docstring
stringlengths 52
499
| function
stringlengths 67
35.2k
| __index_level_0__
int64 52.6k
1.16M
|
---|---|---|
Average a series of datetime objects.
.. note::
This function assumes all datetime objects are naive and in the same
time zone (UTC).
Args:
dt_list (iterable): Datetime objects to average
Returns: Average datetime as a datetime object
|
def average_datetimes(dt_list):
if sys.version_info < (3, 3):
# timestamp added in python 3.3
import time
def timestamp_func(dt):
return time.mktime(dt.timetuple())
else:
timestamp_func = datetime.timestamp
total = [timestamp_func(dt) for dt in dt_list]
return datetime.fromtimestamp(sum(total) / len(total))
| 293,768 |
Return if two wavelengths are equal.
Args:
a (tuple or scalar): (min wl, nominal wl, max wl) or scalar wl
b (tuple or scalar): (min wl, nominal wl, max wl) or scalar wl
|
def wavelength_match(a, b):
if type(a) == (type(b) or
isinstance(a, numbers.Number) and
isinstance(b, numbers.Number)):
return a == b
elif a is None or b is None:
return False
elif isinstance(a, (list, tuple)) and len(a) == 3:
return a[0] <= b <= a[2]
elif isinstance(b, (list, tuple)) and len(b) == 3:
return b[0] <= a <= b[2]
else:
raise ValueError("Can only compare wavelengths of length 1 or 3")
| 293,773 |
Configure reader behavior.
Args:
mask_surface (boolean): mask anything below the surface pressure
mask_quality (boolean): mask anything where the `Quality_Flag` metadata is ``!= 1``.
|
def __init__(self, config_files, mask_surface=True, mask_quality=True, **kwargs):
self.pressure_dataset_names = defaultdict(list)
super(NUCAPSReader, self).__init__(config_files,
**kwargs)
self.mask_surface = self.info.get('mask_surface', mask_surface)
self.mask_quality = self.info.get('mask_quality', mask_quality)
| 293,808 |
Test calibration coefficients against NOAA reference pages
Currently the reference pages are:
ir_url = https://www.ospo.noaa.gov/Operations/GOES/calibration/gvar-conversion.html
vis_url = https://www.ospo.noaa.gov/Operations/GOES/calibration/goes-vis-ch-calibration.html
Args:
ir_url: Path or URL to HTML page with IR coefficients
vis_url: Path or URL to HTML page with VIS coefficients
Raises:
ValueError if coefficients don't match the reference
|
def test_coefs(ir_url, vis_url):
reader = GOESCoefficientReader(ir_url=ir_url, vis_url=vis_url)
for platform in CALIB_COEFS.keys():
for channel, coefs in CALIB_COEFS[platform].items():
coefs_expected = reader.get_coefs(platform=platform,
channel=channel)
for cname in coefs_expected.keys():
if not np.allclose(coefs[cname], coefs_expected[cname]):
raise ValueError(
'Coefficient {} for {} channel {} does not match the '
'reference'.format(cname, platform, channel))
logger.info('Coefficients OK')
return True
| 293,924 |
Find the nadir pixel
Args:
earth_mask: Mask identifying earth and space pixels
sector: Specifies the scanned sector
Returns:
nadir row, nadir column
|
def _get_nadir_pixel(earth_mask, sector):
if sector == FULL_DISC:
logger.debug('Computing nadir pixel')
# The earth is not centered in the image, compute bounding box
# of the earth disc first
rmin, rmax, cmin, cmax = bbox(earth_mask)
# The nadir pixel is approximately at the centre of the earth disk
nadir_row = rmin + (rmax - rmin) // 2
nadir_col = cmin + (cmax - cmin) // 2
return nadir_row, nadir_col
return None, None
| 293,929 |
Convert IR counts to radiance
Reference: [IR].
Args:
counts: Raw detector counts
scale: Scale [mW-1 m2 cm sr]
offset: Offset [1]
Returns:
Radiance [mW m-2 cm-1 sr-1]
|
def _ircounts2radiance(counts, scale, offset):
rad = (counts - offset) / scale
return rad.clip(min=0)
| 293,937 |
Convert VIS counts to radiance
References: [VIS]
Args:
counts: Raw detector counts
slope: Slope [W m-2 um-1 sr-1]
offset: Offset [W m-2 um-1 sr-1]
Returns:
Radiance [W m-2 um-1 sr-1]
|
def _viscounts2radiance(counts, slope, offset):
rad = counts * slope + offset
return rad.clip(min=0)
| 293,939 |
Apply `func` to the provided data.
Args:
data (xarray.DataArray): Data to be modified inplace.
func (callable): Function to be applied to an xarray
exclude (iterable): Bands in the 'bands' dimension to not include
in the calculations.
separate (bool): Apply `func` one band at a time. Default is False.
pass_dask (bool): Pass the underlying dask array instead of the
xarray.DataArray.
|
def apply_enhancement(data, func, exclude=None, separate=False,
pass_dask=False):
attrs = data.attrs
bands = data.coords['bands'].values
if exclude is None:
exclude = ['A'] if 'A' in bands else []
if separate:
data_arrs = []
for idx, band_name in enumerate(bands):
band_data = data.sel(bands=[band_name])
if band_name in exclude:
# don't modify alpha
data_arrs.append(band_data)
continue
if pass_dask:
dims = band_data.dims
coords = band_data.coords
d_arr = func(band_data.data, index=idx)
band_data = xr.DataArray(d_arr, dims=dims, coords=coords)
else:
band_data = func(band_data, index=idx)
data_arrs.append(band_data)
# we assume that the func can add attrs
attrs.update(band_data.attrs)
data.data = xr.concat(data_arrs, dim='bands').data
data.attrs = attrs
return data
else:
band_data = data.sel(bands=[b for b in bands
if b not in exclude])
if pass_dask:
dims = band_data.dims
coords = band_data.coords
d_arr = func(band_data.data)
band_data = xr.DataArray(d_arr, dims=dims, coords=coords)
else:
band_data = func(band_data)
attrs.update(band_data.attrs)
# combine the new data with the excluded data
new_data = xr.concat([band_data, data.sel(bands=exclude)],
dim='bands')
data.data = new_data.sel(bands=bands).data
data.attrs = attrs
return data
| 293,974 |
Convert convolution layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_conv(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting convolution ...')
if names == 'short':
tf_name = 'C' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
bias_name = '{0}.bias'.format(w_name)
weights_name = '{0}.weight'.format(w_name)
input_name = inputs[0]
if len(weights[weights_name].numpy().shape) == 5: # 3D conv
W = weights[weights_name].numpy().transpose(2, 3, 4, 1, 0)
height, width, channels, n_layers, n_filters = W.shape
if bias_name in weights:
biases = weights[bias_name].numpy()
has_bias = True
else:
biases = None
has_bias = False
if params['pads'][0] > 0 or params['pads'][1] > 0:
padding_name = tf_name + '_pad'
padding_layer = keras.layers.ZeroPadding3D(
padding=(params['pads'][0],
params['pads'][1],
params['pads'][2]),
name=padding_name
)
layers[padding_name] = padding_layer(layers[input_name])
input_name = padding_name
if has_bias:
weights = [W, biases]
else:
weights = [W]
conv = keras.layers.Conv3D(
filters=n_filters,
kernel_size=(channels, height, width),
strides=(params['strides'][0],
params['strides'][1],
params['strides'][2]),
padding='valid',
weights=weights,
use_bias=has_bias,
activation=None,
dilation_rate=params['dilations'][0],
bias_initializer='zeros', kernel_initializer='zeros',
name=tf_name
)
layers[scope_name] = conv(layers[input_name])
elif len(weights[weights_name].numpy().shape) == 4: # 2D conv
if params['pads'][0] > 0 or params['pads'][1] > 0:
padding_name = tf_name + '_pad'
padding_layer = keras.layers.ZeroPadding2D(
padding=(params['pads'][0], params['pads'][1]),
name=padding_name
)
layers[padding_name] = padding_layer(layers[input_name])
input_name = padding_name
W = weights[weights_name].numpy().transpose(2, 3, 1, 0)
height, width, channels_per_group, out_channels = W.shape
n_groups = params['group']
in_channels = channels_per_group * n_groups
if n_groups == in_channels and n_groups != 1:
if bias_name in weights:
biases = weights[bias_name].numpy()
has_bias = True
else:
biases = None
has_bias = False
W = W.transpose(0, 1, 3, 2)
if has_bias:
weights = [W, biases]
else:
weights = [W]
conv = keras.layers.DepthwiseConv2D(
kernel_size=(height, width),
strides=(params['strides'][0], params['strides'][1]),
padding='valid',
use_bias=has_bias,
activation=None,
depth_multiplier=1,
weights = weights,
dilation_rate=params['dilations'][0],
bias_initializer='zeros', kernel_initializer='zeros'
)
layers[scope_name] = conv(layers[input_name])
elif n_groups != 1:
# Example from https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow.html
# # Split input and weights and convolve them separately
# input_groups = tf.split(axis=3, num_or_size_splits=groups, value=x)
# weight_groups = tf.split(axis=3, num_or_size_splits=groups, value=weights)
# output_groups = [convolve(i, k) for i, k in zip(input_groups, weight_groups)]
# # Concat the convolved output together again
# conv = tf.concat(axis=3, values=output_groups)
def target_layer(x, groups=params['group'], stride_y=params['strides'][0], stride_x=params['strides'][1]):
x = tf.transpose(x, [0, 2, 3, 1])
def convolve_lambda(i, k):
return tf.nn.conv2d(i, k, strides=[1, stride_y, stride_x, 1], padding='VALID')
input_groups = tf.split(axis=3, num_or_size_splits=groups, value=x)
weight_groups = tf.split(axis=3, num_or_size_splits=groups, value=W.transpose(0, 1, 2, 3))
output_groups = [convolve_lambda(i, k) for i, k in zip(input_groups, weight_groups)]
layer = tf.concat(axis=3, values=output_groups)
layer = tf.transpose(layer, [0, 3, 1, 2])
return layer
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[input_name])
else:
if bias_name in weights:
biases = weights[bias_name].numpy()
has_bias = True
else:
biases = None
has_bias = False
if has_bias:
weights = [W, biases]
else:
weights = [W]
conv = keras.layers.Conv2D(
filters=out_channels,
kernel_size=(height, width),
strides=(params['strides'][0], params['strides'][1]),
padding='valid',
weights=weights,
use_bias=has_bias,
activation=None,
dilation_rate=params['dilations'][0],
bias_initializer='zeros', kernel_initializer='zeros',
name=tf_name
)
layers[scope_name] = conv(layers[input_name])
else: # 1D conv
W = weights[weights_name].numpy().transpose(2, 1, 0)
width, channels, n_filters = W.shape
n_groups = params['group']
if n_groups > 1:
raise AssertionError('Cannot convert conv1d with groups != 1')
if bias_name in weights:
biases = weights[bias_name].numpy()
has_bias = True
else:
biases = None
has_bias = False
padding_name = tf_name + '_pad'
padding_layer = keras.layers.ZeroPadding1D(
padding=params['pads'][0],
name=padding_name
)
layers[padding_name] = padding_layer(layers[inputs[0]])
input_name = padding_name
if has_bias:
weights = [W, biases]
else:
weights = [W]
conv = keras.layers.Conv1D(
filters=channels,
kernel_size=width,
strides=params['strides'],
padding='valid',
weights=weights,
use_bias=has_bias,
activation=None,
data_format='channels_first',
dilation_rate=params['dilations'],
bias_initializer='zeros', kernel_initializer='zeros',
name=tf_name
)
layers[scope_name] = conv(layers[input_name])
| 294,116 |
Convert transposed convolution layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_convtranspose(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting transposed convolution ...')
