[0-9]*$", atom)):
structure_tokens["SITE"][-1]["POS"] = arr
else:
pass
else:
pass
try:
spcgrp_index = struc_lines["SYMGRP"].index("SPCGRP")
spcgrp = struc_lines["SYMGRP"][spcgrp_index:spcgrp_index+12]
structure_tokens["SPCGRP"] = spcgrp.split("=")[1].split()[0]
except ValueError:
pass
for token in ["HEADER", "VERS"]:
try:
value = re.split(token + r"\s*", struc_lines[token])[1]
structure_tokens[token] = value.strip()
except IndexError:
pass
return LMTOCtrl.from_dict(structure_tokens) | 140,623 |
Subroutine to extract bond label, site indices, and length from
a COPL header line. The site indices are zero-based, so they
can be easily used with a Structure object.
Example header line: Fe-1/Fe-1-tr(-1,-1,-1) : 2.482 Ang.
Args:
line: line in the COHPCAR header describing the bond.
Returns:
The bond label, the bond length and a tuple of the site
indices. | def _get_bond_data(line):
line = line.split()
length = float(line[2])
# Replacing "/" with "-" makes splitting easier
sites = line[0].replace("/", "-").split("-")
site_indices = tuple(int(ind) - 1 for ind in sites[1:4:2])
species = tuple(re.split(r"\d+", spec)[0] for spec in sites[0:3:2])
label = "%s%d-%s%d" % (species[0], site_indices[0] + 1,
species[1], site_indices[1] + 1)
return label, length, site_indices | 140,626 |
Given a structure, returns the predicted volume.
Args:
structure (Structure): structure w/unknown volume
ref_structure (Structure): A reference structure with a similar
structure but different species.
Returns:
a float value of the predicted volume | def predict(self, structure, ref_structure):
if self.check_isostructural:
m = StructureMatcher()
mapping = m.get_best_electronegativity_anonymous_mapping(
structure, ref_structure)
if mapping is None:
raise ValueError("Input structures do not match!")
if "ionic" in self.radii_type:
try:
# Use BV analyzer to determine oxidation states only if the
# oxidation states are not already specified in the structure
# and use_bv is true.
if (not is_ox(structure)) and self.use_bv:
a = BVAnalyzer()
structure = a.get_oxi_state_decorated_structure(structure)
if (not is_ox(ref_structure)) and self.use_bv:
a = BVAnalyzer()
ref_structure = a.get_oxi_state_decorated_structure(
ref_structure)
comp = structure.composition
ref_comp = ref_structure.composition
# Check if all the associated ionic radii are available.
if any([k.ionic_radius is None for k in list(comp.keys())]) or \
any([k.ionic_radius is None for k in
list(ref_comp.keys())]):
raise ValueError("Not all the ionic radii are available!")
numerator = 0
denominator = 0
# Here, the 1/3 factor on the composition accounts for atomic
# packing. We want the number per unit length.
for k, v in comp.items():
numerator += k.ionic_radius * v ** (1 / 3)
for k, v in ref_comp.items():
denominator += k.ionic_radius * v ** (1 / 3)
return ref_structure.volume * (numerator / denominator) ** 3
except Exception as ex:
warnings.warn("Exception occured. Will attempt atomic radii.")
# If error occurs during use of ionic radii scheme, pass
# and see if we can resolve it using atomic radii.
pass
if "atomic" in self.radii_type:
comp = structure.composition
ref_comp = ref_structure.composition
# Here, the 1/3 factor on the composition accounts for atomic
# packing. We want the number per unit length.
numerator = 0
denominator = 0
for k, v in comp.items():
numerator += k.atomic_radius * v ** (1 / 3)
for k, v in ref_comp.items():
denominator += k.atomic_radius * v ** (1 / 3)
return ref_structure.volume * (numerator / denominator) ** 3
raise ValueError("Cannot find volume scaling based on radii choices "
"specified!") | 140,643 |
Given a structure, returns back the structure scaled to predicted
volume.
Args:
structure (Structure): structure w/unknown volume
ref_structure (Structure): A reference structure with a similar
structure but different species.
Returns:
a Structure object with predicted volume | def get_predicted_structure(self, structure, ref_structure):
new_structure = structure.copy()
new_structure.scale_lattice(self.predict(structure, ref_structure))
return new_structure | 140,644 |
Given a structure, returns the predicted volume.
Args:
structure (Structure) : a crystal structure with an unknown volume.
icsd_vol (bool) : True if the input structure's volume comes from
ICSD.
Returns:
a float value of the predicted volume. | def predict(self, structure, icsd_vol=False):
# Get standard deviation of electronnegativity in the structure.
std_x = np.std([site.specie.X for site in structure])
# Sites that have atomic radii
sub_sites = []
# Record the "DLS estimated radius" from bond_params.
bp_dict = {}
for sp in list(structure.composition.keys()):
if sp.atomic_radius:
sub_sites.extend([site for site in structure
if site.specie == sp])
else:
warnings.warn("VolumePredictor: no atomic radius data for "
"{}".format(sp))
if sp.symbol not in bond_params:
warnings.warn("VolumePredictor: bond parameters not found, "
"used atomic radii for {}".format(sp))
else:
r, k = bond_params[sp.symbol]["r"], bond_params[sp.symbol]["k"]
bp_dict[sp] = float(r) + float(k) * std_x
# Structure object that include only sites with known atomic radii.
reduced_structure = Structure.from_sites(sub_sites)
smallest_ratio = None
for site1 in reduced_structure:
sp1 = site1.specie
neighbors = reduced_structure.get_neighbors(site1,
sp1.atomic_radius +
self.cutoff)
for site2, dist in neighbors:
sp2 = site2.specie
if sp1 in bp_dict and sp2 in bp_dict:
expected_dist = bp_dict[sp1] + bp_dict[sp2]
else:
expected_dist = sp1.atomic_radius + sp2.atomic_radius
if not smallest_ratio or dist / expected_dist < smallest_ratio:
smallest_ratio = dist / expected_dist
if not smallest_ratio:
raise ValueError("Could not find any bonds within the given cutoff "
"in this structure.")
volume_factor = (1 / smallest_ratio) ** 3
# icsd volume fudge factor
if icsd_vol:
volume_factor *= 1.05
if self.min_scaling:
volume_factor = max(self.min_scaling, volume_factor)
if self.max_scaling:
volume_factor = min(self.max_scaling, volume_factor)
return structure.volume * volume_factor | 140,646 |
Given a structure, returns back the structure scaled to predicted
volume.
Args:
structure (Structure): structure w/unknown volume
Returns:
a Structure object with predicted volume | def get_predicted_structure(self, structure, icsd_vol=False):
new_structure = structure.copy()
new_structure.scale_lattice(self.predict(structure, icsd_vol=icsd_vol))
return new_structure | 140,647 |
Get the inchi canonical labels of the heavy atoms in the molecule
Args:
mol: The molecule. OpenBabel OBMol object
Returns:
The label mappings. List of tuple of canonical label,
original label
List of equivalent atoms. | def _inchi_labels(mol):
obconv = ob.OBConversion()
obconv.SetOutFormat(str("inchi"))
obconv.AddOption(str("a"), ob.OBConversion.OUTOPTIONS)
obconv.AddOption(str("X"), ob.OBConversion.OUTOPTIONS, str("DoNotAddH"))
inchi_text = obconv.WriteString(mol)
match = re.search(r"InChI=(?P<inchi>.+)\nAuxInfo=.+"
r"/N:(?P<labels>[0-9,;]+)/(E:(?P<eq_atoms>[0-9,"
r";\(\)]*)/)?", inchi_text)
inchi = match.group("inchi")
label_text = match.group("labels")
eq_atom_text = match.group("eq_atoms")
heavy_atom_labels = tuple([int(i) for i in label_text.replace(
';', ',').split(',')])
eq_atoms = []
if eq_atom_text is not None:
eq_tokens = re.findall(r'\(((?:[0-9]+,)+[0-9]+)\)', eq_atom_text
.replace(';', ','))
eq_atoms = tuple([tuple([int(i) for i in t.split(',')])
for t in eq_tokens])
return heavy_atom_labels, eq_atoms, inchi | 140,652 |
Calculate the centroids of a group atoms indexed by the labels of inchi
Args:
mol: The molecule. OpenBabel OBMol object
ilabel: inchi label map
Returns:
Centroid. Tuple (x, y, z) | def _group_centroid(mol, ilabels, group_atoms):
c1x, c1y, c1z = 0.0, 0.0, 0.0
for i in group_atoms:
orig_idx = ilabels[i-1]
oa1 = mol.GetAtom(orig_idx)
c1x += float(oa1.x())
c1y += float(oa1.y())
c1z += float(oa1.z())
num_atoms = len(group_atoms)
c1x /= num_atoms
c1y /= num_atoms
c1z /= num_atoms
return c1x, c1y, c1z | 140,653 |
Create a virtual molecule by unique atoms, the centriods of the
equivalent atoms
Args:
mol: The molecule. OpenBabel OBMol object
ilables: inchi label map
eq_atoms: equivalent atom labels
farthest_group_idx: The equivalent atom group index in which
there is the farthest atom to the centroid
Return:
The virtual molecule | def _virtual_molecule(self, mol, ilabels, eq_atoms):
vmol = ob.OBMol()
non_unique_atoms = set([a for g in eq_atoms for a in g])
all_atoms = set(range(1, len(ilabels) + 1))
unique_atom_labels = sorted(all_atoms - non_unique_atoms)
#try to align molecules using unique atoms
for i in unique_atom_labels:
orig_idx = ilabels[i-1]
oa1 = mol.GetAtom(orig_idx)
a1 = vmol.NewAtom()
a1.SetAtomicNum(oa1.GetAtomicNum())
a1.SetVector(oa1.GetVector())
#try to align using centroids of the equivalent atoms
if vmol.NumAtoms() < 3:
for symm in eq_atoms:
c1x, c1y, c1z = self._group_centroid(mol, ilabels, symm)
min_distance = float("inf")
for i in range(1, vmol.NumAtoms()+1):
va = vmol.GetAtom(i)
distance = math.sqrt((c1x - va.x())**2 + (c1y - va.y())**2
+ (c1z - va.z())**2)
if distance < min_distance:
min_distance = distance
if min_distance > 0.2:
a1 = vmol.NewAtom()
a1.SetAtomicNum(9)
a1.SetVector(c1x, c1y, c1z)
return vmol | 140,654 |
Align the label of topologically identical atoms of second molecule
towards first molecule
Args:
mol1: First molecule. OpenBabel OBMol object
mol2: Second molecule. OpenBabel OBMol object
heavy_indices1: inchi label map of the first molecule
heavy_indices2: label map of the second molecule
Return:
corrected label map of all atoms of the second molecule | def _align_hydrogen_atoms(mol1, mol2, heavy_indices1,
heavy_indices2):
num_atoms = mol2.NumAtoms()
all_atom = set(range(1, num_atoms+1))
hydrogen_atoms1 = all_atom - set(heavy_indices1)
hydrogen_atoms2 = all_atom - set(heavy_indices2)
label1 = heavy_indices1 + tuple(hydrogen_atoms1)
label2 = heavy_indices2 + tuple(hydrogen_atoms2)
cmol1 = ob.OBMol()
for i in label1:
oa1 = mol1.GetAtom(i)
a1 = cmol1.NewAtom()
a1.SetAtomicNum(oa1.GetAtomicNum())
a1.SetVector(oa1.GetVector())
cmol2 = ob.OBMol()
for i in label2:
oa2 = mol2.GetAtom(i)
a2 = cmol2.NewAtom()
a2.SetAtomicNum(oa2.GetAtomicNum())
a2.SetVector(oa2.GetVector())
aligner = ob.OBAlign(False, False)
aligner.SetRefMol(cmol1)
aligner.SetTargetMol(cmol2)
aligner.Align()
aligner.UpdateCoords(cmol2)
hydrogen_label2 = []
hydrogen_label1 = list(range(len(heavy_indices1) + 1, num_atoms + 1))
for h2 in range(len(heavy_indices2) + 1, num_atoms + 1):
distance = 99999.0
idx = hydrogen_label1[0]
a2 = cmol2.GetAtom(h2)
for h1 in hydrogen_label1:
a1 = cmol1.GetAtom(h1)
d = a1.GetDistance(a2)
if d < distance:
distance = d
idx = h1
hydrogen_label2.append(idx)
hydrogen_label1.remove(idx)
hydrogen_orig_idx2 = label2[len(heavy_indices2):]
hydrogen_canon_orig_map2 = [(canon, orig) for canon, orig
in zip(hydrogen_label2,
hydrogen_orig_idx2)]
hydrogen_canon_orig_map2.sort(key=lambda m: m[0])
hydrogen_canon_indices2 = [x[1] for x in hydrogen_canon_orig_map2]
canon_label1 = label1
canon_label2 = heavy_indices2 + tuple(hydrogen_canon_indices2)
return canon_label1, canon_label2 | 140,656 |
The the elements of the atoms in the specified order
Args:
mol: The molecule. OpenBabel OBMol object.
label: The atom indices. List of integers.
