docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Add a new service to the list of ones we know about.
Args:
new_service (WindowsService): the service to add.
|
def AddService(self, new_service):
for service in self._services:
if new_service == service:
# If this service is the same as one we already know about, we
# just want to add where it came from.
service.sources.append(new_service.sources[0])
return
# We only add a new object to our list if we don't have
# an identical one already.
self._services.append(new_service)
| 289,304 |
Produces a human readable multi-line string representing the service.
Args:
service (WindowsService): service to format.
Returns:
str: human readable representation of a Windows Service.
|
def _FormatServiceText(self, service):
string_segments = [
service.name,
'\tImage Path = {0:s}'.format(service.image_path),
'\tService Type = {0:s}'.format(service.HumanReadableType()),
'\tStart Type = {0:s}'.format(service.HumanReadableStartType()),
'\tService Dll = {0:s}'.format(service.service_dll),
'\tObject Name = {0:s}'.format(service.object_name),
'\tSources:']
for source in service.sources:
string_segments.append('\t\t{0:s}:{1:s}'.format(source[0], source[1]))
return '\n'.join(string_segments)
| 289,306 |
Compiles an analysis report.
Args:
mediator (AnalysisMediator): mediates interactions between analysis
plugins and other components, such as storage and dfvfs.
Returns:
AnalysisReport: report.
|
def CompileReport(self, mediator):
# TODO: move YAML representation out of plugin and into serialization.
lines_of_text = []
if self._output_format == 'yaml':
lines_of_text.append(
yaml.safe_dump_all(self._service_collection.services))
else:
lines_of_text.append('Listing Windows Services')
for service in self._service_collection.services:
lines_of_text.append(self._FormatServiceText(service))
lines_of_text.append('')
lines_of_text.append('')
report_text = '\n'.join(lines_of_text)
return reports.AnalysisReport(plugin_name=self.NAME, text=report_text)
| 289,307 |
Analyzes an event and creates Windows Services as required.
At present, this method only handles events extracted from the Registry.
Args:
mediator (AnalysisMediator): mediates interactions between analysis
plugins and other components, such as storage and dfvfs.
event (EventObject): event to examine.
|
def ExamineEvent(self, mediator, event):
# TODO: Handle event log entries here also (ie, event id 4697).
event_data_type = getattr(event, 'data_type', '')
if event_data_type == 'windows:registry:service':
# Create and store the service.
service = WindowsService.FromEvent(event)
self._service_collection.AddService(service)
| 289,308 |
Determines the formatted message strings for an event object.
Args:
formatter_mediator (FormatterMediator): mediates the interactions
between formatters and other components, such as storage and Windows
EventLog resources.
event (EventObject): event.
Returns:
tuple(str, str): formatted message string and short message string.
Raises:
WrongFormatter: if the event object cannot be formatted by the formatter.
|
def GetMessages(self, formatter_mediator, event):
if self.DATA_TYPE != event.data_type:
raise errors.WrongFormatter('Unsupported data type: {0:s}.'.format(
event.data_type))
event_values = event.CopyToDict()
cookie_flags = event_values.get('flags', None)
if cookie_flags == 0:
del event_values['flags']
elif cookie_flags:
flags = []
for flag_value, flag_description in iter(self._COOKIE_FLAGS.items()):
if cookie_flags & flag_value:
flags.append(flag_description)
event_values['flags'] = '|'.join(flags)
return self._ConditionalFormatMessages(event_values)
| 289,309 |
Extracts relevant install history entries.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
top_level (dict[str, object]): plist top-level key.
|
def GetEntries(self, parser_mediator, top_level=None, **unused_kwargs):
for entry in top_level:
datetime_value = entry.get('date', None)
package_identifiers = entry.get('packageIdentifiers', [])
if not datetime_value or not package_identifiers:
continue
display_name = entry.get('displayName', '<UNKNOWN>')
display_version = entry.get('displayVersion', '<DISPLAY_VERSION>')
process_name = entry.get('processName', '<PROCESS_NAME>')
package_identifiers = ', '.join(package_identifiers)
event_data = plist_event.PlistTimeEventData()
event_data.desc = (
'Installation of [{0:s} {1:s}] using [{2:s}]. Packages: '
'{3:s}.').format(
display_name, display_version, process_name, package_identifiers)
event_data.key = ''
event_data.root = '/item'
event = time_events.PythonDatetimeEvent(
datetime_value, definitions.TIME_DESCRIPTION_WRITTEN)
parser_mediator.ProduceEventWithEventData(event, event_data)
| 289,310 |
Initializes a storage reader.
Args:
path (str): path to the input file.
|
def __init__(self, path):
super(SQLiteStorageFileReader, self).__init__(path)
self._storage_file = sqlite_file.SQLiteStorageFile()
self._storage_file.Open(path=path)
| 289,311 |
Detects which tag file is most appropriate.
Args:
analysis_mediator (AnalysisMediator): analysis mediator.
Returns:
bool: True if a tag file is autodetected.
|
def _AttemptAutoDetectTagFile(self, analysis_mediator):
self._autodetect_tag_file_attempt = True
if not analysis_mediator.data_location:
return False
operating_system = analysis_mediator.operating_system.lower()
filename = self._OS_TAG_FILES.get(operating_system, None)
if not filename:
return False
logger.info('Using auto detected tag file: {0:s}'.format(filename))
tag_file_path = os.path.join(analysis_mediator.data_location, filename)
self.SetAndLoadTagFile(tag_file_path)
return True
| 289,313 |
Compiles an analysis report.
Args:
mediator (AnalysisMediator): mediates interactions between
analysis plugins and other components, such as storage and dfvfs.
Returns:
AnalysisReport: analysis report.
|
def CompileReport(self, mediator):
report_text = 'Tagging plugin produced {0:d} tags.\n'.format(
self._number_of_event_tags)
self._number_of_event_tags = 0
return reports.AnalysisReport(plugin_name=self.NAME, text=report_text)
| 289,314 |
Analyzes an EventObject and tags it according to rules in the tag file.
Args:
mediator (AnalysisMediator): mediates interactions between analysis
plugins and other components, such as storage and dfvfs.
event (EventObject): event to examine.
|
def ExamineEvent(self, mediator, event):
if self._tagging_rules is None:
if self._autodetect_tag_file_attempt:
# There's nothing to tag with, and we've already tried to find a good
# tag file, so there's nothing we can do with this event (or any other).
return
if not self._AttemptAutoDetectTagFile(mediator):
logger.info(
'No tag definition file specified, and plaso was not able to '
'autoselect a tagging file. As no definitions were specified, '
'no events will be tagged.')
return
matched_label_names = []
for label_name, filter_objects in iter(self._tagging_rules.items()):
for filter_object in filter_objects:
if filter_object.Match(event):
matched_label_names.append(label_name)
break
if matched_label_names:
event_tag = self._CreateEventTag(
event, self._EVENT_TAG_COMMENT, matched_label_names)
mediator.ProduceEventTag(event_tag)
self._number_of_event_tags += 1
| 289,315 |
Sets the tag file to be used by the plugin.
Args:
tagging_file_path (str): path of the tagging file.
|
def SetAndLoadTagFile(self, tagging_file_path):
tag_file = tagging_file.TaggingFile(tagging_file_path)
self._tagging_rules = tag_file.GetEventTaggingRules()
| 289,316 |
Writes the body of an event to the output.
Args:
event (EventObject): event.
|
def WriteEventBody(self, event):
latitude = getattr(event, 'latitude', None)
longitude = getattr(event, 'longitude', None)
if latitude is not None and longitude is not None:
placemark_xml_element = ElementTree.Element('Placemark')
name_xml_element = ElementTree.SubElement(placemark_xml_element, 'name')
name_xml_element.text = 'PLACEHOLDER FOR EVENT IDENTIFIER'
description_xml_element = ElementTree.SubElement(
placemark_xml_element, 'description')
# TODO: move the description formatting into this output module.
description_xml_element.text = (
rawpy.NativePythonFormatterHelper.GetFormattedEventObject(event))
point_xml_element = ElementTree.SubElement(
placemark_xml_element, 'Point')
coordinates_xml_element = ElementTree.SubElement(
point_xml_element, 'coordinates')
coordinates_xml_element.text = '{0!s},{1!s}'.format(longitude, latitude)
# Note that ElementTree.tostring() will appropriately escape
# the input data.
xml_string = ElementTree.tostring(placemark_xml_element)
output_text = codecs.decode(xml_string, self._output_mediator.encoding)
self._output_writer.Write(output_text)
| 289,317 |
Parses a syslog body that matched one of defined grammars.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
key (str): name of the matching grammar.
date_time (dfdatetime.DateTimeValues): date and time values.
tokens (dict[str, str]): tokens derived from a syslog message based on
the defined grammar.
Raises:
ValueError: If an unknown key is provided.
|
def ParseMessage(self, parser_mediator, key, date_time, tokens):
if key != 'task_run':
raise ValueError('Unknown grammar key: {0:s}'.format(key))
event_data = CronTaskRunEventData()
event_data.body = tokens.get('body', None)
event_data.command = tokens.get('command', None)
event_data.hostname = tokens.get('hostname', None)
# TODO: pass line number to offset or remove.
event_data.offset = 0
event_data.pid = tokens.get('pid', None)
event_data.reporter = tokens.get('reporter', None)
event_data.severity = tokens.get('severity', None)
event_data.username = tokens.get('username', None)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_WRITTEN)
parser_mediator.ProduceEventWithEventData(event, event_data)
| 289,320 |
Analyzes a block of data, attempting to match Yara rules to it.
