docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
plot dos
Args:
sigma: a smearing
Returns:
a matplotlib object | def plot_dos(self, sigma=0.05):
plotter = DosPlotter(sigma=sigma)
plotter.add_dos("t", self._bz.dos)
return plotter.get_plot() | 141,111 |
Plot the carrier concentration in function of Fermi level
Args:
temp: the temperature
Returns:
a matplotlib object | def plot_carriers(self, temp=300):
import matplotlib.pyplot as plt
plt.semilogy(self._bz.mu_steps,
abs(self._bz._carrier_conc[temp] / (self._bz.vol * 1e-24)),
linewidth=3.0, color='r')
self._plot_bg_limits()
self._plot_doping(temp)
plt.xlim(-0.5, self._bz.gap + 0.5)
plt.ylim(1e14, 1e22)
plt.ylabel("carrier concentration (cm-3)", fontsize=30.0)
plt.xlabel("E-E$_f$ (eV)", fontsize=30)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
return plt | 141,112 |
Plot the Hall carrier concentration in function of Fermi level
Args:
temp: the temperature
Returns:
a matplotlib object | def plot_hall_carriers(self, temp=300):
import matplotlib.pyplot as plt
hall_carriers = [abs(i) for i in
self._bz.get_hall_carrier_concentration()[temp]]
plt.semilogy(self._bz.mu_steps,
hall_carriers,
linewidth=3.0, color='r')
self._plot_bg_limits()
self._plot_doping(temp)
plt.xlim(-0.5, self._bz.gap + 0.5)
plt.ylim(1e14, 1e22)
plt.ylabel("Hall carrier concentration (cm-3)", fontsize=30.0)
plt.xlabel("E-E$_f$ (eV)", fontsize=30)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
return plt | 141,113 |
Adds a COHP for plotting.
Args:
label: Label for the COHP. Must be unique.
cohp: COHP object. | def add_cohp(self, label, cohp):
energies = cohp.energies - cohp.efermi if self.zero_at_efermi \
else cohp.energies
populations = cohp.get_cohp()
int_populations = cohp.get_icohp()
self._cohps[label] = {"energies": energies, "COHP": populations,
"ICOHP": int_populations, "efermi": cohp.efermi} | 141,115 |
Adds a dictionary of COHPs with an optional sorting function
for the keys.
Args:
cohp_dict: dict of the form {label: Cohp}
key_sort_func: function used to sort the cohp_dict keys. | def add_cohp_dict(self, cohp_dict, key_sort_func=None):
if key_sort_func:
keys = sorted(cohp_dict.keys(), key=key_sort_func)
else:
keys = cohp_dict.keys()
for label in keys:
self.add_cohp(label, cohp_dict[label]) | 141,116 |
Initializes a Vacancy Generator
Args:
structure(Structure): pymatgen structure object | def __init__(self, structure, include_bv_charge=False):
self.structure = structure
self.include_bv_charge = include_bv_charge
# Find equivalent site list
sga = SpacegroupAnalyzer(self.structure)
self.symm_structure = sga.get_symmetrized_structure()
self.equiv_site_seq = list(self.symm_structure.equivalent_sites)
self.struct_valences = None
if self.include_bv_charge:
bv = BVAnalyzer()
self.struct_valences = bv.get_valences(self.structure) | 141,123 |
Initializes a Substitution Generator
note: an Antisite is considered a type of substitution
Args:
structure(Structure): pymatgen structure object
element (str or Element or Specie): element for the substitution | def __init__(self, structure, element):
self.structure = structure
self.element = element
# Find equivalent site list
sga = SpacegroupAnalyzer(self.structure)
self.symm_structure = sga.get_symmetrized_structure()
self.equiv_sub = []
for equiv_site_set in list(self.symm_structure.equivalent_sites):
vac_site = equiv_site_set[0]
if isinstance(element, str): # make sure you compare with specie symbol or Element type
vac_specie = vac_site.specie.symbol
else:
vac_specie = vac_site.specie
if element != vac_specie:
defect_site = PeriodicSite(element, vac_site.coords, structure.lattice, coords_are_cartesian=True)
sub = Substitution(structure, defect_site)
self.equiv_sub.append(sub) | 141,125 |
Initializes an Interstitial generator using structure motifs
Args:
structure (Structure): pymatgen structure object
element (str or Element or Specie): element for the interstitial | def __init__(self, structure, element):
self.structure = structure
self.element = element
interstitial_finder = StructureMotifInterstitial(self.structure, self.element)
self.unique_defect_seq = []
# eliminate sublattice equivalent defects which may
# have slipped through interstitial finder
pdc = PointDefectComparator()
for poss_site in interstitial_finder.enumerate_defectsites():
now_defect = Interstitial( self.structure, poss_site)
append_defect = True
for unique_defect in self.unique_defect_seq:
if pdc.are_equal( now_defect, unique_defect):
append_defect = False
if append_defect:
self.unique_defect_seq.append( now_defect)
self.count_def = 0 | 141,126 |
Initializes an Interstitial generator using Voronoi sites
Args:
structure (Structure): pymatgen structure object
element (str or Element or Specie): element for the interstitial | def __init__(self, structure, element):
self.structure = structure
self.element = element
framework = list(self.structure.symbol_set)
get_voronoi = TopographyAnalyzer(self.structure, framework, [], check_volume=False)
get_voronoi.cluster_nodes()
get_voronoi.remove_collisions()
# trim equivalent nodes with symmetry analysis
struct_to_trim = self.structure.copy()
for poss_inter in get_voronoi.vnodes:
struct_to_trim.append(self.element, poss_inter.frac_coords, coords_are_cartesian=False)
symmetry_finder = SpacegroupAnalyzer(struct_to_trim, symprec=1e-1)
equiv_sites_list = symmetry_finder.get_symmetrized_structure().equivalent_sites
# do additional screening for sublattice equivalent
# defects which may have slipped through
pdc = PointDefectComparator()
self.unique_defect_seq = []
for poss_site_list in equiv_sites_list:
poss_site = poss_site_list[0]
if poss_site not in self.structure:
now_defect = Interstitial( self.structure, poss_site)
append_defect = True
for unique_defect in self.unique_defect_seq:
if pdc.are_equal( now_defect, unique_defect):
append_defect = False
if append_defect:
self.unique_defect_seq.append( now_defect)
self.count_def = 0 | 141,127 |
Helper method to calculate the solid angle of a set of coords from the
center.
Args:
center (3x1 array): Center to measure solid angle from.
coords (Nx3 array): List of coords to determine solid angle.
Returns:
The solid angle. | def solid_angle(center, coords):
# Compute the displacement from the center
r = [np.subtract(c, center) for c in coords]
# Compute the magnitude of each vector
r_norm = [np.linalg.norm(i) for i in r]
# Compute the solid angle for each tetrahedron that makes up the facet
# Following: https://en.wikipedia.org/wiki/Solid_angle#Tetrahedron
angle = 0
for i in range(1, len(r) - 1):
j = i + 1
tp = np.abs(np.dot(r[0], np.cross(r[i], r[j])))
de = r_norm[0] * r_norm[i] * r_norm[j] + \
r_norm[j] * np.dot(r[0], r[i]) + \
r_norm[i] * np.dot(r[0], r[j]) + \
r_norm[0] * np.dot(r[i], r[j])
if de == 0:
my_angle = 0.5 * pi if tp > 0 else -0.5 * pi
else:
my_angle = np.arctan(tp / de)
angle += (my_angle if my_angle > 0 else my_angle + np.pi) * 2
return angle | 141,131 |
Calculate the volume of a tetrahedron, given the four vertices of vt1,
vt2, vt3 and vt4.
Args:
vt1 (array-like): coordinates of vertex 1.
vt2 (array-like): coordinates of vertex 2.
vt3 (array-like): coordinates of vertex 3.
vt4 (array-like): coordinates of vertex 4.
Returns:
(float): volume of the tetrahedron. | def vol_tetra(vt1, vt2, vt3, vt4):
vol_tetra = np.abs(np.dot((vt1 - vt4),
np.cross((vt2 - vt4), (vt3 - vt4)))) / 6
return vol_tetra | 141,132 |
Returns the elemental parameters related to atom size and
electronegativity which are used for estimating bond-valence
parameters (bond length) of pairs of atoms on the basis of data
provided in 'Atoms Sizes and Bond Lengths in Molecules and Crystals'
(O'Keeffe & Brese, 1991).
Args:
el_symbol (str): element symbol.
Returns:
(dict): atom-size ('r') and electronegativity-related ('c')
parameter. | def get_okeeffe_params(el_symbol):
el = Element(el_symbol)
if el not in list(BV_PARAMS.keys()):
raise RuntimeError("Could not find O'Keeffe parameters for element"
" \"{}\" in \"BV_PARAMS\"dictonary"
" provided by pymatgen".format(el_symbol))
return BV_PARAMS[el] | 141,133 |
Returns that part of the first input vector
that is orthogonal to the second input vector.
The output vector is not normalized.
Args:
vin (numpy array):
first input vector
uin (numpy array):
second input vector | def gramschmidt(vin, uin):
vin_uin = np.inner(vin, uin)
uin_uin = np.inner(uin, uin)
if uin_uin <= 0.0:
raise ValueError("Zero or negative inner product!")
return vin - (vin_uin / uin_uin) * uin | 141,137 |
Returns the weighted average bond length given by
Hoppe's effective coordination number formula.
Args:
bonds (list): list of floats that are the
bond distances between a cation and its
peripheral ions | def calculate_weighted_avg(bonds):
minimum_bond = min(bonds)
weighted_sum = 0.0
total_sum = 0.0
for entry in bonds:
weighted_sum += entry * exp(1 - (entry / minimum_bond) ** 6)
total_sum += exp(1 - (entry / minimum_bond) ** 6)
return weighted_sum / total_sum | 141,138 |
Get near neighbors of site with index n in structure.
Args:
structure (Structure): input structure.
n (integer): index of site in structure for which to determine
neighbors.
Returns:
sites (list of Site objects): near neighbors. | def get_nn(self, structure, n):
return [e['site'] for e in self.get_nn_info(structure, n)] | 141,146 |
Get weight associated with each near neighbor of site with
index n in structure.
Args:
structure (Structure): input structure.
n (integer): index of site for which to determine the weights.
Returns:
weights (list of floats): near-neighbor weights. | def get_weights_of_nn_sites(self, structure, n):
return [e['weight'] for e in self.get_nn_info(structure, n)] | 141,147 |
Get image location of all near neighbors of site with index n in
structure.
Args:
structure (Structure): input structure.
n (integer): index of site for which to determine the image
location of near neighbors.
Returns:
images (list of 3D integer array): image locations of
near neighbors. | def get_nn_images(self, structure, n):
return [e['image'] for e in self.get_nn_info(structure, n)] | 141,148 |
Get a listing of all neighbors for all sites in a structure
Args:
structure (Structure): Input structure
Return:
List of NN site information for each site in the structure. Each
entry has the same format as `get_nn_info` | def get_all_nn_info(self, structure):
return [self.get_nn_info(structure, n) for n in range(len(structure))] | 141,149 |
Obtain a StructureGraph object using this NearNeighbor
class. Requires the optional dependency networkx
(pip install networkx).