Returns:
Elements. List of integers. | def _get_elements(mol, label):
elements = [int(mol.GetAtom(i).GetAtomicNum()) for i in label]
return elements | 140,657 |
Is the molecule a linear one
Args:
mol: The molecule. OpenBabel OBMol object.
Returns:
Boolean value. | def _is_molecule_linear(self, mol):
if mol.NumAtoms() < 3:
return True
a1 = mol.GetAtom(1)
a2 = mol.GetAtom(2)
for i in range(3, mol.NumAtoms()+1):
angle = float(mol.GetAtom(i).GetAngle(a2, a1))
if angle < 0.0:
angle = -angle
if angle > 90.0:
angle = 180.0 - angle
if angle > self._angle_tolerance:
return False
return True | 140,658 |
Fit two molecules.
Args:
mol1: First molecule. OpenBabel OBMol or pymatgen Molecule object
mol2: Second molecule. OpenBabel OBMol or pymatgen Molecule object
Returns:
A boolean value indicates whether two molecules are the same. | def fit(self, mol1, mol2):
return self.get_rmsd(mol1, mol2) < self._tolerance | 140,662 |
Calculate the RMSD.
Args:
mol1: The first molecule. OpenBabel OBMol or pymatgen Molecule
object
mol2: The second molecule. OpenBabel OBMol or pymatgen Molecule
object
clabel1: The atom indices that can reorder the first molecule to
uniform atom order
clabel1: The atom indices that can reorder the second molecule to
uniform atom order
Returns:
The RMSD. | def _calc_rms(mol1, mol2, clabel1, clabel2):
obmol1 = BabelMolAdaptor(mol1).openbabel_mol
obmol2 = BabelMolAdaptor(mol2).openbabel_mol
cmol1 = ob.OBMol()
for i in clabel1:
oa1 = obmol1.GetAtom(i)
a1 = cmol1.NewAtom()
a1.SetAtomicNum(oa1.GetAtomicNum())
a1.SetVector(oa1.GetVector())
cmol2 = ob.OBMol()
for i in clabel2:
oa2 = obmol2.GetAtom(i)
a2 = cmol2.NewAtom()
a2.SetAtomicNum(oa2.GetAtomicNum())
a2.SetVector(oa2.GetVector())
aligner = ob.OBAlign(True, False)
aligner.SetRefMol(cmol1)
aligner.SetTargetMol(cmol2)
aligner.Align()
return aligner.GetRMSD() | 140,664 |
Group molecules by structural equality.
Args:
mol_list: List of OpenBabel OBMol or pymatgen objects
Returns:
A list of lists of matched molecules
Assumption: if s1=s2 and s2=s3, then s1=s3
This may not be true for small tolerances. | def group_molecules(self, mol_list):
mol_hash = [(i, self._mapper.get_molecule_hash(m))
for i, m in enumerate(mol_list)]
mol_hash.sort(key=lambda x: x[1])
#Use molecular hash to pre-group molecules.
raw_groups = tuple([tuple([m[0] for m in g]) for k, g
in itertools.groupby(mol_hash,
key=lambda x: x[1])])
group_indices = []
for rg in raw_groups:
mol_eq_test = [(p[0], p[1], self.fit(mol_list[p[0]],
mol_list[p[1]]))
for p in itertools.combinations(sorted(rg), 2)]
mol_eq = set([(p[0], p[1]) for p in mol_eq_test if p[2]])
not_alone_mols = set(itertools.chain.from_iterable(mol_eq))
alone_mols = set(rg) - not_alone_mols
group_indices.extend([[m] for m in alone_mols])
while len(not_alone_mols) > 0:
current_group = {not_alone_mols.pop()}
while len(not_alone_mols) > 0:
candidate_pairs = set(
[tuple(sorted(p)) for p
in itertools.product(current_group, not_alone_mols)])
mutual_pairs = candidate_pairs & mol_eq
if len(mutual_pairs) == 0:
break
mutual_mols = set(itertools.chain
.from_iterable(mutual_pairs))
current_group |= mutual_mols
not_alone_mols -= mutual_mols
group_indices.append(sorted(current_group))
group_indices.sort(key=lambda x: (len(x), -x[0]), reverse=True)
all_groups = [[mol_list[i] for i in g] for g in group_indices]
return all_groups | 140,665 |
Remove all the configurations that do not satisfy the given condition.
Args:
condition: dict or :class:`Condition` object with operators expressed with a Mongodb-like syntax
key: Selects the sub-dictionary on which condition is applied, e.g. key="vars"
if we have to filter the configurations depending on the values in vars | def select_with_condition(self, condition, key=None):
condition = Condition.as_condition(condition)
new_confs = []
for conf in self:
# Select the object on which condition is applied
obj = conf if key is None else AttrDict(conf[key])
add_it = condition(obj=obj)
#if key is "vars": print("conf", conf, "added:", add_it)
if add_it: new_confs.append(conf)
self._confs = new_confs | 140,675 |
Given a list of parallel configurations, pconfs, this method select an `optimal` configuration
according to some criterion as well as the :class:`QueueAdapter` to use.
Args:
pconfs: :class:`ParalHints` object with the list of parallel configurations
Returns:
:class:`ParallelConf` object with the `optimal` configuration. | def select_qadapter(self, pconfs):
# Order the list of configurations according to policy.
policy, max_ncpus = self.policy, self.max_cores
pconfs = pconfs.get_ordered_with_policy(policy, max_ncpus)
if policy.precedence == "qadapter":
# Try to run on the qadapter with the highest priority.
for qadpos, qad in enumerate(self.qads):
possible_pconfs = [pc for pc in pconfs if qad.can_run_pconf(pc)]
if qad.allocation == "nodes":
#if qad.allocation in ["nodes", "force_nodes"]:
# Select the configuration divisible by nodes if possible.
for pconf in possible_pconfs:
if pconf.num_cores % qad.hw.cores_per_node == 0:
return self._use_qadpos_pconf(qadpos, pconf)
# Here we select the first one.
if possible_pconfs:
return self._use_qadpos_pconf(qadpos, possible_pconfs[0])
elif policy.precedence == "autoparal_conf":
# Try to run on the first pconf irrespectively of the priority of the qadapter.
for pconf in pconfs:
for qadpos, qad in enumerate(self.qads):
if qad.allocation == "nodes" and not pconf.num_cores % qad.hw.cores_per_node == 0:
continue # Ignore it. not very clean
if qad.can_run_pconf(pconf):
return self._use_qadpos_pconf(qadpos, pconf)
else:
raise ValueError("Wrong value of policy.precedence = %s" % policy.precedence)
# No qadapter could be found
raise RuntimeError("Cannot find qadapter for this run!") | 140,692 |
Build the input files and submit the task via the :class:`Qadapter`
Args:
task: :class:`TaskObject`
Returns:
Process object. | def launch(self, task, **kwargs):
if task.status == task.S_LOCKED:
raise ValueError("You shall not submit a locked task!")
# Build the task
task.build()
# Pass information on the time limit to Abinit (we always assume ndtset == 1)
if isinstance(task, AbinitTask):
args = kwargs.get("exec_args", [])
if args is None: args = []
args = args[:]
args.append("--timelimit %s" % qu.time2slurm(self.qadapter.timelimit))
kwargs["exec_args"] = args
# Write the submission script
script_file = self.write_jobfile(task, **kwargs)
# Submit the task and save the queue id.
try:
qjob, process = self.qadapter.submit_to_queue(script_file)
task.set_status(task.S_SUB, msg='Submitted to queue')
task.set_qjob(qjob)
return process
except self.qadapter.MaxNumLaunchesError as exc:
# TODO: Here we should try to switch to another qadapter
# 1) Find a new parallel configuration in those stored in task.pconfs
# 2) Change the input file.
# 3) Regenerate the submission script
# 4) Relaunch
task.set_status(task.S_ERROR, msg="max_num_launches reached: %s" % str(exc))
raise | 140,696 |
Set and return the status of the task.
Args:
status: Status object or string representation of the status
msg: string with human-readable message used in the case of errors. | def set_status(self, status, msg):
# truncate string if it's long. msg will be logged in the object and we don't want to waste memory.
if len(msg) > 2000:
msg = msg[:2000]
msg += "\n... snip ...\n"
# Locked files must be explicitly unlocked
if self.status == self.S_LOCKED or status == self.S_LOCKED:
err_msg = (
"Locked files must be explicitly unlocked before calling set_status but\n"
"task.status = %s, input status = %s" % (self.status, status))
raise RuntimeError(err_msg)
status = Status.as_status(status)
changed = True
if hasattr(self, "_status"):
changed = (status != self._status)
self._status = status
if status == self.S_RUN:
# Set datetimes.start when the task enters S_RUN
if self.datetimes.start is None:
self.datetimes.start = datetime.datetime.now()
# Add new entry to history only if the status has changed.
if changed:
if status == self.S_SUB:
self.datetimes.submission = datetime.datetime.now()
self.history.info("Submitted with MPI=%s, Omp=%s, Memproc=%.1f [Gb] %s " % (
self.mpi_procs, self.omp_threads, self.mem_per_proc.to("Gb"), msg))
elif status == self.S_OK:
self.history.info("Task completed %s", msg)
elif status == self.S_ABICRITICAL:
self.history.info("Status set to S_ABI_CRITICAL due to: %s", msg)
else:
self.history.info("Status changed to %s. msg: %s", status, msg)
#######################################################
# The section belows contains callbacks that should not
# be executed if we are in spectator_mode
#######################################################
if status == self.S_DONE:
# Execute the callback
self._on_done()
if status == self.S_OK:
# Finalize the task.
if not self.finalized:
self._on_ok()
# here we remove the output files of the task and of its parents.
if self.gc is not None and self.gc.policy == "task":
self.clean_output_files()
if self.status == self.S_OK:
# Because _on_ok might have changed the status.
self.send_signal(self.S_OK)
return status | 140,730 |
Analyzes the main logfile of the calculation for possible Errors or Warnings.
If the ABINIT abort file is found, the error found in this file are added to
the output report.
Args:
source: "output" for the main output file,"log" for the log file.