Args:
data(bytes): a block of data.
|
def Analyze(self, data):
if not self._rules:
return
try:
self._matches = self._rules.match(data=data, timeout=self._MATCH_TIMEOUT)
except yara.YaraTimeoutError:
logger.error('Could not process file within timeout: {0:d}'.format(
self._MATCH_TIMEOUT))
except yara.YaraError as exception:
logger.error('Error processing file with Yara: {0!s}.'.format(
exception))
| 289,322 |
Retrieves the table names in a database.
Args:
database (pyesedb.file): ESE database.
Returns:
list[str]: table names.
|
def _GetTableNames(self, database):
table_names = []
for esedb_table in database.tables:
table_names.append(esedb_table.name)
return table_names
| 289,324 |
Parses an ESE database file-like object.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
file_object (dfvfs.FileIO): file-like object.
|
def ParseFileObject(self, parser_mediator, file_object):
esedb_file = pyesedb.file()
try:
esedb_file.open_file_object(file_object)
except IOError as exception:
parser_mediator.ProduceExtractionWarning(
'unable to open file with error: {0!s}'.format(exception))
return
# Compare the list of available plugin objects.
cache = ESEDBCache()
try:
table_names = frozenset(self._GetTableNames(esedb_file))
for plugin in self._plugins:
if parser_mediator.abort:
break
if not plugin.required_tables.issubset(table_names):
continue
try:
plugin.UpdateChainAndProcess(
parser_mediator, cache=cache, database=esedb_file)
except Exception as exception: # pylint: disable=broad-except
parser_mediator.ProduceExtractionWarning((
'plugin: {0:s} unable to parse ESE database with error: '
'{1!s}').format(plugin.NAME, exception))
finally:
# TODO: explicitly clean up cache.
esedb_file.close()
| 289,325 |
Parses an activity log row.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
query (str): query that created the row.
row (sqlite3.Row): row.
|
def ParseActivityLogUncompressedRow(
self, parser_mediator, query, row, **unused_kwargs):
query_hash = hash(query)
event_data = ChromeExtensionActivityEventData()
event_data.action_type = self._GetRowValue(query_hash, row, 'action_type')
event_data.activity_id = self._GetRowValue(query_hash, row, 'activity_id')
event_data.api_name = self._GetRowValue(query_hash, row, 'api_name')
event_data.arg_url = self._GetRowValue(query_hash, row, 'arg_url')
event_data.args = self._GetRowValue(query_hash, row, 'args')
event_data.extension_id = self._GetRowValue(query_hash, row, 'extension_id')
event_data.other = self._GetRowValue(query_hash, row, 'other')
event_data.page_title = self._GetRowValue(query_hash, row, 'page_title')
event_data.page_url = self._GetRowValue(query_hash, row, 'page_url')
event_data.query = query
timestamp = self._GetRowValue(query_hash, row, 'time')
date_time = dfdatetime_webkit_time.WebKitTime(timestamp=timestamp)
event = time_events.DateTimeValuesEvent(
date_time, definitions.TIME_DESCRIPTION_UNKNOWN)
parser_mediator.ProduceEventWithEventData(event, event_data)
| 289,327 |
Determines if a specific table exists.
Args:
table_name (str): table name.
Returns:
bool: True if the table exists.
Raises:
RuntimeError: if the database is not opened.
|
def HasTable(self, table_name):
if not self._connection:
raise RuntimeError(
'Cannot determine if table exists database not opened.')
sql_query = self._HAS_TABLE_QUERY.format(table_name)
self._cursor.execute(sql_query)
if self._cursor.fetchone():
return True
return False
| 289,330 |
Retrieves values from a table.
Args:
table_names (list[str]): table names.
column_names (list[str]): column names.
condition (str): query condition such as
"log_source == 'Application Error'".
Yields:
sqlite3.row: row.
Raises:
RuntimeError: if the database is not opened.
|
def GetValues(self, table_names, column_names, condition):
if not self._connection:
raise RuntimeError('Cannot retrieve values database not opened.')
if condition:
condition = ' WHERE {0:s}'.format(condition)
sql_query = 'SELECT {1:s} FROM {0:s}{2:s}'.format(
', '.join(table_names), ', '.join(column_names), condition)
self._cursor.execute(sql_query)
# TODO: have a look at https://docs.python.org/2/library/
# sqlite3.html#sqlite3.Row.
for row in self._cursor:
yield {
column_name: row[column_index]
for column_index, column_name in enumerate(column_names)}
| 289,331 |
Opens the database file.
Args:
filename (str): filename of the database.
read_only (Optional[bool]): True if the database should be opened in
read-only mode. Since sqlite3 does not support a real read-only
mode we fake it by only permitting SELECT queries.
Returns:
bool: True if successful.
Raises:
RuntimeError: if the database is already opened.
|
def Open(self, filename, read_only=False):
if self._connection:
raise RuntimeError('Cannot open database already opened.')
self.filename = filename
self.read_only = read_only
try:
self._connection = sqlite3.connect(filename)
except sqlite3.OperationalError:
return False
if not self._connection:
return False
self._cursor = self._connection.cursor()
if not self._cursor:
return False
return True
| 289,332 |
Retrieves the Event Log provider key.
Args:
log_source (str): Event Log source.
Returns:
str: Event Log provider key or None if not available.
Raises:
RuntimeError: if more than one value is found in the database.
|
def _GetEventLogProviderKey(self, log_source):
table_names = ['event_log_providers']
column_names = ['event_log_provider_key']
condition = 'log_source == "{0:s}"'.format(log_source)
values_list = list(self._database_file.GetValues(
table_names, column_names, condition))
number_of_values = len(values_list)
if number_of_values == 0:
return None
if number_of_values == 1:
values = values_list[0]
return values['event_log_provider_key']
raise RuntimeError('More than one value found in database.')
| 289,333 |
Retrieves a specific message from a specific message table.
Args:
message_file_key (int): message file key.
lcid (int): language code identifier (LCID).
message_identifier (int): message identifier.
Returns:
str: message string or None if not available.
Raises:
RuntimeError: if more than one value is found in the database.
|
def _GetMessage(self, message_file_key, lcid, message_identifier):
table_name = 'message_table_{0:d}_0x{1:08x}'.format(message_file_key, lcid)
has_table = self._database_file.HasTable(table_name)
if not has_table:
return None
column_names = ['message_string']
condition = 'message_identifier == "0x{0:08x}"'.format(message_identifier)
values = list(self._database_file.GetValues(
[table_name], column_names, condition))
number_of_values = len(values)
if number_of_values == 0:
return None
if number_of_values == 1:
return values[0]['message_string']
raise RuntimeError('More than one value found in database.')
| 289,334 |
Retrieves the message file keys.
Args:
event_log_provider_key (int): Event Log provider key.
Yields:
int: message file key.
|
def _GetMessageFileKeys(self, event_log_provider_key):
table_names = ['message_file_per_event_log_provider']
column_names = ['message_file_key']
condition = 'event_log_provider_key == {0:d}'.format(
event_log_provider_key)
generator = self._database_file.GetValues(
table_names, column_names, condition)
for values in generator:
yield values['message_file_key']
| 289,335 |
Reformats the message string.
Args:
message_string (str): message string.
Returns:
str: message string in Python format() (PEP 3101) style.
|
def _ReformatMessageString(self, message_string):
def _PlaceHolderSpecifierReplacer(match_object):
expanded_groups = []
for group in match_object.groups():
try:
place_holder_number = int(group, 10) - 1
expanded_group = '{{{0:d}:s}}'.format(place_holder_number)
except ValueError:
expanded_group = group
expanded_groups.append(expanded_group)
return ''.join(expanded_groups)
if not message_string:
return None
message_string = self._WHITE_SPACE_SPECIFIER_RE.sub(r'', message_string)
message_string = self._TEXT_SPECIFIER_RE.sub(r'\\\1', message_string)
message_string = self._CURLY_BRACKETS.sub(r'\1\1', message_string)
return self._PLACE_HOLDER_SPECIFIER_RE.sub(
_PlaceHolderSpecifierReplacer, message_string)
| 289,336 |
Retrieves a specific message for a specific Event Log source.
Args:
log_source (str): Event Log source.
lcid (int): language code identifier (LCID).
message_identifier (int): message identifier.
Returns:
str: message string or None if not available.
|
def GetMessage(self, log_source, lcid, message_identifier):
event_log_provider_key = self._GetEventLogProviderKey(log_source)
if not event_log_provider_key:
return None
generator = self._GetMessageFileKeys(event_log_provider_key)
if not generator:
return None
# TODO: cache a number of message strings.
message_string = None
for message_file_key in generator:
message_string = self._GetMessage(
message_file_key, lcid, message_identifier)
if message_string:
break
if self._string_format == 'wrc':
message_string = self._ReformatMessageString(message_string)
return message_string
| 289,337 |
Retrieves the metadata attribute.
Args:
attribute_name (str): name of the metadata attribute.
Returns:
str: the metadata attribute or None.
