kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
12,266,838
HOWMANYITERS = 10<categorify>
concatenate, Dropout, Lambda, MaxPooling2D, BatchNormalization
Conway's Reverse Game of Life 2020
12,266,838
def GP_deap(evolved_train): global HOWMANYITERS outputs = evolved_train['Survived'].values.tolist() evolved_train = evolved_train.drop(["Survived","PassengerId"],axis=1) inputs = evolved_train.values.tolist() def protectedDiv(left, right): try: return left / right except ZeroDivisionError: return 1 def randomString(stringLength=10): letters = string.ascii_lowercase return ''.join(random.choice(letters)for i in range(stringLength)) pset = gp.PrimitiveSet("MAIN", len(evolved_train.columns)) pset.addPrimitive(operator.add, 2) pset.addPrimitive(operator.sub, 2) pset.addPrimitive(operator.mul, 2) pset.addPrimitive(protectedDiv, 2) pset.addPrimitive(math.cos, 1) pset.addPrimitive(math.sin, 1) pset.addPrimitive(math.tanh,1) pset.addPrimitive(max, 2) pset.addPrimitive(min, 2) pset.addEphemeralConstant(randomString() , lambda: random.uniform(-10,10)) pset.renameArguments(ARG0='x1') pset.renameArguments(ARG1='x2') pset.renameArguments(ARG2='x3') pset.renameArguments(ARG3='x4') pset.renameArguments(ARG4='x5') pset.renameArguments(ARG5='x6') pset.renameArguments(ARG6='x7') pset.renameArguments(ARG7='x8') pset.renameArguments(ARG8='x9') pset.renameArguments(ARG9='x10') pset.renameArguments(ARG10='x11') pset.renameArguments(ARG11='x12') pset.renameArguments(ARG12='x13') pset.renameArguments(ARG13='x14') pset.renameArguments(ARG14='x15') pset.renameArguments(ARG15='x16') pset.renameArguments(ARG16='x17') pset.renameArguments(ARG17='x18') pset.renameArguments(ARG18='x19') pset.renameArguments(ARG19='x20') pset.renameArguments(ARG20='x21') pset.renameArguments(ARG21='x22') pset.renameArguments(ARG22='x23') pset.renameArguments(ARG23='x24') pset.renameArguments(ARG24='x25') pset.renameArguments(ARG25='x26') pset.renameArguments(ARG26='x27') pset.renameArguments(ARG27='x28') pset.renameArguments(ARG28='x29') pset.renameArguments(ARG29='x30') pset.renameArguments(ARG30='x31') pset.renameArguments(ARG31='x32') pset.renameArguments(ARG32='x33') pset.renameArguments(ARG33='x34') pset.renameArguments(ARG34='x35') pset.renameArguments(ARG35='x36') pset.renameArguments(ARG36='x37') pset.renameArguments(ARG37='x38') pset.renameArguments(ARG38='x39') pset.renameArguments(ARG39='x40') pset.renameArguments(ARG40='x41') pset.renameArguments(ARG41='x42') pset.renameArguments(ARG42='x43') pset.renameArguments(ARG43='x44') pset.renameArguments(ARG44='x45') pset.renameArguments(ARG45='x46') pset.renameArguments(ARG46='x47') pset.renameArguments(ARG47='x48') pset.renameArguments(ARG48='x49') pset.renameArguments(ARG49='x50') creator.create("FitnessMin", base.Fitness, weights=(1.0,)) creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin) toolbox = base.Toolbox() toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=3) toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("compile", gp.compile, pset=pset) def evalSymbReg(individual): func = toolbox.compile(expr=individual) return math.fsum(np.round(1.-(1./(1.+np.exp(-func(*in_)))))== out for in_, out in zip(inputs, outputs)) / len(evolved_train), toolbox.register("evaluate", evalSymbReg) toolbox.register("select", tools.selTournament, tournsize=3) toolbox.register("mate", gp.cxOnePoint) toolbox.register("expr_mut", gp.genFull, min_=0, max_=3) toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset) toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17)) toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17)) pop = toolbox.population(n=300) hof = tools.HallOfFame(1) stats_fit = tools.Statistics(lambda ind: ind.fitness.values) stats_size = tools.Statistics(len) stats = tools.MultiStatistics(fitness=stats_fit, size=stats_size) stats.register("avg", np.mean) stats.register("std", np.std) stats.register("min", np.min) stats.register("max", np.max) pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.7, mutpb=0.3, ngen=HOWMANYITERS, stats=stats, halloffame=hof, verbose=True) func2 = toolbox.compile(expr=hof[0]) return func2 def manualtree(df): Model = pd.DataFrame(data = {'manual_tree':[]}) male_title = ['Master'] for index, row in df.iterrows() : Model.loc[index, 'manual_tree'] = 0 if(df.loc[index, 'Sex'] == 'female'): Model.loc[index, 'manual_tree'] = 1 if(( df.loc[index, 'Sex'] == 'female')& (df.loc[index, 'Pclass'] == 3)& (df.loc[index, 'Embarked'] == 'S')& (df.loc[index, 'Fare'] > 8) ): Model.loc[index, 'manual_tree'] = 0 if(( df.loc[index, 'Sex'] == 'male')& (df.loc[index, 'Title'] == 3) ): Model.loc[index, 'manual_tree'] = 1 return Model def MungeData(data): title_list = [ 'Dr', 'Mr', 'Master', 'Miss', 'Major', 'Rev', 'Mrs', 'Ms', 'Mlle','Col', 'Capt', 'Mme', 'Countess', 'Don', 'Jonkheer' ] def replace_names_titles(x): for title in title_list: if title in x: return title data['Title'] = data.Name.apply(replace_names_titles) data['Title'] = data['Title'].replace(['Miss', 'Mrs','Ms', 'Mlle', 'Lady', 'Mme', 'the Countess', 'Dona'], 'Miss/Mrs/Ms') data['Title'] = data['Title'].replace(['Dr', 'Col', 'Major', 'Jonkheer', 'Capt', 'Sir', 'Don', 'Rev'], 'Dr/Military/Noble/Clergy') data['Title'] = data.Title.map({ 'Dr':1, 'Mr':2, 'Master':3, 'Miss':4, 'Major':5, 'Rev':6, 'Mrs':7, 'Ms':8, 'Mlle':9, 'Col':10, 'Capt':11, 'Mme':12, 'Countess':13, 'Don': 14, 'Jonkheer':15 }) data = data.drop(['Name'],axis = 1) data.Title.fillna(0, inplace=True) data['Is_Married'] = 0 data['Is_Married'].loc[data['Title'] == 7] = 1 data["manual_tree"] = manualtree(data) data['Age'] = data.groupby(['Sex', 'Pclass'])['Age'].apply(lambda x: x.fillna(x.median())) data['Relatives'] = data.SibSp + data.Parch data['Fare_per_person'] = data.Fare / np.mean(data.SibSp + data.Parch + 1) med_fare = data.groupby(['Pclass', 'Parch', 'SibSp'] ).Fare.median() [3][0][0] data = data.drop(['SibSp', 'Parch'], axis=1) data['Fare'] = data['Fare'].fillna(med_fare) data.Sex.fillna('0', inplace=True) data.loc[data.Sex != 'male', 'Sex'] = 0 data.loc[data.Sex == 'male', 'Sex'] = 1 data['Ticket_Frequency'] = data.groupby('Ticket')['Ticket'].transform('count') data = data.drop(['Ticket'], axis=1) data.Cabin.fillna('0', inplace=True) data.loc[data.Cabin.str[0] == 'A', 'Cabin'] = 1 data.loc[data.Cabin.str[0] == 'B', 'Cabin'] = 1 data.loc[data.Cabin.str[0] == 'C', 'Cabin'] = 1 data.loc[data.Cabin.str[0] == 'D', 'Cabin'] = 2 data.loc[data.Cabin.str[0] == 'E', 'Cabin'] = 2 data.loc[data.Cabin.str[0] == 'F', 'Cabin'] = 3 data.loc[data.Cabin.str[0] == 'G', 'Cabin'] = 3 data.loc[data.Cabin.str[0] == 'T', 'Cabin'] = 3 data.loc[data.Embarked == 'C', 'Embarked'] = 1 data.loc[data.Embarked == 'Q', 'Embarked'] = 2 data.loc[data.Embarked == 'S', 'Embarked'] = 3 data.Embarked.fillna(3, inplace=True) data["Cabin"] = data["Cabin"].astype(int) numeric_features = ['Relatives','Fare_per_person', 'Fare', 'Age','Ticket_Frequency'] for feature in numeric_features: x = data[feature].values min_max_scaler = MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x.reshape(-1, 1)) data[feature] = pd.DataFrame(x_scaled) cat_features = ['Pclass','Embarked', 'Sex', 'Cabin', 'Title','manual_tree','Is_Married'] encoded_features = [] for feature in cat_features: encoded_feat = OneHotEncoder().fit_transform(data[feature].values.reshape(-1, 1)).toarray() n = data[feature].nunique() cols = ['{}_{}'.format(feature, n)for n in range(1, n + 1)] encoded_df = pd.DataFrame(encoded_feat, columns=cols) encoded_df.index = data.index encoded_features.append(encoded_df) data = pd.concat([data, *encoded_features], axis=1) return data.astype(float) <load_from_csv>
K.image_data_format()
Conway's Reverse Game of Life 2020
12,266,838
raw_train = pd.read_csv('.. /input/titanic/train.csv') raw_test = pd.read_csv('.. /input/titanic/test.csv') pass_id_train = raw_train["PassengerId"] survived_train = raw_train["Survived"] pass_id_test = raw_test["PassengerId"] evolved_train = MungeData(raw_train) evolved_test = MungeData(raw_test )<load_pretrained>
Conway's Reverse Game of Life 2020
12,266,838
GeneticFunctionObject = GP_deap(evolved_train) with open("geneticfunction.pickle","wb")as file: pickle.dump(GeneticFunction,file )<save_to_csv>
trainY = single_step_df.loc[:, single_step_df.columns.str.startswith('start')].values.reshape(-1, 25, 25) trainX = single_step_df.loc[:, single_step_df.columns.str.startswith('stop')].values.reshape(-1, 25, 25 )
Conway's Reverse Game of Life 2020
12,266,838
evolved_train = evolved_train.drop(["PassengerId","Survived"],axis=1) train_nparray = evolved_train.values.tolist() trainPredictions = Outputs(np.array([GeneticFunctionObject(*x)for x in train_nparray])) print("Your score based on Train set(Remember, Kaggle/Test set score will be different):") print(accuracy_score(survived_train.astype(int),trainPredictions.astype(int))) pd_train = pd.DataFrame({'PassengerId': pass_id_train.astype(int), 'Predicted': trainPredictions.astype(int), 'Survived': survived_train.astype(int)}) pd_train.to_csv('gptrain_yourgenalgo.csv', index=False) evoled_test = evolved_test.drop(["PassengerId"],axis=1) test_nparray = evolved_test.values.tolist() testPredictions = Outputs(np.array([GeneticFunctionObject(*x)for x in test_nparray])) pd_test = pd.DataFrame({'PassengerId': pass_id_test.astype(int), 'Survived': testPredictions.astype(int)}) pd_test.to_csv('submission_yourgenalgo.csv', index=False) <import_modules>
trainX = np.array([preprocess(xi)for xi in trainX] ).astype(np.float32) trainX = np.expand_dims(trainX, axis=-1 ).astype(np.float32 )
