docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Returns the fractional coordinates given cartesian coordinates.
Args:
cart_coords (3x1 array): Cartesian coords.
Returns:
Fractional coordinates. | def get_fractional_coords(self, cart_coords: Vector3Like) -> np.ndarray:
return dot(cart_coords, self.inv_matrix) | 141,639 |
Returns the distance between the hkl plane and the origin
Args:
miller_index ([h,k,l]): Miller index of plane
Returns:
d_hkl (float) | def d_hkl(self, miller_index: Vector3Like) -> float:
gstar = self.reciprocal_lattice_crystallographic.metric_tensor
hkl = np.array(miller_index)
return 1 / ((dot(dot(hkl, gstar), hkl.T)) ** (1 / 2)) | 141,640 |
Convenience constructor for a tetragonal lattice.
Args:
a (float): *a* lattice parameter of the tetragonal cell.
c (float): *c* lattice parameter of the tetragonal cell.
Returns:
Tetragonal lattice of dimensions a x a x c. | def tetragonal(a: float, c: float):
return Lattice.from_parameters(a, a, c, 90, 90, 90) | 141,641 |
Convenience constructor for an orthorhombic lattice.
Args:
a (float): *a* lattice parameter of the orthorhombic cell.
b (float): *b* lattice parameter of the orthorhombic cell.
c (float): *c* lattice parameter of the orthorhombic cell.
Returns:
Orthorhombic lattice of dimensions a x b x c. | def orthorhombic(a: float, b: float, c: float):
return Lattice.from_parameters(a, b, c, 90, 90, 90) | 141,642 |
Convenience constructor for a hexagonal lattice.
Args:
a (float): *a* lattice parameter of the hexagonal cell.
c (float): *c* lattice parameter of the hexagonal cell.
Returns:
Hexagonal lattice of dimensions a x a x c. | def hexagonal(a: float, c: float):
return Lattice.from_parameters(a, a, c, 90, 90, 120) | 141,644 |
Convenience constructor for a rhombohedral lattice.
Args:
a (float): *a* lattice parameter of the rhombohedral cell.
alpha (float): Angle for the rhombohedral lattice in degrees.
Returns:
Rhombohedral lattice of dimensions a x a x a. | def rhombohedral(a: float, alpha: float):
return Lattice.from_parameters(a, a, a, alpha, alpha, alpha) | 141,645 |
Create a Lattice using unit cell lengths and angles (in degrees).
Args:
abc (3x1 array): Lattice parameters, e.g. (4, 4, 5).
ang (3x1 array): Lattice angles in degrees, e.g., (90,90,120).
Returns:
A Lattice with the specified lattice parameters. | def from_lengths_and_angles(abc: List[float], ang: List[float]):
return Lattice.from_parameters(abc[0], abc[1], abc[2], ang[0], ang[1], ang[2]) | 141,646 |
Json-serialization dict representation of the Lattice.
Args:
verbosity (int): Verbosity level. Default of 0 only includes the
matrix representation. Set to 1 for more details. | def as_dict(self, verbosity: int = 0) -> Dict:
d = {
"@module": self.__class__.__module__,
"@class": self.__class__.__name__,
"matrix": self._matrix.tolist(),
}
(a, b, c), (alpha, beta, gamma) = self.lengths_and_angles
if verbosity > 0:
d.update(
{
"a": a,
"b": b,
"c": c,
"alpha": alpha,
"beta": beta,
"gamma": gamma,
"volume": self.volume,
}
)
return d | 141,658 |
Get the Niggli reduced lattice using the numerically stable algo
proposed by R. W. Grosse-Kunstleve, N. K. Sauter, & P. D. Adams,
Acta Crystallographica Section A Foundations of Crystallography, 2003,
60(1), 1-6. doi:10.1107/S010876730302186X
Args:
tol (float): The numerical tolerance. The default of 1e-5 should
result in stable behavior for most cases.
Returns:
Niggli-reduced lattice. | def get_niggli_reduced_lattice(self, tol: float = 1e-5) -> "Lattice":
# lll reduction is more stable for skewed cells
matrix = self.lll_matrix
a = matrix[0]
b = matrix[1]
c = matrix[2]
e = tol * self.volume ** (1 / 3)
# Define metric tensor
G = [
[dot(a, a), dot(a, b), dot(a, c)],
[dot(a, b), dot(b, b), dot(b, c)],
[dot(a, c), dot(b, c), dot(c, c)],
]
G = np.array(G)
# This sets an upper limit on the number of iterations.
for count in range(100):
# The steps are labelled as Ax as per the labelling scheme in the
# paper.
(A, B, C, E, N, Y) = (
G[0, 0],
G[1, 1],
G[2, 2],
2 * G[1, 2],
2 * G[0, 2],
2 * G[0, 1],
)
if A > B + e or (abs(A - B) < e and abs(E) > abs(N) + e):
# A1
M = [[0, -1, 0], [-1, 0, 0], [0, 0, -1]]
G = dot(transpose(M), dot(G, M))
if (B > C + e) or (abs(B - C) < e and abs(N) > abs(Y) + e):
# A2
M = [[-1, 0, 0], [0, 0, -1], [0, -1, 0]]
G = dot(transpose(M), dot(G, M))
continue
l = 0 if abs(E) < e else E / abs(E)
m = 0 if abs(N) < e else N / abs(N)
n = 0 if abs(Y) < e else Y / abs(Y)
if l * m * n == 1:
# A3
i = -1 if l == -1 else 1
j = -1 if m == -1 else 1
k = -1 if n == -1 else 1
M = [[i, 0, 0], [0, j, 0], [0, 0, k]]
G = dot(transpose(M), dot(G, M))
elif l * m * n == 0 or l * m * n == -1:
# A4
i = -1 if l == 1 else 1
j = -1 if m == 1 else 1
k = -1 if n == 1 else 1
if i * j * k == -1:
if n == 0:
k = -1
elif m == 0:
j = -1
elif l == 0:
i = -1
M = [[i, 0, 0], [0, j, 0], [0, 0, k]]
G = dot(transpose(M), dot(G, M))
(A, B, C, E, N, Y) = (
G[0, 0],
G[1, 1],
G[2, 2],
2 * G[1, 2],
2 * G[0, 2],
2 * G[0, 1],
)
# A5
if (
abs(E) > B + e
or (abs(E - B) < e and 2 * N < Y - e)
or (abs(E + B) < e and Y < -e)
):
M = [[1, 0, 0], [0, 1, -E / abs(E)], [0, 0, 1]]
G = dot(transpose(M), dot(G, M))
continue
# A6
if (
abs(N) > A + e
or (abs(A - N) < e and 2 * E < Y - e)
or (abs(A + N) < e and Y < -e)
):
M = [[1, 0, -N / abs(N)], [0, 1, 0], [0, 0, 1]]
G = dot(transpose(M), dot(G, M))
continue
# A7
if (
abs(Y) > A + e
or (abs(A - Y) < e and 2 * E < N - e)
or (abs(A + Y) < e and N < -e)
):
M = [[1, -Y / abs(Y), 0], [0, 1, 0], [0, 0, 1]]
G = dot(transpose(M), dot(G, M))
continue
# A8
if E + N + Y + A + B < -e or (abs(E + N + Y + A + B) < e < Y + (A + N) * 2):
M = [[1, 0, 1], [0, 1, 1], [0, 0, 1]]
G = dot(transpose(M), dot(G, M))
continue
break
A = G[0, 0]
B = G[1, 1]
C = G[2, 2]
E = 2 * G[1, 2]
N = 2 * G[0, 2]
Y = 2 * G[0, 1]
a = math.sqrt(A)
b = math.sqrt(B)
c = math.sqrt(C)
alpha = math.acos(E / 2 / b / c) / math.pi * 180
beta = math.acos(N / 2 / a / c) / math.pi * 180
gamma = math.acos(Y / 2 / a / b) / math.pi * 180
latt = Lattice.from_parameters(a, b, c, alpha, beta, gamma)
mapped = self.find_mapping(latt, e, skip_rotation_matrix=True)
if mapped is not None:
if np.linalg.det(mapped[0].matrix) > 0:
return mapped[0]
else:
return Lattice(-mapped[0].matrix)
raise ValueError("can't find niggli") | 141,665 |
Return a new Lattice with volume new_volume by performing a
scaling of the lattice vectors so that length proportions and angles
are preserved.
Args:
new_volume:
New volume to scale to.
Returns:
New lattice with desired volume. | def scale(self, new_volume: float) -> "Lattice":
versors = self.matrix / self.abc
geo_factor = abs(dot(np.cross(versors[0], versors[1]), versors[2]))
ratios = np.array(self.abc) / self.c
new_c = (new_volume / (geo_factor * np.prod(ratios))) ** (1 / 3.0)
return Lattice(versors * (new_c * ratios)) | 141,666 |
Compute the scalar product of vector(s).
Args:
coords_a, coords_b: Array-like objects with the coordinates.
frac_coords (bool): Boolean stating whether the vector
corresponds to fractional or cartesian coordinates.
Returns:
one-dimensional `numpy` array. | def dot(
self, coords_a: Vector3Like, coords_b: Vector3Like, frac_coords: bool = False
) -> np.ndarray:
coords_a, coords_b = (
np.reshape(coords_a, (-1, 3)),
np.reshape(coords_b, (-1, 3)),
)
if len(coords_a) != len(coords_b):
raise ValueError("")
if np.iscomplexobj(coords_a) or np.iscomplexobj(coords_b):
raise TypeError("Complex array!")
if not frac_coords:
cart_a, cart_b = coords_a, coords_b
else:
cart_a = np.reshape(
[self.get_cartesian_coords(vec) for vec in coords_a], (-1, 3)
)
cart_b = np.reshape(
[self.get_cartesian_coords(vec) for vec in coords_b], (-1, 3)
)
return np.array([dot(a, b) for a, b in zip(cart_a, cart_b)]) | 141,668 |
Compute the norm of vector(s).