Raises:
RuntimeError: if more than one value is found in the database.
|
def GetMetadataAttribute(self, attribute_name):
table_name = 'metadata'
has_table = self._database_file.HasTable(table_name)
if not has_table:
return None
column_names = ['value']
condition = 'name == "{0:s}"'.format(attribute_name)
values = list(self._database_file.GetValues(
[table_name], column_names, condition))
number_of_values = len(values)
if number_of_values == 0:
return None
if number_of_values == 1:
return values[0]['value']
raise RuntimeError('More than one value found in database.')
| 289,338 |
Opens the database reader object.
Args:
filename (str): filename of the database.
Returns:
bool: True if successful.
Raises:
RuntimeError: if the version or string format of the database
is not supported.
|
def Open(self, filename):
if not super(WinevtResourcesSqlite3DatabaseReader, self).Open(filename):
return False
version = self.GetMetadataAttribute('version')
if not version or version != '20150315':
raise RuntimeError('Unsupported version: {0:s}'.format(version))
string_format = self.GetMetadataAttribute('string_format')
if not string_format:
string_format = 'wrc'
if string_format not in ('pep3101', 'wrc'):
raise RuntimeError('Unsupported string format: {0:s}'.format(
string_format))
self._string_format = string_format
return True
| 289,339 |
Initializes the analysis report.
Args:
plugin_name (Optional[str]): name of the analysis plugin that generated
the report.
text (Optional[str]): report text.
|
def __init__(self, plugin_name=None, text=None):
super(AnalysisReport, self).__init__()
self.filter_string = None
self.plugin_name = plugin_name
self.report_array = None
self.report_dict = None
# TODO: rename text to body?
self.text = text
self.time_compiled = None
| 289,340 |
Parses and validates options.
Args:
options (argparse.Namespace): parser options.
configuration_object (CLITool): object to be configured by the argument
helper.
Raises:
BadConfigObject: when the configuration object is of the wrong type.
|
def ParseOptions(cls, options, configuration_object):
if not isinstance(configuration_object, tools.CLITool):
raise errors.BadConfigObject(
'Configuration object is not an instance of CLITool')
profilers = cls._ParseStringOption(options, 'profilers')
if not profilers:
profilers = set()
elif profilers.lower() != 'list':
profilers = set(profilers.split(','))
supported_profilers = set(cls.PROFILERS_INFORMATION.keys())
unsupported_profilers = profilers.difference(supported_profilers)
if unsupported_profilers:
unsupported_profilers = ', '.join(unsupported_profilers)
raise errors.BadConfigOption(
'Unsupported profilers: {0:s}'.format(unsupported_profilers))
profiling_directory = getattr(options, 'profiling_directory', None)
if profiling_directory and not os.path.isdir(profiling_directory):
raise errors.BadConfigOption(
'No such profiling directory: {0:s}'.format(profiling_directory))
profiling_sample_rate = getattr(options, 'profiling_sample_rate', None)
if not profiling_sample_rate:
profiling_sample_rate = cls.DEFAULT_PROFILING_SAMPLE_RATE
else:
try:
profiling_sample_rate = int(profiling_sample_rate, 10)
except (TypeError, ValueError):
raise errors.BadConfigOption(
'Invalid profile sample rate: {0!s}.'.format(profiling_sample_rate))
setattr(configuration_object, '_profilers', profilers)
setattr(configuration_object, '_profiling_directory', profiling_directory)
setattr(
configuration_object, '_profiling_sample_rate', profiling_sample_rate)
| 289,343 |
Parses and validates options.
Args:
options (argparse.Namespace): parser options.
configuration_object (CLITool): object to be configured by the argument
helper.
Raises:
BadConfigObject: when the configuration object is of the wrong type.
|
def ParseOptions(cls, options, configuration_object):
if not isinstance(configuration_object, tools.CLITool):
raise errors.BadConfigObject(
'Configuration object is not an instance of CLITool')
data_location = cls._ParseStringOption(options, 'data_location')
if not data_location:
# Determine the source root path, which is 3 directories up from
# the location of the script.
data_location = os.path.dirname(cls._PATH)
data_location = os.path.dirname(data_location)
data_location = os.path.dirname(data_location)
data_location = os.path.dirname(data_location)
# There are multiple options to run a tool e.g. running from source or
# from an egg file.
data_location_egg = os.path.join(data_location, 'share', 'plaso')
data_location_source = os.path.join(data_location, 'data')
data_location = None
if os.path.exists(data_location_egg) and os.path.isfile(os.path.join(
data_location_egg, 'plaso-data.README')):
data_location = data_location_egg
elif os.path.exists(data_location_source) and os.path.isfile(os.path.join(
data_location_source, 'plaso-data.README')):
data_location = data_location_source
if not data_location or not os.path.exists(data_location):
data_location = os.path.join(sys.prefix, 'share', 'plaso')
if not os.path.exists(data_location):
data_location = os.path.join(sys.prefix, 'local', 'share', 'plaso')
if sys.prefix != '/usr':
if not os.path.exists(data_location):
data_location = os.path.join('/usr', 'share', 'plaso')
if not os.path.exists(data_location):
data_location = os.path.join('/usr', 'local', 'share', 'plaso')
if not os.path.exists(data_location) or not os.path.isfile(os.path.join(
data_location, 'plaso-data.README')):
data_location = None
if not data_location:
raise errors.BadConfigOption(
'Unable to determine location of data files.')
logger.info('Determined data location: {0:s}'.format(data_location))
setattr(configuration_object, '_data_location', data_location)
| 289,345 |
Adds command line arguments the helper supports to an argument group.
This function takes an argument parser or an argument group object and adds
to it all the command line arguments this helper supports.
Args:
argument_group (argparse._ArgumentGroup|argparse.ArgumentParser): group
to append arguments to.
|
def AddArguments(cls, argument_group):
argument_group.add_argument(
'--nsrlsvr-hash', '--nsrlsvr_hash', dest='nsrlsvr_hash', type=str,
action='store', choices=nsrlsvr.NsrlsvrAnalyzer.SUPPORTED_HASHES,
default=cls._DEFAULT_HASH, metavar='HASH', help=(
'Type of hash to use to query nsrlsvr instance, the default is: '
'{0:s}. Supported options: {1:s}'.format(
cls._DEFAULT_HASH, ', '.join(
nsrlsvr.NsrlsvrAnalyzer.SUPPORTED_HASHES))))
argument_group.add_argument(
'--nsrlsvr-host', '--nsrlsvr_host', dest='nsrlsvr_host', type=str,
action='store', default=cls._DEFAULT_HOST, metavar='HOST',
help=(
'Hostname or IP address of the nsrlsvr instance to query, the '
'default is: {0:s}').format(cls._DEFAULT_HOST))
argument_group.add_argument(
'--nsrlsvr-label', '--nsrlsvr_label', dest='nsrlsvr_label', type=str,
action='store', default=cls._DEFAULT_LABEL, metavar='LABEL', help=(
'Label to apply to events, the default is: '
'{0:s}.').format(cls._DEFAULT_LABEL))
argument_group.add_argument(
'--nsrlsvr-port', '--nsrlsvr_port', dest='nsrlsvr_port', type=int,
action='store', default=cls._DEFAULT_PORT, metavar='PORT', help=(
'Port number of the nsrlsvr instance to query, the default is: '
'{0:d}.').format(cls._DEFAULT_PORT))
| 289,346 |
Parses and validates options.
Args:
options (argparse.Namespace): parser options object.
analysis_plugin (NsrlsvrAnalysisPlugin): analysis plugin to configure.
Raises:
BadConfigObject: when the analysis plugin is the wrong type.
BadConfigOption: when unable to connect to nsrlsvr instance.
|
def ParseOptions(cls, options, analysis_plugin):
if not isinstance(analysis_plugin, nsrlsvr.NsrlsvrAnalysisPlugin):
raise errors.BadConfigObject(
'Analysis plugin is not an instance of NsrlsvrAnalysisPlugin')
label = cls._ParseStringOption(
options, 'nsrlsvr_label', default_value=cls._DEFAULT_LABEL)
analysis_plugin.SetLabel(label)
lookup_hash = cls._ParseStringOption(
options, 'nsrlsvr_hash', default_value=cls._DEFAULT_HASH)
analysis_plugin.SetLookupHash(lookup_hash)
host = cls._ParseStringOption(
options, 'nsrlsvr_host', default_value=cls._DEFAULT_HOST)
analysis_plugin.SetHost(host)
port = cls._ParseNumericOption(
options, 'nsrlsvr_port', default_value=cls._DEFAULT_PORT)
analysis_plugin.SetPort(port)
if not analysis_plugin.TestConnection():
raise errors.BadConfigOption(
'Unable to connect to nsrlsvr {0:s}:{1:d}'.format(host, port))
| 289,347 |
Adds command line arguments to an argument group.
This function takes an argument parser or an argument group object and adds
to it all the command line arguments this helper supports.
Args:
argument_group (argparse._ArgumentGroup|argparse.ArgumentParser):
argparse group.
|
def AddArguments(cls, argument_group):
storage_formats = sorted(definitions.STORAGE_FORMATS)
argument_group.add_argument(
'--storage_format', '--storage-format', action='store',
choices=storage_formats, dest='storage_format', type=str,
metavar='FORMAT', default=definitions.DEFAULT_STORAGE_FORMAT, help=(
'Format of the storage file, the default is: {0:s}. Supported '
'options: {1:s}'.format(
definitions.DEFAULT_STORAGE_FORMAT,
', '.join(storage_formats))))
| 289,348 |
Parses and validates options.
