kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
6,632,007 |
submission = pd.DataFrame({
"PassengerId": test_df["PassengerId"],
"Survived": Y_pred
})
submission.to_csv('submission.csv', index=False )<set_options>
|
def kaggle_acc(y_true, y_pred0, pix=0.5, area=24000, dim=(352,544)) :
y_pred = K.cast(K.greater(y_pred0,pix), K.floatx())
s = K.sum(y_pred, axis=(1,2))
s = K.cast(K.greater(s, area), K.floatx())
s = K.reshape(s,(-1,1))
s = K.repeat(s,dim[0]*dim[1])
s = K.reshape(s,(-1,1))
y_pred = K.permute_dimensions(y_pred,(0,3,1,2))
y_pred = K.reshape(y_pred,shape=(-1,1))
y_pred = s*y_pred
y_pred = K.reshape(y_pred,(-1,y_pred0.shape[3],dim[0],dim[1]))
y_pred = K.permute_dimensions(y_pred,(0,2,3,1))
total_y_true = K.sum(y_true, axis=(1,2))
total_y_true = K.cast(K.greater(total_y_true, 0), K.floatx())
total_y_pred = K.sum(y_pred, axis=(1,2))
total_y_pred = K.cast(K.greater(total_y_pred, 0), K.floatx())
return 1 - K.mean(K.abs(total_y_pred - total_y_true))
def kaggle_dice(y_true, y_pred0, pix=0.5, area=24000, dim=(352,544)) :
y_pred = K.cast(K.greater(y_pred0,pix), K.floatx())
s = K.sum(y_pred, axis=(1,2))
s = K.cast(K.greater(s, area), K.floatx())
s = K.reshape(s,(-1,1))
s = K.repeat(s,dim[0]*dim[1])
s = K.reshape(s,(-1,1))
y_pred = K.permute_dimensions(y_pred,(0,3,1,2))
y_pred = K.reshape(y_pred,shape=(-1,1))
y_pred = s*y_pred
y_pred = K.reshape(y_pred,(-1,y_pred0.shape[3],dim[0],dim[1]))
y_pred = K.permute_dimensions(y_pred,(0,2,3,1))
intersection = K.sum(y_true * y_pred, axis=(1,2))
total_y_true = K.sum(y_true, axis=(1,2))
total_y_pred = K.sum(y_pred, axis=(1,2))
return K.mean(( 2*intersection+1e-9)/(total_y_true+total_y_pred+1e-9))
|
Understanding Clouds from Satellite Images
|
6,632,007 |
warnings.filterwarnings('ignore' )<load_from_csv>
|
filters = [256, 128, 64, 32, 16]
REDUCTION = 0; RED = 2**REDUCTION
filters = filters[:5-REDUCTION]
BATCH_SIZE = 16
jaccard_loss = sm.losses.JaccardLoss()
skf = KFold(n_splits=3, shuffle=True, random_state=RAND)
for k,(idxT0, idxV0)in enumerate(skf.split(train2)) :
train_idx = train2.index[idxT0]
val_idx = train2.index[idxV0]
if k==0: idx_oof_0 = val_idx.copy()
elif k==1: idx_oof_1 = val_idx.copy()
elif k==2: idx_oof_2 = val_idx.copy()
print('
print('
print('
if not DO_TRAIN: continue
train_generator = DataGenerator2(
train_idx, flips=True, augment=True, shuffle=True, shrink2=RED, batch_size=BATCH_SIZE,
)
val_generator = DataGenerator2(
val_idx, shrink2=RED, batch_size=BATCH_SIZE
)
opt = AdamAccumulate(lr=0.001, accum_iters=8)
model = sm.Unet(
'efficientnetb2',
classes=4,
encoder_weights='imagenet',
decoder_filters = filters,
input_shape=(None, None, 3),
activation='sigmoid'
)
model.compile(optimizer=opt, loss=jaccard_loss, metrics=[dice_coef,kaggle_dice,kaggle_acc])
checkpoint = ModelCheckpoint('model_'+str(k)+'.h5', save_best_only=True)
es = EarlyStopping(monitor='val_dice_coef', min_delta=0.001, patience=5, verbose=1, mode='max')
rlr = ReduceLROnPlateau(monitor='val_dice_coef', factor=0.5, patience=2, verbose=1, mode='max', min_delta=0.001)
history = model.fit_generator(
train_generator,
validation_data=val_generator,
callbacks=[rlr, es, checkpoint],
epochs=30,
verbose=2, workers=2
)
history_df = pd.DataFrame(history.history)
history_df.to_csv('history_'+str(k)+'.csv', index=False)
del train_idx, val_idx, train_generator, val_generator, opt, model, checkpoint, es, rlr, history, history_df
K.clear_session() ; x=gc.collect()
|
Understanding Clouds from Satellite Images
|
6,632,007 |
raw_data = pd.read_csv(".. /input/train.csv")
raw_test = pd.read_csv('.. /input/test.csv' )<compute_test_metric>
|
!pip install tta-wrapper --quiet
if DO_TEST:
model1 = load_model('model_0.h5',custom_objects={'dice_coef':dice_coef,
'jaccard_loss':jaccard_loss,'AdamAccumulate':AdamAccumulate,
'kaggle_dice':kaggle_dice,'kaggle_acc':kaggle_acc})
if USE_TTA:
model1 = tta_segmentation(model1, h_flip=True, h_shift=(-10, 10), v_flip=True, v_shift=(-10, 10), merge='mean')
model2 = load_model('model_1.h5',custom_objects={'dice_coef':dice_coef,
'jaccard_loss':jaccard_loss,'AdamAccumulate':AdamAccumulate,
'kaggle_dice':kaggle_dice,'kaggle_acc':kaggle_acc})
if USE_TTA:
model2 = tta_segmentation(model2, h_flip=True, h_shift=(-10, 10), v_flip=True, v_shift=(-10, 10), merge='mean')
model3 = load_model('model_2.h5',custom_objects={'dice_coef':dice_coef,
'jaccard_loss':jaccard_loss,'AdamAccumulate':AdamAccumulate,
'kaggle_dice':kaggle_dice,'kaggle_acc':kaggle_acc})
if USE_TTA:
model3 = tta_segmentation(model3, h_flip=True, h_shift=(-10, 10), v_flip=True, v_shift=(-10, 10), merge='mean' )
|
Understanding Clouds from Satellite Images
|
6,632,007 |
<count_missing_values><EOS>
|
print('Computing masks for',len(sub)//4,'test images with 3 models'); sub.EncodedPixels = ''
PTH = '.. /input/cloud-images-resized/test_images_384x576/'; bs = 4
if USE_TTA: bs=1
test_gen = DataGenerator2(sub.Image[::4].values, width=576, height=384, batch_size=bs, mode='predict',path=PTH)
sz = 20000.*(576/525)*(384/350)/RED/RED
pixt = [0.5,0.5,0.5,0.35]
szt = [25000., 20000., 22500., 15000.]
