kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
5,644,971
train_data, dev_data = train_test_split(train_data, test_size=0.25 )<filter>
def dice_coef(y_true, y_pred, smooth=1): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return(2.* intersection + smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth) def dice_loss(y_true, y_pred): smooth = 1. y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = y_true_f * y_pred_f score =(2.* K.sum(intersection)+ smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth) return 1.- score def bce_dice_loss(y_true, y_pred): return binary_crossentropy(y_true, y_pred)+ dice_loss(y_true, y_pred )
Understanding Clouds from Satellite Images
5,644,971
test_data[test_data.Fare.isnull() ]<groupby>
class DataGenerator(keras.utils.Sequence): 'Generates data for Keras' def __init__(self, list_IDs, df, target_df=None, mode='fit', base_path='.. /input/understanding_cloud_organization/train_images', batch_size=32, dim=(1400, 2100), n_channels=3, reshape=None, gamma=None, augment=False, n_classes=4, random_state=2019, shuffle=True): self.dim = dim self.batch_size = batch_size self.df = df self.mode = mode self.base_path = base_path self.target_df = target_df self.list_IDs = list_IDs self.reshape = reshape self.gamma = gamma self.n_channels = n_channels self.augment = augment self.n_classes = n_classes self.shuffle = shuffle self.random_state = random_state self.on_epoch_end() np.random.seed(self.random_state) def __len__(self): 'Denotes the number of batches per epoch' return int(np.floor(len(self.list_IDs)/ self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] list_IDs_batch = [self.list_IDs[k] for k in indexes] X = self.__generate_X(list_IDs_batch) if self.mode == 'fit': y = self.__generate_y(list_IDs_batch) if self.augment: X, y = self.__augment_batch(X, y) return X, y elif self.mode == 'predict': return X else: raise AttributeError('The mode parameter should be set to "fit" or "predict".') def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.list_IDs)) if self.shuffle == True: np.random.seed(self.random_state) np.random.shuffle(self.indexes) def __generate_X(self, list_IDs_batch): 'Generates data containing batch_size samples' if self.reshape is None: X = np.empty(( self.batch_size, *self.dim, self.n_channels)) else: X = np.empty(( self.batch_size, *self.reshape, self.n_channels)) for i, ID in enumerate(list_IDs_batch): im_name = self.df['ImageId'].iloc[ID] img_path = f"{self.base_path}/{im_name}" img = self.__load_rgb(img_path) if self.reshape is not None: img = np_resize(img, self.reshape) if self.gamma is not None: img = adjust_gamma(img, gamma=self.gamma) X[i,] = img return X def __generate_y(self, list_IDs_batch): if self.reshape is None: y = np.empty(( self.batch_size, *self.dim, self.n_classes), dtype=int) else: y = np.empty(( self.batch_size, *self.reshape, self.n_classes), dtype=int) for i, ID in enumerate(list_IDs_batch): im_name = self.df['ImageId'].iloc[ID] image_df = self.target_df[self.target_df['ImageId'] == im_name] rles = image_df['EncodedPixels'].values if self.reshape is not None: masks = build_masks(rles, input_shape=self.dim, reshape=self.reshape) else: masks = build_masks(rles, input_shape=self.dim) y[i, ] = masks return y def __load_grayscale(self, img_path): img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) img = img.astype(np.float32)/ 255. img = np.expand_dims(img, axis=-1) return img def __load_rgb(self, img_path): img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32)/ 255. return img def __random_transform(self, img, masks): composition = albu.Compose([ albu.HorizontalFlip() , albu.VerticalFlip() , albu.ShiftScaleRotate(rotate_limit=30, shift_limit=0.1) ]) composed = composition(image=img, mask=masks) aug_img = composed['image'] aug_masks = composed['mask'] return aug_img, aug_masks def __augment_batch(self, img_batch, masks_batch): for i in range(img_batch.shape[0]): img_batch[i, ], masks_batch[i, ] = self.__random_transform( img_batch[i, ], masks_batch[i, ]) return img_batch, masks_batch
Understanding Clouds from Satellite Images
5,644,971
test_data[["Pclass", "Fare", "Embarked"]].groupby(["Pclass", "Embarked"] ).mean()<prepare_x_and_y>
BATCH_SIZE = 32 train_idx, val_idx = train_test_split( mask_count_df.index, random_state=2019, test_size=0.2 ) train_generator = DataGenerator( train_idx, df=mask_count_df, target_df=train_df, batch_size=BATCH_SIZE, reshape=(320, 480), gamma=0.8, augment=True, n_channels=3, n_classes=4 ) val_generator = DataGenerator( val_idx, df=mask_count_df, target_df=train_df, batch_size=BATCH_SIZE, reshape=(320, 480), gamma=0.8, augment=False, n_channels=3, n_classes=4 )
Understanding Clouds from Satellite Images
5,644,971
X_train = train_data.drop(["PassengerId", "Survived", "Name", "Age", "Ticket", "Cabin"], axis=1) Y_train = train_data["Survived"] X_dev = dev_data.drop(["PassengerId", "Survived", "Name", "Age", "Ticket", "Cabin"], axis=1) Y_dev = dev_data["Survived"] X_test = test_data.drop(["PassengerId", "Name", "Age", "Ticket", "Cabin"], axis=1) X_train.shape, Y_train.shape, X_dev.shape, Y_dev.shape, X_test.shape<data_type_conversions>
opt = AdamAccumulate(lr=0.002, accum_iters=8) model = sm.Unet( 'resnet18', classes=4, input_shape=(320, 480, 3), activation='sigmoid' ) model.compile(optimizer=opt, loss=bce_dice_loss, metrics=[dice_coef]) model.summary()
Understanding Clouds from Satellite Images
5,644,971
X_full = [X_train, X_dev, X_test] for dataset in X_full: dataset["Sex"] = dataset["Sex"].map({"female": "1", "male": "0"} ).astype("int") dataset["Embarked"] = dataset["Embarked"].fillna("S" ).map({"S": "0", "C": "1", "Q": "2"} ).astype("int") X_test["Fare"] = X_test["Fare"].fillna(13.9 )<train_model>
model.load_weights('.. /input/resunet18lb598/model.h5' )
Understanding Clouds from Satellite Images
5,644,971
logit = LogisticRegression() logit.fit(X_train, Y_train) acc_logit_train = round(logit.score(X_train, Y_train)*100, 2) acc_logit_dev = round(logit.score(X_dev, Y_dev)*100, 2) print(f"logit: train accuracy = {acc_logit_train}, dev accuracy = {acc_logit_dev}" )<train_on_grid>
def post_process(probability, threshold, min_size): mask = cv2.threshold(probability, threshold, 1, cv2.THRESH_BINARY)[1] num_component, component = cv2.connectedComponents(mask.astype(np.uint8)) predictions = np.zeros(( 350, 525), np.float32) num = 0 for c in range(1, num_component): p =(component == c) if p.sum() > min_size: predictions[p] = 1 num += 1 return predictions, num
Understanding Clouds from Satellite Images
5,644,971
svc = SVC(C=1.0, kernel='rbf', gamma='auto') svc.fit(X_train, Y_train) acc_svc_train = round(svc.score(X_train, Y_train)* 100, 2) acc_svc_dev = round(svc.score(X_dev, Y_dev)* 100, 2) print(f"svc: train accuracy = {acc_svc_train}, dev accuracy = {acc_svc_dev}" )<feature_engineering>
model = tta_segmentation(model, h_flip=True, h_shift=(-10, 10), merge='mean' )
Understanding Clouds from Satellite Images
5,644,971
combine_data = [train_data, dev_data, test_data] for dataset in combine_data: dataset["Title"] = dataset.Name.str.extract("([A-Za-z]+)\.", expand=False) pd.crosstab(train_data['Title'], train_data['Sex'] )<feature_engineering>
best_threshold = 0.45 best_size = 15000 threshold = best_threshold min_size = best_size test_df = [] encoded_pixels = [] TEST_BATCH_SIZE = 500 for i in range(0, test_imgs.shape[0], TEST_BATCH_SIZE): batch_idx = list( range(i, min(test_imgs.shape[0], i + TEST_BATCH_SIZE)) ) test_generator = DataGenerator( batch_idx, df=test_imgs, shuffle=False, mode='predict', dim=(350, 525), reshape=(320, 480), n_channels=3, gamma=0.8, base_path='.. /input/understanding_cloud_organization/test_images', target_df=sub_df, batch_size=1, n_classes=4 ) batch_pred_masks = model.predict_generator( test_generator, workers=1, verbose=1 ) for j, idx in enumerate(batch_idx): filename = test_imgs['ImageId'].iloc[idx] image_df = sub_df[sub_df['ImageId'] == filename].copy() pred_masks = batch_pred_masks[j, ] for k in range(pred_masks.shape[-1]): pred_mask = pred_masks[...,k].astype('float32') if pred_mask.shape !=(350, 525): pred_mask = cv2.resize(pred_mask, dsize=(525, 350), interpolation=cv2.INTER_LINEAR) pred_mask, num_predict = post_process(pred_mask, threshold, min_size) if num_predict == 0: encoded_pixels.append('') else: r = mask2rle(pred_mask) encoded_pixels.append(r) sub_df['EncodedPixels'] = encoded_pixels
Understanding Clouds from Satellite Images
5,644,971
for dataset in combine_data: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') train_data[['Title', 'Survived']].groupby(['Title'], as_index=False ).mean()<categorify>
def rle_decode(mask_rle, shape=(1400, 2100)) : s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int)for x in(s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[0]*shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = 1 return img.reshape(shape, order='F' )
Understanding Clouds from Satellite Images
5,644,971
for dataset in combine_data: dataset['Title'] = dataset['Title'].map({"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}) dataset['Title'] = dataset['Title'].fillna(0 )<feature_engineering>
sub_df.to_csv('submission.csv', columns=['Image_Label', 'EncodedPixels'], index=False) sub_df.head(10 )
Understanding Clouds from Satellite Images
7,597,656
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<split>
%matplotlib inline NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 MAX_BEST_CHOICE = 5 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') submission = pd.read_csv('/kaggle/input/santas-workshop-tour-2019-optimal-solution/preference_cost_43622.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, int) for fid, assigned_day in enumerate(assigned_days): daily_occupancy[assigned_day-1] += N_PEOPLE[fid] return daily_occupancy def days_plot(assigned_days): daily_occupancy = get_daily_occupancy(assigned_days) best_choices = get_daily_occupancy(DESIRED[:,0]) plt.rcParams['figure.figsize'] = [20, 5] plt.xticks(np.arange(1, 101, step=1), rotation=90) plt.axhline(y=125, color='gray', linestyle=':') plt.axhline(y=300, color='gray', linestyle=':') mondays125 = np.array([(day+1, daily_occupancy[day])for day in range(100)if day % 7 == 1 and daily_occupancy[day] == 125]) other_mondays = np.array([(day+1, daily_occupancy[day])for day in range(100)if day % 7 == 1 and daily_occupancy[day] != 125]) weekends = np.array([(day+1, daily_occupancy[day])for day in range(100)if day % 7 in [2,3,4] or day == 0]) not_weekends = np.array([(day+1, daily_occupancy[day])for day in range(1, 100)if day % 7 in [0,5,6]]) plt.bar(*weekends.transpose() , color = 'y', label = 'Weekends') plt.bar(*not_weekends.transpose() , color = 'b', label = 'Thu-Wed-Tue') plt.bar(*other_mondays.transpose() , color = 'm', label = 'Mondays > 125') plt.bar(*mondays125.transpose() , color = 'g', label = 'Mondays = 125') plt.plot(range(1,101), best_choices, color = 'k', label = 'Best choices') plt.ylim(0, 500) plt.xlim(0, 101) plt.xlabel('Days before Christmas', fontsize=14) plt.ylabel('Occupancy', fontsize=14) plt.legend() plt.show() def days_plot2(assigned_days): daily_occupancy = get_daily_occupancy(assigned_days) best_choices = get_daily_occupancy(DESIRED[:,0]) plt.rcParams['figure.figsize'] = [20, 5] plt.xticks(np.arange(1, 101, step=1), rotation=90) plt.axhline(y=125, color='gray', linestyle=':') plt.axhline(y=300, color='gray', linestyle=':') mondays = np.array([(day+1, daily_occupancy[day])for day in range(100)if day % 7 == 1]) weekends = np.array([(day+1, daily_occupancy[day])for day in range(100)if day % 7 in [2,3,4] or day == 0]) not_weekends = np.array([(day+1, daily_occupancy[day])for day in range(1, 100)if day % 7 in [0,5,6]]) plt.bar(*weekends.transpose() , color = 'y', label = 'Weekends') plt.bar(*not_weekends.transpose() , color = 'b', label = 'Thu-Wed-Tue') plt.bar(*mondays.transpose() , color = 'm', label = 'Mondays') plt.plot(range(1,101), best_choices, color = 'k', label = 'Best choices') plt.ylim(0, 500) plt.xlim(0, 101) plt.xlabel('Days before Christmas', fontsize=14) plt.ylabel('Occupancy', fontsize=14) plt.legend() plt.show() def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if(v < MIN_OCCUPANCY): penalty += 100000000 accounting_cost =(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5) accounting_costs = [max(0, accounting_cost)] diffs = [0] yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_costs.append(max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0))) yesterday_count = today_count return penalty, sum(accounting_costs), penalty + sum(accounting_costs) def print_cost_function(prediction): cfa = cost_function(prediction) print("Preference cost: ",cfa[0]) print("Accounting penalty: ",cfa[1]) print("Score: ",cfa[2]) days_plot(assigned_days )
Santa's Workshop Tour 2019
7,597,656
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0 )<find_best_model_class>
print_cost_function(assigned_days )
Santa's Workshop Tour 2019
7,597,656