Args:
coords:
Array-like object with the coordinates.
frac_coords:
Boolean stating whether the vector corresponds to fractional or
cartesian coordinates.
Returns:
one-dimensional `numpy` array. | def norm(self, coords: Vector3Like, frac_coords: bool = True) -> float:
return np.sqrt(self.dot(coords, coords, frac_coords=frac_coords)) | 141,669 |
read route line in gaussian input/output and return functional basis_set
and a dictionary of other route parameters
Args:
route (str) : the route line
return
functional (str) : the method (HF, PBE ...)
basis_set (str) : the basis set
route (dict) : dictionary of parameters | def read_route_line(route):
scrf_patt = re.compile(r"^([sS][cC][rR][fF])\s*=\s*(.+)")
multi_params_patt = re.compile(r"^([A-z]+[0-9]*)[\s=]+\((.*)\)$")
functional = None
basis_set = None
route_params = {}
dieze_tag = None
if route:
if "/" in route:
tok = route.split("/")
functional = tok[0].split()[-1]
basis_set = tok[1].split()[0]
for tok in [functional, basis_set, "/"]:
route = route.replace(tok, "")
for tok in route.split():
if scrf_patt.match(tok):
m = scrf_patt.match(tok)
route_params[m.group(1)] = m.group(2)
elif tok.upper() in ["#", "#N", "#P", "#T"]:
# does not store # in route to avoid error in input
if tok == "#":
dieze_tag = "#N"
else:
dieze_tag = tok
continue
else:
m = re.match(multi_params_patt, tok.strip("#"))
if m:
pars = {}
for par in m.group(2).split(","):
p = par.split("=")
pars[p[0]] = None if len(p) == 1 else p[1]
route_params[m.group(1)] = pars
else:
d = tok.strip("#").split("=")
route_params[d[0]] = None if len(d) == 1 else d[1]
return functional, basis_set, route_params, dieze_tag | 141,675 |
Creates GaussianInput from a string.
Args:
contents: String representing an Gaussian input file.
Returns:
GaussianInput object | def from_string(contents):
lines = [l.strip() for l in contents.split("\n")]
link0_patt = re.compile(r"^(%.+)\s*=\s*(.+)")
link0_dict = {}
for i, l in enumerate(lines):
if link0_patt.match(l):
m = link0_patt.match(l)
link0_dict[m.group(1).strip("=")] = m.group(2)
route_patt = re.compile(r"^#[sSpPnN]*.*")
route = ""
route_index = None
for i, l in enumerate(lines):
if route_patt.match(l):
route += " " + l
route_index = i
# This condition allows for route cards spanning multiple lines
elif (l == "" or l.isspace()) and route_index:
break
functional, basis_set, route_paras, dieze_tag = read_route_line(route)
ind = 2
title = []
while lines[route_index + ind].strip():
title.append(lines[route_index + ind].strip())
ind += 1
title = ' '.join(title)
ind += 1
toks = re.split(r"[,\s]+", lines[route_index + ind])
charge = int(toks[0])
spin_mult = int(toks[1])
coord_lines = []
spaces = 0
input_paras = {}
ind += 1
for i in range(route_index + ind, len(lines)):
if lines[i].strip() == "":
spaces += 1
if spaces >= 2:
d = lines[i].split("=")
if len(d) == 2:
input_paras[d[0]] = d[1]
else:
coord_lines.append(lines[i].strip())
mol = GaussianInput._parse_coords(coord_lines)
mol.set_charge_and_spin(charge, spin_mult)
return GaussianInput(mol, charge=charge, spin_multiplicity=spin_mult,
title=title, functional=functional,
basis_set=basis_set,
route_parameters=route_paras,
input_parameters=input_paras,
link0_parameters=link0_dict,
dieze_tag=dieze_tag) | 141,678 |
Get a matplotlib plot of the potential energy surface.
Args:
coords: internal coordinate name to use as abcissa. | def get_scan_plot(self, coords=None):
from pymatgen.util.plotting import pretty_plot
plt = pretty_plot(12, 8)
d = self.read_scan()
if coords and coords in d["coords"]:
x = d["coords"][coords]
plt.xlabel(coords)
else:
x = range(len(d["energies"]))
plt.xlabel("points")
plt.ylabel("Energy (eV)")
e_min = min(d["energies"])
y = [(e - e_min) * Ha_to_eV for e in d["energies"]]
plt.plot(x, y, "ro--")
return plt | 141,690 |
Save matplotlib plot of the potential energy surface to a file.
Args:
filename: Filename to write to.
img_format: Image format to use. Defaults to EPS.
coords: internal coordinate name to use as abcissa. | def save_scan_plot(self, filename="scan.pdf",
img_format="pdf", coords=None):
plt = self.get_scan_plot(coords)
plt.savefig(filename, format=img_format) | 141,691 |
Save matplotlib plot of the spectre to a file.
Args:
filename: Filename to write to.
img_format: Image format to use. Defaults to EPS.
sigma: Full width at half maximum in eV for normal functions.
step: bin interval in eV | def save_spectre_plot(self, filename="spectre.pdf", img_format="pdf",
sigma=0.05, step=0.01):
d, plt = self.get_spectre_plot(sigma, step)
plt.savefig(filename, format=img_format) | 141,694 |
Cluster sites based on distance and species type.
Args:
mol (Molecule): Molecule **with origin at center of mass**.
tol (float): Tolerance to use.
Returns:
(origin_site, clustered_sites): origin_site is a site at the center
of mass (None if there are no origin atoms). clustered_sites is a
dict of {(avg_dist, species_and_occu): [list of sites]} | def cluster_sites(mol, tol, give_only_index=False):
# Cluster works for dim > 2 data. We just add a dummy 0 for second
# coordinate.
dists = [[np.linalg.norm(site.coords), 0] for site in mol]
import scipy.cluster as spcluster
f = spcluster.hierarchy.fclusterdata(dists, tol, criterion='distance')
clustered_dists = defaultdict(list)
for i, site in enumerate(mol):
clustered_dists[f[i]].append(dists[i])
avg_dist = {label: np.mean(val) for label, val in clustered_dists.items()}
clustered_sites = defaultdict(list)
origin_site = None
for i, site in enumerate(mol):
if avg_dist[f[i]] < tol:
if give_only_index:
origin_site = i
else:
origin_site = site
else:
if give_only_index:
clustered_sites[
(avg_dist[f[i]], site.species)].append(i)
else:
clustered_sites[
(avg_dist[f[i]], site.species)].append(site)
return origin_site, clustered_sites | 141,708 |
Recursive algorithm to permute through all possible combinations of the
initially supplied symmetry operations to arrive at a complete set of
operations mapping a single atom to all other equivalent atoms in the
point group. This assumes that the initial number already uniquely
identifies all operations.
Args:
symmops ([SymmOp]): Initial set of symmetry operations.
Returns:
Full set of symmetry operations. | def generate_full_symmops(symmops, tol):
# Uses an algorithm described in:
# Gregory Butler. Fundamental Algorithms for Permutation Groups.
# Lecture Notes in Computer Science (Book 559). Springer, 1991. page 15
UNIT = np.eye(4)
generators = [op.affine_matrix for op in symmops
if not np.allclose(op.affine_matrix, UNIT)]
if not generators:
# C1 symmetry breaks assumptions in the algorithm afterwards
return symmops
else:
full = list(generators)
for g in full:
for s in generators:
op = np.dot(g, s)
d = np.abs(full - op) < tol
if not np.any(np.all(np.all(d, axis=2), axis=1)):
full.append(op)
d = np.abs(full - UNIT) < tol
if not np.any(np.all(np.all(d, axis=2), axis=1)):
full.append(UNIT)
return [SymmOp(op) for op in full] | 141,709 |
Calculate the weights for a list of kpoints.
Args:
kpoints (Sequence): Sequence of kpoints. np.arrays is fine. Note
that the code does not check that the list of kpoints
provided does not contain duplicates.
atol (float): Tolerance for fractional coordinates comparisons.
Returns:
List of weights, in the SAME order as kpoints. | def get_kpoint_weights(self, kpoints, atol=1e-5):
kpts = np.array(kpoints)
shift = []
mesh = []
for i in range(3):
nonzero = [i for i in kpts[:, i] if abs(i) > 1e-5]
if len(nonzero) != len(kpts):
# gamma centered
if not nonzero:
mesh.append(1)
else:
m = np.abs(np.round(1/np.array(nonzero)))
mesh.append(int(max(m)))
shift.append(0)
else:
# Monk
m = np.abs(np.round(0.5/np.array(nonzero)))
mesh.append(int(max(m)))
shift.append(1)
mapping, grid = spglib.get_ir_reciprocal_mesh(
np.array(mesh), self._cell, is_shift=shift, symprec=self._symprec)
mapping = list(mapping)
grid = (np.array(grid) + np.array(shift) * (0.5, 0.5, 0.5)) / mesh
weights = []
mapped = defaultdict(int)
for k in kpoints:
for i, g in enumerate(grid):
if np.allclose(pbc_diff(k, g), (0, 0, 0), atol=atol):
mapped[tuple(g)] += 1
weights.append(mapping.count(mapping[i]))
break
if (len(mapped) != len(set(mapping))) or (
not all([v == 1 for v in mapped.values()])):
raise ValueError("Unable to find 1:1 corresponding between input "
"kpoints and irreducible grid!")
return [w/sum(weights) for w in weights] | 141,723 |
Check if a particular symmetry operation is a valid symmetry operation
for a molecule, i.e., the operation maps all atoms to another
equivalent atom.
Args:
symmop (SymmOp): Symmetry operation to test.