Args:
structure: Structure object.
decorate (bool): whether to annotate site properties
with order parameters using neighbors determined by
this NearNeighbor class
Returns: a pymatgen.analysis.graphs.BondedStructure object | def get_bonded_structure(self, structure, decorate=False):
# requires optional dependency which is why it's not a top-level import
from pymatgen.analysis.graphs import StructureGraph
if decorate:
# Decorate all sites in the underlying structure
# with site properties that provides information on the
# coordination number and coordination pattern based
# on the (current) structure of this graph.
order_parameters = [self.get_local_order_parameters(structure, n)
for n in range(len(structure))]
structure.add_site_property('order_parameters', order_parameters)
sg = StructureGraph.with_local_env_strategy(structure, self)
return sg | 141,154 |
Get the list of elements for a Site
Args:
site (Site): Site to assess
Returns:
[Element]: List of elements | def _get_elements(self, site):
try:
if isinstance(site.specie, Element):
return [site.specie]
return [Element(site.specie)]
except:
return site.species.elements | 141,159 |
Test whether a site contains elements in the target list
Args:
site (Site): Site to assess
targets ([Element]) List of elements
Returns:
(boolean) Whether this site contains a certain list of elements | def _is_in_targets(self, site, targets):
elems = self._get_elements(site)
for elem in elems:
if elem not in targets:
return False
return True | 141,160 |
Given Voronoi NNs, extract the NN info in the form needed by NearestNeighbors
Args:
structure (Structure): Structure being evaluated
nns ([dicts]): Nearest neighbor information for a structure
Returns:
(list of tuples (Site, array, float)): See nn_info | def _extract_nn_info(self, structure, nns):
# Get the target information
if self.targets is None:
targets = structure.composition.elements
else:
targets = self.targets
# Extract the NN info
siw = []
max_weight = max(nn[self.weight] for nn in nns.values())
for nstats in nns.values():
site = nstats['site']
if nstats[self.weight] > self.tol * max_weight \
and self._is_in_targets(site, targets):
nn_info = {'site': site,
'image': self._get_image(structure, site),
'weight': nstats[self.weight] / max_weight,
'site_index': self._get_original_site(
structure, site)}
if self.extra_nn_info:
# Add all the information about the site
poly_info = nstats
del poly_info['site']
nn_info['poly_info'] = poly_info
siw.append(nn_info)
return siw | 141,164 |
Use Jmol algorithm to determine bond length from atomic parameters
Args:
el1_sym: (str) symbol of atom 1
el2_sym: (str) symbol of atom 2
Returns: (float) max bond length | def get_max_bond_distance(self, el1_sym, el2_sym):
return sqrt(
(self.el_radius[el1_sym] + self.el_radius[el2_sym] + self.tol) ** 2) | 141,166 |
Obtain a MoleculeGraph object using this NearNeighbor
class. Requires the optional dependency networkx
(pip install networkx).
Args:
structure: Molecule object.
decorate (bool): whether to annotate site properties
with order parameters using neighbors determined by
this NearNeighbor class
Returns: a pymatgen.analysis.graphs.MoleculeGraph object | def get_bonded_structure(self, structure, decorate=False):
# requires optional dependency which is why it's not a top-level import
from pymatgen.analysis.graphs import MoleculeGraph
if decorate:
# Decorate all sites in the underlying structure
# with site properties that provides information on the
# coordination number and coordination pattern based
# on the (current) structure of this graph.
order_parameters = [self.get_local_order_parameters(structure, n)
for n in range(len(structure))]
structure.add_site_property('order_parameters', order_parameters)
mg = MoleculeGraph.with_local_env_strategy(structure, self)
return mg | 141,171 |
Return type of order parameter at the index provided and
represented by a short string.
Args:
index (int): index of order parameter for which type is
to be returned.
Returns:
str: OP type. | def get_type(self, index):
if index < 0 or index >= len(self._types):
raise ValueError("Index for getting order parameter type"
" out-of-bounds!")
return self._types[index] | 141,182 |
An internal method to get an integral between two bounds of a unit
semicircle. Used in algorithm to determine bond probabilities.
Args:
dist_bins: (float) list of all possible bond weights
idx: (float) index of starting bond weight
Returns:
(float) integral of portion of unit semicircle | def _semicircle_integral(dist_bins, idx):
r = 1
x1 = dist_bins[idx]
x2 = dist_bins[idx + 1]
if dist_bins[idx] == 1:
area1 = 0.25 * math.pi * r ** 2
else:
area1 = 0.5 * ((x1 * math.sqrt(r ** 2 - x1 ** 2)) + (
r ** 2 * math.atan(x1 / math.sqrt(r ** 2 - x1 ** 2))))
area2 = 0.5 * ((x2 * math.sqrt(r ** 2 - x2 ** 2)) + (
r ** 2 * math.atan(x2 / math.sqrt(r ** 2 - x2 ** 2))))
return (area1 - area2) / (0.25 * math.pi * r ** 2) | 141,192 |
An internal method to get a "default" covalent/element radius
Args:
site: (Site)
Returns:
Covalent radius of element on site, or Atomic radius if unavailable | def _get_default_radius(site):
try:
return CovalentRadius.radius[site.specie.symbol]
except:
return site.specie.atomic_radius | 141,193 |
An internal method to get the expected radius for a site with
oxidation state.
Args:
site: (Site)
Returns:
Oxidation-state dependent radius: ionic, covalent, or atomic.
Returns 0 if no oxidation state or appropriate radius is found. | def _get_radius(site):
if hasattr(site.specie, 'oxi_state'):
el = site.specie.element
oxi = site.specie.oxi_state
if oxi == 0:
return CrystalNN._get_default_radius(site)
elif oxi in el.ionic_radii:
return el.ionic_radii[oxi]
# e.g., oxi = 2.667, average together 2+ and 3+ radii
elif int(math.floor(oxi)) in el.ionic_radii and \
int(math.ceil(oxi)) in el.ionic_radii:
oxi_low = el.ionic_radii[int(math.floor(oxi))]
oxi_high = el.ionic_radii[int(math.ceil(oxi))]
x = oxi - int(math.floor(oxi))
return (1 - x) * oxi_low + x * oxi_high
elif oxi > 0 and el.average_cationic_radius > 0:
return el.average_cationic_radius
elif oxi < 0 and el.average_anionic_radius > 0:
return el.average_anionic_radius
else:
warnings.warn("CrystalNN: distance cutoffs set but no oxidation "
"states specified on sites! For better results, set "
"the site oxidation states in the structure.")
return 0 | 141,194 |
Given NNData, transforms data to the specified fingerprint length
Args:
nndata: (NNData)
length: (int) desired length of NNData | def transform_to_length(nndata, length):
if length is None:
return nndata
if length:
for cn in range(length):
if cn not in nndata.cn_weights:
nndata.cn_weights[cn] = 0
nndata.cn_nninfo[cn] = []
return nndata | 141,195 |
Initialise a CutOffDictNN according to a preset set of cut-offs.
Args:
preset (str): A preset name. The list of supported presets are:
- "vesta_2019": The distance cut-offs used by the VESTA
visualisation program.
Returns:
A CutOffDictNN using the preset cut-off dictionary. | def from_preset(preset):
if preset == 'vesta_2019':
cut_offs = loadfn(os.path.join(_directory, 'vesta_cutoffs.yaml'))
return CutOffDictNN(cut_off_dict=cut_offs)
else:
raise ValueError("Unrecognised preset: {}".format(preset)) | 141,197 |
Computes the volume and surface area of isolated void using Zeo++.
Useful to compute the volume and surface area of vacant site.
Args:
structure: pymatgen Structure containing vacancy
rad_dict(optional): Dictionary with short name of elements and their
radii.
chan_rad(optional): Minimum channel Radius.
probe_rad(optional): Probe radius for Monte Carlo sampling.
Returns:
volume: floating number representing the volume of void | def get_void_volume_surfarea(structure, rad_dict=None, chan_rad=0.3,
probe_rad=0.1):
with ScratchDir('.'):
name = "temp_zeo"
zeo_inp_filename = name + ".cssr"
ZeoCssr(structure).write_file(zeo_inp_filename)
rad_file = None
if rad_dict:
rad_file = name + ".rad"
with open(rad_file, 'w') as fp:
for el in rad_dict.keys():
fp.write("{0} {1}".format(el, rad_dict[el]))
atmnet = AtomNetwork.read_from_CSSR(zeo_inp_filename, True, rad_file)
vol_str = volume(atmnet, 0.3, probe_rad, 10000)
sa_str = surface_area(atmnet, 0.3, probe_rad, 10000)
vol = None
sa = None
for line in vol_str.split("\n"):
if "Number_of_pockets" in line:
fields = line.split()
if float(fields[1]) > 1:
vol = -1.0
break
if float(fields[1]) == 0:
vol = -1.0
break
vol = float(fields[3])
for line in sa_str.split("\n"):
if "Number_of_pockets" in line:
fields = line.split()
if float(fields[1]) > 1:
# raise ValueError("Too many voids")
sa = -1.0
break
if float(fields[1]) == 0:
sa = -1.0
break
sa = float(fields[3])
if not vol or not sa:
raise ValueError("Error in zeo++ output stream")
return vol, sa | 141,206 |
Reads a string representation to a ZeoCssr object.
Args:
string: A string representation of a ZeoCSSR.
Returns:
ZeoCssr object. | def from_string(string):
lines = string.split("\n")
toks = lines[0].split()
lengths = [float(i) for i in toks]
toks = lines[1].split()
angles = [float(i) for i in toks[0:3]]
# Zeo++ takes x-axis along a and pymatgen takes z-axis along c
a = lengths.pop(-1)
lengths.insert(0, a)
alpha = angles.pop(-1)
angles.insert(0, alpha)
latt = Lattice.from_lengths_and_angles(lengths, angles)
sp = []
coords = []
chrg = []
for l in lines[4:]:
m = re.match(r'\d+\s+(\w+)\s+([0-9\-\.]+)\s+([0-9\-\.]+)\s+' +
r'([0-9\-\.]+)\s+(?:0\s+){8}([0-9\-\.]+)', l.strip())
if m:
sp.append(m.group(1))
# coords.append([float(m.group(i)) for i in xrange(2, 5)])
# Zeo++ takes x-axis along a and pymatgen takes z-axis along c
coords.append([float(m.group(i)) for i in [3, 4, 2]])
chrg.append(m.group(5))
return ZeoCssr(
Structure(latt, sp, coords, site_properties={'charge': chrg})
) | 141,208 |
Creates Zeo++ Voronoi XYZ object from a string.
from_string method of XYZ class is being redefined.
Args:
contents: String representing Zeo++ Voronoi XYZ file.
Returns:
ZeoVoronoiXYZ object | def from_string(contents):
lines = contents.split("\n")
num_sites = int(lines[0])
coords = []
sp = []
prop = []
coord_patt = re.compile(
r"(\w+)\s+([0-9\-\.]+)\s+([0-9\-\.]+)\s+([0-9\-\.]+)\s+" +
r"([0-9\-\.]+)"
)
for i in range(2, 2 + num_sites):
m = coord_patt.search(lines[i])
if m:
sp.append(m.group(1)) # this is 1-indexed
# coords.append(map(float, m.groups()[1:4])) # this is 0-indexed
coords.append([float(j)
for j in [m.group(i) for i in [3, 4, 2]]])
prop.append(float(m.group(5)))
return ZeoVoronoiXYZ(
Molecule(sp, coords, site_properties={'voronoi_radius': prop})
) | 141,209 |
Set the maxium allowed memory.
Args:
total: The total memory. Integer. Unit: MBytes. If set to None,
this parameter will be neglected.
static: The static memory. Integer. Unit MBytes. If set to None,
this parameterwill be neglected. | def set_memory(self, total=None, static=None):
if total:
self.params["rem"]["mem_total"] = total
if static:
self.params["rem"]["mem_static"] = static | 141,217 |
Set algorithm used for converging SCF and max number of SCF iterations.
Args:
algorithm: The algorithm used for converging SCF. (str)
iterations: The max number of SCF iterations. (Integer) | def set_scf_algorithm_and_iterations(self, algorithm="diis",
iterations=50):
available_algorithms = {"diis", "dm", "diis_dm", "diis_gdm", "gdm",
"rca", "rca_diis", "roothaan"}
if algorithm.lower() not in available_algorithms:
raise ValueError("Algorithm " + algorithm +
" is not available in QChem")
self.params["rem"]["scf_algorithm"] = algorithm.lower()
self.params["rem"]["max_scf_cycles"] = iterations | 141,218 |
Set the grid for DFT numerical integrations.