class Model: def __init__(self, model): self.model = model self.X, self.y = X, y self.X_train, self.X_test, self.y_train, self.y_test = X_train, X_test, y_train, y_test self.train() def model_name(self): model_name = type(self.model ).__name__ return model_name def cross_validation(self, cv=5): print(f"Evaluate {self.model_name() } score by cross-validation...") CVS = cross_val_score(self.model, self.X, self.y, scoring='accuracy', cv=cv) print(CVS) print("="*60, " Mean accuracy of cross-validation: ", CVS.mean()) def train(self): print(f"Training {self.model_name() } Model...") self.model.fit(X_train, y_train) print("Model Trained.") def prediction(self, test_x=None, test=False): if test == False: y_pred = self.model.predict(self.X_test) else: y_pred = self.model.predict(test_x) return y_pred def accuracy(self): y_pred = self.prediction() y_test = self.y_test acc = accuracy_score(y_pred, y_test) print(f"{self.model_name() } Model Accuracy: ", acc )<choose_model_class>
submission = pd.read_csv('/kaggle/input/santas-workshop-tour-2019-optimal-solution/accounting_penalty_313.27.csv') assigned_days = submission['assigned_day'].values days_plot2(assigned_days )
Santa's Workshop Tour 2019
7,597,656
xgb = XGBClassifier() xgb = Model(xgb )<choose_model_class>
print_cost_function(assigned_days )
Santa's Workshop Tour 2019
7,597,656
gnb = GaussianNB() gnb = Model(gnb )<import_modules>
submission = pd.read_csv('/kaggle/input/santas-workshop-tour-2019-optimal-solution/submission_68888.04.csv') assigned_days = submission['assigned_day'].values
Santa's Workshop Tour 2019
7,597,656
rfc = RandomForestClassifier() rfc = Model(rfc) rfc.cross_validation() rfc.accuracy()<normalization>
!pip install pulp
Santa's Workshop Tour 2019
7,597,656
test_X = test_df.values test_X = scale.transform(test_X )<predict_on_test>
%%time daily_occupancy = get_daily_occupancy(assigned_days) lower_bounds = np.zeros(NUMBER_DAYS) upper_bounds = np.zeros(NUMBER_DAYS) delta = 0 for fi in range(NUMBER_DAYS): lower_bounds[fi] = max(daily_occupancy[fi]-delta,125) upper_bounds[fi] = min(daily_occupancy[fi]+delta,300) prob = LpProblem("Setup occupation of days", LpMinimize) PCOSTM, B = {}, {} for fid in range(NUMBER_FAMILIES): for i in range(MAX_BEST_CHOICE): B[fid, DESIRED[fid][i]-1] = LpVariable(f'b{fid, i}', 0, 1, LpInteger) if assigned_days[fid] == DESIRED[fid][i]: B[fid, DESIRED[fid][i]-1].setInitialValue(1) else: B[fid, DESIRED[fid][i]-1].setInitialValue(0) PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] D = {} for j in range(NUMBER_DAYS): rj = range(int(lower_bounds[j]),int(upper_bounds[j])+1) for i in rj: if j<99: rj1 = range(int(lower_bounds[j+1]),int(upper_bounds[j+1])+1) for i1 in rj1: D[j, i,i1] = LpVariable(f'D{j, i,i1}', 0, 1, LpInteger) if daily_occupancy[j] == i and daily_occupancy[j+1] == i1: D[j, i,i1].setInitialValue(1) else: D[j, i,i1].setInitialValue(0) else: D[j,i,i] = LpVariable(f'D{j, i,i}', 0, 1, LpInteger) if daily_occupancy[j] == i: D[j, i,i].setInitialValue(1) else: D[j, i,i].setInitialValue(0) prob += lpSum(PCOSTM[i, j] * B[i, j] for i, j in B)+ lpSum(D[j,i,i1]*(int(i)-125.0)/400.0*int(i)**(0.5+abs(i-i1)/50.0)for j,i,i1 in D) I = {} for j in range(NUMBER_DAYS): I[j] = LpVariable(f'I{j}', int(lower_bounds[j]), int(upper_bounds[j]), LpInteger) I[j].setInitialValue(daily_occupancy[j]) prob += lpSum([N_PEOPLE[i] * B[i, j] for i in range(NUMBER_FAMILIES)if(i,j)in B])== I[j] for j in range(NUMBER_DAYS): rj = range(int(lower_bounds[j]),int(upper_bounds[j])+1) if j<99: rj1 = range(int(lower_bounds[j+1]),int(upper_bounds[j+1])+1) prob += lpSum([D[j, i,i1]*i for i in rj for i1 in rj1])== I[j] prob += lpSum([D[j, i,i1]*i1 for i in rj for i1 in rj1])== I[j+1] else: prob += lpSum([D[j, i,i]*i for i in rj])== I[j] for i in range(NUMBER_FAMILIES): prob += lpSum(B[i, j] for j in range(NUMBER_DAYS)if(i,j)in B)== 1 prob.solve() print("Status:", LpStatus[prob.status]) print("Score = ", value(prob.objective))
Santa's Workshop Tour 2019
7,597,656
xgb_pred = xgb.prediction(test_x=test_X, test=True) gnb_pred = gnb.prediction(test_x=test_X, test=True) svc_pred = svc.prediction(test_x=test_X, test=True) rfc_pred = rfc.prediction(test_x=test_X, test=True )<define_variables>
print_cost_function(assigned_days )
Santa's Workshop Tour 2019
7,597,656
<save_to_csv><EOS>
submission['assigned_day'] = assigned_days submission.to_csv('submission_68888.04.csv', index=False )
Santa's Workshop Tour 2019
7,559,734
<save_to_csv><EOS>
%%time NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 MAX_BEST_CHOICE = 5 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') submission = pd.read_csv('/kaggle/input/c-stochastic-product-search-65ns/submission.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, int) for fid, assigned_day in enumerate(assigned_days): daily_occupancy[assigned_day-1] += N_PEOPLE[fid] return daily_occupancy def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if(v < MIN_OCCUPANCY): penalty += 100000000 accounting_cost =(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5) accounting_costs = [max(0, accounting_cost)] diffs = [0] yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_costs.append(max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0))) yesterday_count = today_count return penalty, sum(accounting_costs), penalty + sum(accounting_costs) seed(2) for f in range(100): ad = assigned_days.copy() days_for_fix = np.array(sample(range(1,101),50)) daily_occupancy = get_daily_occupancy(ad) fids = np.where(np.isin(ad, days_for_fix)) [0] solver = pywraplp.Solver('Setup occupation of days', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) PCOSTM, B = {}, {} for fid in fids: for i in range(MAX_BEST_CHOICE): B[fid, DESIRED[fid][i]-1] = solver.BoolVar(f'b{fid, i}') PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] lower_bounds = np.zeros(100) upper_bounds = np.zeros(100) delta = 8 for fi in days_for_fix: lower_bounds[fi-1] = max(daily_occupancy[fi-1]-delta,125) upper_bounds[fi-1] = min(daily_occupancy[fi-1]+delta,300) D = {} for j in range(NUMBER_DAYS): I = solver.IntVar(lower_bounds[j], upper_bounds[j], f'I{j}') solver.Add(solver.Sum([N_PEOPLE[i] * B[i, j] for i in range(NUMBER_FAMILIES)if(i,j)in B])== I) if upper_bounds[j]>124: rj = range(int(lower_bounds[j]),int(upper_bounds[j])+1) for i in rj: D[j, i] = solver.BoolVar(f'd{j, i}') solver.Add(solver.Sum([D[j, i]*i for i in rj])== I) for i in fids: solver.Add(solver.Sum(B[i, j] for j in range(NUMBER_DAYS)if(i,j)in B)== 1) sM =solver.Sum(PCOSTM[i, j] * B[i, j] for i, j in B) for i in range(NUMBER_DAYS): if np.isin(i,days_for_fix-1): ri = range(int(lower_bounds[i]),int(upper_bounds[i])+1) if i<99: sM += solver.Sum(D[i,j]*(j-125)/400*j**(0.5+abs(j-daily_occupancy[i+1])/50)for j in ri) if i>0: sM += solver.Sum(D[i,j]*(daily_occupancy[i-1]-125)/400*daily_occupancy[i-1]**(0.5+abs(j-daily_occupancy[i-1])/50)for j in ri) solver.Minimize(sM) sol = solver.Solve() status = ['OPTIMAL', 'FEASIBLE', 'INFEASIBLE', 'UNBOUNDED', 'ABNORMAL', 'MODEL_INVALID', 'NOT_SOLVED'] if status[sol] == 'OPTIMAL': for i, j in B: if B[i, j].solution_value() > 0.5: ad[i] = j+1 if cost_function(ad)[2]<cost_function(assigned_days)[2]: submission['assigned_day'] = ad assigned_days = ad print(cost_function(ad)) score = cost_function(assigned_days)[2] submission.to_csv(f'submission_{score}.csv', index=False)
Santa's Workshop Tour 2019
7,231,408
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<save_to_csv>
%matplotlib inline NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') submission = pd.read_csv('/kaggle/input/best-submission-31-12a/submission.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, int) for fid, assigned_day in enumerate(assigned_days): daily_occupancy[assigned_day-1] += N_PEOPLE[fid] return daily_occupancy def days_plot(assigned_days): daily_occupancy = get_daily_occupancy(assigned_days) best_choices = get_daily_occupancy(DESIRED[:,0]) plt.rcParams['figure.figsize'] = [20, 5] plt.xticks(np.arange(1, 101, step=1), rotation=90) plt.axhline(y=125, color='gray', linestyle=':') plt.axhline(y=300, color='gray', linestyle=':') mondays125 = np.array([(day+1, daily_occupancy[day])for day in range(100)if day % 7 == 1 and daily_occupancy[day] == 125]) other_mondays = np.array([(day+1, daily_occupancy[day])for day in range(100)if day % 7 == 1 and daily_occupancy[day] != 125]) weekends = np.array([(day+1, daily_occupancy[day])for day in range(100)if day % 7 in [2,3,4] or day == 0]) not_weekends = np.array([(day+1, daily_occupancy[day])for day in range(1, 100)if day % 7 in [0,5,6]]) plt.bar(*weekends.transpose() , color = 'y', label = 'Weekends') plt.bar(*not_weekends.transpose() , color = 'b', label = 'Thu-Wed-Tue') plt.bar(*other_mondays.transpose() , color = 'm', label = 'Mondays > 125') plt.bar(*mondays125.transpose() , color = 'g', label = 'Mondays = 125') plt.plot(range(1,101), best_choices, color = 'k', label = 'Best choices') plt.ylim(0, 500) plt.xlim(0, 101) plt.xlabel('Days before Christmas', fontsize=14) plt.ylabel('Occupancy', fontsize=14) plt.legend() plt.show() def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if(v < MIN_OCCUPANCY): penalty += 100000000 accounting_cost =(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5) accounting_costs = [max(0, accounting_cost)] diffs = [0] yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_costs.append(max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0))) yesterday_count = today_count return penalty, sum(accounting_costs), penalty + sum(accounting_costs) days_plot(assigned_days) print("Score: ", cost_function(assigned_days))
Santa's Workshop Tour 2019
7,231,408
sub['Survived'] = gnb_pred sub.to_csv('gnb_submission.csv', index=False) sub.head(10 )<save_to_csv>
print("Day allocations:") print(np.arange(1, 100)[np.abs(np.diff(get_daily_occupancy(assigned_days)) * -1)> 25] )
Santa's Workshop Tour 2019
7,231,408
sub['Survived'] = svc_pred sub.to_csv('svc_submission.csv', index=False) sub.head(10 )<save_to_csv>
days_for_fix = np.array([37]) daily_occupancy = get_daily_occupancy(assigned_days) fids = np.where(np.isin(assigned_days, days_for_fix)) [0] MAX_BEST_CHOICE = 3 solver = pywraplp.Solver('Setup occupation of days', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) PCOSTM, B = {}, {} for fid in fids: for i in range(MAX_BEST_CHOICE): B[fid, DESIRED[fid][i]-1] = solver.BoolVar(f'b{fid, i}') PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] lower_bounds = np.zeros(100) upper_bounds = 300.- daily_occupancy upper_bounds[np.arange(100)%7 == 1] = 0 lower_bounds[days_for_fix-1] = 125 upper_bounds[days_for_fix-1] = 125 for j in range(NUMBER_DAYS): I = solver.IntVar(lower_bounds[j], upper_bounds[j], f'I{j}') solver.Add(solver.Sum([N_PEOPLE[i] * B[i, j] for i in range(NUMBER_FAMILIES)if(i,j)in B])== I) for i in fids: solver.Add(solver.Sum(B[i, j] for j in range(NUMBER_DAYS)if(i,j)in B)== 1) solver.Minimize(solver.Sum(PCOSTM[i, j] * B[i, j] for i, j in B)) sol = solver.Solve() status = ['OPTIMAL', 'FEASIBLE', 'INFEASIBLE', 'UNBOUNDED', 'ABNORMAL', 'MODEL_INVALID', 'NOT_SOLVED'] if status[sol] == 'OPTIMAL': for i, j in B: if B[i, j].solution_value() > 0.5: assigned_days[i] = j+1 print('Solution: ', status[sol]) print("Score: ", cost_function(assigned_days)) days_plot(assigned_days) submission['assigned_day'] = assigned_days submission.to_csv('submission.csv', index=False )
Santa's Workshop Tour 2019
7,231,408
sub['Survived'] = rfc_pred sub.to_csv('rfc_submission.csv', index=False) sub.head(10 )<save_to_csv>