Returns:
(bool): Whether SymmOp is valid for Molecule. | def is_valid_op(self, symmop):
coords = self.centered_mol.cart_coords
for site in self.centered_mol:
coord = symmop.operate(site.coords)
ind = find_in_coord_list(coords, coord, self.tol)
if not (len(ind) == 1
and self.centered_mol[ind[0]].species
== site.species):
return False
return True | 141,739 |
Find the indices of matches of a particular coord in a coord_list.
Args:
coord_list: List of coords to test
coord: Specific coordinates
atol: Absolute tolerance. Defaults to 1e-8. Accepts both scalar and
array.
Returns:
Indices of matches, e.g., [0, 1, 2, 3]. Empty list if not found. | def find_in_coord_list(coord_list, coord, atol=1e-8):
if len(coord_list) == 0:
return []
diff = np.array(coord_list) - np.array(coord)[None, :]
return np.where(np.all(np.abs(diff) < atol, axis=1))[0] | 141,746 |
Tests if a particular coord is within a coord_list.
Args:
coord_list: List of coords to test
coord: Specific coordinates
atol: Absolute tolerance. Defaults to 1e-8. Accepts both scalar and
array.
Returns:
True if coord is in the coord list. | def in_coord_list(coord_list, coord, atol=1e-8):
return len(find_in_coord_list(coord_list, coord, atol=atol)) > 0 | 141,747 |
Tests if all coords in subset are contained in superset.
Doesn't use periodic boundary conditions
Args:
subset, superset: List of coords
Returns:
True if all of subset is in superset. | def is_coord_subset(subset, superset, atol=1e-8):
c1 = np.array(subset)
c2 = np.array(superset)
is_close = np.all(np.abs(c1[:, None, :] - c2[None, :, :]) < atol, axis=-1)
any_close = np.any(is_close, axis=-1)
return np.all(any_close) | 141,748 |
Gives the index mapping from a subset to a superset.
Subset and superset cannot contain duplicate rows
Args:
subset, superset: List of coords
Returns:
list of indices such that superset[indices] = subset | def coord_list_mapping(subset, superset, atol=1e-8):
c1 = np.array(subset)
c2 = np.array(superset)
inds = np.where(np.all(np.isclose(c1[:, None, :], c2[None, :, :], atol=atol),
axis=2))[1]
result = c2[inds]
if not np.allclose(c1, result, atol=atol):
if not is_coord_subset(subset, superset):
raise ValueError("subset is not a subset of superset")
if not result.shape == c1.shape:
raise ValueError("Something wrong with the inputs, likely duplicates "
"in superset")
return inds | 141,749 |
Gives the index mapping from a subset to a superset.
Superset cannot contain duplicate matching rows
Args:
subset, superset: List of frac_coords
Returns:
list of indices such that superset[indices] = subset | def coord_list_mapping_pbc(subset, superset, atol=1e-8):
atol = np.array([1., 1. ,1.]) * atol
return cuc.coord_list_mapping_pbc(subset, superset, atol) | 141,750 |
Returns an interpolated value by linear interpolation between two values.
This method is written to avoid dependency on scipy, which causes issues on
threading servers.
Args:
x_values: Sequence of x values.
y_values: Corresponding sequence of y values
x: Get value at particular x
Returns:
Value at x. | def get_linear_interpolated_value(x_values, y_values, x):
a = np.array(sorted(zip(x_values, y_values), key=lambda d: d[0]))
ind = np.where(a[:, 0] >= x)[0]
if len(ind) == 0 or ind[0] == 0:
raise ValueError("x is out of range of provided x_values")
i = ind[0]
x1, x2 = a[i - 1][0], a[i][0]
y1, y2 = a[i - 1][1], a[i][1]
return y1 + (y2 - y1) / (x2 - x1) * (x - x1) | 141,751 |
Returns the distances between two lists of coordinates
Args:
coords1: First set of cartesian coordinates.
coords2: Second set of cartesian coordinates.
Returns:
2d array of cartesian distances. E.g the distance between
coords1[i] and coords2[j] is distances[i,j] | def all_distances(coords1, coords2):
c1 = np.array(coords1)
c2 = np.array(coords2)
z = (c1[:, None, :] - c2[None, :, :]) ** 2
return np.sum(z, axis=-1) ** 0.5 | 141,752 |
Get the indices of all points in a fractional coord list that are
equal to a fractional coord (with a tolerance), taking into account
periodic boundary conditions.
Args:
fcoord_list: List of fractional coords
fcoord: A specific fractional coord to test.
atol: Absolute tolerance. Defaults to 1e-8.
Returns:
Indices of matches, e.g., [0, 1, 2, 3]. Empty list if not found. | def find_in_coord_list_pbc(fcoord_list, fcoord, atol=1e-8):
if len(fcoord_list) == 0:
return []
fcoords = np.tile(fcoord, (len(fcoord_list), 1))
fdist = fcoord_list - fcoords
fdist -= np.round(fdist)
return np.where(np.all(np.abs(fdist) < atol, axis=1))[0] | 141,755 |
Tests if a particular fractional coord is within a fractional coord_list.
Args:
fcoord_list: List of fractional coords to test
fcoord: A specific fractional coord to test.
atol: Absolute tolerance. Defaults to 1e-8.
Returns:
True if coord is in the coord list. | def in_coord_list_pbc(fcoord_list, fcoord, atol=1e-8):
return len(find_in_coord_list_pbc(fcoord_list, fcoord, atol=atol)) > 0 | 141,756 |
Tests if all fractional coords in subset are contained in superset.
Args:
subset, superset: List of fractional coords
atol (float or size 3 array): Tolerance for matching
mask (boolean array): Mask of matches that are not allowed.
i.e. if mask[1,2] == True, then subset[1] cannot be matched
to superset[2]
Returns:
True if all of subset is in superset. | def is_coord_subset_pbc(subset, superset, atol=1e-8, mask=None):
c1 = np.array(subset, dtype=np.float64)
c2 = np.array(superset, dtype=np.float64)
if mask is not None:
m = np.array(mask, dtype=np.int)
else:
m = np.zeros((len(subset), len(superset)), dtype=np.int)
atol = np.zeros(3, dtype=np.float64) + atol
return cuc.is_coord_subset_pbc(c1, c2, atol, m) | 141,757 |
Returns the list of points on the original lattice contained in the
supercell in fractional coordinates (with the supercell basis).
e.g. [[2,0,0],[0,1,0],[0,0,1]] returns [[0,0,0],[0.5,0,0]]
Args:
supercell_matrix: 3x3 matrix describing the supercell
Returns:
numpy array of the fractional coordinates | def lattice_points_in_supercell(supercell_matrix):
diagonals = np.array(
[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1],
[1, 1, 0], [1, 1, 1]])
d_points = np.dot(diagonals, supercell_matrix)
mins = np.min(d_points, axis=0)
maxes = np.max(d_points, axis=0) + 1
ar = np.arange(mins[0], maxes[0])[:, None] * \
np.array([1, 0, 0])[None, :]
br = np.arange(mins[1], maxes[1])[:, None] * \
np.array([0, 1, 0])[None, :]
cr = np.arange(mins[2], maxes[2])[:, None] * \
np.array([0, 0, 1])[None, :]
all_points = ar[:, None, None] + br[None, :, None] + cr[None, None, :]
all_points = all_points.reshape((-1, 3))
frac_points = np.dot(all_points, np.linalg.inv(supercell_matrix))
tvects = frac_points[np.all(frac_points < 1 - 1e-10, axis=1)
& np.all(frac_points >= -1e-10, axis=1)]
assert len(tvects) == round(abs(np.linalg.det(supercell_matrix)))
return tvects | 141,758 |
Converts a list of coordinates to barycentric coordinates, given a
simplex with d+1 points. Only works for d >= 2.
Args:
coords: list of n coords to transform, shape should be (n,d)
simplex: list of coordinates that form the simplex, shape should be
(d+1, d)
Returns:
a LIST of barycentric coordinates (even if the original input was 1d) | def barycentric_coords(coords, simplex):
coords = np.atleast_2d(coords)
t = np.transpose(simplex[:-1, :]) - np.transpose(simplex[-1, :])[:, None]
all_but_one = np.transpose(
np.linalg.solve(t, np.transpose(coords - simplex[-1])))
last_coord = 1 - np.sum(all_but_one, axis=-1)[:, None]
return np.append(all_but_one, last_coord, axis=-1) | 141,759 |
Calculates the angle between two vectors.
Args:
v1: Vector 1
v2: Vector 2
units: "degrees" or "radians". Defaults to "degrees".
Returns:
Angle between them in degrees. | def get_angle(v1, v2, units="degrees"):
d = np.dot(v1, v2) / np.linalg.norm(v1) / np.linalg.norm(v2)
d = min(d, 1)
d = max(d, -1)
angle = math.acos(d)
if units == "degrees":
return math.degrees(angle)
elif units == "radians":
return angle
else:
raise ValueError("Invalid units {}".format(units)) | 141,760 |
Initializes a Simplex from vertex coordinates.