Args:
options (argparse.Namespace): parser options.
configuration_object (CLITool): object to be configured by the argument
helper.
Raises:
BadConfigObject: when the configuration object is of the wrong type.
BadConfigOption: if the storage format is not defined or supported.
|
def ParseOptions(cls, options, configuration_object):
if not isinstance(configuration_object, tools.CLITool):
raise errors.BadConfigObject(
'Configuration object is not an instance of CLITool')
storage_format = cls._ParseStringOption(options, 'storage_format')
if not storage_format:
raise errors.BadConfigOption('Unable to determine storage format.')
if storage_format not in definitions.STORAGE_FORMATS:
raise errors.BadConfigOption(
'Unsupported storage format: {0:s}'.format(storage_format))
setattr(configuration_object, '_storage_format', storage_format)
| 289,349 |
Configures the logging root logger.
Args:
debug_output (Optional[bool]): True if the logging should include debug
output.
filename (Optional[str]): log filename.
mode (Optional[str]): log file access mode.
quiet_mode (Optional[bool]): True if the logging should not include
information output. Note that debug_output takes precedence over
quiet_mode.
|
def ConfigureLogging(
debug_output=False, filename=None, mode='w', quiet_mode=False):
# Remove all possible log handlers. The log handlers cannot be reconfigured
# and therefore must be recreated.
for handler in logging.root.handlers:
logging.root.removeHandler(handler)
logger = logging.getLogger()
if filename and filename.endswith('.gz'):
handler = CompressedFileHandler(filename, mode=mode)
elif filename:
handler = logging.FileHandler(filename, mode=mode)
else:
handler = logging.StreamHandler()
format_string = (
'%(asctime)s [%(levelname)s] (%(processName)-10s) PID:%(process)d '
'<%(module)s> %(message)s')
formatter = logging.Formatter(format_string)
handler.setFormatter(formatter)
if debug_output:
level = logging.DEBUG
elif quiet_mode:
level = logging.WARNING
else:
level = logging.INFO
logger.setLevel(level)
handler.setLevel(level)
logger.addHandler(handler)
| 289,350 |
Initializes a compressed file logging handler.
Args:
filename (str): name of the log file.
mode (Optional[str]): file access mode.
encoding (Optional[str]): encoding of the log lines.
|
def __init__(self, filename, mode='a', encoding='utf-8'):
if 't' not in mode and encoding and py2to3.PY_3:
mode = '{0:s}t'.format(mode)
super(CompressedFileHandler, self).__init__(
filename, mode=mode, encoding=encoding, delay=True)
| 289,351 |
Do a wikipedia geo search for `latitude` and `longitude`
using HTTP API described in http://www.mediawiki.org/wiki/Extension:GeoData
Arguments:
* latitude (float or decimal.Decimal)
* longitude (float or decimal.Decimal)
Keyword arguments:
* title - The title of an article to search for
* results - the maximum number of results returned
* radius - Search radius in meters. The value must be between 10 and 10000
|
def geosearch(latitude, longitude, title=None, results=10, radius=1000):
search_params = {
'list': 'geosearch',
'gsradius': radius,
'gscoord': '{0}|{1}'.format(latitude, longitude),
'gslimit': results
}
if title:
search_params['titles'] = title
raw_results = _wiki_request(search_params)
if 'error' in raw_results:
if raw_results['error']['info'] in ('HTTP request timed out.', 'Pool queue is full'):
raise HTTPTimeoutError('{0}|{1}'.format(latitude, longitude))
else:
raise WikipediaException(raw_results['error']['info'])
search_pages = raw_results['query'].get('pages', None)
if search_pages:
search_results = (v['title'] for k, v in search_pages.items() if k != '-1')
else:
search_results = (d['title'] for d in raw_results['query']['geosearch'])
return list(search_results)
| 289,650 |
Returns the Longest Subsequence between x and y.
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: sequence of words
y: sequence of words
Returns:
sequence: LCS of x and y
|
def _recon_lcs(x, y):
i, j = len(x), len(y)
table = _lcs(x, y)
def _recon(i, j):
if i == 0 or j == 0:
return []
elif x[i - 1] == y[j - 1]:
return _recon(i - 1, j - 1) + [(x[i - 1], i)]
elif table[i - 1, j] > table[i, j - 1]:
return _recon(i - 1, j)
else:
return _recon(i, j - 1)
recon_tuple = tuple(map(lambda x: x[0], _recon(i, j)))
return recon_tuple
| 290,226 |
Computes ROUGE-N of two text collections of sentences.
Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/
papers/rouge-working-note-v1.3.1.pdf
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentences: The sentences from the referene set
n: Size of ngram. Defaults to 2.
Returns:
A tuple (f1, precision, recall) for ROUGE-N
Raises:
ValueError: raises exception if a param has len <= 0
|
def rouge_n(evaluated_sentences, reference_sentences, n=2):
if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
raise ValueError("Collections must contain at least 1 sentence.")
evaluated_ngrams = _get_word_ngrams(n, evaluated_sentences)
reference_ngrams = _get_word_ngrams(n, reference_sentences)
reference_count = len(reference_ngrams)
evaluated_count = len(evaluated_ngrams)
# Gets the overlapping ngrams between evaluated and reference
overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams)
overlapping_count = len(overlapping_ngrams)
# Handle edge case. This isn't mathematically correct, but it's good enough
if evaluated_count == 0:
precision = 0.0
else:
precision = overlapping_count / evaluated_count
# Handle edge case for recall, same as for precision
if reference_count == 0:
recall = 0.0
else:
recall = overlapping_count / reference_count
f1_score = 2.0 * ((precision * recall) / (precision + recall + 1e-8))
# return overlapping_count / reference_count
return f1_score, precision, recall
| 290,227 |
Class method that will return a Droplet object by ID.
Args:
api_token (str): token
droplet_id (int): droplet id
|
def get_object(cls, api_token, droplet_id):
droplet = cls(token=api_token, id=droplet_id)
droplet.load()
return droplet
| 291,113 |
Perform a droplet action.
Args:
params (dict): parameters of the action
Optional Args:
return_dict (bool): Return a dict when True (default),
otherwise return an Action.
Returns dict or Action
|
def _perform_action(self, params, return_dict=True):
action = self.get_data(
"droplets/%s/actions/" % self.id,
type=POST,
params=params
)
if return_dict:
return action
else:
action = action[u'action']
return_action = Action(token=self.token)
# Loading attributes
for attr in action.keys():
setattr(return_action, attr, action[attr])
return return_action
| 291,118 |
Resize the droplet to a new size slug.
https://developers.digitalocean.com/documentation/v2/#resize-a-droplet
Args:
new_size_slug (str): name of new size
Optional Args:
return_dict (bool): Return a dict when True (default),
otherwise return an Action.
disk (bool): If a permanent resize, with disk changes included.
Returns dict or Action
|
def resize(self, new_size_slug, return_dict=True, disk=True):
options = {"type": "resize", "size": new_size_slug}
if disk: options["disk"] = "true"
return self._perform_action(options, return_dict)
| 291,119 |
Take a snapshot!
Args:
snapshot_name (str): name of snapshot
Optional Args:
return_dict (bool): Return a dict when True (default),
otherwise return an Action.
power_off (bool): Before taking the snapshot the droplet will be
turned off with another API call. It will wait until the
droplet will be powered off.
Returns dict or Action
|
def take_snapshot(self, snapshot_name, return_dict=True, power_off=False):
if power_off is True and self.status != "off":
action = self.power_off(return_dict=False)
action.wait()
self.load()
return self._perform_action(
{"type": "snapshot", "name": snapshot_name},
return_dict
)
| 291,120 |
Restore the droplet to an image ( snapshot or backup )
Args:
image_id (int): id of image
Optional Args:
return_dict (bool): Return a dict when True (default),
otherwise return an Action.
Returns dict or Action
|
def rebuild(self, image_id=None, return_dict=True):
if not image_id:
image_id = self.image['id']
return self._perform_action(
{"type": "rebuild", "image": image_id},
return_dict
)
| 291,121 |
Change the kernel to a new one
Args:
kernel : instance of digitalocean.Kernel.Kernel
Optional Args:
return_dict (bool): Return a dict when True (default),
otherwise return an Action.
Returns dict or Action
|
def change_kernel(self, kernel, return_dict=True):
if type(kernel) != Kernel:
raise BadKernelObject("Use Kernel object")
return self._perform_action(
{'type': 'change_kernel', 'kernel': kernel.id},
return_dict
)
| 291,122 |
Returns a specific Action by its ID.
Args:
action_id (int): id of action
|
def get_action(self, action_id):
return Action.get_object(
api_token=self.token,
action_id=action_id
)
| 291,126 |
Class method that will return a FloatingIP object by its IP.
Args:
api_token: str - token
ip: str - floating ip address
|
def get_object(cls, api_token, ip):
floating_ip = cls(token=api_token, ip=ip)
floating_ip.load()
return floating_ip
| 291,139 |
Creates a FloatingIP and assigns it to a Droplet.
Note: Every argument and parameter given to this method will be
assigned to the object.
Args:
droplet_id: int - droplet id
|
def create(self, *args, **kwargs):
data = self.get_data('floating_ips/',
type=POST,
params={'droplet_id': self.droplet_id})
if data:
self.ip = data['floating_ip']['ip']
self.region = data['floating_ip']['region']
return self
| 291,141 |
Creates a FloatingIP in a region without assigning
it to a specific Droplet.