Conway's Reverse Game of Life 2020
12,266,838
print(f'Using PyTorch v{torch.__version__}' )<load_from_csv>
trainY = np.array([preprocess(xi)for xi in trainY] ).astype(np.float32) trainY = np.expand_dims(trainY, axis=-1 ).astype(np.float32 )
Conway's Reverse Game of Life 2020
12,266,838
train = pd.read_csv(".. /input/digit-recognizer/train.csv" )<define_variables>
def life_step_1_tensor(X): nbrs_count = tf.stack([tf.roll(tf.roll(X, i, 0), j, 1) for i in(-1, 0, 1)for j in(-1, 0, 1) if(i != 0 or j != 0)]) nbrs_count = tf.squeeze(K.sum(nbrs_count, axis=0, keepdims=True), axis=0) nbrs_count =(nbrs_count == 3)|(( X == 1)&(nbrs_count == 2)) return tf.cast(nbrs_count, dtype=tf.uint32 )
Conway's Reverse Game of Life 2020
12,266,838
transform = transforms.Compose([ transforms.ToTensor() , transforms.Normalize(( 0.5,),(0.5,)) ]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def get_digits(df): labels = [] start_inx = 0 if 'label' in df.columns: labels = [v for v in df.label.values] start_inx = 1 digits = [] for i in range(df.pixel0.size): digit = df.iloc[i].astype(float ).values[start_inx:] digit = np.reshape(digit,(28,28)) digit = transform(digit ).type('torch.FloatTensor') if len(labels)> 0: digits.append([digit, labels[i]]) else: digits.append(digit) return digits<init_hyperparams>
def postprocess_tensor(arr): return arr[4:-4, 4:-4,:]
Conway's Reverse Game of Life 2020
12,266,838
train_X = get_digits(train) num_workers = 0 batch_size = 64 valid_size = 0.2 num_train = len(train_X) indices = list(range(num_train)) np.random.shuffle(indices) split = int(np.floor(valid_size * num_train)) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) train_loader = torch.utils.data.DataLoader(train_X, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers) valid_loader = torch.utils.data.DataLoader(train_X, batch_size=batch_size, sampler=valid_sampler, num_workers=num_workers) dataiter = iter(train_loader) images, labels = dataiter.next() print(type(images)) print(images.shape) print(labels.shape )<init_hyperparams>
def wrap_pad(t, extra_dims): s = tf.shape(t) m = tf.constant([extra_dims[0], extra_dims[1]]) d = tf.constant([1, 3, 3, s.numpy() [-1]]) t = tf.tile(t, d)[:, s[1]-m[0]:m[0]-s[1], s[2]-m[1]:m[1]-s[2], :] paddings = tf.constant([[0,0],[1, 1],[1, 1], [0,0]]) t = tf.pad(t, paddings, 'CONSTANT') return t
Conway's Reverse Game of Life 2020
12,266,838
def calc_out(in_layers, stride, padding, kernel_size, pool_stride): return int(( 1+(in_layers - kernel_size +(2*padding)) /stride)/pool_stride) class Net(nn.Module): def __init__(self): super(Net, self ).__init__() inputs = [1,32,64,64] kernel_size = [5,5,3] stride = [1,1,1] pool_stride = [2,2,2] layers = [] self.out = 28 self.depth = inputs[-1] for i in range(len(kernel_size)) : padding = int(kernel_size[i]/2) self.out = calc_out(self.out, stride[i], padding, kernel_size[i], pool_stride[i]) layers.append(nn.Conv2d(inputs[i], inputs[i+1], kernel_size[i], stride=stride[i], padding=padding)) layers.append(nn.ReLU()) layers.append(nn.Conv2d(inputs[i+1], inputs[i+1], kernel_size[i], stride=stride[i], padding=padding)) layers.append(nn.ReLU()) layers.append(nn.MaxPool2d(pool_stride[i],pool_stride[i])) layers.append(nn.Dropout(p=0.2)) self.cnn_layers = nn.Sequential(*layers) print(self.depth*self.out*self.out) layers2 = [] layers2.append(nn.Dropout(p=0.2)) layers2.append(nn.Linear(self.depth*self.out*self.out, 512)) layers2.append(nn.Dropout(p=0.2)) layers2.append(nn.Linear(512, 256)) layers2.append(nn.Dropout(p=0.2)) layers2.append(nn.Linear(256, 256)) layers2.append(nn.Dropout(p=0.2)) layers2.append(nn.Linear(256, 10)) self.fc_layers = nn.Sequential(*layers2) def forward(self, x): x = self.cnn_layers(x) x = x.view(-1, self.depth*self.out*self.out) x = self.fc_layers(x) return x model = Net() model<choose_model_class>
t = trainY[0, :, :, :]
Conway's Reverse Game of Life 2020
12,266,838
criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters() , lr=0.0005 )<train_model>
def custom_loss(y_actual,y_pred): pred_fwd = y_pred actual_fwd = y_actual y_actual_f = tf.cast(K.flatten(actual_fwd), tf.float32) y_pred_f = tf.cast(K.flatten(pred_fwd), tf.float32) bce = BinaryCrossentropy(from_logits=False) return bce(y_actual_f, y_pred_f )
Conway's Reverse Game of Life 2020
12,266,838
n_epochs = 25 valid_loss_min = np.Inf print(device) model.to(device) tLoss, vLoss = [], [] for epoch in range(n_epochs): train_loss = 0.0 valid_loss = 0.0 model.train() for data, target in train_loader: data = data.to(device) target = target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item() *data.size(0) model.eval() for data, target in valid_loader: data = data.to(device) target = target.to(device) output = model(data) loss = criterion(output, target) valid_loss += loss.item() *data.size(0) train_loss = train_loss/len(train_loader.dataset) valid_loss = valid_loss/len(valid_loader.dataset) tLoss.append(train_loss) vLoss.append(valid_loss) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, train_loss, valid_loss)) if valid_loss <= valid_loss_min: print('Validation loss decreased({:.6f} --> {:.6f} ).Saving model...'.format( valid_loss_min, valid_loss)) torch.save(model.state_dict() , 'model_cifar.pt') valid_loss_min = valid_loss<load_from_disk>
def crglnet_v1() : inputShape =(33, 33, 1) inputs = Input(inputShape) c1 = Conv2D(64,(3, 3), activation='elu', padding='same' )(inputs) c2 = Conv2D(64,(3, 3), activation='elu', padding='same' )(c1) c3 = Conv2D(128,(5, 5), activation='elu', padding='same' )(c2) c4 = Conv2D(64,(3, 3), activation='elu', padding='same' )(c3) c5 = Conv2D(64,(3, 3), activation='elu', padding='same' )(c4) c6 = Conv2D(1,(1, 1), activation='sigmoid' )(c5) model = Model(inputs=[inputs], outputs=[c6]) return model
Conway's Reverse Game of Life 2020
12,266,838
model.load_state_dict(torch.load('model_cifar.pt')) ;<find_best_params>
def crglnet_v2() : inputShape =(33, 33, 1) inputs = Input(inputShape) c1 = Conv2D(32,(3, 3), activation='elu', padding='same' )(inputs) c2 = Conv2D(64,(3, 3), activation='elu', padding='same' )(c1) c3 = Conv2D(128,(5, 5), activation='elu', padding='same' )(c2) c4 = concatenate([Conv2D(64,(3, 3), activation='elu', padding='same' )(c3), c2]) c5 = concatenate([Conv2D(32,(3, 3), activation='elu', padding='same' )(c4), c1]) c6 = Conv2D(64,(3, 3), activation='elu', padding='same' )(c5) c7 = Conv2D(32,(3, 3), activation='elu', padding='same' )(c6) c8 = Conv2D(1,(1, 1), activation='sigmoid' )(c7) model = Model(inputs=[inputs], outputs=[c8]) return model
Conway's Reverse Game of Life 2020
12,266,838
test_loss = 0.0 class_correct = [0]*10 class_total = [0]*10 model.eval() conf_matrix = np.zeros(( 10,10)) for data, target in valid_loader: data = data.to(device) target = target.to(device) output = model(data) loss = criterion(output, target) test_loss += loss.item() *data.size(0) _, pred = torch.max(output, 1) correct_tensor = pred.eq(target.data.view_as(pred)) correct = np.squeeze(correct_tensor.numpy())if device == "cpu" else np.squeeze(correct_tensor.cpu().numpy()) for i in range(target.size(0)) : label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1 conf_matrix[label][pred.data[i]] += 1 test_loss = test_loss/len(valid_loader.dataset) print('Test Loss: {:.6f} '.format(test_loss)) for i in range(10): if class_total[i] > 0: print('Test Accuracy of %3s: %2d%%(%2d/%2d)' %( i, 100 * class_correct[i] / class_total[i], np.sum(class_correct[i]), np.sum(class_total[i]))) else: print('Test Accuracy of %3s: N/A(no training examples)' %(classes[i])) print(' Test Accuracy(Overall): %2d%%(%2d/%2d)' %( 100.* np.sum(class_correct)/ np.sum(class_total), np.sum(class_correct), np.sum(class_total)) )<load_from_csv>
model = crglnet_v2()
Conway's Reverse Game of Life 2020
12,266,838
test = pd.read_csv(".. /input/digit-recognizer/test.csv") test_X = get_digits(test) test_loader = torch.utils.data.DataLoader(test_X, batch_size=batch_size, num_workers=num_workers )<prepare_output>
opt = Adam(lr=1e-3) model.compile(optimizer=opt, loss=custom_loss, metrics=['accuracy', tf.keras.metrics.MeanIoU(num_classes=2)] )
Conway's Reverse Game of Life 2020
12,266,838
ImageId, Label = [],[] for data in test_loader: data = data.to(device) output = model(data) _, pred = torch.max(output, 1) for i in range(len(pred)) : ImageId.append(len(ImageId)+1) Label.append(pred[i].cpu().numpy()) sub = pd.DataFrame(data={'ImageId':ImageId, 'Label':Label}) sub.describe<save_to_csv>
from sklearn.model_selection import train_test_split
Conway's Reverse Game of Life 2020
12,266,838
sub.to_csv("submission.csv", index=False )<install_modules>
from sklearn.model_selection import train_test_split
Conway's Reverse Game of Life 2020
12,266,838
!pip install autofeat<set_options>
train_x, test_x, train_y, test_y = train_test_split(trainX, trainY, test_size=0.2, random_state=42 )
Conway's Reverse Game of Life 2020
12,266,838
warnings.filterwarnings("ignore") pd.set_option('max_columns', 100 )<load_from_csv>
def step(train_x, true_y): loss = [] with tf.GradientTape() as tape: pred_y = model(train_x) pred_y = tf.cast(pred_y,tf.float32) model_loss = custom_loss(true_y, pred_y) loss.append(model_loss.numpy()) model_gradients = tape.gradient(model_loss, model.trainable_variables) opt.apply_gradients(zip(model_gradients, model.trainable_variables)) return np.mean(loss )
Conway's Reverse Game of Life 2020
12,266,838
traindf = pd.read_csv('.. /input/titanic/train.csv' ).set_index('PassengerId') testdf = pd.read_csv('.. /input/titanic/test.csv' ).set_index('PassengerId') df = pd.concat([traindf, testdf], axis=0, sort=False )<feature_engineering>