Returns:
:class:`EventReport` instance or None if the source file file does not exist. | def get_event_report(self, source="log"):
# By default, we inspect the main log file.
ofile = {
"output": self.output_file,
"log": self.log_file}[source]
parser = events.EventsParser()
if not ofile.exists:
if not self.mpiabort_file.exists:
return None
else:
# ABINIT abort file without log!
abort_report = parser.parse(self.mpiabort_file.path)
return abort_report
try:
report = parser.parse(ofile.path)
#self._prev_reports[source] = report
# Add events found in the ABI_MPIABORTFILE.
if self.mpiabort_file.exists:
logger.critical("Found ABI_MPIABORTFILE!!!!!")
abort_report = parser.parse(self.mpiabort_file.path)
if len(abort_report) != 1:
logger.critical("Found more than one event in ABI_MPIABORTFILE")
# Weird case: empty abort file, let's skip the part
# below and hope that the log file contains the error message.
#if not len(abort_report): return report
# Add it to the initial report only if it differs
# from the last one found in the main log file.
last_abort_event = abort_report[-1]
if report and last_abort_event != report[-1]:
report.append(last_abort_event)
else:
report.append(last_abort_event)
return report
#except parser.Error as exc:
except Exception as exc:
# Return a report with an error entry with info on the exception.
msg = "%s: Exception while parsing ABINIT events:\n %s" % (ofile, str(exc))
self.set_status(self.S_ABICRITICAL, msg=msg)
return parser.report_exception(ofile.path, exc) | 140,735 |
This method is called when the task reaches S_OK. It removes all the output files
produced by the task that are not needed by its children as well as the output files
produced by its parents if no other node needs them.
Args:
follow_parents: If true, the output files of the parents nodes will be removed if possible.
Return:
list with the absolute paths of the files that have been removed. | def clean_output_files(self, follow_parents=True):
paths = []
if self.status != self.S_OK:
logger.warning("Calling task.clean_output_files on a task whose status != S_OK")
# Remove all files in tmpdir.
self.tmpdir.clean()
# Find the file extensions that should be preserved since these files are still
# needed by the children who haven't reached S_OK
except_exts = set()
for child in self.get_children():
if child.status == self.S_OK: continue
# Find the position of self in child.deps and add the extensions.
i = [dep.node for dep in child.deps].index(self)
except_exts.update(child.deps[i].exts)
# Remove the files in the outdir of the task but keep except_exts.
exts = self.gc.exts.difference(except_exts)
#print("Will remove its extensions: ", exts)
paths += self.outdir.remove_exts(exts)
if not follow_parents: return paths
# Remove the files in the outdir of my parents if all the possible dependencies have been fulfilled.
for parent in self.get_parents():
# Here we build a dictionary file extension --> list of child nodes requiring this file from parent
# e.g {"WFK": [node1, node2]}
ext2nodes = collections.defaultdict(list)
for child in parent.get_children():
if child.status == child.S_OK: continue
i = [d.node for d in child.deps].index(parent)
for ext in child.deps[i].exts:
ext2nodes[ext].append(child)
# Remove extension only if no node depends on it!
except_exts = [k for k, lst in ext2nodes.items() if lst]
exts = self.gc.exts.difference(except_exts)
#print("%s removes extensions %s from parent node %s" % (self, exts, parent))
paths += parent.outdir.remove_exts(exts)
self.history.info("Removed files: %s" % paths)
return paths | 140,740 |
Create an instance of `AbinitTask` from an ABINIT input.
Args:
ainput: `AbinitInput` object.
workdir: Path to the working directory.
manager: :class:`TaskManager` object. | def from_input(cls, input, workdir=None, manager=None):
return cls(input, workdir=workdir, manager=manager) | 140,744 |
Build a Task with a temporary workdir. The task is executed via the shell with 1 MPI proc.
Mainly used for invoking Abinit to get important parameters needed to prepare the real task.
Args:
mpi_procs: Number of MPI processes to use. | def temp_shell_task(cls, inp, mpi_procs=1, workdir=None, manager=None):
# Build a simple manager to run the job in a shell subprocess
import tempfile
workdir = tempfile.mkdtemp() if workdir is None else workdir
if manager is None: manager = TaskManager.from_user_config()
# Construct the task and run it
task = cls.from_input(inp, workdir=workdir, manager=manager.to_shell_manager(mpi_procs=mpi_procs))
task.set_name('temp_shell_task')
return task | 140,745 |
Helper function used to select the files of a task.
Args:
what: string with the list of characters selecting the file type
Possible choices:
i ==> input_file,
o ==> output_file,
f ==> files_file,
j ==> job_file,
l ==> log_file,
e ==> stderr_file,
q ==> qout_file,
all ==> all files. | def select_files(self, what="o"):
choices = collections.OrderedDict([
("i", self.input_file),
("o", self.output_file),
("f", self.files_file),
("j", self.job_file),
("l", self.log_file),
("e", self.stderr_file),
("q", self.qout_file),
])
if what == "all":
return [getattr(v, "path") for v in choices.values()]
selected = []
for c in what:
try:
selected.append(getattr(choices[c], "path"))
except KeyError:
logger.warning("Wrong keyword %s" % c)
return selected | 140,753 |
Build a :class:`AnaddbTask` with a temporary workdir. The task is executed via
the shell with 1 MPI proc. Mainly used for post-processing the DDB files.
Args:
mpi_procs: Number of MPI processes to use.
anaddb_input: string with the anaddb variables.
ddb_node: The node that will produce the DDB file. Accept :class:`Task`, :class:`Work` or filepath.
See `AnaddbInit` for the meaning of the other arguments. | def temp_shell_task(cls, inp, ddb_node, mpi_procs=1,
gkk_node=None, md_node=None, ddk_node=None, workdir=None, manager=None):
# Build a simple manager to run the job in a shell subprocess
import tempfile
workdir = tempfile.mkdtemp() if workdir is None else workdir
if manager is None: manager = TaskManager.from_user_config()
# Construct the task and run it
return cls(inp, ddb_node,
gkk_node=gkk_node, md_node=md_node, ddk_node=ddk_node,
workdir=workdir, manager=manager.to_shell_manager(mpi_procs=mpi_procs)) | 140,796 |
Reads and returns a pymatgen structure from a NetCDF file
containing crystallographic data in the ETSF-IO format.
Args:
ncdata: filename or NetcdfReader instance.
site_properties: Dictionary with site properties.
cls: The Structure class to instanciate. | def structure_from_ncdata(ncdata, site_properties=None, cls=Structure):
ncdata, closeit = as_ncreader(ncdata)
# TODO check whether atomic units are used
lattice = ArrayWithUnit(ncdata.read_value("primitive_vectors"), "bohr").to("ang")
red_coords = ncdata.read_value("reduced_atom_positions")
natom = len(red_coords)
znucl_type = ncdata.read_value("atomic_numbers")
# type_atom[0:natom] --> index Between 1 and number of atom species
type_atom = ncdata.read_value("atom_species")
# Fortran to C index and float --> int conversion.
species = natom * [None]
for atom in range(natom):
type_idx = type_atom[atom] - 1
species[atom] = int(znucl_type[type_idx])
d = {}
if site_properties is not None:
for prop in site_properties:
d[property] = ncdata.read_value(prop)
structure = cls(lattice, species, red_coords, site_properties=d)
# Quick and dirty hack.
# I need an abipy structure since I need to_abivars and other methods.
try:
from abipy.core.structure import Structure as AbipyStructure
structure.__class__ = AbipyStructure
except ImportError:
pass
if closeit:
ncdata.close()
return structure | 140,806 |
Returns the value of a dimension.
Args:
dimname: Name of the variable
path: path to the group.
default: return `default` if `dimname` is not present and
`default` is not `NO_DEFAULT` else raise self.Error. | def read_dimvalue(self, dimname, path="/", default=NO_DEFAULT):
try:
dim = self._read_dimensions(dimname, path=path)[0]
return len(dim)
except self.Error:
if default is NO_DEFAULT: raise
return default | 140,810 |
String representation. kwargs are passed to `pprint.pformat`.
Args:
verbose: Verbosity level
title: Title string. | def to_string(self, verbose=0, title=None, **kwargs):
from pprint import pformat
s = pformat(self, **kwargs)
if title is not None:
return "\n".join([marquee(title, mark="="), s])
return s | 140,819 |
Add an electrode to the plot.
Args:
electrode: An electrode. All electrodes satisfying the
AbstractElectrode interface should work.
label: A label for the electrode. If None, defaults to a counting
system, i.e. 'Electrode 1', 'Electrode 2', ... | def add_electrode(self, electrode, label=None):
if not label:
label = "Electrode {}".format(len(self._electrodes) + 1)
self._electrodes[label] = electrode | 140,820 |
Returns a plot object.
Args:
width: Width of the plot. Defaults to 8 in.
height: Height of the plot. Defaults to 6 in.
Returns:
A matplotlib plot object. | def get_plot(self, width=8, height=8):
plt = pretty_plot(width, height)
for label, electrode in self._electrodes.items():
(x, y) = self.get_plot_data(electrode)
plt.plot(x, y, '-', linewidth=2, label=label)
plt.legend()
if self.xaxis == "capacity":
plt.xlabel('Capacity (mAh/g)')
else:
plt.xlabel('Fraction')
plt.ylabel('Voltage (V)')
plt.tight_layout()
return plt | 140,822 |
Save the plot to an image file.
Args:
filename: Filename to save to.
image_format: Format to save to. Defaults to eps. | def save(self, filename, image_format="eps", width=8, height=6):
self.get_plot(width, height).savefig(filename, format=image_format) | 140,823 |
Writes a set of VASP input to a directory.
Args:
output_dir (str): Directory to output the VASP input files
make_dir_if_not_present (bool): Set to True if you want the
directory (and the whole path) to be created if it is not
present.
include_cif (bool): Whether to write a CIF file in the output
directory for easier opening by VESTA. | def write_input(self, output_dir,
make_dir_if_not_present=True, include_cif=False):
vinput = self.get_vasp_input()
vinput.write_input(
output_dir, make_dir_if_not_present=make_dir_if_not_present)
if include_cif:
s = vinput["POSCAR"].structure
fname = Path(output_dir) / ("%s.cif" % re.sub(r'\s', "", s.formula))
s.to(filename=fname) | 140,831 |
Create a Tensor object. Note that the constructor uses __new__
rather than __init__ according to the standard method of
subclassing numpy ndarrays.
Args:
input_array: (array-like with shape 3^N): array-like representing
a tensor quantity in standard (i. e. non-voigt) notation
vscale: (N x M array-like): a matrix corresponding
to the coefficients of the voigt-notation tensor | def __new__(cls, input_array, vscale=None, check_rank=None):
obj = np.asarray(input_array).view(cls)
obj.rank = len(obj.shape)
if check_rank and check_rank != obj.rank:
raise ValueError("{} input must be rank {}".format(
obj.__class__.__name__, check_rank))
vshape = tuple([3] * (obj.rank % 2) + [6] * (obj.rank // 2))
obj._vscale = np.ones(vshape)
if vscale is not None:
obj._vscale = vscale
if obj._vscale.shape != vshape:
raise ValueError("Voigt scaling matrix must be the shape of the "
"voigt notation matrix or vector.")
if not all([i == 3 for i in obj.shape]):
raise ValueError("Pymatgen only supports 3-dimensional tensors, "
"and default tensor constructor uses standard "
"notation. To construct from voigt notation, use"
" {}.from_voigt".format(obj.__class__.__name__))
return obj | 140,879 |
Applies a rotation directly, and tests input matrix to ensure a valid
rotation.
Args:
matrix (3x3 array-like): rotation matrix to be applied to tensor
tol (float): tolerance for testing rotation matrix validity | def rotate(self, matrix, tol=1e-3):
matrix = SquareTensor(matrix)
if not matrix.is_rotation(tol):
raise ValueError("Rotation matrix is not valid.")
sop = SymmOp.from_rotation_and_translation(matrix,
[0., 0., 0.])
return self.transform(sop) | 140,883 |
Convenience method for projection of a tensor into a
vector. Returns the tensor dotted into a unit vector
along the input n.