for k in range(len(szt)) : szt[k] = szt[k]*(576./525.) *(384./350.) /RED/RED
if DO_TEST:
for b,batch in enumerate(test_gen):
btc = model1.predict_on_batch(batch)
btc += model2.predict_on_batch(batch)
btc += model3.predict_on_batch(batch)
btc /= 3.0
for j in range(btc.shape[0]):
for i in range(btc.shape[-1]):
mask =(btc[j,:,:,i]>pixt[i] ).astype(int); rle = ''
if np.sum(mask)>szt[i]: rle = mask2rleXXX(mask ,shape=(576//RED,384//RED))
sub.iloc[4*(bs*b+j)+i,1] = rle
if b%(100//bs)==0: print(b*bs,', ',end='')
t = np.round(( time.time() - kernel_start)/60,1)
if t > LIMIT*60:
print('
break
sub[['Image_Label','EncodedPixels']].to_csv('sub_seg.csv',index=False)
sub.loc[(sub.p<0.5)&(sub.Label=='Fish'),'EncodedPixels'] = ''
sub.loc[(sub.p<0.3)&(sub.Label=='Flower'),'EncodedPixels'] = ''
sub.loc[(sub.p<0.5)&(sub.Label=='Gravel'),'EncodedPixels'] = ''
sub.loc[(sub.p<0.5)&(sub.Label=='Sugar'),'EncodedPixels'] = ''
sub[['Image_Label','EncodedPixels']].to_csv('submission.csv',index=False)
sub.head(10 )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<data_type_conversions>
|
! pip install git+https://github.com/qubvel/classification_models.git
|
Understanding Clouds from Satellite Images
|
5,920,350 |
raw_data['IsAgeNull'] = np.where(np.isnan(raw_data['Age']), 1, 0)
raw_data['Age'].fillna(( raw_data['Age'].mean()), inplace=True)
raw_data['Age'] = raw_data['Age'].round().astype(int )<feature_engineering>
|
seed(10)
set_random_seed(10)
%matplotlib inline
|
Understanding Clouds from Satellite Images
|
5,920,350 |
raw_data['AgeLabel'] = pd.cut(raw_data['Age'], bins=np.arange(start=0, stop=90, step=10), labels=np.arange(start=0, stop=8, step=1), include_lowest=True )<feature_engineering>
|
from classification_models.keras import Classifiers
|
Understanding Clouds from Satellite Images
|
5,920,350 |
raw_data['FareLabel'] = pd.cut(raw_data.Fare, bins=np.arange(start=0, stop=600, step=50), precision=0, labels=np.arange(start=0, stop=11, step=1), include_lowest=True )<categorify>
|
test_imgs_folder = '.. /input/understanding_cloud_organization/test_images/'
train_imgs_folder = '.. /input/understanding_cloud_organization/train_images/'
num_cores = multiprocessing.cpu_count()
|
Understanding Clouds from Satellite Images
|
5,920,350 |
raw_data = pd.concat([raw_data, pd.get_dummies(raw_data['Sex'])], axis=1 )<categorify>
|
train_df = pd.read_csv('.. /input/understanding_cloud_organization/train.csv')
train_df.head()
|
Understanding Clouds from Satellite Images
|
5,920,350 |
raw_data = pd.concat([raw_data, pd.get_dummies(raw_data['Title'], prefix='title')], axis=1 )<categorify>
|
train_df = train_df[~train_df['EncodedPixels'].isnull() ]
train_df['Image'] = train_df['Image_Label'].map(lambda x: x.split('_')[0])
train_df['Class'] = train_df['Image_Label'].map(lambda x: x.split('_')[1])
classes = train_df['Class'].unique()
train_df = train_df.groupby('Image')['Class'].agg(set ).reset_index()
for class_name in classes:
train_df[class_name] = train_df['Class'].map(lambda x: 1 if class_name in x else 0)
train_df.head()
|
Understanding Clouds from Satellite Images
|
5,920,350 |
raw_data = pd.concat([raw_data, pd.get_dummies(raw_data['Pclass'], prefix='Pclass')], axis=1 )<prepare_x_and_y>
|
img_2_ohe_vector = {img:vec for img, vec in zip(train_df['Image'], train_df.iloc[:, 2:].values)}
|
Understanding Clouds from Satellite Images
|
5,920,350 |
need_columns = [
'female', 'male',
'Pclass_1', 'Pclass_2', 'Pclass_3',
'title_Master', 'title_Miss', 'title_Mr', 'title_Mrs', 'title_Rare',
'AgeLabel', 'IsAgeNull', 'IsChildren',
'FareLabel', 'SibSp', 'Parch', 'FamilySize',
'NoFamily', 'SmallFamily', 'MediumFamily', 'LargeFamily',
'LowFare', 'HighFare', 'MediumFare',
'NoCabin'
]
data = raw_data[need_columns]
x = data
y = raw_data.Survived
<define_search_space>
|
albumentations_train = Compose([
VerticalFlip() , HorizontalFlip() , Rotate(limit=30), GridDistortion()
], p=1 )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
n_estimators = [int(x)for x in np.linspace(start = 100, stop = 2000, num = 20)]
max_features = ['auto', 'sqrt', 'log2', None]
max_depth = [int(x)for x in np.linspace(10, 200, num = 20)]
max_depth.append(None)
min_samples_split = [2, 5, 10]
min_samples_leaf = [1, 2, 4]
bootstrap = [True, False]
max_leaf_nodes = [2, 5, 8, 10, None]
criterion=['gini', 'entropy']
random_grid = {
'n_estimators': n_estimators,
'criterion': criterion,
'max_features': max_features,
'max_depth': max_depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
'bootstrap': bootstrap,
'max_leaf_nodes': max_leaf_nodes
}
estimator = RandomForestClassifier()<train_on_grid>
|
train_imgs, val_imgs = train_test_split(train_df['Image'].values,
test_size=0.2,
stratify=train_df['Class'].map(lambda x: str(sorted(list(x)))) ,
random_state=10 )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
rf_random = RandomizedSearchCV(
estimator=estimator,
param_distributions=random_grid,
random_state=42,
n_jobs=-1
)
rf_random.fit(x, y )<find_best_params>
|
class DataGenenerator(Sequence):
def __init__(self, images_list=None, folder_imgs=train_imgs_folder,
batch_size=8, shuffle=True, augmentation=None,
resized_height=224, resized_width=224, num_channels=3):
self.batch_size = batch_size
self.shuffle = shuffle
self.augmentation = augmentation
if images_list is None:
self.images_list = os.listdir(folder_imgs)
else:
self.images_list = deepcopy(images_list)
self.folder_imgs = folder_imgs
self.len = len(self.images_list)// self.batch_size
self.resized_height = resized_height
self.resized_width = resized_width
self.num_channels = num_channels
self.num_classes = 4
self.is_test = not 'train' in folder_imgs
if not shuffle and not self.is_test:
self.labels = [img_2_ohe_vector[img] for img in self.images_list[:self.len*self.batch_size]]
def __len__(self):
return self.len
def on_epoch_start(self):
if self.shuffle:
random.shuffle(self.images_list)
def __getitem__(self, idx):
current_batch = self.images_list[idx * self.batch_size:(idx + 1)* self.batch_size]
X = np.empty(( self.batch_size, self.resized_height, self.resized_width, self.num_channels))
y = np.empty(( self.batch_size, self.num_classes))
for i, image_name in enumerate(current_batch):
path = os.path.join(self.folder_imgs, image_name)
img = cv2.resize(cv2.imread(path),(self.resized_height, self.resized_width)).astype(np.float32)
if not self.augmentation is None:
augmented = self.augmentation(image=img)
img = augmented['image']
X[i, :, :, :] = img/255.0
if not self.is_test:
y[i, :] = img_2_ohe_vector[image_name]
return X, y
def get_labels(self):
if self.shuffle:
images_current = self.images_list[:self.len*self.batch_size]
labels = [img_2_ohe_vector[img] for img in images_current]
else:
labels = self.labels
return np.array(labels )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
best_params = rf_random.best_params_
print(best_params )<find_best_score>
|
data_generator_train = DataGenenerator(train_imgs, augmentation=albumentations_train)
data_generator_train_eval = DataGenenerator(train_imgs, shuffle=False)
data_generator_val = DataGenenerator(val_imgs, shuffle=False )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
best_score = rf_random.best_score_
print("best score {}".format(best_score))<choose_model_class>
|
class PrAucCallback(Callback):
def __init__(self, data_generator, num_workers=num_cores,
early_stopping_patience=5,
plateau_patience=3, reduction_rate=0.5,
stage='train', checkpoints_path='checkpoints/'):
super(Callback, self ).__init__()
self.data_generator = data_generator
self.num_workers = num_workers
self.class_names = ['Fish', 'Flower', 'Sugar', 'Gravel']
self.history = [[] for _ in range(len(self.class_names)+ 1)]
self.early_stopping_patience = early_stopping_patience
self.plateau_patience = plateau_patience
self.reduction_rate = reduction_rate
self.stage = stage
self.best_pr_auc = -float('inf')
if not os.path.exists(checkpoints_path):
os.makedirs(checkpoints_path)
self.checkpoints_path = checkpoints_path
def compute_pr_auc(self, y_true, y_pred):
pr_auc_mean = 0
print(f"
{'
")
for class_i in range(len(self.class_names)) :
precision, recall, _ = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i])
pr_auc = auc(recall, precision)
pr_auc_mean += pr_auc/len(self.class_names)
print(f"PR AUC {self.class_names[class_i]}, {self.stage}: {pr_auc:.3f}
")
self.history[class_i].append(pr_auc)
print(f"
{'
PR AUC mean, {self.stage}: {pr_auc_mean:.3f}
{'
")
self.history[-1].append(pr_auc_mean)
return pr_auc_mean
def is_patience_lost(self, patience):
if len(self.history[-1])> patience:
best_performance = max(self.history[-1][-(patience + 1):-1])
return best_performance == self.history[-1][-(patience + 1)] and best_performance >= self.history[-1][-1]
def early_stopping_check(self, pr_auc_mean):
if self.is_patience_lost(self.early_stopping_patience):
self.model.stop_training = True
def model_checkpoint(self, pr_auc_mean, epoch):
if pr_auc_mean > self.best_pr_auc:
for checkpoint in glob.glob(os.path.join(self.checkpoints_path, 'classifier_densenet169_epoch_*')) :
os.remove(checkpoint)
self.best_pr_auc = pr_auc_mean
self.model.save(os.path.join(self.checkpoints_path, f'classifier_densenet169_epoch_{epoch}_val_pr_auc_{pr_auc_mean}.h5'))
print(f"
{'
Saved new checkpoint
{'
")
def reduce_lr_on_plateau(self):
if self.is_patience_lost(self.plateau_patience):
new_lr = float(keras.backend.get_value(self.model.optimizer.lr)) * self.reduction_rate
keras.backend.set_value(self.model.optimizer.lr, new_lr)
print(f"
{'
Reduced learning rate to {new_lr}.