epochs = 20 batch_size = 32 bat_per_epoch = math.floor(len(train_x)/ batch_size) epoch_loss = [] for epoch in tqdm(range(epochs)) : step_loss = [] for i in tqdm(range(bat_per_epoch)) : n = i*batch_size step_loss.append(step(train_x[n:n+batch_size], train_y[n:n+batch_size])) epoch_loss.append(np.mean(step_loss)) print(f'Epoch: {epoch}, Loss: {epoch_loss[epoch]}')
Conway's Reverse Game of Life 2020
12,266,838
df = pd.concat([traindf, testdf], axis=0, sort=False) df['Title'] = df.Name.str.split(',' ).str[1].str.split('.' ).str[0].str.strip() df['Title'] = df.Name.str.split(',' ).str[1].str.split('.' ).str[0].str.strip() df['IsWomanOrBoy'] =(( df.Title == 'Master')|(df.Sex == 'female')) df['LastName'] = df.Name.str.split(',' ).str[0] family = df.groupby(df.LastName ).Survived df['WomanOrBoyCount'] = family.transform(lambda s: s[df.IsWomanOrBoy].fillna(0 ).count()) df['WomanOrBoyCount'] = df.mask(df.IsWomanOrBoy, df.WomanOrBoyCount - 1, axis=0) df['FamilySurvivedCount'] = family.transform(lambda s: s[df.IsWomanOrBoy].fillna(0 ).sum()) df['FamilySurvivedCount'] = df.mask(df.IsWomanOrBoy, df.FamilySurvivedCount - \ df.Survived.fillna(0), axis=0) df['WomanOrBoySurvived'] = df.FamilySurvivedCount / df.WomanOrBoyCount.replace(0, np.nan) df.WomanOrBoyCount = df.WomanOrBoyCount.replace(np.nan, 0) df['Alone'] =(df.WomanOrBoyCount == 0) df['Title'] = df['Title'].replace('Ms','Miss') df['Title'] = df['Title'].replace('Mlle','Miss') df['Title'] = df['Title'].replace('Mme','Mrs') df['Embarked'] = df['Embarked'].fillna('S') df['Deck'] = df['Cabin'].apply(lambda s: s[0] if pd.notnull(s)else 'M') df.loc[(df['Deck'] == 'T'), 'Deck'] = 'A' med_fare = df.groupby(['Pclass', 'Parch', 'SibSp'] ).Fare.median() [3][0][0] df['Fare'] = df['Fare'].fillna(med_fare) df['Age'] = df.groupby(['Sex', 'Pclass', 'Title'])['Age'].apply(lambda x: x.fillna(x.median())) df['Family_Size'] = df['SibSp'] + df['Parch'] + 1 cols_to_drop = ['Name','Ticket','Cabin'] df = df.drop(cols_to_drop, axis=1) df.WomanOrBoySurvived = df.WomanOrBoySurvived.fillna(0) df.WomanOrBoyCount = df.WomanOrBoyCount.fillna(0) df.FamilySurvivedCount = df.FamilySurvivedCount.fillna(0) df.Alone = df.Alone.fillna(0) df.Alone = df.Alone*1<prepare_x_and_y>
model.compile(optimizer=opt, loss=custom_loss, metrics=['accuracy', tf.keras.metrics.MeanIoU(num_classes=2)]) print(model.evaluate(test_x, test_y, verbose=0))
Conway's Reverse Game of Life 2020
12,266,838
target = df.Survived.loc[traindf.index] df = df.drop(['Survived'], axis=1) train, test = df.loc[traindf.index], df.loc[testdf.index]<define_variables>
preds = model.predict(test_x) preds.shape
Conway's Reverse Game of Life 2020
12,266,838
numerics = ['int8', 'int16', 'int32', 'int64', 'float16', 'float32', 'float64'] categorical_columns = [] features = train.columns.values.tolist() for col in features: if train[col].dtype in numerics: continue categorical_columns.append(col) categorical_columns<data_type_conversions>
preds_thresh = tf.where(preds>0.5,1,0) pred_fwd = tf.map_fn(life_step_1_tensor, preds_thresh, fn_output_signature=tf.uint32) actual_fwd = tf.map_fn(life_step_1_tensor, test_y, fn_output_signature=tf.uint32 )
Conway's Reverse Game of Life 2020
12,266,838
for col in categorical_columns: if col in train.columns: le = LabelEncoder() le.fit(list(train[col].astype(str ).values)+ list(test[col].astype(str ).values)) train[col] = le.transform(list(train[col].astype(str ).values)) test[col] = le.transform(list(test[col].astype(str ).values))<choose_model_class>
start_features = [f for f in train_df.columns if "start" in f] stop_features = [f for f in train_df.columns if "stop" in f]
Conway's Reverse Game of Life 2020
12,266,838
model = AutoFeatRegressor() model<categorify>
sub = pd.DataFrame() m = tf.keras.metrics.Accuracy() accuracies = [] t1 = tqdm(range(1,6), desc=f'Delta: ') for delta in t1: m.reset_states() t1.set_description(f'Delta: {delta}') t1.refresh() test_data_iter = train_df.loc[train_df['delta'] == delta] tmp_sub = test_data_iter[["id"]].copy() testY = test_data_iter.loc[:, test_data_iter.columns.str.startswith('start')].values.reshape(-1, 25, 25) testX = test_data_iter.loc[:, test_data_iter.columns.str.startswith('stop')].values.reshape(-1, 25, 25) testX = np.array([preprocess(xi)for xi in testX] ).astype(np.float32) testX = np.expand_dims(testX, axis=-1 ).astype(np.float32) testY = np.array([preprocess(xi)for xi in testY] ).astype(np.float32) testY = np.expand_dims(testY, axis=-1 ).astype(np.float32) t2 = tqdm(range(delta)) for i in t2: if i == 0: preds = model.predict(testX) else: preds = tf.where(preds>0.5,1,0) preds = model.predict(preds) preds = tf.cast(tf.where(preds>0.5,1,0), tf.uint32) m.update_state(preds, testY) acc = m.result().numpy() print(f'Accuracy: {acc}') accuracies.append(acc) preds = preds[:, 4:-4, 4:-4,:].numpy() tmp = pd.DataFrame(preds.reshape(-1, 625 ).astype(np.uint8), columns=start_features, index=tmp_sub['id']) tmp_sub = tmp_sub.join(tmp) sub = sub.append(tmp_sub) sub.sort_index(inplace = True )
Conway's Reverse Game of Life 2020
12,266,838
X_train_feature_creation = model.fit_transform(train, target) X_test_feature_creation = model.transform(test) X_train_feature_creation.head()<count_values>
print(f'Mean accuracy: {np.array(accuracies ).mean() }') print(f'LB score estimate from training: {1 - np.array(accuracies ).mean() }' )
Conway's Reverse Game of Life 2020
12,266,838
print('Number of new features -',X_train_feature_creation.shape[1] - train.shape[1] )<concatenate>
sub = pd.DataFrame() m = tf.keras.metrics.Accuracy() accuracies = [] t1 = tqdm(range(1,6), desc=f'Delta: ') for delta in t1: m.reset_states() t1.set_description(f'Delta: {delta}') t1.refresh() test_data_iter = test_df.loc[test_df['delta'] == delta] tmp_sub = test_data_iter[["id"]].copy() tmp_sub.set_index(tmp_sub['id'].values) testX = test_data_iter.loc[:, test_data_iter.columns.str.startswith('stop')].values.reshape(-1, 25, 25) testX = np.array([preprocess(xi)for xi in testX] ).astype(np.float32) testX = np.expand_dims(testX, axis=-1 ).astype(np.float32) t2 = tqdm(range(delta)) for i in t2: if i == 0: preds = model.predict(testX) else: preds = tf.where(preds>0.5,1,0) preds = model.predict(preds) preds = tf.cast(tf.where(preds>0.5,1,0), tf.uint32) preds = preds[:, 4:-4, 4:-4,:].numpy() tmp = pd.DataFrame(preds.reshape(-1, 625 ).astype(np.uint8), columns=start_features, index=tmp_sub['id'].values) tmp.insert(loc = 0, column='id', value=tmp_sub['id'].values) sub = sub.append(tmp) sub.sort_index(inplace = True) sub.reset_index(drop = True, inplace = True )
Conway's Reverse Game of Life 2020
12,266,838
df2 = pd.concat([df.WomanOrBoySurvived.fillna(0), df.Alone, df.Sex.replace({'male': 0, 'female': 1})], axis=1) train2, test2 = df2.loc[traindf.index], df2.loc[testdf.index]<categorify>
sub.to_csv('submission.csv', index=False )
Conway's Reverse Game of Life 2020
12,266,838
<count_values><EOS>
sub.to_csv('submission.csv', index=False )
Conway's Reverse Game of Life 2020
12,141,564
<SOS> metric: PostProcessorKernel Kaggle data source: conways-reverse-game-of-life-2020<save_to_csv>
notebook_start = time.perf_counter() display(HTML()) %load_ext autoreload %autoreload 2
Conway's Reverse Game of Life 2020
12,141,564
test_x = df2.loc[testdf.index] test_x['Survived'] =(((test_x.WomanOrBoySurvived <= 0.238)&(test_x.Sex > 0.5)&(test_x.Alone > 0.5)) | \ (( test_x.WomanOrBoySurvived > 0.238)& \ ~(( test_x.WomanOrBoySurvived > 0.55)&(test_x.WomanOrBoySurvived <= 0.633)))) pd.DataFrame({'Survived': test_x['Survived'].astype(int)}, \ index=testdf.index ).reset_index().to_csv('survived.csv', index=False )<define_variables>
! python3 -m pip install -q z3-solver ! apt-get install -qq tree moreutils
Conway's Reverse Game of Life 2020
12,141,564
LB_simple_rule = 0.83253<train_model>
!rm -rf /ai-games/ !git clone https://github.com/JamesMcGuigan/ai-games/ /ai-games/ !cp -rf /ai-games/puzzles/game_of_life/*./ !rm -rf /kaggle/working/neural_networks/ !cd /ai-games/; git log -n1
Conway's Reverse Game of Life 2020
12,141,564
model_LR = LinearRegression().fit(train,target.to_numpy().flatten()) model_Autofeat = LinearRegression().fit(X_train_feature_creation, target.to_numpy().flatten() )<predict_on_test>
from utils.util import * from utils.plot import * from utils.game import * from utils.datasets import * from utils.tuplize import * from hashmaps.crop import * from hashmaps.hash_functions import * from hashmaps.translation_solver import * from hashmaps.repeating_patterns import * from constraint_satisfaction.fix_submission import *
Conway's Reverse Game of Life 2020
12,141,564
test['Survived_LR'] = np.clip(model_LR.predict(test),0,1) test['Survived_AF'] = np.clip(model_Autofeat.predict(X_test_feature_creation),0,1 )<find_best_params>
@njit() def get_concentric_prime_mask(shape: Tuple[int,int]=(25,25)) -> np.ndarray: pattern = 'diamond' assert shape[0] == shape[1] assert pattern in [ 'diamond', 'oval' ] x =(shape[0])//2 y =(shape[1])//2 max_r = max(shape)+ 1 if max(shape)% 2 == 0 else max(shape) mask = np.zeros(shape, dtype=np.int64) for r in range(max_r): primes = hashable_primes[:r+1] for dr in range(r+1): if pattern == 'diamond': prime = primes[r] elif pattern == 'oval': prime = primes[r] + primes[dr] coords = { (x+(r-dr),y+(dr)) , (x-(r-dr),y+(dr)) , (x+(r-dr),y-(dr)) , (x-(r-dr),y-(dr)) , } for coord in coords: if min(coord)>= 0 and max(coord)< min(shape): mask[coord] = prime return mask @njit() def hash_geometric_concentric(board: np.ndarray)-> int: assert board.shape[0] == board.shape[1] mask = get_concentric_prime_mask(shape=board.shape) hashed = 0 for x in range(board.shape[0]): for y in range(board.shape[1]): for dx in range(mask.shape[0]): for dy in range(mask.shape[1]): coords =(( x+dx)%board.shape[0],(y+dy)%board.shape[1]) hashed += board[coords] * mask[dx,dy] return hashed hash_geometric = hash_geometric_concentric