Args:
n (3x1 array-like): direction to project onto
Returns (float):
scalar value corresponding to the projection of
the tensor into the vector | def project(self, n):
n = get_uvec(n)
return self.einsum_sequence([n] * self.rank) | 140,885 |
Method for averaging the tensor projection over the unit
with option for custom quadrature.
Args:
quad (dict): quadrature for integration, should be
dictionary with "points" and "weights" keys defaults
to quadpy.sphere.Lebedev(19) as read from file
Returns:
Average of tensor projected into vectors on the unit sphere | def average_over_unit_sphere(self, quad=None):
quad = quad or DEFAULT_QUAD
weights, points = quad['weights'], quad['points']
return sum([w * self.project(n) for w, n in zip(weights, points)]) | 140,886 |
Wrapper around numpy.round to ensure object
of same type is returned
Args:
decimals :Number of decimal places to round to (default: 0).
If decimals is negative, it specifies the number of
positions to the left of the decimal point.
Returns (Tensor):
rounded tensor of same type | def round(self, decimals=0):
return self.__class__(np.round(self, decimals=decimals)) | 140,889 |
Returns a tensor that is invariant with respect to symmetry
operations corresponding to a structure
Args:
structure (Structure): structure from which to generate
symmetry operations
symprec (float): symmetry tolerance for the Spacegroup Analyzer
used to generate the symmetry operations | def fit_to_structure(self, structure, symprec=0.1):
sga = SpacegroupAnalyzer(structure, symprec)
symm_ops = sga.get_symmetry_operations(cartesian=True)
return sum([self.transform(symm_op)
for symm_op in symm_ops]) / len(symm_ops) | 140,892 |
Tests whether a tensor is invariant with respect to the
symmetry operations of a particular structure by testing
whether the residual of the symmetric portion is below a
tolerance
Args:
structure (Structure): structure to be fit to
tol (float): tolerance for symmetry testing | def is_fit_to_structure(self, structure, tol=1e-2):
return (self - self.fit_to_structure(structure) < tol).all() | 140,893 |
Returns a dictionary that maps indices in the tensor to those
in a voigt representation based on input rank
Args:
rank (int): Tensor rank to generate the voigt map | def get_voigt_dict(rank):
vdict = {}
for ind in itertools.product(*[range(3)] * rank):
v_ind = ind[:rank % 2]
for j in range(rank // 2):
pos = rank % 2 + 2 * j
v_ind += (reverse_voigt_map[ind[pos:pos + 2]],)
vdict[ind] = v_ind
return vdict | 140,896 |
Constructor based on the voigt notation vector or matrix.
Args:
voigt_input (array-like): voigt input for a given tensor | def from_voigt(cls, voigt_input):
voigt_input = np.array(voigt_input)
rank = sum(voigt_input.shape) // 3
t = cls(np.zeros([3] * rank))
if voigt_input.shape != t._vscale.shape:
raise ValueError("Invalid shape for voigt matrix")
voigt_input = voigt_input / t._vscale
this_voigt_map = t.get_voigt_dict(rank)
for ind in this_voigt_map:
t[ind] = voigt_input[this_voigt_map[ind]]
return cls(t) | 140,897 |
Given a structure associated with a tensor, determines
the rotation matrix for IEEE conversion according to
the 1987 IEEE standards.
Args:
structure (Structure): a structure associated with the
tensor to be converted to the IEEE standard
refine_rotation (bool): whether to refine the rotation
using SquareTensor.refine_rotation | def get_ieee_rotation(structure, refine_rotation=True):
# Check conventional setting:
sga = SpacegroupAnalyzer(structure)
dataset = sga.get_symmetry_dataset()
trans_mat = dataset['transformation_matrix']
conv_latt = Lattice(np.transpose(np.dot(np.transpose(
structure.lattice.matrix), np.linalg.inv(trans_mat))))
xtal_sys = sga.get_crystal_system()
vecs = conv_latt.matrix
lengths = np.array(conv_latt.abc)
angles = np.array(conv_latt.angles)
rotation = np.zeros((3, 3))
# IEEE rules: a,b,c || x1,x2,x3
if xtal_sys == "cubic":
rotation = [vecs[i] / lengths[i] for i in range(3)]
# IEEE rules: a=b in length; c,a || x3, x1
elif xtal_sys == "tetragonal":
rotation = np.array([vec / mag for (mag, vec) in
sorted(zip(lengths, vecs),
key=lambda x: x[0])])
if abs(lengths[2] - lengths[1]) < abs(lengths[1] - lengths[0]):
rotation[0], rotation[2] = rotation[2], rotation[0].copy()
rotation[1] = get_uvec(np.cross(rotation[2], rotation[0]))
# IEEE rules: c<a<b; c,a || x3,x1
elif xtal_sys == "orthorhombic":
rotation = [vec / mag for (mag, vec) in sorted(zip(lengths, vecs))]
rotation = np.roll(rotation, 2, axis=0)
# IEEE rules: c,a || x3,x1, c is threefold axis
# Note this also includes rhombohedral crystal systems
elif xtal_sys in ("trigonal", "hexagonal"):
# find threefold axis:
tf_index = np.argmin(abs(angles - 120.))
non_tf_mask = np.logical_not(angles == angles[tf_index])
rotation[2] = get_uvec(vecs[tf_index])
rotation[0] = get_uvec(vecs[non_tf_mask][0])
rotation[1] = get_uvec(np.cross(rotation[2], rotation[0]))
# IEEE rules: b,c || x2,x3; alpha=beta=90, c<a
elif xtal_sys == "monoclinic":
# Find unique axis
u_index = np.argmax(abs(angles - 90.))
n_umask = np.logical_not(angles == angles[u_index])
rotation[1] = get_uvec(vecs[u_index])
# Shorter of remaining lattice vectors for c axis
c = [vec / mag for (mag, vec) in
sorted(zip(lengths[n_umask], vecs[n_umask]))][0]
rotation[2] = np.array(c)
rotation[0] = np.cross(rotation[1], rotation[2])
# IEEE rules: c || x3, x2 normal to ac plane
elif xtal_sys == "triclinic":
rotation = [vec / mag for (mag, vec) in sorted(zip(lengths, vecs))]
rotation[1] = get_uvec(np.cross(rotation[2], rotation[0]))
rotation[0] = np.cross(rotation[1], rotation[2])
rotation = SquareTensor(rotation)
if refine_rotation:
rotation = rotation.refine_rotation()
return rotation | 140,898 |
Serializes the tensor object
Args:
voigt (bool): flag for whether to store entries in
voigt-notation. Defaults to false, as information
may be lost in conversion.
Returns (Dict):
serialized format tensor object | def as_dict(self, voigt=False):
input_array = self.voigt if voigt else self
d = {"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
"input_array": input_array.tolist()}
if voigt:
d.update({"voigt": voigt})
return d | 140,903 |
Helper method for refining rotation matrix by ensuring
that second and third rows are perpindicular to the first.
Gets new y vector from an orthogonal projection of x onto y
and the new z vector from a cross product of the new x and y
Args:
tol to test for rotation
Returns:
new rotation matrix | def refine_rotation(self):
new_x, y = get_uvec(self[0]), get_uvec(self[1])
# Get a projection on y
new_y = y - np.dot(new_x, y) * new_x
new_z = np.cross(new_x, new_y)
return SquareTensor([new_x, new_y, new_z]) | 140,918 |
Initialize a TensorMapping
Args:
tensor_list ([Tensor]): list of tensors
value_list ([]): list of values to be associated with tensors
tol (float): an absolute tolerance for getting and setting
items in the mapping | def __init__(self, tensors=None, values=None, tol=1e-5):
self._tensor_list = tensors or []
self._value_list = values or []
if not len(self._tensor_list) == len(self._value_list):
raise ValueError("TensorMapping must be initialized with tensors"
"and values of equivalent length")
self.tol = tol | 140,919 |
Calculates the average oxidation state of a site
Args:
site: Site to compute average oxidation state
Returns:
Average oxidation state of site. | def compute_average_oxidation_state(site):
try:
avg_oxi = sum([sp.oxi_state * occu
for sp, occu in site.species.items()
if sp is not None])
return avg_oxi
except AttributeError:
pass
try:
return site.charge
except AttributeError:
raise ValueError("Ewald summation can only be performed on structures "
"that are either oxidation state decorated or have "
"site charges.") | 140,924 |
Gives total ewald energy for an sub structure in the same
lattice. The sub_structure must be a subset of the original
structure, with possible different charges.
Args:
substructure (Structure): Substructure to compute Ewald sum for.
tol (float): Tolerance for site matching in fractional coordinates.
Returns:
Ewald sum of substructure. | def compute_sub_structure(self, sub_structure, tol=1e-3):
total_energy_matrix = self.total_energy_matrix.copy()
def find_match(site):
for test_site in sub_structure:
frac_diff = abs(np.array(site.frac_coords)
- np.array(test_site.frac_coords)) % 1
frac_diff = [abs(a) < tol or abs(a) > 1 - tol
for a in frac_diff]
if all(frac_diff):
return test_site
return None
matches = []
for i, site in enumerate(self._s):
matching_site = find_match(site)
if matching_site:
new_charge = compute_average_oxidation_state(matching_site)
old_charge = self._oxi_states[i]
scaling_factor = new_charge / old_charge
matches.append(matching_site)
else:
scaling_factor = 0
total_energy_matrix[i, :] *= scaling_factor
total_energy_matrix[:, i] *= scaling_factor
if len(matches) != len(sub_structure):
output = ["Missing sites."]
for site in sub_structure:
if site not in matches:
output.append("unmatched = {}".format(site))
raise ValueError("\n".join(output))
return sum(sum(total_energy_matrix)) | 140,927 |
Compute the energy for a single site in the structure
Args:
site_index (int): Index of site
ReturnS:
(float) - Energy of that site | def get_site_energy(self, site_index):
if self._charged:
warn('Per atom energies for charged structures not supported in EwaldSummation')
return np.sum(self._recip[:,site_index]) + np.sum(self._real[:,site_index]) \
+ self._point[site_index] | 140,930 |
Computes a best case given a matrix and manipulation list.
Args:
matrix: the current matrix (with some permutations already
performed)
m_list: [(multiplication fraction, number_of_indices, indices,
species)] describing the manipulation
indices: Set of indices which haven't had a permutation
performed on them. | def best_case(self, matrix, m_list, indices_left):
m_indices = []
fraction_list = []
for m in m_list:
m_indices.extend(m[2])
fraction_list.extend([m[0]] * m[1])
indices = list(indices_left.intersection(m_indices))
interaction_matrix = matrix[indices, :][:, indices]
fractions = np.zeros(len(interaction_matrix)) + 1
fractions[:len(fraction_list)] = fraction_list
fractions = np.sort(fractions)
# Sum associated with each index (disregarding interactions between
# indices)
sums = 2 * np.sum(matrix[indices], axis=1)
sums = np.sort(sums)
# Interaction corrections. Can be reduced to (1-x)(1-y) for x,y in
# fractions each element in a column gets multiplied by (1-x), and then
# the sum of the columns gets multiplied by (1-y) since fractions are
# less than 1, there is no effect of one choice on the other
step1 = np.sort(interaction_matrix) * (1 - fractions)
step2 = np.sort(np.sum(step1, axis=1))
step3 = step2 * (1 - fractions)
interaction_correction = np.sum(step3)
if self._algo == self.ALGO_TIME_LIMIT:
elapsed_time = datetime.utcnow() - self._start_time
speedup_parameter = elapsed_time.total_seconds() / 1800
avg_int = np.sum(interaction_matrix, axis=None)
avg_frac = np.average(np.outer(1 - fractions, 1 - fractions))
average_correction = avg_int * avg_frac
interaction_correction = average_correction * speedup_parameter \
+ interaction_correction * (1 - speedup_parameter)
best_case = np.sum(matrix) + np.inner(sums[::-1], fractions - 1) \
+ interaction_correction
return best_case | 140,937 |
This method recursively finds the minimal permutations using a binary
tree search strategy.