{'
")
def on_epoch_end(self, epoch, logs={}):
y_pred = self.model.predict_generator(self.data_generator, workers=self.num_workers)
y_true = self.data_generator.get_labels()
pr_auc_mean = self.compute_pr_auc(y_true, y_pred)
if self.stage == 'val':
self.early_stopping_check(pr_auc_mean)
self.model_checkpoint(pr_auc_mean, epoch)
self.reduce_lr_on_plateau()
def get_pr_auc_history(self):
return self.history
|
Understanding Clouds from Satellite Images
|
5,920,350 |
test_model = RandomForestClassifier(
n_estimators=best_params['n_estimators'],
criterion=best_params['criterion'],
max_features=best_params['max_features'],
max_depth=best_params['max_depth'],
min_samples_split=best_params['min_samples_split'],
min_samples_leaf=best_params['min_samples_leaf'],
max_leaf_nodes=best_params['max_leaf_nodes'],
bootstrap=best_params['bootstrap']
)<compute_train_metric>
|
def get_model() :
K.clear_session()
seresnext101, preprocess_input = Classifiers.get('seresnext101')
base_model = seresnext101(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
x = base_model.output
x = keras.layers.GlobalAveragePooling2D()(x)
x = Dense(512 )(x)
x = BatchNormalization()(x)
x = LeakyReLU()(x)
y_pred = Dense(4, activation='sigmoid' )(x)
return Model(inputs=base_model.input, outputs=y_pred )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
scores = cross_val_score(test_model, x, y, cv=10, scoring='accuracy' )<compute_test_metric>
|
model = get_model()
|
Understanding Clouds from Satellite Images
|
5,920,350 |
print(scores)
print("Mean Accuracy: {}".format(scores.mean()))<train_model>
|
for base_layer in model.layers[:-1]:
base_layer.trainable = False
lr=1e-3
adam = Adam(lr=1e-3)
model.compile(optimizer=adam, loss='binary_crossentropy', metrics=["accuracy"])
history_0 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=1,
workers=num_cores, use_multiprocessing=True,
verbose=1
)
|
Understanding Clouds from Satellite Images
|
5,920,350 |
model = RandomForestClassifier(
n_estimators=best_params['n_estimators'],
criterion=best_params['criterion'],
max_features=best_params['max_features'],
max_depth=best_params['max_depth'],
min_samples_split=best_params['min_samples_split'],
min_samples_leaf=best_params['min_samples_leaf'],
max_leaf_nodes=best_params['max_leaf_nodes'],
bootstrap=best_params['bootstrap']
)
model.fit(x, y )<count_missing_values>
|
for base_layer in model.layers[:-1]:
base_layer.trainable = True
lr=lr/3.0
K.set_value(adam.lr, lr)
model.compile(optimizer=adam, loss='binary_crossentropy', metrics=["accuracy"])
print("training...")
history_1 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=20, use_multiprocessing=True,
workers=num_cores,
verbose=1
)
model.save("model.h5" )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
print(raw_test.isnull().sum())
print("-"*10)
print(raw_test.isnull().sum() /raw_test.shape[0] )<feature_engineering>
|
lr=lr/3.0
K.set_value(adam.lr, lr)
history_1 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=15, use_multiprocessing=True,
workers=num_cores,
verbose=1
)
model.save("model.h5" )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
raw_test['Fare'].fillna(raw_test['Fare'].mean() , inplace=True)
raw_test['NoCabin'] = np.where(raw_test['Cabin'].isnull() , 1, 0)
raw_test['IsChildren'] = np.where(raw_test['Age']<=10, 1, 0)
raw_test['IsAgeNull'] = np.where(np.isnan(raw_test['Age']), 1, 0)
raw_test['Age'].fillna(raw_test['Age'].mean() , inplace=True)
raw_test['Age'] = raw_test['Age'].round().astype(int)
raw_test['AgeLabel'] = pd.cut(raw_test['Age'], bins=np.arange(start=0, stop=90, step=10), labels=np.arange(start=0, stop=8, step=1), include_lowest=True)
raw_test['FamilySize'] = raw_test.apply(lambda row: row['SibSp']+row['Parch'], axis=1)
raw_test['LowFare'] = np.where(raw_test['Fare']<=50, 1, 0)
raw_test['HighFare'] = np.where(raw_test['Fare']>300, 1, 0)
raw_test['MediumFare'] = raw_test.apply(medium_fare, axis=1)
raw_test['FareLabel'] = pd.cut(raw_test.Fare, bins=np.arange(start=0, stop=600, step=50), precision=0, labels=np.arange(start=0, stop=11, step=1), include_lowest=True)
raw_test['NoFamily'] = np.where(raw_test['FamilySize']==0, 1, 0)
raw_test['SmallFamily'] = np.where(( raw_test['FamilySize']>0)&(raw_test['FamilySize']<4), 1, 0)
raw_test['MediumFamily'] = np.where(( raw_test['FamilySize']>3)&(raw_test['FamilySize']<7), 1, 0)
raw_test['LargeFamily'] = np.where(raw_test['FamilySize']>=7, 1, 0)
raw_test['Title'] = raw_test.Name.str.extract('([A-Za-z]+)\.', expand=False)
raw_test['Title'] = raw_test['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
raw_test['Title'] = raw_test['Title'].replace('Mlle', 'Miss')
raw_test['Title'] = raw_test['Title'].replace('Ms', 'Miss')
raw_test['Title'] = raw_test['Title'].replace('Mme', 'Mrs')
raw_test = pd.concat([raw_test, pd.get_dummies(raw_test['Sex'])], axis=1)
raw_test = pd.concat([raw_test, pd.get_dummies(raw_test['Title'], prefix='title')], axis=1)
raw_test = pd.concat([raw_test, pd.get_dummies(raw_test['Pclass'], prefix='Pclass')], axis=1)
data_test = raw_test[need_columns]
<save_to_csv>
|
lr=lr/3.0
K.set_value(adam.lr, lr)
history_1 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=10, use_multiprocessing=True,
workers=num_cores,
verbose=1
)
model.save("model.h5" )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
ids = raw_test['PassengerId']
predictions = model.predict(data_test)
output = pd.DataFrame({ 'PassengerId' : ids, 'Survived': predictions })
output.to_csv('submission.csv', index = False)
output.head(10 )<load_from_csv>
|
lr=lr/3.0
K.set_value(adam.lr, lr)
history_1 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=10, use_multiprocessing=True,
workers=num_cores,
verbose=1
)
model.save("model.h5" )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
train_data = pd.read_csv("/kaggle/input/titanic/train.csv")
<feature_engineering>
|
class_names = ['Fish', 'Flower', 'Sugar', 'Gravel']
def get_threshold_for_recall(y_true, y_pred, class_i, recall_threshold=0.95, precision_threshold=0.94, plot=False):
precision, recall, thresholds = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i])
i = len(thresholds)- 1
best_recall_threshold = None
while best_recall_threshold is None:
next_threshold = thresholds[i]
next_recall = recall[i]
if next_recall >= recall_threshold:
best_recall_threshold = next_threshold
i -= 1
best_precision_threshold = [thres for prec, thres in zip(precision, thresholds)if prec >= precision_threshold][0]
if plot:
plt.figure(figsize=(10, 7))
plt.step(recall, precision, color='r', alpha=0.3, where='post')
plt.fill_between(recall, precision, alpha=0.3, color='r')
plt.axhline(y=precision[i + 1])
recall_for_prec_thres = [rec for rec, thres in zip(recall, thresholds)
if thres == best_precision_threshold][0]
plt.axvline(x=recall_for_prec_thres, color='g')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.legend(['PR curve',
f'Precision {precision[i + 1]:.2f} corresponding to selected recall threshold',
f'Recall {recall_for_prec_thres:.2f} corresponding to selected precision threshold'])
plt.title(f'Precision-Recall curve for Class {class_names[class_i]}')
return best_recall_threshold, best_precision_threshold
y_pred = model.predict_generator(data_generator_val, workers=num_cores, verbose=1)
y_true = data_generator_val.get_labels()
recall_thresholds = dict()
precision_thresholds = dict()
for i, class_name in tqdm(enumerate(class_names)) :
recall_thresholds[class_name], precision_thresholds[class_name] = get_threshold_for_recall(y_true, y_pred, i, plot=True )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
train_data["Name"] = train_data["Name"].str.split(',' ).str[1]
train_data["Name"] = train_data["Name"].str.split('.' ).str[0]
train_data["Name"] = train_data["Name"].str.strip()<groupby>
|
data_generator_test = DataGenenerator(folder_imgs=test_imgs_folder, shuffle=False)