Args:
radical_points: Radical points. (Integer)
angular_points: Angular points. (Integer)
grid_type: The type of of the grid. There are two standard grids:
SG-1 and SG-0. The other two supported grids are "Lebedev" and
"Gauss-Legendre" | def set_dft_grid(self, radical_points=128, angular_points=302,
grid_type="Lebedev"):
available_lebedev_angular_points = {6, 18, 26, 38, 50, 74, 86, 110, 146,
170, 194, 230, 266, 302, 350, 434,
590, 770, 974, 1202, 1454, 1730,
2030, 2354, 2702, 3074, 3470, 3890,
4334, 4802, 5294}
if grid_type.lower() == "sg-0":
self.params["rem"]["xc_grid"] = 0
elif grid_type.lower() == "sg-1":
self.params["rem"]["xc_grid"] = 1
elif grid_type.lower() == "lebedev":
if angular_points not in available_lebedev_angular_points:
raise ValueError(str(angular_points) + " is not a valid "
"Lebedev angular points number")
self.params["rem"]["xc_grid"] = "{rp:06d}{ap:06d}".format(
rp=radical_points, ap=angular_points)
elif grid_type.lower() == "gauss-legendre":
self.params["rem"]["xc_grid"] = "-{rp:06d}{ap:06d}".format(
rp=radical_points, ap=angular_points)
else:
raise ValueError("Grid type " + grid_type + " is not supported "
"currently") | 141,219 |
Set initial guess method to be used for SCF
Args:
guess: The initial guess method. (str) | def set_scf_initial_guess(self, guess="SAD"):
availabel_guesses = {"core", "sad", "gwh", "read", "fragmo"}
if guess.lower() not in availabel_guesses:
raise ValueError("The guess method " + guess + " is not supported "
"yet")
self.params["rem"]["scf_guess"] = guess.lower() | 141,220 |
Set the solvent model to PCM. Default parameters are trying to comply to
gaussian default value
Args:
pcm_params (dict): The parameters of "$pcm" section.
solvent_key (str): for versions < 4.2 the section name is "pcm_solvent"
solvent_params (dict): The parameters of solvent_key section
radii_force_field (str): The force fied used to set the solute
radii. Default to UFF. | def use_pcm(self, pcm_params=None, solvent_key="solvent", solvent_params=None,
radii_force_field=None):
self.params["pcm"] = dict()
self.params[solvent_key] = dict()
default_pcm_params = {"Theory": "SSVPE",
"vdwScale": 1.1,
"Radii": "UFF"}
if not solvent_params:
solvent_params = {"Dielectric": 78.3553}
if pcm_params:
for k, v in pcm_params.items():
self.params["pcm"][k.lower()] = v.lower() \
if isinstance(v, str) else v
for k, v in default_pcm_params.items():
if k.lower() not in self.params["pcm"].keys():
self.params["pcm"][k.lower()] = v.lower() \
if isinstance(v, str) else v
for k, v in solvent_params.items():
self.params[solvent_key][k.lower()] = v.lower() \
if isinstance(v, str) else copy.deepcopy(v)
self.params["rem"]["solvent_method"] = "pcm"
if radii_force_field:
self.params["pcm"]["radii"] = "bondi"
self.params["rem"]["force_fied"] = radii_force_field.lower() | 141,223 |
Creates QcInput from a string.
Args:
contents: String representing a QChem input file.
Returns:
QcInput object | def from_string(cls, contents):
mol = None
charge = None
spin_multiplicity = None
params = dict()
lines = contents.split('\n')
parse_section = False
section_name = None
section_text = []
ghost_atoms = None
for line_num, line in enumerate(lines):
l = line.strip().lower()
if len(l) == 0:
continue
if (not parse_section) and (l == "$end" or not l.startswith("$")):
raise ValueError("Format error, parsing failed")
if parse_section and l != "$end":
section_text.append(line)
if l.startswith("$") and not parse_section:
parse_section = True
section_name = l[1:]
available_sections = ["comment", "molecule", "rem"] + \
sorted(list(cls.optional_keywords_list))
if section_name not in available_sections:
raise ValueError("Unrecognized keyword " + line.strip() +
" at line " + str(line_num))
if section_name in params:
raise ValueError("duplicated keyword " + line.strip() +
"at line " + str(line_num))
if parse_section and l == "$end":
func_name = "_parse_" + section_name
if func_name not in QcTask.__dict__:
raise Exception(func_name + " is not implemented yet, "
"please implement it")
parse_func = QcTask.__dict__[func_name].__get__(None, QcTask)
if section_name == "molecule":
mol, charge, spin_multiplicity, ghost_atoms = parse_func(section_text)
else:
d = parse_func(section_text)
params[section_name] = d
parse_section = False
section_name = None
section_text = []
if parse_section:
raise ValueError("Format error. " + section_name + " is not "
"terminated")
jobtype = params["rem"]["jobtype"]
title = params.get("comment", None)
exchange = params["rem"].get("exchange", "hf")
method = params["rem"].get("method", None)
correlation = params["rem"].get("correlation", None)
basis_set = params["rem"]["basis"]
aux_basis_set = params["rem"].get("aux_basis", None)
ecp = params["rem"].get("ecp", None)
optional_params = None
op_keys = set(params.keys()) - {"comment", "rem"}
if len(op_keys) > 0:
optional_params = dict()
for k in op_keys:
optional_params[k] = params[k]
return QcTask(molecule=mol, charge=charge,
spin_multiplicity=spin_multiplicity,
jobtype=jobtype, title=title,
exchange=exchange, correlation=correlation,
basis_set=basis_set, aux_basis_set=aux_basis_set,
ecp=ecp, rem_params=params["rem"],
optional_params=optional_params,
ghost_atoms=ghost_atoms,
method=method) | 141,236 |
Sanitize our input structure by removing magnetic information
and making primitive.
Args:
input_structure: Structure
Returns: Structure | def _sanitize_input_structure(input_structure):
input_structure = input_structure.copy()
# remove any annotated spin
input_structure.remove_spin()
# sanitize input structure: first make primitive ...
input_structure = input_structure.get_primitive_structure(use_site_props=False)
# ... and strip out existing magmoms, which can cause conflicts
# with later transformations otherwise since sites would end up
# with both magmom site properties and Specie spins defined
if "magmom" in input_structure.site_properties:
input_structure.remove_site_property("magmom")
return input_structure | 141,266 |
Parse a string with a symbol to extract a string representing an element.
Args:
sym (str): A symbol to be parsed.
Returns:
A string with the parsed symbol. None if no parsing was possible. | def _parse_symbol(self, sym):
# Common representations for elements/water in cif files
# TODO: fix inconsistent handling of water
special = {"Hw": "H", "Ow": "O", "Wat": "O",
"wat": "O", "OH": "", "OH2": "", "NO3": "N"}
parsed_sym = None
# try with special symbols, otherwise check the first two letters,
# then the first letter alone. If everything fails try extracting the
# first letters.
m_sp = re.match("|".join(special.keys()), sym)
if m_sp:
parsed_sym = special[m_sp.group()]
elif Element.is_valid_symbol(sym[:2].title()):
parsed_sym = sym[:2].title()
elif Element.is_valid_symbol(sym[0].upper()):
parsed_sym = sym[0].upper()
else:
m = re.match(r"w?[A-Z][a-z]*", sym)
if m:
parsed_sym = m.group()
if parsed_sym is not None and (m_sp or not re.match(r"{}\d*".format(parsed_sym), sym)):
msg = "{} parsed as {}".format(sym, parsed_sym)
warnings.warn(msg)
self.errors.append(msg)
return parsed_sym | 141,289 |
Return list of structures in CIF file. primitive boolean sets whether a
conventional cell structure or primitive cell structure is returned.
Args:
primitive (bool): Set to False to return conventional unit cells.
Defaults to True. With magnetic CIF files, will return primitive
magnetic cell which may be larger than nuclear primitive cell.
Returns:
List of Structures. | def get_structures(self, primitive=True):
structures = []
for d in self._cif.data.values():
try:
s = self._get_structure(d, primitive)
if s:
structures.append(s)
except (KeyError, ValueError) as exc:
# Warn the user (Errors should never pass silently)
# A user reported a problem with cif files produced by Avogadro
# in which the atomic coordinates are in Cartesian coords.
self.errors.append(str(exc))
warnings.warn(str(exc))
if self.errors:
warnings.warn("Issues encountered while parsing CIF:")
for error in self.errors:
warnings.warn(error)
if len(structures) == 0:
raise ValueError("Invalid cif file with no structures!")
return structures | 141,291 |
A wrapper around CifFile to write CIF files from pymatgen structures.
Args:
struct (Structure): structure to write
symprec (float): If not none, finds the symmetry of the structure
and writes the cif with symmetry information. Passes symprec
to the SpacegroupAnalyzer
write_magmoms (bool): If True, will write magCIF file. Incompatible
with symprec | def __init__(self, struct, symprec=None, write_magmoms=False):
if write_magmoms and symprec:
warnings.warn(
"Magnetic symmetry cannot currently be detected by pymatgen,"
"disabling symmetry detection.")
symprec = None
format_str = "{:.8f}"
block = OrderedDict()
loops = []
spacegroup = ("P 1", 1)
if symprec is not None:
sf = SpacegroupAnalyzer(struct, symprec)
spacegroup = (sf.get_space_group_symbol(),
sf.get_space_group_number())
# Needs the refined struture when using symprec. This converts
# primitive to conventional structures, the standard for CIF.
struct = sf.get_refined_structure()
latt = struct.lattice
comp = struct.composition
no_oxi_comp = comp.element_composition
block["_symmetry_space_group_name_H-M"] = spacegroup[0]
for cell_attr in ['a', 'b', 'c']:
block["_cell_length_" + cell_attr] = format_str.format(
getattr(latt, cell_attr))
for cell_attr in ['alpha', 'beta', 'gamma']:
block["_cell_angle_" + cell_attr] = format_str.format(
getattr(latt, cell_attr))
block["_symmetry_Int_Tables_number"] = spacegroup[1]
block["_chemical_formula_structural"] = no_oxi_comp.reduced_formula
block["_chemical_formula_sum"] = no_oxi_comp.formula
block["_cell_volume"] = "%.8f" % latt.volume
reduced_comp, fu = no_oxi_comp.get_reduced_composition_and_factor()
block["_cell_formula_units_Z"] = str(int(fu))
if symprec is None:
block["_symmetry_equiv_pos_site_id"] = ["1"]
block["_symmetry_equiv_pos_as_xyz"] = ["x, y, z"]
else:
sf = SpacegroupAnalyzer(struct, symprec)
symmops = []
for op in sf.get_symmetry_operations():
v = op.translation_vector
symmops.append(SymmOp.from_rotation_and_translation(
op.rotation_matrix, v))
ops = [op.as_xyz_string() for op in symmops]
block["_symmetry_equiv_pos_site_id"] = \
["%d" % i for i in range(1, len(ops) + 1)]
block["_symmetry_equiv_pos_as_xyz"] = ops
loops.append(["_symmetry_equiv_pos_site_id",
"_symmetry_equiv_pos_as_xyz"])
try:
symbol_to_oxinum = OrderedDict([
(el.__str__(),
float(el.oxi_state))
for el in sorted(comp.elements)])
block["_atom_type_symbol"] = symbol_to_oxinum.keys()
block["_atom_type_oxidation_number"] = symbol_to_oxinum.values()
loops.append(["_atom_type_symbol", "_atom_type_oxidation_number"])
except (TypeError, AttributeError):
symbol_to_oxinum = OrderedDict([(el.symbol, 0) for el in
sorted(comp.elements)])
atom_site_type_symbol = []
atom_site_symmetry_multiplicity = []
atom_site_fract_x = []
atom_site_fract_y = []
atom_site_fract_z = []
atom_site_label = []
atom_site_occupancy = []
atom_site_moment_label = []
atom_site_moment_crystalaxis_x = []
atom_site_moment_crystalaxis_y = []
atom_site_moment_crystalaxis_z = []
count = 1
if symprec is None:
for site in struct:
for sp, occu in sorted(site.species.items()):
atom_site_type_symbol.append(sp.__str__())
atom_site_symmetry_multiplicity.append("1")
atom_site_fract_x.append("{0:f}".format(site.a))
atom_site_fract_y.append("{0:f}".format(site.b))
atom_site_fract_z.append("{0:f}".format(site.c))
atom_site_label.append("{}{}".format(sp.symbol, count))
atom_site_occupancy.append(occu.__str__())
magmom = Magmom(
site.properties.get('magmom', getattr(sp, 'spin', 0)))
if write_magmoms and abs(magmom) > 0:
moment = Magmom.get_moment_relative_to_crystal_axes(
magmom, latt)
atom_site_moment_label.append(
"{}{}".format(sp.symbol, count))
atom_site_moment_crystalaxis_x.append("%.5f" % moment[0])
atom_site_moment_crystalaxis_y.append("%.5f" % moment[1])
atom_site_moment_crystalaxis_z.append("%.5f" % moment[2])
count += 1
else:
# The following just presents a deterministic ordering.
unique_sites = [
(sorted(sites, key=lambda s: tuple([abs(x) for x in
s.frac_coords]))[0],
len(sites))
for sites in sf.get_symmetrized_structure().equivalent_sites
]
for site, mult in sorted(
unique_sites,
key=lambda t: (t[0].species.average_electroneg,
-t[1], t[0].a, t[0].b, t[0].c)):
for sp, occu in site.species.items():
atom_site_type_symbol.append(sp.__str__())
atom_site_symmetry_multiplicity.append("%d" % mult)
atom_site_fract_x.append("{0:f}".format(site.a))
atom_site_fract_y.append("{0:f}".format(site.b))
atom_site_fract_z.append("{0:f}".format(site.c))
atom_site_label.append("{}{}".format(sp.symbol, count))
atom_site_occupancy.append(occu.__str__())
count += 1
block["_atom_site_type_symbol"] = atom_site_type_symbol
block["_atom_site_label"] = atom_site_label
block["_atom_site_symmetry_multiplicity"] = \
atom_site_symmetry_multiplicity
block["_atom_site_fract_x"] = atom_site_fract_x
block["_atom_site_fract_y"] = atom_site_fract_y
block["_atom_site_fract_z"] = atom_site_fract_z
block["_atom_site_occupancy"] = atom_site_occupancy
loops.append(["_atom_site_type_symbol",
"_atom_site_label",
"_atom_site_symmetry_multiplicity",
"_atom_site_fract_x",
"_atom_site_fract_y",
"_atom_site_fract_z",
"_atom_site_occupancy"])
if write_magmoms:
block["_atom_site_moment_label"] = atom_site_moment_label
block[
"_atom_site_moment_crystalaxis_x"] = atom_site_moment_crystalaxis_x
block[
"_atom_site_moment_crystalaxis_y"] = atom_site_moment_crystalaxis_y
block[
"_atom_site_moment_crystalaxis_z"] = atom_site_moment_crystalaxis_z
loops.append(["_atom_site_moment_label",
"_atom_site_moment_crystalaxis_x",
"_atom_site_moment_crystalaxis_y",
"_atom_site_moment_crystalaxis_z"])
d = OrderedDict()
d[comp.reduced_formula] = CifBlock(block, loops, comp.reduced_formula)
self._cf = CifFile(d) | 141,294 |
Converts a list of SlabEntry to an appropriate dictionary. It is
assumed that if there is no adsorbate, then it is a clean SlabEntry
and that adsorbed SlabEntry has the clean_entry parameter set.
Args:
all_slab_entries (list): List of SlabEntry objects
Returns:
(dict): Dictionary of SlabEntry with the Miller index as the main
key to a dictionary with a clean SlabEntry as the key to a
list of adsorbed SlabEntry. | def entry_dict_from_list(all_slab_entries):
entry_dict = {}
for entry in all_slab_entries:
hkl = tuple(entry.miller_index)
if hkl not in entry_dict.keys():
entry_dict[hkl] = {}
if entry.clean_entry:
clean = entry.clean_entry
else:
clean = entry
if clean not in entry_dict[hkl].keys():
entry_dict[hkl][clean] = []
if entry.adsorbates:
entry_dict[hkl][clean].append(entry)
return entry_dict | 141,295 |
Uses dot product of numpy array to sub chemical potentials
into the surface grand potential. This is much faster
than using the subs function in sympy.
Args:
gamma_dict (dict): Surface grand potential equation
as a coefficient dictionary
chempots (dict): Dictionary assigning each chemical
potential (key) in gamma a value
Returns:
Surface energy as a float | def sub_chempots(gamma_dict, chempots):
coeffs = [gamma_dict[k] for k in gamma_dict.keys()]
chempot_vals = []
for k in gamma_dict.keys():
if k not in chempots.keys():
chempot_vals.append(k)
elif k == 1:
chempot_vals.append(1)
else:
chempot_vals.append(chempots[k])
return np.dot(coeffs, chempot_vals) | 141,296 |
Returns the adsorption energy or Gibb's binding energy
of an adsorbate on a surface
Args:
eads (bool): Whether to calculate the adsorption energy
(True) or the binding energy (False) which is just
adsorption energy normalized by number of adsorbates. | def gibbs_binding_energy(self, eads=False):
n = self.get_unit_primitive_area
Nads = self.Nads_in_slab
BE = (self.energy - n * self.clean_entry.energy) / Nads - \
sum([ads.energy_per_atom for ads in self.adsorbates])
return BE * Nads if eads else BE | 141,299 |
Helper function to assign each facet a unique color using a dictionary.
Args:
alpha (float): Degree of transparency
return (dict): Dictionary of colors (r,g,b,a) when plotting surface
energy stability. The keys are individual surface entries where
clean surfaces have a solid color while the corresponding adsorbed
surface will be transparent. | def color_palette_dict(self, alpha=0.35):
color_dict = {}
for hkl in self.all_slab_entries.keys():
rgb_indices = [0, 1, 2]
color = [0, 0, 0, 1]
random.shuffle(rgb_indices)
for i, ind in enumerate(rgb_indices):
if i == 2:
break
color[ind] = np.random.uniform(0, 1)
# Get the clean (solid) colors first
clean_list = np.linspace(0, 1, len(self.all_slab_entries[hkl]))
for i, clean in enumerate(self.all_slab_entries[hkl].keys()):
c = copy.copy(color)
c[rgb_indices[2]] = clean_list[i]
color_dict[clean] = c
# Now get the adsorbed (transparent) colors
for ads_entry in self.all_slab_entries[hkl][clean]:
c_ads = copy.copy(c)
c_ads[3] = alpha
color_dict[ads_entry] = c_ads
return color_dict | 141,315 |
Plots the binding energy energy as a function of monolayers (ML), i.e.
the fractional area adsorbate density for all facets. For each
facet at a specific monlayer, only plot the lowest binding energy.
Args:
plot_eads (bool): Option to plot the adsorption energy (binding
energy multiplied by number of adsorbates) instead.
Returns:
(Plot): Plot of binding energy vs monolayer for all facets. | def monolayer_vs_BE(self, plot_eads=False):
plt = pretty_plot(width=8, height=7)
for hkl in self.all_slab_entries.keys():
ml_be_dict = {}
for clean_entry in self.all_slab_entries[hkl].keys():
if self.all_slab_entries[hkl][clean_entry]:
for ads_entry in self.all_slab_entries[hkl][clean_entry]:
if ads_entry.get_monolayer not in ml_be_dict.keys():
ml_be_dict[ads_entry.get_monolayer] = 1000
be = ads_entry.gibbs_binding_energy(eads=plot_eads)
if be < ml_be_dict[ads_entry.get_monolayer]:
ml_be_dict[ads_entry.get_monolayer] = be
# sort the binding energies and monolayers
# in order to properly draw a line plot
vals = sorted(ml_be_dict.items())
monolayers, BEs = zip(*vals)
plt.plot(monolayers, BEs, '-o',
c=self.color_dict[clean_entry], label=hkl)
adsorbates = tuple(ads_entry.ads_entries_dict.keys())
plt.xlabel(" %s" * len(adsorbates) % adsorbates + " Coverage (ML)")
plt.ylabel("Adsorption Energy (eV)") if plot_eads \
else plt.ylabel("Binding Energy (eV)")
plt.legend()
plt.tight_layout()
return plt | 141,318 |
Helper function to a chempot plot look nicer.
Args:
plt (Plot) Plot to add things to.
xrange (list): xlim parameter
ref_el (str): Element of the referenced chempot.
axes(axes) Axes object from matplotlib
pad (float) For tight layout
rect (list): For tight layout
ylim (ylim parameter):
return (Plot): Modified plot with addons.
return (Plot): Modified plot with addons. | def chempot_plot_addons(self, plt, xrange, ref_el, axes, pad=2.4,
rect=[-0.047, 0, 0.84, 1], ylim=[]):
# Make the figure look nice
plt.legend(bbox_to_anchor=(1.01, 1), loc=2, borderaxespad=0.)
axes.set_xlabel(r"Chemical potential $\Delta\mu_{%s}$ (eV)" % (ref_el))
ylim = ylim if ylim else axes.get_ylim()
plt.xticks(rotation=60)
plt.ylim(ylim)
xlim = axes.get_xlim()
plt.xlim(xlim)
plt.tight_layout(pad=pad, rect=rect)
plt.plot([xrange[0], xrange[0]], ylim, '--k')
plt.plot([xrange[1], xrange[1]], ylim, '--k')
xy = [np.mean([xrange[1]]), np.mean(ylim)]
plt.annotate("%s-rich" % (ref_el), xy=xy,
xytext=xy, rotation=90, fontsize=17)
xy = [np.mean([xlim[0]]), np.mean(ylim)]
plt.annotate("%s-poor" % (ref_el), xy=xy,
xytext=xy, rotation=90, fontsize=17)
return plt | 141,319 |
Returns a plot of the local potential (eV) vs the
position along the c axis of the slab model (Ang)
Args:
label_energies (bool): Whether to label relevant energy
quantities such as the work function, Fermi energy,
vacuum locpot, bulk-like locpot
plt (plt): Matplotlib pylab object
label_fontsize (float): Fontsize of labels
Returns plt of the locpot vs c axis | def get_locpot_along_slab_plot(self, label_energies=True,
plt=None, label_fontsize=10):
plt = pretty_plot(width=6, height=4) if not plt else plt
# plot the raw locpot signal along c
plt.plot(self.along_c, self.locpot_along_c, 'b--')
# Get the local averaged signal of the locpot along c
xg, yg = [], []
for i, p in enumerate(self.locpot_along_c):
# average signal is just the bulk-like potential when in the slab region
in_slab = False
for r in self.slab_regions:
if r[0] <= self.along_c[i] <= r[1]:
in_slab = True
if len(self.slab_regions) > 1:
if self.along_c[i] >= self.slab_regions[1][1]:
in_slab = True
if self.along_c[i] <= self.slab_regions[0][0]:
in_slab = True
if in_slab:
yg.append(self.ave_bulk_p)
xg.append(self.along_c[i])
elif p < self.ave_bulk_p:
yg.append(self.ave_bulk_p)
xg.append(self.along_c[i])
else:
yg.append(p)
xg.append(self.along_c[i])
xg, yg = zip(*sorted(zip(xg, yg)))
plt.plot(xg, yg, 'r', linewidth=2.5, zorder=-1)
# make it look nice
if label_energies:
plt = self.get_labels(plt, label_fontsize=label_fontsize)
plt.xlim([0, 1])
plt.ylim([min(self.locpot_along_c),
self.vacuum_locpot+self.ave_locpot*0.2])
plt.xlabel(r"Fractional coordinates ($\hat{c}$)", fontsize=25)
plt.xticks(fontsize=15, rotation=45)
plt.ylabel(r"Potential (eV)", fontsize=25)
plt.yticks(fontsize=15)
return plt | 141,324 |
Handles the optional labelling of the plot with relevant quantities
Args:
plt (plt): Plot of the locpot vs c axis
label_fontsize (float): Fontsize of labels
Returns Labelled plt | def get_labels(self, plt, label_fontsize=10):
# center of vacuum and bulk region
if len(self.slab_regions) > 1:
label_in_vac = (self.slab_regions[0][1] + self.slab_regions[1][0])/2
if abs(self.slab_regions[0][0]-self.slab_regions[0][1]) > \
abs(self.slab_regions[1][0]-self.slab_regions[1][1]):
label_in_bulk = self.slab_regions[0][1]/2
else:
label_in_bulk = (self.slab_regions[1][1] + self.slab_regions[1][0]) / 2
else:
label_in_bulk = (self.slab_regions[0][0] + self.slab_regions[0][1])/2
if self.slab_regions[0][0] > 1-self.slab_regions[0][1]:
label_in_vac = self.slab_regions[0][0] / 2
else:
label_in_vac = (1 + self.slab_regions[0][1]) / 2
plt.plot([0, 1], [self.vacuum_locpot]*2, 'b--', zorder=-5, linewidth=1)
xy = [label_in_bulk, self.vacuum_locpot+self.ave_locpot*0.05]
plt.annotate(r"$V_{vac}=%.2f$" %(self.vacuum_locpot), xy=xy,
xytext=xy, color='b', fontsize=label_fontsize)
# label the fermi energy
plt.plot([0, 1], [self.efermi]*2, 'g--',
zorder=-5, linewidth=3)
xy = [label_in_bulk, self.efermi+self.ave_locpot*0.05]
plt.annotate(r"$E_F=%.2f$" %(self.efermi), xytext=xy,
xy=xy, fontsize=label_fontsize, color='g')
# label the bulk-like locpot
plt.plot([0, 1], [self.ave_bulk_p]*2, 'r--', linewidth=1., zorder=-1)
xy = [label_in_vac, self.ave_bulk_p + self.ave_locpot * 0.05]
plt.annotate(r"$V^{interior}_{slab}=%.2f$" % (self.ave_bulk_p),
xy=xy, xytext=xy, color='r', fontsize=label_fontsize)
# label the work function as a barrier
plt.plot([label_in_vac]*2, [self.efermi, self.vacuum_locpot],
'k--', zorder=-5, linewidth=2)
xy = [label_in_vac, self.efermi + self.ave_locpot * 0.05]
plt.annotate(r"$\Phi=%.2f$" %(self.work_function),
xy=xy, xytext=xy, fontsize=label_fontsize)
return plt | 141,325 |
Average voltage for path satisfying between a min and max voltage.