Args:
matrix: The current matrix (with some permutations already
performed).
m_list: The list of permutations still to be performed
indices: Set of indices which haven't had a permutation
performed on them. | def _recurse(self, matrix, m_list, indices, output_m_list=[]):
# check to see if we've found all the solutions that we need
if self._finished:
return
# if we're done with the current manipulation, pop it off.
while m_list[-1][1] == 0:
m_list = copy(m_list)
m_list.pop()
# if there are no more manipulations left to do check the value
if not m_list:
matrix_sum = np.sum(matrix)
if matrix_sum < self._current_minimum:
self.add_m_list(matrix_sum, output_m_list)
return
# if we wont have enough indices left, return
if m_list[-1][1] > len(indices.intersection(m_list[-1][2])):
return
if len(m_list) == 1 or m_list[-1][1] > 1:
if self.best_case(matrix, m_list, indices) > self._current_minimum:
return
index = self.get_next_index(matrix, m_list[-1], indices)
m_list[-1][2].remove(index)
# Make the matrix and new m_list where we do the manipulation to the
# index that we just got
matrix2 = np.copy(matrix)
m_list2 = deepcopy(m_list)
output_m_list2 = copy(output_m_list)
matrix2[index, :] *= m_list[-1][0]
matrix2[:, index] *= m_list[-1][0]
output_m_list2.append([index, m_list[-1][3]])
indices2 = copy(indices)
indices2.remove(index)
m_list2[-1][1] -= 1
# recurse through both the modified and unmodified matrices
self._recurse(matrix2, m_list2, indices2, output_m_list2)
self._recurse(matrix, m_list, indices, output_m_list) | 140,939 |
Calculates the ensemble averaged Voronoi coordination numbers
of a list of Structures using VoronoiNN.
Typically used for analyzing the output of a Molecular Dynamics run.
Args:
structures (list): list of Structures.
freq (int): sampling frequency of coordination number [every freq steps].
Returns:
Dictionary of elements as keys and average coordination numbers as values. | def average_coordination_number(structures, freq=10):
coordination_numbers = {}
for spec in structures[0].composition.as_dict().keys():
coordination_numbers[spec] = 0.0
count = 0
for t in range(len(structures)):
if t % freq != 0:
continue
count += 1
vnn = VoronoiNN()
for atom in range(len(structures[0])):
cn = vnn.get_cn(structures[t], atom, use_weights=True)
coordination_numbers[structures[t][atom].species_string] += cn
elements = structures[0].composition.as_dict()
for el in coordination_numbers:
coordination_numbers[el] = coordination_numbers[el] / elements[
el] / count
return coordination_numbers | 140,940 |
Helper method to calculate the solid angle of a set of coords from the
center.
Args:
center (3x1 array): Center to measure solid angle from.
coords (Nx3 array): List of coords to determine solid angle.
Returns:
The solid angle. | def solid_angle(center, coords):
o = np.array(center)
r = [np.array(c) - o for c in coords]
r.append(r[0])
n = [np.cross(r[i + 1], r[i]) for i in range(len(r) - 1)]
n.append(np.cross(r[1], r[0]))
vals = []
for i in range(len(n) - 1):
v = -np.dot(n[i], n[i + 1]) \
/ (np.linalg.norm(n[i]) * np.linalg.norm(n[i + 1]))
vals.append(acos(abs_cap(v)))
phi = sum(vals)
return phi + (3 - len(r)) * pi | 140,941 |
Provides max bond length estimates for a structure based on the JMol
table and algorithms.
Args:
structure: (structure)
el_radius_updates: (dict) symbol->float to update atomic radii
Returns: (dict) - (Element1, Element2) -> float. The two elements are
ordered by Z. | def get_max_bond_lengths(structure, el_radius_updates=None):
#jmc = JMolCoordFinder(el_radius_updates)
jmnn = JmolNN(el_radius_updates=el_radius_updates)
bonds_lens = {}
els = sorted(structure.composition.elements, key=lambda x: x.Z)
for i1 in range(len(els)):
for i2 in range(len(els) - i1):
bonds_lens[els[i1], els[i1 + i2]] = jmnn.get_max_bond_distance(
els[i1].symbol, els[i1 + i2].symbol)
return bonds_lens | 140,942 |
Determines if a structure contains peroxide anions.
Args:
structure (Structure): Input structure.
relative_cutoff: The peroxide bond distance is 1.49 Angstrom.
Relative_cutoff * 1.49 stipulates the maximum distance two O
atoms must be to each other to be considered a peroxide.
Returns:
Boolean indicating if structure contains a peroxide anion. | def contains_peroxide(structure, relative_cutoff=1.1):
ox_type = oxide_type(structure, relative_cutoff)
if ox_type == "peroxide":
return True
else:
return False | 140,944 |
Determines if an oxide is a peroxide/superoxide/ozonide/normal oxide
Args:
structure (Structure): Input structure.
relative_cutoff (float): Relative_cutoff * act. cutoff stipulates the
max distance two O atoms must be from each other.
return_nbonds (bool): Should number of bonds be requested? | def oxide_type(structure, relative_cutoff=1.1, return_nbonds=False):
ox_obj = OxideType(structure, relative_cutoff)
if return_nbonds:
return ox_obj.oxide_type, ox_obj.nbonds
else:
return ox_obj.oxide_type | 140,945 |
Determines if a structure is a sulfide/polysulfide
Args:
structure (Structure): Input structure.
Returns:
(str) sulfide/polysulfide/sulfate | def sulfide_type(structure):
structure = structure.copy()
structure.remove_oxidation_states()
s = Element("S")
comp = structure.composition
if comp.is_element or s not in comp:
return None
finder = SpacegroupAnalyzer(structure, symprec=0.1)
symm_structure = finder.get_symmetrized_structure()
s_sites = [sites[0] for sites in symm_structure.equivalent_sites if
sites[0].specie == s]
def process_site(site):
# in an exceptionally rare number of structures, the search
# radius needs to be increased to find a neighbor atom
search_radius = 4
neighbors = []
while len(neighbors) == 0:
neighbors = structure.get_neighbors(site, search_radius)
search_radius *= 2
if search_radius > max(structure.lattice.abc)*2:
break
neighbors = sorted(neighbors, key=lambda n: n[1])
nn, dist = neighbors[0]
coord_elements = [site.specie for site, d in neighbors
if d < dist + 0.4][:4]
avg_electroneg = np.mean([e.X for e in coord_elements])
if avg_electroneg > s.X:
return "sulfate"
elif avg_electroneg == s.X and s in coord_elements:
return "polysulfide"
else:
return "sulfide"
types = set([process_site(site) for site in s_sites])
if "sulfate" in types:
return None
elif "polysulfide" in types:
return "polysulfide"
else:
return "sulfide" | 140,946 |
Performs Voronoi analysis and returns the polyhedra around atom n
in Schlaefli notation.
Args:
structure (Structure): structure to analyze
n (int): index of the center atom in structure
Returns:
voronoi index of n: <c3,c4,c6,c6,c7,c8,c9,c10>
where c_i denotes number of facets with i vertices. | def analyze(self, structure, n=0):
center = structure[n]
neighbors = structure.get_sites_in_sphere(center.coords, self.cutoff)
neighbors = [i[0] for i in sorted(neighbors, key=lambda s: s[1])]
qvoronoi_input = np.array([s.coords for s in neighbors])
voro = Voronoi(qvoronoi_input, qhull_options=self.qhull_options)
vor_index = np.array([0, 0, 0, 0, 0, 0, 0, 0])
for key in voro.ridge_dict:
if 0 in key: # This means if the center atom is in key
if -1 in key: # This means if an infinity point is in key
raise ValueError("Cutoff too short.")
else:
try:
vor_index[len(voro.ridge_dict[key]) - 3] += 1
except IndexError:
# If a facet has more than 10 edges, it's skipped here.
pass
return vor_index | 140,948 |
Please note that the input and final structures should have the same
ordering of sites. This is typically the case for most computational
codes.
Args:
initial_structure (Structure): Initial input structure to
calculation.
final_structure (Structure): Final output structure from
calculation. | def __init__(self, initial_structure, final_structure):
if final_structure.formula != initial_structure.formula:
raise ValueError("Initial and final structures have different " +
"formulas!")
self.initial = initial_structure
self.final = final_structure | 140,951 |
Assuming there is some value in the connectivity array at indices
(1, 3, 12). sitei can be obtained directly from the input structure
(structure[1]). sitej can be obtained by passing 3, 12 to this function
Args:
site_index (int): index of the site (3 in the example)
image_index (int): index of the image (12 in the example) | def get_sitej(self, site_index, image_index):
atoms_n_occu = self.s[site_index].species
lattice = self.s.lattice
coords = self.s[site_index].frac_coords + self.offsets[image_index]
return PeriodicSite(atoms_n_occu, coords, lattice) | 140,958 |
Finds stress corresponding to zero strain state in stress-strain list
Args:
strains (Nx3x3 array-like): array corresponding to strains
stresses (Nx3x3 array-like): array corresponding to stresses
tol (float): tolerance to find zero strain state | def find_eq_stress(strains, stresses, tol=1e-10):
stress_array = np.array(stresses)
strain_array = np.array(strains)
eq_stress = stress_array[np.all(abs(strain_array)<tol, axis=(1,2))]
if eq_stress.size != 0:
all_same = (abs(eq_stress - eq_stress[0]) < 1e-8).all()
if len(eq_stress) > 1 and not all_same:
raise ValueError("Multiple stresses found for equilibrium strain"
" state, please specify equilibrium stress or "
" remove extraneous stresses.")
eq_stress = eq_stress[0]
else:
warnings.warn("No eq state found, returning zero voigt stress")
eq_stress = Stress(np.zeros((3, 3)))
return eq_stress | 140,970 |
Helper function to find difference coefficients of an
derivative on an arbitrary mesh.