y_pred_test = model.predict_generator(data_generator_test, workers=num_cores, verbose=1 )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
x = train_data.groupby('Name' ).agg(['count'] ).index.get_level_values('Name')
x<categorify>
|
image_labels_empty = set()
for i,(img, predictions)in enumerate(zip(os.listdir(test_imgs_folder), y_pred_test)) :
for class_i, class_name in enumerate(class_names):
if predictions[class_i] < recall_thresholds[class_name]:
image_labels_empty.add(f'{img}_{class_name}' )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
train_data["Age"] = train_data.groupby("Name" ).transform(lambda x: x.fillna(x.mean())) ['Age']
train_data['Sex'].replace({'female':0,'male':1},inplace=True)
train_data.head()<define_variables>
|
submission = pd.read_csv('.. /input/efficient-net-b4-unet-clouds/submission.csv')
submission.head()
|
Understanding Clouds from Satellite Images
|
5,920,350 |
train_data_log = train_data.iloc[:,[False,False,True, False,True,True,True,True,False,True,False,False]]
normalized_data_train=(train_data_log-train_data_log.min())/(train_data_log.max() -train_data_log.min())
train_labels_log = train_data.iloc[:,1]
normalized_data_train.head()<compute_test_metric>
|
predictions_nonempty = set(submission.loc[~submission['EncodedPixels'].isnull() , 'Image_Label'].values )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
def log_odds(data,coefficients,intercept):
return np.dot(data,coefficients)+ intercept
l_o= log_odds(normalized_data_train,initial_coefs, initial_intercept)
<compute_test_metric>
|
print(f'{len(image_labels_empty.intersection(predictions_nonempty)) } masks would be removed' )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
def sigmoid(log_odds_vars):
sigmoid_values = 1/(1+np.exp(-log_odds_vars))
return sigmoid_values
sigmoid_vals = sigmoid(l_o)
<compute_test_metric>
|
submission.loc[submission['Image_Label'].isin(image_labels_empty), 'EncodedPixels'] = np.nan
submission.to_csv('submission_segmentation_and_classifier.csv', index=None )
|
Understanding Clouds from Satellite Images
|
5,920,350 |
<compute_train_metric><EOS>
|
FileLink(r'submission_segmentation_and_classifier.csv' )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<compute_train_metric>
|
!pip install tta-wrapper --quiet
seed = 0
seed_everything(seed)
warnings.filterwarnings("ignore" )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
best_coef = best_coefs[0]
best_int = best_coefs[1]
v = sigmoid(log_odds(normalized_data_train,best_coef,best_int))
<define_variables>
|
train = pd.read_csv('.. /input/understanding_cloud_organization/train.csv')
submission = pd.read_csv('.. /input/understanding_cloud_organization/sample_submission.csv')
train['image'] = train['Image_Label'].apply(lambda x: x.split('_')[0])
train['label'] = train['Image_Label'].apply(lambda x: x.split('_')[1])
submission['image'] = submission['Image_Label'].apply(lambda x: x.split('_')[0])
test = pd.DataFrame(submission['image'].unique() , columns=['image'])
train_df = pd.pivot_table(train, index=['image'], values=['EncodedPixels'], columns=['label'], aggfunc=np.min ).reset_index()
train_df.columns = ['image', 'Fish_mask', 'Flower_mask', 'Gravel_mask', 'Sugar_mask']
print('Compete set samples:', len(train_df))
print('Test samples:', len(submission))
display(train.head() )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
def find_threshold(sigmoid_vals):
predictions = []
vals = []
accuracies = []
for num in range(1000):
vals.append(num/1000)
accuracy = 0
for i in v:
if i > num/1000:
predictions.append(1)
else:
predictions.append(0)
for j in range(len(predictions)) :
if predictions[j] == train_labels_log[j]:
accuracy += 1
accuracies.append(accuracy/len(predictions))
accuracy = 0
predictions = []
indx = accuracies.index(max(accuracies))
print("Best accuracy on training set:")
print(max(accuracies))
best_threshold = vals[indx]
return best_threshold
best_thresh = find_threshold(v)
print(best_thresh )<categorify>
|
X_train, X_val = train_test_split(train_df, test_size=0.2, random_state=seed)
X_train['set'] = 'train'
X_val['set'] = 'validation'
test['set'] = 'test'
print('Train samples: ', len(X_train))
print('Validation samples: ', len(X_val))
|
Understanding Clouds from Satellite Images
|
6,096,333 |
def calculate_precision(sigmoid_vals, threshold, labels):
"Precision is True Positives /(True Positives + False Positives)"
predictions = []
true_positives = 0
false_positives = 0
for i in sigmoid_vals:
if i > threshold:
predictions.append(1)
else:
predictions.append(0)
for i in range(len(labels)) :
if labels[i] == 1 and labels[i] == predictions[i]:
true_positives += 1
elif labels[i] == 0 and labels[i] != predictions[i]:
false_positives += 1
return true_positives/(true_positives + false_positives)
print("Precision:")
print(calculate_precision(v, best_thresh, train_labels_log))
<define_variables>
|
BACKBONE = 'resnet18'
BATCH_SIZE = 32
EPOCHS = 12
LEARNING_RATE = 3e-4
HEIGHT = 384
WIDTH = 480
CHANNELS = 3
N_CLASSES = 4
ES_PATIENCE = 5
RLROP_PATIENCE = 3
DECAY_DROP = 0.5
model_path = 'uNet_%s_%sx%s.h5' %(BACKBONE, HEIGHT, WIDTH )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
def calculate_recall(sigmoid_vals, threshold, labels):
"Precision is True Positives /(True Positives + False Negatives)"
predictions = []
true_positives = 0
false_negatives = 0
for i in sigmoid_vals:
if i > threshold:
predictions.append(1)
else:
predictions.append(0)
for i in range(len(labels)) :
if labels[i] == 1 and labels[i] == predictions[i]:
true_positives += 1
elif labels[i] == 1 and labels[i] != predictions[i]:
false_negatives += 1
return true_positives/(true_positives + false_negatives)
print("Recall")
print(calculate_recall(v, best_thresh, train_labels_log))
<feature_engineering>
|
preprocessing = sm.get_preprocessing(BACKBONE)
augmentation = albu.Compose([albu.HorizontalFlip(p=0.5),
albu.VerticalFlip(p=0.5),
albu.ShiftScaleRotate(rotate_limit=30, shift_limit=0.1, p=0.5)
] )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
test_data = pd.read_csv("/kaggle/input/titanic/test.csv")
test_data["Name"] = test_data["Name"].str.split(',' ).str[1]
test_data["Name"] = test_data["Name"].str.split('.' ).str[0]
test_data["Name"] = test_data["Name"].str.strip()
test_data['Sex'].replace({'female':0,'male':1},inplace=True)
x = test_data.groupby('Name' ).agg(['count'] ).index.get_level_values('Name')
test_data["Age"] = test_data.groupby("Name" ).transform(lambda x: x.fillna(x.mean())) ['Age']
test_data_log = test_data.iloc[:,[False,True,False,True,True,True,True,False,True,False,False]]
normalized_data_test=(test_data_log-test_data_log.min())/(test_data_log.max() -test_data_log.min())
<compute_test_metric>
|
train_generator = DataGenerator(
directory=train_images_dest_path,
dataframe=X_train,
target_df=train,
batch_size=BATCH_SIZE,
target_size=(HEIGHT, WIDTH),
n_channels=CHANNELS,
n_classes=N_CLASSES,
preprocessing=preprocessing,
augmentation=augmentation,
seed=seed)
valid_generator = DataGenerator(
directory=validation_images_dest_path,
dataframe=X_val,
target_df=train,
batch_size=BATCH_SIZE,
target_size=(HEIGHT, WIDTH),
n_channels=CHANNELS,
n_classes=N_CLASSES,
preprocessing=preprocessing,
seed=seed )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
pred_test = sigmoid(log_odds(normalized_data_test,best_coef,best_int))<define_variables>
|
model = sm.Unet(backbone_name=BACKBONE,
encoder_weights='imagenet',
classes=N_CLASSES,
activation='sigmoid',
input_shape=(HEIGHT, WIDTH, CHANNELS))
checkpoint = ModelCheckpoint(model_path, monitor='val_loss', mode='min', save_best_only=True, save_weights_only=True)
es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1)
rlrop = ReduceLROnPlateau(monitor='val_loss', mode='min', patience=RLROP_PATIENCE, factor=DECAY_DROP, min_lr=1e-6, verbose=1)
metric_list = [dice_coef, sm.metrics.iou_score]
callback_list = [checkpoint, es, rlrop]