Args:
min_voltage (float): The minimum allowable voltage for a given
step.
max_voltage (float): The maximum allowable voltage allowable for a
given step.
Returns:
Average voltage in V across the insertion path (a subset of the
path can be chosen by the optional arguments) | def get_average_voltage(self, min_voltage=None, max_voltage=None):
pairs_in_range = self._select_in_voltage_range(min_voltage,
max_voltage)
if len(pairs_in_range) == 0:
return 0
total_cap_in_range = sum([p.mAh for p in pairs_in_range])
total_edens_in_range = sum([p.mAh * p.voltage for p in pairs_in_range])
return total_edens_in_range / total_cap_in_range | 141,336 |
Selects VoltagePairs within a certain voltage range.
Args:
min_voltage (float): The minimum allowable voltage for a given
step.
max_voltage (float): The maximum allowable voltage allowable for a
given step.
Returns:
A list of VoltagePair objects | def _select_in_voltage_range(self, min_voltage=None, max_voltage=None):
min_voltage = min_voltage if min_voltage is not None \
else self.min_voltage
max_voltage = max_voltage if max_voltage is not None \
else self.max_voltage
return list(filter(lambda p: min_voltage <= p.voltage <= max_voltage,
self.voltage_pairs)) | 141,341 |
Initializes with pymatgen Molecule or OpenBabel"s OBMol.
Args:
mol: pymatgen's Molecule or OpenBabel OBMol | def __init__(self, mol):
if isinstance(mol, Molecule):
if not mol.is_ordered:
raise ValueError("OpenBabel Molecule only supports ordered "
"molecules.")
# For some reason, manually adding atoms does not seem to create
# the correct OBMol representation to do things like force field
# optimization. So we go through the indirect route of creating
# an XYZ file and reading in that file.
obmol = ob.OBMol()
obmol.BeginModify()
for site in mol:
coords = [c for c in site.coords]
atomno = site.specie.Z
obatom = ob.OBAtom()
obatom.thisown = 0
obatom.SetAtomicNum(atomno)
obatom.SetVector(*coords)
obmol.AddAtom(obatom)
del obatom
obmol.ConnectTheDots()
obmol.PerceiveBondOrders()
obmol.SetTotalSpinMultiplicity(mol.spin_multiplicity)
obmol.SetTotalCharge(mol.charge)
obmol.Center()
obmol.Kekulize()
obmol.EndModify()
self._obmol = obmol
elif isinstance(mol, ob.OBMol):
self._obmol = mol | 141,342 |
A wrapper to pybel's localopt method to optimize a Molecule.
Args:
forcefield: Default is mmff94. Options are 'gaff', 'ghemical',
'mmff94', 'mmff94s', and 'uff'.
steps: Default is 500. | def localopt(self, forcefield='mmff94', steps=500):
pbmol = pb.Molecule(self._obmol)
pbmol.localopt(forcefield=forcefield, steps=steps)
self._obmol = pbmol.OBMol | 141,344 |
Remove a bond from an openbabel molecule
Args:
idx1: The atom index of one of the atoms participating the in bond
idx2: The atom index of the other atom participating in the bond | def remove_bond(self, idx1, idx2):
for obbond in ob.OBMolBondIter(self._obmol):
if (obbond.GetBeginAtomIdx() == idx1 and obbond.GetEndAtomIdx() == idx2) or (obbond.GetBeginAtomIdx() == idx2 and obbond.GetEndAtomIdx() == idx1):
self._obmol.DeleteBond(obbond) | 141,346 |
Uses OpenBabel to output all supported formats.
Args:
filename: Filename of file to output
file_format: String specifying any OpenBabel supported formats. | def write_file(self, filename, file_format="xyz"):
mol = pb.Molecule(self._obmol)
return mol.write(file_format, filename, overwrite=True) | 141,350 |
Uses OpenBabel to read a molecule from a file in all supported formats.
Args:
filename: Filename of input file
file_format: String specifying any OpenBabel supported formats.
Returns:
BabelMolAdaptor object | def from_file(filename, file_format="xyz"):
mols = list(pb.readfile(str(file_format), str(filename)))
return BabelMolAdaptor(mols[0].OBMol) | 141,351 |
Uses OpenBabel to read a molecule from a string in all supported
formats.
Args:
string_data: String containing molecule data.
file_format: String specifying any OpenBabel supported formats.
Returns:
BabelMolAdaptor object | def from_string(string_data, file_format="xyz"):
mols = pb.readstring(str(file_format), str(string_data))
return BabelMolAdaptor(mols.OBMol) | 141,352 |
Initialize a `Structure` object from a string with data in XSF format.
Args:
input_string: String with the structure in XSF format.
See http://www.xcrysden.org/doc/XSF.html
cls_: Structure class to be created. default: pymatgen structure | def from_string(cls, input_string, cls_=None):
# CRYSTAL see (1)
# these are primitive lattice vectors (in Angstroms)
# PRIMVEC
# 0.0000000 2.7100000 2.7100000 see (2)
# 2.7100000 0.0000000 2.7100000
# 2.7100000 2.7100000 0.0000000
# these are conventional lattice vectors (in Angstroms)
# CONVVEC
# 5.4200000 0.0000000 0.0000000 see (3)
# 0.0000000 5.4200000 0.0000000
# 0.0000000 0.0000000 5.4200000
# these are atomic coordinates in a primitive unit cell (in Angstroms)
# PRIMCOORD
# 2 1 see (4)
# 16 0.0000000 0.0000000 0.0000000 see (5)
# 30 1.3550000 -1.3550000 -1.3550000
lattice, coords, species = [], [], []
lines = input_string.splitlines()
for i in range(len(lines)):
if "PRIMVEC" in lines[i]:
for j in range(i+1, i+4):
lattice.append([float(c) for c in lines[j].split()])
if "PRIMCOORD" in lines[i]:
num_sites = int(lines[i+1].split()[0])
for j in range(i+2, i+2+num_sites):
tokens = lines[j].split()
species.append(int(tokens[0]))
coords.append([float(j) for j in tokens[1:4]])
break
else:
raise ValueError("Invalid XSF data")
if cls_ is None:
from pymatgen.core.structure import Structure
cls_ = Structure
s = cls_(lattice, species, coords, coords_are_cartesian=True)
return XSF(s) | 141,360 |
Set the values of the ABINIT variables in the input files of the nodes
Args:
task_class: If not None, only the input files of the tasks belonging
to class `task_class` are modified.
Example:
flow.walknset_vars(ecut=10, kptopt=4) | def walknset_vars(self, task_class=None, *args, **kwargs):
def change_task(task):
if task_class is not None and task.__class__ is not task_class: return False
return True
if self.is_work:
for task in self:
if not change_task(task): continue
task.set_vars(*args, **kwargs)
elif self.is_flow:
for task in self.iflat_tasks():
if not change_task(task): continue
task.set_vars(*args, **kwargs)
else:
raise TypeError("Don't know how to set variables for object class %s" % self.__class__.__name__) | 141,410 |
This function is called once we have completed the initialization
of the :class:`Work`. It sets the manager of each task (if not already done)
and defines the working directories of the tasks.
Args:
manager: :class:`TaskManager` object or None | def allocate(self, manager=None):
for i, task in enumerate(self):
if not hasattr(task, "manager"):
# Set the manager
# Use the one provided in input else the one of the work/flow.
if manager is not None:
task.set_manager(manager)
else:
# Look first in work and then in the flow.
if hasattr(self, "manager"):
task.set_manager(self.manager)
else:
task.set_manager(self.flow.manager)
task_workdir = os.path.join(self.workdir, "t" + str(i))
if not hasattr(task, "workdir"):
task.set_workdir(task_workdir)
else:
if task.workdir != task_workdir:
raise ValueError("task.workdir != task_workdir: %s, %s" % (task.workdir, task_workdir)) | 141,416 |
Returns a list with the status of the tasks in self.
Args:
only_min: If True, the minimum of the status is returned. | def get_all_status(self, only_min=False):
if len(self) == 0:
# The work will be created in the future.
if only_min:
return self.S_INIT
else:
return [self.S_INIT]
self.check_status()
status_list = [task.status for task in self]
if only_min:
return min(status_list)
else:
return status_list | 141,419 |
Remove all files and directories in the working directory
Args:
exclude_wildcard: Optional string with regular expressions separated by `|`.
Files matching one of the regular expressions will be preserved.
example: exclude_wildard="*.nc|*.txt" preserves all the files
whose extension is in ["nc", "txt"]. | def rmtree(self, exclude_wildcard=""):
if not exclude_wildcard:
shutil.rmtree(self.workdir)
else:
w = WildCard(exclude_wildcard)
for dirpath, dirnames, filenames in os.walk(self.workdir):
for fname in filenames:
path = os.path.join(dirpath, fname)
if not w.match(fname):
os.remove(path) | 141,421 |
Create the SCR tasks and register them in self.
Args:
wfk_file: Path to the ABINIT WFK file to use for the computation of the screening.
scr_input: Input for the screening calculation. | def create_tasks(self, wfk_file, scr_input):
assert len(self) == 0
wfk_file = self.wfk_file = os.path.abspath(wfk_file)
# Build a temporary work in the tmpdir that will use a shell manager
# to run ABINIT in order to get the list of q-points for the screening.
shell_manager = self.manager.to_shell_manager(mpi_procs=1)
w = Work(workdir=self.tmpdir.path_join("_qptdm_run"), manager=shell_manager)
fake_input = scr_input.deepcopy()
fake_task = w.register(fake_input)
w.allocate()
w.build()
# Create the symbolic link and add the magic value
# nqpdm = -1 to the input to get the list of q-points.
fake_task.inlink_file(wfk_file)
fake_task.set_vars({"nqptdm": -1})
fake_task.start_and_wait()
# Parse the section with the q-points
with NetcdfReader(fake_task.outdir.has_abiext("qptdms.nc")) as reader:
qpoints = reader.read_value("reduced_coordinates_of_kpoints")
#print("qpoints)
# Now we can register the task for the different q-points
for qpoint in qpoints:
qptdm_input = scr_input.deepcopy()
qptdm_input.set_vars(nqptdm=1, qptdm=qpoint)
new_task = self.register_scr_task(qptdm_input, manager=self.manager)
# Add the garbage collector.
if self.flow.gc is not None:
new_task.set_gc(self.flow.gc)
self.allocate() | 141,439 |
Build tasks for the computation of Born effective charges and add them to the work.
Args:
scf_task: ScfTask object.
ddk_tolerance: dict {"varname": value} with the tolerance used in the DDK run.
None to use AbiPy default.
ph_tolerance: dict {"varname": value} with the tolerance used in the phonon run.
None to use AbiPy default.
Return:
(ddk_tasks, bec_tasks) | def add_becs_from_scf_task(self, scf_task, ddk_tolerance, ph_tolerance):
if not isinstance(scf_task, ScfTask):
raise TypeError("task `%s` does not inherit from ScfTask" % scf_task)
# DDK calculations (self-consistent to get electric field).
multi_ddk = scf_task.input.make_ddk_inputs(tolerance=ddk_tolerance)
ddk_tasks = []
for ddk_inp in multi_ddk:
ddk_task = self.register_ddk_task(ddk_inp, deps={scf_task: "WFK"})
ddk_tasks.append(ddk_task)
# Build the list of inputs for electric field perturbation and phonons
# Each BEC task is connected to all the previous DDK task and to the scf_task.
bec_deps = {ddk_task: "DDK" for ddk_task in ddk_tasks}
bec_deps.update({scf_task: "WFK"})
bec_inputs = scf_task.input.make_bec_inputs(tolerance=ph_tolerance)
bec_tasks = []
for bec_inp in bec_inputs:
bec_task = self.register_bec_task(bec_inp, deps=bec_deps)
bec_tasks.append(bec_task)
return ddk_tasks, bec_tasks | 141,442 |
This method is called when all the q-points have been computed.