Args:
coords ([[float]]): Coords of the vertices of the simplex. E.g.,
[[1, 2, 3], [2, 4, 5], [6, 7, 8], [8, 9, 10]. | def __init__(self, coords):
self._coords = np.array(coords)
self.space_dim, self.simplex_dim = self._coords.shape
self.origin = self._coords[-1]
if self.space_dim == self.simplex_dim + 1:
# precompute augmented matrix for calculating bary_coords
self._aug = np.concatenate([coords, np.ones((self.space_dim, 1))],
axis=-1)
self._aug_inv = np.linalg.inv(self._aug) | 141,761 |
Computes the intersection points of a line with a simplex
Args:
point1, point2 ([float]): Points that determine the line
Returns:
points where the line intersects the simplex (0, 1, or 2) | def line_intersection(self, point1, point2, tolerance=1e-8):
b1 = self.bary_coords(point1)
b2 = self.bary_coords(point2)
l = b1 - b2
# don't use barycentric dimension where line is parallel to face
valid = np.abs(l) > 1e-10
# array of all the barycentric coordinates on the line where
# one of the values is 0
possible = b1 - (b1[valid] / l[valid])[:, None] * l
barys = []
for p in possible:
# it's only an intersection if its in the simplex
if (p >= -tolerance).all():
found = False
# don't return duplicate points
for b in barys:
if np.all(np.abs(b - p) < tolerance):
found = True
break
if not found:
barys.append(p)
assert len(barys) < 3
return [self.point_from_bary_coords(b) for b in barys] | 141,765 |
Use pybtex to validate that a reference is in proper BibTeX format
Args:
reference: A String reference in BibTeX format.
Returns:
Boolean indicating if reference is valid bibtex. | def is_valid_bibtex(reference):
# str is necessary since pybtex seems to have an issue with unicode. The
# filter expression removes all non-ASCII characters.
sio = StringIO(remove_non_ascii(reference))
parser = bibtex.Parser()
errors.set_strict_mode(False)
bib_data = parser.parse_stream(sio)
return len(bib_data.entries) > 0 | 141,768 |
Parses a History Node object from either a dict or a tuple.
Args:
h_node: A dict with name/url/description fields or a 3-element
tuple.
Returns:
History node. | def parse_history_node(h_node):
if isinstance(h_node, dict):
return HistoryNode.from_dict(h_node)
else:
if len(h_node) != 3:
raise ValueError("Invalid History node, "
"should be dict or (name, version, "
"description) tuple: {}".format(h_node))
return HistoryNode(h_node[0], h_node[1], h_node[2]) | 141,769 |
Parses an Author object from either a String, dict, or tuple
Args:
author: A String formatted as "NAME <[email protected]>",
(name, email) tuple, or a dict with name and email keys.
Returns:
An Author object. | def parse_author(author):
if isinstance(author, str):
# Regex looks for whitespace, (any name), whitespace, <, (email),
# >, whitespace
m = re.match(r'\s*(.*?)\s*<(.*?@.*?)>\s*', author)
if not m or m.start() != 0 or m.end() != len(author):
raise ValueError("Invalid author format! {}".format(author))
return Author(m.groups()[0], m.groups()[1])
elif isinstance(author, dict):
return Author.from_dict(author)
else:
if len(author) != 2:
raise ValueError("Invalid author, should be String or (name, "
"email) tuple: {}".format(author))
return Author(author[0], author[1]) | 141,770 |
This function converts a strain to a deformation gradient that will
produce that strain. Supports three methods:
Args:
strain (3x3 array-like): strain matrix
shape: (string): method for determining deformation, supports
"upper" produces an upper triangular defo
"lower" produces a lower triangular defo
"symmetric" produces a symmetric defo | def convert_strain_to_deformation(strain, shape="upper"):
strain = SquareTensor(strain)
ftdotf = 2*strain + np.eye(3)
if shape == "upper":
result = scipy.linalg.cholesky(ftdotf)
elif shape == "symmetric":
result = scipy.linalg.sqrtm(ftdotf)
else:
raise ValueError("shape must be \"upper\" or \"symmetric\"")
return Deformation(result) | 141,776 |
Create a Deformation object. Note that the constructor uses __new__
rather than __init__ according to the standard method of subclassing
numpy ndarrays.
Args:
deformation_gradient (3x3 array-like): the 3x3 array-like
representing the deformation gradient | def __new__(cls, deformation_gradient):
obj = super().__new__(cls, deformation_gradient)
return obj.view(cls) | 141,777 |
Apply the deformation gradient to a structure.
Args:
structure (Structure object): the structure object to
be modified by the deformation | def apply_to_structure(self, structure):
def_struct = structure.copy()
old_latt = def_struct.lattice.matrix
new_latt = np.transpose(np.dot(self, np.transpose(old_latt)))
def_struct.lattice = Lattice(new_latt)
return def_struct | 141,779 |
Factory method for constructing a Deformation object
from a matrix position and amount
Args:
matrixpos (tuple): tuple corresponding the matrix position to
have a perturbation added
amt (float): amount to add to the identity matrix at position
matrixpos | def from_index_amount(cls, matrixpos, amt):
f = np.identity(3)
f[matrixpos] += amt
return cls(f) | 141,780 |
constructs the deformed geometries of a structure. Generates
m + n deformed structures according to the supplied parameters.
Args:
structure (Structure): structure to undergo deformation
norm_strains (list of floats): strain values to apply
to each normal mode.
shear_strains (list of floats): strain values to apply
to each shear mode.
symmetry (bool): whether or not to use symmetry reduction. | def __init__(self, structure, norm_strains=None, shear_strains=None,
symmetry=False):
norm_strains = norm_strains or [-0.01, -0.005, 0.005, 0.01]
shear_strains = shear_strains or [-0.06, -0.03, 0.03, 0.06]
self.undeformed_structure = structure
self.deformations = []
self.def_structs = []
# Generate deformations
for ind in [(0, 0), (1, 1), (2, 2)]:
for amount in norm_strains:
strain = Strain.from_index_amount(ind, amount)
self.deformations.append(strain.get_deformation_matrix())
for ind in [(0, 1), (0, 2), (1, 2)]:
for amount in shear_strains:
strain = Strain.from_index_amount(ind, amount)
self.deformations.append(strain.get_deformation_matrix())
# Perform symmetry reduction if specified
if symmetry:
self.sym_dict = symmetry_reduce(self.deformations, structure)
self.deformations = list(self.sym_dict.keys())
self.deformed_structures = [defo.apply_to_structure(structure)
for defo in self.deformations] | 141,781 |
Create a Strain object. Note that the constructor uses __new__
rather than __init__ according to the standard method of
subclassing numpy ndarrays. Note also that the default constructor
does not include the deformation gradient
Args:
strain_matrix (3x3 array-like): the 3x3 array-like
representing the Green-Lagrange strain | def __new__(cls, strain_matrix):
vscale = np.ones((6,))
vscale[3:] *= 2
obj = super().__new__(cls, strain_matrix, vscale=vscale)
if not obj.is_symmetric():
raise ValueError("Strain objects must be initialized "
"with a symmetric array or a voigt-notation "
"vector with six entries.")
return obj.view(cls) | 141,782 |
Factory method that returns a Strain object from a deformation
gradient
Args:
deformation (3x3 array-like): | def from_deformation(cls, deformation):
dfm = Deformation(deformation)
return cls(0.5 * (np.dot(dfm.trans, dfm) - np.eye(3))) | 141,783 |
Like Deformation.from_index_amount, except generates
a strain from the zero 3x3 tensor or voigt vector with
the amount specified in the index location. Ensures
symmetric strain.
Args:
idx (tuple or integer): index to be perturbed, can be voigt or
full-tensor notation
amount (float): amount to perturb selected index | def from_index_amount(cls, idx, amount):
if np.array(idx).ndim == 0:
v = np.zeros(6)
v[idx] = amount
return cls.from_voigt(v)
elif np.array(idx).ndim == 1:
v = np.zeros((3, 3))
for i in itertools.permutations(idx):
v[i] = amount
return cls(v)
else:
raise ValueError("Index must either be 2-tuple or integer "
"corresponding to full-tensor or voigt index") | 141,784 |
Given a list of coords for 3 points,
Compute the area of this triangle.
Args:
pts: [a, b, c] three points | def get_tri_area(pts):
a, b, c = pts[0], pts[1], pts[2]
v1 = np.array(b) - np.array(a)
v2 = np.array(c) - np.array(a)
area_tri = abs(sp.linalg.norm(sp.cross(v1, v2)) / 2)
return area_tri | 141,787 |
Finds the element from "allowed elements" that (i) possesses the desired
"oxidation state" and (ii) is closest in ionic radius to the target specie
Args:
target: (Specie) provides target ionic radius.
oxidation_state: (float) codopant oxidation state.
allowed_elements: ([str]) List of allowed elements. If None,
all elements are tried.
Returns:
(Specie) with oxidation_state that has ionic radius closest to
target. | def _find_codopant(target, oxidation_state, allowed_elements=None):
ref_radius = target.ionic_radius
candidates = []
symbols = allowed_elements or [el.symbol for el in Element]
for sym in symbols:
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
sp = Specie(sym, oxidation_state)
r = sp.ionic_radius
if r is not None:
candidates.append((r, sp))
except:
pass
return min(candidates, key=lambda l: abs(l[0] / ref_radius - 1))[1] | 141,811 |
This substitutor uses the substitution probability class to
find good substitutions for a given chemistry or structure.
Args:
threshold:
probability threshold for predictions
symprec:
symmetry precision to determine if two structures
are duplicates
kwargs:
kwargs for the SubstitutionProbability object
lambda_table, alpha | def __init__(self, threshold=1e-3, symprec=0.1, **kwargs):
self._kwargs = kwargs
self._sp = SubstitutionProbability(**kwargs)
self._threshold = threshold
self._symprec = symprec | 141,848 |
Convenience method to plot data with trend lines based on polynomial fit.
Args:
x: Sequence of x data.
y: Sequence of y data.
deg (int): Degree of polynomial. Defaults to 1.
xlabel (str): Label for x-axis.
ylabel (str): Label for y-axis.
\\*\\*kwargs: Keyword args passed to pretty_plot.