optimizer = RAdam(learning_rate=LEARNING_RATE, warmup_proportion=0.1)
model.compile(optimizer=optimizer, loss=sm.losses.bce_dice_loss, metrics=metric_list)
model.summary()
|
Understanding Clouds from Satellite Images
|
6,096,333 |
classifier = []
for i in range(len(pred_test)) :
if pred_test[i] > best_thresh:
classifier.append(1)
else:
classifier.append(0 )<save_to_csv>
|
STEP_SIZE_TRAIN = len(X_train)//BATCH_SIZE
STEP_SIZE_VALID = len(X_val)//BATCH_SIZE
history = model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
callbacks=callback_list,
epochs=EPOCHS,
verbose=2 ).history
|
Understanding Clouds from Satellite Images
|
6,096,333 |
data = {'PassengerId': test_data["PassengerId"].values, 'Survived':classifier}
df_submission = pd.DataFrame(data)
df_submission.to_csv("submission_log_regression2.csv",index=False)
<set_options>
|
model = load_model('.. /input/cloud-seg-resnet18-trainedlonger/resnet18_trained_longer.h5', custom_objects={'RAdam':RAdam, 'binary_crossentropy_plus_dice_loss':sm.losses.bce_dice_loss, 'dice_coef':dice_coef, 'iou_score':sm.metrics.iou_score, 'f1-score':sm.metrics.f1_score} )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
assert sys.version_info >=(3, 5)
assert sklearn.__version__ >= "0.20"
%matplotlib inline
warnings.filterwarnings(action="ignore" )<load_from_csv>
|
class_names = ['Fish ', 'Flower', 'Gravel', 'Sugar ']
best_tresholds = [.5,.5,.5,.35]
best_masks = [25000, 20000, 22500, 15000]
for index, name in enumerate(class_names):
print('%s treshold=%.2f mask size=%d' %(name, best_tresholds[index], best_masks[index]))
|
Understanding Clouds from Satellite Images
|
6,096,333 |
train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" )<create_dataframe>
|
train_metrics = get_metrics(model, train, X_train, train_images_dest_path, best_tresholds, best_masks, seed=seed, preprocessing=preprocessing, set_name='Train')
display(train_metrics)
validation_metrics = get_metrics(model, train, X_val, validation_images_dest_path, best_tresholds, best_masks, seed=seed, preprocessing=preprocessing, set_name='Validation')
display(validation_metrics )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
passengerID = test['PassengerId'].copy()<concatenate>
|
model = tta_segmentation(model, h_flip=True, v_flip=True, h_shift=(-10, 10), v_shift=(-10, 10), merge='mean' )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
train["split"] = "train"
test["split"] = "test"
data = pd.concat([train , test], ignore_index=True)
data.set_index("PassengerId")
data["Survived"].fillna(0.0,inplace=True)
print(train.shape, test.shape, data.shape )<count_unique_values>
|
test_df = []
for i in range(0, test.shape[0], 300):
batch_idx = list(range(i, min(test.shape[0], i + 300)))
batch_set = test[batch_idx[0]: batch_idx[-1]+1]
test_generator = DataGenerator(
directory=test_images_dest_path,
dataframe=batch_set,
target_df=submission,
batch_size=1,
target_size=(HEIGHT, WIDTH),
n_channels=CHANNELS,
n_classes=N_CLASSES,
preprocessing=preprocessing,
seed=seed,
mode='predict',
shuffle=False)
preds = model.predict_generator(test_generator)
for index, b in enumerate(batch_idx):
filename = test['image'].iloc[b]
image_df = submission[submission['image'] == filename].copy()
pred_masks = preds[index, ].round().astype(int)
pred_rles = build_rles(pred_masks, reshape=(350, 525))
image_df['EncodedPixels'] = pred_rles
pred_masks_post = preds[index, ].astype('float32')
for class_index in range(N_CLASSES):
pred_mask = pred_masks_post[...,class_index]
pred_mask = post_process(pred_mask, threshold=best_tresholds[class_index], min_size=best_masks[class_index])
pred_masks_post[...,class_index] = pred_mask
pred_rles_post = build_rles(pred_masks_post, reshape=(350, 525))
image_df['EncodedPixels_post'] = pred_rles_post
test_df.append(image_df)
sub_df = pd.concat(test_df )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
data.apply(lambda x: len(x.unique()))<feature_engineering>
|
images_to_inspect = np.random.choice(X_val['image'].unique() , 3, replace=False)
inspect_set = train[train['image'].isin(images_to_inspect)].copy()
inspect_set_temp = []
inspect_generator = DataGenerator(
directory=validation_images_dest_path,
dataframe=inspect_set,
target_df=train,
batch_size=1,
target_size=(HEIGHT, WIDTH),
n_channels=CHANNELS,
n_classes=N_CLASSES,
preprocessing=preprocessing,
seed=seed,
mode='fit',
shuffle=False)
preds = model.predict_generator(inspect_generator)
for index, b in enumerate(range(len(preds))):
filename = inspect_set['image'].iloc[b]
image_df = inspect_set[inspect_set['image'] == filename].copy()
pred_masks = preds[index, ].round().astype(int)
pred_rles = build_rles(pred_masks, reshape=(350, 525))
image_df['EncodedPixels_pred'] = pred_rles
pred_masks_post = preds[index, ].astype('float32')
for class_index in range(N_CLASSES):
pred_mask = pred_masks_post[...,class_index]
pred_mask = post_process(pred_mask, threshold=best_tresholds[class_index], min_size=best_masks[class_index])
pred_masks_post[...,class_index] = pred_mask
pred_rles_post = build_rles(pred_masks_post, reshape=(350, 525))
image_df['EncodedPixels_pred_post'] = pred_rles_post
inspect_set_temp.append(image_df)
inspect_set = pd.concat(inspect_set_temp)
inspect_predictions(inspect_set, images_to_inspect, validation_images_dest_path, pred_col='EncodedPixels_pred' )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
data['FamilySize'] = data['SibSp'] + data['Parch'] + 1
data['IsAlone'] = 0
data.loc[data['FamilySize'] == 1, 'IsAlone'] = 1<count_values>
|
inspect_predictions(inspect_set, images_to_inspect, validation_images_dest_path, pred_col='EncodedPixels_pred_post' )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
data.groupby('Fare')['Fare'].unique().value_counts()<feature_engineering>
|
images_to_inspect_test = np.random.choice(sub_df['image'].unique() , 4, replace=False)
inspect_predictions(sub_df, images_to_inspect_test, test_images_dest_path )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
data['Fare'].fillna(data['Fare'].median() , inplace=True)
data.loc[data['Fare'] <= 7.91, 'Fare'] = 0
data.loc[(data['Fare'] > 7.91)&(data['Fare'] <= 14.454), 'Fare'] = 1
data.loc[(data['Fare'] > 14.454)&(data['Fare'] <= 31), 'Fare'] = 2
data.loc[ data['Fare'] > 31, 'Fare'] = 3
data['Fare'] = data['Fare'].astype(int )<feature_engineering>
|
inspect_predictions(sub_df, images_to_inspect_test, test_images_dest_path, label_col='EncodedPixels_post' )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
data['Has_Cabin'] = data["Cabin"].apply(lambda x: 0 if type(x)== float else 1 )<data_type_conversions>
|
submission_df = sub_df[['Image_Label' ,'EncodedPixels']]
submission_df.to_csv('submission.csv', index=False)
display(submission_df.head() )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
avg = data['Age'].mean()
std = data['Age'].std()
null_count = data['Age'].isnull().sum()
random_list = np.random.randint(avg - std, avg + std, size = null_count)
data['Age'][np.isnan(data['Age'])] = random_list
data['Age'] = data['Age'].astype(int )<feature_engineering>
|
submission_df_post = sub_df[['Image_Label' ,'EncodedPixels_post']]
submission_df_post.columns = ['Image_Label' ,'EncodedPixels']
submission_df_post.to_csv('submission_post.csv', index=False)
display(submission_df_post.head() )
|
Understanding Clouds from Satellite Images
|
6,096,333 |
<data_type_conversions><EOS>
|
if os.path.exists(train_images_dest_path):
shutil.rmtree(train_images_dest_path)
if os.path.exists(validation_images_dest_path):
shutil.rmtree(validation_images_dest_path)
if os.path.exists(test_images_dest_path):
shutil.rmtree(test_images_dest_path )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<data_type_conversions>
|
seed(10)
set_random_seed(10)
%matplotlib inline
|
Understanding Clouds from Satellite Images
|
5,862,707 |
data['Embarked'].fillna('S', inplace=True)