It runs `mrgdvdb` in sequential on the local machine to produce
the final DVDB file in the outdir of the `Work`.
Args:
delete_source: True if POT1 files should be removed after (successful) merge.
Returns:
path to the output DVDB file. None if not DFPT POT file is found. | def merge_pot1_files(self, delete_source=True):
natom = len(self[0].input.structure)
max_pertcase = 3 * natom
pot1_files = []
for task in self:
if not isinstance(task, DfptTask): continue
paths = task.outdir.list_filepaths(wildcard="*_POT*")
for path in paths:
# Include only atomic perturbations i.e. files whose ext <= 3 * natom
i = path.rindex("_POT")
pertcase = int(path[i+4:].replace(".nc", ""))
if pertcase <= max_pertcase:
pot1_files.append(path)
# prtpot = 0 disables the output of the DFPT POT files so an empty list is not fatal here.
if not pot1_files: return None
self.history.info("Will call mrgdvdb to merge %s files:" % len(pot1_files))
# Final DDB file will be produced in the outdir of the work.
out_dvdb = self.outdir.path_in("out_DVDB")
if len(pot1_files) == 1:
# Avoid the merge. Just move the DDB file to the outdir of the work
shutil.copy(pot1_files[0], out_dvdb)
else:
# FIXME: The merge may require a non-negligible amount of memory if lots of qpts.
# Besides there are machines such as lemaitre3 that are problematic when
# running MPI applications on the front-end
mrgdvdb = wrappers.Mrgdvdb(manager=self[0].manager, verbose=0)
mrgdvdb.merge(self.outdir.path, pot1_files, out_dvdb, delete_source=delete_source)
return out_dvdb | 141,444 |
Build tasks for the computation of Born effective charges from a ground-state task.
Args:
scf_task: ScfTask object.
ddk_tolerance: tolerance used in the DDK run if with_becs. None to use AbiPy default.
ph_tolerance: dict {"varname": value} with the tolerance used in the phonon run.
None to use AbiPy default.
manager: :class:`TaskManager` object. | def from_scf_task(cls, scf_task, ddk_tolerance=None, ph_tolerance=None, manager=None):
new = cls(manager=manager)
new.add_becs_from_scf_task(scf_task, ddk_tolerance, ph_tolerance)
return new | 141,452 |
Build a DteWork from a ground-state task.
Args:
scf_task: ScfTask object.
ddk_tolerance: tolerance used in the DDK run if with_becs. None to use AbiPy default.
manager: :class:`TaskManager` object. | def from_scf_task(cls, scf_task, ddk_tolerance=None, manager=None):
if not isinstance(scf_task, ScfTask):
raise TypeError("task `%s` does not inherit from ScfTask" % scf_task)
new = cls(manager=manager)
# DDK calculations
multi_ddk = scf_task.input.make_ddk_inputs(tolerance=ddk_tolerance)
ddk_tasks = []
for ddk_inp in multi_ddk:
ddk_task = new.register_ddk_task(ddk_inp, deps={scf_task: "WFK"})
ddk_tasks.append(ddk_task)
# Build the list of inputs for electric field perturbation
# Each task is connected to all the previous DDK, DDE task and to the scf_task.
multi_dde = scf_task.input.make_dde_inputs(use_symmetries=False)
# To compute the nonlinear coefficients all the directions of the perturbation
# have to be taken in consideration
# DDE calculations
dde_tasks = []
dde_deps = {ddk_task: "DDK" for ddk_task in ddk_tasks}
dde_deps.update({scf_task: "WFK"})
for dde_inp in multi_dde:
dde_task = new.register_dde_task(dde_inp, deps=dde_deps)
dde_tasks.append(dde_task)
# DTE calculations
dte_deps = {scf_task: "WFK DEN"}
dte_deps.update({dde_task: "1WF 1DEN" for dde_task in dde_tasks})
multi_dte = scf_task.input.make_dte_inputs()
dte_tasks = []
for dte_inp in multi_dte:
dte_task = new.register_dte_task(dte_inp, deps=dte_deps)
dte_tasks.append(dte_task)
return new | 141,454 |
Initializes an abstract defect
Args:
structure: Pymatgen Structure without any defects
defect_site (Site): site for defect within structure
must have same lattice as structure
charge: (int or float) defect charge
default is zero, meaning no change to NELECT after defect is created in the structure
(assuming use_structure_charge=True in vasp input set) | def __init__(self, structure, defect_site, charge=0.):
self._structure = structure
self._charge = charge
self._defect_site = defect_site
if structure.lattice != defect_site.lattice:
raise ValueError("defect_site lattice must be same as structure lattice.") | 141,456 |
Returns Defective Vacancy structure, decorated with charge
Args:
supercell (int, [3x1], or [[]] (3x3)): supercell integer, vector, or scaling matrix | def generate_defect_structure(self, supercell=(1, 1, 1)):
defect_structure = self.bulk_structure.copy()
defect_structure.make_supercell(supercell)
#create a trivial defect structure to find where supercell transformation moves the lattice
struct_for_defect_site = Structure( self.bulk_structure.copy().lattice,
[self.site.specie],
[self.site.frac_coords],
to_unit_cell=True)
struct_for_defect_site.make_supercell(supercell)
defect_site = struct_for_defect_site[0]
poss_deflist = sorted(
defect_structure.get_sites_in_sphere(defect_site.coords, 2, include_index=True), key=lambda x: x[1])
defindex = poss_deflist[0][2]
defect_structure.remove_sites([defindex])
defect_structure.set_charge(self.charge)
return defect_structure | 141,458 |
Returns Defective Substitution structure, decorated with charge
Args:
supercell (int, [3x1], or [[]] (3x3)): supercell integer, vector, or scaling matrix | def generate_defect_structure(self, supercell=(1, 1, 1)):
defect_structure = self.bulk_structure.copy()
defect_structure.make_supercell(supercell)
# consider modifying velocity property to make sure defect site is decorated
# consistently with bulk structure for final defect_structure
defect_properties = self.site.properties.copy()
if ('velocities' in self.bulk_structure.site_properties) and \
'velocities' not in defect_properties:
if all( vel == self.bulk_structure.site_properties['velocities'][0]
for vel in self.bulk_structure.site_properties['velocities']):
defect_properties['velocities'] = self.bulk_structure.site_properties['velocities'][0]
else:
raise ValueError("No velocity property specified for defect site and "
"bulk_structure velocities are not homogeneous. Please specify this "
"property within the initialized defect_site object.")
#create a trivial defect structure to find where supercell transformation moves the lattice
site_properties_for_fake_struct = {prop: [val] for prop,val in defect_properties.items()}
struct_for_defect_site = Structure( self.bulk_structure.copy().lattice,
[self.site.specie],
[self.site.frac_coords],
to_unit_cell=True,
site_properties = site_properties_for_fake_struct)
struct_for_defect_site.make_supercell(supercell)
defect_site = struct_for_defect_site[0]
poss_deflist = sorted(
defect_structure.get_sites_in_sphere(defect_site.coords, 2, include_index=True), key=lambda x: x[1])
defindex = poss_deflist[0][2]
subsite = defect_structure.pop(defindex)
defect_structure.append(self.site.specie.symbol, subsite.coords, coords_are_cartesian=True,
properties = defect_site.properties)
defect_structure.set_charge(self.charge)
return defect_structure | 141,461 |
Returns Defective Interstitial structure, decorated with charge
Args:
supercell (int, [3x1], or [[]] (3x3)): supercell integer, vector, or scaling matrix | def generate_defect_structure(self, supercell=(1, 1, 1)):
defect_structure = self.bulk_structure.copy()
defect_structure.make_supercell(supercell)
# consider modifying velocity property to make sure defect site is decorated
# consistently with bulk structure for final defect_structure
defect_properties = self.site.properties.copy()
if ('velocities' in self.bulk_structure.site_properties) and \
'velocities' not in defect_properties:
if all( vel == self.bulk_structure.site_properties['velocities'][0]
for vel in self.bulk_structure.site_properties['velocities']):
defect_properties['velocities'] = self.bulk_structure.site_properties['velocities'][0]
else:
raise ValueError("No velocity property specified for defect site and "
"bulk_structure velocities are not homogeneous. Please specify this "
"property within the initialized defect_site object.")
#create a trivial defect structure to find where supercell transformation moves the defect site
site_properties_for_fake_struct = {prop: [val] for prop,val in defect_properties.items()}
struct_for_defect_site = Structure( self.bulk_structure.copy().lattice,
[self.site.specie],
[self.site.frac_coords],
to_unit_cell=True,
site_properties = site_properties_for_fake_struct)
struct_for_defect_site.make_supercell(supercell)
defect_site = struct_for_defect_site[0]
defect_structure.append(self.site.specie.symbol, defect_site.coords, coords_are_cartesian=True,
properties = defect_site.properties)
defect_structure.set_charge(self.charge)
return defect_structure | 141,464 |
Reconstitute a DefectEntry object from a dict representation created using
as_dict().
Args:
d (dict): dict representation of DefectEntry.
Returns:
DefectEntry object | def from_dict(cls, d):
defect = MontyDecoder().process_decoded( d["defect"])
uncorrected_energy = d["uncorrected_energy"]
corrections = d.get("corrections", None)
parameters = d.get("parameters", None)
entry_id = d.get("entry_id", None)
return cls(defect, uncorrected_energy, corrections=corrections,
parameters=parameters, entry_id=entry_id) | 141,469 |
Get the defect concentration for a temperature and Fermi level.
Args:
temperature:
the temperature in K
fermi_level:
the fermi level in eV (with respect to the VBM)
Returns:
defects concentration in cm^-3 | def defect_concentration(self, chemical_potentials, temperature=300, fermi_level=0.0):
n = self.multiplicity * 1e24 / self.defect.bulk_structure.volume
conc = n * np.exp(-1.0 * self.formation_energy(chemical_potentials, fermi_level=fermi_level) /
(kb * temperature))
return conc | 141,472 |
Corrects a single entry.
Args:
entry: A DefectEntry object.
Returns:
An processed entry.
Raises:
CompatibilityError if entry is not compatible. | def correct_entry(self, entry):
entry.correction.update(self.get_correction(entry))
return entry | 141,474 |
Returns the charge transferred for a particular atom. Requires POTCAR
to be supplied.
Args:
atom_index:
Index of atom.
Returns:
Charge transfer associated with atom from the Bader analysis.
Given by final charge on atom - nelectrons in POTCAR for
associated atom. | def get_charge_transfer(self, atom_index):
if self.potcar is None:
raise ValueError("POTCAR must be supplied in order to calculate "
"charge transfer!")
potcar_indices = []
for i, v in enumerate(self.natoms):
potcar_indices += [i] * v
nelect = self.potcar[potcar_indices[atom_index]].nelectrons
return self.data[atom_index]["charge"] - nelect | 141,478 |
Convenient constructor that takes in the path name of VASP run
to perform Bader analysis.
Args:
path (str): Name of directory where VASP output files are
stored.
suffix (str): specific suffix to look for (e.g. '.relax1'
for 'CHGCAR.relax1.gz'). | def from_path(cls, path, suffix=""):
def _get_filepath(filename):
name_pattern = filename + suffix + '*' if filename != 'POTCAR' \
else filename + '*'
paths = glob.glob(os.path.join(path, name_pattern))
fpath = None
if len(paths) >= 1:
# using reverse=True because, if multiple files are present,
# they likely have suffixes 'static', 'relax', 'relax2', etc.
# and this would give 'static' over 'relax2' over 'relax'
# however, better to use 'suffix' kwarg to avoid this!
paths.sort(reverse=True)
warning_msg = "Multiple files detected, using %s" \
% os.path.basename(paths[0]) if len(paths) > 1 \
else None
fpath = paths[0]
else:
warning_msg = "Could not find %s" % filename
if filename in ['AECCAR0', 'AECCAR2']:
warning_msg += ", cannot calculate charge transfer."
elif filename == "POTCAR":
warning_msg += ", interpret Bader results with caution."
if warning_msg:
warnings.warn(warning_msg)
return fpath
chgcar_filename = _get_filepath("CHGCAR")
if chgcar_filename is None:
raise IOError("Could not find CHGCAR!")
potcar_filename = _get_filepath("POTCAR")
aeccar0 = _get_filepath("AECCAR0")
aeccar2 = _get_filepath("AECCAR2")
if (aeccar0 and aeccar2):
# `chgsum.pl AECCAR0 AECCAR2` equivalent to obtain chgref_file
chgref = Chgcar.from_file(aeccar0) + Chgcar.from_file(aeccar2)
chgref_filename = "CHGREF"
chgref.write_file(chgref_filename)
else:
chgref_filename = None
return cls(chgcar_filename, potcar_filename=potcar_filename,
chgref_filename=chgref_filename) | 141,481 |
Given a tuple of tuples, generate a delimited string form.