def pytorch_optimim(MAX_CHOICE = 6): root_path = Path(r'.. /input/santa-workshop-tour-2019') best_submit_path = Path(r'.. /input/mip-optimization-preference-cost/') fpath = root_path / 'family_data.csv' data = pd.read_csv(fpath, index_col='family_id') data_choices = data.values fpath = root_path / 'sample_submission.csv' submission = pd.read_csv(fpath, index_col='family_id') dummies = [] for i in range(MAX_CHOICE): tmp = pd.get_dummies(data[f'choice_{i}'] ).values*(data['n_people'].values.reshape(-1,1)) dummies.append(( np.concatenate([tmp, tmp[:, -1].reshape(-1,1)], axis=1) ).reshape(5000, 101, 1)) dummies = np.concatenate(dummies, axis=2) dummies = np.swapaxes(dummies, 1, 2) penalties = {n: [0, 50, 50 + 9 * n, 100 + 9 * n, 200 + 9 * n, 200 + 18 * n, 300 + 18 * n, 300 + 36 * n, 400 + 36 * n, 500 + 36 * n + 199 * n] for n in np.unique(data['n_people'])} mat = [] for i in range(5000): n = data.iloc[i]['n_people'] mat.append(penalties[n][:MAX_CHOICE]) mat = np.array(mat) def create_init(initial_sub): fam_choices = data a = pd.merge(initial_sub, fam_choices, on='family_id') initial_choices = [] for i in range(MAX_CHOICE): initial_choices.append(((a[f'choice_{i}'] == a['assigned_day'])).values.reshape(-1,1)) initial_choices = np.concatenate(initial_choices, axis=1) initial_choices = torch.tensor( initial_choices*10 , dtype=torch.float32) return initial_choices initial_sub = pd.read_csv('./submission.csv') initial_choices = create_init(initial_sub) family_sizes = data.n_people.values.astype(np.int8) cost_dict = {0: [ 0, 0], 1: [ 50, 0], 2: [ 50, 9], 3: [100, 9], 4: [200, 9], 5: [200, 18], 6: [300, 18], 7: [300, 36], 8: [400, 36], 9: [500, 36 + 199], 10: [500, 36 + 398], } def cost(choice, members, cost_dict): x = cost_dict[choice] return x[0] + members * x[1] all_costs = {k: pd.Series([cost(k, x, cost_dict)for x in range(2,9)], index=range(2,9)) for k in cost_dict.keys() } df_all_costs = pd.DataFrame(all_costs) family_cost_matrix = np.zeros(( 100,len(family_sizes))) for i, el in enumerate(family_sizes): family_cost_matrix[:, i] += all_costs[10][el] for j, choice in enumerate(data.drop("n_people",axis=1 ).values[i,:]): family_cost_matrix[choice-1, i] = all_costs[j][el] def accounting(today, previous): return(( today - 125)/ 400)* today ** (.5 +(abs(today - previous)/ 50)) acc_costs = np.zeros([176,176]) for i, x in enumerate(range(125,300+1)) : for j, y in enumerate(range(125,300+1)) : acc_costs[i,j] = accounting(x,y) @njit(fastmath=True) def cost_function(prediction, family_size, family_cost_matrix, accounting_cost_matrix): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 accounting_cost = 0 max_occ = False daily_occupancy = np.zeros(N_DAYS + 1, dtype=np.int16) for i,(pred, n)in enumerate(zip(prediction, family_size)) : daily_occupancy[pred - 1] += n penalty += family_cost_matrix[pred - 1, i] daily_occupancy[-1] = daily_occupancy[-2] for day in range(N_DAYS): n_next = daily_occupancy[day + 1] n = daily_occupancy[day] max_occ += MIN_OCCUPANCY > n max_occ += MAX_OCCUPANCY < n accounting_cost += accounting_cost_matrix[n-MIN_OCCUPANCY, n_next-MIN_OCCUPANCY] if max_occ: return 1e11 return penalty+accounting_cost print(cost_function(initial_sub['assigned_day'].values, family_sizes, family_cost_matrix, acc_costs)) class Model(nn.Module): def __init__(self, mat, dummies): super().__init__() self.mat = torch.from_numpy(mat ).type(torch.int16) self.dummies = torch.from_numpy(dummies ).type(torch.float32) self.weight = torch.nn.Parameter(data=torch.Tensor(5000, MAX_CHOICE ).type(torch.float32) , requires_grad=True) self.weight.data.copy_(initial_choices) def forward(self): prob = F.softmax(self.weight,dim=1) x =(prob * self.mat ).sum() daily_occupancy = torch.zeros(101, dtype=torch.float32) for i in range(MAX_CHOICE): daily_occupancy +=(prob[:, i]@self.dummies[:, i, :]) diff = torch.abs(daily_occupancy[:-1] - daily_occupancy[1:]) daily_occupancy = daily_occupancy[:-1] y =( torch.relu(daily_occupancy-125.0)/ 400.0 * daily_occupancy**(0.5 + diff / 50.0) ).sum() v =(( torch.relu(125-daily_occupancy)) **2+(torch.relu(daily_occupancy-300)) **2 ).sum() entropy_loss = -1.0 *(prob * F.log_softmax(self.weight, dim=1)).sum() return x, y, v*10000, entropy_loss model = Model(mat, dummies) best_score = 10e10 best_pos = None optimizer = torch.optim.Adam(model.parameters() , lr = 0.1) for epoch in tqdm.tqdm_notebook(range(100_001)) : optimizer.zero_grad() x, y, v, ent = model() loss = x + y + v + 0*ent loss.backward() optimizer.step() pos = model.weight.argmax(1 ).cpu().numpy() pred = [] for i in range(5000): pred.append(data_choices[i, pos[i]]) pred = np.array(pred) score = cost_function(pred, family_sizes, family_cost_matrix, acc_costs) if(score < best_score): best_score = score best_pos = pred print(best_score) submission['assigned_day'] = best_pos submission.to_csv(f'submission.csv') if epoch % 1000 == 0: x = np.round(x.item() ,1) y = np.round(y.item() ,1) print(f'{epoch}\t{x}\t{y} \t{np.round(score, 2)}') prev_best_score = best_score coef = 1 count_failures = 0 for _ in range(10_000): initial_sub = pd.read_csv('submission.csv') initial_choices = create_init(initial_sub) model = Model(mat, dummies) optimizer = torch.optim.Adam(model.parameters() , lr = 0.1) for epoch in tqdm.tqdm_notebook(range(1_001)) : optimizer.zero_grad() x, y, v, ent = model() loss = x + coef*y + v + 0*ent loss.backward() optimizer.step() pos = model.weight.argmax(1 ).cpu().numpy() pred = [] for i in range(5000): pred.append(data_choices[i, pos[i]]) pred = np.array(pred) score = cost_function(pred, family_sizes, family_cost_matrix, acc_costs) if(score < best_score): best_score = score best_pos = pred print(best_score) submission['assigned_day'] = best_pos submission.to_csv(f'submission.csv') if(epoch % 1000 == 0)and epoch != 0: x = np.round(x.item() ,1) y = np.round(y.item() ,1) print(f'{epoch}\t{x}\t{y} \t{np.round(score, 2)}') if best_score == prev_best_score: count_failures += 1 if count_failures > 30: break coef = coef*1.01 else: prev_best_score = best_score count_failures = 0 coef = 1 prev_best_score = best_score coef = 1 count_failures = 0 for _ in range(10_000): initial_sub = pd.read_csv('submission.csv') initial_choices = create_init(initial_sub) model = Model(mat, dummies) optimizer = torch.optim.Adam(model.parameters() , lr = 0.1) for epoch in tqdm.tqdm_notebook(range(1_001)) : optimizer.zero_grad() x, y, v, ent = model() loss = coef*x + y + v + 10*ent loss.backward() optimizer.step() pos = model.weight.argmax(1 ).cpu().numpy() pred = [] for i in range(5000): pred.append(data_choices[i, pos[i]]) pred = np.array(pred) score = cost_function(pred, family_sizes, family_cost_matrix, acc_costs) if(score < best_score): best_score = score best_pos = pred print(best_score) submission['assigned_day'] = best_pos submission.to_csv(f'submission.csv') if(epoch % 1000 == 0)and epoch != 0: x = np.round(x.item() ,1) y = np.round(y.item() ,1) print(f'{epoch}\t{x}\t{y} \t{np.round(score, 2)}') if best_score == prev_best_score: count_failures += 1 if count_failures > 20: break coef = coef*1.05 else: prev_best_score = best_score count_failures = 0 coef = 1 submission['assigned_day'] = best_pos submission.to_csv(f'submission.csv' )
Santa's Workshop Tour 2019
7,231,408
sub['Survived'] = max_pred sub.to_csv('max_submission.csv', index=False) sub.head(10 )<import_modules>
def optimization_preference(submission, MAX_BEST_CHOICE=7, NUM_SWAP=3000, NUM_SECONDS=2000,NUM_THREADS=4): NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, int) for fid, assigned_day in enumerate(assigned_days): daily_occupancy[assigned_day-1] += N_PEOPLE[fid] return daily_occupancy def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if(v < MIN_OCCUPANCY): penalty += 100000000 accounting_cost =(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5) accounting_costs = [max(0, accounting_cost)] diffs = [0] yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_costs.append(max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0))) yesterday_count = today_count return penalty, sum(accounting_costs), penalty + sum(accounting_costs) for _ in range(20): solver = pywraplp.Solver('Optimization preference cost', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) daily_occupancy = get_daily_occupancy(assigned_days ).astype(float) fids = np.random.choice(range(NUMBER_FAMILIES), NUM_SWAP, replace=False) PCOSTM, B = {}, {} for fid in range(NUMBER_FAMILIES): if fid in fids: for i in range(MAX_BEST_CHOICE): PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] B[ fid, DESIRED[fid][i]-1] = solver.BoolVar('') else: daily_occupancy[assigned_days[fid]-1] -= N_PEOPLE[fid] solver.set_time_limit(NUM_SECONDS*NUM_THREADS*1000) solver.SetNumThreads(NUM_THREADS) for day in range(NUMBER_DAYS): if daily_occupancy[day]: solver.Add(solver.Sum([N_PEOPLE[fid] * B[fid, day] for fid in range(NUMBER_FAMILIES)if(fid,day)in B])== daily_occupancy[day]) for fid in fids: solver.Add(solver.Sum(B[fid, day] for day in range(NUMBER_DAYS)if(fid, day)in B)== 1) solver.Minimize(solver.Sum(PCOSTM[fid, day] * B[fid, day] for fid, day in B)) sol = solver.Solve() status = ['OPTIMAL', 'FEASIBLE', 'INFEASIBLE', 'UNBOUNDED', 'ABNORMAL', 'MODEL_INVALID', 'NOT_SOLVED'] if status[sol] in ['OPTIMAL', 'FEASIBLE']: tmp = assigned_days.copy() for fid, day in B: if B[fid, day].solution_value() > 0.5: tmp[fid] = day+1 if cost_function(tmp)[2] < cost_function(assigned_days)[2]: assigned_days = tmp submission['assigned_day'] = assigned_days submission.to_csv('submission.csv', index=False) print('Result:', status[sol], cost_function(tmp)) else: print('Result:', status[sol] )
Santa's Workshop Tour 2019
7,231,408
import os import numpy as np import pandas as pd from fastai import * from fastai.vision import * from pathlib import Path from PIL import Image<define_variables>
def mincostflow(submission, MAX_BEST_CHOICE=4): NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].astype(int ).values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, np.int32) for i, r in enumerate(assigned_days): daily_occupancy[r-1] += N_PEOPLE[i] return daily_occupancy def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if v > MAX_OCCUPANCY or v < MIN_OCCUPANCY: penalty += 100000000 accounting_cost = max(0,(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5)) yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_cost += max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0)) yesterday_count = today_count return penalty, accounting_cost, penalty + accounting_cost _,_,reference = cost_function(submission['assigned_day']) for num_members in range(2, 9): daily_occupancy = get_daily_occupancy(assigned_days) fids = np.where(N_PEOPLE == num_members)[0] PCOSTM = {} for fid in range(NUMBER_FAMILIES): if fid in fids: for i in range(MAX_BEST_CHOICE): PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] else: daily_occupancy[assigned_days[fid]-1] -= N_PEOPLE[fid] offset = fids.shape[0] solver = pywrapgraph.SimpleMinCostFlow() for day in range(NUMBER_DAYS): solver.SetNodeSupply(offset+day, int(daily_occupancy[day]//num_members)) for i in range(offset): fid = fids[i] solver.SetNodeSupply(i, -1) for j in range(MAX_BEST_CHOICE): day = DESIRED[fid][j]-1 solver.AddArcWithCapacityAndUnitCost(int(offset+day), i, 1, int(PCOSTM[fid, day])) solver.SolveMaxFlowWithMinCost() for i in range(solver.NumArcs()): if solver.Flow(i)> 0: assigned_days[fids[solver.Head(i)]] = solver.Tail(i)- offset + 1 print(cost_function(assigned_days)) _,_,new_reference = cost_function(submission['assigned_day']) if new_reference < reference: submission.to_csv("submission.csv", index=False )
Santa's Workshop Tour 2019
7,231,408
input_root_path = Path("/kaggle/input/digit-recognizer") output_root_path = Path("/kaggle/output" )<load_from_csv>
%%writefile main.cpp using namespace std; using namespace std::chrono; constexpr array<uint8_t, 14> DISTRIBUTION{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5}; // You can setup how many families you need for swaps and what best choice use for each family // {3, 5} it's mean the first random family will brute force for choices 1-2 and the second random family will brute force for choices 1-5 constexpr int MAX_OCCUPANCY = 300; constexpr int MIN_OCCUPANCY = 125; constexpr int BEST_N = 1000; array<uint8_t, 5000> n_people; array<array<uint8_t, 10>, 5000> choices; array<array<uint16_t, 10>, 5000> PCOSTM; array<array<double, 176>, 176> ACOSTM; void init_data() { ifstream in(".. /input/santa-workshop-tour-2019/family_data.csv"); assert(in && "family_data.csv"); string header; int n,x; char comma; getline(in, header); for(int j = 0; j < choices.size() ; ++j){ in >> x >> comma; for(int i = 0; i < 10; ++i){ in >> x >> comma; choices[j][i] = x-1; } in >> n; n_people[j] = n; } array<int, 10> pc{0, 50, 50, 100, 200, 200, 300, 300, 400, 500}; array<int, 10> pn{0, 0, 9, 9, 9, 18, 18, 36, 36, 235}; for(int j = 0; j < PCOSTM.size() ; ++j) for(int i = 0; i < 10; ++i) PCOSTM[j][i] = pc[i] + pn[i] * n_people[j]; for(int i = 0; i < 176; ++i) for(int j = 0; j < 176; ++j) ACOSTM[i][j] = i * pow(i+125, 0.5 + abs(i-j)/ 50.0)/ 400.0; } array<uint8_t, 5000> read_submission(string filename){ ifstream in(filename); assert(in && "submission.csv"); array<uint8_t, 5000> assigned_day{}; string header; int id, x; char comma; getline(in, header); for(int j = 0; j < choices.size() ; ++j){ in >> id >> comma >> x; assigned_day[j] = x-1; auto it = find(begin(choices[j]), end(choices[j]), assigned_day[j]); if(it != end(choices[j])) assigned_day[j] = distance(begin(choices[j]), it); } return assigned_day; } struct Index { Index(array<uint8_t, 5000> assigned_days_): assigned_days(assigned_days_){ setup() ; } array<uint8_t, 5000> assigned_days; array<uint16_t, 100> daily_occupancy_{}; int preference_cost_ = 0; void setup() { preference_cost_ = 0; daily_occupancy_.fill(0); for(int j = 0; j < assigned_days.size() ; ++j){ daily_occupancy_[choices[j][assigned_days[j]]] += n_people[j]; preference_cost_ += PCOSTM[j][assigned_days[j]]; } } double calc(const array<uint16_t, 5000>& indices, const array<uint8_t, DISTRIBUTION.size() >& change){ double accounting_penalty = 0.0; auto daily_occupancy = daily_occupancy_; int preference_cost = preference_cost_; for(int i = 0; i < DISTRIBUTION.size() ; ++i){ int j = indices[i]; daily_occupancy[choices[j][assigned_days[j]]] -= n_people[j]; daily_occupancy[choices[j][ change[i]]] += n_people[j]; preference_cost += PCOSTM[j][change[i]] - PCOSTM[j][assigned_days[j]]; } for(auto occupancy : daily_occupancy) if(occupancy < MIN_OCCUPANCY) return 1e12*(MIN_OCCUPANCY-occupancy); else if(occupancy > MAX_OCCUPANCY) return 1e12*(occupancy - MAX_OCCUPANCY); for(int day = 0; day < 99; ++day) accounting_penalty += ACOSTM[daily_occupancy[day]-125][daily_occupancy[day+1]-125]; accounting_penalty += ACOSTM[daily_occupancy[99]-125][daily_occupancy[99]-125]; return preference_cost + accounting_penalty; } void reindex(const array<uint16_t, DISTRIBUTION.size() >& indices, const array<uint8_t, DISTRIBUTION.size() >& change){ for(int i = 0; i < DISTRIBUTION.size() ; ++i){ assigned_days[indices[i]] = change[i]; } setup() ; } }; double calc(const array<uint8_t, 5000>& assigned_days, bool print=false){ int preference_cost = 0; double accounting_penalty = 0.0; array<uint16_t, 100> daily_occupancy{}; for(int j = 0; j < assigned_days.size() ; ++j){ preference_cost += PCOSTM[j][assigned_days[j]]; daily_occupancy[choices[j][assigned_days[j]]] += n_people[j]; } for(auto occupancy : daily_occupancy) if(occupancy < MIN_OCCUPANCY) return 1e12*(MIN_OCCUPANCY-occupancy); else if(occupancy > MAX_OCCUPANCY) return 1e12*(occupancy - MAX_OCCUPANCY); for(int day = 0; day < 99; ++day) accounting_penalty += ACOSTM[daily_occupancy[day]-125][daily_occupancy[day+1]-125]; accounting_penalty += ACOSTM[daily_occupancy[99]-125][daily_occupancy[99]-125]; if(print){ cout << preference_cost << " " << accounting_penalty << " " << preference_cost+accounting_penalty << endl; } return preference_cost + accounting_penalty; } void save_sub(const array<uint8_t, 5000>& assigned_day){ ofstream out("submission.csv"); out << "family_id,assigned_day" << endl; for(int i = 0; i < assigned_day.size() ; ++i) out << i << "," << choices[i][assigned_day[i]]+1 << endl; } const vector<array<uint8_t, DISTRIBUTION.size() >> changes = []() { vector<array<uint8_t, DISTRIBUTION.size() >> arr; array<uint8_t, DISTRIBUTION.size() > tmp{}; for(int i = 0; true; ++i){ arr.push_back(tmp); tmp[0] += 1; for(int j = 0; j < DISTRIBUTION.size() ; ++j) if(tmp[j] >= DISTRIBUTION[j]){ if(j >= DISTRIBUTION.size() -1) return arr; tmp[j] = 0; ++tmp[j+1]; } } return arr; }() ; template<class ExitFunction> void stochastic_product_search(Index index, ExitFunction fn){ // 15'360'000it/s 65ns/it 0.065µs/it double best_local_score = calc(index.assigned_days); thread_local std::mt19937 gen(std::random_device{}()); uniform_int_distribution<> dis(0, 4999); array<uint16_t, 5000> indices; iota(begin(indices), end(indices), 0); array<uint16_t, DISTRIBUTION.size() > best_indices{}; array<uint8_t, DISTRIBUTION.size() > best_change{}; for(; fn() ;){ bool found_better = false; for(int k = 0; k < BEST_N; ++k){ for(int i = 0; i < DISTRIBUTION.size() ; ++i)//random swap swap(indices[i], indices[dis(gen)]); for(const auto& change : changes){ auto score = index.calc(indices, change); if(score < best_local_score){ found_better = true; best_local_score = score; best_change = change; copy_n(begin(indices), DISTRIBUTION.size() , begin(best_indices)) ; } } } if(found_better){ // reindex from N best if found better index.reindex(best_indices, best_change); // save_sub(index.assigned_days); calc(index.assigned_days, true); } } save_sub(index.assigned_days); } int main() { init_data() ; auto assigned_day = read_submission("./submission.csv"); Index index(assigned_day); calc(index.assigned_days, true); // auto forever = []() { return true; }; // auto count_exit = [start = 0]() mutable { return(++start <= 1000); }; auto time_exit = [start = high_resolution_clock::now() ]() { return duration_cast<minutes>(high_resolution_clock::now() -start ).count() < 15; //5h55 }; stochastic_product_search(index, time_exit); return 0; }
Santa's Workshop Tour 2019
7,231,408
train_df = pd.read_csv(input_root_path/'train.csv') test_df = pd.read_csv(input_root_path/'test.csv' )<train_model>
!g++ -pthread -lpthread -O3 -std=c++17 -o main main.cpp
Santa's Workshop Tour 2019
7,231,408
def saveDigit(digit, filepath): digit = digit.reshape(28, 28) digit = digit.astype(np.uint8) img = Image.fromarray(digit) img.save(filepath) def save_train_images(output_root_path: Path, df: pd.DataFrame, num_classes=10): output_data_path = output_root_path/'train' os.makedirs(output_data_path) for i in range(num_classes): os.makedirs(output_data_path/str(i)) for index, row in df.iterrows() : label,digit = row[0], row[1:] folder = output_data_path/str(label) filename = f"{index}.jpg" filepath = folder/filename digit = digit.values saveDigit(digit, filepath) def save_test_images(output_root_path: Path, df: pd.DataFrame): output_data_path = output_root_path/'test' os.makedirs(output_data_path) for index, row in df.iterrows() : filename = f"{index}.jpg" filepath = output_data_path/filename saveDigit(row.values, filepath )<train_model>
trials = 1 for r in range(trials): pytorch_optimim(MAX_CHOICE=6) !./main submission = pd.read_csv("./submission.csv") optimization_preference(submission, MAX_BEST_CHOICE=6, NUM_SWAP=3000, NUM_SECONDS=2000, NUM_THREADS=4) submission = pd.read_csv("./submission.csv") mincostflow(submission, MAX_BEST_CHOICE=6) !./main
Santa's Workshop Tour 2019
7,231,408
save_train_images(output_root_path, train_df) save_test_images(output_root_path, test_df )<feature_engineering>
save = False if save: def create_download_link(title = "Download CSV file", filename = "data.csv"): html = '<a href={filename}>{title}</a>' html = html.format(title=title,filename=filename) return HTML(html) create_download_link(filename='submission.csv' )
Santa's Workshop Tour 2019
7,420,756
tfms = get_transforms(do_flip=False, max_rotate=20.0, max_warp=0.0 )<load_pretrained>
SEED = 1 random.seed(SEED) np.random.seed(SEED) N_DAYS = 100 N_FAMILIES = 5000 N_CHOICES = 10 MAX_POP = 300 MIN_POP = 125 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') choice_cols = [f'choice_{i}' for i in range(N_CHOICES)] CHOICES = data[choice_cols].values - 1 COST_PER_FAMILY = [0, 50, 50, 100, 200, 200, 300, 300, 400, 500, 500] COST_PER_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36, 235, 434] F_COUNTS = data['n_people'].astype(int ).values C_COSTS = np.zeros(( N_FAMILIES, N_DAYS), dtype=np.int32) for f in range(N_FAMILIES): for d in range(N_DAYS): if d in CHOICES[f, :]: c = list(CHOICES[f, :] ).index(d) else: c = N_CHOICES C_COSTS[f, d] = COST_PER_FAMILY[c] + F_COUNTS[f] * COST_PER_MEMBER[c]
Santa's Workshop Tour 2019
7,420,756
data = ImageDataBunch.from_folder( path=output_root_path, train='train', test='test', seed=1234, valid_pct=0.2, size=28, ds_tfms=tfms ).normalize()<choose_model_class>
@njit(fastmath=True) def get_daily_occupancy(schedule): daily_occupancy = np.zeros(N_DAYS, np.int32) for f, d in enumerate(schedule): daily_occupancy[d] += F_COUNTS[f] return daily_occupancy @njit(fastmath=True) def cost_function(schedule): choice_cost = 0 for f, d in enumerate(schedule): choice_cost += C_COSTS[f, d] daily_occupancy = get_daily_occupancy(schedule) accounting_cost = 0 for d0 in range(N_DAYS): pop0 = daily_occupancy[d0] d1 = min(d0+1, N_DAYS-1) pop1 = daily_occupancy[d1] accounting_cost += max(0,(pop0-125.0)/ 400.0 * pop0**(0.5 + abs(pop0 - pop1)/ 50.0)) violations =(np.count_nonzero(daily_occupancy < MIN_POP)+ np.count_nonzero(daily_occupancy > MAX_POP)) penalty = int(violations * 10e8) return choice_cost, accounting_cost, penalty def fix_schedule(schedule): daily_occupancy = get_daily_occupancy(schedule) f_list = np.flip(np.argsort(F_COUNTS)) while(daily_occupancy.min() < MIN_POP)or \ (daily_occupancy.max() > MAX_POP): for c in range(N_CHOICES): for f in f_list: n = F_COUNTS[f] d_old = schedule[f] d_new = CHOICES[f, c] if(daily_occupancy[d_old] > MAX_POP)and \ (( daily_occupancy[d_new] + n)<= MAX_POP): schedule[f] = d_new daily_occupancy[d_new] += n daily_occupancy[d_old] -= n for c in range(N_CHOICES): for f in f_list: n = F_COUNTS[f] d_old = schedule[f] d_new = CHOICES[f, c] if(daily_occupancy[d_new] < MIN_POP)and \ (( daily_occupancy[d_old] - n)>= MIN_POP): schedule[f] = d_new daily_occupancy[d_new] += n daily_occupancy[d_old] -= n return schedule
Santa's Workshop Tour 2019
7,420,756
learn = cnn_learner(data, models.resnet152, metrics=accuracy, callback_fns=ShowGraph ).mixup()<train_model>
model = Solver('SantaLinear', Solver.GLOP_LINEAR_PROGRAMMING) set_f = range(N_FAMILIES) set_d = range(N_DAYS) x = {(f, d): model.BoolVar(f'x[{f},{d}]')for f in set_f for d in CHOICES[f, :]} y = {(d): model.IntVar(0, MAX_POP-MIN_POP, f'y[{d}]')for d in set_d} for f in set_f: model.Add(model.Sum(x[f, d] for d in set_d if(f, d)in x.keys())== 1) pops = [model.Sum(x[f, d] * F_COUNTS[f] for f in set_f if(f, d)in x.keys())for d in set_d] for d0 in set_d: pop0 = pops[d0] model.Add(pop0 >= MIN_POP) model.Add(pop0 <= MAX_POP) d1 = min(d0+1, N_DAYS-1) pop1 = pops[d1] model.Add(pop0 - pop1 <= y[d]) model.Add(pop1 - pop0 <= y[d]) model.Add(y[d] <= 30) DELTA_WEIGHT = 500 objective = model.Sum(x[f, d] * C_COSTS[f, d] for f, d in x.keys()) objective += model.Sum(y[d] for d in set_d)* DELTA_WEIGHT model.Minimize(objective) model.SetTimeLimit(5 * 60 * 1000) status = model.Solve() if status == Solver.OPTIMAL: print('Found Optimal Solution') else: print(f'Solver Error.Status = {status}') schedule = np.full(N_FAMILIES, -1, dtype=np.int8) x_vals = np.zeros(( N_FAMILIES, N_DAYS)) for f, d in x.keys() : x_vals[f, d] = x[f, d].solution_value() for f, vals in enumerate(x_vals): d = np.argmax(vals) schedule[f] = d score = cost_function(schedule) print(sum(score), '|', score) schedule = fix_schedule(schedule) score = cost_function(schedule) print(sum(score), '|', score )
Santa's Workshop Tour 2019
7,420,756
learn.fit_one_cycle(10 )<find_best_params>
def choice_search(schedule): best_score = cost_function(schedule) f_list = np.flip(np.argsort(F_COUNTS)) for f in f_list: d_old = schedule[f] for d_new in CHOICES[f, :]: schedule[f] = d_new score = cost_function(schedule) if(sum(score)< sum(best_score)) or \ (sum(score)== sum(best_score)and np.random.random() < 0.5): best_score = score d_old = d_new else: schedule[f] = d_old return schedule
Santa's Workshop Tour 2019
7,420,756
lrf=learn.lr_find()<save_model>
def min_cost_flow(schedule): MIN_FAMILY = F_COUNTS.min() MAX_FAMILY = F_COUNTS.max() solver = SimpleMinCostFlow() occupancy = np.zeros(( N_DAYS, MAX_FAMILY+1), dtype=np.int32) for f, n in enumerate(F_COUNTS): f_node = int(f) f_demand = -1 solver.SetNodeSupply(f_node, f_demand) d = schedule[f] occupancy[d, n] += 1 for d in range(N_DAYS): for n in range(MIN_FAMILY, MAX_FAMILY): occ_node = int(N_FAMILIES +(n-2)* N_DAYS + d) occ_supply = int(occupancy[d, n]) solver.SetNodeSupply(occ_node, occ_supply) for f, n in enumerate(F_COUNTS): f_node = int(f) for c in range(N_CHOICES): d = CHOICES[f, c] c_cost = int(C_COSTS[f, d]) occ_node = int(N_FAMILIES +(n-2)* N_DAYS + d) solver.AddArcWithCapacityAndUnitCost(occ_node, f_node, 1, c_cost) status = solver.SolveMaxFlowWithMinCost() if status == SimpleMinCostFlow.OPTIMAL: for arc in range(solver.NumArcs()): if solver.Flow(arc)> 0: head = solver.Head(arc) if head in range(N_FAMILIES): f = head n = F_COUNTS[f] occ_node = solver.Tail(arc) d = occ_node - N_FAMILIES -(n-2)* N_DAYS schedule[f] = d else: print(f'Solver Error.Status = {status}') return schedule
Santa's Workshop Tour 2019
7,420,756
learn.save('model') learn.load('model' )<train_model>
def swap_search(schedule): best_score = cost_function(schedule) f_list = np.random.permutation(N_FAMILIES) for f0 in f_list: d0 = schedule[f0] c0 = list(CHOICES[f0, :] ).index(d0) swapped = False for d1 in CHOICES[f0, 0:c0]: f1_set = np.where(schedule == d1)[0] for f1 in f1_set: if d0 in CHOICES[f1, :]: schedule[f0] = d1 schedule[f1] = d0 score = cost_function(schedule) if(sum(score)< sum(best_score)) or \ (sum(score)== sum(best_score)and np.random.random() < 0.5): best_score = score swapped = True break else: schedule[f0] = d0 schedule[f1] = d1 if swapped: break return schedule
Santa's Workshop Tour 2019
7,420,756
learn.unfreeze() learn.fit_one_cycle(10, 1e-02 )<predict_on_test>
def random_climb(schedule, repeats=100000): best_score = cost_function(schedule) for _ in range(repeats): f = np.random.randint(N_FAMILIES) c = np.random.randint(N_CHOICES) d_old = schedule[f] d_new = CHOICES[f, c] schedule[f] = d_new score = cost_function(schedule) if(sum(score)< sum(best_score)) or \ (sum(score)== sum(best_score)and np.random.random() < 0.5): best_score = score else: schedule[f] = d_old return schedule
Santa's Workshop Tour 2019
7,420,756
class_score, _ = learn.get_preds(DatasetType.Test) class_score = np.argmax(class_score, axis=1 )<define_variables>
best_score = cost_function(schedule) no_improvement = 0 while no_improvement < 5: improved = False while True: schedule = random_climb(schedule) score = cost_function(schedule) print('Random :', sum(score), '|', score) if sum(score)< sum(best_score): best_score = score improved = True else: break while True: schedule = swap_search(schedule) score = cost_function(schedule) print('Swaps :', sum(score), '|', score) if sum(score)< sum(best_score): best_score = score improved = True else: break while True: schedule = choice_search(schedule) score = cost_function(schedule) print('Choice :', sum(score), '|', score) if sum(score)< sum(best_score): best_score = score improved = True else: break if not improved: schedule = min_cost_flow(schedule) score = cost_function(schedule) print('MinCost :', sum(score), '|', score) if sum(score)< sum(best_score): best_score = score improved = True no_improvement = 0 if improved else no_improvement + 1