data['Embarked'] = data['Embarked'].map({'S': 0, 'C': 1, 'Q': 2} ).astype(int )<categorify>
|
!pip install keras-rectified-adam
|
Understanding Clouds from Satellite Images
|
5,862,707 |
data['Title'] = data['Name'].str.split(', ', expand=True)[1].str.split('.', expand=True)[0]
data['Title'] = data['Title'].replace(['Miss', 'Mrs','Ms', 'Mlle', 'Lady', 'Mme', 'the Countess', 'Dona'], 'Miss/Mrs/Ms')
data['Title'] = data['Title'].replace(['Dr', 'Col', 'Major', 'Jonkheer', 'Capt', 'Sir', 'Don'], 'Dr/Military/Noble')
data['Title'] = data['Title'].fillna('Mr' ).map({'Mr': 0, 'Mrs': 1, 'Miss/Mrs/Ms': 2, 'Dr/Military/Noble': 3, 'Master': 4, 'Rev': 5} ).astype(int )<count_values>
|
test_imgs_folder = '.. /input/understanding_cloud_organization/test_images/'
train_imgs_folder = '.. /input/understanding_cloud_organization/train_images/'
num_cores = multiprocessing.cpu_count()
|
Understanding Clouds from Satellite Images
|
5,862,707 |
data['Title'].value_counts()<drop_column>
|
train_df = pd.read_csv('.. /input/understanding_cloud_organization/train.csv')
train_df.head()
|
Understanding Clouds from Satellite Images
|
5,862,707 |
drop_columns = ["PassengerId", "Ticket","Cabin", "Name", "SibSp"]
data = data.drop(drop_columns, axis=1 )<count_missing_values>
|
train_df = train_df[~train_df['EncodedPixels'].isnull() ]
train_df['Image'] = train_df['Image_Label'].map(lambda x: x.split('_')[0])
train_df['Class'] = train_df['Image_Label'].map(lambda x: x.split('_')[1])
classes = train_df['Class'].unique()
train_df = train_df.groupby('Image')['Class'].agg(set ).reset_index()
for class_name in classes:
train_df[class_name] = train_df['Class'].map(lambda x: 1 if class_name in x else 0)
train_df.head()
|
Understanding Clouds from Satellite Images
|
5,862,707 |
data.isnull().sum()<drop_column>
|
img_2_ohe_vector = {img:vec for img, vec in zip(train_df['Image'], train_df.iloc[:, 2:].values)}
|
Understanding Clouds from Satellite Images
|
5,862,707 |
train = data[data['split'] == 'train'].copy()
test = data[data['split'] == 'test'].copy()
train_labels = train["Survived"].copy()
train.drop(['split','Survived'], axis=1, inplace=True)
test.drop(['split','Survived'], axis=1, inplace=True )<split>
|
train_imgs, val_imgs = train_test_split(train_df['Image'].values,
test_size=0.2,
stratify=train_df['Class'].map(lambda x: str(sorted(list(x)))) ,
random_state=2019 )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
train, train_val, train_labels, train_val_labels = train_test_split(train, train_labels, test_size=0.2, random_state=42 )<choose_model_class>
|
class DataGenenerator(Sequence):
def __init__(self, images_list=None, folder_imgs=train_imgs_folder,
batch_size=32, shuffle=True, augmentation=None,
resized_height=260, resized_width=260, num_channels=3):
self.batch_size = batch_size
self.shuffle = shuffle
self.augmentation = augmentation
if images_list is None:
self.images_list = os.listdir(folder_imgs)
else:
self.images_list = deepcopy(images_list)
self.folder_imgs = folder_imgs
self.len = len(self.images_list)// self.batch_size
self.resized_height = resized_height
self.resized_width = resized_width
self.num_channels = num_channels
self.num_classes = 4
self.is_test = not 'train' in folder_imgs
if not shuffle and not self.is_test:
self.labels = [img_2_ohe_vector[img] for img in self.images_list[:self.len*self.batch_size]]
def __len__(self):
return self.len
def on_epoch_start(self):
if self.shuffle:
random.shuffle(self.images_list)
def __getitem__(self, idx):
current_batch = self.images_list[idx * self.batch_size:(idx + 1)* self.batch_size]
X = np.empty(( self.batch_size, self.resized_height, self.resized_width, self.num_channels))
y = np.empty(( self.batch_size, self.num_classes))
for i, image_name in enumerate(current_batch):
path = os.path.join(self.folder_imgs, image_name)
img = cv2.resize(cv2.imread(path),(self.resized_height, self.resized_width)).astype(np.float32)
if not self.augmentation is None:
augmented = self.augmentation(image=img)
img = augmented['image']
X[i, :, :, :] = img/255.0
if not self.is_test:
y[i, :] = img_2_ohe_vector[image_name]
return X, y
def get_labels(self):
if self.shuffle:
images_current = self.images_list[:self.len*self.batch_size]
labels = [img_2_ohe_vector[img] for img in images_current]
else:
labels = self.labels
return np.array(labels )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
num_pipeline = Pipeline([
("imputer", SimpleImputer(strategy="median")) ,
("MinMaxScaler", MinMaxScaler())
] )<normalization>
|
albumentations_train = Compose([
VerticalFlip() , HorizontalFlip() , Rotate(limit=20), GridDistortion()
], p=1 )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
train_prepared = num_pipeline.fit_transform(train)
train_val = num_pipeline.fit_transform(train_val )<train_on_grid>
|
data_generator_train = DataGenenerator(train_imgs, augmentation=albumentations_train)
data_generator_train_eval = DataGenenerator(train_imgs, shuffle=False)
data_generator_val = DataGenenerator(val_imgs, shuffle=False )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
model_lgre = LogisticRegression(random_state=0)
param_grid = {'C': [0.014,0.012], 'multi_class': ['multinomial'],
'penalty': ['l1'],'solver': ['saga'], 'tol': [0.1] }
GridCV_LR = GridSearchCV(model_lgre, param_grid, verbose=1, cv=5)
GridCV_LR.fit(train_prepared,train_labels)
score_grid_LR = GridCV_LR.best_score_
model_lgre = GridCV_LR.best_estimator_
print(score_grid_LR)
predict_score_lg_clf = GridCV_LR.predict(train_val)
report_and_confusion_matrix(train_val_labels, predict_score_lg_clf )<train_on_grid>
|
class PrAucCallback(Callback):
def __init__(self, data_generator, num_workers=num_cores,
early_stopping_patience=5,
plateau_patience=3, reduction_rate=0.5,
stage='train', checkpoints_path='checkpoints/'):
super(Callback, self ).__init__()
self.data_generator = data_generator
self.num_workers = num_workers
self.class_names = ['Fish', 'Flower', 'Sugar', 'Gravel']
self.history = [[] for _ in range(len(self.class_names)+ 1)]
self.early_stopping_patience = early_stopping_patience
self.plateau_patience = plateau_patience
self.reduction_rate = reduction_rate
self.stage = stage
self.best_pr_auc = -float('inf')
if not os.path.exists(checkpoints_path):
os.makedirs(checkpoints_path)
self.checkpoints_path = checkpoints_path
def compute_pr_auc(self, y_true, y_pred):
pr_auc_mean = 0
print(f"
{'
")
for class_i in range(len(self.class_names)) :
precision, recall, _ = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i])
pr_auc = auc(recall, precision)
pr_auc_mean += pr_auc/len(self.class_names)
print(f"PR AUC {self.class_names[class_i]}, {self.stage}: {pr_auc:.3f}
")
self.history[class_i].append(pr_auc)
print(f"
{'
PR AUC mean, {self.stage}: {pr_auc_mean:.3f}
{'
")
self.history[-1].append(pr_auc_mean)
return pr_auc_mean
def is_patience_lost(self, patience):
if len(self.history[-1])> patience:
best_performance = max(self.history[-1][-(patience + 1):-1])
return best_performance == self.history[-1][-(patience + 1)] and best_performance >= self.history[-1][-1]
def early_stopping_check(self, pr_auc_mean):
if self.is_patience_lost(self.early_stopping_patience):
self.model.stop_training = True
def model_checkpoint(self, pr_auc_mean, epoch):
if pr_auc_mean > self.best_pr_auc:
for checkpoint in glob.glob(os.path.join(self.checkpoints_path, 'classifier_densenet169_epoch_*')) :
os.remove(checkpoint)
self.best_pr_auc = pr_auc_mean
self.model.save(os.path.join(self.checkpoints_path, f'classifier_densenet169_epoch_{epoch}_val_pr_auc_{pr_auc_mean}.h5'))
print(f"
{'
Saved new checkpoint
{'
")
def reduce_lr_on_plateau(self):
if self.is_patience_lost(self.plateau_patience):
new_lr = float(keras.backend.get_value(self.model.optimizer.lr)) * self.reduction_rate
keras.backend.set_value(self.model.optimizer.lr, new_lr)
print(f"
{'
Reduced learning rate to {new_lr}.