if names == 'short':
tf_name = 'C' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
bias_name = '{0}.bias'.format(w_name)
weights_name = '{0}.weight'.format(w_name)
if len(weights[weights_name].numpy().shape) == 4:
W = weights[weights_name].numpy().transpose(2, 3, 1, 0)
height, width, n_filters, channels = W.shape
n_groups = params['group']
if n_groups > 1:
raise AssertionError('Cannot convert conv1d with groups != 1')
if params['dilations'][0] > 1:
raise AssertionError('Cannot convert conv1d with dilation_rate != 1')
if bias_name in weights:
biases = weights[bias_name].numpy()
has_bias = True
else:
biases = None
has_bias = False
input_name = inputs[0]
if has_bias:
weights = [W, biases]
else:
weights = [W]
conv = keras.layers.Conv2DTranspose(
filters=n_filters,
kernel_size=(height, width),
strides=(params['strides'][0], params['strides'][1]),
padding='valid',
output_padding=0,
weights=weights,
use_bias=has_bias,
activation=None,
dilation_rate=params['dilations'][0],
bias_initializer='zeros', kernel_initializer='zeros',
name=tf_name
)
layers[scope_name] = conv(layers[input_name])
# Magic ad-hoc.
# See the Keras issue: https://github.com/keras-team/keras/issues/6777
layers[scope_name].set_shape(layers[scope_name]._keras_shape)
pads = params['pads']
if pads[0] > 0:
assert(len(pads) == 2 or (pads[2] == pads[0] and pads[3] == pads[1]))
crop = keras.layers.Cropping2D(
pads[:2],
name=tf_name + '_crop'
)
layers[scope_name] = crop(layers[scope_name])
else:
raise AssertionError('Layer is not supported for now')
| 294,117 |
Convert sum.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_sum(
params, w_name, scope_name, inputs, layers, weights, names
):
print('Converting Sum ...')
def target_layer(x):
import keras.backend as K
return K.sum(x)
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,118 |
Convert reduce_sum layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_reduce_sum(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting reduce_sum ...')
keepdims = params['keepdims'] > 0
axis = params['axes']
def target_layer(x, keepdims=keepdims, axis=axis):
import keras.backend as K
return K.sum(x, keepdims=keepdims, axis=axis)
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,119 |
Convert concatenation.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_concat(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting concat ...')
concat_nodes = [layers[i] for i in inputs]
if len(concat_nodes) == 1:
# no-op
layers[scope_name] = concat_nodes[0]
return
if names == 'short':
tf_name = 'CAT' + random_string(5)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
cat = keras.layers.Concatenate(name=tf_name, axis=params['axis'])
layers[scope_name] = cat(concat_nodes)
| 294,120 |
Convert slice operation.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_slice(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting slice ...')
if len(params['axes']) > 1:
raise AssertionError('Cannot convert slice by multiple dimensions')
if params['axes'][0] not in [0, 1, 2, 3]:
raise AssertionError('Slice by dimension more than 3 or less than 0 is not supported')
def target_layer(x, axis=int(params['axes'][0]), start=int(params['starts'][0]), end=int(params['ends'][0])):
if axis == 0:
return x[start:end]
elif axis == 1:
return x[:, start:end]
elif axis == 2:
return x[:, :, start:end]
elif axis == 3:
return x[:, :, :, start:end]
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,121 |
Convert clip operation.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_clip(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting clip ...')
if params['min'] == 0:
print("using ReLU({0})".format(params['max']))
layer = keras.layers.ReLU(max_value=params['max'])
else:
def target_layer(x, vmin=params['min'], vmax=params['max']):
import tensorflow as tf
return tf.clip_by_value(x, vmin, vmax)
layer = keras.layers.Lambda(target_layer)
layers[scope_name] = layer(layers[inputs[0]])
| 294,122 |
Convert elementwise addition.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_elementwise_add(
params, w_name, scope_name, inputs, layers, weights, names
):
print('Converting elementwise_add ...')
if 'broadcast' in params:
model0 = layers[inputs[0]]
model1 = layers[inputs[1]]
if names == 'short':
tf_name = 'A' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
def target_layer(x):
layer = tf.add(x[0], x[1])
return layer
lambda_layer = keras.layers.Lambda(target_layer, name=tf_name)
layers[scope_name] = lambda_layer([layers[inputs[0]], layers[inputs[1]]])
else:
model0 = layers[inputs[0]]
model1 = layers[inputs[1]]
if names == 'short':
tf_name = 'A' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
add = keras.layers.Add(name=tf_name)
layers[scope_name] = add([model0, model1])
| 294,123 |
Convert elementwise multiplication.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_elementwise_mul(
params, w_name, scope_name, inputs, layers, weights, names
):
print('Converting elementwise_mul ...')
model0 = layers[inputs[0]]
model1 = layers[inputs[1]]
if names == 'short':
tf_name = 'M' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
def target_layer(x):
layer = tf.multiply(
x[0],
x[1]
)
return layer
lambda_layer = keras.layers.Lambda(target_layer, name=tf_name)
layers[scope_name] = lambda_layer([layers[inputs[0]], layers[inputs[1]]])
| 294,124 |
Convert elementwise multiplication.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_elementwise_div(
params, w_name, scope_name, inputs, layers, weights, names
):
print('Converting elementwise_div ...')
if names == 'short':
tf_name = 'D' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
def target_layer(x):
layer = tf.div(
x[0],
x[1]
)
return layer
lambda_layer = keras.layers.Lambda(target_layer, name=tf_name)
layers[scope_name] = lambda_layer([layers[inputs[0]], layers[inputs[1]]])
| 294,125 |
Convert elementwise subtraction.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_elementwise_sub(
params, w_name, scope_name, inputs, layers, weights, names
):
print('Converting elementwise_sub ...')
model0 = layers[inputs[0]]
model1 = layers[inputs[1]]
if names == 'short':
tf_name = 'S' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
sub = keras.layers.Subtract(name=tf_name)
layers[scope_name] = sub([model0, model1])
| 294,126 |
Convert Linear.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_gemm(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting Linear ...')
if names == 'short':
tf_name = 'FC' + random_string(6)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
bias_name = '{0}.bias'.format(w_name)
weights_name = '{0}.weight'.format(w_name)
W = weights[weights_name].numpy().transpose()
input_channels, output_channels = W.shape
keras_weights = [W]
has_bias = False
if bias_name in weights:
bias = weights[bias_name].numpy()
keras_weights = [W, bias]
has_bias = True
dense = keras.layers.Dense(
output_channels,
weights=keras_weights, use_bias=has_bias, name=tf_name, bias_initializer='zeros', kernel_initializer='zeros',
)
layers[scope_name] = dense(layers[inputs[0]])
| 294,127 |
Convert matmul layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_matmul(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting matmul ...')
if names == 'short':
tf_name = 'MMUL' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
if len(inputs) == 1:
weights_name = '{0}.weight'.format(w_name)
W = weights[weights_name].numpy().transpose()
input_channels, output_channels = W.shape
keras_weights = [W]
dense = keras.layers.Dense(
output_channels,
weights=keras_weights, use_bias=False, name=tf_name, bias_initializer='zeros', kernel_initializer='zeros',
)
layers[scope_name] = dense(layers[inputs[0]])
elif len(inputs) == 2:
weights_name = '{0}.weight'.format(w_name)
W = weights[weights_name].numpy().transpose()
input_channels, output_channels = W.shape
keras_weights = [W]
dense = keras.layers.Dense(
output_channels,
weights=keras_weights, use_bias=False, name=tf_name, bias_initializer='zeros', kernel_initializer='zeros',
)
layers[scope_name] = dense(layers[inputs[0]])
else:
raise AssertionError('Cannot convert matmul layer')
| 294,128 |
Convert constant layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_constant(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting constant ...')
params_list = params['value'].numpy()
def target_layer(x, value=params_list):
return tf.constant(value.tolist(), shape=value.shape)
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name + '_np'] = params_list # ad-hoc
layers[scope_name] = lambda_layer(layers[list(layers.keys())[0]])
| 294,129 |
Convert reshape(view).