Note: Every argument and parameter given to this method will be
assigned to the object.
Args:
region_slug: str - region's slug (e.g. 'nyc3')
|
def reserve(self, *args, **kwargs):
data = self.get_data('floating_ips/',
type=POST,
params={'region': self.region_slug})
if data:
self.ip = data['floating_ip']['ip']
self.region = data['floating_ip']['region']
return self
| 291,142 |
Assign a FloatingIP to a Droplet.
Args:
droplet_id: int - droplet id
|
def assign(self, droplet_id):
return self.get_data(
"floating_ips/%s/actions/" % self.ip,
type=POST,
params={"type": "assign", "droplet_id": droplet_id}
)
| 291,143 |
Returns a Load Balancer object by its ID.
Args:
id (str): Load Balancer ID
|
def get_load_balancer(self, id):
return LoadBalancer.get_object(api_token=self.token, id=id)
| 291,176 |
Returns a Certificate object by its ID.
Args:
id (str): Certificate ID
|
def get_certificate(self, id):
return Certificate.get_object(api_token=self.token, cert_id=id)
| 291,177 |
Class method that will return a LoadBalancer object by its ID.
Args:
api_token (str): DigitalOcean API token
id (str): Load Balancer ID
|
def get_object(cls, api_token, id):
load_balancer = cls(token=api_token, id=id)
load_balancer.load()
return load_balancer
| 291,191 |
Assign a LoadBalancer to a Droplet.
Args:
droplet_ids (obj:`list` of `int`): A list of Droplet IDs
|
def add_droplets(self, droplet_ids):
return self.get_data(
"load_balancers/%s/droplets/" % self.id,
type=POST,
params={"droplet_ids": droplet_ids}
)
| 291,195 |
Unassign a LoadBalancer.
Args:
droplet_ids (obj:`list` of `int`): A list of Droplet IDs
|
def remove_droplets(self, droplet_ids):
return self.get_data(
"load_balancers/%s/droplets/" % self.id,
type=DELETE,
params={"droplet_ids": droplet_ids}
)
| 291,196 |
Adds new forwarding rules to a LoadBalancer.
Args:
forwarding_rules (obj:`list`): A list of `ForwrdingRules` objects
|
def add_forwarding_rules(self, forwarding_rules):
rules_dict = [rule.__dict__ for rule in forwarding_rules]
return self.get_data(
"load_balancers/%s/forwarding_rules/" % self.id,
type=POST,
params={"forwarding_rules": rules_dict}
)
| 291,197 |
Removes existing forwarding rules from a LoadBalancer.
Args:
forwarding_rules (obj:`list`): A list of `ForwrdingRules` objects
|
def remove_forwarding_rules(self, forwarding_rules):
rules_dict = [rule.__dict__ for rule in forwarding_rules]
return self.get_data(
"load_balancers/%s/forwarding_rules/" % self.id,
type=DELETE,
params={"forwarding_rules": rules_dict}
)
| 291,198 |
Attach a Volume to a Droplet.
Args:
droplet_id: int - droplet id
region: string - slug identifier for the region
|
def attach(self, droplet_id, region):
return self.get_data(
"volumes/%s/actions/" % self.id,
type=POST,
params={"type": "attach",
"droplet_id": droplet_id,
"region": region}
)
| 291,219 |
Detach a Volume to a Droplet.
Args:
size_gigabytes: int - size of the Block Storage volume in GiB
region: string - slug identifier for the region
|
def resize(self, size_gigabytes, region):
return self.get_data(
"volumes/%s/actions/" % self.id,
type=POST,
params={"type": "resize",
"size_gigabytes": size_gigabytes,
"region": region}
)
| 291,220 |
Create a snapshot of the volume.
Args:
name: string - a human-readable name for the snapshot
|
def snapshot(self, name):
return self.get_data(
"volumes/%s/snapshots/" % self.id,
type=POST,
params={"name": name}
)
| 291,221 |
Construct the analogy test set by mapping the words to their
word vector ids.
Arguments:
- test_examples: iterable of 4-word iterables
- dictionay: a mapping from words to ids
- boolean ignore_missing: if True, words in the test set
that are not in the dictionary
will be dropeed.
Returns:
- a N by 4 numpy matrix.
|
def construct_analogy_test_set(test_examples, dictionary, ignore_missing=False):
test = []
for example in test_examples:
try:
test.append([dictionary[word] for word in example])
except KeyError:
if ignore_missing:
pass
else:
raise
try:
test = np.array(test, dtype=np.int32)
except ValueError as e:
# This should use raise ... from ... in Python 3.
raise ValueError('Each row of the test set should contain '
'4 integer word ids', e)
return test
| 293,066 |
Estimate the word embeddings.
Parameters:
- scipy.sparse.coo_matrix matrix: coocurrence matrix
- int epochs: number of training epochs
- int no_threads: number of training threads
- bool verbose: print progress messages if True
|
def fit(self, matrix, epochs=5, no_threads=2, verbose=False):
shape = matrix.shape
if (len(shape) != 2 or
shape[0] != shape[1]):
raise Exception('Coocurrence matrix must be square')
if not sp.isspmatrix_coo(matrix):
raise Exception('Coocurrence matrix must be in the COO format')
random_state = check_random_state(self.random_state)
self.word_vectors = ((random_state.rand(shape[0],
self.no_components) - 0.5)
/ self.no_components)
self.word_biases = np.zeros(shape[0],
dtype=np.float64)
self.vectors_sum_gradients = np.ones_like(self.word_vectors)
self.biases_sum_gradients = np.ones_like(self.word_biases)
shuffle_indices = np.arange(matrix.nnz, dtype=np.int32)
if verbose:
print('Performing %s training epochs '
'with %s threads' % (epochs, no_threads))
for epoch in range(epochs):
if verbose:
print('Epoch %s' % epoch)
# Shuffle the coocurrence matrix
random_state.shuffle(shuffle_indices)
fit_vectors(self.word_vectors,
self.vectors_sum_gradients,
self.word_biases,
self.biases_sum_gradients,
matrix.row,
matrix.col,
matrix.data,
shuffle_indices,
self.learning_rate,
self.max_count,
self.alpha,
self.max_loss,
int(no_threads))
if not np.isfinite(self.word_vectors).all():
raise Exception('Non-finite values in word vectors. '
'Try reducing the learning rate or the '
'max_loss parameter.')
| 293,074 |
Scale the DNB data using a histogram equalization method.
Args:
dnb_data (ndarray): Day/Night Band data array
sza_data (ndarray): Solar Zenith Angle data array
|
def _run_dnb_normalization(self, dnb_data, sza_data):
# convert dask arrays to DataArray objects
dnb_data = xr.DataArray(dnb_data, dims=('y', 'x'))
sza_data = xr.DataArray(sza_data, dims=('y', 'x'))
good_mask = ~(dnb_data.isnull() | sza_data.isnull())
output_dataset = dnb_data.where(good_mask)
# we only need the numpy array
output_dataset = output_dataset.values.copy()
dnb_data = dnb_data.values
sza_data = sza_data.values
day_mask, mixed_mask, night_mask = make_day_night_masks(
sza_data,
good_mask.values,
self.high_angle_cutoff,
self.low_angle_cutoff,
stepsDegrees=self.mixed_degree_step)
did_equalize = False
if day_mask.any():
LOG.debug("Histogram equalizing DNB day data...")
histogram_equalization(dnb_data, day_mask, out=output_dataset)
did_equalize = True
if mixed_mask:
for mask in mixed_mask:
if mask.any():
LOG.debug("Histogram equalizing DNB mixed data...")
histogram_equalization(dnb_data, mask, out=output_dataset)
did_equalize = True
if night_mask.any():
LOG.debug("Histogram equalizing DNB night data...")
histogram_equalization(dnb_data, night_mask, out=output_dataset)
did_equalize = True
if not did_equalize:
raise RuntimeError("No valid data found to histogram equalize")
return output_dataset
| 293,140 |
Scale the DNB data using a adaptive histogram equalization method.