{'
")
def on_epoch_end(self, epoch, logs={}):
y_pred = self.model.predict_generator(self.data_generator, workers=self.num_workers)
y_true = self.data_generator.get_labels()
pr_auc_mean = self.compute_pr_auc(y_true, y_pred)
if self.stage == 'val':
self.early_stopping_check(pr_auc_mean)
self.model_checkpoint(pr_auc_mean, epoch)
self.reduce_lr_on_plateau()
def get_pr_auc_history(self):
return self.history
|
Understanding Clouds from Satellite Images
|
5,862,707 |
rand_forest_clf = RandomForestClassifier(random_state=42)
param_grid = {'max_depth': [15], 'min_samples_split': [5],'n_estimators' : [100] }
GridCV_rd_clf = GridSearchCV(rand_forest_clf, param_grid, verbose=1, cv=5)
GridCV_rd_clf.fit(train_prepared, train_labels)
score_grid_rd = GridCV_rd_clf.best_score_
rand_forest_clf = GridCV_rd_clf.best_estimator_
print(score_grid_rd)
predict_score_rd_clf = GridCV_rd_clf.predict(train_val)
report_and_confusion_matrix(train_val_labels, predict_score_rd_clf )<choose_model_class>
|
train_metric_callback = PrAucCallback(data_generator_train_eval)
val_callback = PrAucCallback(data_generator_val, stage='val' )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
tree_clf = DecisionTreeClassifier()<train_on_grid>
|
def dice_coef(y_true, y_pred, smooth=1):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return(2.* intersection + smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth)
def dice_loss(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = y_true_f * y_pred_f
score =(2.* K.sum(intersection)+ smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth)
return 1.- score
def bce_dice_loss(y_true, y_pred):
return binary_crossentropy(y_true, y_pred)+ dice_loss(y_true, y_pred )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
params_grid_ada = {}
ada_model = AdaBoostClassifier(tree_clf,n_estimators=3000,
algorithm="SAMME.R", learning_rate=0.05, random_state=42)
GridCV_ada = GridSearchCV(ada_model, params_grid_ada, verbose=1, cv=5)
GridCV_ada.fit(train_prepared, train_labels)
score_grid_ada = GridCV_ada.best_score_
model_ada = GridCV_ada.best_estimator_
print(score_grid_ada)
predict_score_ada = GridCV_ada.predict(train_val)
report_and_confusion_matrix(train_val_labels, predict_score_ada )<choose_model_class>
|
!pip install -U git+https://github.com/qubvel/efficientnet
|
Understanding Clouds from Satellite Images
|
5,862,707 |
params_grid_gb = {}
gbc_model = GradientBoostingClassifier(criterion='friedman_mse', init=None,
learning_rate=0.05, loss='deviance', max_depth=3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10000,
n_iter_no_change=None, presort='auto', random_state=None,
subsample=1.0, tol=0.0001, validation_fraction=0.1,
verbose=0, warm_start=False)
GridCV_GB = GridSearchCV(gbc_model, params_grid_gb, verbose=1, cv=5)
GridCV_GB.fit(train_prepared, train_labels)
score_grid_GB = GridCV_GB.best_score_
model_gbc = GridCV_GB.best_estimator_
print(score_grid_GB)
predict_score_GB = GridCV_GB.predict(train_val)
report_and_confusion_matrix(train_val_labels, predict_score_GB )<train_on_grid>
|
def get_model() :
K.clear_session()
base_model = efn.EfficientNetB2(weights='imagenet', include_top=False, pooling='avg', input_shape=(260, 260, 3))
x = base_model.output
y_pred = Dense(4, activation='sigmoid' )(x)
return Model(inputs=base_model.input, outputs=y_pred)
model = get_model()
|
Understanding Clouds from Satellite Images
|
5,862,707 |
mlp_clf = MLPClassifier(activation = "logistic", hidden_layer_sizes=(300,), random_state=42,batch_size=1000)
param_grid = { 'max_iter': [1200], 'alpha': [1e-4],
'solver': ['sgd'], 'learning_rate_init': [0.05,0.06],'tol': [1e-4] }
GridCV_MLP = GridSearchCV(mlp_clf, param_grid, verbose=1, cv=3)
GridCV_MLP.fit(train,train_labels)
score_grid_MLP = GridCV_MLP.best_score_
model_mlp = GridCV_MLP.best_estimator_
print(score_grid_MLP)
predict_score_MLP = GridCV_MLP.predict(train_val)
report_and_confusion_matrix(train_val_labels, predict_score_MLP )<choose_model_class>
|
from keras_radam import RAdam
|
Understanding Clouds from Satellite Images
|
5,862,707 |
params_grid_search_lgb = {
}
lgb_model = lgb.LGBMClassifier(boosting_type='gbdt', class_weight=None, colsample_bytree=0.7,
gamma=0, importance_type='split', learning_rate=0.05, max_depth=3,
min_child_samples=20, min_child_weight=6, min_split_gain=0.0,
n_estimators=20000, n_jobs=-1, nthread=4, num_leaves=31,
objective=None, random_state=None, reg_alpha=0.0, reg_lambda=0.0,
scale_pos_weight=1, seed=29, silent=True, subsample=0.7,
subsample_for_bin=200000, subsample_freq=0)
GridCV_LGB = GridSearchCV(lgb_model, params_grid_search_lgb, verbose=1, cv=5)
GridCV_LGB.fit(train_prepared,train_labels)
score_grid_LGB = GridCV_LGB.best_score_
model_lgb = GridCV_LGB.best_estimator_
print(score_grid_LGB)
predict_score_LGB = GridCV_LGB.predict(train_val)
report_and_confusion_matrix(train_val_labels, predict_score_LGB )<train_on_grid>
|
for base_layer in model.layers[:-3]:
base_layer.trainable = False
model.compile(optimizer=RAdam(warmup_proportion=0.1, min_lr=1e-5), loss='categorical_crossentropy', metrics=['accuracy'])
history_0 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=20,
callbacks=[train_metric_callback, val_callback],
workers=num_cores,
verbose=1
)
|
Understanding Clouds from Satellite Images
|
5,862,707 |
params_grid_xgb = {}
xgb_model = xgb.XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bytree=0.7, gamma=0.2, learning_rate=0.009,
max_delta_step=0, max_depth=3, min_child_weight=6, missing=None,
n_estimators=10000, n_jobs=1, nthread=4, objective='binary:logistic',
random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
seed=29, silent=True, subsample=0.7)
GridCV_XGB = GridSearchCV(xgb_model, params_grid_xgb, verbose=1, cv=5)
GridCV_XGB.fit(train_prepared, train_labels)
score_grid_XGB = GridCV_XGB.best_score_
model_xgb = GridCV_XGB.best_estimator_
print(score_grid_XGB)
predict_score_XGB = GridCV_XGB.predict(train_val)
report_and_confusion_matrix(train_val_labels, predict_score_XGB )<train_on_grid>
|
for base_layer in model.layers[:-3]:
base_layer.trainable = True
model.compile(optimizer=RAdam(warmup_proportion=0.1, min_lr=1e-5), loss='categorical_crossentropy', metrics=['accuracy'])
history_1 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=20,
callbacks=[train_metric_callback, val_callback],
workers=num_cores,
verbose=1,
initial_epoch=1
)
|
Understanding Clouds from Satellite Images
|
5,862,707 |
params_grid_vclf = {}
estimators = [
("Ada Boosting", model_ada),
("Gradient Boost", model_gbc),
("lgb_model", model_lgb),
("XGBoost", model_xgb),
("MLP", model_mlp),
]
voting_clf = VotingClassifier(estimators,voting='soft')
GridCV_voting_clf = GridSearchCV(voting_clf, params_grid_vclf, verbose=1, cv=5)
GridCV_voting_clf.fit(train_prepared, train_labels)
score_grid_vclf = GridCV_voting_clf.best_score_
model_vclf = GridCV_voting_clf.best_estimator_
print(score_grid_vclf)
predict_score_vclf = GridCV_voting_clf.predict(train_val)
report_and_confusion_matrix(train_val_labels, predict_score_vclf)
<categorify>
|
Image(".. /input/clouds-classifier-files/loss_hist_densenet169.png" )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
test_prepared = num_pipeline.fit_transform(test )<predict_on_test>
|
Image(".. /input/clouds-classifier-files/pr_auc_hist_densenet169.png" )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
sub_voting_classifier = model_vclf.predict(test_prepared )<choose_model_class>
|
class_names = ['Fish', 'Flower', 'Sugar', 'Gravel']
def get_threshold_for_recall(y_true, y_pred, class_i, recall_threshold=0.94, precision_threshold=0.90, plot=False):
precision, recall, thresholds = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i])
i = len(thresholds)- 1
best_recall_threshold = None
while best_recall_threshold is None:
next_threshold = thresholds[i]
next_recall = recall[i]
if next_recall >= recall_threshold:
best_recall_threshold = next_threshold
i -= 1
best_precision_threshold = [thres for prec, thres in zip(precision, thresholds)if prec >= precision_threshold][0]
if plot:
plt.figure(figsize=(10, 7))
plt.step(recall, precision, color='r', alpha=0.3, where='post')
plt.fill_between(recall, precision, alpha=0.3, color='r')
plt.axhline(y=precision[i + 1])
recall_for_prec_thres = [rec for rec, thres in zip(recall, thresholds)
if thres == best_precision_threshold][0]
plt.axvline(x=recall_for_prec_thres, color='g')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.legend(['PR curve',
f'Precision {precision[i + 1]:.2f} corresponding to selected recall threshold',
f'Recall {recall_for_prec_thres:.2f} corresponding to selected precision threshold'])
plt.title(f'Precision-Recall curve for Class {class_names[class_i]}')
return best_recall_threshold, best_precision_threshold
y_pred = model.predict_generator(data_generator_val, workers=num_cores)
y_true = data_generator_val.get_labels()
recall_thresholds = dict()
precision_thresholds = dict()
for i, class_name in tqdm(enumerate(class_names)) :
recall_thresholds[class_name], precision_thresholds[class_name] = get_threshold_for_recall(y_true, y_pred, i, plot=True )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