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_flatten(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting flatten ...')
if names == 'short':
tf_name = 'R' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
reshape = keras.layers.Reshape([-1], name=tf_name)
layers[scope_name] = reshape(layers[inputs[0]])
| 294,130 |
Convert transpose layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_transpose(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting transpose ...')
if params['perm'][0] != 0:
if inputs[0] in layers:
print('!!! Cannot permute batch dimension. Result may be wrong !!!')
layers[scope_name] = layers[inputs[0]]
else:
print('Skip weight matrix transpose, result may be wrong.')
else:
if names:
tf_name = 'PERM' + random_string(4)
else:
tf_name = w_name + str(random.random())
permute = keras.layers.Permute(params['perm'][1:], name=tf_name)
layers[scope_name] = permute(layers[inputs[0]])
| 294,131 |
Convert reshape layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_reshape(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting reshape ...')
if names == 'short':
tf_name = 'RESH' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
if len(inputs) > 1:
if layers[inputs[1]][0] == -1:
print('Cannot deduct batch size! It will be omitted, but result may be wrong.')
reshape = keras.layers.Reshape(layers[inputs[1] + '_np'], name=tf_name)
layers[scope_name] = reshape(layers[inputs[0]])
else:
if inputs[0] in layers:
reshape = keras.layers.Reshape(params['shape'][1:], name=tf_name)
layers[scope_name] = reshape(layers[inputs[0]])
else:
print('Skip weight matrix transpose, but result may be wrong.')
| 294,132 |
Convert squeeze operation.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_squeeze(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting squeeze ...')
if len(params['axes']) > 1:
raise AssertionError('Cannot convert squeeze by multiple dimensions')
def target_layer(x, axis=int(params['axes'][0])):
import tensorflow as tf
return tf.squeeze(x, axis=axis)
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,133 |
Convert unsqueeze operation.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_unsqueeze(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting unsqueeze ...')
if names == 'short':
tf_name = 'UNSQ' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
def target_layer(x):
import keras
return keras.backend.expand_dims(x)
lambda_layer = keras.layers.Lambda(target_layer, name=tf_name + 'E')
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,134 |
Convert shape operation.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_shape(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting shape ...')
def target_layer(x):
import tensorflow as tf
return tf.shape(x)
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,135 |
Convert Average pooling.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_avgpool(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting pooling ...')
if names == 'short':
tf_name = 'P' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
if 'kernel_shape' in params:
height, width = params['kernel_shape']
else:
height, width = params['kernel_size']
if 'strides' in params:
stride_height, stride_width = params['strides']
else:
stride_height, stride_width = params['stride']
if 'pads' in params:
padding_h, padding_w, _, _ = params['pads']
else:
padding_h, padding_w = params['padding']
input_name = inputs[0]
pad = 'valid'
if height % 2 == 1 and width % 2 == 1 and \
height // 2 == padding_h and width // 2 == padding_w and \
stride_height == 1 and stride_width == 1:
pad = 'same'
else:
padding_name = tf_name + '_pad'
padding_layer = keras.layers.ZeroPadding2D(
padding=(padding_h, padding_w),
name=padding_name
)
layers[padding_name] = padding_layer(layers[inputs[0]])
input_name = padding_name
# Pooling type AveragePooling2D
pooling = keras.layers.AveragePooling2D(
pool_size=(height, width),
strides=(stride_height, stride_width),
padding=pad,
name=tf_name,
data_format='channels_first'
)
layers[scope_name] = pooling(layers[input_name])
| 294,136 |
Convert 3d Max pooling.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_maxpool3(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting pooling ...')
if names == 'short':
tf_name = 'P' + random_string(7)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
if 'kernel_shape' in params:
height, width, depth = params['kernel_shape']
else:
height, width, depth = params['kernel_size']
if 'strides' in params:
stride_height, stride_width, stride_depth = params['strides']
else:
stride_height, stride_width, stride_depth = params['stride']
if 'pads' in params:
padding_h, padding_w, padding_d, _, _ = params['pads']
else:
padding_h, padding_w, padding_d = params['padding']
input_name = inputs[0]
if padding_h > 0 and padding_w > 0 and padding_d > 0:
padding_name = tf_name + '_pad'
padding_layer = keras.layers.ZeroPadding3D(
padding=(padding_h, padding_w, padding_d),
name=padding_name
)
layers[padding_name] = padding_layer(layers[inputs[0]])
input_name = padding_name
# Pooling type
pooling = keras.layers.MaxPooling3D(
pool_size=(height, width, depth),
strides=(stride_height, stride_width, stride_depth),
padding='valid',
name=tf_name
)
layers[scope_name] = pooling(layers[input_name])
| 294,137 |
Convert convert_adaptive_max_pool2d layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_adaptive_max_pool2d(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting adaptive_avg_pool2d...')
if names == 'short':
tf_name = 'APOL' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
global_pool = keras.layers.GlobalMaxPooling2D(data_format='channels_first', name=tf_name)
layers[scope_name] = global_pool(layers[inputs[0]])
def target_layer(x):
import keras
return keras.backend.expand_dims(x)
lambda_layer = keras.layers.Lambda(target_layer, name=tf_name + 'E')
layers[scope_name] = lambda_layer(layers[scope_name]) # double expand dims
layers[scope_name] = lambda_layer(layers[scope_name])
| 294,138 |
Convert padding layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_padding(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting padding...')
if params['mode'] == 'constant':
# raise AssertionError('Cannot convert non-constant padding')
if params['value'] != 0.0:
raise AssertionError('Cannot convert non-zero padding')
if names:
tf_name = 'PADD' + random_string(4)
else:
tf_name = w_name + str(random.random())
# Magic ordering
padding_name = tf_name
padding_layer = keras.layers.ZeroPadding2D(
padding=((params['pads'][2], params['pads'][6]), (params['pads'][3], params['pads'][7])),
name=padding_name
)
layers[scope_name] = padding_layer(layers[inputs[0]])
elif params['mode'] == 'reflect':
def target_layer(x, pads=params['pads']):
# x = tf.transpose(x, [0, 2, 3, 1])
layer = tf.pad(x, [[0, 0], [0, 0], [pads[2], pads[6]], [pads[3], pads[7]]], 'REFLECT')
# layer = tf.transpose(layer, [0, 3, 1, 2])
return layer
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,139 |
Convert batch normalization layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_batchnorm(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting batchnorm ...')
if names == 'short':
tf_name = 'BN' + random_string(6)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
bias_name = '{0}.bias'.format(w_name)
weights_name = '{0}.weight'.format(w_name)
mean_name = '{0}.running_mean'.format(w_name)
var_name = '{0}.running_var'.format(w_name)
if bias_name in weights:
beta = weights[bias_name].numpy()
if weights_name in weights:
gamma = weights[weights_name].numpy()
mean = weights[mean_name].numpy()
variance = weights[var_name].numpy()
eps = params['epsilon']
momentum = params['momentum']
if weights_name not in weights:
bn = keras.layers.BatchNormalization(
axis=1, momentum=momentum, epsilon=eps,
center=False, scale=False,
weights=[mean, variance],
name=tf_name
)
else:
bn = keras.layers.BatchNormalization(
axis=1, momentum=momentum, epsilon=eps,
weights=[gamma, beta, mean, variance],
name=tf_name
)
layers[scope_name] = bn(layers[inputs[0]])
| 294,140 |
Convert instance normalization layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_instancenorm(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting instancenorm ...')
if names == 'short':
tf_name = 'IN' + random_string(6)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
assert(len(inputs) == 3)
bias_name = '{0}.bias'.format(w_name)
weights_name = '{0}.weight'.format(w_name)
# Use previously taken constants
if inputs[-2] + '_np' in layers:
gamma = layers[inputs[-2] + '_np']
else:
gamma = weights[weights_name].numpy()
if inputs[-1] + '_np' in layers:
beta = layers[inputs[-1] + '_np']
else:
beta = weights[bias_name].numpy()
def target_layer(x, epsilon=params['epsilon'], gamma=gamma, beta=beta):
layer = tf.contrib.layers.instance_norm(
x,
param_initializers={'beta': tf.constant_initializer(beta), 'gamma': tf.constant_initializer(gamma)},
epsilon=epsilon, data_format='NCHW',
trainable=False
)
return layer
lambda_layer = keras.layers.Lambda(target_layer, name=tf_name)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,141 |
Convert dropout.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_dropout(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting dropout ...')