>>> results = [["a","b","c"],["d","e","f"],[1,2,3]]
>>> print(str_delimited(results,delimiter=","))
a,b,c
d,e,f
1,2,3
Args:
result: 2d sequence of arbitrary types.
header: optional header
Returns:
Aligned string output in a table-like format. | def str_delimited(results, header=None, delimiter="\t"):
returnstr = ""
if header is not None:
returnstr += delimiter.join(header) + "\n"
return returnstr + "\n".join([delimiter.join([str(m) for m in result])
for result in results]) | 141,519 |
This function is used to make pretty formulas by formatting the amounts.
Instead of Li1.0 Fe1.0 P1.0 O4.0, you get LiFePO4.
Args:
afloat (float): a float
ignore_ones (bool): if true, floats of 1 are ignored.
tol (float): Tolerance to round to nearest int. i.e. 2.0000000001 -> 2
Returns:
A string representation of the float for formulas. | def formula_double_format(afloat, ignore_ones=True, tol=1e-8):
if ignore_ones and afloat == 1:
return ""
elif abs(afloat - int(afloat)) < tol:
return str(int(afloat))
else:
return str(round(afloat, 8)) | 141,520 |
Generates a latex formatted spacegroup. E.g., P2_1/c is converted to
P2$_{1}$/c and P-1 is converted to P$\\overline{1}$.
Args:
spacegroup_symbol (str): A spacegroup symbol
Returns:
A latex formatted spacegroup with proper subscripts and overlines. | def latexify_spacegroup(spacegroup_symbol):
sym = re.sub(r"_(\d+)", r"$_{\1}$", spacegroup_symbol)
return re.sub(r"-(\d)", r"$\\overline{\1}$", sym) | 141,522 |
Compare the bond table of the two molecules.
Args:
mol1: first molecule. pymatgen Molecule object.
mol2: second moleculs. pymatgen Molecule objec. | def are_equal(self, mol1, mol2):
b1 = set(self._get_bonds(mol1))
b2 = set(self._get_bonds(mol2))
return b1 == b2 | 141,528 |
Find all the bond in a molcule
Args:
mol: the molecule. pymatgen Molecule object
Returns:
List of tuple. Each tuple correspond to a bond represented by the
id of the two end atoms. | def _get_bonds(self, mol):
num_atoms = len(mol)
# index starting from 0
if self.ignore_ionic_bond:
covalent_atoms = [i for i in range(num_atoms) if mol.species[i].symbol not in self.ionic_element_list]
else:
covalent_atoms = list(range(num_atoms))
all_pairs = list(itertools.combinations(covalent_atoms, 2))
pair_dists = [mol.get_distance(*p) for p in all_pairs]
elements = mol.composition.as_dict().keys()
unavailable_elements = list(set(elements) -
set(self.covalent_radius.keys()))
if len(unavailable_elements) > 0:
raise ValueError("The covalent radius for element {} is not "
"available".format(unavailable_elements))
bond_13 = self.get_13_bonds(self.priority_bonds)
max_length = [(self.covalent_radius[mol.sites[p[0]].specie.symbol] +
self.covalent_radius[mol.sites[p[1]].specie.symbol]) *
(1 + (self.priority_cap if p in self.priority_bonds
else (self.bond_length_cap if p not in bond_13
else self.bond_13_cap))) *
(0.1 if (self.ignore_halogen_self_bond and p not in self.priority_bonds and
mol.sites[p[0]].specie.symbol in self.halogen_list and
mol.sites[p[1]].specie.symbol in self.halogen_list)
else 1.0)
for p in all_pairs]
bonds = [bond
for bond, dist, cap in zip(all_pairs, pair_dists, max_length)
if dist <= cap]
return bonds | 141,530 |
Parses .outputtrans file
Args:
path_dir: dir containing boltztrap.outputtrans
Returns:
tuple - (run_type, warning, efermi, gap, doping_levels) | def parse_outputtrans(path_dir):
run_type = None
warning = None
efermi = None
gap = None
doping_levels = []
with open(os.path.join(path_dir, "boltztrap.outputtrans"), 'r') \
as f:
for line in f:
if "WARNING" in line:
warning = line
elif "Calc type:" in line:
run_type = line.split()[-1]
elif line.startswith("VBM"):
efermi = Energy(line.split()[1], "Ry").to("eV")
elif line.startswith("Egap:"):
gap = Energy(float(line.split()[1]), "Ry").to("eV")
elif line.startswith("Doping level number"):
doping_levels.append(float(line.split()[6]))
return run_type, warning, efermi, gap, doping_levels | 141,568 |
Parses .transdos (total DOS) and .transdos_x_y (partial DOS) files
Args:
path_dir: (str) dir containing DOS files
efermi: (float) Fermi energy
dos_spin: (int) -1 for spin down, +1 for spin up
trim_dos: (bool) whether to post-process / trim DOS
Returns:
tuple - (DOS, dict of partial DOS) | def parse_transdos(path_dir, efermi, dos_spin=1, trim_dos=False):
data_dos = {'total': [], 'partial': {}}
# parse the total DOS data
## format is energy, DOS, integrated DOS
with open(os.path.join(path_dir, "boltztrap.transdos"), 'r') as f:
count_series = 0 # TODO: why is count_series needed?
for line in f:
if line.lstrip().startswith("#"):
count_series += 1
if count_series > 1:
break
else:
data_dos['total'].append(
[Energy(float(line.split()[0]), "Ry").to("eV"),
float(line.split()[1])])
total_elec = float(line.split()[2])
lw_l = 0
hg_l = -len(data_dos['total'])
if trim_dos:
# Francesco knows what this does
# It has something to do with a trick of adding fake energies
# at the endpoints of the DOS, and then re-trimming it. This is
# to get the same energy scale for up and down spin DOS.
tmp_data = np.array(data_dos['total'])
tmp_den = np.trim_zeros(tmp_data[:, 1], 'f')[1:]
lw_l = len(tmp_data[:, 1]) - len(tmp_den)
tmp_ene = tmp_data[lw_l:, 0]
tmp_den = np.trim_zeros(tmp_den, 'b')[:-1]
hg_l = len(tmp_ene) - len(tmp_den)
tmp_ene = tmp_ene[:-hg_l]
tmp_data = np.vstack((tmp_ene, tmp_den)).T
data_dos['total'] = tmp_data.tolist()
# parse partial DOS data
for file_name in os.listdir(path_dir):
if file_name.endswith(
"transdos") and file_name != 'boltztrap.transdos':
tokens = file_name.split(".")[1].split("_")
site = tokens[1]
orb = '_'.join(tokens[2:])
with open(os.path.join(path_dir, file_name), 'r') as f:
for line in f:
if not line.lstrip().startswith(" #"):
if site not in data_dos['partial']:
data_dos['partial'][site] = {}
if orb not in data_dos['partial'][site]:
data_dos['partial'][site][orb] = []
data_dos['partial'][site][orb].append(
float(line.split()[1]))
data_dos['partial'][site][orb] = data_dos['partial'][site][
orb][lw_l:-hg_l]
dos_full = {'energy': [], 'density': []}
for t in data_dos['total']:
dos_full['energy'].append(t[0])
dos_full['density'].append(t[1])
dos = Dos(efermi, dos_full['energy'],
{Spin(dos_spin): dos_full['density']})
dos_partial = data_dos['partial'] # TODO: make this real DOS object?
return dos, dos_partial | 141,569 |
Parses boltztrap.intrans mainly to extract the value of scissor applied to the bands or some other inputs
Args:
path_dir: (str) dir containing the boltztrap.intrans file
Returns:
intrans (dict): a dictionary containing various inputs that had been used in the Boltztrap run. | def parse_intrans(path_dir):
intrans = {}
with open(os.path.join(path_dir, "boltztrap.intrans"), 'r') as f:
for line in f:
if "iskip" in line:
intrans["scissor"] = Energy(float(line.split(" ")[3]),
"Ry").to("eV")
if "HISTO" in line or "TETRA" in line:
intrans["dos_type"] = line[:-1]
return intrans | 141,570 |
Parses boltztrap.struct file (only the volume)
Args:
path_dir: (str) dir containing the boltztrap.struct file
Returns:
(float) volume | def parse_struct(path_dir):
with open(os.path.join(path_dir, "boltztrap.struct"), 'r') as f:
tokens = f.readlines()
return Lattice([[Length(float(tokens[i].split()[j]), "bohr").
to("ang") for j in range(3)] for i in
range(1, 4)]).volume | 141,571 |
Parses the conductivity and Hall tensors
Args:
path_dir: Path containing .condtens / .halltens files
doping_levels: ([float]) - doping lvls, parse outtrans to get this
Returns:
mu_steps, cond, seebeck, kappa, hall, pn_doping_levels,
mu_doping, seebeck_doping, cond_doping, kappa_doping,
hall_doping, carrier_conc | def parse_cond_and_hall(path_dir, doping_levels=None):
# Step 1: parse raw data but do not convert to final format
t_steps = set()
mu_steps = set()
data_full = []
data_hall = []
data_doping_full = []
data_doping_hall = []
doping_levels = doping_levels or []
# parse the full conductivity/Seebeck/kappa0/etc data
## also initialize t_steps and mu_steps
with open(os.path.join(path_dir, "boltztrap.condtens"), 'r') as f:
for line in f:
if not line.startswith("#"):
mu_steps.add(float(line.split()[0]))
t_steps.add(int(float(line.split()[1])))
data_full.append([float(c) for c in line.split()])
# parse the full Hall tensor
with open(os.path.join(path_dir, "boltztrap.halltens"), 'r') as f:
for line in f:
if not line.startswith("#"):
data_hall.append([float(c) for c in line.split()])
if len(doping_levels) != 0:
# parse doping levels version of full cond. tensor, etc.
with open(
os.path.join(path_dir, "boltztrap.condtens_fixdoping"),
'r') as f:
for line in f:
if not line.startswith("#") and len(line) > 2:
data_doping_full.append([float(c)
for c in line.split()])
# parse doping levels version of full hall tensor
with open(
os.path.join(path_dir, "boltztrap.halltens_fixdoping"),
'r') as f:
for line in f:
if not line.startswith("#") and len(line) > 2:
data_doping_hall.append(
[float(c) for c in line.split()])
# Step 2: convert raw data to final format
# sort t and mu_steps (b/c they are sets not lists)
# and convert to correct energy
t_steps = sorted([t for t in t_steps])
mu_steps = sorted([Energy(m, "Ry").to("eV") for m in mu_steps])
# initialize output variables - could use defaultdict instead
# I am leaving things like this for clarity
cond = {t: [] for t in t_steps}
seebeck = {t: [] for t in t_steps}
kappa = {t: [] for t in t_steps}
hall = {t: [] for t in t_steps}
carrier_conc = {t: [] for t in t_steps}
dos_full = {'energy': [], 'density': []}
mu_doping = {'p': {t: [] for t in t_steps},
'n': {t: [] for t in t_steps}}
seebeck_doping = {'p': {t: [] for t in t_steps},
'n': {t: [] for t in t_steps}}
cond_doping = {'p': {t: [] for t in t_steps},
'n': {t: [] for t in t_steps}}
kappa_doping = {'p': {t: [] for t in t_steps},
'n': {t: [] for t in t_steps}}
hall_doping = {'p': {t: [] for t in t_steps},
'n': {t: [] for t in t_steps}}
# process doping levels
pn_doping_levels = {'p': [], 'n': []}
for d in doping_levels:
if d > 0:
pn_doping_levels['p'].append(d)
else:
pn_doping_levels['n'].append(-d)