Santa's Workshop Tour 2019
7,420,756
ImageId = [os.path.splitext(path)[0] for path in os.listdir(output_root_path/'test')] ImageId = [int(path)for path in ImageId] ImageId = [ID+1 for ID in ImageId]<save_to_csv>
submission = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/sample_submission.csv') submission['assigned_day'] = schedule + 1 submission.to_csv('submission.csv', index=False )
Santa's Workshop Tour 2019
7,420,756
pd.DataFrame({ "ImageId": ImageId, "Label": class_score } ).to_csv("submission.csv", index=False )<load_from_csv>
%%writefile main.cpp using namespace std; using namespace std::chrono; constexpr array<uint8_t, 21> DISTRIBUTION{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5}; // {2, 5} it's mean the first random family will brute force for choices 1-2 and the second random family will brute force for choices 1-5 constexpr int MAX_OCCUPANCY = 300; constexpr int MIN_OCCUPANCY = 125; constexpr int BEST_N = 10; array<uint8_t, 5000> n_people; array<array<uint8_t, 10>, 5000> choices; array<array<uint16_t, 10>, 5000> PCOSTM; array<array<double, 176>, 176> ACOSTM; static std::atomic<bool> flag(false); static array<uint8_t, 5000> global_assigned_days = {}; auto START_TIME = high_resolution_clock::now() ; int END_TIME = 515; //475 int N_JOBS = 4; struct Index { Index(array<uint8_t, 5000> assigned_days_): assigned_days(assigned_days_){ setup() ; } array<uint8_t, 5000> assigned_days; array<uint16_t, 100> daily_occupancy_{}; int preference_cost_ = 0; void setup() { preference_cost_ = 0; daily_occupancy_.fill(0); for(int j = 0; j < assigned_days.size() ; ++j){ daily_occupancy_[choices[j][assigned_days[j]]] += n_people[j]; preference_cost_ += PCOSTM[j][assigned_days[j]]; } } double calc(const array<uint16_t, 5000>& indices, const array<uint8_t, DISTRIBUTION.size() >& change){ double accounting_penalty = 0.0; auto daily_occupancy = daily_occupancy_; int preference_cost = preference_cost_; for(int i = 0; i < DISTRIBUTION.size() ; ++i){ int j = indices[i]; daily_occupancy[choices[j][assigned_days[j]]] -= n_people[j]; daily_occupancy[choices[j][ change[i]]] += n_people[j]; preference_cost += PCOSTM[j][change[i]] - PCOSTM[j][assigned_days[j]]; } for(auto occupancy : daily_occupancy) if(occupancy < MIN_OCCUPANCY) return 1e12 *(MIN_OCCUPANCY - occupancy); else if(occupancy > MAX_OCCUPANCY) return 1e12 *(occupancy - MAX_OCCUPANCY); for(int day = 0; day < 99; ++day) accounting_penalty += ACOSTM[daily_occupancy[day] - 125][daily_occupancy[day + 1] - 125]; accounting_penalty += ACOSTM[daily_occupancy[99] - 125][daily_occupancy[99] - 125]; return preference_cost + accounting_penalty; } void reindex(const array<uint16_t, DISTRIBUTION.size() >& indices, const array<uint8_t, DISTRIBUTION.size() >& change){ for(int i = 0; i < DISTRIBUTION.size() ; ++i){ assigned_days[indices[i]] = change[i]; } setup() ; } }; void init_data() { ifstream in("/kaggle/input/santa-workshop-tour-2019/family_data.csv"); assert(in && "family_data.csv"); string header; int n, x; char comma; getline(in, header); for(int j = 0; j < choices.size() ; ++j){ in >> x >> comma; for(int i = 0; i < 10; ++i){ in >> x >> comma; choices[j][i] = x - 1; } in >> n; n_people[j] = n; } array<int, 10> pc{0, 50, 50, 100, 200, 200, 300, 300, 400, 500}; array<int, 10> pn{0, 0, 9, 9, 9, 18, 18, 36, 36, 235}; for(int j = 0; j < PCOSTM.size() ; ++j) for(int i = 0; i < 10; ++i) PCOSTM[j][i] = pc[i] + pn[i] * n_people[j]; for(int i = 0; i < 176; ++i) for(int j = 0; j < 176; ++j) ACOSTM[i][j] = i * pow(i + 125, 0.5 + abs(i - j)/ 50.0)/ 400.0; } array<uint8_t, 5000> read_submission(string filename){ ifstream in(filename); assert(in && "submission.csv"); array<uint8_t, 5000> assigned_day{}; string header; int id, x; char comma; getline(in, header); for(int j = 0; j < choices.size() ; ++j){ in >> id >> comma >> x; assigned_day[j] = x - 1; auto it = find(begin(choices[j]), end(choices[j]), assigned_day[j]); if(it != end(choices[j])) assigned_day[j] = distance(begin(choices[j]), it); } return assigned_day; } double calc(const array<uint8_t, 5000>& assigned_days, bool print = false){ int preference_cost = 0; double accounting_penalty = 0.0; array<uint16_t, 100> daily_occupancy{}; for(int j = 0; j < assigned_days.size() ; ++j){ preference_cost += PCOSTM[j][assigned_days[j]]; daily_occupancy[choices[j][assigned_days[j]]] += n_people[j]; } for(auto occupancy : daily_occupancy) if(occupancy < MIN_OCCUPANCY) return 1e12 *(MIN_OCCUPANCY - occupancy); else if(occupancy > MAX_OCCUPANCY) return 1e12 *(occupancy - MAX_OCCUPANCY); for(int day = 0; day < 99; ++day) accounting_penalty += ACOSTM[daily_occupancy[day] - 125][daily_occupancy[day + 1] - 125]; accounting_penalty += ACOSTM[daily_occupancy[99] - 125][daily_occupancy[99] - 125]; if(print){ cout << preference_cost << " " << accounting_penalty << " " << preference_cost + accounting_penalty << endl; } return preference_cost + accounting_penalty; } bool time_exit_fn() { return duration_cast<minutes>(high_resolution_clock::now() -START_TIME ).count() < END_TIME; } const vector<array<uint8_t, DISTRIBUTION.size() >> changes = []() { vector<array<uint8_t, DISTRIBUTION.size() >> arr; array<uint8_t, DISTRIBUTION.size() > tmp{}; for(int i = 0; true; ++i){ arr.push_back(tmp); tmp[0] += 1; for(int j = 0; j < DISTRIBUTION.size() ; ++j) if(tmp[j] >= DISTRIBUTION[j]){ if(j >= DISTRIBUTION.size() - 1) return arr; tmp[j] = 0; ++tmp[j + 1]; } } return arr; }() ; void stochastic_product_search(array<uint8_t, 5000> assigned_days, double best_local_score){ // 15'360'000it/s 65ns/it 0.065µs/it Index index(assigned_days); thread_local std::mt19937 gen(std::random_device{}()); uniform_int_distribution<> dis(0, 4999); array<uint16_t, 5000> indices; iota(begin(indices), end(indices), 0); array<uint16_t, DISTRIBUTION.size() > best_indices{}; array<uint8_t, DISTRIBUTION.size() > best_change{}; for(;time_exit_fn() ;){ bool found_better = false; for(int k = 0; k < BEST_N; ++k){ for(int i = 0; i < DISTRIBUTION.size() ; ++i)//random swap swap(indices[i], indices[dis(gen)]); for(const auto& change : changes){ auto score = index.calc(indices, change); if(score < best_local_score){ found_better = true; best_local_score = score; best_change = change; copy_n(begin(indices), DISTRIBUTION.size() , begin(best_indices)) ; } } } if(flag.load() == true){ return; } if(found_better && flag.load() == false){ // reindex from N best if found better flag = true; index.reindex(best_indices, best_change); global_assigned_days = index.assigned_days; return; } } } array<uint16_t, 5000> sort_indexes(const array<uint8_t, 5000> v){ // initialize original index locations array<uint16_t, 5000> idx; iota(idx.begin() , idx.end() , 0); // sort indexes based on comparing values in v sort(idx.begin() , idx.end() , [v](size_t i1, size_t i2){return v[i1] > v[i2];}); return idx; } void seed_finding(array<uint8_t, 5000> assigned_days, double best_local_score, int order){ // 15'360'000it/s 65ns/it 0.065µs/it thread_local std::mt19937 gen(std::random_device{}()); uniform_real_distribution<> dis(0.0, 1.0); auto original_score = best_local_score; auto indices = sort_indexes(n_people); // sort by descending if(order == 0){ // sort by ascending reverse(begin(indices), end(indices)) ; } for(;time_exit_fn() ;){ auto local_assigned_days = assigned_days; if(order == 1){ // sort by random unsigned seed = std::chrono::system_clock::now().time_since_epoch().count() ; shuffle(indices.begin() , indices.end() , std::default_random_engine(seed)) ; } for(int t = 0; t < 700; t++){ for(auto& i : indices){ for(int j = 0; j < 10; j++){ auto di = local_assigned_days[i]; local_assigned_days[i] = j; auto cur_score = calc(local_assigned_days, false); double KT = 1; if(t < 5){ KT = 1.5; } else if(t < 10){ KT = 4.5; } else { if(cur_score > best_local_score + 100){ KT = 3; } else if(cur_score > best_local_score + 50){ KT = 2.75; } else if(cur_score > best_local_score + 20){ KT = 2.5; } else if(cur_score > best_local_score + 10){ KT = 2; } else if(cur_score > best_local_score){ KT = 1.5; } else { KT = 1; } } if(cur_score <= best_local_score){ best_local_score = cur_score; } else { auto prob = exp(-(cur_score - best_local_score)/ KT); if(dis(gen)< prob){ best_local_score = cur_score; } else { local_assigned_days[i] = di; } } } } if(flag.load() == true){ return; } if(best_local_score < original_score && flag.load() == false){ flag = true; global_assigned_days = local_assigned_days; return; } } if(best_local_score <= original_score && flag.load() == false){ flag = true; global_assigned_days = local_assigned_days; return; } } } void save_sub(const array<uint8_t, 5000>& assigned_day){ ofstream out("submission.csv"); out << "family_id,assigned_day" << endl; for(int i = 0; i < assigned_day.size() ; ++i) out << i << "," << choices[i][assigned_day[i]] + 1 << endl; } int main() { init_data() ; auto assigned_days = read_submission("submission.csv"); double best_score = calc(assigned_days, true); for(;time_exit_fn() ;){ std::thread threads[N_JOBS]; for(int i = 0; i < N_JOBS; i++){ //threads[i] = std::thread(stochastic_product_search, assigned_days, best_score); if(i < 2){ threads[i] = std::thread(stochastic_product_search, assigned_days, best_score); } else { int order = i % 3; threads[i] = std::thread(seed_finding, assigned_days, best_score, order); } //int order = i % 3; //threads[i] = std::thread(seed_finding, assigned_days, best_score, order); } for(int i = 0; i < N_JOBS; i++){ threads[i].join() ; } // global_assigned_days return from threads best_score = calc(global_assigned_days, true); save_sub(global_assigned_days); flag = false; assigned_days = global_assigned_days; } return 0; }
Santa's Workshop Tour 2019
7,420,756
train = pd.read_csv('.. /input/train.csv') train.head()<load_from_csv>
!g++ -pthread -lpthread -O3 -std=c++17 -o main main.cpp
Santa's Workshop Tour 2019
7,420,756
test = pd.read_csv(".. /input/test.csv") test.head()<count_values>
Santa's Workshop Tour 2019
7,420,756
train['label'].value_counts().sort_index()<prepare_x_and_y>
NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') submission = pd.read_csv('submission.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, int) for fid, assigned_day in enumerate(assigned_days): daily_occupancy[assigned_day-1] += N_PEOPLE[fid] return daily_occupancy def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if(v < MIN_OCCUPANCY): penalty += 100000000 accounting_cost =(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5) accounting_costs = [max(0, accounting_cost)] diffs = [0] yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_costs.append(max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0))) yesterday_count = today_count return penalty, sum(accounting_costs), penalty + sum(accounting_costs )
Santa's Workshop Tour 2019
7,420,756
<feature_engineering><EOS>
MAX_BEST_CHOICE = 5 NUM_SWAP = 2500 NUM_SECONDS = 1800 NUM_THREADS = 4 for _ in range(10): solver = pywraplp.Solver('Optimization preference cost', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) daily_occupancy = get_daily_occupancy(assigned_days ).astype(float) fids = np.random.choice(range(NUMBER_FAMILIES), NUM_SWAP, replace=False) PCOSTM, B = {}, {} for fid in range(NUMBER_FAMILIES): if fid in fids: for i in range(MAX_BEST_CHOICE): PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] B[ fid, DESIRED[fid][i]-1] = solver.BoolVar('') else: daily_occupancy[assigned_days[fid]-1] -= N_PEOPLE[fid] solver.set_time_limit(NUM_SECONDS*NUM_THREADS*1000) solver.SetNumThreads(NUM_THREADS) for day in range(NUMBER_DAYS): if daily_occupancy[day]: solver.Add(solver.Sum([N_PEOPLE[fid] * B[fid, day] for fid in range(NUMBER_FAMILIES)if(fid,day)in B])== daily_occupancy[day]) for fid in fids: solver.Add(solver.Sum(B[fid, day] for day in range(NUMBER_DAYS)if(fid, day)in B)== 1) solver.Minimize(solver.Sum(PCOSTM[fid, day] * B[fid, day] for fid, day in B)) sol = solver.Solve() status = ['OPTIMAL', 'FEASIBLE', 'INFEASIBLE', 'UNBOUNDED', 'ABNORMAL', 'MODEL_INVALID', 'NOT_SOLVED'] if status[sol] in ['OPTIMAL', 'FEASIBLE']: tmp = assigned_days.copy() for fid, day in B: if B[fid, day].solution_value() > 0.5: tmp[fid] = day+1 if cost_function(tmp)[2] < cost_function(assigned_days)[2]: assigned_days = tmp submission['assigned_day'] = assigned_days submission.to_csv('submission.csv', index=False) print('Result:', status[sol], cost_function(tmp)) else: print('Result:', status[sol] )
Santa's Workshop Tour 2019
7,249,357
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<prepare_x_and_y>
NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 MAX_BEST_CHOICE = 5 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') submission = pd.read_csv('/kaggle/input/c-stochastic-product-search-65ns/submission.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].astype(int ).values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, np.int32) for i, r in enumerate(assigned_days): daily_occupancy[r-1] += N_PEOPLE[i] return daily_occupancy def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if v > MAX_OCCUPANCY or v < MIN_OCCUPANCY: penalty += 100000000 accounting_cost = max(0,(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5)) yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_cost += max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0)) yesterday_count = today_count return penalty, accounting_cost, penalty + accounting_cost
Santa's Workshop Tour 2019
7,249,357
y = np.array(y )<import_modules>
%%time for num_members in range(2, 9): daily_occupancy = get_daily_occupancy(assigned_days) fids = np.where(N_PEOPLE == num_members)[0] PCOSTM = {} for fid in range(NUMBER_FAMILIES): if fid in fids: for i in range(MAX_BEST_CHOICE): PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] else: daily_occupancy[assigned_days[fid]-1] -= N_PEOPLE[fid] offset = fids.shape[0] solver = pywrapgraph.SimpleMinCostFlow() for day in range(NUMBER_DAYS): solver.SetNodeSupply(offset+day, int(daily_occupancy[day]//num_members)) for i in range(offset): fid = fids[i] solver.SetNodeSupply(i, -1) for j in range(MAX_BEST_CHOICE): day = DESIRED[fid][j]-1 solver.AddArcWithCapacityAndUnitCost(int(offset+day), i, 1, int(PCOSTM[fid, day])) solver.SolveMaxFlowWithMinCost() for i in range(solver.NumArcs()): if solver.Flow(i)> 0: assigned_days[fids[solver.Head(i)]] = solver.Tail(i)- offset + 1 print(cost_function(assigned_days))
Santa's Workshop Tour 2019
7,249,357
<choose_model_class><EOS>
submission['assigned_day'] = assigned_days submission.to_csv('submission.csv', index=False )
Santa's Workshop Tour 2019
7,087,660
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<choose_model_class>
root_path = Path(r'.. /input/santa-workshop-tour-2019') best_submit_path = Path(r'.. /input/mip-optimization-preference-cost/') MAX_CHOICE = 5
Santa's Workshop Tour 2019
7,087,660
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] )<train_model>
fpath = root_path / 'family_data.csv' data = pd.read_csv(fpath, index_col='family_id') data_choices = data.values fpath = root_path / 'sample_submission.csv' submission = pd.read_csv(fpath, index_col='family_id' )
Santa's Workshop Tour 2019
7,087,660
k_fold = StratifiedKFold(n_splits=12, random_state=12, shuffle=True) for k_train_index, k_test_index in k_fold.split(X, y): model.fit(X[k_train_index,:], y[k_train_index], epochs=5 )<compute_test_metric>
dummies = [] for i in range(MAX_CHOICE): tmp = pd.get_dummies(data[f'choice_{i}'] ).values*(data['n_people'].values.reshape(-1,1)) dummies.append(( np.concatenate([tmp, tmp[:, -1].reshape(-1,1)], axis=1) ).reshape(5000, 101, 1)) dummies = np.concatenate(dummies, axis=2) dummies = np.swapaxes(dummies, 1, 2) penalties = {n: [0, 50, 50 + 9 * n, 100 + 9 * n, 200 + 9 * n, 200 + 18 * n, 300 + 18 * n, 300 + 36 * n, 400 + 36 * n, 500 + 36 * n + 199 * n] for n in np.unique(data['n_people'])} mat = [] for i in range(5000): n = data.iloc[i]['n_people'] mat.append(penalties[n][:MAX_CHOICE]) mat = np.array(mat) def create_init(initial_sub): fam_choices = data a = pd.merge(initial_sub, fam_choices, on='family_id') initial_choices = [] for i in range(MAX_CHOICE): initial_choices.append(((a[f'choice_{i}'] == a['assigned_day'])).values.reshape(-1,1)) initial_choices = np.concatenate(initial_choices, axis=1) initial_choices = torch.tensor( initial_choices*10 , dtype=torch.float32) return initial_choices initial_sub = pd.read_csv(best_submit_path / 'submission.csv') initial_choices = create_init(initial_sub )
Santa's Workshop Tour 2019
7,087,660
val_loss, val_acc = model.evaluate(X, y) val_acc<save_model>
family_sizes = data.n_people.values.astype(np.int8) cost_dict = {0: [ 0, 0], 1: [ 50, 0], 2: [ 50, 9], 3: [100, 9], 4: [200, 9], 5: [200, 18], 6: [300, 18], 7: [300, 36], 8: [400, 36], 9: [500, 36 + 199], 10: [500, 36 + 398], } def cost(choice, members, cost_dict): x = cost_dict[choice] return x[0] + members * x[1] all_costs = {k: pd.Series([cost(k, x, cost_dict)for x in range(2,9)], index=range(2,9)) for k in cost_dict.keys() } df_all_costs = pd.DataFrame(all_costs) family_cost_matrix = np.zeros(( 100,len(family_sizes))) for i, el in enumerate(family_sizes): family_cost_matrix[:, i] += all_costs[10][el] for j, choice in enumerate(data.drop("n_people",axis=1 ).values[i,:]): family_cost_matrix[choice-1, i] = all_costs[j][el] def accounting(today, previous): return(( today - 125)/ 400)* today ** (.5 +(abs(today - previous)/ 50)) acc_costs = np.zeros([176,176]) for i, x in enumerate(range(125,300+1)) : for j, y in enumerate(range(125,300+1)) : acc_costs[i,j] = accounting(x,y) @njit(fastmath=True) def cost_function(prediction, family_size, family_cost_matrix, accounting_cost_matrix): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 accounting_cost = 0 max_occ = False daily_occupancy = np.zeros(N_DAYS + 1, dtype=np.int16) for i,(pred, n)in enumerate(zip(prediction, family_size)) : daily_occupancy[pred - 1] += n penalty += family_cost_matrix[pred - 1, i] daily_occupancy[-1] = daily_occupancy[-2] for day in range(N_DAYS): n_next = daily_occupancy[day + 1] n = daily_occupancy[day] max_occ += MIN_OCCUPANCY > n max_occ += MAX_OCCUPANCY < n accounting_cost += accounting_cost_matrix[n-MIN_OCCUPANCY, n_next-MIN_OCCUPANCY] if max_occ: return 1e11 return penalty+accounting_cost
Santa's Workshop Tour 2019
7,087,660
model.save("dr_cnn_model.h5" )<predict_on_test>
cost_function(initial_sub['assigned_day'].values, family_sizes, family_cost_matrix, acc_costs )
Santa's Workshop Tour 2019
7,087,660
test_pred = model.predict(test )<create_dataframe>
class Model(nn.Module): def __init__(self, mat, dummies): super().__init__() self.mat = torch.from_numpy(mat ).type(torch.int16) self.dummies = torch.from_numpy(dummies ).type(torch.float32) self.weight = torch.nn.Parameter(data=torch.Tensor(5000, MAX_CHOICE ).type(torch.float32) , requires_grad=True) self.weight.data.copy_(initial_choices) def forward(self): prob = F.softmax(self.weight,dim=1) x =(prob * self.mat ).sum() daily_occupancy = torch.zeros(101, dtype=torch.float32) for i in range(MAX_CHOICE): daily_occupancy +=(prob[:, i]@self.dummies[:, i, :]) diff = torch.abs(daily_occupancy[:-1] - daily_occupancy[1:]) daily_occupancy = daily_occupancy[:-1] y =( torch.relu(daily_occupancy-125.0)/ 400.0 * daily_occupancy**(0.5 + diff / 50.0) ).sum() v =(( torch.relu(125-daily_occupancy)) **2+(torch.relu(daily_occupancy-300)) **2 ).sum() entropy_loss = -1.0 *(prob * F.log_softmax(self.weight, dim=1)).sum() return x, y, v*10000, entropy_loss
Santa's Workshop Tour 2019
7,087,660
submission = pd.DataFrame() submission['ImageId'] = range(1,(len(test)+1)) submission['Label'] = np.argmax(test_pred, axis=1 )<save_to_csv>
model = Model(mat, dummies) best_score = 10e10 best_pos = None optimizer = torch.optim.Adam(model.parameters() , lr = 0.1 )
Santa's Workshop Tour 2019
7,087,660
submission.to_csv("submission.csv", index=False )<save_to_csv>
for epoch in tqdm.tqdm_notebook(range(1_001)) : optimizer.zero_grad() x, y, v, ent = model() loss = x + y + v + 0*ent loss.backward() optimizer.step() pos = model.weight.argmax(1 ).cpu().numpy() pred = [] for i in range(5000): pred.append(data_choices[i, pos[i]]) pred = np.array(pred) score = cost_function(pred, family_sizes, family_cost_matrix, acc_costs) if(score < best_score): best_score = score best_pos = pred print(best_score) submission['assigned_day'] = best_pos submission.to_csv(f'submission.csv') if epoch % 1000 == 0: x = np.round(x.item() ,1) y = np.round(y.item() ,1) print(f'{epoch}\t{x}\t{y} \t{np.round(score, 2)}' )
Santa's Workshop Tour 2019
7,087,660
submission.to_csv("submission.csv", index=False )<import_modules>
prev_best_score = best_score coef = 1 count_failures = 0 for _ in range(10_000): initial_sub = pd.read_csv('submission.csv') initial_choices = create_init(initial_sub) model = Model(mat, dummies) optimizer = torch.optim.Adam(model.parameters() , lr = 0.1) for epoch in tqdm.tqdm_notebook(range(1_001)) : optimizer.zero_grad() x, y, v, ent = model() loss = x + coef*y + v + 0*ent loss.backward() optimizer.step() pos = model.weight.argmax(1 ).cpu().numpy() pred = [] for i in range(5000): pred.append(data_choices[i, pos[i]]) pred = np.array(pred) score = cost_function(pred, family_sizes, family_cost_matrix, acc_costs) if(score < best_score): best_score = score best_pos = pred print(best_score) submission['assigned_day'] = best_pos submission.to_csv(f'submission.csv') if(epoch % 1000 == 0)and epoch != 0: x = np.round(x.item() ,1) y = np.round(y.item() ,1) print(f'{epoch}\t{x}\t{y} \t{np.round(score, 2)}') if best_score == prev_best_score: count_failures += 1 if count_failures > 10: break coef = coef*1.05 else: prev_best_score = best_score count_failures = 0 coef = 1
Santa's Workshop Tour 2019
7,087,660
training_data = pd.read_csv(".. /input/titanic/train.csv") test_data = pd.read_csv(".. /input/titanic/test.csv") gender_data = pd.read_csv(".. /input/titanic/gender_submission.csv") <prepare_x_and_y>
prev_best_score = best_score coef = 1 count_failures = 0 for _ in range(10_000): initial_sub = pd.read_csv('submission.csv') initial_choices = create_init(initial_sub) model = Model(mat, dummies) optimizer = torch.optim.Adam(model.parameters() , lr = 0.1) for epoch in tqdm.tqdm_notebook(range(1_001)) : optimizer.zero_grad() x, y, v, ent = model() loss = coef*x + y + v + 10*ent loss.backward() optimizer.step() pos = model.weight.argmax(1 ).cpu().numpy() pred = [] for i in range(5000): pred.append(data_choices[i, pos[i]]) pred = np.array(pred) score = cost_function(pred, family_sizes, family_cost_matrix, acc_costs) if(score < best_score): best_score = score best_pos = pred print(best_score) submission['assigned_day'] = best_pos submission.to_csv(f'submission.csv') if(epoch % 1000 == 0)and epoch != 0: x = np.round(x.item() ,1) y = np.round(y.item() ,1) print(f'{epoch}\t{x}\t{y} \t{np.round(score, 2)}') if best_score == prev_best_score: count_failures += 1 if count_failures > 10: break coef = coef*1.01 else: prev_best_score = best_score count_failures = 0 coef = 1
Santa's Workshop Tour 2019
7,087,660
<count_missing_values><EOS>
submission['assigned_day'] = best_pos submission.to_csv(f'submission.csv' )
Santa's Workshop Tour 2019
7,021,414
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<feature_engineering>
import numpy as np import pandas as pd import scipy.special import matplotlib.pyplot as plt import os
Santa's Workshop Tour 2019
7,021,414
datasets = [X_train, X_test] titles = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} for dataset in datasets: dataset['Title'] = dataset['Name'].str.extract('([A-Za-z]+)\.', expand=False) dataset['Title'] = dataset['Title'].replace(['Don', 'Rev', 'Dr', 'Major', 'Sir', 'Col', 'Capt', 'Jonkheer', 'Countess', 'Lady', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace(['Ms', 'Mlle'], 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Miss') dataset['Title'] = dataset['Title'].map(titles) dataset['Title'] = dataset['Title'].astype(int) dataset.drop('Name', axis=1, inplace=True )<categorify>
path_in = '.. /input/santa-workshop-tour-2019/' path_start_solution = '.. /input/santa-workshop-tour-start-solution/' print('input_data:', os.listdir(path_in)) print('start solution:', os.listdir(path_start_solution))
Santa's Workshop Tour 2019
7,021,414
dep = {'A': 1, 'B': 2, 'C': 3, 'D': 4, 'E': 5, 'F': 6, 'G': 7, 'U': 8} for dataset in datasets: dataset['Cabin'] = dataset['Cabin'].fillna("U0") dataset['Deck'] = dataset['Cabin'].map(lambda x: re.compile('([a-zA-Z])+' ).search(x ).group()) dataset['Deck'] = dataset['Deck'].map(dep) dataset['Deck'].fillna(0, inplace=True) dataset['Deck'] = dataset['Deck'].astype(int) dataset.drop('Cabin', axis=1, inplace=True )<data_type_conversions>
data = pd.read_csv(path_in+'family_data.csv') data.index = data['family_id'] samp_subm = pd.read_csv(path_in+'sample_submission.csv') start_solution = pd.read_csv(path_start_solution+'santa_workshop_tour_start_solution_01.csv', index_col=0 )
Santa's Workshop Tour 2019
7,021,414
for dataset in datasets: dataset['relatives'] = dataset['SibSp'] + dataset['Parch'] dataset.loc[dataset['relatives'] > 0, 'is_alone'] = 0 dataset.loc[dataset['relatives'] == 0, 'is_alone'] = 1 dataset['is_alone'] = dataset['is_alone'].astype(int )<feature_engineering>
num_days = 100 lower = 125 upper = 300 days = list(range(num_days, 0, -1))
Santa's Workshop Tour 2019
7,021,414
for dataset in datasets: dataset.loc[(dataset.Sex == "male"), 'Sex'] = 0 dataset.loc[(dataset.Sex == "female"), 'Sex'] = 1<feature_engineering>