Args:
hvec (1D array-like): sampling stencil
n (int): degree of derivative to find | def get_diff_coeff(hvec, n=1):
hvec = np.array(hvec, dtype=np.float)
acc = len(hvec)
exp = np.column_stack([np.arange(acc)]*acc)
a = np.vstack([hvec] * acc) ** exp
b = np.zeros(acc)
b[n] = factorial(n)
return np.linalg.solve(a, b) | 140,974 |
Calculate's a given elastic tensor's contribution to the
stress using Einstein summation
Args:
strain (3x3 array-like): matrix corresponding to strain | def calculate_stress(self, strain):
strain = np.array(strain)
if strain.shape == (6,):
strain = Strain.from_voigt(strain)
assert strain.shape == (3, 3), "Strain must be 3x3 or voigt-notation"
stress_matrix = self.einsum_sequence([strain]*(self.order - 1)) \
/ factorial(self.order - 1)
return Stress(stress_matrix) | 140,976 |
Calculates the poisson ratio for a specific direction
relative to a second, orthogonal direction
Args:
n (3-d vector): principal direction
m (3-d vector): secondary direction orthogonal to n
tol (float): tolerance for testing of orthogonality | def directional_poisson_ratio(self, n, m, tol=1e-8):
n, m = get_uvec(n), get_uvec(m)
if not np.abs(np.dot(n, m)) < tol:
raise ValueError("n and m must be orthogonal")
v = self.compliance_tensor.einsum_sequence([n]*2 + [m]*2)
v *= -1 / self.compliance_tensor.einsum_sequence([n]*4)
return v | 140,983 |
Calculates transverse sound velocity (in SI units) using the
Voigt-Reuss-Hill average bulk modulus
Args:
structure: pymatgen structure object
Returns: transverse sound velocity (in SI units) | def trans_v(self, structure):
nsites = structure.num_sites
volume = structure.volume
natoms = structure.composition.num_atoms
weight = float(structure.composition.weight)
mass_density = 1.6605e3 * nsites * weight / (natoms * volume)
if self.g_vrh < 0:
raise ValueError("k_vrh or g_vrh is negative, "
"sound velocity is undefined")
return (1e9 * self.g_vrh / mass_density) ** 0.5 | 140,984 |
Calculates Snyder's acoustic sound velocity (in SI units)
Args:
structure: pymatgen structure object
Returns: Snyder's acoustic sound velocity (in SI units) | def snyder_ac(self, structure):
nsites = structure.num_sites
volume = structure.volume
natoms = structure.composition.num_atoms
num_density = 1e30 * nsites / volume
tot_mass = sum([e.atomic_mass for e in structure.species])
avg_mass = 1.6605e-27 * tot_mass / natoms
return 0.38483*avg_mass * \
((self.long_v(structure) + 2.*self.trans_v(structure))/3.) ** 3.\
/ (300.*num_density ** (-2./3.) * nsites ** (1./3.)) | 140,985 |
Calculates Snyder's optical sound velocity (in SI units)
Args:
structure: pymatgen structure object
Returns: Snyder's optical sound velocity (in SI units) | def snyder_opt(self, structure):
nsites = structure.num_sites
volume = structure.volume
num_density = 1e30 * nsites / volume
return 1.66914e-23 * \
(self.long_v(structure) + 2.*self.trans_v(structure))/3. \
/ num_density ** (-2./3.) * (1 - nsites ** (-1./3.)) | 140,986 |
Calculates Clarke's thermal conductivity (in SI units)
Args:
structure: pymatgen structure object
Returns: Clarke's thermal conductivity (in SI units) | def clarke_thermalcond(self, structure):
nsites = structure.num_sites
volume = structure.volume
tot_mass = sum([e.atomic_mass for e in structure.species])
natoms = structure.composition.num_atoms
weight = float(structure.composition.weight)
avg_mass = 1.6605e-27 * tot_mass / natoms
mass_density = 1.6605e3 * nsites * weight / (natoms * volume)
return 0.87 * 1.3806e-23 * avg_mass**(-2./3.) \
* mass_density**(1./6.) * self.y_mod**0.5 | 140,987 |
Estimates the debye temperature from longitudinal and
transverse sound velocities
Args:
structure: pymatgen structure object
Returns: debye temperature (in SI units) | def debye_temperature(self, structure):
v0 = (structure.volume * 1e-30 / structure.num_sites)
vl, vt = self.long_v(structure), self.trans_v(structure)
vm = 3**(1./3.) * (1 / vl**3 + 2 / vt**3)**(-1./3.)
td = 1.05457e-34 / 1.38065e-23 * vm * (6 * np.pi**2 / v0) ** (1./3.)
return td | 140,988 |
returns a dictionary of properties derived from the elastic tensor
and an associated structure
Args:
structure (Structure): structure object for which to calculate
associated properties
include_base_props (bool): whether to include base properties,
like k_vrh, etc.
ignore_errors (bool): if set to true, will set problem properties
that depend on a physical tensor to None, defaults to False | def get_structure_property_dict(self, structure, include_base_props=True,
ignore_errors=False):
s_props = ["trans_v", "long_v", "snyder_ac", "snyder_opt",
"snyder_total", "clarke_thermalcond", "cahill_thermalcond",
"debye_temperature"]
if ignore_errors and (self.k_vrh < 0 or self.g_vrh < 0):
sp_dict = {prop: None for prop in s_props}
else:
sp_dict = {prop: getattr(self, prop)(structure) for prop in s_props}
sp_dict["structure"] = structure
if include_base_props:
sp_dict.update(self.property_dict)
return sp_dict | 140,991 |
Class method to fit an elastic tensor from stress/strain
data. Method uses Moore-Penrose pseudoinverse to invert
the s = C*e equation with elastic tensor, stress, and
strain in voigt notation
Args:
stresses (Nx3x3 array-like): list or array of stresses
strains (Nx3x3 array-like): list or array of strains | def from_pseudoinverse(cls, strains, stresses):
# convert the stress/strain to Nx6 arrays of voigt-notation
warnings.warn("Pseudoinverse fitting of Strain/Stress lists may yield "
"questionable results from vasp data, use with caution.")
stresses = np.array([Stress(stress).voigt for stress in stresses])
with warnings.catch_warnings(record=True):
strains = np.array([Strain(strain).voigt for strain in strains])
voigt_fit = np.transpose(np.dot(np.linalg.pinv(strains), stresses))
return cls.from_voigt(voigt_fit) | 140,992 |
Initialization method for ElasticTensorExpansion
Args:
c_list (list or tuple): sequence of Tensor inputs
or tensors from which the elastic tensor
expansion is constructed. | def __init__(self, c_list):
c_list = [NthOrderElasticTensor(c, check_rank=4+i*2)
for i, c in enumerate(c_list)]
super().__init__(c_list) | 140,995 |
Gets the Generalized Gruneisen tensor for a given
third-order elastic tensor expansion.
Args:
n (3x1 array-like): normal mode direction
u (3x1 array-like): polarization direction | def get_ggt(self, n, u):
gk = self[0].einsum_sequence([n, u, n, u])
result = -(2*gk*np.outer(u, u) + self[0].einsum_sequence([n, n])
+ self[1].einsum_sequence([n, u, n, u])) / (2*gk)
return result | 140,998 |
Finds directional frequency contribution to the heat
capacity from direction and polarization
Args:
structure (Structure): Structure to be used in directional heat
capacity determination
n (3x1 array-like): direction for Cv determination
u (3x1 array-like): polarization direction, note that
no attempt for verification of eigenvectors is made | def omega(self, structure, n, u):
l0 = np.dot(np.sum(structure.lattice.matrix, axis=0), n)
l0 *= 1e-10 # in A
weight = float(structure.composition.weight) * 1.66054e-27 # in kg
vol = structure.volume * 1e-30 # in m^3
vel = (1e9 * self[0].einsum_sequence([n, u, n, u])
/ (weight / vol)) ** 0.5
return vel / l0 | 141,002 |
Returns the effective elastic constants
from the elastic tensor expansion.
Args:
strain (Strain or 3x3 array-like): strain condition
under which to calculate the effective constants
order (int): order of the ecs to be returned | def get_effective_ecs(self, strain, order=2):
ec_sum = 0
for n, ecs in enumerate(self[order-2:]):
ec_sum += ecs.einsum_sequence([strain] * n) / factorial(n)
return ec_sum | 141,006 |
Gets the Wallace Tensor for determining yield strength
criteria.
Args:
tau (3x3 array-like): stress at which to evaluate
the wallace tensor | def get_wallace_tensor(self, tau):
b = 0.5 * (np.einsum("ml,kn->klmn", tau, np.eye(3)) +
np.einsum("km,ln->klmn", tau, np.eye(3)) +
np.einsum("nl,km->klmn", tau, np.eye(3)) +
np.einsum("kn,lm->klmn", tau, np.eye(3)) +
-2*np.einsum("kl,mn->klmn", tau, np.eye(3)))
strain = self.get_strain_from_stress(tau)
b += self.get_effective_ecs(strain)
return b | 141,007 |
Gets the symmetrized wallace tensor for determining
yield strength criteria.
Args:
tau (3x3 array-like): stress at which to evaluate
the wallace tensor. | def get_symmetric_wallace_tensor(self, tau):
wallace = self.get_wallace_tensor(tau)
return Tensor(0.5 * (wallace + np.transpose(wallace, [2, 3, 0, 1]))) | 141,008 |
Gets the stability criteria from the symmetric
Wallace tensor from an input vector and stress
value.
Args:
s (float): Stress value at which to evaluate
the stability criteria
n (3x1 array-like): direction of the applied
stress | def get_stability_criteria(self, s, n):
n = get_uvec(n)
stress = s * np.outer(n, n)
sym_wallace = self.get_symmetric_wallace_tensor(stress)
return np.linalg.det(sym_wallace.voigt) | 141,009 |
Gets the yield stress for a given direction
Args:
n (3x1 array-like): direction for which to find the
yield stress | def get_yield_stress(self, n):
# TODO: root finding could be more robust
comp = root(self.get_stability_criteria, -1, args=n)
tens = root(self.get_stability_criteria, 1, args=n)
return (comp.x, tens.x) | 141,010 |
Adds the skeleton of the Wigner-Seitz cell of the lattice to a matplotlib Axes
Args:
lattice: Lattice object
ax: matplotlib :class:`Axes` or None if a new figure should be created.
kwargs: kwargs passed to the matplotlib function 'plot'. Color defaults to black
and linewidth to 1.
Returns:
matplotlib figure and matplotlib ax | def plot_wigner_seitz(lattice, ax=None, **kwargs):
ax, fig, plt = get_ax3d_fig_plt(ax)
if "color" not in kwargs:
kwargs["color"] = "k"
if "linewidth" not in kwargs:
kwargs["linewidth"] = 1
bz = lattice.get_wigner_seitz_cell()
ax, fig, plt = get_ax3d_fig_plt(ax)
for iface in range(len(bz)):
for line in itertools.combinations(bz[iface], 2):
for jface in range(len(bz)):
if iface < jface and any(
np.all(line[0] == x) for x in bz[jface]) \
and any(np.all(line[1] == x) for x in bz[jface]):
ax.plot(*zip(line[0], line[1]), **kwargs)
return fig, ax | 141,065 |
Adds the basis vectors of the lattice provided to a matplotlib Axes
Args:
lattice: Lattice object
ax: matplotlib :class:`Axes` or None if a new figure should be created.
kwargs: kwargs passed to the matplotlib function 'plot'. Color defaults to green
and linewidth to 3.
Returns:
matplotlib figure and matplotlib ax | def plot_lattice_vectors(lattice, ax=None, **kwargs):
ax, fig, plt = get_ax3d_fig_plt(ax)
if "color" not in kwargs:
kwargs["color"] = "g"
if "linewidth" not in kwargs:
kwargs["linewidth"] = 3
vertex1 = lattice.get_cartesian_coords([0.0, 0.0, 0.0])
vertex2 = lattice.get_cartesian_coords([1.0, 0.0, 0.0])
ax.plot(*zip(vertex1, vertex2), **kwargs)
vertex2 = lattice.get_cartesian_coords([0.0, 1.0, 0.0])
ax.plot(*zip(vertex1, vertex2), **kwargs)
vertex2 = lattice.get_cartesian_coords([0.0, 0.0, 1.0])
ax.plot(*zip(vertex1, vertex2), **kwargs)
return fig, ax | 141,066 |
Folds a point with coordinates p inside the first Brillouin zone of the lattice.
Args:
p: coordinates of one point
lattice: Lattice object used to convert from reciprocal to cartesian coordinates
coords_are_cartesian: Set to True if you are providing
coordinates in cartesian coordinates. Defaults to False.
Returns:
The cartesian coordinates folded inside the first Brillouin zone | def fold_point(p, lattice, coords_are_cartesian=False):
if coords_are_cartesian:
p = lattice.get_fractional_coords(p)
else:
p = np.array(p)
p = np.mod(p + 0.5 - 1e-10, 1) - 0.5 + 1e-10
p = lattice.get_cartesian_coords(p)
closest_lattice_point = None
smallest_distance = 10000
for i in (-1, 0, 1):
for j in (-1, 0, 1):
for k in (-1, 0, 1):
lattice_point = np.dot((i, j, k), lattice.matrix)
dist = np.linalg.norm(p - lattice_point)
if closest_lattice_point is None or dist < smallest_distance:
closest_lattice_point = lattice_point
smallest_distance = dist
if not np.allclose(closest_lattice_point, (0, 0, 0)):
p = p - closest_lattice_point
return p | 141,069 |
Gives the plot (as a matplotlib object) of the symmetry line path in
the Brillouin Zone.