# process raw conductivity data, etc.
for d in data_full:
temp, doping = d[1], d[2]
carrier_conc[temp].append(doping)
cond[temp].append(np.reshape(d[3:12], (3, 3)).tolist())
seebeck[temp].append(np.reshape(d[12:21], (3, 3)).tolist())
kappa[temp].append(np.reshape(d[21:30], (3, 3)).tolist())
# process raw Hall data
for d in data_hall:
temp, doping = d[1], d[2]
hall_tens = [np.reshape(d[3:12], (3, 3)).tolist(),
np.reshape(d[12:21], (3, 3)).tolist(),
np.reshape(d[21:30], (3, 3)).tolist()]
hall[temp].append(hall_tens)
# process doping conductivity data, etc.
for d in data_doping_full:
temp, doping, mu = d[0], d[1], d[-1]
pn = 'p' if doping > 0 else 'n'
mu_doping[pn][temp].append(Energy(mu, "Ry").to("eV"))
cond_doping[pn][temp].append(
np.reshape(d[2:11], (3, 3)).tolist())
seebeck_doping[pn][temp].append(
np.reshape(d[11:20], (3, 3)).tolist())
kappa_doping[pn][temp].append(
np.reshape(d[20:29], (3, 3)).tolist())
# process doping Hall data
for d in data_doping_hall:
temp, doping, mu = d[0], d[1], d[-1]
pn = 'p' if doping > 0 else 'n'
hall_tens = [np.reshape(d[2:11], (3, 3)).tolist(),
np.reshape(d[11:20], (3, 3)).tolist(),
np.reshape(d[20:29], (3, 3)).tolist()]
hall_doping[pn][temp].append(hall_tens)
return mu_steps, cond, seebeck, kappa, hall, pn_doping_levels, \
mu_doping, seebeck_doping, cond_doping, kappa_doping, \
hall_doping, carrier_conc | 141,572 |
get a BoltztrapAnalyzer object from a set of files
Args:
path_dir: directory where the boltztrap files are
dos_spin: in DOS mode, set to 1 for spin up and -1 for spin down
Returns:
a BoltztrapAnalyzer object | def from_files(path_dir, dos_spin=1):
run_type, warning, efermi, gap, doping_levels = \
BoltztrapAnalyzer.parse_outputtrans(path_dir)
vol = BoltztrapAnalyzer.parse_struct(path_dir)
intrans = BoltztrapAnalyzer.parse_intrans(path_dir)
if run_type == "BOLTZ":
dos, pdos = BoltztrapAnalyzer.parse_transdos(
path_dir, efermi, dos_spin=dos_spin, trim_dos=False)
mu_steps, cond, seebeck, kappa, hall, pn_doping_levels, mu_doping, \
seebeck_doping, cond_doping, kappa_doping, hall_doping, \
carrier_conc = BoltztrapAnalyzer. \
parse_cond_and_hall(path_dir, doping_levels)
return BoltztrapAnalyzer(
gap, mu_steps, cond, seebeck, kappa, hall, pn_doping_levels,
mu_doping, seebeck_doping, cond_doping, kappa_doping,
hall_doping, intrans, dos, pdos, carrier_conc, vol, warning)
elif run_type == "DOS":
trim = True if intrans["dos_type"] == "HISTO" else False
dos, pdos = BoltztrapAnalyzer.parse_transdos(
path_dir, efermi, dos_spin=dos_spin, trim_dos=trim)
return BoltztrapAnalyzer(gap=gap, dos=dos, dos_partial=pdos,
warning=warning, vol=vol)
elif run_type == "BANDS":
bz_kpoints = np.loadtxt(
os.path.join(path_dir, "boltztrap_band.dat"))[:, -3:]
bz_bands = np.loadtxt(
os.path.join(path_dir, "boltztrap_band.dat"))[:, 1:-6]
return BoltztrapAnalyzer(bz_bands=bz_bands, bz_kpoints=bz_kpoints,
warning=warning, vol=vol)
elif run_type == "FERMI":
if os.path.exists(os.path.join(path_dir, 'boltztrap_BZ.cube')):
fs_data = read_cube_file(
os.path.join(path_dir, 'boltztrap_BZ.cube'))
elif os.path.exists(os.path.join(path_dir, 'fort.30')):
fs_data = read_cube_file(os.path.join(path_dir, 'fort.30'))
else:
raise BoltztrapError("No data file found for fermi surface")
return BoltztrapAnalyzer(fermi_surface_data=fs_data)
else:
raise ValueError("Run type: {} not recognized!".format(run_type)) | 141,573 |
Generator that parses dump file(s).
Args:
file_pattern (str): Filename to parse. The timestep wildcard
(e.g., dump.atom.'*') is supported and the files are parsed
in the sequence of timestep.
Yields:
LammpsDump for each available snapshot. | def parse_lammps_dumps(file_pattern):
files = glob.glob(file_pattern)
if len(files) > 1:
pattern = r"%s" % file_pattern.replace("*", "([0-9]+)")
pattern = pattern.replace("\\", "\\\\")
files = sorted(files,
key=lambda f: int(re.match(pattern, f).group(1)))
for fname in files:
with zopen(fname, "rt") as f:
dump_cache = []
for line in f:
if line.startswith("ITEM: TIMESTEP"):
if len(dump_cache) > 0:
yield LammpsDump.from_string("".join(dump_cache))
dump_cache = [line]
else:
dump_cache.append(line)
yield LammpsDump.from_string("".join(dump_cache)) | 141,580 |
Base constructor.
Args:
timestep (int): Current timestep.
natoms (int): Total number of atoms in the box.
box (LammpsBox): Simulation box.
data (pd.DataFrame): Dumped atomic data. | def __init__(self, timestep, natoms, box, data):
self.timestep = timestep
self.natoms = natoms
self.box = box
self.data = data | 141,582 |
Constructor from string parsing.
Args:
string (str): Input string. | def from_string(cls, string):
lines = string.split("\n")
timestep = int(lines[1])
natoms = int(lines[3])
box_arr = np.loadtxt(StringIO("\n".join(lines[5:8])))
bounds = box_arr[:, :2]
tilt = None
if "xy xz yz" in lines[4]:
tilt = box_arr[:, 2]
x = (0, tilt[0], tilt[1], tilt[0] + tilt[1])
y = (0, tilt[2])
bounds -= np.array([[min(x), max(x)], [min(y), max(y)], [0, 0]])
box = LammpsBox(bounds, tilt)
data_head = lines[8].replace("ITEM: ATOMS", "").split()
data = pd.read_csv(StringIO("\n".join(lines[9:])), names=data_head,
delim_whitespace=True)
return cls(timestep, natoms, box, data) | 141,583 |
Returns a `FloatWithUnit` instance if obj is scalar, a dictionary of
objects with units if obj is a dict, else an instance of
`ArrayWithFloatWithUnit`.
Args:
unit: Specific units (eV, Ha, m, ang, etc.). | def obj_with_unit(obj, unit):
unit_type = _UNAME2UTYPE[unit]
if isinstance(obj, numbers.Number):
return FloatWithUnit(obj, unit=unit, unit_type=unit_type)
elif isinstance(obj, collections.Mapping):
return {k: obj_with_unit(v, unit) for k,v in obj.items()}
else:
return ArrayWithUnit(obj, unit=unit, unit_type=unit_type) | 141,604 |
Constructs a unit.
Args:
unit_def: A definition for the unit. Either a mapping of unit to
powers, e.g., {"m": 2, "s": -1} represents "m^2 s^-1",
or simply as a string "kg m^2 s^-1". Note that the supported
format uses "^" as the power operator and all units must be
space-separated. | def __init__(self, unit_def):
if isinstance(unit_def, str):
unit = collections.defaultdict(int)
import re
for m in re.finditer(r"([A-Za-z]+)\s*\^*\s*([\-0-9]*)", unit_def):
p = m.group(2)
p = 1 if not p else int(p)
k = m.group(1)
unit[k] += p
else:
unit = {k: v for k, v in dict(unit_def).items() if v != 0}
self._unit = check_mappings(unit) | 141,606 |
Returns a conversion factor between this unit and a new unit.
Compound units are supported, but must have the same powers in each
unit type.
Args:
new_unit: The new unit. | def get_conversion_factor(self, new_unit):
uo_base, ofactor = self.as_base_units
un_base, nfactor = Unit(new_unit).as_base_units
units_new = sorted(un_base.items(),
key=lambda d: _UNAME2UTYPE[d[0]])
units_old = sorted(uo_base.items(),
key=lambda d: _UNAME2UTYPE[d[0]])
factor = ofactor / nfactor
for uo, un in zip(units_old, units_new):
if uo[1] != un[1]:
raise UnitError("Units %s and %s are not compatible!" % (uo, un))
c = ALL_UNITS[_UNAME2UTYPE[uo[0]]]
factor *= (c[uo[0]] / c[un[0]]) ** uo[1]
return factor | 141,611 |
Initializes a float with unit.
Args:
val (float): Value
unit (Unit): A unit. E.g., "C".
unit_type (str): A type of unit. E.g., "charge" | def __init__(self, val, unit, unit_type=None):
if unit_type is not None and str(unit) not in ALL_UNITS[unit_type]:
raise UnitError(
"{} is not a supported unit for {}".format(unit, unit_type))
self._unit = Unit(unit)
self._unit_type = unit_type | 141,614 |
Conversion to a new_unit. Right now, only supports 1 to 1 mapping of
units of each type.
Args:
new_unit: New unit type.
Returns:
A FloatWithUnit object in the new units.
Example usage:
>>> e = Energy(1.1, "eV")
>>> e = Energy(1.1, "Ha")
>>> e.to("eV")
29.932522246 eV | def to(self, new_unit):
return FloatWithUnit(
self * self.unit.get_conversion_factor(new_unit),
unit_type=self._unit_type,
unit=new_unit) | 141,622 |
Conversion to a new_unit.
Args:
new_unit:
New unit type.
Returns:
A ArrayWithFloatWithUnit object in the new units.
Example usage:
>>> e = EnergyArray([1, 1.1], "Ha")
>>> e.to("eV")
array([ 27.21138386, 29.93252225]) eV | def to(self, new_unit):
return self.__class__(
np.array(self) * self.unit.get_conversion_factor(new_unit),
unit_type=self.unit_type, unit=new_unit) | 141,629 |
Attempt to convert a vector of floats to whole numbers.
Args:
miller_index (list of float): A list miller indexes.
round_dp (int, optional): The number of decimal places to round the
miller index to.
verbose (bool, optional): Whether to print warnings.
Returns:
(tuple): The Miller index. | def get_integer_index(
miller_index: bool, round_dp: int = 4, verbose: bool = True
) -> Tuple[int, int, int]:
miller_index = np.asarray(miller_index)
# deal with the case we have small irregular floats
# that are all equal or factors of each other
miller_index /= min([m for m in miller_index if m != 0])
miller_index /= np.max(np.abs(miller_index))
# deal with the case we have nice fractions
md = [Fraction(n).limit_denominator(12).denominator for n in miller_index]
miller_index *= reduce(lambda x, y: x * y, md)
int_miller_index = np.int_(np.round(miller_index, 1))
miller_index /= np.abs(reduce(gcd, int_miller_index))
# round to a reasonable precision
miller_index = np.array([round(h, round_dp) for h in miller_index])
# need to recalculate this after rounding as values may have changed
int_miller_index = np.int_(np.round(miller_index, 1))
if np.any(np.abs(miller_index - int_miller_index) > 1e-6) and verbose:
warnings.warn("Non-integer encountered in Miller index")
else:
miller_index = int_miller_index
# minimise the number of negative indexes
miller_index += 0 # converts -0 to 0
def n_minus(index):
return len([h for h in index if h < 0])
if n_minus(miller_index) > n_minus(miller_index * -1):
miller_index *= -1
# if only one index is negative, make sure it is the smallest
# e.g. (-2 1 0) -> (2 -1 0)
if (
sum(miller_index != 0) == 2
and n_minus(miller_index) == 1
and abs(min(miller_index)) > max(miller_index)
):
miller_index *= -1
return tuple(miller_index) | 141,631 |
Returns the cartesian coordinates given fractional coordinates.
Args:
fractional_coords (3x1 array): Fractional coords.
Returns:
Cartesian coordinates | def get_cartesian_coords(self, fractional_coords: Vector3Like) -> np.ndarray:
return dot(fractional_coords, self._matrix) | 141,638 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.