Returns:
matplotlib.pyplot object. | def pretty_polyfit_plot(x, y, deg=1, xlabel=None, ylabel=None, **kwargs):
plt = pretty_plot(**kwargs)
pp = np.polyfit(x, y, deg)
xp = np.linspace(min(x), max(x), 200)
plt.plot(xp, np.polyval(pp, xp), 'k--', x, y, 'o')
if xlabel:
plt.xlabel(xlabel)
if ylabel:
plt.ylabel(ylabel)
return plt | 141,858 |
Converts str of chemical formula into
latex format for labelling purposes
Args:
formula (str): Chemical formula | def format_formula(formula):
formatted_formula = ""
number_format = ""
for i, s in enumerate(formula):
if s.isdigit():
if not number_format:
number_format = "_{"
number_format += s
if i == len(formula) - 1:
number_format += "}"
formatted_formula += number_format
else:
if number_format:
number_format += "}"
formatted_formula += number_format
number_format = ""
formatted_formula += s
return r"$%s$" % (formatted_formula) | 141,860 |
Helper function used in plot functions supporting an optional Axes argument.
If ax is None, we build the `matplotlib` figure and create the Axes else
we return the current active figure.
Args:
kwargs: keyword arguments are passed to plt.figure if ax is not None.
Returns:
ax: :class:`Axes` object
figure: matplotlib figure
plt: matplotlib pyplot module. | def get_ax_fig_plt(ax=None, **kwargs):
import matplotlib.pyplot as plt
if ax is None:
fig = plt.figure(**kwargs)
ax = fig.add_subplot(1, 1, 1)
else:
fig = plt.gcf()
return ax, fig, plt | 141,862 |
Helper function used in plot functions supporting an optional Axes3D
argument. If ax is None, we build the `matplotlib` figure and create the
Axes3D else we return the current active figure.
Args:
kwargs: keyword arguments are passed to plt.figure if ax is not None.
Returns:
ax: :class:`Axes` object
figure: matplotlib figure
plt: matplotlib pyplot module. | def get_ax3d_fig_plt(ax=None, **kwargs):
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
if ax is None:
fig = plt.figure(**kwargs)
ax = axes3d.Axes3D(fig)
else:
fig = plt.gcf()
return ax, fig, plt | 141,863 |
Method to sum two densities.
Args:
density1: First density.
density2: Second density.
Returns:
Dict of {spin: density}. | def add_densities(density1, density2):
return {spin: np.array(density1[spin]) + np.array(density2[spin])
for spin in density1.keys()} | 141,866 |
Returns the equilibrium fermi-dirac.
Args:
E (float): energy in eV
fermi (float): the fermi level in eV
T (float): the temperature in kelvin | def f0(E, fermi, T):
return 1. / (1. + np.exp((E - fermi) / (_cd("Boltzmann constant in eV/K") * T))) | 141,867 |
Expects a DOS object and finds the cbm and vbm.
Args:
tol: tolerance in occupations for determining the gap
abs_tol: An absolute tolerance (True) and a relative one (False)
spin: Possible values are None - finds the gap in the summed
densities, Up - finds the gap in the up spin channel,
Down - finds the gap in the down spin channel.
Returns:
(cbm, vbm): float in eV corresponding to the gap | def get_cbm_vbm(self, tol=0.001, abs_tol=False, spin=None):
# determine tolerance
if spin is None:
tdos = self.y if len(self.ydim) == 1 else np.sum(self.y, axis=1)
elif spin == Spin.up:
tdos = self.y[:, 0]
else:
tdos = self.y[:, 1]
if not abs_tol:
tol = tol * tdos.sum() / tdos.shape[0]
# find index of fermi energy
i_fermi = 0
while self.x[i_fermi] <= self.efermi:
i_fermi += 1
# work backwards until tolerance is reached
i_gap_start = i_fermi
while i_gap_start - 1 >= 0 and tdos[i_gap_start - 1] <= tol:
i_gap_start -= 1
# work forwards until tolerance is reached
i_gap_end = i_gap_start
while i_gap_end < tdos.shape[0] and tdos[i_gap_end] <= tol:
i_gap_end += 1
i_gap_end -= 1
return self.x[i_gap_end], self.x[i_gap_start] | 141,872 |
Expects a DOS object and finds the gap.
Args:
tol: tolerance in occupations for determining the gap
abs_tol: An absolute tolerance (True) and a relative one (False)
spin: Possible values are None - finds the gap in the summed
densities, Up - finds the gap in the up spin channel,
Down - finds the gap in the down spin channel.
Returns:
gap in eV | def get_gap(self, tol=0.001, abs_tol=False, spin=None):
(cbm, vbm) = self.get_cbm_vbm(tol, abs_tol, spin)
return max(cbm - vbm, 0.0) | 141,873 |
Returns the density of states for a particular spin.
Args:
spin: Spin
Returns:
Returns the density of states for a particular spin. If Spin is
None, the sum of all spins is returned. | def get_densities(self, spin=None):
if self.densities is None:
result = None
elif spin is None:
if Spin.down in self.densities:
result = self.densities[Spin.up] + self.densities[Spin.down]
else:
result = self.densities[Spin.up]
else:
result = self.densities[spin]
return result | 141,876 |
Returns the Dict representation of the densities, {Spin: densities},
but with a Gaussian smearing of std dev sigma applied about the fermi
level.
Args:
sigma: Std dev of Gaussian smearing function.
Returns:
Dict of Gaussian-smeared densities. | def get_smeared_densities(self, sigma):
from scipy.ndimage.filters import gaussian_filter1d
smeared_dens = {}
diff = [self.energies[i + 1] - self.energies[i]
for i in range(len(self.energies) - 1)]
avgdiff = sum(diff) / len(diff)
for spin, dens in self.densities.items():
smeared_dens[spin] = gaussian_filter1d(dens, sigma / avgdiff)
return smeared_dens | 141,877 |
Adds two DOS together. Checks that energy scales are the same.
Otherwise, a ValueError is thrown.
Args:
other: Another DOS object.
Returns:
Sum of the two DOSs. | def __add__(self, other):
if not all(np.equal(self.energies, other.energies)):
raise ValueError("Energies of both DOS are not compatible!")
densities = {spin: self.densities[spin] + other.densities[spin]
for spin in self.densities.keys()}
return Dos(self.efermi, self.energies, densities) | 141,878 |
Returns interpolated density for a particular energy.
Args:
energy: Energy to return the density for. | def get_interpolated_value(self, energy):
f = {}
for spin in self.densities.keys():
f[spin] = get_linear_interpolated_value(self.energies,
self.densities[spin],
energy)
return f | 141,879 |
Expects a DOS object and finds the cbm and vbm.
Args:
tol: tolerance in occupations for determining the gap
abs_tol: An absolute tolerance (True) and a relative one (False)
spin: Possible values are None - finds the gap in the summed
densities, Up - finds the gap in the up spin channel,
Down - finds the gap in the down spin channel.
Returns:
(cbm, vbm): float in eV corresponding to the gap | def get_cbm_vbm(self, tol=0.001, abs_tol=False, spin=None):
# determine tolerance
tdos = self.get_densities(spin)
if not abs_tol:
tol = tol * tdos.sum() / tdos.shape[0]
# find index of fermi energy
i_fermi = 0
while self.energies[i_fermi] <= self.efermi:
i_fermi += 1
# work backwards until tolerance is reached
i_gap_start = i_fermi
while i_gap_start - 1 >= 0 and tdos[i_gap_start - 1] <= tol:
i_gap_start -= 1
# work forwards until tolerance is reached
i_gap_end = i_gap_start
while i_gap_end < tdos.shape[0] and tdos[i_gap_end] <= tol:
i_gap_end += 1
i_gap_end -= 1
return self.energies[i_gap_end], self.energies[i_gap_start] | 141,880 |
Get the Dos for a particular orbital of a particular site.
Args:
site: Site in Structure associated with CompleteDos.
orbital: Orbital in the site.
Returns:
Dos containing densities for orbital of site. | def get_site_orbital_dos(self, site, orbital):
return Dos(self.efermi, self.energies, self.pdos[site][orbital]) | 141,888 |
Get the total Dos for a site (all orbitals).
Args:
site: Site in Structure associated with CompleteDos.
Returns:
Dos containing summed orbital densities for site. | def get_site_dos(self, site):
site_dos = functools.reduce(add_densities, self.pdos[site].values())
return Dos(self.efermi, self.energies, site_dos) | 141,889 |
Get orbital projected Dos of a particular site
Args:
site: Site in Structure associated with CompleteDos.
Returns:
dict of {orbital: Dos}, e.g. {"s": Dos object, ...} | def get_site_spd_dos(self, site):
spd_dos = dict()
for orb, pdos in self.pdos[site].items():
orbital_type = _get_orb_type(orb)
if orbital_type in spd_dos:
spd_dos[orbital_type] = add_densities(spd_dos[orbital_type], pdos)
else:
spd_dos[orbital_type] = pdos
return {orb: Dos(self.efermi, self.energies, densities)
for orb, densities in spd_dos.items()} | 141,890 |
Get the t2g, eg projected DOS for a particular site.
Args:
site: Site in Structure associated with CompleteDos.
Returns:
A dict {"e_g": Dos, "t2g": Dos} containing summed e_g and t2g DOS
for the site. | def get_site_t2g_eg_resolved_dos(self, site):
t2g_dos = []
eg_dos = []
for s, atom_dos in self.pdos.items():
if s == site:
for orb, pdos in atom_dos.items():
if orb in (Orbital.dxy, Orbital.dxz, Orbital.dyz):
t2g_dos.append(pdos)
elif orb in (Orbital.dx2, Orbital.dz2):
eg_dos.append(pdos)
return {"t2g": Dos(self.efermi, self.energies,
functools.reduce(add_densities, t2g_dos)),
"e_g": Dos(self.efermi, self.energies,
functools.reduce(add_densities, eg_dos))} | 141,891 |
Get element and spd projected Dos
Args:
el: Element in Structure.composition associated with LobsterCompleteDos
Returns:
dict of {Element: {"S": densities, "P": densities, "D": densities}} | def get_element_spd_dos(self, el):
el = get_el_sp(el)
el_dos = {}
for site, atom_dos in self.pdos.items():
if site.specie == el:
for orb, pdos in atom_dos.items():
orbital_type = _get_orb_type_lobster(orb)
if orbital_type not in el_dos:
el_dos[orbital_type] = pdos
else:
el_dos[orbital_type] = \
add_densities(el_dos[orbital_type], pdos)
return {orb: Dos(self.efermi, self.energies, densities)
for orb, densities in el_dos.items()} | 141,896 |
Tolerances as defined in StructureMatcher. Tolerances will be
gradually decreased until only a single match is found (if possible).