Args:
kpath (HighSymmKpath): a HighSymmKPath object
ax: matplotlib :class:`Axes` or None if a new figure should be created.
**kwargs: provided by add_fig_kwargs decorator
Returns:
matplotlib figure | def plot_brillouin_zone_from_kpath(kpath, ax=None, **kwargs):
lines = [[kpath.kpath['kpoints'][k] for k in p]
for p in kpath.kpath['path']]
return plot_brillouin_zone(bz_lattice=kpath.prim_rec, lines=lines, ax=ax,
labels=kpath.kpath['kpoints'], **kwargs) | 141,071 |
Adds a dos for plotting.
Args:
label:
label for the DOS. Must be unique.
dos:
Dos object | def add_dos(self, label, dos):
energies = dos.energies - dos.efermi if self.zero_at_efermi \
else dos.energies
densities = dos.get_smeared_densities(self.sigma) if self.sigma \
else dos.densities
efermi = dos.efermi
self._doses[label] = {'energies': energies, 'densities': densities,
'efermi': efermi} | 141,075 |
Get a matplotlib plot showing the DOS.
Args:
xlim: Specifies the x-axis limits. Set to None for automatic
determination.
ylim: Specifies the y-axis limits. | def get_plot(self, xlim=None, ylim=None):
ncolors = max(3, len(self._doses))
ncolors = min(9, ncolors)
import palettable
colors = palettable.colorbrewer.qualitative.Set1_9.mpl_colors
y = None
alldensities = []
allenergies = []
plt = pretty_plot(12, 8)
# Note that this complicated processing of energies is to allow for
# stacked plots in matplotlib.
for key, dos in self._doses.items():
energies = dos['energies']
densities = dos['densities']
if not y:
y = {Spin.up: np.zeros(energies.shape),
Spin.down: np.zeros(energies.shape)}
newdens = {}
for spin in [Spin.up, Spin.down]:
if spin in densities:
if self.stack:
y[spin] += densities[spin]
newdens[spin] = y[spin].copy()
else:
newdens[spin] = densities[spin]
allenergies.append(energies)
alldensities.append(newdens)
keys = list(self._doses.keys())
keys.reverse()
alldensities.reverse()
allenergies.reverse()
allpts = []
for i, key in enumerate(keys):
x = []
y = []
for spin in [Spin.up, Spin.down]:
if spin in alldensities[i]:
densities = list(int(spin) * alldensities[i][spin])
energies = list(allenergies[i])
if spin == Spin.down:
energies.reverse()
densities.reverse()
x.extend(energies)
y.extend(densities)
allpts.extend(list(zip(x, y)))
if self.stack:
plt.fill(x, y, color=colors[i % ncolors],
label=str(key))
else:
plt.plot(x, y, color=colors[i % ncolors],
label=str(key), linewidth=3)
if not self.zero_at_efermi:
ylim = plt.ylim()
plt.plot([self._doses[key]['efermi'],
self._doses[key]['efermi']], ylim,
color=colors[i % ncolors],
linestyle='--', linewidth=2)
if xlim:
plt.xlim(xlim)
if ylim:
plt.ylim(ylim)
else:
xlim = plt.xlim()
relevanty = [p[1] for p in allpts
if xlim[0] < p[0] < xlim[1]]
plt.ylim((min(relevanty), max(relevanty)))
if self.zero_at_efermi:
ylim = plt.ylim()
plt.plot([0, 0], ylim, 'k--', linewidth=2)
plt.xlabel('Energies (eV)')
plt.ylabel('Density of states')
plt.legend()
leg = plt.gca().get_legend()
ltext = leg.get_texts() # all the text.Text instance in the legend
plt.setp(ltext, fontsize=30)
plt.tight_layout()
return plt | 141,076 |
Save matplotlib plot to a file.
Args:
filename: Filename to write to.
img_format: Image format to use. Defaults to EPS.
ylim: Specifies the y-axis limits. | def save_plot(self, filename, img_format="eps", ylim=None,
zero_to_efermi=True, smooth=False):
plt = self.get_plot(ylim=ylim, zero_to_efermi=zero_to_efermi,
smooth=smooth)
plt.savefig(filename, format=img_format)
plt.close() | 141,080 |
plot two band structure for comparison. One is in red the other in blue
(no difference in spins). The two band structures need to be defined
on the same symmetry lines! and the distance between symmetry lines is
the one of the band structure used to build the BSPlotter
Args:
another band structure object defined along the same symmetry lines
Returns:
a matplotlib object with both band structures | def plot_compare(self, other_plotter, legend=True):
# TODO: add exception if the band structures are not compatible
import matplotlib.lines as mlines
plt = self.get_plot()
data_orig = self.bs_plot_data()
data = other_plotter.bs_plot_data()
band_linewidth = 1
for i in range(other_plotter._nb_bands):
for d in range(len(data_orig['distances'])):
plt.plot(data_orig['distances'][d],
[e[str(Spin.up)][i] for e in data['energy']][d],
'c-', linewidth=band_linewidth)
if other_plotter._bs.is_spin_polarized:
plt.plot(data_orig['distances'][d],
[e[str(Spin.down)][i] for e in data['energy']][d],
'm--', linewidth=band_linewidth)
if legend:
handles = [mlines.Line2D([], [], linewidth=2,
color='b', label='bs 1 up'),
mlines.Line2D([], [], linewidth=2,
color='r', label='bs 1 down',
linestyle="--"),
mlines.Line2D([], [], linewidth=2,
color='c', label='bs 2 up'),
mlines.Line2D([], [], linewidth=2,
color='m', linestyle="--",
label='bs 2 down')]
plt.legend(handles=handles)
return plt | 141,081 |
Get a matplotlib plot object.
Args:
bs (BandStructureSymmLine): the bandstructure to plot. Projection
data must exist for projected plots.
dos (Dos): the Dos to plot. Projection data must exist (i.e.,
CompleteDos) for projected plots.
Returns:
matplotlib.pyplot object on which you can call commands like show()
and savefig() | def get_plot(self, bs, dos=None):
import matplotlib.lines as mlines
from matplotlib.gridspec import GridSpec
import matplotlib.pyplot as mplt
# make sure the user-specified band structure projection is valid
bs_projection = self.bs_projection
if dos:
elements = [e.symbol for e in dos.structure.composition.elements]
elif bs_projection and bs.structure:
elements = [e.symbol for e in bs.structure.composition.elements]
else:
elements = []
rgb_legend = self.rgb_legend and bs_projection and \
bs_projection.lower() == "elements" and \
len(elements) in [2, 3]
if bs_projection and bs_projection.lower() == "elements" and \
(len(elements) not in [2, 3] or
not bs.get_projection_on_elements()):
warnings.warn(
"Cannot get element projected data; either the projection data "
"doesn't exist, or you don't have a compound with exactly 2 "
"or 3 unique elements.")
bs_projection = None
# specify energy range of plot
emin = -self.vb_energy_range
emax = self.cb_energy_range if self.fixed_cb_energy else \
self.cb_energy_range + bs.get_band_gap()["energy"]
# initialize all the k-point labels and k-point x-distances for bs plot
xlabels = [] # all symmetry point labels on x-axis
xlabel_distances = [] # positions of symmetry point x-labels
x_distances = [] # x positions of kpoint data
prev_right_klabel = None # used to determine which branches require a midline separator
for idx, l in enumerate(bs.branches):
# get left and right kpoint labels of this branch
left_k, right_k = l["name"].split("-")
# add $ notation for LaTeX kpoint labels
if left_k[0] == "\\" or "_" in left_k:
left_k = "$" + left_k + "$"
if right_k[0] == "\\" or "_" in right_k:
right_k = "$" + right_k + "$"
# add left k label to list of labels
if prev_right_klabel is None:
xlabels.append(left_k)
xlabel_distances.append(0)
elif prev_right_klabel != left_k: # used for pipe separator
xlabels[-1] = xlabels[-1] + "$\\mid$ " + left_k
# add right k label to list of labels
xlabels.append(right_k)
prev_right_klabel = right_k
# add x-coordinates for labels
left_kpoint = bs.kpoints[l["start_index"]].cart_coords
right_kpoint = bs.kpoints[l["end_index"]].cart_coords
distance = np.linalg.norm(right_kpoint - left_kpoint)
xlabel_distances.append(xlabel_distances[-1] + distance)
# add x-coordinates for kpoint data
npts = l["end_index"] - l["start_index"]
distance_interval = distance / npts
x_distances.append(xlabel_distances[-2])
for i in range(npts):
x_distances.append(x_distances[-1] + distance_interval)
# set up bs and dos plot
gs = GridSpec(1, 2, width_ratios=[2, 1]) if dos else GridSpec(1, 1)
fig = mplt.figure(figsize=self.fig_size)
fig.patch.set_facecolor('white')
bs_ax = mplt.subplot(gs[0])
if dos:
dos_ax = mplt.subplot(gs[1])
# set basic axes limits for the plot
bs_ax.set_xlim(0, x_distances[-1])
bs_ax.set_ylim(emin, emax)
if dos:
dos_ax.set_ylim(emin, emax)