if names == 'short':
tf_name = 'DO' + random_string(6)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
dropout = keras.layers.Dropout(rate=params['ratio'], name=tf_name)
layers[scope_name] = dropout(layers[inputs[0]])
| 294,142 |
Convert relu layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_relu(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting relu ...')
if names == 'short':
tf_name = 'RELU' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
relu = keras.layers.Activation('relu', name=tf_name)
layers[scope_name] = relu(layers[inputs[0]])
| 294,143 |
Convert leaky relu layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_lrelu(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting lrelu ...')
if names == 'short':
tf_name = 'lRELU' + random_string(3)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
leakyrelu = \
keras.layers.LeakyReLU(alpha=params['alpha'], name=tf_name)
layers[scope_name] = leakyrelu(layers[inputs[0]])
| 294,144 |
Convert sigmoid layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_sigmoid(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting sigmoid ...')
if names == 'short':
tf_name = 'SIGM' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
sigmoid = keras.layers.Activation('sigmoid', name=tf_name)
layers[scope_name] = sigmoid(layers[inputs[0]])
| 294,145 |
Convert softmax layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_softmax(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting softmax ...')
if names == 'short':
tf_name = 'SMAX' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
def target_layer(x, dim=params['dim']):
import keras
return keras.activations.softmax(x, axis=dim)
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,146 |
Convert tanh layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_tanh(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting tanh ...')
if names == 'short':
tf_name = 'TANH' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
tanh = keras.layers.Activation('tanh', name=tf_name)
layers[scope_name] = tanh(layers[inputs[0]])
| 294,147 |
Convert hardtanh layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_hardtanh(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting hardtanh (clip) ...')
def target_layer(x, max_val=float(params['max_val']), min_val=float(params['min_val'])):
return tf.minimum(max_val, tf.maximum(min_val, x))
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,148 |
Convert selu layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_selu(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting selu ...')
if names == 'short':
tf_name = 'SELU' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
selu = keras.layers.Activation('selu', name=tf_name)
layers[scope_name] = selu(layers[inputs[0]])
| 294,149 |
Convert upsample_bilinear2d layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_upsample_bilinear(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting upsample...')
if names == 'short':
tf_name = 'UPSL' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
output_size = params['output_size']
align_corners = params['align_corners'] > 0
def target_layer(x, size=output_size, align_corners=align_corners):
import tensorflow as tf
x = tf.transpose(x, [0, 2, 3, 1])
x = tf.image.resize_images(x, size, align_corners=align_corners)
x = tf.transpose(x, [0, 3, 1, 2])
return x
lambda_layer = keras.layers.Lambda(target_layer)
layers[scope_name] = lambda_layer(layers[inputs[0]])
| 294,150 |
Convert nearest upsampling layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_upsample(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting upsample...')
if params['mode'] != 'nearest':
raise AssertionError('Cannot convert non-nearest upsampling')
if names == 'short':
tf_name = 'UPSL' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
if 'height_scale' in params:
scale = (params['height_scale'], params['width_scale'])
elif len(inputs) == 2:
scale = layers[inputs[-1] + '_np'][-2:]
upsampling = keras.layers.UpSampling2D(
size=scale, name=tf_name
)
layers[scope_name] = upsampling(layers[inputs[0]])
| 294,151 |
Convert gather (embedding) layer.
Args:
params: dictionary with layer parameters
w_name: name prefix in state_dict
scope_name: pytorch scope name
inputs: pytorch node inputs
layers: dictionary with keras tensors
weights: pytorch state_dict
names: use short names for keras layers
|
def convert_gather(params, w_name, scope_name, inputs, layers, weights, names):
print('Converting embedding ...')
if names == 'short':
tf_name = 'EMBD' + random_string(4)
elif names == 'keep':
tf_name = w_name
else:
tf_name = w_name + str(random.random())
weights_name = '{0}.weight'.format(w_name)
W = weights[weights_name].numpy()
input_channels, output_channels = W.shape
keras_weights = [W]
dense = keras.layers.Embedding(
input_channels,
weights=keras_weights, output_dim=output_channels, name=tf_name
)
layers[scope_name] = dense(layers[inputs[1]])
| 294,152 |
By given pytorch model convert layers with specified convertors.
Args:
model: pytorch model
args: pytorch model arguments
input_shapes: keras input shapes (using for each InputLayer)
change_ordering: change CHW to HWC
training: switch model to training mode
verbose: verbose output
names: use short names, use random-suffix or keep original names for keras layers
Returns:
model: created keras model.
|
def pytorch_to_keras(
model, args, input_shapes,
change_ordering=False, training=False, verbose=False, names=False,
):
# PyTorch JIT tracing
if isinstance(args, torch.autograd.Variable):
args = (args, )
# Workaround for previous versions
if isinstance(input_shapes, tuple):
input_shapes = [input_shapes]
orig_state_dict_keys = _unique_state_dict(model).keys()
with set_training(model, training):
trace, torch_out = torch.jit.get_trace_graph(model, tuple(args))
if orig_state_dict_keys != _unique_state_dict(model).keys():
raise RuntimeError("state_dict changed after running the tracer; "
"something weird is happening in your model!")
# _optimize_trace(trace, False)
if version.parse('0.4.0') < version.parse(torch.__version__):
trace.set_graph(_optimize_graph(trace.graph(), OperatorExportTypes.ONNX))
else:
trace.set_graph(_optimize_graph(trace.graph(), False))
trace.graph().lint()
if verbose:
print(trace.graph())
# Get all graph nodes
nodes = list(trace.graph().nodes())
# Optimize Flatten:
# When we have something loke that:
#
# %523 : Long() = onnx::Constant[value={0}](), scope: ResNet
# %524 : Dynamic = onnx::Shape(%522), scope: ResNet
# %526 : Long() = onnx::Gather[axis=0](%524, %523), scope: ResNet
# %527 : Long() = onnx::Constant[value={-1}](), scope: ResNet
# %534 : Dynamic = onnx::Unsqueeze[axes=[0]](%526)
# %535 : Dynamic = onnx::Unsqueeze[axes=[0]](%527)
# %536 : Dynamic = onnx::Concat[axis=0](%534, %535)
# %529 : Float(1, 512) = onnx::Reshape(%522, %536), scope: ResNet
#
# It's better to replace it with onnx::Flatten
if six.PY3:
from types import SimpleNamespace
seq_to_find = \
['onnx::Constant', 'onnx::Shape', 'onnx::Gather',
'onnx::Constant', 'onnx::Unsqueeze', 'onnx::Unsqueeze', 'onnx::Concat', 'onnx::Reshape']
k = 0
s = 0
for i, node in enumerate(nodes):
if node.kind() == seq_to_find[k]:
if k == 0:
s = i
k += 1
if k == len(seq_to_find):
reshape_op = nodes[s + k - 1]
flatten_op = {
'kind': (lambda: 'onnx::Flatten'),
'attributeNames': (lambda: {}),
'outputs': (lambda: list(reshape_op.outputs())),
'scopeName': (lambda: reshape_op.scopeName()),
'inputs': (lambda: list(reshape_op.inputs())[:1]),
'__str__': (lambda: reshape_op.__str__()),
}
nodes = nodes[:s] + [SimpleNamespace(**flatten_op)] + nodes[s+k:]
break
else:
k = 0
s = -1
# Collect graph inputs and outputs
graph_outputs = [get_leaf_id(n) for n in trace.graph().outputs()]
graph_inputs = [get_leaf_id(n) for n in trace.graph().inputs()]
# Collect model state dict
state_dict = _unique_state_dict(model)
if verbose:
print('Graph inputs:', graph_inputs)
print('Graph outputs:', graph_outputs)
print('State dict:', list(state_dict))
import re
import keras
from keras import backend as K
K.set_image_data_format('channels_first')
layers = dict()
keras_inputs = []
for i in range(len(args)):
layers[graph_inputs[i]] = keras.layers.InputLayer(
input_shape=input_shapes[i], name='input{0}'.format(i)
).output
keras_inputs.append(layers[graph_inputs[i]])
outputs = []
group_indices = defaultdict(lambda: 0, {})
for node in nodes:
node_inputs = list(node.inputs())
node_input_names = []
for node_input in node_inputs:
node_input_names.append(get_leaf_id(node_input))
node_type = node.kind()
node_scope_name = node.scopeName()
node_id = get_node_id(node)
node_name_regex = re.findall(r'\[([\w\d.\-\[\]\s]+)\]', node_scope_name)
try:
int(node_name_regex[-1])
node_weigth_group_name = '.'.join(
node_name_regex[:-1]
)
node_weights_name = node_weigth_group_name + '.' + str(group_indices[node_weigth_group_name])
group_indices[node_weigth_group_name] += 1
except ValueError:
node_weights_name = '.'.join(
node_name_regex
)
except IndexError:
node_weights_name = '.'.join(node_input_names)
node_attrs = {k: node[k] for k in node.attributeNames()}
node_outputs = list(node.outputs())
node_outputs_names = []
for node_output in node_outputs:
if node_output.node().scopeName():
node_outputs_names.append(node_output.node().scopeName())
if verbose:
print(' ____ ')
print('graph node:', node_scope_name)
print('node id:', node_id)
print('type:', node_type)
print('inputs:', node_input_names)
print('outputs:', node_outputs_names)
print('name in state_dict:', node_weights_name)
print('attrs:', node_attrs)
print('is_terminal:', node_id in graph_outputs)
AVAILABLE_CONVERTERS[node_type](
node_attrs,
node_weights_name, node_id,
node_input_names,
layers, state_dict,
names
)
if node_id in graph_outputs:
outputs.append(layers[node_id])
model = keras.models.Model(inputs=keras_inputs, outputs=outputs)
if change_ordering:
import numpy as np
conf = model.get_config()
for layer in conf['layers']:
if layer['config'] and 'batch_input_shape' in layer['config']:
layer['config']['batch_input_shape'] = \
tuple(np.reshape(np.array(
[
[None] +
list(layer['config']['batch_input_shape'][2:][:]) +
[layer['config']['batch_input_shape'][1]]
]), -1
))
if layer['config'] and 'target_shape' in layer['config']:
if len(list(layer['config']['target_shape'][1:][:])) > 0:
layer['config']['target_shape'] = \
tuple(np.reshape(np.array(
[
list(layer['config']['target_shape'][1:][:]),
layer['config']['target_shape'][0]
]), -1
),)
if layer['config'] and 'data_format' in layer['config']:
layer['config']['data_format'] = 'channels_last'
if layer['config'] and 'axis' in layer['config']:
layer['config']['axis'] = 3
K.set_image_data_format('channels_last')
model_tf_ordering = keras.models.Model.from_config(conf)
# from keras.utils.layer_utils import convert_all_kernels_in_model
# convert_all_kernels_in_model(model)
for dst_layer, src_layer in zip(
model_tf_ordering.layers, model.layers
):
dst_layer.set_weights(src_layer.get_weights())
model = model_tf_ordering
print('Your model was (probably) successfully converted! '
'Please, follow the repository https://github.com/nerox8664/pytorch2keras and give a star :)')
return model
| 294,155 |
Compile by saving to file and importing that.