Args:
dnb_data (ndarray): Day/Night Band data array
sza_data (ndarray): Solar Zenith Angle data array
|
def _run_dnb_normalization(self, dnb_data, sza_data):
# convert dask arrays to DataArray objects
dnb_data = xr.DataArray(dnb_data, dims=('y', 'x'))
sza_data = xr.DataArray(sza_data, dims=('y', 'x'))
good_mask = ~(dnb_data.isnull() | sza_data.isnull())
# good_mask = ~(dnb_data.mask | sza_data.mask)
output_dataset = dnb_data.where(good_mask)
# we only need the numpy array
output_dataset = output_dataset.values.copy()
dnb_data = dnb_data.values
sza_data = sza_data.values
day_mask, mixed_mask, night_mask = make_day_night_masks(
sza_data,
good_mask.values,
self.high_angle_cutoff,
self.low_angle_cutoff,
stepsDegrees=self.mixed_degree_step)
did_equalize = False
has_multi_times = len(mixed_mask) > 0
if day_mask.any():
did_equalize = True
if self.adaptive_day == "always" or (
has_multi_times and self.adaptive_day == "multiple"):
LOG.debug("Adaptive histogram equalizing DNB day data...")
local_histogram_equalization(
dnb_data,
day_mask,
valid_data_mask=good_mask.values,
local_radius_px=self.day_radius_pixels,
out=output_dataset)
else:
LOG.debug("Histogram equalizing DNB day data...")
histogram_equalization(dnb_data,
day_mask,
out=output_dataset)
if mixed_mask:
for mask in mixed_mask:
if mask.any():
did_equalize = True
if self.adaptive_mixed == "always" or (
has_multi_times and
self.adaptive_mixed == "multiple"):
LOG.debug(
"Adaptive histogram equalizing DNB mixed data...")
local_histogram_equalization(
dnb_data,
mask,
valid_data_mask=good_mask.values,
local_radius_px=self.mixed_radius_pixels,
out=output_dataset)
else:
LOG.debug("Histogram equalizing DNB mixed data...")
histogram_equalization(dnb_data,
day_mask,
out=output_dataset)
if night_mask.any():
did_equalize = True
if self.adaptive_night == "always" or (
has_multi_times and self.adaptive_night == "multiple"):
LOG.debug("Adaptive histogram equalizing DNB night data...")
local_histogram_equalization(
dnb_data,
night_mask,
valid_data_mask=good_mask.values,
local_radius_px=self.night_radius_pixels,
out=output_dataset)
else:
LOG.debug("Histogram equalizing DNB night data...")
histogram_equalization(dnb_data,
night_mask,
out=output_dataset)
if not did_equalize:
raise RuntimeError("No valid data found to histogram equalize")
return output_dataset
| 293,143 |
Evaluate a Chebyshev Polynomial
Args:
coefs (list, np.array): Coefficients defining the polynomial
time (int, float): Time where to evaluate the polynomial
domain (list, tuple): Domain (or time interval) for which the polynomial is defined: [left, right]
Reference: Appendix A in the MSG Level 1.5 Image Data Format Description.
|
def chebyshev(coefs, time, domain):
return Chebyshev(coefs, domain=domain)(time) - 0.5 * coefs[0]
| 293,181 |
Filer provided key iterable by the provided `DatasetID`.
Note: The `modifiers` attribute of `did` should be `None` to allow for
**any** modifier in the results.
Args:
did (DatasetID): Query parameters to match in the `key_container`.
key_container (iterable): Set, list, tuple, or dict of `DatasetID`
keys.
Returns (list): List of keys matching the provided parameters in no
specific order.
|
def filter_keys_by_dataset_id(did, key_container):
keys = iter(key_container)
for key in DATASET_KEYS:
if getattr(did, key) is not None:
if key == "wavelength":
keys = [k for k in keys
if (getattr(k, key) is not None and
DatasetID.wavelength_match(getattr(k, key),
getattr(did, key)))]
else:
keys = [k for k in keys
if getattr(k, key) is not None and getattr(k, key)
== getattr(did, key)]
return keys
| 293,205 |
Generator of reader configuration files for one or more readers
Args:
reader (Optional[str]): Yield configs only for this reader
ppp_config_dir (Optional[str]): Additional configuration directory
to search for reader configuration files.
Returns: Generator of lists of configuration files
|
def configs_for_reader(reader=None, ppp_config_dir=None):
search_paths = (ppp_config_dir,) if ppp_config_dir else tuple()
if reader is not None:
if not isinstance(reader, (list, tuple)):
reader = [reader]
# check for old reader names
new_readers = []
for reader_name in reader:
if reader_name.endswith('.yaml') or reader_name not in OLD_READER_NAMES:
new_readers.append(reader_name)
continue
new_name = OLD_READER_NAMES[reader_name]
# Satpy 0.11 only displays a warning
# Satpy 0.13 will raise an exception
raise ValueError("Reader name '{}' has been deprecated, use '{}' instead.".format(reader_name, new_name))
# Satpy 0.15 or 1.0, remove exception and mapping
reader = new_readers
# given a config filename or reader name
config_files = [r if r.endswith('.yaml') else r + '.yaml' for r in reader]
else:
reader_configs = glob_config(os.path.join('readers', '*.yaml'),
*search_paths)
config_files = set(reader_configs)
for config_file in config_files:
config_basename = os.path.basename(config_file)
reader_configs = config_search_paths(
os.path.join("readers", config_basename), *search_paths)
if not reader_configs:
# either the reader they asked for does not exist
# or satpy is improperly configured and can't find its own readers
raise ValueError("No reader(s) named: {}".format(reader))
yield reader_configs
| 293,209 |
Available readers based on current configuration.
Args:
as_dict (bool): Optionally return reader information as a dictionary.
Default: False
Returns: List of available reader names. If `as_dict` is `True` then
a list of dictionaries including additionally reader information
is returned.
|
def available_readers(as_dict=False):
readers = []
for reader_configs in configs_for_reader():
try:
reader_info = read_reader_config(reader_configs)
except (KeyError, IOError, yaml.YAMLError):
LOG.warning("Could not import reader config from: %s", reader_configs)
LOG.debug("Error loading YAML", exc_info=True)
continue
readers.append(reader_info if as_dict else reader_info['name'])
return readers
| 293,210 |
Collect custom configuration values.
Args:
max_sza (float): Maximum solar zenith angle in degrees that is
considered valid and correctable. Default 95.0.
|
def __init__(self, max_sza=95.0, **kwargs):
self.max_sza = max_sza
self.max_sza_cos = np.cos(np.deg2rad(max_sza)) if max_sza is not None else None
super(SunZenithCorrectorBase, self).__init__(**kwargs)
| 293,237 |
Collect custom configuration values.
Args:
correction_limit (float): Maximum solar zenith angle to apply the
correction in degrees. Pixels beyond this limit have a
constant correction applied. Default 88.
max_sza (float): Maximum solar zenith angle in degrees that is
considered valid and correctable. Default 95.0.
|
def __init__(self, correction_limit=88., **kwargs):
self.correction_limit = correction_limit
super(SunZenithCorrector, self).__init__(**kwargs)
| 293,239 |
Collect custom configuration values.
Args:
correction_limit (float): Maximum solar zenith angle to apply the
correction in degrees. Pixels beyond this limit have a
constant correction applied. Default 88.
max_sza (float): Maximum solar zenith angle in degrees that is
considered valid and correctable. Default 95.0.
|
def __init__(self, correction_limit=88., **kwargs):
self.correction_limit = correction_limit
super(EffectiveSolarPathLengthCorrector, self).__init__(**kwargs)
| 293,241 |
Collect custom configuration values.
Args:
common_channel_mask (bool): If True, mask all the channels with
a mask that combines all the invalid areas of the given data.
|
def __init__(self, name, common_channel_mask=True, **kwargs):
self.common_channel_mask = common_channel_mask
super(GenericCompositor, self).__init__(name, **kwargs)
| 293,250 |
Collect custom configuration values.
Args:
lim_low (float): lower limit of Sun zenith angle for the
blending of the given channels
lim_high (float): upper limit of Sun zenith angle for the
blending of the given channels
|
def __init__(self, name, lim_low=85., lim_high=95., **kwargs):
self.lim_low = lim_low
self.lim_high = lim_high
super(DayNightCompositor, self).__init__(name, **kwargs)
| 293,260 |
Collect custom configuration values.
Args:
transition_min (float): Values below or equal to this are
clouds -> opaque white
transition_max (float): Values above this are
cloud free -> transparent
transition_gamma (float): Gamma correction to apply at the end
|
def __init__(self, name, transition_min=258.15, transition_max=298.15,
transition_gamma=3.0, **kwargs):
self.transition_min = transition_min
self.transition_max = transition_max
self.transition_gamma = transition_gamma
super(CloudCompositor, self).__init__(name, **kwargs)
| 293,264 |
Initialize resampler with geolocation information.
Args:
source_geo_def (SwathDefinition, AreaDefinition):
Geolocation definition for the data to be resampled
target_geo_def (CoordinateDefinition, AreaDefinition):
Geolocation definition for the area to resample data to.
|
def __init__(self, source_geo_def, target_geo_def):
self.source_geo_def = source_geo_def
self.target_geo_def = target_geo_def
| 293,280 |
Generator of writer configuration files for one or more writers
Args:
writer (Optional[str]): Yield configs only for this writer
ppp_config_dir (Optional[str]): Additional configuration directory
to search for writer configuration files.
Returns: Generator of lists of configuration files
|
def configs_for_writer(writer=None, ppp_config_dir=None):
search_paths = (ppp_config_dir,) if ppp_config_dir else tuple()
if writer is not None:
if not isinstance(writer, (list, tuple)):
writer = [writer]
# given a config filename or writer name
config_files = [w if w.endswith('.yaml') else w + '.yaml' for w in writer]
else:
writer_configs = glob_config(os.path.join('writers', '*.yaml'),
*search_paths)
config_files = set(writer_configs)
for config_file in config_files:
config_basename = os.path.basename(config_file)
writer_configs = config_search_paths(
os.path.join("writers", config_basename), *search_paths)
if not writer_configs:
LOG.warning("No writer configs found for '%s'", writer)
continue
yield writer_configs
| 293,369 |
Available writers based on current configuration.
Args:
as_dict (bool): Optionally return writer information as a dictionary.