# add BS xticks, labels, etc.
bs_ax.set_xticks(xlabel_distances)
bs_ax.set_xticklabels(xlabels, size=self.tick_fontsize)
bs_ax.set_xlabel('Wavevector $k$', fontsize=self.axis_fontsize,
family=self.font)
bs_ax.set_ylabel('$E-E_F$ / eV', fontsize=self.axis_fontsize,
family=self.font)
# add BS fermi level line at E=0 and gridlines
bs_ax.hlines(y=0, xmin=0, xmax=x_distances[-1], color="k", lw=2)
bs_ax.set_yticks(np.arange(emin, emax + 1E-5, self.egrid_interval))
bs_ax.set_yticklabels(np.arange(emin, emax + 1E-5, self.egrid_interval),
size=self.tick_fontsize)
bs_ax.set_axisbelow(True)
bs_ax.grid(color=[0.5, 0.5, 0.5], linestyle='dotted', linewidth=1)
if dos:
dos_ax.set_yticks(np.arange(emin, emax + 1E-5, self.egrid_interval))
dos_ax.set_yticklabels([])
dos_ax.grid(color=[0.5, 0.5, 0.5], linestyle='dotted', linewidth=1)
# renormalize the band energy to the Fermi level
band_energies = {}
for spin in (Spin.up, Spin.down):
if spin in bs.bands:
band_energies[spin] = []
for band in bs.bands[spin]:
band_energies[spin].append([e - bs.efermi for e in band])
# renormalize the DOS energies to Fermi level
if dos:
dos_energies = [e - dos.efermi for e in dos.energies]
# get the projection data to set colors for the band structure
colordata = self._get_colordata(bs, elements, bs_projection)
# plot the colored band structure lines
for spin in (Spin.up, Spin.down):
if spin in band_energies:
linestyles = "solid" if spin == Spin.up else "dotted"
for band_idx, band in enumerate(band_energies[spin]):
self._rgbline(bs_ax, x_distances, band,
colordata[spin][band_idx, :, 0],
colordata[spin][band_idx, :, 1],
colordata[spin][band_idx, :, 2],
linestyles=linestyles)
if dos:
# Plot the DOS and projected DOS
for spin in (Spin.up, Spin.down):
if spin in dos.densities:
# plot the total DOS
dos_densities = dos.densities[spin] * int(spin)
label = "total" if spin == Spin.up else None
dos_ax.plot(dos_densities, dos_energies,
color=(0.6, 0.6, 0.6), label=label)
dos_ax.fill_betweenx(dos_energies, 0,dos_densities,
color=(0.7, 0.7, 0.7),
facecolor=(0.7, 0.7, 0.7))
if self.dos_projection is None:
pass
elif self.dos_projection.lower() == "elements":
# plot the atom-projected DOS
colors = ['b', 'r', 'g', 'm', 'y', 'c', 'k', 'w']
el_dos = dos.get_element_dos()
for idx, el in enumerate(elements):
dos_densities = el_dos[Element(el)].densities[
spin] * int(spin)
label = el if spin == Spin.up else None
dos_ax.plot(dos_densities, dos_energies,
color=colors[idx], label=label)
elif self.dos_projection.lower() == "orbitals":
# plot each of the atomic projected DOS
colors = ['b', 'r', 'g', 'm']
spd_dos = dos.get_spd_dos()
for idx, orb in enumerate([OrbitalType.s,
OrbitalType.p,
OrbitalType.d,
OrbitalType.f]):
if orb in spd_dos:
dos_densities = spd_dos[orb].densities[spin] * \
int(spin)
label = orb if spin == Spin.up else None
dos_ax.plot(dos_densities, dos_energies,
color=colors[idx], label=label)
# get index of lowest and highest energy being plotted, used to help auto-scale DOS x-axis
emin_idx = next(x[0] for x in enumerate(dos_energies) if
x[1] >= emin)
emax_idx = len(dos_energies) - \
next(x[0] for x in enumerate(reversed(dos_energies))
if x[1] <= emax)
# determine DOS x-axis range
dos_xmin = 0 if Spin.down not in dos.densities else -max(
dos.densities[Spin.down][emin_idx:emax_idx + 1] * 1.05)
dos_xmax = max([max(dos.densities[Spin.up][emin_idx:emax_idx]) *
1.05, abs(dos_xmin)])
# set up the DOS x-axis and add Fermi level line
dos_ax.set_xlim(dos_xmin, dos_xmax)
dos_ax.set_xticklabels([])
dos_ax.hlines(y=0, xmin=dos_xmin, xmax=dos_xmax, color="k", lw=2)
dos_ax.set_xlabel('DOS', fontsize=self.axis_fontsize,
family=self.font)
# add legend for band structure
if self.bs_legend and not rgb_legend:
handles = []
if bs_projection is None:
handles = [mlines.Line2D([], [], linewidth=2,
color='k', label='spin up'),
mlines.Line2D([], [], linewidth=2,
color='b', linestyle="dotted",
label='spin down')]
elif bs_projection.lower() == "elements":
colors = ['b', 'r', 'g']
for idx, el in enumerate(elements):
handles.append(mlines.Line2D([], [],
linewidth=2,
color=colors[idx], label=el))
bs_ax.legend(handles=handles, fancybox=True,
prop={'size': self.legend_fontsize,
'family': self.font}, loc=self.bs_legend)
elif self.bs_legend and rgb_legend:
if len(elements) == 2:
self._rb_line(bs_ax, elements[1], elements[0],
loc=self.bs_legend)
elif len(elements) == 3:
self._rgb_triangle(bs_ax, elements[1], elements[2], elements[0],
loc=self.bs_legend)
# add legend for DOS
if dos and self.dos_legend:
dos_ax.legend(fancybox=True, prop={'size': self.legend_fontsize,
'family': self.font},
loc=self.dos_legend)
mplt.subplots_adjust(wspace=0.1)
return mplt | 141,095 |
An RGB colored line for plotting.
creation of segments based on:
http://nbviewer.ipython.org/urls/raw.github.com/dpsanders/matplotlib-examples/master/colorline.ipynb
Args:
ax: matplotlib axis
k: x-axis data (k-points)
e: y-axis data (energies)
red: red data
green: green data
blue: blue data
alpha: alpha values data
linestyles: linestyle for plot (e.g., "solid" or "dotted") | def _rgbline(ax, k, e, red, green, blue, alpha=1, linestyles="solid"):
from matplotlib.collections import LineCollection
pts = np.array([k, e]).T.reshape(-1, 1, 2)
seg = np.concatenate([pts[:-1], pts[1:]], axis=1)
nseg = len(k) - 1
r = [0.5 * (red[i] + red[i + 1]) for i in range(nseg)]
g = [0.5 * (green[i] + green[i + 1]) for i in range(nseg)]
b = [0.5 * (blue[i] + blue[i + 1]) for i in range(nseg)]
a = np.ones(nseg, np.float) * alpha
lc = LineCollection(seg, colors=list(zip(r, g, b, a)),
linewidth=2, linestyles=linestyles)
ax.add_collection(lc) | 141,096 |
Get color data, including projected band structures
Args:
bs: Bandstructure object
elements: elements (in desired order) for setting to blue, red, green
bs_projection: None for no projection, "elements" for element projection
Returns: | def _get_colordata(bs, elements, bs_projection):
contribs = {}
if bs_projection and bs_projection.lower() == "elements":
projections = bs.get_projection_on_elements()
for spin in (Spin.up, Spin.down):
if spin in bs.bands:
contribs[spin] = []
for band_idx in range(bs.nb_bands):
colors = []
for k_idx in range(len(bs.kpoints)):
if bs_projection and bs_projection.lower() == "elements":
c = [0, 0, 0]
projs = projections[spin][band_idx][k_idx]
# note: squared color interpolations are smoother
# see: https://youtu.be/LKnqECcg6Gw
projs = dict(
[(k, v ** 2) for k, v in projs.items()])
total = sum(projs.values())
if total > 0:
for idx, e in enumerate(elements):
c[idx] = math.sqrt(projs[
e] / total) # min is to handle round errors
c = [c[1], c[2],
c[0]] # prefer blue, then red, then green
else:
c = [0, 0, 0] if spin == Spin.up \
else [0, 0,
1] # black for spin up, blue for spin down
colors.append(c)
contribs[spin].append(colors)
contribs[spin] = np.array(contribs[spin])
return contribs | 141,097 |
Plot the seebeck coefficient in function of Fermi level
Args:
temp:
the temperature
xlim:
a list of min and max fermi energy by default (0, and band gap)
Returns:
a matplotlib object | def plot_seebeck_mu(self, temp=600, output='eig', xlim=None):
import matplotlib.pyplot as plt
plt.figure(figsize=(9, 7))
seebeck = self._bz.get_seebeck(output=output, doping_levels=False)[
temp]
plt.plot(self._bz.mu_steps, seebeck,
linewidth=3.0)
self._plot_bg_limits()
self._plot_doping(temp)
if output == 'eig':
plt.legend(['S$_1$', 'S$_2$', 'S$_3$'])
if xlim is None:
plt.xlim(-0.5, self._bz.gap + 0.5)
else:
plt.xlim(xlim[0], xlim[1])
plt.ylabel("Seebeck \n coefficient ($\\mu$V/K)", fontsize=30.0)
plt.xlabel("E-E$_f$ (eV)", fontsize=30)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.tight_layout()
return plt | 141,104 |
Plot the conductivity in function of Fermi level. Semi-log plot
Args:
temp: the temperature
xlim: a list of min and max fermi energy by default (0, and band
gap)
tau: A relaxation time in s. By default none and the plot is by
units of relaxation time
Returns:
a matplotlib object | def plot_conductivity_mu(self, temp=600, output='eig',
relaxation_time=1e-14, xlim=None):
import matplotlib.pyplot as plt
cond = self._bz.get_conductivity(relaxation_time=relaxation_time,
output=output, doping_levels=False)[
temp]
plt.figure(figsize=(9, 7))
plt.semilogy(self._bz.mu_steps, cond, linewidth=3.0)
self._plot_bg_limits()
self._plot_doping(temp)
if output == 'eig':
plt.legend(['$\\Sigma_1$', '$\\Sigma_2$', '$\\Sigma_3$'])
if xlim is None:
plt.xlim(-0.5, self._bz.gap + 0.5)
else:
plt.xlim(xlim)
plt.ylim([1e13 * relaxation_time, 1e20 * relaxation_time])
plt.ylabel("conductivity,\n $\\Sigma$ (1/($\\Omega$ m))", fontsize=30.0)
plt.xlabel("E-E$_f$ (eV)", fontsize=30.0)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.tight_layout()
return plt | 141,105 |
Plot the power factor in function of Fermi level. Semi-log plot
Args:
temp: the temperature
xlim: a list of min and max fermi energy by default (0, and band
gap)
tau: A relaxation time in s. By default none and the plot is by
units of relaxation time
Returns:
a matplotlib object | def plot_power_factor_mu(self, temp=600, output='eig',
relaxation_time=1e-14, xlim=None):
import matplotlib.pyplot as plt
plt.figure(figsize=(9, 7))
pf = self._bz.get_power_factor(relaxation_time=relaxation_time,
output=output, doping_levels=False)[
temp]
plt.semilogy(self._bz.mu_steps, pf, linewidth=3.0)
self._plot_bg_limits()
self._plot_doping(temp)
if output == 'eig':
plt.legend(['PF$_1$', 'PF$_2$', 'PF$_3$'])
if xlim is None:
plt.xlim(-0.5, self._bz.gap + 0.5)
else:
plt.xlim(xlim)
plt.ylabel("Power factor, ($\\mu$W/(mK$^2$))", fontsize=30.0)
plt.xlabel("E-E$_f$ (eV)", fontsize=30.0)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.tight_layout()
return plt | 141,106 |
Plot the ZT in function of Fermi level.
Args:
temp: the temperature
xlim: a list of min and max fermi energy by default (0, and band
gap)
tau: A relaxation time in s. By default none and the plot is by
units of relaxation time
Returns:
a matplotlib object | def plot_zt_mu(self, temp=600, output='eig', relaxation_time=1e-14,
xlim=None):
import matplotlib.pyplot as plt
plt.figure(figsize=(9, 7))
zt = self._bz.get_zt(relaxation_time=relaxation_time, output=output,
doping_levels=False)[temp]
plt.plot(self._bz.mu_steps, zt, linewidth=3.0)
self._plot_bg_limits()
self._plot_doping(temp)
if output == 'eig':
plt.legend(['ZT$_1$', 'ZT$_2$', 'ZT$_3$'])
if xlim is None:
plt.xlim(-0.5, self._bz.gap + 0.5)
else:
plt.xlim(xlim)
plt.ylabel("ZT", fontsize=30.0)
plt.xlabel("E-E$_f$ (eV)", fontsize=30.0)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.tight_layout()
return plt | 141,107 |
Plot the Seebeck coefficient in function of temperature for different
doping levels.
Args:
dopings: the default 'all' plots all the doping levels in the analyzer.
Specify a list of doping levels if you want to plot only some.
output: with 'average' you get an average of the three directions
with 'eigs' you get all the three directions.
Returns:
a matplotlib object | def plot_seebeck_temp(self, doping='all', output='average'):
import matplotlib.pyplot as plt
if output == 'average':
sbk = self._bz.get_seebeck(output='average')
elif output == 'eigs':
sbk = self._bz.get_seebeck(output='eigs')
plt.figure(figsize=(22, 14))
tlist = sorted(sbk['n'].keys())
doping = self._bz.doping['n'] if doping == 'all' else doping
for i, dt in enumerate(['n', 'p']):
plt.subplot(121 + i)
for dop in doping:
d = self._bz.doping[dt].index(dop)
sbk_temp = []
for temp in tlist:
sbk_temp.append(sbk[dt][temp][d])
if output == 'average':
plt.plot(tlist, sbk_temp, marker='s',
label=str(dop) + ' $cm^{-3}$')
elif output == 'eigs':
for xyz in range(3):
plt.plot(tlist, zip(*sbk_temp)[xyz], marker='s',
label=str(xyz) + ' ' + str(dop) + ' $cm^{-3}$')
plt.title(dt + '-type', fontsize=20)
if i == 0:
plt.ylabel("Seebeck \n coefficient ($\\mu$V/K)", fontsize=30.0)
plt.xlabel('Temperature (K)', fontsize=30.0)
p = 'lower right' if i == 0 else ''
plt.legend(loc=p, fontsize=15)
plt.grid()
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.tight_layout()
return plt | 141,108 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.