Conway's Reverse Game of Life 2020
12,141,564
def hyperopt_gb_score(params): clf = GradientBoostingClassifier(**params) current_score = cross_val_score(clf, X_train_feature_creation, target, cv=10 ).mean() print(current_score, params) return current_score space_gb = { 'n_estimators': hp.choice('n_estimators', range(100, 1000)) , 'max_depth': hp.choice('max_depth', np.arange(2, 10, dtype=int)) } best = fmin(fn=hyperopt_gb_score, space=space_gb, algo=tpe.suggest, max_evals=10) print('best:') print(best )<find_best_params>
def label_board(board): tessellation = tessellate_board(board) tessellation = scipy.ndimage.convolve(tessellation, [[0,1,0],[1,1,1],[0,1,0]] ).astype(np.bool ).astype(np.int8) labeled = skimage.measure.label(tessellation, background=0, connectivity=2) labeled = detessellate_board(labeled) return labeled def extract_clusters(board: np.ndarray)-> List[np.ndarray]: labeled = label_board(board) return extract_clusters_from_labels(board, labeled) def extract_clusters_from_labels(board: np.ndarray, labeled: np.ndarray)-> List[np.ndarray]: labels = np.unique(labeled) clusters = [] for label in labels: cluster = board *(labeled == label) clusters.append(cluster) return clusters
Conway's Reverse Game of Life 2020
12,141,564
params = space_eval(space_gb, best) params<train_model>
dataset_size = 100 if os.environ.get('KAGGLE_KERNEL_RUN_TYPE')== 'Interactive' else 400_000 print(f'dataset_size = {dataset_size}' )
Conway's Reverse Game of Life 2020
12,141,564
gradient_boosting = GradientBoostingClassifier(**params) gradient_boosting.fit(X_train_feature_creation, target) Y_pred = gradient_boosting.predict(X_test_feature_creation ).astype(int) gradient_boosting.score(X_train_feature_creation, target) acc_gradient_boosting = round(gradient_boosting.score(X_train_feature_creation, target)* 100, 2) acc_gradient_boosting<save_to_csv>
def read_gzip_pickle_file(filename: str)-> Any: try: if not os.path.exists(filename): raise FileNotFoundError with open(filename, 'rb')as file: data = file.read() try: data = gzip.decompress(data) except: pass data = pickle.loads(data) except Exception as exception: data = None return data def save_gzip_pickle_file(data: Any, filename: str, verbose=True)-> int: try: with open(filename, 'wb')as file: data = pickle.dumps(data) data = gzip.compress(data) file.write(data) file.close() filesize = os.path.getsize(filename) if verbose: print(f'wrote: {filename} = {humanize.naturalsize(filesize)}') return filesize except: return 0
Conway's Reverse Game of Life 2020
12,141,564
pd.DataFrame({'Survived': test['Survived_LR'].astype(int)}, \ index=testdf.index ).reset_index().to_csv('survived_LR16.csv', index=False) pd.DataFrame({'Survived': test['Survived_AF'].astype(int)}, \ index=testdf.index ).reset_index().to_csv('survived_Autofeat16.csv', index=False) pd.DataFrame({'Survived': Y_pred}, \ index=testdf.index ).reset_index().to_csv('survived_GBC16.csv', index=False )<define_variables>
def generate_cluster_history_lookup(dataset_size=3_000_000//25, forward_play=25, verbose=True): time_start = time.perf_counter() csv_size = len(train_df.index) dataset = np.concatenate([ csv_to_numpy_list(train_df, key='start'), generate_random_boards(max(1, dataset_size - csv_size)) ])[:dataset_size] cluster_history_lookup = get_cluster_history_lookup(dataset, forward_play=forward_play) time_taken = time.perf_counter() - time_start if verbose: print(f'{len(cluster_history_lookup)} unique clusters in {time_taken:.1f}s = {1000*time_taken/len(dataset):.0f}ms/board') return cluster_history_lookup cluster_history_lookup_cachefile = f'{output_directory}/cluster_history_lookup.pickle' cluster_history_lookup = read_gzip_pickle_file(cluster_history_lookup_cachefile) if __name__ == '__main__': cluster_history_lookup = generate_cluster_history_lookup(dataset_size=dataset_size) save_gzip_pickle_file(cluster_history_lookup, cluster_history_lookup_cachefile)
Conway's Reverse Game of Life 2020
12,141,564
LB_LR16 = 0.69377 LB_Autofeat16 = 0.67942 LB_GBC16 = 0.82296<train_model>
def image_segmentation_dataframe_solver(df, history, submission_df=None, exact=False, blank_missing=True, verbose=True): time_start = time.perf_counter() stats = { "partial": 0, "exact": 0, "total": 0 } submission_df = submission_df if submission_df is not None else sample_submission_df.copy() idxs = df.index deltas = csv_to_delta_list(df) boards = csv_to_numpy_list(df, key='stop') labeleds = Parallel(-1 )(delayed(label_board )(board)for board in boards) clustereds = Parallel(-1 )(delayed(extract_clusters_from_labels )(board, labels)for board, labels in zip(boards, labeleds)) for idx, delta, stop_board, labels, clusters in zip(idxs, deltas, boards, labeleds, clustereds): start_board = image_segmentation_solver( stop_board, delta, history=history, blank_missing=blank_missing, labels=labels, clusters=clusters ) is_valid = is_valid_solution(start_board, stop_board, delta) if is_valid: stats['exact'] += 1 elif np.count_nonzero(start_board): stats['partial'] += 1 stats['total'] += 1 if is_valid or not exact: submission_df.loc[idx] = numpy_to_series(start_board, key='start') time_taken = time.perf_counter() - time_start stats['time_seconds'] = int(time_taken) stats['time_hours'] = round(time_taken/60/60, 2) if verbose: print('image_segmentation_solver() ', stats) return submission_df def image_segmentation_solver(stop_board, delta, history=None, blank_missing=True, labels=None, clusters=None): history = history if history is not None else cluster_history_lookup labels = labels if labels is not None else label_board(stop_board) clusters = clusters if clusters is not None else extract_clusters_from_labels(stop_board, labels) labels = np.unique(labels) now_hashes = Parallel(-1 )(delayed(hash_geometric )(cluster)for cluster in clusters) new_clusters = {} for label, now_cluster, now_hash in zip(labels, clusters, now_hashes): if label == 0: continue if np.count_nonzero(now_cluster)== 0: continue if history.get(now_hash,{} ).get(delta,None): for past_hash in history[now_hash][delta].keys() : try: start_cluster = history[now_hash][delta][past_hash]['start'] stop_cluster = history[now_hash][delta][past_hash]['stop'] transform_fn = solve_translation(stop_cluster, now_cluster) past_cluster = transform_fn(start_cluster) new_clusters[label] = past_cluster break except Exception as exception: pass if not label in new_clusters: if blank_missing: new_clusters[label] = np.zeros(now_cluster.shape, dtype=np.int8) else: new_clusters[label] = now_cluster start_board = np.zeros(stop_board.shape, dtype=np.int8) for cluster in new_clusters.values() : start_board += cluster start_board = start_board.astype(np.bool ).astype(np.int8) return start_board
Conway's Reverse Game of Life 2020
12,141,564
model_LR2 = LinearRegression().fit(train2,target.to_numpy().flatten()) model_Autofeat2 = LinearRegression().fit(X_train_feature_creation2, target.to_numpy().flatten() )<predict_on_test>
submission_df = image_segmentation_dataframe_solver(test_df[:dataset_size], history=cluster_history_lookup, exact=False) submission_df.to_csv('submission.csv' )
Conway's Reverse Game of Life 2020
12,141,564
test2['Survived_LR'] = np.clip(model_LR2.predict(test2),0,1) test2['Survived_AF'] = np.clip(model_Autofeat2.predict(X_test_feature_creation2),0,1 )<find_best_params>
!(for FILE in $(find./.. /input/ -name 'submission.csv' | sort); do cat $FILE | grep ',1' | wc -l | tr ' ' ' '; echo $FILE; done)| sort -n; !find./.. /input/ -name 'submission.csv' | xargs cat | sort -nr | uniq | awk -F',' '!a[$1]++' | sort -n >./submission.csv !(for FILE in $(find./.. /input/ -name 'submission.csv' | sort); do cat $FILE | grep ',1' | wc -l | tr ' ' ' '; echo $FILE; done)| sort -n; !PYTHONPATH='.' python3./constraint_satisfaction/fix_submission.py
Conway's Reverse Game of Life 2020
11,962,542
def hyperopt_gb_score(params): clf = GradientBoostingClassifier(**params) current_score = cross_val_score(clf, X_train_feature_creation2, target, cv=10 ).mean() print(current_score, params) return current_score space_gb = { 'n_estimators': hp.choice('n_estimators', range(100, 1000)) , 'max_depth': hp.choice('max_depth', np.arange(2, 10, dtype=int)) } best = fmin(fn=hyperopt_gb_score, space=space_gb, algo=tpe.suggest, max_evals=10) print('best:') print(best )<compute_train_metric>
sample_submission_df = pd.read_csv('.. /input/conways-reverse-game-of-life-2020/sample_submission.csv', index_col='id') test_df = pd.read_csv('.. /input/conways-reverse-game-of-life-2020/test.csv', index_col='id') deltas = test_df['delta'].values boards = csv_to_numpy_list(test_df )
Conway's Reverse Game of Life 2020
11,962,542
params2 = space_eval(space_gb, best) params2<train_model>