Default: False
Returns: List of available writer names. If `as_dict` is `True` then
a list of dictionaries including additionally writer information
is returned.
|
def available_writers(as_dict=False):
writers = []
for writer_configs in configs_for_writer():
try:
writer_info = read_writer_config(writer_configs)
except (KeyError, IOError, yaml.YAMLError):
LOG.warning("Could not import writer config from: %s", writer_configs)
LOG.debug("Error loading YAML", exc_info=True)
continue
writers.append(writer_info if as_dict else writer_info['name'])
return writers
| 293,370 |
convert ``dataset`` into a :class:`~trollimage.xrimage.XRImage` instance.
Convert the ``dataset`` into an instance of the
:class:`~trollimage.xrimage.XRImage` class. This function makes no other
changes. To get an enhanced image, possibly with overlays and decoration,
see :func:`~get_enhanced_image`.
Args:
dataset (xarray.DataArray): Data to be converted to an image.
Returns:
Instance of :class:`~trollimage.xrimage.XRImage`.
|
def to_image(dataset):
dataset = dataset.squeeze()
if dataset.ndim < 2:
raise ValueError("Need at least a 2D array to make an image.")
else:
return XRImage(dataset)
| 293,377 |
Compute all the given dask graphs `results` so that the files are
saved.
Args:
results (iterable): Iterable of dask graphs resulting from calls to
`scn.save_datasets(..., compute=False)`
|
def compute_writer_results(results):
if not results:
return
sources, targets, delayeds = split_results(results)
# one or more writers have targets that we need to close in the future
if targets:
delayeds.append(da.store(sources, targets, compute=False))
if delayeds:
da.compute(delayeds)
if targets:
for target in targets:
if hasattr(target, 'close'):
target.close()
| 293,379 |
Create a filename where output data will be saved.
Args:
kwargs (dict): Attributes and other metadata to use for formatting
the previously provided `filename`.
|
def get_filename(self, **kwargs):
if self.filename_parser is None:
raise RuntimeError("No filename pattern or specific filename provided")
output_filename = self.filename_parser.compose(kwargs)
dirname = os.path.dirname(output_filename)
if dirname and not os.path.isdir(dirname):
LOG.info("Creating output directory: {}".format(dirname))
os.makedirs(dirname)
return output_filename
| 293,383 |
Initialize an Enhancer instance.
Args:
ppp_config_dir: Points to the base configuration directory
enhancement_config_file: The enhancement configuration to apply, False to leave as is.
|
def __init__(self, ppp_config_dir=None, enhancement_config_file=None):
self.ppp_config_dir = ppp_config_dir or get_environ_config_dir()
self.enhancement_config_file = enhancement_config_file
# Set enhancement_config_file to False for no enhancements
if self.enhancement_config_file is None:
# it wasn't specified in the config or in the kwargs, we should
# provide a default
config_fn = os.path.join("enhancements", "generic.yaml")
self.enhancement_config_file = config_search_paths(config_fn, self.ppp_config_dir)
if not self.enhancement_config_file:
# They don't want any automatic enhancements
self.enhancement_tree = None
else:
if not isinstance(self.enhancement_config_file, (list, tuple)):
self.enhancement_config_file = [self.enhancement_config_file]
self.enhancement_tree = EnhancementDecisionTree(*self.enhancement_config_file)
self.sensor_enhancement_configs = []
| 293,398 |
Check the satpy readers and writers for correct installation.
Args:
readers (list or None): Limit readers checked to those specified
writers (list or None): Limit writers checked to those specified
extras (list or None): Limit extras checked to those specified
Returns: bool
True if all specified features were successfully loaded.
|
def check_satpy(readers=None, writers=None, extras=None):
from satpy.readers import configs_for_reader
from satpy.writers import configs_for_writer
print('Readers')
print('=======')
for reader, res in sorted(check_yaml_configs(configs_for_reader(reader=readers), 'reader').items()):
print(reader + ': ', res)
print()
print('Writers')
print('=======')
for writer, res in sorted(check_yaml_configs(configs_for_writer(writer=writers), 'writer').items()):
print(writer + ': ', res)
print()
print('Extras')
print('======')
module_names = extras if extras is not None else ('cartopy', 'geoviews')
for module_name, res in sorted(_check_import(module_names).items()):
print(module_name + ': ', res)
print()
| 293,493 |
Make sure sensor and platform are consistent
Args:
sensor (str) : Sensor name from YAML dataset definition
Raises:
ValueError if they don't match
|
def _check_sensor_platform_consistency(self, sensor):
ref_sensor = SENSORS.get(self.platform, None)
if ref_sensor and not sensor == ref_sensor:
logger.error('Sensor-Platform mismatch: {} is not a payload '
'of {}. Did you choose the correct reader?'
.format(sensor, self.platform))
| 293,564 |
Get dataset function
Args:
dsid: Dataset ID
param2: Dataset Information
Returns:
Dask DataArray: Data
|
def get_dataset(self, dsid, dsinfo):
data = self[dsinfo.get('file_key', dsid.name)]
data.attrs.update(dsinfo)
data.attrs["platform_name"] = self['/attr/satellite_name']
data.attrs["sensor"] = self['/attr/instrument_name']
return data
| 293,635 |
Makes sure filepath is valid and then reads data into a Dask DataFrame
Args:
filename: Filename
filename_info: Filename information
filetype_info: Filetype information
|
def __init__(self, filename, filename_info, filetype_info):
super(VIIRSActiveFiresTextFileHandler, self).__init__(filename, filename_info, filetype_info)
if not os.path.isfile(filename):
return
self.file_content = dd.read_csv(filename, skiprows=15, header=None,
names=["latitude", "longitude",
"T13", "Along-scan", "Along-track", "detection_confidence",
"power"])
| 293,636 |
Convert an `numpy.string_` to str.
Args:
value (ndarray): scalar or 1-element numpy array to convert
Raises:
ValueError: if value is array larger than 1-element or it is not of
type `numpy.string_` or it is not a numpy array
|
def np2str(value):
if hasattr(value, 'dtype') and \
issubclass(value.dtype.type, (np.string_, np.object_)) and value.size == 1:
value = np.asscalar(value)
if not isinstance(value, str):
# python 3 - was scalar numpy array of bytes
# otherwise python 2 - scalar numpy array of 'str'
value = value.decode()
return value
else:
raise ValueError("Array is not a string type or is larger than 1")
| 293,638 |
Compute a mask of the earth's shape as seen by a geostationary satellite
Args:
area (pyresample.geometry.AreaDefinition) : Corresponding area
definition
Returns:
Boolean mask, True inside the earth's shape, False outside.
|
def get_geostationary_mask(area):
# Compute projection coordinates at the earth's limb
h = area.proj_dict['h']
xmax, ymax = get_geostationary_angle_extent(area)
xmax *= h
ymax *= h
# Compute projection coordinates at the centre of each pixel
x, y = area.get_proj_coords_dask()
# Compute mask of the earth's elliptical shape
return ((x / xmax) ** 2 + (y / ymax) ** 2) <= 1
| 293,640 |
Get the bbox in lon/lats of the valid pixels inside *geos_area*.
Args:
nb_points: Number of points on the polygon
|
def get_geostationary_bounding_box(geos_area, nb_points=50):
xmax, ymax = get_geostationary_angle_extent(geos_area)
# generate points around the north hemisphere in satellite projection
# make it a bit smaller so that we stay inside the valid area
x = np.cos(np.linspace(-np.pi, 0, nb_points / 2)) * (xmax - 0.001)
y = -np.sin(np.linspace(-np.pi, 0, nb_points / 2)) * (ymax - 0.001)
# clip the projection coordinates to fit the area extent of geos_area
ll_x, ll_y, ur_x, ur_y = (np.array(geos_area.area_extent) /
geos_area.proj_dict['h'])
x = np.clip(np.concatenate([x, x[::-1]]), min(ll_x, ur_x), max(ll_x, ur_x))
y = np.clip(np.concatenate([y, -y]), min(ll_y, ur_y), max(ll_y, ur_y))
return _lonlat_from_geos_angle(x, y, geos_area)
| 293,642 |
Create a copy of the Scene including dependency information.
Args:
datasets (list, tuple): `DatasetID` objects for the datasets
to include in the new Scene object.
|
def copy(self, datasets=None):
new_scn = self.__class__()
new_scn.attrs = self.attrs.copy()
new_scn.dep_tree = self.dep_tree.copy()
for ds_id in (datasets or self.keys()):
# NOTE: Must use `.datasets` or side effects of `__setitem__`
# could hurt us with regards to the wishlist
new_scn.datasets[ds_id] = self[ds_id]
if not datasets:
new_scn.wishlist = self.wishlist.copy()
else:
new_scn.wishlist = set([DatasetID.from_dict(ds.attrs)
for ds in new_scn])
return new_scn
| 293,662 |
Collect all composite prereqs and create the specified composite.