def calc_family_costs(family): assigned_day = family['assigned_day'] number_member = family['n_people'] if assigned_day == family['choice_0']: penalty = 0 elif assigned_day == family['choice_1']: penalty = 50 elif assigned_day == family['choice_2']: penalty = 50 + 9 * number_member elif assigned_day == family['choice_3']: penalty = 100 + 9 * number_member elif assigned_day == family['choice_4']: penalty = 200 + 9 * number_member elif assigned_day == family['choice_5']: penalty = 200 + 18 * number_member elif assigned_day == family['choice_6']: penalty = 300 + 18 * number_member elif assigned_day == family['choice_7']: penalty = 300 + 36 * number_member elif assigned_day == family['choice_8']: penalty = 400 + 36 * number_member elif assigned_day == family['choice_9']: penalty = 500 + 36 * number_member + 199 * number_member else: penalty = 500 + 36 * number_member + 398 * number_member return penalty
Santa's Workshop Tour 2019
7,021,414
for dataset in datasets: dataset["Embarked"].fillna("S", inplace=True) dataset.loc[(dataset.Embarked == "S"), "Embarked"] = 0 dataset.loc[(dataset.Embarked == "Q"), "Embarked"] = 1 dataset.loc[(dataset.Embarked == "C"), "Embarked"] = 2<data_type_conversions>
def calc_accounting_cost(data): accounting_cost = 0 daily_occupancy = {k:0 for k in days} family_size_dict = data[['n_people']].to_dict() ['n_people'] for f, d in enumerate(data['assigned_day']): n = family_size_dict[f] daily_occupancy[d] += n accounting_cost =(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5) accounting_cost = max(0, accounting_cost) yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_cost += max(0,(daily_occupancy[day]-125.0)/ 400.0 * daily_occupancy[day]**(0.5 + diff / 50.0)) yesterday_count = today_count return accounting_cost
Santa's Workshop Tour 2019
7,021,414
for dataset in datasets: Age_avg = dataset['Age'].mean() Age_std = dataset['Age'].std() Age_null_count = dataset['Age'].isnull().sum() Age_null_random_list = np.random.randint(Age_avg - Age_std, Age_avg + Age_std, size=Age_null_count) dataset['Age'][np.isnan(dataset['Age'])] = Age_null_random_list dataset['Age'] = dataset['Age'].astype(int) dataset.loc[(dataset.Age <= 18), 'Age'] = 0 dataset.loc[(dataset.Age > 18)&(dataset.Age <= 23), 'Age'] = 1 dataset.loc[(dataset.Age > 23)&(dataset.Age <= 29), 'Age'] = 2 dataset.loc[(dataset.Age > 29)&(dataset.Age <= 35), 'Age'] = 3 dataset.loc[(dataset.Age > 35)&(dataset.Age <= 42), 'Age'] = 4 dataset.loc[(dataset.Age > 42), 'Age'] = 5<feature_engineering>
def check_day(data, day): group_data = data.groupby('assigned_day' ).sum() ['n_people'].to_frame() if(125 <= group_data.loc[day, 'n_people'])&(group_data.loc[day, 'n_people'] <= 300): return True else: return False
Santa's Workshop Tour 2019
7,021,414
X_test['Fare'].fillna(X_test['Fare'].mean() , inplace=True) for dataset in datasets: dataset.loc[(dataset.Fare <= 7.775), 'Fare'] = 0 dataset.loc[(dataset.Fare > 7.775)&(dataset.Fare <= 8.662), 'Fare'] = 1 dataset.loc[(dataset.Fare > 8.662)&(dataset.Fare <= 14.454), 'Fare'] = 2 dataset.loc[(dataset.Fare > 14.454)&(dataset.Fare <= 26), 'Fare'] = 3 dataset.loc[(dataset.Fare > 26)&(dataset.Fare <= 52.369), 'Fare'] = 4 dataset.loc[(dataset.Fare > 52.369), 'Fare'] = 5 dataset['Fare'] = dataset['Fare'].astype(int) dataset.drop(['Ticket', 'PassengerId'], axis=1, inplace=True )<count_missing_values>
for i in range(num_days): data.loc[i*50:(i+1)*50-1, 'assigned_day'] = i+1 data['assigned_day'] = data['assigned_day'].astype(int )
Santa's Workshop Tour 2019
7,021,414
print("----- After cleaning -----") print(missing_data(X_train)) print(missing_data(X_test))<train_on_grid>
data['assigned_day'] = start_solution['assigned_day']
Santa's Workshop Tour 2019
7,021,414
SVC_model = SVC(gamma='scale') SVC_model.fit(X_train, y_train) SVC_score = round(accuracy_score(SVC_model.predict(X_train), y_train)* 100, 2) KNN_model = KNeighborsClassifier() KNN_model.fit(X_train, y_train) KNN_score = round(accuracy_score(KNN_model.predict(X_train), y_train)* 100, 2) DC_model = DecisionTreeClassifier() DC_model.fit(X_train, y_train) DC_score = round(accuracy_score(DC_model.predict(X_train), y_train)* 100, 2) XGB_model = XGBClassifier() XGB_model.fit(X_train, y_train) XGB_score = round(accuracy_score(XGB_model.predict(X_train), y_train)* 100, 2) RF_model = RandomForestClassifier(n_estimators=100) RF_model.fit(X_train, y_train) RF_score = round(accuracy_score(RF_model.predict(X_train), y_train)* 100, 2) GNB_model = GaussianNB() GNB_model.fit(X_train, y_train) GNB_score = round(accuracy_score(GNB_model.predict(X_train), y_train)* 100, 2 )<create_dataframe>
data['penalty_cost'] = data.apply(calc_family_costs, axis=1 )
Santa's Workshop Tour 2019
7,021,414
ranking = pd.DataFrame({'Model': ['Support Vector Classification', 'KNN', 'Decision Classifier', 'Random Forest', 'Naive Bayes', 'XGBClassifer'], 'Score': [SVC_score, KNN_score, DC_score, RF_score, GNB_score, XGB_score]}) ranking = ranking.sort_values(by='Score', ascending=False ).set_index('Score') ranking<compute_train_metric>
acc_costs = calc_accounting_cost(data) acc_costs
Santa's Workshop Tour 2019
7,021,414
rf = RandomForestClassifier(n_estimators=100, oob_score=True, random_state=1, n_jobs=-1) rf.fit(X_train, y_train) print("Cross val score:", round(cross_val_score(rf, X_train, y_train, cv=8, scoring='accuracy' ).mean() , 3), '(+/-', round(cross_val_score(rf, X_train, y_train, cv=8, scoring='accuracy' ).std() , 2), '%)') print("Oob score:", round(rf.oob_score_, 4)*100, "%" )<train_model>
print('Total costs:', data['penalty_cost'].sum() + acc_costs )
Santa's Workshop Tour 2019
7,021,414
rf = RandomForestClassifier(criterion="gini", min_samples_leaf=1, min_samples_split=35, n_estimators=1000, oob_score=True, random_state=1, n_jobs=-1) rf.fit(X_train, y_train) print("oob score:", round(rf.oob_score_, 4)*100, '%' )<predict_on_test>
def check_swap_day(data, family, choice): data_copy = data.copy() data_copy.loc[family, 'assigned_day'] = data_copy.loc[family, 'choice_'+str(choice)] data_copy.loc[family, 'penalty_cost'] = calc_family_costs(data_copy.iloc[family]) penalty_before = data.loc[family, 'penalty_cost'] accounting_before = calc_accounting_cost(data) penalty_after = data_copy.loc[family, 'penalty_cost'] accounting_after = calc_accounting_cost(data_copy) day_before = check_day(data_copy, data.loc[family, 'assigned_day']) day_after = check_day(data_copy, data_copy.loc[family, 'assigned_day']) if(day_before==True and day_after==True): improvement =(penalty_before-penalty_after)+(accounting_before-accounting_after) else: improvement = -1 return improvement
Santa's Workshop Tour 2019
7,021,414
predictions = cross_val_predict(rf, X_train, y_train, cv=5) print("Precision:", precision_score(y_train, predictions)) print("Recall:", recall_score(y_train, predictions)) print("F1:", f1_score(y_train, predictions)) y_scores = rf.predict_proba(X_train) y_scores = y_scores[:, 1]<save_to_csv>
family_id = 386 check_swap_day(data, family_id, 0 )
Santa's Workshop Tour 2019
7,021,414
r_a_score = roc_auc_score(y_train, y_scores) print("ROC-AUC-Score:", r_a_score) preds = rf.predict(X_test) submission = pd.DataFrame({'PassengerId': test_data['PassengerId'], 'Survived': preds}) submission.to_csv('Titanic Predictions Final Submission.csv', index=False )<load_from_csv>
def check_swap_family(data, family, choice): family1 = family day_family1 = data.loc[family1, 'assigned_day'] penalty1 = data.loc[family1, 'penalty_cost'] member_family1 = data.loc[family1, 'n_people'] day_member_list = data.groupby('assigned_day')['family_id'].apply(list ).to_frame() improvements = {} for member in day_member_list.loc[data.loc[family1, 'choice_'+str(choice)], 'family_id']: family2 = member day_family2 = data.loc[family2, 'assigned_day'] member_family2 = data.loc[family2, 'n_people'] penalty2 = data.loc[family2, 'penalty_cost'] data_copy = data.copy() data_copy.loc[family2, 'assigned_day'] = data_copy.loc[family1, 'assigned_day'] data_copy.loc[family1, 'assigned_day'] = data_copy.loc[family1, 'choice_'+str(choice)] new_penalty1 = calc_family_costs(data_copy.iloc[family1]) new_penalty2 = calc_family_costs(data_copy.iloc[family2]) day_before = check_day(data_copy, data.loc[family1, 'assigned_day']) day_after = check_day(data_copy, data_copy.loc[family1, 'choice_'+str(choice)]) accounting_before = calc_accounting_cost(data) accounting_after = calc_accounting_cost(data_copy) if(day_before==True and day_after==True): improvement =(penalty1-new_penalty1)+(penalty2-new_penalty2)+(accounting_before-accounting_after) else: improvement = -1 improvements.update({member:improvement}) maximum = max(zip(improvements.values() , improvements.keys())) family_swap = maximum[1] return improvement, family_swap
Santa's Workshop Tour 2019
7,021,414
train_df = pd.read_csv("/kaggle/input/titanic/train.csv") test_df = pd.read_csv("/kaggle/input/titanic/test.csv") train_df.shape, test_df.shape<prepare_x_and_y>
family_id = 386 check_swap_family(data, family_id, 0 )
Santa's Workshop Tour 2019
7,021,414
y = train_df['Survived'] train_df.Age[train_df.Age.isnull() ] = train_df.Age.median() train_df.Age = train_df.Age.astype(str) train_df.Fare[train_df.Fare.isnull() ] = train_df.Fare.median() train_df.Fare = train_df.Fare.astype(str) train_df.Cabin[train_df.Cabin.isnull() ] = 'NA' MaxPassEmbarked = train_df.groupby('Embarked' ).count() ['PassengerId'] train_df.Embarked[train_df.Embarked.isnull() ] = 'NAA' X = train_df.drop(columns=['Survived','Name','PassengerId']) X.head(100 )<define_variables>
family_id = 386 choice = 0 improvement_day = check_swap_day(data, family_id, choice) improvement_family, family_swap = check_swap_family(data, family_id, choice) improvement_day, improvement_family, family_swap
Santa's Workshop Tour 2019
7,021,414
SEED = 1<split>
def go_to_bazaar(data, family): family1 = family day_family1 = data.loc[family1, 'assigned_day'] penalty1 = data.loc[family1, 'penalty_cost'] member_family1 = data.loc[family1, 'n_people'] status = False for choice in range(10): improvement_day = check_swap_day(data, family1, choice) improvement_family, family2 = check_swap_family(data, family1, choice) if(improvement_day >= 0 or improvement_family >= 0): if(improvement_day > improvement_family): data.loc[family, 'assigned_day'] = data.loc[family, 'choice_'+str(choice)] data.loc[family, 'penalty_cost'] = calc_family_costs(data.iloc[family]) status = True else: data.loc[family2, 'assigned_day'] = data.loc[family1, 'assigned_day'] data.loc[family1, 'assigned_day'] = data.loc[family1, 'choice_'+str(choice)] data.loc[family1, 'penalty_cost'] = calc_family_costs(data.iloc[family1]) data.loc[family2, 'penalty_cost'] = calc_family_costs(data.iloc[family2]) status = True if(status==True): break
Santa's Workshop Tour 2019
7,021,414
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.40, random_state=SEED) cat_features = list(range(X.shape[1]))<create_dataframe>
results = results.reindex(sorted(results.columns), axis=1 )
Santa's Workshop Tour 2019
7,021,414
train_data = Pool(data=X_train, label=y_train, cat_features=cat_features ) valid_data = Pool(data=X_valid, label=y_valid, cat_features=cat_features )<train_model>
print('Total costs:', data['penalty_cost'].sum() + calc_accounting_cost(data))
Santa's Workshop Tour 2019
7,021,414
%%time params = {'loss_function':'Logloss', 'eval_metric':'AUC', 'early_stopping_rounds': 200, 'verbose': 200, 'random_seed': SEED } cbc_7 = CatBoostClassifier(**params) cbc_7.fit(train_data, eval_set=valid_data, use_best_model=True, plot=True );<compute_test_metric>
data = data.sort_index() output = pd.DataFrame({'family_id': samp_subm.index, 'assigned_day': data['assigned_day']}) output.to_csv('submission.csv', index=False )
Santa's Workshop Tour 2019
7,021,414
<data_type_conversions><EOS>
santa_workshop_tour_start_solution_01 = pd.read_csv(".. /input/santa-workshop-tour-start-solution/santa_workshop_tour_start_solution_01.csv" )
Santa's Workshop Tour 2019
6,942,227
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<define_variables>
from itertools import product import random import numpy as np import pandas as pd from numba import njit import matplotlib.pylab as plt import seaborn as sns from ortools.linear_solver import pywraplp
Santa's Workshop Tour 2019
6,942,227
%%time n_fold = 10 folds = StratifiedKFold(n_splits=n_fold, shuffle=True, random_state=SEED) params = {'loss_function':'Logloss', 'eval_metric':'AUC', 'early_stopping_rounds': 200, 'verbose': False, 'random_seed': SEED } test_data = Pool(data=X_test, cat_features=cat_features) scores = [] prediction = np.zeros(X_test.shape[0]) for fold_n,(train_index, valid_index)in enumerate(folds.split(X, y)) : X_train, X_valid = X.iloc[train_index], X.iloc[valid_index] y_train, y_valid = y[train_index], y[valid_index] train_data = Pool(data=X_train, label=y_train, cat_features=cat_features) valid_data = Pool(data=X_valid, label=y_valid, cat_features=cat_features) model = CatBoostClassifier(**params) model.fit(train_data, eval_set=valid_data, use_best_model=True ) score = model.get_best_score() ['validation']['AUC'] scores.append(score) y_pred = model.predict_proba(test_data)[:, 1] prediction += y_pred prediction /= n_fold print('CV mean: {:.4f}, CV std: {:.4f}'.format(np.mean(scores), np.std(scores)) )<save_to_csv>