Compiling the AST/source code this way ensures that the source code is
readable by e.g. `pdb` or `inspect`.
Args:
source: The code to compile, either as a string or as an AST.
globals_: A dictionary of variables that should be available as globals in
the compiled module. They will be monkey patched after importing the
module.
Returns:
A module object containing the compiled source code.
|
def compile_file(source, globals_=None):
if isinstance(source, gast.AST):
source = quoting.to_source(source)
# Write source to temporary file
tempdir = tempfile.mkdtemp()
uuid = str(uuid4().hex[:4])
tmpname = os.path.join(tempdir, 'tangent_%s.py' % uuid)
with open(tmpname, 'w') as f:
f.write(source)
# Load the temporary file as a module
module_name = 'tangent_%s' % uuid
if six.PY3:
spec = util.spec_from_file_location(module_name, tmpname)
m = util.module_from_spec(spec)
spec.loader.exec_module(m)
else:
m = imp.load_source(module_name, tmpname)
# Update the modules namespace
if globals_:
m.__dict__.update(globals_)
return m
| 297,393 |
Perform AD on a single function and return the AST.
Args:
See `grad`.
Returns:
node: The AST of a module containing the adjoint and primal function
definitions.
required: A list of non-built in functions that this function called, and
of which the primals and adjoints need to be made available in order
for the returned function to run.
|
def autodiff_ast(func, wrt, motion, mode, preserve_result, check_dims, verbose):
node = annotate.resolve_calls(func)
node = desugar.explicit_loop_indexes(node)
fence.validate(node, inspect.getsource(func))
node = anf_.anf(node)
if verbose >= 2:
print('ANF')
print(quoting.to_source(node))
if mode == 'reverse':
node, required, stack = reverse_ad.reverse_ad(node.body[0], wrt,
preserve_result, check_dims)
if verbose >= 2:
print('RAW')
print(quoting.to_source(node))
if motion == 'split':
node = reverse_ad.split(node, stack)
else:
node = reverse_ad.joint(node)
if verbose >= 2:
print('MOTION')
print(quoting.to_source(node))
elif mode == 'forward':
node, required = forward_ad.forward_ad(node.body[0], wrt, preserve_result,
check_dims)
return node, required
| 297,396 |
Create a user-friendly forward function.
Ensures that a single value instead of a tuple is returned if the user asked
for the gradient with respect to only one input.
Args:
out_node: The function definition AST.
Returns:
The function definition with potentially changed return statement.
|
def _create_forward(out_node):
retval = out_node.body[0].body[-1]
if len(retval.value.elts) == 1:
retval.value = retval.value.elts[0]
return out_node
| 297,402 |
A decorator which removes the `with insert_grad_of` statement.
This allows the function to be called as usual.
Args:
f: A function
Returns:
A function with any `with insert_grad_of` context managers removed.
|
def tangent(f):
node = annotate.resolve_calls(f)
RemoveWith().visit(node)
wrapped = functools.wraps(f)(compile_.compile_function(node))
wrapped.tangent = f
return wrapped
| 297,403 |
Build a CFG for a function.
Args:
node: A function definition the body of which to analyze.
Returns:
A CFG object.
Raises:
TypeError: If the input is not a function definition.
|
def build_cfg(cls, node):
if not isinstance(node, gast.FunctionDef):
raise TypeError('input must be a function definition')
cfg = cls()
cfg.entry = Node(node.args)
cfg.head = [cfg.entry]
cfg.visit_statements(node.body)
cfg.exit = Node(None)
cfg.set_head(cfg.exit)
cfg.backlink(cfg.entry)
return cfg
| 297,407 |
Perform a series of optimization passes.
This function performs a series of optimizations (dead code elimination,
constant folding, variable folding) on the given AST.
It optimizes the code repeatedly until reaching a fixed point. The fixed
point is determine roughly by checking whether the number of lines of
generated source code changed after the latest pass.
Args:
node: The AST to optimize.
Returns:
The optimized AST.
|
def optimize(node):
node = dead_code_elimination(node)
node = constant_folding(node)
node = assignment_propagation(node)
return node
| 297,421 |
Check how many times a variable definition was used.
Args:
node: An AST to analyze.
Returns:
A dictionary from assignment nodes to the number of times the assigned to
variable was used.
|
def read_counts(node):
cfg.forward(node, cfg.ReachingDefinitions())
rc = ReadCounts()
rc.visit(node)
return rc.n_read
| 297,423 |
Perform assignment propagation.
Assignment propagation is not a compiler optimization as much as a
readability optimization. If a variable name is used only once, it gets
renamed when possible e.g. `y = x; z = y` will become `z = x`.
Args:
node: The AST to optimize.
Returns:
The optimized AST.
|
def assignment_propagation(node):
n_reads = read_counts(node)
to_remove = []
for succ in gast.walk(node):
# We found an assignment of the form a = b
# - Left-hand side is a Name, right-hand side is a Name.
if (isinstance(succ, gast.Assign) and isinstance(succ.value, gast.Name) and
len(succ.targets) == 1 and isinstance(succ.targets[0], gast.Name)):
rhs_name = succ.value.id
# We now find all the places that b was defined
rhs_defs = [def_[1] for def_ in anno.getanno(succ, 'definitions_in')
if def_[0] == rhs_name]
# If b was defined in only one place (not an argument), and wasn't used
# anywhere else but in a == b, and was defined as b = x, then we can fold
# the statements
if (len(rhs_defs) == 1 and isinstance(rhs_defs[0], gast.Assign) and
n_reads[rhs_defs[0]] == 1 and
isinstance(rhs_defs[0].value, gast.Name) and
isinstance(rhs_defs[0].targets[0], gast.Name)):
# Mark rhs_def for deletion
to_remove.append(rhs_defs[0])
# Propagate the definition
succ.value = rhs_defs[0].value
# Remove the definitions we folded
transformers.Remove(to_remove).visit(node)
anno.clearanno(node)
return node
| 297,424 |
Reverse the broadcasting operation.
See utils.py.
Args:
tensor: A Tensor.
shape: A shape that could have been broadcasted to the shape of tensor.
Returns:
Tensor with dimensions summed to match `shape`.
|
def unbroadcast_tfe_to(tensor, shape):
axis = utils.create_unbroadcast_axis(shape, shape_as_list(tensor))
return tf.reshape(tf.reduce_sum(tensor, axis=axis), shape)
| 297,430 |
Reverse summing over a dimension.
See utils.py.
Args:
tensor: The tensor that was reduced.
shape: A list, the original shape of the tensor before reduction.
axis: The axis or axes that were summed.
keepdims: Whether these axes were kept as singleton axes.
Returns:
A tensor with axes broadcast to match the shape of the original tensor.
|
def unreduce_tensor(tensor, shape, axis, keepdims):
if not keepdims:
if axis is None:
axis = range(len(shape))
elif isinstance(axis, int):
axis = axis,
for ax in sorted(axis):
tensor = tf.expand_dims(tensor, ax)
tile_shape = np.array(shape) / np.array(shape_as_list(tensor))
return tf.tile(tensor, tile_shape)
| 297,431 |
Ensure a variable name is valid.
Note: Assumes variable names are ASCII, which isn't necessarily true in
Python 3.
Args:
name: A proposed variable name.
Returns:
A valid version of the name.
|
def valid(self, name):
name = re.sub('[^0-9a-zA-Z_]', '', name)
if re.match('[0-9]', name):
name = '_' + name
return name
| 297,476 |
Reverse the broadcasting operation.