Args:
initial_ltol: fractional length tolerance
initial_stol: site tolerance
initial_angle_tol: angle tolerance | def __init__(self, initial_ltol=0.2, initial_stol=0.3, initial_angle_tol=5):
self.initial_ltol = initial_ltol
self.initial_stol = initial_stol
self.initial_angle_tol = initial_angle_tol | 141,898 |
Generates the transformation matricies that convert a set of 2D
vectors into a super lattice of integer area multiple as proven
in Cassels:
Cassels, John William Scott. An introduction to the geometry of
numbers. Springer Science & Business Media, 2012.
Args:
area_multiple(int): integer multiple of unit cell area for super
lattice area
Returns:
matrix_list: transformation matricies to covert unit vectors to
super lattice vectors | def gen_sl_transform_matricies(area_multiple):
return [np.array(((i, j), (0, area_multiple / i)))
for i in get_factors(area_multiple)
for j in range(area_multiple // i)] | 141,906 |
Determine if two sets of vectors are the same within length and angle
tolerances
Args:
vec_set1(array[array]): an array of two vectors
vec_set2(array[array]): second array of two vectors | def is_same_vectors(self, vec_set1, vec_set2):
if (np.absolute(rel_strain(vec_set1[0], vec_set2[0])) >
self.max_length_tol):
return False
elif (np.absolute(rel_strain(vec_set1[1], vec_set2[1])) >
self.max_length_tol):
return False
elif (np.absolute(rel_angle(vec_set1, vec_set2)) >
self.max_angle_tol):
return False
else:
return True | 141,910 |
Returns dict which contains ZSL match
Args:
film_miller(array)
substrate_miller(array) | def match_as_dict(self, film_sl_vectors, substrate_sl_vectors, film_vectors, substrate_vectors, match_area):
d = {}
d["film_sl_vecs"] = np.asarray(film_sl_vectors)
d["sub_sl_vecs"] = np.asarray(substrate_sl_vectors)
d["match_area"] = match_area
d["film_vecs"] = np.asarray(film_vectors)
d["sub_vecs"] = np.asarray(substrate_vectors)
return d | 141,914 |
Initializes the substrate analyzer
Args:
zslgen(ZSLGenerator): Defaults to a ZSLGenerator with standard
tolerances, but can be fed one with custom tolerances
film_max_miller(int): maximum miller index to generate for film
surfaces
substrate_max_miller(int): maximum miller index to generate for
substrate surfaces | def __init__(self, zslgen=ZSLGenerator(), film_max_miller=1, substrate_max_miller=1):
self.zsl = zslgen
self.film_max_miller = film_max_miller
self.substrate_max_miller = substrate_max_miller | 141,915 |
Generates the film/substrate slab combinations for a set of given
miller indicies
Args:
film_millers(array): all miller indices to generate slabs for
film
substrate_millers(array): all miller indicies to generate slabs
for substrate | def generate_surface_vectors(self, film_millers, substrate_millers):
vector_sets = []
for f in film_millers:
film_slab = SlabGenerator(self.film, f, 20, 15,
primitive=False).get_slab()
film_vectors = reduce_vectors(film_slab.lattice.matrix[0],
film_slab.lattice.matrix[1])
for s in substrate_millers:
substrate_slab = SlabGenerator(self.substrate, s, 20, 15,
primitive=False).get_slab()
substrate_vectors = reduce_vectors(
substrate_slab.lattice.matrix[0],
substrate_slab.lattice.matrix[1])
vector_sets.append((film_vectors, substrate_vectors, f, s))
return vector_sets | 141,916 |
Creates XYZ object from a string.
Args:
contents: String representing an XYZ file.
Returns:
XYZ object | def from_string(contents):
if contents[-1] != "\n":
contents += "\n"
white_space = r"[ \t\r\f\v]"
natoms_line = white_space + r"*\d+" + white_space + r"*\n"
comment_line = r"[^\n]*\n"
coord_lines = r"(\s*\w+\s+[0-9\-\+\.eEdD]+\s+[0-9\-\+\.eEdD]+\s+[0-9\-\+\.eEdD]+\s*\n)+"
frame_pattern_text = natoms_line + comment_line + coord_lines
pat = re.compile(frame_pattern_text, re.MULTILINE)
mols = []
for xyz_match in pat.finditer(contents):
xyz_text = xyz_match.group(0)
mols.append(XYZ._from_frame_string(xyz_text))
return XYZ(mols) | 141,921 |
Returns Ea, c, standard error of Ea from the Arrhenius fit:
D = c * exp(-Ea/kT)
Args:
temps ([float]): A sequence of temperatures. units: K
diffusivities ([float]): A sequence of diffusivities (e.g.,
from DiffusionAnalyzer.diffusivity). units: cm^2/s | def fit_arrhenius(temps, diffusivities):
t_1 = 1 / np.array(temps)
logd = np.log(diffusivities)
# Do a least squares regression of log(D) vs 1/T
a = np.array([t_1, np.ones(len(temps))]).T
w, res, _, _ = np.linalg.lstsq(a, logd, rcond=None)
w = np.array(w)
n = len(temps)
if n > 2:
std_Ea = (res[0] / (n - 2) / (
n * np.var(t_1))) ** 0.5 * const.k / const.e
else:
std_Ea = None
return -w[0] * const.k / const.e, np.exp(w[1]), std_Ea | 141,955 |
Returns (Arrhenius) extrapolated diffusivity at new_temp
Args:
temps ([float]): A sequence of temperatures. units: K
diffusivities ([float]): A sequence of diffusivities (e.g.,
from DiffusionAnalyzer.diffusivity). units: cm^2/s
new_temp (float): desired temperature. units: K
Returns:
(float) Diffusivity at extrapolated temp in mS/cm. | def get_extrapolated_diffusivity(temps, diffusivities, new_temp):
Ea, c, _ = fit_arrhenius(temps, diffusivities)
return c * np.exp(-Ea / (const.k / const.e * new_temp)) | 141,956 |
Returns an iterator for the drift-corrected structures. Use of
iterator is to reduce memory usage as # of structures in MD can be
huge. You don't often need all the structures all at once.
Args:
start, stop, step (int): applies a start/stop/step to the iterator.
Faster than applying it after generation, as it reduces the
number of structures created. | def get_drift_corrected_structures(self, start=None, stop=None, step=None):
coords = np.array(self.structure.cart_coords)
species = self.structure.species_and_occu
lattices = self.lattices
nsites, nsteps, dim = self.corrected_displacements.shape
for i in range(start or 0, stop or nsteps, step or 1):
latt = lattices[0] if len(lattices) == 1 else lattices[i]
yield Structure(
latt, species,
coords + self.corrected_displacements[:, i, :],
coords_are_cartesian=True) | 141,960 |
Provides a summary of diffusion information.
Args:
include_msd_t (bool): Whether to include mean square displace and
time data with the data.
include_msd_t (bool): Whether to include mean square charge displace and
time data with the data.
Returns:
(dict) of diffusion and conductivity data. | def get_summary_dict(self, include_msd_t=False, include_mscd_t=False):
d = {
"D": self.diffusivity,
"D_sigma": self.diffusivity_std_dev,
"D_charge": self.chg_diffusivity,
"D_charge_sigma": self.chg_diffusivity_std_dev,
"S": self.conductivity,
"S_sigma": self.conductivity_std_dev,
"S_charge": self.chg_conductivity,
"D_components": self.diffusivity_components.tolist(),
"S_components": self.conductivity_components.tolist(),
"D_components_sigma": self.diffusivity_components_std_dev.tolist(),
"S_components_sigma": self.conductivity_components_std_dev.tolist(),
"specie": str(self.specie),
"step_skip": self.step_skip,
"time_step": self.time_step,
"temperature": self.temperature,
"max_framework_displacement": self.max_framework_displacement,
"Haven_ratio": self.haven_ratio
}
if include_msd_t:
d["msd"] = self.msd.tolist()
d["msd_components"] = self.msd_components.tolist()
d["dt"] = self.dt.tolist()
if include_mscd_t:
d["mscd"] = self.mscd.tolist()
return d | 141,961 |
Get the plot of the smoothed msd vs time graph. Useful for
checking convergence. This can be written to an image file.