def get_penalty(n, choice): penalty = None if choice == 0: penalty = 0 elif choice == 1: penalty = 50 elif choice == 2: penalty = 50 + 9 * n elif choice == 3: penalty = 100 + 9 * n elif choice == 4: penalty = 200 + 9 * n elif choice == 5: penalty = 200 + 18 * n elif choice == 6: penalty = 300 + 18 * n elif choice == 7: penalty = 300 + 36 * n elif choice == 8: penalty = 400 + 36 * n elif choice == 9: penalty = 500 + 36 * n + 199 * n else: penalty = 500 + 36 * n + 398 * n return penalty def GetPreferenceCostMatrix(data): cost_matrix = np.zeros(( N_FAMILIES, N_DAYS), dtype=np.int64) for i in range(N_FAMILIES): desired = data.values[i, :-1] cost_matrix[i, :] = get_penalty(FAMILY_SIZE[i], 9) for j, day in enumerate(desired): cost_matrix[i, day-1] = get_penalty(FAMILY_SIZE[i], j) return cost_matrix def GetAccountingCostMatrix() : ac = np.zeros(( 1000, 1000), dtype=np.float64) for n in range(ac.shape[0]): for n_p1 in range(ac.shape[1]): diff = abs(n - n_p1) ac[n, n_p1] = max(0,(n - 125)/ 400 * n**(0.5 + diff / 50.0)) return ac
Santa's Workshop Tour 2019
6,942,227
prediction = np.round(prediction,decimals=0) prediction = prediction.astype(int) output = pd.DataFrame({'PassengerId': test_df.PassengerId, 'Survived': prediction}) output.to_csv('my_submission.csv', index=False) print("Your submission was successfully saved!" )<set_options>
label_size = 22 mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size sns.set_style("whitegrid") ax = plt.figure(figsize=(16,8)) for patch in ax.artists: r, g, b, a = patch.get_facecolor() patch.set_facecolor(( r, g, b,.9)) ax = sns.lineplot(x="Family_Size", y="Penalty", data=penalty_values,linewidth=4,hue="Choice",color=' marker='o',markersize=14,palette="Oranges") plt.title("Penalty ", loc="center",size=32,color=' plt.xlabel('Family Size',color=' plt.ylabel('Penalty',color=' plt.xticks(size=15,color=' plt.yticks(size=15,color=' plt.ylim(0,2500) plt.legend(loc='best', labels=['Choice 0','Choice 1','Choice 2','Choice 3','Choice 4','Choice 5','Choice 6','Choice 7', 'Choice 8','Choice 9'], handlelength=6,fontsize=10,ncol=2,framealpha=0.99 )
Santa's Workshop Tour 2019
6,942,227
%matplotlib inline print(os.listdir(".. /input")) pd.set_option('display.max_columns', None) pd.options.display.float_format = '{:.4f}'.format if not sys.warnoptions: warnings.simplefilter("ignore") <load_from_csv>
del penalty_values
Santa's Workshop Tour 2019
6,942,227
test = pd.read_csv('.. /input/test.csv') train = pd.read_csv('.. /input/train.csv') test.shape,train.shape<count_missing_values>
@njit(fastmath=True) def pcost(prediction): daily_occupancy = np.zeros(N_DAYS+1, dtype=np.int64) penalty = 0 for(i, p)in enumerate(prediction): n = FAMILY_SIZE[i] penalty += PCOSTM[i, p] daily_occupancy[p] += n return penalty, daily_occupancy @njit(fastmath=True) def acost(daily_occupancy): accounting_cost = 0 n_out_of_range = 0 daily_occupancy[-1] = daily_occupancy[-2] for day in range(N_DAYS): n_p1 = daily_occupancy[day + 1] n = daily_occupancy[day] n_out_of_range +=(n > MAX_OCCUPANCY)or(n < MIN_OCCUPANCY) accounting_cost += ACOSTM[n, n_p1] return accounting_cost, n_out_of_range @njit(fastmath=True) def acostd(daily_occupancy): accounting_cost = np.zeros(N_DAYS, dtype=np.float64) n_out_of_range = 0 daily_occupancy[-1] = daily_occupancy[-2] for day in range(N_DAYS): n_p1 = daily_occupancy[day + 1] n = daily_occupancy[day] n_out_of_range +=(n > MAX_OCCUPANCY)or(n < MIN_OCCUPANCY) accounting_cost[day] = ACOSTM[n, n_p1] return accounting_cost, n_out_of_range @njit(fastmath=True) def pcostd(prediction): daily_occupancy = np.zeros(N_DAYS+1, dtype=np.int64) penalty = np.empty_like(prediction) for(i, p)in enumerate(prediction): n = FAMILY_SIZE[i] penalty[i] = PCOSTM[i, p] daily_occupancy[p] += n return penalty, daily_occupancy @njit(fastmath=True) def cost_stats(prediction): penalty, daily_occupancy = pcostd(prediction) accounting_cost, n_out_of_range = acostd(daily_occupancy) return penalty, accounting_cost, n_out_of_range, daily_occupancy[:-1] @njit(fastmath=True) def cost_function(prediction): penalty, daily_occupancy = pcost(prediction) accounting_cost, n_out_of_range = acost(daily_occupancy) return penalty + accounting_cost + n_out_of_range*100000000
Santa's Workshop Tour 2019
6,942,227
train.isnull().sum()<count_missing_values>
@njit(fastmath=True) def cost_function_(prediction): penalty, daily_occupancy = pcost(prediction) accounting_cost, n_out_of_range = acost(daily_occupancy) return penalty + accounting_cost, n_out_of_range @njit(fastmath=True) def findAnotherDay4Fam(prediction, fam, occupancy): old_day = prediction[fam] best_cost = np.inf best_day = fam n = FAMILY_SIZE[fam] daysrange = list(range(0,old_day)) +list(range(old_day+1,N_DAYS)) for day in daysrange: prediction[fam] = day new_cost, _ = cost_function_(prediction) if(new_cost<best_cost)and(occupancy[day]+n<=MAX_OCCUPANCY): best_cost = new_cost best_day = day prediction[fam] = old_day return best_day, best_cost @njit(fastmath=True) def bestFamAdd(prediction, day, occupancy): best_cost = np.inf best_fam = prediction[day] for fam in np.where(prediction!=day)[0]: old_day = prediction[fam] prediction[fam] = day new_cost, _ = cost_function_(prediction) prediction[fam] = old_day n = FAMILY_SIZE[fam] if(new_cost<best_cost)and(occupancy[old_day]-n>=MIN_OCCUPANCY): best_cost = new_cost best_fam = fam return best_fam @njit(fastmath=True) def bestFamRemoval(prediction, day, occupancy): best_cost = np.inf best_day = day for fam in np.where(prediction==day)[0]: new_day, new_cost = findAnotherDay4Fam(prediction, fam, occupancy) if new_cost<best_cost: best_cost = new_cost best_fam = fam best_day = new_day return best_fam, best_day @njit(fastmath=True) def fixMaxOccupancy(prediction): penalty, accounting_cost, n_out_of_range, occupancy = cost_stats(prediction) for day in np.where(occupancy>MAX_OCCUPANCY)[0]: while occupancy[day]>MAX_OCCUPANCY: fam, new_day = bestFamRemoval(prediction, day, occupancy) prediction[fam] = new_day penalty, accounting_cost, n_out_of_range, occupancy = cost_stats(prediction) @njit(fastmath=True) def fixMinOccupancy(prediction): penalty, accounting_cost, n_out_of_range, occupancy = cost_stats(prediction) for day in np.where(occupancy<MIN_OCCUPANCY)[0]: while occupancy[day]<MIN_OCCUPANCY: fam = bestFamAdd(prediction, day, occupancy) prediction[fam] = day penalty, accounting_cost, n_out_of_range, occupancy = cost_stats(prediction )
Santa's Workshop Tour 2019
6,942,227
test.isnull().sum()<count_missing_values>
def findBetterDay4Family(pred): fobs = np.argsort(FAMILY_SIZE) score = cost_function(pred) original_score = np.inf while original_score>score: original_score = score for family_id in fobs: for pick in range(9): day = DESIRED[family_id, pick] oldvalue = pred[family_id] pred[family_id] = day new_score = cost_function(pred) if new_score<score: score = new_score else: pred[family_id] = oldvalue print(score, end='\r') print(score) def stochastic_product_search(top_k, fam_size, original, verbose=1000, verbose2=50000, n_iter=500, random_state=2019): best = original.copy() print('best',best) best_score = cost_function(best) print('best_score',best_score) np.random.seed(random_state) print('np.random.seed(random_state)',np.random.seed(random_state)) for i in range(n_iter): fam_indices = np.random.choice(range(DESIRED.shape[0]), size=fam_size) changes = np.array(list(product(*DESIRED[fam_indices, :top_k].tolist()))) for change in changes: new = best.copy() new[fam_indices] = change new_score = cost_function(new) if new_score < best_score: best_score = new_score best = new if verbose and i % verbose == 0: print(f"Iteration if verbose2 and i % verbose2 == 0: print(f"Iteration print(f"Final best score is {best_score:.2f}") return best
Santa's Workshop Tour 2019
6,942,227
print('Train',' ',(train.isnull().sum() /len(train)) *100) print('-'*20) print('Test',' ',(test.isnull().sum() /len(test)) *100 )<groupby>
def solveSantaLP() : S = pywraplp.Solver('SolveAssignmentProblem', pywraplp.Solver.GLOP_LINEAR_PROGRAMMING) x = {} for i in range(N_FAMILIES): for j in range(N_DAYS): x[i, j] = S.BoolVar('x[%i,%i]' %(i, j)) daily_occupancy = [S.Sum([x[i, j] * FAMILY_SIZE[i] for i in range(N_FAMILIES)]) for j in range(N_DAYS)] family_presence = [S.Sum([x[i, j] for j in range(N_DAYS)]) for i in range(N_FAMILIES)] preference_cost = S.Sum([PCOSTM[i, j] * x[i,j] for i in range(N_FAMILIES) for j in range(N_DAYS)]) S.Minimize(preference_cost) for j in range(N_DAYS-1): S.Add(daily_occupancy[j] - daily_occupancy[j+1] <= 32) S.Add(daily_occupancy[j+1] - daily_occupancy[j] <= 31) for i in range(N_FAMILIES): S.Add(family_presence[i] == 1) for j in range(N_DAYS): S.Add(daily_occupancy[j] >= MIN_OCCUPANCY) S.Add(daily_occupancy[j] <= MAX_OCCUPANCY) res = S.Solve() resdict = {0:'OPTIMAL', 1:'FEASIBLE', 2:'INFEASIBLE', 3:'UNBOUNDED', 4:'ABNORMAL', 5:'MODEL_INVALID', 6:'NOT_SOLVED'} print('Result:', resdict[res]) l = [] for i in range(N_FAMILIES): for j in range(N_DAYS): s = x[i, j].solution_value() if s>0: l.append(( i, j, s)) df = pd.DataFrame(l, columns=['family_id', 'day', 'n']) if len(df)!=N_FAMILIES: df = df.sort_values(['family_id', 'n'] ).drop_duplicates('family_id', keep='last') return df.day.values
Santa's Workshop Tour 2019
6,942,227
train.groupby(['Pclass'], as_index = False)['Age'].median()<categorify>
N_DAYS = 100 N_FAMILIES = 5000 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') FAMILY_SIZE = data.n_people.values DESIRED = data.values[:, :-1] - 1 PCOSTM = GetPreferenceCostMatrix(data) ACOSTM = GetAccountingCostMatrix()
Santa's Workshop Tour 2019
6,942,227
def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 37 elif Pclass == 2: return 29 else: return 24 else: return Age<feature_engineering>
pivot_data = data.groupby(['choice_0'])['n_people'].agg(['sum']) pivot_data = pd.DataFrame(pivot_data) pivot_data.columns = ['Occupancy for all First Choices']
Santa's Workshop Tour 2019
6,942,227
train['Age'] = train[['Age','Pclass']].apply(lambda x: impute_age(x), axis = 1) test['Age'] = test[['Age','Pclass']].apply(lambda x: impute_age(x), axis = 1 )<count_values>
prediction = solveSantaLP() penalty, accounting_cost, n_out_of_range, occupancy = cost_stats(prediction) print('{}, {:.2f},({}, {})'.format(penalty.sum() , accounting_cost.sum() , occupancy.min() , occupancy.max()))
Santa's Workshop Tour 2019
6,942,227
train['Embarked'].value_counts()<feature_engineering>
fixMinOccupancy(prediction) fixMaxOccupancy(prediction) penalty, accounting_cost, n_out_of_range, occupancy = cost_stats(prediction) print('{}, {:.2f},({}, {})'.format(penalty.sum() , accounting_cost.sum() , occupancy.min() , occupancy.max()))
Santa's Workshop Tour 2019
6,942,227
train['Embarked'] = np.where(~train['Embarked'].isnull() ,train['Embarked'],'S' )<feature_engineering>
round2 = stochastic_product_search( top_k=2, fam_size=6, original=prediction, n_iter=350000, verbose=1000, verbose2=50000, random_state=2019 )
Santa's Workshop Tour 2019
6,942,227
test['Fare'] = np.where(~test['Fare'].isnull() ,test['Fare'],test['Fare'].median() )<count_missing_values>
round3 = stochastic_product_search( top_k=2, fam_size=7, original=round2, n_iter=350000, verbose=1000, verbose2=50000, random_state=2019 )
Santa's Workshop Tour 2019
6,942,227
print('Train',' ',(train.isnull().sum() /len(train)) *100) print('-'*20) print('Test',' ',(test.isnull().sum() /len(test)) *100 )<feature_engineering>
round4 = stochastic_product_search( top_k=2, fam_size=8, original=round3, n_iter=350000, verbose=1000, verbose2=50000, random_state=2019 )
Santa's Workshop Tour 2019
6,942,227
train['Cabinknown'] = 0 train['Cabinknown'] = np.where(( train['Cabin'].isnull()),train['Cabinknown'],1) test['Cabinknown'] = 0 test['Cabinknown'] = np.where(( test['Cabin'].isnull()),test['Cabinknown'],1) train[['Cabinknown','Survived']].groupby('Cabinknown' ).mean()<feature_engineering>
round5 = stochastic_product_search( top_k=2, fam_size=9, original=round4, n_iter=350000, verbose=1000, verbose2=50000, random_state=2019 )
Santa's Workshop Tour 2019
6,942,227
train['Cabinletter'] = train['Cabin'].str[0] test['Cabinletter'] = test['Cabin'].str[0]<feature_engineering>
final = stochastic_product_search( top_k=2, fam_size=12, original=round5, n_iter=150000, verbose=1000, verbose2=50000, random_state=2019 )
Santa's Workshop Tour 2019
6,942,227
train['Title'] = train['Name'].str.split(r'\s*,\s*|\s*\.\s*' ).str[1] test['Title'] = test['Name'].str.split(r'\s*,\s*|\s*\.\s*' ).str[1]<feature_engineering>
sub = pd.DataFrame(range(N_FAMILIES), columns=['family_id']) sub['assigned_day'] = final+1 sub.to_csv('submission_5.csv', index=False )
Santa's Workshop Tour 2019
6,942,227
train['Family'] = train['SibSp'] + train['Parch'] + 1 test['Family'] = test['SibSp'] + test['Parch'] + 1<feature_engineering>
df0 = data[['choice_0','n_people']] df0.columns = ['choice_0','n_people'] df0
Santa's Workshop Tour 2019
6,942,227
train['Agegroup'] = np.where(train['Age']<17,0,(np.where(( train['Age']>17)&(train['Age']<55),1,2))) test['Agegroup'] = np.where(test['Age']<17,0,(np.where(( test['Age']>17)&(test['Age']<55),1,2)) )<feature_engineering>
df1 = pd.DataFrame([prediction] ).transpose() df1.columns = ['Prediction'] df1
Santa's Workshop Tour 2019