Args:
array: An array.
like: An array that could have been broadcasted to the shape of array.
Returns:
Tensor with certain dimensions summed to match the shape of `like`.
|
def unbroadcast(array, like):
unbroadcaster = unbroadcasters[type(array)]
return unbroadcaster(array, like)
| 297,496 |
Creates the reduction axis for unbroadcasting.
Args:
shape: A list. The shape after the broadcast operation.
broadcast_shape: A list. The original shape the array being unbroadcast
had.
Returns:
A list. The axes along which the array needs to be reduced. These axes will
be distributed evenly into the original shape.
|
def create_unbroadcast_axis(shape, broadcast_shape):
return tuple(
-(1 + i)
for i in range(len(broadcast_shape))
if i >= len(shape) or broadcast_shape[-(1 + i)] > shape[-(1 + i)])
| 297,497 |
Reverse the broadcasting operation.
Args:
array: An array.
shape: A shape that could have been broadcasted to the shape of array.
Returns:
Array with dimensions summed to match `shape`.
|
def unbroadcast_numpy_to(array, shape):
axis = create_unbroadcast_axis(shape, numpy.shape(array))
return numpy.reshape(numpy.sum(array, axis=axis), shape)
| 297,498 |
Reverse summing over a dimension.
Args:
array: The array that was reduced.
shape: The original shape of the array before reduction.
axis: The axis or axes that were summed.
keepdims: Whether these axes were kept as singleton axes.
Returns:
An array with axes broadcast to match the shape of the original array.
|
def unreduce(array, shape, axis, keepdims):
unreducer = unreducers[type(array)]
return unreducer(array, shape, axis, keepdims)
| 297,499 |
Reverse summing over a dimension.
Args:
array: The array that was reduced.
original_array: An array whose shape to unreduce to.
axis: The axis or axes that were summed.
keepdims: Whether these axes were kept as singleton axes.
Returns:
An array with axes broadcast to match the shape of the original array.
|
def unreduce_like(array, original_array, axis, keepdims):
atype = type(array)
unreducer = unreducers[atype]
shape = shape_functions[atype]
return unreducer(array, shape(original_array), axis, keepdims)
| 297,500 |
Reverse summing over a dimension, NumPy implementation.
Args:
array: The array that was reduced.
shape: The original shape of the array before reduction.
axis: The axis or axes that were summed.
keepdims: Whether these axes were kept as singleton axes.
Returns:
An array with axes broadcast to match the shape of the original array.
|
def unreduce_array(array, shape, axis, keepdims):
# NumPy uses a special default value for keepdims, which is equivalent to
# False.
if axis is not None and (not keepdims or keepdims is numpy._NoValue): # pylint: disable=protected-access
if isinstance(axis, int):
axis = axis,
for ax in sorted(axis):
array = numpy.expand_dims(array, ax)
return numpy.broadcast_to(array, shape)
| 297,501 |
A functional form of the `astype` method.
Args:
array: The array or number to cast.
y: An array or number, as the input, whose type should be that of array.
Returns:
An array or number with the same dtype as `y`.
|
def astype(array, y):
if isinstance(y, autograd.core.Node):
return array.astype(numpy.array(y.value).dtype)
return array.astype(numpy.array(y).dtype)
| 297,502 |
Initialize the gradient for an object.
Args:
obj: The object to initialize the gradient for, can be either a number,
array, tuple, list, or dictionary.
allow_lazy_initializer: Whether to allow using the ZeroGradient wrapper,
for efficiency.
Returns:
An object of the same type, shape, etc. but with all numeric values set to
zero. If the type is unknown, a zero is returned.
|
def init_grad(obj, allow_lazy_initializer=False):
if obj is None:
# TODO: fixes.py appears to pass None value and expect 0.0 back. Bug?
return 0.0
initializer, supports_lazy_initializer = grad_initializers[type(obj)]
if supports_lazy_initializer:
if isinstance(obj, ZeroGradient):
if allow_lazy_initializer:
return ZeroGradient(obj.like)
else:
# TODO: Not sure this should normally be hit. In forward-over-reverse?
return obj.instantiate()
else:
if allow_lazy_initializer:
return ZeroGradient(obj)
else:
assert not isinstance(obj, ZeroGradient)
return initializer(obj)
| 297,503 |
Recursively add the gradient of two objects.
Args:
left: The left value to add. Can be either an array, a number, list or
dictionary.
right: The right value. Must be of the same type (recursively) as the left.
Returns:
The sum of the two gradients, which will of the same type.
|
def add_grad(left, right):
# We assume that initial gradients are always identity WRT add_grad.
# We also assume that only init_grad could have created None values.
assert left is not None and right is not None
left_type = type(left)
right_type = type(right)
if left_type is ZeroGradient:
return right
if right_type is ZeroGradient:
return left
return grad_adders[(left_type, right_type)](left, right)
| 297,510 |
Recursively check if shapes of object `a` and `b` match.
Will walk lists, tuples and dicts.
Args:
a: object of type (numpy.ndarray,tf.Tensor,list,tuple,dict)
to check for matching shapes against `b`.
b: object to check for matching shape against `a`.
Returns:
A boolean indicating whether the shapes of `a` and `b` match.
|
def shapes_match(a, b):
if isinstance(a, (tuple, list)) and isinstance(b, (tuple, list)):
if len(a) != len(b):
return False
return all([shapes_match(ia, ib) for ia, ib in zip(a, b)])
elif isinstance(a, dict) and isinstance(b, dict):
if len(a) != len(b):
return False
match = True
for (ak, av), (bk, bv) in zip(a.items(), b.items()):
match = match and all([ak == bk and shapes_match(av, bv)])
return match
else:
shape_checker = shape_checkers[(type(a), type(b))]
return shape_checker(a, b)
| 297,513 |
Push a value onto the stack (i.e. record it on the tape).
Args:
stack: The stack object, which must support appending values.
x: The value to append. If it is a mutable object like an array or list, it
will be copied before being added onto the stack.
op_id: A unique variable that is also passed into the corresponding pop.
Allows optimization passes to track pairs of pushes and pops.
|
def push(stack, x, op_id):
if isinstance(x, numpy.ndarray):
x = x.copy()
elif isinstance(x, list):
x = x[:]
if __debug__:
stack.append((x, op_id))
else:
stack.append(x)
| 297,514 |
Pop a value from the stack (i.e. read it from the tape).
Args:
stack: The stack to pop from.
op_id: A unique variable that is also passed into the matching push.
Allows optimization passes to track pairs of pushes and pops.
Returns:
The last value.
|
def pop(stack, op_id):
if __debug__:
pushed_value, pushed_op_id = stack.pop()
assert pushed_op_id == op_id, 'Wanted %s, got %s' % (op_id, pushed_op_id)
else:
pushed_value = stack.pop()
return pushed_value
| 297,515 |
Proxy of pop, where we know we're popping a stack off of a stack.
We know that we don't need to differentiate through this.
See pop() for more.
Args:
stack: The stack to pop from.
op_id: A unique variable that is also passed into the matching push.
Allows optimization passes to track pairs of pushes and pops.
Returns:
The last value.
|
def pop_stack(stack, op_id):
if __debug__:
pushed_stack, pushed_op_id = stack.pop()
assert pushed_op_id == op_id, 'Wanted %s, got %s' % (op_id, pushed_op_id)
else:
pushed_stack = stack.pop()
return pushed_stack
| 297,516 |
Proxy of push, where we know we're pushing a stack onto a stack.
Used when differentiating call trees,where sub-functions get their own stack.
See push() for more.
Args:
stack: The stack object, which must support appending values.
substack: The stack to append.
op_id: A unique variable that is also passed into the corresponding pop.
Allows optimization passes to track pairs of pushes and pops.
Raises:
ValueError: If a non-stack value for `substack` is passed.
|
def push_stack(stack, substack, op_id):
if substack is not None and not isinstance(substack, Stack):
raise ValueError(
'Substack should be type tangent.Stack or None, instead found %s' %
type(substack))
if __debug__:
stack.append((substack, op_id))
else:
stack.append(substack)
| 297,517 |
Gradient of NumPy dot product w.r.t. to the left hand side.
Args:
dy: The gradient with respect to the output.
x1: The left hand side of the `numpy.dot` function.
x2: The right hand side
Returns:
The gradient with respect to `x1` i.e. `x2.dot(dy.T)` with all the
broadcasting involved.
|
def grad_dot(dy, x1, x2):
if len(numpy.shape(x1)) == 1:
dy = numpy.atleast_2d(dy)
elif len(numpy.shape(x2)) == 1:
dy = numpy.transpose(numpy.atleast_2d(dy))
x2 = numpy.transpose(numpy.atleast_2d(x2))
x2_t = numpy.transpose(numpy.atleast_2d(
numpy.sum(x2, axis=tuple(numpy.arange(numpy.ndim(x2) - 2)))))
dy_x2 = numpy.sum(dy, axis=tuple(-numpy.arange(numpy.ndim(x2) - 2) - 2))
return numpy.reshape(numpy.dot(dy_x2, x2_t), numpy.shape(x1))
| 297,518 |
Creates a LanguageFence.
Args:
source: String, the source code of the AST that will be verified.
strict: Boolean, set to False to allow unsafe constructs.