SIZE = 25 empty_board = np.zeros(( SIZE,SIZE), dtype=bool) def v(c): return -(SIZE * c[0] + c[1] + 1) def dead_clauses(res, c, x): for i1 in range(0, 6): for i2 in range(i1+1, 7): for i3 in range(i2+1, 8): a = [v(x[i])for i in range(8)] a[i1], a[i2], a[i3] = -a[i1], -a[i2], -a[i3] res.append(a) for i1 in range(0, 7): for i2 in range(i1+1, 8): a = [v(x[i])if i < 8 else -v(c)for i in range(9)] a[i1], a[i2] = -a[i1], -a[i2] res.append(a) def live_clauses(res, c, x): for i1 in range(0, 5): for i2 in range(i1+1, 6): for i3 in range(i2+1, 7): for i4 in range(i3+1, 8): res.append([-v(x[i1]), -v(x[i2]), -v(x[i3]), -v(x[i4])]) for i1 in range(0, 7): for i2 in range(i1+1, 8): a = [v(x[i])if i < 8 else v(c)for i in range(9)if i != i1 and i != i2] res.append(a) for i1 in range(0, 8): a = [v(x[i])for i in range(8)if i != i1] res.append(a) def board_clauses(board, use_opt = True): res, opt1, opt2 = [], [], [] for i in range(SIZE): for j in range(SIZE): x = [(( i + k % 3 - 1)% SIZE,(j + k // 3 - 1)% SIZE)for k in range(9)if k != 4] if board[i,j]: live_clauses(res,(i, j), x) else: dead_clauses(res,(i, j), x) if use_opt: y = [(( i + k % 5 - 2)% SIZE,(j + k // 5 - 2)% SIZE)for k in range(25)] if sum(board[ii,jj] for ii,jj in y)< 1: res.append([-v(( i, j)) ]) elif sum(board[ii,jj] for ii,jj in x)< 1: opt1.append([-v(( i, j)) ]) elif sum(board[ii,jj] for ii,jj in x)< 2: opt2.append([-v(( i, j)) ]) return res, opt1, opt2
Conway's Reverse Game of Life 2020
11,962,542
gradient_boosting2 = GradientBoostingClassifier(**params2) gradient_boosting2.fit(X_train_feature_creation2, target) Y_pred2 = gradient_boosting2.predict(X_test_feature_creation2 ).astype(int) gradient_boosting2.score(X_train_feature_creation2, target) acc_gradient_boosting2 = round(gradient_boosting2.score(X_train_feature_creation2, target)* 100, 2) acc_gradient_boosting2<save_to_csv>
N = len(deltas) score = 0 for n in tqdm(range(N), total=N): clauses, opt1, opt2 = board_clauses(boards[n], use_opt = False) solution = pycosat.solve(clauses) if isinstance(solution, str): print(f'{n} not solved!') continue board = np.array(solution[:SIZE**2])< 0 sample_submission_df.loc[test_df.index[n]] = 1 * board board = life_step(board.reshape(SIZE,SIZE)) d = np.sum(board ^ boards[n]) score += d / 625 print(score/N )
Conway's Reverse Game of Life 2020
11,962,542
pd.DataFrame({'Survived': test2['Survived_LR'].astype(int)}, \ index=testdf.index ).reset_index().to_csv('survived_LR3.csv', index=False) pd.DataFrame({'Survived': test2['Survived_AF'].astype(int)}, \ index=testdf.index ).reset_index().to_csv('survived_Autofeat3.csv', index=False) pd.DataFrame({'Survived': Y_pred2}, \ index=testdf.index ).reset_index().to_csv('survived_GBC3.csv', index=False )<init_hyperparams>
N = 1 for n in tqdm(range(N), total=N): T = min(deltas[n], 3) board = np.tile(empty_board,(T+1, 1, 1)) board[0] = boards[n] solvers = [None for _ in range(T)] opt = [None for _ in range(T)] os = [0 for _ in range(T)] oe = [0 for _ in range(T)] t = 0 while 0 <= t and t < T: if solvers[t] is None: clauses, opt1, opt2 = board_clauses(board[t]) solution = pycosat.solve(clauses) if not isinstance(solution, str): if t == T - 1: print(t, '!!', end=" ") t += 1 board[t] = np.array(solution[:SIZE**2] ).reshape(SIZE,SIZE)< 0 continue else: print(t, '??', end=" ") random.shuffle(opt1) random.shuffle(opt2) opt[t] = opt1 + opt2 os[t] = len(opt[t])+1 oe[t] = len(opt[t])+1 solvers[t] = pycosat.itersolve(clauses + opt[t]) print(len(opt[t]), end=" ") try: solution = next(solvers[t]) if oe[t] - os[t] > 1: os[t] =(os[t]+oe[t])//2 solvers[t] = pycosat.itersolve(clauses + opt[t][:(os[t]+oe[t])//2]) print(( os[t]+oe[t])//2, end=" ") else: print(t, '++', end=" ") t += 1 board[t] = np.array(solution[:SIZE**2] ).reshape(SIZE,SIZE)< 0 except Exception as err: if solvers[t] is not None and(os[t]+oe[t])//2 > 0: if os[t] == oe[t]: os[t] = 0 oe[t] = len(opt[t])+1 elif oe[t] - os[t] > 1: oe[t] =(os[t]+oe[t])//2 else: os[t] -= 1 oe[t] -= 1 solvers[t] = pycosat.itersolve(clauses + opt[t][:(os[t]+oe[t])//2]) print(( os[t]+oe[t])//2, end=" ") else: print(t, '--', end=" ") solvers[t] = None opt[t] = None t -= 1 if t == T: sample_submission_df.loc[test_df.index[n]] = 1 * board[T].ravel() plot_3d(board, index )
Conway's Reverse Game of Life 2020
11,962,542
LB_LR3 = 0.67942 LB_Autofeat3 = 0.69377 LB_GBC3 = 0.83253<create_dataframe>
sample_submission_df.to_csv("submission.csv", index=True )
Conway's Reverse Game of Life 2020
11,962,542
models = pd.DataFrame({ 'Model': ['Simple rule','Linear Regression without Autofeat', 'Linear Regression with Autofeat', 'GradientBoostingClassifier with Autofeat'], 'LB_for_16_features': [LB_simple_rule, LB_LR16, LB_Autofeat16, LB_GBC16], 'LB_for_3opt_features': [LB_simple_rule, LB_LR3, LB_Autofeat3, LB_GBC3]} )<sort_values>
submission_df = pd.read_csv('./submission.csv', index_col='id' )
Conway's Reverse Game of Life 2020
11,658,012
models.sort_values(by=['LB_for_3opt_features', 'LB_for_16_features'], ascending=False )<sort_values>
neighbor_alive2_cell_alive = {} neighbor_alive2_cell_dead = {} neighbor_alive3_cell_alive = {} neighbor_alive3_cell_dead = {} for cell in range(8): neighbor_alive2_cell_alive[cell] = [(cell,j)for j in range(8)if j!=cell] neighbor_alive2_cell_alive[cell] = [([j]+[8+k for k in range(8)if(k!=i and k!=j)])for i,j in neighbor_alive2_cell_alive[cell]] neighbor_alive2_cell_dead[cell] = [(i,j)for i in range(8)for j in range(i)if i!=cell and j!=cell] neighbor_alive2_cell_dead[cell] = [([i,j]+[8+k for k in range(8)if(k!=i and k!=j and k!=cell)])for i,j in neighbor_alive2_cell_dead[cell]] neighbor_alive3_cell_alive[cell] = [(i,j,cell)for i in range(8)for j in range(i)if i!=cell and j!=cell] neighbor_alive3_cell_alive[cell] = [([i,j]+[8+l for l in range(8)if(l!=i and l!=j and l!=k)])for i,j,k in neighbor_alive3_cell_alive[cell]] neighbor_alive3_cell_dead[cell] = [(i,j,k)for i in range(8)for j in range(i)for k in range(j)if i!=cell and j!=cell and k!=cell] neighbor_alive3_cell_dead[cell] = [([i,j,k]+[8+l for l in range(8)if(l!=i and l!=j and l!=k and l!=cell)])for i,j,k in neighbor_alive3_cell_dead[cell]] def get_neighbors_backward(grad_output): return torch.stack([torch.roll(torch.roll(grad_output[idx], -i, 2), -j, 3)for idx,(i,j)in enumerate(neighbors_roll_axes)] ).sum(dim=0) def n_neigbors_nearby_prob_backward(grad_output, neighbors, neighbor_nearby=2): if neighbor_nearby==2: combination_cell_alive = neighbor_alive2_cell_alive combination_cell_dead = neighbor_alive2_cell_dead else: combination_cell_alive = neighbor_alive3_cell_alive combination_cell_dead = neighbor_alive3_cell_dead neighbors = torch.cat([neighbors, 1 - neighbors]) coef = [] for cell in range(8): cell_live_coef = torch.stack([neighbors[l].prod(dim=0)for l in combination_cell_alive[cell]] ).sum(dim=0) cell_dead_coef = torch.stack([neighbors[d].prod(dim=0)for d in combination_cell_dead[cell]] ).sum(dim=0) coef.append(cell_live_coef-cell_dead_coef) coef = torch.stack(coef) return coef*grad_output class ProbabilisticForwardIteration(torch.autograd.Function): @staticmethod def forward(ctx, grid, delta=1): ctx.grid = grid return probabilistic_forward_iteration_autograd(grid) @staticmethod def backward(ctx, grad_out): grid = ctx.grid neighbors = get_neighbors(grid) neighbors_p2 = n_neigbors_nearby_prob(neighbors, neighbor_nearby=2) grad_n2_out = grad_out*grid grad_n3_out = grad_out grad_n2_inp = n_neigbors_nearby_prob_backward(grad_n2_out, neighbors, neighbor_nearby=2) grad_n3_inp = n_neigbors_nearby_prob_backward(grad_n3_out, neighbors, neighbor_nearby=3) grad_neighbors_out = grad_n2_inp + grad_n3_inp grad_neighbors_inp = get_neighbors_backward(grad_neighbors_out) grad_inp = grad_neighbors_inp + neighbors_p2*grad_out return grad_inp, None
Conway's Reverse Game of Life 2020
11,658,012
models.sort_values(by=['LB_for_16_features', 'LB_for_3opt_features'], ascending=False )<import_modules>
def probabilistic_forward_iteration(grid, delta=1, autograd=True): if autograd: for _ in range(delta): grid = probabilistic_forward_iteration_autograd(grid) else: for _ in range(delta): grid = ProbabilisticForwardIteration.apply(grid) return grid
Conway's Reverse Game of Life 2020
11,658,012
import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import accuracy_score<load_from_csv>
neighbors_roll_axes = [(i,j)for i in range(-1,2)for j in range(-1, 2)if not(i==0 and j==0)] def generate_random_start_batch(batch_size): return np.random.randint(low=0, high=2, size=(batch_size, 1, 25, 25), dtype=bool) def straight_iter_binary_numpy(grid, delta=1): for _ in range(delta): neighbor_sum = np.concatenate([np.roll(np.roll(grid, i, 2), j, 3)for i,j in neighbors_roll_axes], axis=1) neighbor_sum = neighbor_sum.sum(axis=1, keepdims=True) grid =(( neighbor_sum == 3)|(( grid==1)&(neighbor_sum == 2))) return grid class DataStream() : def __init__(self, delta=None, batch_size=128, drop_empty=False, drop_ch_dim=False): self.init_delta = delta self.batch_size = batch_size self.drop_empty= drop_empty self.drop_ch_dim = drop_ch_dim def __iter__(self): while True: x = generate_random_start_batch(self.batch_size) delta = self.init_delta if self.init_delta else np.random.randint(1,6) x = straight_iter_binary_numpy(x, 5+delta) if self.drop_empty: x = x[x.any(axis=2 ).any(axis=2 ).reshape(-1)] if self.drop_ch_dim: x = x[:,0,:,:] yield x.astype(float), delta
Conway's Reverse Game of Life 2020
11,658,012
train=pd.read_csv(".. /input/titanic/train.csv") tit1=train.select_dtypes(include=['float64','int64','object']) train.info() test=pd.read_csv(".. /input/titanic/test.csv") tit2=test.select_dtypes(include=['float64','int64','object']) test.info()<feature_engineering>
class DataStreamTorch(IterableDataset): def __init__(self, delta=None, batch_size=128, drop_empty=False, drop_ch_dim=False): self.ds = DataStream(delta, batch_size, drop_empty, drop_ch_dim) def __iter__(self): for x, delta in self.ds: yield FloatTensor(x), delta def pass_collate(batch): return batch[0] def get_datastream_loader(delta=None, batch_size=128, drop_empty=False, drop_ch_dim=False, num_workers=1): dataset = DataStreamTorch(delta, batch_size, drop_empty, drop_ch_dim) dataloader = DataLoader(dataset, batch_size=1, collate_fn=pass_collate, num_workers=num_workers) return dataloader