Args:
plt: A plot object. Defaults to None, which means one will be
generated.
mode (str): Determines type of msd plot. By "species", "sites",
or direction (default). If mode = "mscd", the smoothed mscd vs.
time will be plotted. | def get_msd_plot(self, plt=None, mode="specie"):
from pymatgen.util.plotting import pretty_plot
plt = pretty_plot(12, 8, plt=plt)
if np.max(self.dt) > 100000:
plot_dt = self.dt / 1000
unit = 'ps'
else:
plot_dt = self.dt
unit = 'fs'
if mode == "species":
for sp in sorted(self.structure.composition.keys()):
indices = [i for i, site in enumerate(self.structure) if
site.specie == sp]
sd = np.average(self.sq_disp_ions[indices, :], axis=0)
plt.plot(plot_dt, sd, label=sp.__str__())
plt.legend(loc=2, prop={"size": 20})
elif mode == "sites":
for i, site in enumerate(self.structure):
sd = self.sq_disp_ions[i, :]
plt.plot(plot_dt, sd, label="%s - %d" % (
site.specie.__str__(), i))
plt.legend(loc=2, prop={"size": 20})
elif mode == "mscd":
plt.plot(plot_dt, self.mscd, 'r')
plt.legend(["Overall"], loc=2, prop={"size": 20})
else:
# Handle default / invalid mode case
plt.plot(plot_dt, self.msd, 'k')
plt.plot(plot_dt, self.msd_components[:, 0], 'r')
plt.plot(plot_dt, self.msd_components[:, 1], 'g')
plt.plot(plot_dt, self.msd_components[:, 2], 'b')
plt.legend(["Overall", "a", "b", "c"], loc=2, prop={"size": 20})
plt.xlabel("Timestep ({})".format(unit))
if mode == "mscd":
plt.ylabel("MSCD ($\\AA^2$)")
else:
plt.ylabel("MSD ($\\AA^2$)")
plt.tight_layout()
return plt | 141,963 |
Writes MSD data to a csv file that can be easily plotted in other
software.
Args:
filename (str): Filename. Supported formats are csv and dat. If
the extension is csv, a csv file is written. Otherwise,
a dat format is assumed. | def export_msdt(self, filename):
fmt = "csv" if filename.lower().endswith(".csv") else "dat"
delimiter = ", " if fmt == "csv" else " "
with open(filename, "wt") as f:
if fmt == "dat":
f.write("# ")
f.write(delimiter.join(["t", "MSD", "MSD_a", "MSD_b", "MSD_c",
"MSCD"]))
f.write("\n")
for dt, msd, msdc, mscd in zip(self.dt, self.msd,
self.msd_components, self.mscd):
f.write(delimiter.join(["%s" % v for v in [dt, msd] + list(
msdc) + [mscd]]))
f.write("\n") | 141,964 |
True if element:amounts are exactly the same, i.e.,
oxidation state is not considered.
Args:
sp1: First species. A dict of {specie/element: amt} as per the
definition in Site and PeriodicSite.
sp2: Second species. A dict of {specie/element: amt} as per the
definition in Site and PeriodicSite.
Returns:
Boolean indicating whether species are the same based on element
and amounts. | def are_equal(self, sp1, sp2):
comp1 = Composition(sp1)
comp2 = Composition(sp2)
return comp1.get_el_amt_dict() == comp2.get_el_amt_dict() | 142,097 |
True if there is some overlap in composition between the species
Args:
sp1: First species. A dict of {specie/element: amt} as per the
definition in Site and PeriodicSite.
sp2: Second species. A dict of {specie/element: amt} as per the
definition in Site and PeriodicSite.
Returns:
True always | def are_equal(self, sp1, sp2):
set1 = set(sp1.elements)
set2 = set(sp2.elements)
return set1.issubset(set2) or set2.issubset(set1) | 142,098 |
Yields lattices for s with lengths and angles close to the
lattice of target_s. If supercell_size is specified, the
returned lattice will have that number of primitive cells
in it
Args:
s, target_s: Structure objects | def _get_lattices(self, target_lattice, s, supercell_size=1):
lattices = s.lattice.find_all_mappings(
target_lattice, ltol=self.ltol, atol=self.angle_tol,
skip_rotation_matrix=True)
for l, _, scale_m in lattices:
if abs(abs(np.linalg.det(scale_m)) - supercell_size) < 0.5:
yield l, scale_m | 142,102 |
Fit two structures.
Args:
struct1 (Structure): 1st structure
struct2 (Structure): 2nd structure
Returns:
True or False. | def fit(self, struct1, struct2):
struct1, struct2 = self._process_species([struct1, struct2])
if not self._subset and self._comparator.get_hash(struct1.composition) \
!= self._comparator.get_hash(struct2.composition):
return None
struct1, struct2, fu, s1_supercell = self._preprocess(struct1, struct2)
match = self._match(struct1, struct2, fu, s1_supercell,
break_on_match=True)
if match is None:
return False
else:
return match[0] <= self.stol | 142,107 |
Calculate RMS displacement between two structures
Args:
struct1 (Structure): 1st structure
struct2 (Structure): 2nd structure
Returns:
rms displacement normalized by (Vol / nsites) ** (1/3)
and maximum distance between paired sites. If no matching
lattice is found None is returned. | def get_rms_dist(self, struct1, struct2):
struct1, struct2 = self._process_species([struct1, struct2])
struct1, struct2, fu, s1_supercell = self._preprocess(struct1, struct2)
match = self._match(struct1, struct2, fu, s1_supercell, use_rms=True,
break_on_match=False)
if match is None:
return None
else:
return match[0], max(match[1]) | 142,108 |
Matches struct2 onto struct1 (which should contain all sites in
struct2).
Args:
struct1, struct2 (Structure): structures to be matched
fu (int): size of supercell to create
s1_supercell (bool): whether to create the supercell of
struct1 (vs struct2)
use_rms (bool): whether to minimize the rms of the matching
break_on_match (bool): whether to stop search at first
valid match | def _strict_match(self, struct1, struct2, fu, s1_supercell=True,
use_rms=False, break_on_match=False):
if fu < 1:
raise ValueError("fu cannot be less than 1")
mask, s1_t_inds, s2_t_ind = self._get_mask(struct1, struct2,
fu, s1_supercell)
if mask.shape[0] > mask.shape[1]:
raise ValueError('after supercell creation, struct1 must '
'have more sites than struct2')
# check that a valid mapping exists
if (not self._subset) and mask.shape[1] != mask.shape[0]:
return None
if LinearAssignment(mask).min_cost > 0:
return None
best_match = None
# loop over all lattices
for s1fc, s2fc, avg_l, sc_m in \
self._get_supercells(struct1, struct2, fu, s1_supercell):
# compute fractional tolerance
normalization = (len(s1fc) / avg_l.volume) ** (1/3)
inv_abc = np.array(avg_l.reciprocal_lattice.abc)
frac_tol = inv_abc * self.stol / (np.pi * normalization)
# loop over all translations
for s1i in s1_t_inds:
t = s1fc[s1i] - s2fc[s2_t_ind]
t_s2fc = s2fc + t
if self._cmp_fstruct(s1fc, t_s2fc, frac_tol, mask):
inv_lll_abc = np.array(avg_l.get_lll_reduced_lattice().reciprocal_lattice.abc)
lll_frac_tol = inv_lll_abc * self.stol / (np.pi * normalization)
dist, t_adj, mapping = self._cart_dists(
s1fc, t_s2fc, avg_l, mask, normalization, lll_frac_tol)
if use_rms:
val = np.linalg.norm(dist) / len(dist) ** 0.5
else:
val = max(dist)
if best_match is None or val < best_match[0]:
total_t = t + t_adj
total_t -= np.round(total_t)
best_match = val, dist, sc_m, total_t, mapping
if (break_on_match or val < 1e-5) and val < self.stol:
return best_match
if best_match and best_match[0] < self.stol:
return best_match | 142,112 |
Given a list of structures, use fit to group
them by structural equality.
Args:
s_list ([Structure]): List of structures to be grouped
anonymous (bool): Wheher to use anonymous mode.
Returns:
A list of lists of matched structures
Assumption: if s1 == s2 but s1 != s3, than s2 and s3 will be put
in different groups without comparison. | def group_structures(self, s_list, anonymous=False):
if self._subset:
raise ValueError("allow_subset cannot be used with"
" group_structures")
original_s_list = list(s_list)
s_list = self._process_species(s_list)
# Use structure hash to pre-group structures
if anonymous:
c_hash = lambda c: c.anonymized_formula
else:
c_hash = self._comparator.get_hash
s_hash = lambda s: c_hash(s[1].composition)
sorted_s_list = sorted(enumerate(s_list), key=s_hash)
all_groups = []
# For each pre-grouped list of structures, perform actual matching.
for k, g in itertools.groupby(sorted_s_list, key=s_hash):
unmatched = list(g)
while len(unmatched) > 0:
i, refs = unmatched.pop(0)
matches = [i]
if anonymous:
inds = filter(lambda i: self.fit_anonymous(refs,
unmatched[i][1]), list(range(len(unmatched))))
else:
inds = filter(lambda i: self.fit(refs, unmatched[i][1]),
list(range(len(unmatched))))
inds = list(inds)
matches.extend([unmatched[i][0] for i in inds])
unmatched = [unmatched[i] for i in range(len(unmatched))
if i not in inds]
all_groups.append([original_s_list[i] for i in matches])
return all_groups | 142,113 |
Tries all permutations of matching struct1 to struct2.
Args:
struct1, struct2 (Structure): Preprocessed input structures
Returns:
List of (mapping, match) | def _anonymous_match(self, struct1, struct2, fu, s1_supercell=True,
use_rms=False, break_on_match=False, single_match=False):
if not isinstance(self._comparator, SpeciesComparator):
raise ValueError('Anonymous fitting currently requires SpeciesComparator')
# check that species lists are comparable
sp1 = struct1.composition.elements
sp2 = struct2.composition.elements
if len(sp1) != len(sp2):
return None
ratio = fu if s1_supercell else 1/fu
swapped = len(struct1) * ratio < len(struct2)
s1_comp = struct1.composition
s2_comp = struct2.composition
matches = []
for perm in itertools.permutations(sp2):
sp_mapping = dict(zip(sp1, perm))
# do quick check that compositions are compatible
mapped_comp = Composition({sp_mapping[k]: v
for k, v in s1_comp.items()})
if (not self._subset) and (
self._comparator.get_hash(mapped_comp) !=
self._comparator.get_hash(s2_comp)):
continue
mapped_struct = struct1.copy()
mapped_struct.replace_species(sp_mapping)
if swapped:
m = self._strict_match(struct2, mapped_struct, fu,
(not s1_supercell), use_rms,
break_on_match)
else:
m = self._strict_match(mapped_struct, struct2, fu, s1_supercell,
use_rms, break_on_match)
if m:
matches.append((sp_mapping, m))
if single_match:
break
return matches | 142,116 |
Performs an anonymous fitting, which allows distinct species in one
structure to map to another. E.g., to compare if the Li2O and Na2O
structures are similar.