Args:
comp_node (Node): Composite Node to generate a Dataset for
keepables (set): `set` to update if any datasets are needed
when generation is continued later. This can
happen if generation is delayed to incompatible
areas which would require resampling first.
|
def _generate_composite(self, comp_node, keepables):
if comp_node.name in self.datasets:
# already loaded
return
compositor, prereqs, optional_prereqs = comp_node.data
try:
prereq_datasets = self._get_prereq_datasets(
comp_node.name,
prereqs,
keepables,
)
except KeyError:
return
optional_datasets = self._get_prereq_datasets(
comp_node.name,
optional_prereqs,
keepables,
skip=True
)
try:
composite = compositor(prereq_datasets,
optional_datasets=optional_datasets,
**self.attrs)
cid = DatasetID.from_dict(composite.attrs)
self.datasets[cid] = composite
# update the node with the computed DatasetID
if comp_node.name in self.wishlist:
self.wishlist.remove(comp_node.name)
self.wishlist.add(cid)
comp_node.name = cid
except IncompatibleAreas:
LOG.debug("Delaying generation of %s because of incompatible areas", str(compositor.id))
preservable_datasets = set(self.datasets.keys())
prereq_ids = set(p.name for p in prereqs)
opt_prereq_ids = set(p.name for p in optional_prereqs)
keepables |= preservable_datasets & (prereq_ids | opt_prereq_ids)
# even though it wasn't generated keep a list of what
# might be needed in other compositors
keepables.add(comp_node.name)
return
| 293,675 |
Load datasets from the necessary reader.
Args:
nodes (iterable): DependencyTree Node objects
**kwargs: Keyword arguments to pass to the reader's `load` method.
Returns:
DatasetDict of loaded datasets
|
def read(self, nodes=None, **kwargs):
if nodes is None:
required_nodes = self.wishlist - set(self.datasets.keys())
nodes = self.dep_tree.leaves(nodes=required_nodes)
return self._read_datasets(nodes, **kwargs)
| 293,677 |
Unload all unneeded datasets.
Datasets are considered unneeded if they weren't directly requested
or added to the Scene by the user or they are no longer needed to
generate composites that have yet to be generated.
Args:
keepables (iterable): DatasetIDs to keep whether they are needed
or not.
|
def unload(self, keepables=None):
to_del = [ds_id for ds_id, projectable in self.datasets.items()
if ds_id not in self.wishlist and (not keepables or ds_id
not in keepables)]
for ds_id in to_del:
LOG.debug("Unloading dataset: %r", ds_id)
del self.datasets[ds_id]
| 293,680 |
Merge all xr.DataArrays of a scene to a xr.DataSet.
Parameters:
datasets (list):
List of products to include in the :class:`xarray.Dataset`
Returns: :class:`xarray.Dataset`
|
def to_xarray_dataset(self, datasets=None):
if datasets is not None:
datasets = [self[ds] for ds in datasets]
else:
datasets = [self.datasets.get(ds) for ds in self.wishlist]
datasets = [ds for ds in datasets if ds is not None]
ds_dict = {i.attrs['name']: i.rename(i.attrs['name']) for i in datasets if i.attrs.get('area') is not None}
mdata = combine_metadata(*tuple(i.attrs for i in datasets))
if mdata.get('area') is None or not isinstance(mdata['area'], SwathDefinition):
# either don't know what the area is or we have an AreaDefinition
ds = xr.merge(ds_dict.values())
else:
# we have a swath definition and should use lon/lat values
lons, lats = mdata['area'].get_lonlats()
if not isinstance(lons, DataArray):
lons = DataArray(lons, dims=('y', 'x'))
lats = DataArray(lats, dims=('y', 'x'))
# ds_dict['longitude'] = lons
# ds_dict['latitude'] = lats
ds = xr.Dataset(ds_dict, coords={"latitude": (["y", "x"], lats),
"longitude": (["y", "x"], lons)})
ds.attrs = mdata
return ds
| 293,687 |
Obtain GCPs and construct latitude and longitude arrays.
Args:
band (gdal band): Measurement band which comes with GCP's
array_shape (tuple) : The size of the data array
Returns:
coordinates (tuple): A tuple with longitude and latitude arrays
|
def get_lonlatalts(self):
band = self.filehandle
(xpoints, ypoints), (gcp_lons, gcp_lats, gcp_alts), (gcps, crs) = self.get_gcps()
# FIXME: do interpolation on cartesion coordinates if the area is
# problematic.
longitudes = interpolate_xarray(xpoints, ypoints, gcp_lons, band.shape)
latitudes = interpolate_xarray(xpoints, ypoints, gcp_lats, band.shape)
altitudes = interpolate_xarray(xpoints, ypoints, gcp_alts, band.shape)
longitudes.attrs['gcps'] = gcps
longitudes.attrs['crs'] = crs
latitudes.attrs['gcps'] = gcps
latitudes.attrs['crs'] = crs
altitudes.attrs['gcps'] = gcps
altitudes.attrs['crs'] = crs
return longitudes, latitudes, altitudes
| 293,706 |
Read GCP from the GDAL band.
Args:
band (gdal band): Measurement band which comes with GCP's
coordinates (tuple): A tuple with longitude and latitude arrays
Returns:
points (tuple): Pixel and Line indices 1d arrays
gcp_coords (tuple): longitude and latitude 1d arrays
|
def get_gcps(self):
gcps = self.filehandle.gcps
gcp_array = np.array([(p.row, p.col, p.x, p.y, p.z) for p in gcps[0]])
ypoints = np.unique(gcp_array[:, 0])
xpoints = np.unique(gcp_array[:, 1])
gcp_lons = gcp_array[:, 2].reshape(ypoints.shape[0], xpoints.shape[0])
gcp_lats = gcp_array[:, 3].reshape(ypoints.shape[0], xpoints.shape[0])
gcp_alts = gcp_array[:, 4].reshape(ypoints.shape[0], xpoints.shape[0])
return (xpoints, ypoints), (gcp_lons, gcp_lats, gcp_alts), gcps
| 293,707 |
Initialize file reader and adjust geolocation preferences.
Args:
config_files (iterable): yaml config files passed to base class
use_tc (boolean): If `True` use the terrain corrected
files. If `False`, switch to non-TC files. If
`None` (default), use TC if available, non-TC otherwise.
|
def __init__(self, config_files, use_tc=None, **kwargs):
super(VIIRSSDRReader, self).__init__(config_files, **kwargs)
self.use_tc = use_tc
| 293,728 |
Flatten tree structure to a one level dictionary.
Args:
d (dict, optional): output dictionary to update
Returns:
dict: Node.name -> Node. The returned dictionary includes the
current Node and all its children.
|
def flatten(self, d=None):
if d is None:
d = {}
if self.name is not None:
d[self.name] = self
for child in self.children:
child.flatten(d=d)
return d
| 293,749 |
Get the leaves of the tree starting at this root.
Args:
nodes (iterable): limit leaves for these node names
unique: only include individual leaf nodes once
Returns:
list of leaf nodes
|
def leaves(self, nodes=None, unique=True):
if nodes is None:
return super(DependencyTree, self).leaves(unique=unique)
res = list()
for child_id in nodes:
for sub_child in self._all_nodes[child_id].leaves(unique=unique):
if not unique or sub_child not in res:
res.append(sub_child)
return res
| 293,756 |
Find the dependencies for *dataset_key*.
Args:
dataset_key (str, float, DatasetID): Dataset identifier to locate
and find any additional
dependencies for.
**dfilter (dict): Additional filter parameters. See
`satpy.readers.get_key` for more details.
|
def _find_dependencies(self, dataset_key, **dfilter):
# 0 check if the *exact* dataset is already loaded
try:
node = self.getitem(dataset_key)
LOG.trace("Found exact dataset already loaded: {}".format(node.name))
return node, set()
except KeyError:
# exact dataset isn't loaded, let's load it below
LOG.trace("Exact dataset {} isn't loaded, will try reader...".format(dataset_key))
# 1 try to get *best* dataset from reader
try:
node = self._find_reader_dataset(dataset_key, **dfilter)
except TooManyResults:
LOG.warning("Too many possible datasets to load for {}".format(dataset_key))
return None, set([dataset_key])
if node is not None:
LOG.trace("Found reader provided dataset:\n\tRequested: {}\n\tFound: {}".format(dataset_key, node.name))
return node, set()
LOG.trace("Could not find dataset in reader: {}".format(dataset_key))
# 2 try to find a composite by name (any version of it is good enough)
try:
# assume that there is no such thing as a "better" composite
# version so if we find any DatasetIDs already loaded then
# we want to use them
node = self[dataset_key]
LOG.trace("Composite already loaded:\n\tRequested: {}\n\tFound: {}".format(dataset_key, node.name))
return node, set()
except KeyError:
# composite hasn't been loaded yet, let's load it below
LOG.trace("Composite hasn't been loaded yet, will load: {}".format(dataset_key))
# 3 try to find a composite that matches
try:
node, unknowns = self._find_compositor(dataset_key, **dfilter)
LOG.trace("Found composite:\n\tRequested: {}\n\tFound: {}".format(dataset_key, node and node.name))
except KeyError:
node = None
unknowns = set([dataset_key])
LOG.trace("Composite not found: {}".format(dataset_key))
return node, unknowns
| 293,766 |
Create the dependency tree.
Args:
dataset_keys (iterable): Strings or DatasetIDs to find dependencies for
**dfilter (dict): Additional filter parameters. See
`satpy.readers.get_key` for more details.
Returns:
(Node, set): Root node of the dependency tree and a set of unknown datasets
|
def find_dependencies(self, dataset_keys, **dfilter):
unknown_datasets = set()
for key in dataset_keys.copy():
n, unknowns = self._find_dependencies(key, **dfilter)
dataset_keys.discard(key) # remove old non-DatasetID
if n is not None:
dataset_keys.add(n.name) # add equivalent DatasetID
if unknowns:
unknown_datasets.update(unknowns)
continue
self.add_child(self, n)
return unknown_datasets
| 293,767 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.