Raises:
ValueError: if source code has not been supplied.
|
def __init__(self, source, strict=True):
self._visited_top_module = False
if not source:
raise ValueError('The source code of the tree is required.')
self._source = source
self._strict = strict
# Location information is used to locate the offending elements
# in the source code.
self._current_lineno = None # Only consistent during a visit.
self._current_offset = None # Only consistent during a visit.
super(LanguageFence, self).__init__()
| 297,566 |
Get the name of a variable.
Args:
node: A `Name`, `Subscript` or `Attribute` node.
Returns:
The name of the variable e.g. `'x'` for `x`, `x.i` and `x[i]`.
|
def get_name(node):
if isinstance(node, gast.Name):
return node.id
elif isinstance(node, (gast.Subscript, gast.Attribute)):
return get_name(node.value)
else:
raise TypeError
| 297,600 |
Return the variable names created or mutated by this statement.
This function considers assign statements, augmented assign statements, and
the targets of for loops, as well as function arguments.
For example, `x[0] = 2` will return `x`, `x, y = 3, 4` will return `x` and
`y`, `for i in range(x)` will return `i`, etc.
Args:
node: An AST node
Returns:
A set of variable names (strings) of all the variables created or mutated.
|
def get_updated(node):
if isinstance(node, gast.Assign):
return set.union(*(_get_target(target)
for target in node.targets))
elif isinstance(node, (gast.For, gast.AugAssign)):
return _get_target(node.target)
elif isinstance(node, gast.arguments):
targets = set(arg.id for arg in node.args + node.kwonlyargs)
if node.vararg:
targets.add(node.vararg.id)
if node.kwarg:
targets.add(node.kwarg.id)
return targets
else:
return set()
| 297,602 |
Check whether a context manager calls `insert_grad_of`.
Args:
node: The context manager node.
Returns:
Whether or not this node contains `insert_grad_of` calls.
Raises:
ValueError: If the `insert_grad_of` calls are mixed with other calls.
|
def is_insert_grad_of_statement(node):
tangent_calls = [anno.getanno(item.context_expr, 'func', None)
is utils.insert_grad_of for item in node.items]
if all(tangent_calls):
return True
elif any(tangent_calls):
raise ValueError
else:
return False
| 297,605 |
Remove comments that repeat themselves.
Multiple statements might be annotated with the same comment. This way if one
of the statements is deleted during optimization passes, the comment won't be
lost. This pass removes sequences of identical comments, leaving only the
first one.
Args:
node: An AST
Returns:
An AST where comments are not repeated in sequence.
|
def remove_repeated_comments(node):
last_comment = {'text': None}
for _node in gast.walk(node):
if anno.hasanno(_node, 'comment'):
comment = anno.getanno(_node, 'comment')
if comment['text'] == last_comment['text']:
anno.delanno(_node, 'comment')
last_comment = comment
return node
| 297,608 |
Create a variable to store partial gradients.
Args:
node: See `create_grad`.
namer: See `create_grad`.
tangent: See `create_grad`.
Returns:
node: See `create_grad`. Returns a node representing the partial gradient.
Note that this is always a simple variable e.g. the temporary partial
of `x[i]` can be something like `_dxi`.
Nodes are given an annotation `temp_adjoint_var`.
|
def create_temp_grad(node, namer, tangent=False):
if not isinstance(node, (gast.Subscript, gast.Name)):
raise TypeError
def _name_temp_grad(node):
name = namer.temp_grad(node.id, tangent)
temp_node = gast.Name(id=name, annotation=None, ctx=None)
return temp_node
if isinstance(node, gast.Subscript):
temp_node = _name_temp_grad(node.value)
else:
temp_node = _name_temp_grad(node)
anno.setanno(temp_node, 'temp_adjoint_var', node)
return temp_node
| 297,624 |
Create a temporary variable.
Args:
node: Create a temporary variable to store this variable in.
namer: A naming object that guarantees the names are unique.
Returns:
node: See `create_grad`. Returns a temporary variable, which is always a
simple variable annotated with `temp_var`.
|
def create_temp(node, namer):
if isinstance(node, gast.Name):
name = node.id
elif isinstance(node, (gast.Attribute, gast.Subscript)):
name = node.value.id
else:
raise TypeError
temp_node = gast.Name(id=namer.temp(name), annotation=None, ctx=None)
anno.setanno(temp_node, 'temp_var', node)
return temp_node
| 297,625 |
Go from source code to AST nodes.
This function returns a tree without enclosing `Module` or `Expr` nodes.
Args:
src_string: The source code to parse.
return_expr: Whether or not to return a containing expression. This can be
set to `True` if the result is to be part of a series of statements.
Returns:
An AST of the given source code.
|
def quote(src_string, return_expr=False):
node = parse_string(src_string)
body = node.body
if len(body) == 1:
if isinstance(body[0], gast.Expr) and not return_expr:
out = body[0].value
else:
out = body[0]
else:
out = node
return out
| 297,647 |
Carry over the state from the primal to the adjoint.
Args:
node: A module with the primal and adjoint function definitions as returned
by `reverse_ad`.
stack: The stack node to use for storing and restoring state.
Returns:
func: A `Module` node with two function definitions containing the primal
and adjoint respectively.
|
def split(node, stack):
node, defined, reaching = _fix(node)
# Store and restore the state
node = store_state(node, reaching, defined, stack)
# Clean up
anno.clearanno(node)
return node
| 297,655 |
Merge the bodies of primal and adjoint into a single function.
Args:
node: A module with the primal and adjoint function definitions as returned
by `reverse_ad`.
Returns:
func: A `Module` node with a single function definition containing the
combined primal and adjoint.
|
def joint(node):
node, _, _ = _fix(node)
body = node.body[0].body[:-1] + node.body[1].body
func = gast.Module(body=[gast.FunctionDef(
name=node.body[0].name, args=node.body[1].args, body=body,
decorator_list=[], returns=None)])
# Clean up
anno.clearanno(func)
return func
| 297,656 |
Visit a node.
This method is largely modelled after the ast.NodeTransformer class.
Args:
node: The node to visit.
Returns:
A tuple of the primal and adjoint, each of which is a node or a list of
nodes.
|
def visit(self, node):
method = 'visit_' + node.__class__.__name__
if not hasattr(self, method):
raise ValueError('Unknown node type: %s' % node.__class__.__name__)
visitor = getattr(self, method)
# If this node is a statement, inform all child nodes what the active
# variables in this statement are
if anno.hasanno(node, 'active_in'):
self.active_variables = anno.getanno(node, 'active_in')
pri, adj = visitor(node)
# Annotate primal and adjoint statements
if isinstance(pri, gast.AST):
anno.setdefaultanno(pri, 'adj', adj)
else:
for node in pri:
anno.setdefaultanno(node, 'adj', adj)
if isinstance(adj, gast.AST):
anno.setdefaultanno(adj, 'pri', pri)
else:
for node in adj:
anno.setdefaultanno(node, 'pri', pri)
return pri, adj
| 297,659 |
Checks whether a statement is active.
An assignment is active when its right hand side contains active
variables.
Args:
node: an instance of gast.Assign
Returns:
Whether the statement is active.
|
def is_active(self, node):
# Special case: If the right hand side is a pop statement, we want to
# process it
if (isinstance(node.value, gast.Call) and
anno.getanno(node.value, 'func', False) == utils.pop):
return True
for succ in gast.walk(node.value):
if (isinstance(succ, gast.Name) and isinstance(succ.ctx, gast.Load) and
succ.id in self.active_variables):
return True
return False
| 297,662 |
Build the primal and adjoint of a traceable function.
Args:
node: ast.Call node of a function we wish to trace, instead of transform
Returns:
primal: new ast.Assign node to replace the original primal call
adjoint: new ast.Assign node using the VJP generated in primal to
calculate the adjoint.
|
def primal_and_adjoint_for_tracing(self, node):
primal_template = grads.primals[tracing.Traceable]
adjoint_template = grads.adjoints[tracing.Traceable]
# Prep
to_pack = node.args
target = ast_.copy_node(self.orig_target)
vjp = quoting.quote(self.namer.unique('%s_grad' % node.func.id))
tmp = create.create_temp(quoting.quote('tmp'), self.namer)
assert len(node.keywords) == 0
# Full replacement of primal
# TODO: do we need to set 'pri_call' on this?
primal = template.replace(
primal_template,
namer=self.namer,
result=target,
fn=node.func,
tmp=tmp,
vjp=vjp,
args=gast.Tuple(elts=to_pack, ctx=gast.Load()))
# Building adjoint using the vjp generated with the primal
dto_pack = gast.Tuple(
elts=[create.create_temp_grad(arg, self.namer) for arg in to_pack],
ctx=gast.Store())
adjoint = template.replace(
adjoint_template,
namer=self.namer,
result=target,
vjp=vjp,
dargs=dto_pack)
return primal, adjoint
| 297,675 |
Prepend a statement to the current statement.
Note that multiple calls to prepend will result in the last statement to be
prepended to end up at the top.
Args:
node: The statement to prepend.
Raises:
ValueError: If the given node is not a statement.
|
def prepend(self, node):
if not isinstance(node, grammar.STATEMENTS):
raise ValueError
self.to_prepend[-1].appendleft(node)
| 297,679 |
Append a statement to the current statement.
Note that multiple calls to append will result in the last statement to be
appended to end up at the bottom.
Args:
node: The statement to append.
Raises:
ValueError: If the given node is not a statement.
|
def append(self, node):
if not isinstance(node, grammar.STATEMENTS):
raise ValueError
self.to_append[-1].append(node)
| 297,680 |
Insert statements at the top of the function body.