Conway's Reverse Game of Life 2020
11,658,012
tit2['survived']=np.nan tit2.head()<feature_engineering>
class Model(nn.Module): def __init__(self): super().__init__() self.relu = nn.ReLU() self.conv1 = nn.Conv2d(1, 512, 7, padding=3, padding_mode='circular') self.conv2 = nn.Conv2d(512, 256, 5, padding=2, padding_mode='circular') self.conv3 = nn.Conv2d(256, 256, 3, padding=1, padding_mode='circular') self.conv4 = nn.Conv2d(256, 1, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.relu(self.conv3(x)) x = self.sigmoid(self.conv4(x)) return x
Conway's Reverse Game of Life 2020
11,658,012
percent=round(np.mean(train['Survived']),3)*100 print("Percentage of Survivors:",percent )<count_values>
class FixPredictBlock(nn.Module): def __init__(self): super().__init__() self.relu = nn.ReLU() self.conv1 = nn.Conv2d(5, 256, 5, padding=2, padding_mode='circular') self.conv2 = nn.Conv2d(256, 256, 3, padding=1, padding_mode='circular') self.conv3 = nn.Conv2d(256, 256, 1) self.conv4 = nn.Conv2d(256, 1, 3, padding=1, padding_mode='circular') self.sigmoid = nn.Sigmoid() def forward(self, x, x_prev_pred): with torch.no_grad() : x_prev_pred_bin = x_prev_pred>0.5 x_pred_bin = binary_forward_iteration(x_prev_pred_bin) x_pred = probabilistic_forward_iteration(x_prev_pred) x = torch.cat([x, x_prev_pred, x_prev_pred_bin.float() , x_pred, x_pred_bin.float() ], dim=1) x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.relu(self.conv3(x)) x = self.sigmoid(self.conv4(x)) return x class Model(nn.Module): def __init__(self): super().__init__() self.fix_pred = FixPredictBlock() def forward(self, x, n_it=5): x_prev_pred = x for i in range(n_it): x_prev_pred = self.fix_pred(x, x_prev_pred) return x_prev_pred
Conway's Reverse Game of Life 2020
11,658,012
total=train['Survived'].sum() total men=train[train['Sex']=='male'] women=train[train['Sex']=='female'] m=men['Sex'].count() w=women['Sex'].count() print("male:",m) print("female:",w) print("percentage of women:",round(w/(m+w)*100)) print("percentage of men:",round(m/(m+w)*100))<count_missing_values>
N_iter = 2000 device = 'cuda' loader = get_datastream_loader(batch_size=128, num_workers=8, drop_empty=True, delta=1) model = Model().to(device) criterion = BCELoss() optimizer = Adam(model.parameters() , lr=1e-3) tqdm_loader = tqdm(loader) for i,(stop_state, _)in enumerate(tqdm_loader): stop_state = stop_state.to(device) optimizer.zero_grad() start_state_prediction = model(stop_state) stop_state_prediction = probabilistic_forward_iteration(start_state_prediction) loss = criterion(stop_state_prediction, stop_state) loss.backward() optimizer.step() with torch.no_grad() : bce = loss.item() start_state_alive =(start_state_prediction>0.5 ).float().mean().item() accuracy =(( stop_state_prediction > 0.5)==(stop_state>0.5)).float().mean().item() accuracy_true =(binary_forward_iteration(start_state_prediction>0.5)==(stop_state>0.5)).float().mean().item() tqdm_loader.postfix = 'bce: {:0.10f} | start_state_alive: {:0.5f} | accuracy: {:0.10f} | accuracy_true: {:0.10f}'\ .format(bce, start_state_alive, accuracy, accuracy_true) if i > N_iter: tqdm_loader.close() break for param in model.parameters() : param.requires_grad = False model.eval()
Conway's Reverse Game of Life 2020
11,658,012
train.isnull().sum()<count_missing_values>
for batch in loader: stop_state = batch[0].cuda() break for n_iter in [1,10,100]: acc =(stop_state == binary_forward_iteration(model(stop_state, n_iter)> 0.5)).float().mean().item() print(f'model n_iter={n_iter} accuracy: {acc}' )
Conway's Reverse Game of Life 2020
11,658,012
train.isnull().sum()<data_type_conversions>
def direct_gradient_optimization(batch, n_iter, lr, device='cuda', reduse_alife=False): stop_state = batch start_state = nn.Parameter(torch.rand(stop_state.shape ).to(device)-1) criterion = BCELoss() optimizer = Adam([start_state], lr=lr,) tqdm_loader = trange(n_iter) for _ in tqdm_loader: optimizer.zero_grad() start_state_prob = torch.sigmoid(start_state) stop_state_prediction = probabilistic_forward_iteration(start_state_prob, autograd=False) bce_loss = criterion(stop_state_prediction, stop_state) start_state_alive = start_state_prob.mean() if reduse_alife and start_state_alive.item() > 0: loss = bce_loss + start_state_alive else: loss = bce_loss loss.backward() optimizer.step() with torch.no_grad() : bce = bce_loss.item() alive_cells = start_state_alive.item() accuracy =(( stop_state_prediction > 0.5)==(stop_state>0.5)).float().mean().item() accuracy_true =(binary_forward_iteration(start_state_prob>0.5)==(stop_state>0.5)).float().mean().item() tqdm_loader.postfix = 'bce: {:0.10f} | start_state_alive: {:0.5f} | accuracy: {:0.10f} | accuracy_true: {:0.10f}'.format(bce, alive_cells, accuracy, accuracy_true) return torch.sigmoid(start_state.detach()) def direct_gradient_optimization_predict(data, delta, n_iter=100, lr=1, device='cuda'): data = FloatTensor(np.array(data)).reshape(( -1, 1, 25, 25)).to(device) for i in range(delta-1): data = direct_gradient_optimization(data, n_iter, lr, reduse_alife=True) data =(data>0.5 ).float() data = direct_gradient_optimization(data, n_iter, 1, reduse_alife=False) return(data>0.5 ).detach().cpu().int().reshape(-1,625 ).numpy()
Conway's Reverse Game of Life 2020
11,658,012
train['Cabin'] = train['Cabin'].fillna('X') test['Cabin']=test['Cabin'].fillna('X' )<categorify>
test = pd.read_csv('.. /input/conways-reverse-game-of-life-2020/test.csv', index_col='id') submission = pd.read_csv('.. /input/conways-reverse-game-of-life-2020/sample_submission.csv', index_col='id' )
Conway's Reverse Game of Life 2020
11,658,012
train.loc[train.Age.isnull() ,'Age']=train.groupby("Pclass" ).Age.transform('median') test.loc[test.Age.isnull() ,'Age']=test.groupby("Pclass" ).Age.transform('median') print(train['Age'].isnull().sum() )<categorify>
for delta in range(1,6): mask = test['delta']==delta data = test[mask].iloc[:,1:] submission[mask] = direct_gradient_optimization_predict(data, delta, 100, 1 )
Conway's Reverse Game of Life 2020
11,658,012
category = {'A':1, 'B':2, 'C':3, 'D':4, 'E':5, 'F':6, 'G':7, 'X':8, 'T':9} train['Cabin'] = train['Cabin'].map(category) train['Cabin'].unique().tolist()<count_missing_values>
submission.to_csv('submission.csv') submission
Conway's Reverse Game of Life 2020
11,658,012
print(train.isnull().sum() )<feature_engineering>
def evaluate_results(test, submission): test = test.copy() test['socre'] = 0 for delta in range(1,6): mask = test['delta']==delta data = FloatTensor(submission[mask].to_numpy() ).reshape(-1,1,25,25) for _ in range(delta): data = binary_forward_iteration(data) data = data.reshape(-1,625 ).numpy() result = test.loc[mask].iloc[:,1:-1] == data test.loc[mask, 'socre'] = result.mean(axis=1) print(f"Delta {delta} score: {test.loc[mask, 'socre'].mean() }") test.loc[mask, 'socre'].hist(bins=30) plt.show() print(f"LB : {1-test['socre'].mean() }" )
Conway's Reverse Game of Life 2020
11,658,012
<count_missing_values><EOS>
evaluate_results(test, submission )
Conway's Reverse Game of Life 2020
12,320,368
<SOS> metric: PostProcessorKernel Kaggle data source: conways-reverse-game-of-life-2020<feature_engineering>
import numpy as np import pandas as pd
Conway's Reverse Game of Life 2020
12,320,368
train["Sex"][train["Sex"] == "male"] = 0 train["Sex"][train["Sex"] == "female"] = 1 test["Sex"][test["Sex"] == "male"] = 0 test["Sex"][test["Sex"] == "female"] = 1 train["Embarked"][train["Embarked"] == "S"] = 0 train["Embarked"][train["Embarked"] == "C"] = 1 train["Embarked"][train["Embarked"] == "Q"] = 2 test["Embarked"][test["Embarked"] == "S"] = 0 test["Embarked"][test["Embarked"] == "C"] = 1 test["Embarked"][test["Embarked"] == "Q"] = 2 <feature_engineering>
sub = pd.read_csv('/kaggle/input/genetic-algorithm-submission-file/submission.csv') sub.to_csv('submission.csv', index=False )
Conway's Reverse Game of Life 2020
13,658,702
train['fam']=train['SibSp']+train['Parch']+1 test['fam']=test['SibSp']+test['Parch']+1<data_type_conversions>
d1 = pd.read_csv(".. /input/the-game-of-life-cnn-delta-1/submit1.csv", index_col=0) print("Numbers of delta1's data:{}".format(d1.shape[0]))
Conway's Reverse Game of Life 2020
13,658,702
train['Age']=train['Age'].astype(str) test['Age']=test['Age'].astype(str )<feature_engineering>
d2 = pd.read_csv(".. /input/the-game-of-life-cnn-delta-2/submit2.csv", index_col=0) print("Numbers of delta2's data:{}".format(d2.shape[0]))
Conway's Reverse Game of Life 2020
13,658,702
cat={'2':1, '3':2 , '5':3, '1':4 ,'4':5,'8':6,'6':7,'7':8,'0':9,'9':10} test['Age']=test['Age'].map(cat) test['Age'].unique().tolist()<feature_engineering>
d3 = pd.read_csv(".. /input/the-game-of-life-cnn-delta-3/submit3.csv", index_col=0) print("Numbers of delta3's data:{}".format(d3.shape[0]))
Conway's Reverse Game of Life 2020
13,658,702
train['Title'] = train['Name'].map(lambda x: re.compile("([A-Za-z]+)\." ).search(x ).group()) test['Title'] = test['Name'].map(lambda x: re.compile("([A-Za-z]+)\." ).search(x ).group()) print(train['Title'].unique()) <feature_engineering>
d4 = pd.read_csv(".. /input/the-game-of-life-cnn-delta-4/submit4.csv", index_col=0) print("Numbers of delta4's data:{}".format(d4.shape[0]))
Conway's Reverse Game of Life 2020
13,658,702