Args:
struct1 (Structure): 1st structure
struct2 (Structure): 2nd structure
Returns:
True/False: Whether a species mapping can map struct1 to stuct2 | def fit_anonymous(self, struct1, struct2, niggli=True):
struct1, struct2 = self._process_species([struct1, struct2])
struct1, struct2, fu, s1_supercell = self._preprocess(struct1, struct2,
niggli)
matches = self._anonymous_match(struct1, struct2, fu, s1_supercell,
break_on_match=True, single_match=True)
if matches:
return True
else:
return False | 142,120 |
Convenience constructor to make a ConversionElectrode from a
composition and a phase diagram.
Args:
comp:
Starting composition for ConversionElectrode, e.g.,
Composition("FeF3")
pd:
A PhaseDiagram of the relevant system (e.g., Li-Fe-F)
working_ion_symbol:
Element symbol of working ion. Defaults to Li. | def from_composition_and_pd(comp, pd, working_ion_symbol="Li"):
working_ion = Element(working_ion_symbol)
entry = None
working_ion_entry = None
for e in pd.stable_entries:
if e.composition.reduced_formula == comp.reduced_formula:
entry = e
elif e.is_element and \
e.composition.reduced_formula == working_ion_symbol:
working_ion_entry = e
if not entry:
raise ValueError("Not stable compound found at composition {}."
.format(comp))
profile = pd.get_element_profile(working_ion, comp)
# Need to reverse because voltage goes form most charged to most
# discharged.
profile.reverse()
if len(profile) < 2:
return None
working_ion_entry = working_ion_entry
working_ion = working_ion_entry.composition.elements[0].symbol
normalization_els = {}
for el, amt in comp.items():
if el != Element(working_ion):
normalization_els[el] = amt
vpairs = [ConversionVoltagePair.from_steps(profile[i], profile[i + 1],
normalization_els)
for i in range(len(profile) - 1)]
return ConversionElectrode(vpairs, working_ion_entry, comp) | 142,128 |
Convenience constructor to make a ConversionElectrode from a
composition and all entries in a chemical system.
Args:
comp: Starting composition for ConversionElectrode, e.g.,
Composition("FeF3")
entries_in_chemsys: Sequence containing all entries in a
chemical system. E.g., all Li-Fe-F containing entries.
working_ion_symbol: Element symbol of working ion. Defaults to Li. | def from_composition_and_entries(comp, entries_in_chemsys,
working_ion_symbol="Li"):
pd = PhaseDiagram(entries_in_chemsys)
return ConversionElectrode.from_composition_and_pd(comp, pd,
working_ion_symbol) | 142,129 |
Creates a ConversionVoltagePair from two steps in the element profile
from a PD analysis.
Args:
step1: Starting step
step2: Ending step
normalization_els: Elements to normalize the reaction by. To
ensure correct capacities. | def from_steps(step1, step2, normalization_els):
working_ion_entry = step1["element_reference"]
working_ion = working_ion_entry.composition.elements[0].symbol
working_ion_valence = max(Element(working_ion).oxidation_states)
voltage = (-step1["chempot"] + working_ion_entry.energy_per_atom)/working_ion_valence
mAh = (step2["evolution"] - step1["evolution"]) \
* Charge(1, "e").to("C") * Time(1, "s").to("h") * N_A * 1000*working_ion_valence
licomp = Composition(working_ion)
prev_rxn = step1["reaction"]
reactants = {comp: abs(prev_rxn.get_coeff(comp))
for comp in prev_rxn.products if comp != licomp}
curr_rxn = step2["reaction"]
products = {comp: abs(curr_rxn.get_coeff(comp))
for comp in curr_rxn.products if comp != licomp}
reactants[licomp] = (step2["evolution"] - step1["evolution"])
rxn = BalancedReaction(reactants, products)
for el, amt in normalization_els.items():
if rxn.get_el_amount(el) > 1e-6:
rxn.normalize_to_element(el, amt)
break
prev_mass_dischg = sum([prev_rxn.all_comp[i].weight
* abs(prev_rxn.coeffs[i])
for i in range(len(prev_rxn.all_comp))]) / 2
vol_charge = sum([abs(prev_rxn.get_coeff(e.composition))
* e.structure.volume
for e in step1["entries"]
if e.composition.reduced_formula != working_ion])
mass_discharge = sum([curr_rxn.all_comp[i].weight
* abs(curr_rxn.coeffs[i])
for i in range(len(curr_rxn.all_comp))]) / 2
mass_charge = prev_mass_dischg
mass_discharge = mass_discharge
vol_discharge = sum([abs(curr_rxn.get_coeff(e.composition))
* e.structure.volume
for e in step2["entries"]
if e.composition.reduced_formula != working_ion])
totalcomp = Composition({})
for comp in prev_rxn.products:
if comp.reduced_formula != working_ion:
totalcomp += comp * abs(prev_rxn.get_coeff(comp))
frac_charge = totalcomp.get_atomic_fraction(Element(working_ion))
totalcomp = Composition({})
for comp in curr_rxn.products:
if comp.reduced_formula != working_ion:
totalcomp += comp * abs(curr_rxn.get_coeff(comp))
frac_discharge = totalcomp.get_atomic_fraction(Element(working_ion))
rxn = rxn
entries_charge = step2["entries"]
entries_discharge = step1["entries"]
return ConversionVoltagePair(rxn, voltage, mAh, vol_charge,
vol_discharge, mass_charge,
mass_discharge,
frac_charge, frac_discharge,
entries_charge, entries_discharge,
working_ion_entry) | 142,137 |
Initializes a PCAN Channel
Parameters:
Channel : A TPCANHandle representing a PCAN Channel
Btr0Btr1 : The speed for the communication (BTR0BTR1 code)
HwType : NON PLUG&PLAY: The type of hardware and operation mode
IOPort : NON PLUG&PLAY: The I/O address for the parallel port
Interrupt: NON PLUG&PLAY: Interrupt number of the parallel port
Returns:
A TPCANStatus error code | def Initialize(
self,
Channel,
Btr0Btr1,
HwType = TPCANType(0),
IOPort = c_uint(0),
Interrupt = c_ushort(0)):
try:
res = self.__m_dllBasic.CAN_Initialize(Channel,Btr0Btr1,HwType,IOPort,Interrupt)
return TPCANStatus(res)
except:
logger.error("Exception on PCANBasic.Initialize")
raise | 142,310 |
Uninitializes one or all PCAN Channels initialized by CAN_Initialize
Remarks:
Giving the TPCANHandle value "PCAN_NONEBUS", uninitialize all initialized channels
Parameters:
Channel : A TPCANHandle representing a PCAN Channel
Returns:
A TPCANStatus error code | def Uninitialize(
self,
Channel):
try:
res = self.__m_dllBasic.CAN_Uninitialize(Channel)
return TPCANStatus(res)
except:
logger.error("Exception on PCANBasic.Uninitialize")
raise | 142,312 |
Resets the receive and transmit queues of the PCAN Channel
Remarks:
A reset of the CAN controller is not performed
Parameters:
Channel : A TPCANHandle representing a PCAN Channel
Returns:
A TPCANStatus error code | def Reset(
self,
Channel):
try:
res = self.__m_dllBasic.CAN_Reset(Channel)
return TPCANStatus(res)
except:
logger.error("Exception on PCANBasic.Reset")
raise | 142,313 |
Gets the current status of a PCAN Channel
Parameters:
Channel : A TPCANHandle representing a PCAN Channel
Returns:
A TPCANStatus error code | def GetStatus(
self,
Channel):
try:
res = self.__m_dllBasic.CAN_GetStatus(Channel)
return TPCANStatus(res)
except:
logger.error("Exception on PCANBasic.GetStatus")
raise | 142,314 |
Transmits a CAN message
Parameters:
Channel : A TPCANHandle representing a PCAN Channel
MessageBuffer: A TPCANMsg representing the CAN message to be sent
Returns:
A TPCANStatus error code | def Write(
self,
Channel,
MessageBuffer):
try:
res = self.__m_dllBasic.CAN_Write(Channel,byref(MessageBuffer))
return TPCANStatus(res)
except:
logger.error("Exception on PCANBasic.Write")
raise | 142,317 |
Transmits a CAN message over a FD capable PCAN Channel
Parameters:
Channel : The handle of a FD capable PCAN Channel
MessageBuffer: A TPCANMsgFD buffer with the message to be sent
Returns:
A TPCANStatus error code | def WriteFD(
self,
Channel,
MessageBuffer):
try:
res = self.__m_dllBasic.CAN_WriteFD(Channel,byref(MessageBuffer))
return TPCANStatus(res)
except:
logger.error("Exception on PCANBasic.WriteFD")
raise | 142,318 |
User authenticate method.
---
description: Authenticate user with supplied credentials.
parameters:
- name: username
in: formData
type: string
required: true
- name: password
in: formData
type: string
required: true
responses:
200:
description: User successfully logged in.
400:
description: User login failed. | def login():
try:
username = request.form.get("username")
password = request.form.get("password")
user = authenticate(username, password)
if not user:
raise Exception("User not found!")
resp = jsonify({"message": "User authenticated"})
resp.status_code = 200
access_token = jwt.jwt_encode_callback(user)
# add token to response headers - so SwaggerUI can use it
resp.headers.extend({'jwt-token': access_token})
except Exception as e:
resp = jsonify({"message": "Bad username and/or password"})
resp.status_code = 401
return resp | 142,512 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.