Note that multiple calls to `insert_top` will result in the statements
being prepended in that order; this is different behavior from `prepend`.
Args:
node: The statement to prepend.
Raises:
ValueError: If the given node is not a statement.
|
def insert_top(self, node):
if not isinstance(node, grammar.STATEMENTS):
raise ValueError
self.to_insert_top.append(node)
| 297,681 |
Prepend a statement to the current block.
Args:
node: The statement to prepend.
reverse: When called multiple times, this flag determines whether the
statement should be prepended or appended to the already inserted
statements.
Raises:
ValueError: If the given node is not a statement.
|
def prepend_block(self, node, reverse=False):
if not isinstance(node, grammar.STATEMENTS):
raise ValueError
if reverse:
self.to_prepend_block[-1].appendleft(node)
else:
self.to_prepend_block[-1].append(node)
| 297,682 |
Append a statement to the current block.
Args:
node: The statement to prepend.
reverse: When called multiple times, this flag determines whether the
statement should be prepended or appended to the already inserted
statements.
Raises:
ValueError: If the given node is not a statement.
|
def append_block(self, node, reverse=False):
if not isinstance(node, grammar.STATEMENTS):
raise ValueError
if reverse:
self.to_append_block[-1].appendleft(node)
else:
self.to_append_block[-1].append(node)
| 297,683 |
Visit a series of nodes in a node body.
This function is factored out so that it can be called recursively on
statements that are appended or prepended. This allows e.g. a nested
expression to prepend a statement, and that statement can prepend a
statement again, etc.
Args:
nodes: A list of statements.
Returns:
A list of transformed statements.
|
def visit_statements(self, nodes):
for node in nodes:
if isinstance(node, gast.AST):
self.to_prepend.append(deque())
self.to_append.append(deque())
node = self.visit(node)
self.visit_statements(self.to_prepend.pop())
if isinstance(node, gast.AST):
self.to_insert[-1].append(node)
elif node:
self.to_insert[-1].extend(node)
self.visit_statements(self.to_append.pop())
else:
self.to_insert[-1].append(node)
return self.to_insert[-1]
| 297,684 |
Find pushes and pops to the stack and annotate them as such.
Args:
node: An AST node that might contain stack pushes and pops.
strict: A boolean indicating whether to stringently test whether each
push and pop are matched. This is not always possible when taking
higher-order derivatives of code generated in split-motion.
Returns:
node: The node passed in, but with pushes and pops annotated in AST nodes.
|
def find_stacks(node, strict=False):
# First, find all stack operation IDs.
fso = FindStackOps()
fso.visit(node)
# Using those IDs, make annotations onto the push and pop nodes.
AnnotateStacks(fso.push_pop_pairs, strict).visit(node)
return node
| 297,697 |
Find unused definitions that can be remove.
This runs reaching definitions analysis followed by a walk over the AST to
find all variable definitions that are not used later on.
Args:
node: The AST of e.g. a function body to find unused variable definitions.
Returns:
unused: After visiting all the nodes, this attribute contanis a set of
definitions in the form of `(variable_name, node)` pairs which are
unused in this AST.
|
def unused(node):
cfg.forward(node, cfg.ReachingDefinitions())
unused_obj = Unused()
unused_obj.visit(node)
return unused_obj.unused
| 297,698 |
Initializes logging.
Prints logs to console with level defined by loglevel
Also prints verbose log to the multiqc data directory if available.
(multiqc_data/multiqc.log)
Args:
loglevel (str): Determines the level of the log output.
|
def init_log(logger, loglevel=0):
# File for logging
global log_tmp_dir, log_tmp_fn
log_tmp_dir = tempfile.mkdtemp()
log_tmp_fn = os.path.join(log_tmp_dir, 'multiqc.log')
# Logging templates
debug_template = '[%(asctime)s] %(name)-50s [%(levelname)-7s] %(message)s'
info_template = '[%(levelname)-7s] %(module)15s : %(message)s'
# Base level setup
logger.setLevel(getattr(logging, 'DEBUG'))
# Set up the console logging stream
console = logging.StreamHandler()
console.setLevel(getattr(logging, loglevel))
if loglevel == 'DEBUG':
console.setFormatter(logging.Formatter(debug_template))
else:
console.setFormatter(logging.Formatter(info_template))
logger.addHandler(console)
# Now set up the file logging stream if we have a data directory
file_handler = logging.FileHandler(log_tmp_fn, encoding='utf-8')
file_handler.setLevel(getattr(logging, 'DEBUG')) # always DEBUG for the file
file_handler.setFormatter(logging.Formatter(debug_template))
logger.addHandler(file_handler)
| 298,367 |
Make an HTTP connection using connection_class.
This is an internal method that should be called from
open_http() or open_https().
Arguments:
- connection_factory should take a host name and return an
HTTPConnection instance.
- url is the url to retrieval or a host, relative-path pair.
- data is payload for a POST request or None.
|
def _open_generic_http(self, connection_factory, url, data):
user_passwd = None
proxy_passwd= None
if isinstance(url, str):
host, selector = splithost(url)
if host:
user_passwd, host = splituser(host)
host = unquote(host)
realhost = host
else:
host, selector = url
# check whether the proxy contains authorization information
proxy_passwd, host = splituser(host)
# now we proceed with the url we want to obtain
urltype, rest = splittype(selector)
url = rest
user_passwd = None
if urltype.lower() != 'http':
realhost = None
else:
realhost, rest = splithost(rest)
if realhost:
user_passwd, realhost = splituser(realhost)
if user_passwd:
selector = "%s://%s%s" % (urltype, realhost, rest)
if proxy_bypass(realhost):
host = realhost
if not host: raise IOError('http error', 'no host given')
if proxy_passwd:
proxy_passwd = unquote(proxy_passwd)
proxy_auth = base64.b64encode(proxy_passwd.encode()).decode('ascii')
else:
proxy_auth = None
if user_passwd:
user_passwd = unquote(user_passwd)
auth = base64.b64encode(user_passwd.encode()).decode('ascii')
else:
auth = None
http_conn = connection_factory(host)
headers = {}
if proxy_auth:
headers["Proxy-Authorization"] = "Basic %s" % proxy_auth
if auth:
headers["Authorization"] = "Basic %s" % auth
if realhost:
headers["Host"] = realhost
# Add Connection:close as we don't support persistent connections yet.
# This helps in closing the socket and avoiding ResourceWarning
headers["Connection"] = "close"
for header, value in self.addheaders:
headers[header] = value
if data is not None:
headers["Content-Type"] = "application/x-www-form-urlencoded"
http_conn.request("POST", selector, data, headers)
else:
http_conn.request("GET", selector, headers=headers)
try:
response = http_conn.getresponse()
except http_client.BadStatusLine:
# something went wrong with the HTTP status line
raise URLError("http protocol error: bad status line")
# According to RFC 2616, "2xx" code indicates that the client's
# request was successfully received, understood, and accepted.
if 200 <= response.status < 300:
return addinfourl(response, response.msg, "http:" + url,
response.status)
else:
return self.http_error(
url, response.fp,
response.status, response.reason, response.msg, data)
| 298,987 |
Constructor.
Arguments:
year, month, day (required, base 1)
|
def __new__(cls, year, month=None, day=None):
if (isinstance(year, bytes) and len(year) == 4 and
1 <= year[2] <= 12 and month is None): # Month is sane
# Pickle support
self = object.__new__(cls)
self.__setstate(year)
return self
_check_date_fields(year, month, day)
self = object.__new__(cls)
self._year = year
self._month = month
self._day = day
return self
| 299,252 |
Constructor.
Arguments:
hour, minute (required)
second, microsecond (default to zero)
tzinfo (default to None)
|
def __new__(cls, hour=0, minute=0, second=0, microsecond=0, tzinfo=None):
self = object.__new__(cls)
if isinstance(hour, bytes) and len(hour) == 6:
# Pickle support
self.__setstate(hour, minute or None)
return self
_check_tzinfo_arg(tzinfo)
_check_time_fields(hour, minute, second, microsecond)
self._hour = hour
self._minute = minute
self._second = second
self._microsecond = microsecond
self._tzinfo = tzinfo
return self
| 299,267 |
Create a new profile looter.
Arguments:
username (str): the username of the profile.
See `InstaLooter.__init__` for more details about accepted
keyword arguments.
|
def __init__(self, username, **kwargs):
# type: (str, **Any) -> None
super(ProfileLooter, self).__init__(**kwargs)
self._username = username
self._owner_id = None
| 299,773 |
Create a new hashtag looter.
Arguments:
username (str): the hashtag to search for.
See `InstaLooter.__init__` for more details about accepted
keyword arguments.
|
def __init__(self, hashtag, **kwargs):
# type: (str, **Any) -> None
super(HashtagLooter, self).__init__(**kwargs)
self._hashtag = hashtag
| 299,775 |
Create a new hashtag looter.
Arguments:
code (str): the code of the post to get.
See `InstaLooter.__init__` for more details about accepted
keyword arguments.
|
def __init__(self, code, **kwargs):
# type: (str, **Any) -> None
super(PostLooter, self).__init__(**kwargs)
self._info = None # type: Optional[dict]
match = self._RX_URL.match(code)
if match is not None:
self.code = match.group(1)
elif self._RX_CODE.match(code) is None:
raise ValueError("invalid post code: '{}'".format(code))
else:
self.code = code
| 299,776 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.