train['Title'] = train['Title'].replace(['Lady.', 'Capt.', 'Col.', 'Don.', 'Dr.', 'Major.', 'Rev.', 'Jonkheer.', 'Dona.'], 'Rare.') train['Title'] = train['Title'].replace(['Countess.', 'Lady', 'Sir'], 'Royal') train['Title'] = train['Title'].replace('Mlle.', 'Miss.') train['Title'] = train['Title'].replace('Ms.', 'Miss.') train['Title'] = train['Title'].replace('Mme.', 'Mrs.') train[['Title', 'Survived']].groupby(['Title'], as_index=False ).mean()<feature_engineering>
d5 = pd.read_csv(".. /input/the-game-of-life-cnn-delta-5/submit5.csv", index_col=0) print("Numbers of delta5's data:{}".format(d5.shape[0]))
Conway's Reverse Game of Life 2020
13,658,702
<categorify><EOS>
submitData = d1.copy() submitData = submitData.append(d2) submitData = submitData.append(d3) submitData = submitData.append(d4) submitData = submitData.append(d5) submitData = submitData.sort_index() submitData.to_csv("submission.csv") submitData
Conway's Reverse Game of Life 2020
12,793,594
<SOS> metric: PostProcessorKernel Kaggle data source: conways-reverse-game-of-life-2020<categorify>
!find./.. /input/ /ai-games/puzzles/game_of_life/ -name 'submission.csv' | xargs cat | sort -nr | uniq | awk -F',' '!a[$1]++' | sort -n >./submission_previous.csv !find./.. /input/ /ai-games/puzzles/game_of_life/ -name 'submission.csv' | xargs cat | sort -nr | uniq | awk -F',' '!a[$1]++' | sort -n >./submission.csv !find./.. /input/ /ai-games/puzzles/game_of_life/ -name 'timeouts.csv' | xargs cat | sort -nr | uniq | awk -F',' '!a[$1]++' | sort -n >./timeouts.csv !(for FILE in $(find./.. /input/ /ai-games/puzzles/game_of_life/ -name '*submission.csv' | sort); do cat $FILE | grep ',1' | wc -l | tr ' ' ' '; echo $FILE; done)| sort -n;
Conway's Reverse Game of Life 2020
12,793,594
<drop_column><EOS>
!find./ -name '__pycache__' -or -name '*.py[cod]' -delete !(for FILE in *.csv; do cat $FILE | grep ',1,' | wc -l | tr ' ' ' '; echo $FILE; done)| sort -n;
Conway's Reverse Game of Life 2020
11,546,266
<SOS> metric: PostProcessorKernel Kaggle data source: conways-reverse-game-of-life-2020<split>
import numpy as np import pandas as pd import os import tensorflow as tf import matplotlib.pyplot as plt
Conway's Reverse Game of Life 2020
11,546,266
X_train, X_test, y_train, y_test = train_test_split(train.drop(['Survived','PassengerId'], axis=1), train['Survived'], test_size = 0.2, random_state = 0 )<train_model>
train_df = pd.read_csv('/kaggle/input/conways-reverse-game-of-life-2020/train.csv') test_df = pd.read_csv("/kaggle/input/conways-reverse-game-of-life-2020/test.csv") sample_submission = pd.read_csv("/kaggle/input/conways-reverse-game-of-life-2020/sample_submission.csv" )
Conway's Reverse Game of Life 2020
11,546,266
logisticRegression = LogisticRegression(max_iter = 30000) logisticRegression.fit(X_train, y_train) <predict_on_test>
start_features = [f for f in train_df.columns if "start" in f] stop_features = [f for f in train_df.columns if "stop" in f] features_in = stop_features + ["delta"]
Conway's Reverse Game of Life 2020
11,546,266
predictions = logisticRegression.predict(X_test) acc_LOG = round(accuracy_score(predictions, y_test)* 100, 2) print(acc_LOG) print(predictions) <compute_test_metric>
delta_train, delta_validation, stop_train, stop_validation, Y_train, Y_valid = train_test_split(train_df["delta"].values, train_df[stop_features].values.reshape(-1, 25, 25, 1 ).astype(float), train_df[start_features].values.reshape(-1, 25, 25, 1 ).astype(float), test_size=0.33, )
Conway's Reverse Game of Life 2020
11,546,266
print(confusion_matrix(y_test, predictions))<compute_test_metric>
X_train = [delta_train, stop_train] X_valid = [delta_validation, stop_validation] X_test = [test_df["delta"].values, test_df[stop_features].values.reshape(-1, 25, 25, 1 ).astype(float)] X_all_train = [train_df["delta"].values, train_df[stop_features].values.reshape(-1, 25, 25, 1 ).astype(float)] Y_all_train = train_df[start_features].values.reshape(-1, 25, 25, 1 ).astype(float )
Conway's Reverse Game of Life 2020
11,546,266
accuracy=(( 88+50)/(88+50+22+19)) print('accuracy is: ',(round(accuracy, 2)*100))<train_model>
def conv_block(inputs, filters, index, activation='relu'): x = layers.Conv2D(filters, kernel_size=(3,3), padding="SAME", name=f'conv{index}' )(inputs) x = layers.BatchNormalization()(x) return layers.Activation(activation, name=activation + str(index))(x )
Conway's Reverse Game of Life 2020
11,546,266
randomforest = RandomForestClassifier(random_state = 5, criterion = 'gini', max_depth = 10, max_features = 'auto', n_estimators = 500) randomforest.fit(X_train, y_train) pred = randomforest.predict(X_test) acc_randomforest = round(accuracy_score(pred, y_test)* 100, 2) print(acc_randomforest) <train_model>
def create_model(dropout_prob=0.3): input_delta = layers.Input(shape=(1,), name="input_delta") dense_delta = layers.Dense(25*25, name='dense_delta' )(input_delta) dense_reshape = layers.Reshape(( 25,25,1), name='reshape_delta' )(dense_delta) input_image = layers.Input(shape=(25,25,1), name="input_images") all_inputs = layers.Concatenate(axis=3, name='concatenate' )([input_image, dense_reshape]) x = conv_block(all_inputs, 32, index=1) x = layers.Dropout(dropout_prob )(x) x = conv_block(x, 128, index=2) x = layers.Dropout(dropout_prob )(x) x = conv_block(x, 256, index=3) x = layers.Dropout(dropout_prob )(x) x = conv_block(x, 64, index=4) x = layers.Dropout(dropout_prob )(x) out = conv_block(x, 1, index=5, activation='sigmoid') return Model(inputs=[input_delta, input_image], outputs=out )
Conway's Reverse Game of Life 2020
11,546,266
gbk = GradientBoostingClassifier() gbk.fit(X_train, y_train) pred = gbk.predict(X_test) acc_gbk = round(accuracy_score(pred, y_test)* 100, 2) print(acc_gbk )<create_dataframe>
model = create_model() model.compile(loss="bce", optimizer=tf.keras.optimizers.Adam() , metrics=["accuracy"] )
Conway's Reverse Game of Life 2020
11,546,266
see={'TECHNIQUE':['RANDOM FOREST','LOGISTIC REGRESSION','GRADIENT BOOSTING'],'ACCURACY':[acc_randomforest,acc_LOG,acc_gbk]} mod=pd.DataFrame(see) mod<save_to_csv>
history = model.fit(x=X_train, y=Y_train, batch_size=128, epochs=25, validation_data=(X_valid, Y_valid))
Conway's Reverse Game of Life 2020
11,546,266
ids = test['PassengerId'] predictions = randomforest.predict(test.drop('PassengerId', axis=1)) output = pd.DataFrame({ 'PassengerId' : ids, 'Survived': predictions }) output.to_csv('submission.csv', index=False )<import_modules>
model = create_model() model.compile(loss="bce", optimizer=tf.keras.optimizers.Adam() , metrics=["accuracy"] )
Conway's Reverse Game of Life 2020
11,546,266
import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import accuracy_score<load_from_csv>
history = model.fit(x=X_all_train, y=Y_all_train, batch_size=128, epochs=20, )
Conway's Reverse Game of Life 2020
11,546,266
train=pd.read_csv(".. /input/titanic/train.csv") tit1=train.select_dtypes(include=['float64','int64','object']) train.info() test=pd.read_csv(".. /input/titanic/test.csv") tit2=test.select_dtypes(include=['float64','int64','object']) test.info()<feature_engineering>
test_prediction = model.predict(X_test) test_prediction =(test_prediction > 0.5 ).astype(int ).reshape(test_df.shape[0], -1) sub = test_df[["id"]].copy() tmp = pd.DataFrame(test_prediction, columns=start_features) submission = sub.join(tmp )
Conway's Reverse Game of Life 2020
11,546,266
tit2['survived']=np.nan tit2.head()<feature_engineering>
submission.to_csv("submission.csv", index=False )
Conway's Reverse Game of Life 2020
11,546,266
<count_values><EOS>
submission.to_csv("submission.csv", index=False )
Conway's Reverse Game of Life 2020
11,632,795
<SOS> metric: PostProcessorKernel Kaggle data source: conways-reverse-game-of-life-2020<count_missing_values>
class OneIterationReverseNet(nn.Module): def __init__(self, info_ch, ch): super().__init__() self.relu = nn.ReLU() self.conv1 = nn.Conv2d(info_ch, ch, 5, padding=4, padding_mode='circular') self.conv2 = nn.Conv2d(ch, ch, 3,) self.conv3 = nn.Conv2d(ch, info_ch, 3) def forward(self, inp): x = self.relu(self.conv1(inp)) x = self.relu(self.conv2(x)) x = self.relu(self.conv3(x)) return x class ReverseModel(nn.Module): def __init__(self, info_ch=64, ch=128): super().__init__() self.relu = nn.ReLU() self.encoder = nn.Conv2d(1, info_ch, 7, padding=3, padding_mode='circular') self.reverse_one_iter = OneIterationReverseNet(info_ch, ch) self.decoder = nn.Conv2d(info_ch, 1, 3, padding=1, padding_mode='circular') def forward(self, stop, delta): x = self.relu(self.encoder(stop-0.5)) for i in range(delta.max().item()): y = self.reverse_one_iter(x) mask =(delta > i ).reshape(-1,1,1,1) x = x*(~mask ).float() + y*mask.float() x = self.decoder(x) return x
Conway's Reverse Game of Life 2020
11,632,795
train.isnull().sum()<count_missing_values>
import pandas as pd from sklearn.model_selection import train_test_split
Conway's Reverse Game of Life 2020
11,632,795
train.isnull().sum()<data_type_conversions>
train_val = pd.read_csv('/kaggle/input/conways-reverse-game-of-life-2020/train.csv', index_col='id') test = pd.read_csv('/kaggle/input/conways-reverse-game-of-life-2020/test.csv', index_col='id') train, val = train_test_split(train_val, test_size=0.2, shuffle=True, random_state=42, stratify=train_val['delta'] )
Conway's Reverse Game of Life 2020
11,632,795
train['Cabin'] = train['Cabin'].fillna('X') test['Cabin']=test['Cabin'].fillna('X' )<categorify>
def line2grid_tensor(data, device='cuda'): grid = data.to_numpy().reshape(( data.shape[0], 1, 25, 25)) return FloatTensor(grid ).to(device) class TaskDataset(Dataset): def __init__(self, data, device='cuda'): self.delta = LongTensor(data['delta'].to_numpy() ).to(device) if data.shape[1] == 1251: self.start = line2grid_tensor(data.iloc[:,1:626], device) self.stop = line2grid_tensor(data.iloc[:,626:], device) else: self.start = None self.stop = line2grid_tensor(data.iloc[:,1:], device) def __len__(self): return len(self.delta) def __getitem__(self, idx): if self.start is None: return {'stop': self.stop[idx], 'delta': self.delta[idx]} return {'start': self.start[idx], 'stop': self.stop[idx], 'delta': self.delta[idx]}
Conway's Reverse Game of Life 2020
11,632,795
train.loc[train.Age.isnull() ,'Age']=train.groupby("Pclass" ).Age.transform('median') test.loc[test.Age.isnull() ,'Age']=test.groupby("Pclass" ).Age.transform('median') print(train['Age'].isnull().sum() )<categorify>
dataset_train = TaskDataset(train) dataloader_train = DataLoader(dataset_train, batch_size=128, shuffle=True) dataset_val = TaskDataset(val) dataloader_val = DataLoader(dataset_val, batch_size=128, shuffle=False) dataset_test = TaskDataset(test) dataloader_test = DataLoader(dataset_test, batch_size=128, shuffle=False )
Conway's Reverse Game of Life 2020
11,632,795
category = {'A':1, 'B':2, 'C':3, 'D':4, 'E':5, 'F':6, 'G':7, 'X':8, 'T':9} train['Cabin'] = train['Cabin'].map(category) train['Cabin'].unique().tolist()<count_missing_values>
runner = SupervisedRunner(device='cuda', input_key=['stop', 'delta'],) loaders = {'train': dataloader_train, 'valid': dataloader_val} model = ReverseModel() optimizer = Lookahead(RAdam(params=model.parameters() , lr=1e-3)) criterion = {"bce": nn.BCEWithLogitsLoss() } scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.25, patience=2) callbacks = [ CriterionCallback(input_key='start', prefix="loss", criterion_key="bce"), EarlyStoppingCallback(patience=5), ] runner.train( model=model, criterion=criterion, optimizer=optimizer, scheduler=scheduler, loaders=loaders, callbacks=callbacks, logdir="./logs", num_epochs=999, main_metric="loss", minimize_metric=True, verbose=True, )
Conway's Reverse Game of Life 2020
11,632,795
print(train.isnull().sum() )<feature_engineering>
best_model = ReverseModel().to('cuda') best_model.load_state_dict(torch.load('logs/checkpoints/best.pth')['model_state_dict'] )
Conway's Reverse Game of Life 2020
11,632,795
train["Embarked"] = train["Embarked"].fillna(mode(train["Embarked"]))<count_missing_values>
%load_ext Cython
Conway's Reverse Game of Life 2020
11,632,795
print(train.isnull().sum() )<feature_engineering>
%%cython c @cython.cdivision(True) @cython.boundscheck(False) @cython.nonecheck(False) @cython.wraparound(False) cdef int calc_neighs(unsigned char[:, :] field, int i, int j, int n, int k): cdef: int neighs = 0; int i_min = i - 1; int i_pl = i + 1; int j_min = j - 1; int j_pl = j + 1; neighs = 0 if i_min >= 0: if j_min >= 0: neighs += field[i_min, j_min] neighs += field[i_min, j] if j_pl < k: neighs += field[i_min, j_pl] if j_min >= 0: neighs += field[i, j_min] if j_pl < k: neighs += field[i, j_pl] if i_pl < n: if j_min >= 0: neighs += field[i_pl, j_min] neighs += field[i_pl, j] if j_pl < k: neighs += field[i_pl, j_pl] return neighs @cython.cdivision(True) @cython.boundscheck(False) @cython.nonecheck(False) @cython.wraparound(False) cpdef make_move_cython(unsigned char[:, :] field, int moves): cdef: int _, i, j, neighs; int n, k; int switch = 0; unsigned char[:, :] cur_field; unsigned char[:, :] next_field; cur_field = np.copy(field) next_field = np.zeros_like(field, 'uint8') n = field.shape[0] k = field.shape[1] for _ in range(moves): if switch == 0: for i in range(n): for j in range(k): neighs = calc_neighs(cur_field, i, j, n, k) if cur_field[i, j] and neighs == 2: next_field[i, j] = 1 elif neighs == 3: next_field[i, j] = 1 else: next_field[i, j] = 0 else: for i in range(n): for j in range(k): neighs = calc_neighs(next_field, i, j, n, k) if next_field[i, j] and neighs == 2: cur_field[i, j] = 1 elif neighs == 3: cur_field[i, j] = 1 else: cur_field[i, j] = 0 switch =(switch + 1)% 2 return np.array(next_field if switch else cur_field)
Conway's Reverse Game of Life 2020
11,632,795
train["Sex"][train["Sex"] == "male"] = 0 train["Sex"][train["Sex"] == "female"] = 1 test["Sex"][test["Sex"] == "male"] = 0 test["Sex"][test["Sex"] == "female"] = 1 train["Embarked"][train["Embarked"] == "S"] = 0 train["Embarked"][train["Embarked"] == "C"] = 1 train["Embarked"][train["Embarked"] == "Q"] = 2 test["Embarked"][test["Embarked"] == "S"] = 0 test["Embarked"][test["Embarked"] == "C"] = 1 test["Embarked"][test["Embarked"] == "Q"] = 2 <feature_engineering>
def make_move(board: Union[torch.Tensor, np.ndarray], moves: Union[int, List[int]] = 1): if isinstance(board, torch.Tensor): return torch.tensor(_evolve_board(board.detach().cpu().numpy() , moves), dtype=board.dtype, device=board.device) return np.array(_evolve_board(board, moves), dtype=board.dtype) def _evolve_board(board, moves): board = np.array(board ).astype(np.uint8) if len(board.shape)== 4: assert board.shape[1:] ==(1, 25, 25) board_evolved = _move_board_3dim(board[:, 0], moves)[:, None] elif len(board.shape)== 3: board_evolved = _move_board_3dim(board, moves) else: assert board.shape ==(25, 25) board_evolved = make_move_cython(board, moves) return np.array(board_evolved, dtype=np.float32) def _move_board_3dim(board, moves): if board.shape ==(1, 25, 25): board_evolved = make_move_cython(board[0], moves)[:, None] else: assert board.shape[1:] ==(25, 25) if isinstance(moves, int): moves = [moves] * len(board) assert len(moves)== len(board) board_evolved = np.array([make_move_cython(b, move)for b, move in zip(board, moves)]) return board_evolved
Conway's Reverse Game of Life 2020
11,632,795
train['fam']=train['SibSp']+train['Parch']+1 test['fam']=test['SibSp']+test['Parch']+1<data_type_conversions>
def batch_accuracy(x, y_pred): return torch.sum(torch.abs(x - y_pred), dim=(1, 2, 3)) def postprocessor(y_pred, x, moves): thresholds = torch.linspace(0, 1, 11, device=x.device) errors = torch.cat([batch_accuracy(x.float() , make_move(( y_pred > threshold ).float() , moves) )[None] for threshold in thresholds], 0) best_thresholds = thresholds[torch.argmin(errors, 0)][:, None, None, None] return(y_pred > best_thresholds ).float()
Conway's Reverse Game of Life 2020
11,632,795
train['Age']=train['Age'].astype(str) test['Age']=test['Age'].astype(str )<feature_engineering>
def predict_batch(model, batch): model.eval() with torch.no_grad() : prediction = model(batch['stop'], batch['delta']) prediction = torch.sigmoid(prediction ).detach().cpu().numpy() return prediction def predict_loader(model, loader): predict = [predict_batch(model, batch)for batch in loader] predict = np.concatenate(predict) return predict def validate_loader(model, loader, lb_delta=None, threshold=0.5): prediction_val = predict_loader(best_model, loader) y_val = loader.dataset.start.detach().cpu().numpy() score_unoptimized =(( prediction_val > threshold)== y_val ).mean(axis=(1,2,3)) delta_val = loader.dataset.delta.detach().cpu().numpy() prediction_val = postprocessor(torch.tensor(prediction_val), x=loader.dataset.stop.cpu() , moves=delta_val ).cpu().numpy() score =(prediction_val == y_val ).mean(axis=(1,2,3)) print(f'All data accuracy(global threshold): {score_unoptimized.mean() }') print(f'All data accuracy(optimized threshold): {score.mean() }') delta_score = {} for i in range(1, 6): delta_score[i] = score[delta_val==i].mean() print(f'delta={i} accuracy: {delta_score[i]}') if lb_delta is not None: lb_delta = lb_delta.value_counts(normalize=True) test_score = sum([lb_delta[i]*delta_score[i] for i in range(1,6)]) print(f'VAL score : {1-score.mean() }') print(f'LB score estimate: {1-test_score}') def make_submission(prediction, x, moves, sample_submission_path='/kaggle/input/conways-reverse-game-of-life-2020/sample_submission.csv'): prediction = postprocessor(prediction, x, moves ).numpy().astype(int ).reshape(-1, 625) sample_submission = pd.read_csv(sample_submission_path, index_col='id') sample_submission.iloc[:] = prediction return sample_submission
Conway's Reverse Game of Life 2020
11,632,795
cat={'2':1, '3':2 , '5':3, '1':4 ,'4':5,'8':6,'6':7,'7':8,'0':9,'9':10} test['Age']=test['Age'].map(cat) test['Age'].unique().tolist()<feature_engineering>
validate_loader(best_model, dataloader_val, test['delta'] )
Conway's Reverse Game of Life 2020
11,632,795
train['Title'] = train['Name'].map(lambda x: re.compile("([A-Za-z]+)\." ).search(x ).group()) test['Title'] = test['Name'].map(lambda x: re.compile("([A-Za-z]+)\." ).search(x ).group()) print(train['Title'].unique()) <feature_engineering>
prediction_test = predict_loader(best_model, dataloader_test) submission = make_submission(torch.tensor(prediction_test), x=dataloader_test.dataset.stop.cpu() , moves=dataloader_test.dataset.delta.detach().cpu().numpy()) submission.to_csv('submission.csv') submission.head()
Conway's Reverse Game of Life 2020
11,614,110
train['Title'] = train['Title'].replace(['Lady.', 'Capt.', 'Col.', 'Don.', 'Dr.', 'Major.', 'Rev.', 'Jonkheer.', 'Dona.'], 'Rare.') train['Title'] = train['Title'].replace(['Countess.', 'Lady', 'Sir'], 'Royal') train['Title'] = train['Title'].replace('Mlle.', 'Miss.') train['Title'] = train['Title'].replace('Ms.', 'Miss.') train['Title'] = train['Title'].replace('Mme.', 'Mrs.') train[['Title', 'Survived']].groupby(['Title'], as_index=False ).mean()<feature_engineering>
sample = pd.read_csv('/kaggle/input/conways-reverse-game-of-life-2020/sample_submission.csv') test = pd.read_csv('/kaggle/input/conways-reverse-game-of-life-2020/test.csv') train = pd.read_csv('/kaggle/input/conways-reverse-game-of-life-2020/train.csv')
Conway's Reverse Game of Life 2020