estimators =[model_ada,model_lgb,model_gbc, model_mlp]
sclf = StackingCVClassifier(classifiers= estimators,
meta_classifier=model_xgb)
print('3-fold cross validation:
')
for clf, label in zip([model_ada, model_lgb, model_gbc, model_mlp, sclf],
['Ada Boosting',
'light gradient Boosting(LGBM)',
'Gradient Boosting',
"MLP",
'StackingClassifier(Meta: XGboost)']):
scores = model_selection.cross_val_score(clf, train_prepared, train_labels,
cv=5, scoring='precision')
print("precision: %0.2f(+/- %0.2f)[%s]"
%(scores.mean() , scores.std() , label))<train_model>
|
data_generator_test = DataGenenerator(folder_imgs=test_imgs_folder, shuffle=False)
y_pred_test = model.predict_generator(data_generator_test, workers=num_cores )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
sclf.fit(train_prepared, train_labels )<predict_on_test>
|
image_labels_empty = set()
for i,(img, predictions)in enumerate(zip(os.listdir(test_imgs_folder), y_pred_test)) :
for class_i, class_name in enumerate(class_names):
if predictions[class_i] < recall_thresholds[class_name]:
image_labels_empty.add(f'{img}_{class_name}' )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
prediction_sclf = sclf.predict(train_val)
report_and_confusion_matrix(train_val_labels, prediction_sclf )<predict_on_test>
|
submission = pd.read_csv('.. /input/densenet201cloudy/densenet201.csv')
submission.head()
|
Understanding Clouds from Satellite Images
|
5,862,707 |
prediction_stacking_clf = sclf.predict(test_prepared )<save_to_csv>
|
predictions_nonempty = set(submission.loc[~submission['EncodedPixels'].isnull() , 'Image_Label'].values )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
sub = pd.read_csv('.. /input/gender_submission.csv')
sub['Survived'] = sub_voting_classifier.astype('int64')
sub.to_csv("voting_classifier.csv", index=False)
sub1 = pd.read_csv('.. /input/gender_submission.csv')
sub1['Survived'] = prediction_stacking_clf.astype('int64')
sub.to_csv("stacking_clf.csv", index=False )<import_modules>
|
print(f'{len(image_labels_empty.intersection(predictions_nonempty)) } masks would be removed' )
|
Understanding Clouds from Satellite Images
|
5,862,707 |
<choose_model_class><EOS>
|
submission.loc[submission['Image_Label'].isin(image_labels_empty), 'EncodedPixels'] = np.nan
submission.to_csv('submission_segmentation_and_classifier.csv', index=None )
|
Understanding Clouds from Satellite Images
|
5,815,864 |
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<categorify>
|
import os
import json
import albumentations as albu
import cv2
import keras
from keras import backend as K
from keras.models import Model
from keras.layers import Input
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D
from keras.layers.merge import concatenate
from keras.losses import binary_crossentropy
from keras.callbacks import Callback, ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
from skimage.exposure import adjust_gamma
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from keras.layers import LeakyReLU
from keras.layers import Input, Conv2D, Conv2DTranspose, MaxPooling2D, concatenate, Dropout,BatchNormalization
from keras.layers import Conv2D, Concatenate, MaxPooling2D
from keras.layers import UpSampling2D, Dropout, BatchNormalization
from keras import optimizers
from keras.legacy import interfaces
from keras.utils.generic_utils import get_custom_objects
from keras.engine.topology import Input
from keras.engine.training import Model
from keras.layers.convolutional import Conv2D, UpSampling2D, Conv2DTranspose
from keras.layers.core import Activation, SpatialDropout2D
from keras.layers.merge import concatenate
from keras.layers.normalization import BatchNormalization
from keras.layers.pooling import MaxPooling2D
from keras.layers import Input,Dropout,BatchNormalization,Activation,Add
from keras.regularizers import l2
from keras.layers.core import Dense, Lambda
from keras.layers.merge import concatenate, add
from keras.layers import GlobalAveragePooling2D, Reshape, Dense, multiply, Permute
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
|
Understanding Clouds from Satellite Images
|
5,815,864 |
labels = to_categorical(train_labels )<train_model>
|
!pip install.. /input/efficientnet-keras-source-code/repository/qubvel-efficientnet-c993591
|
Understanding Clouds from Satellite Images
|
5,815,864 |
model_history = model.fit(train, labels, epochs=200, batch_size=600,validation_split=0.2, verbose=2 )<categorify>
|
def post_process(probability, threshold, min_size):
mask = cv2.threshold(probability, threshold, 1, cv2.THRESH_BINARY)[1]
num_component, component = cv2.connectedComponents(mask.astype(np.uint8))
predictions = np.zeros(( 350, 525), np.float32)
num = 0
for c in range(1, num_component):
p =(component == c)
if p.sum() > min_size:
predictions[p] = 1
num += 1
return predictions, num
def np_resize(img, input_shape):
height, width = input_shape
return cv2.resize(img,(width, height))
def mask2rle(img):
pixels= img.T.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return ' '.join(str(x)for x in runs)
def rle2mask(rle, input_shape):
width, height = input_shape[:2]
mask= np.zeros(width*height ).astype(np.uint8)
array = np.asarray([int(x)for x in rle.split() ])
starts = array[0::2]
lengths = array[1::2]
current_position = 0
for index, start in enumerate(starts):
mask[int(start):int(start+lengths[index])] = 1
current_position += lengths[index]
return mask.reshape(height, width ).T
def build_masks(rles, input_shape, reshape=None):
depth = len(rles)
if reshape is None:
masks = np.zeros(( *input_shape, depth))
else:
masks = np.zeros(( *reshape, depth))
for i, rle in enumerate(rles):
if type(rle)is str:
if reshape is None:
masks[:, :, i] = rle2mask(rle, input_shape)
else:
mask = rle2mask(rle, input_shape)
reshaped_mask = np_resize(mask, reshape)
masks[:, :, i] = reshaped_mask
return masks
def build_rles(masks, reshape=None):
width, height, depth = masks.shape
rles = []
for i in range(depth):
mask = masks[:, :, i]
if reshape:
mask = mask.astype(np.float32)
mask = np_resize(mask, reshape ).astype(np.int64)
rle = mask2rle(mask)
rles.append(rle)
return rles
|
Understanding Clouds from Satellite Images
|
5,815,864 |
test_prepared = num_pipeline.fit_transform(test )<save_to_csv>
|
train_df = pd.read_csv('.. /input/understanding_cloud_organization/train.csv')
train_df['ImageId'] = train_df['Image_Label'].apply(lambda x: x.split('_')[0])
train_df['ClassId'] = train_df['Image_Label'].apply(lambda x: x.split('_')[1])
train_df['hasMask'] = ~ train_df['EncodedPixels'].isna()
print(train_df.shape)
train_df.head()
|
Understanding Clouds from Satellite Images
|
5,815,864 |
submission_keras = model.predict_classes(test_prepared)
sub['Survived'] = submission_keras.astype('int64')
sub.to_csv("keras.csv", index=False )<import_modules>
|
mask_count_df = train_df.groupby('ImageId' ).agg(np.sum ).reset_index()
mask_count_df.sort_values('hasMask', ascending=False, inplace=True)
print(mask_count_df.shape)
mask_count_df.head()
|
Understanding Clouds from Satellite Images
|
5,815,864 |
import numpy as np
import pandas as pd<load_from_csv>
|
sub_df = pd.read_csv('.. /input/understanding_cloud_organization/sample_submission.csv')
sub_df['ImageId'] = sub_df['Image_Label'].apply(lambda x: x.split('_')[0])
test_imgs = pd.DataFrame(sub_df['ImageId'].unique() , columns=['ImageId'] )
|
Understanding Clouds from Satellite Images
|
5,815,864 |
train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" )<load_from_csv>
|
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, df, target_df=None, mode='fit',
base_path='.. /input/understanding_cloud_organization/train_images',
batch_size=32, dim=(1400, 2100), n_channels=3, reshape=None, gamma=None,
augment=False, n_classes=4, random_state=2019, shuffle=True):
self.dim = dim
self.batch_size = batch_size
self.df = df
self.mode = mode
self.base_path = base_path
self.target_df = target_df
self.list_IDs = list_IDs
self.reshape = reshape
self.gamma = gamma
self.n_channels = n_channels
self.augment = augment
self.n_classes = n_classes
self.shuffle = shuffle
self.random_state = random_state
self.on_epoch_end()
np.random.seed(self.random_state)
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs)/ self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
list_IDs_batch = [self.list_IDs[k] for k in indexes]
X = self.__generate_X(list_IDs_batch)
if self.mode == 'fit':
y = self.__generate_y(list_IDs_batch)
if self.augment:
X, y = self.__augment_batch(X, y)
return X, y
elif self.mode == 'predict':
return X
else:
raise AttributeError('The mode parameter should be set to "fit" or "predict".')
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.seed(self.random_state)
np.random.shuffle(self.indexes)
def __generate_X(self, list_IDs_batch):
'Generates data containing batch_size samples'
if self.reshape is None:
X = np.empty(( self.batch_size, *self.dim, self.n_channels))
else:
X = np.empty(( self.batch_size, *self.reshape, self.n_channels))
for i, ID in enumerate(list_IDs_batch):
im_name = self.df['ImageId'].loc[ID]
img_path = f"{self.base_path}/{im_name}"
img = self.__load_rgb(img_path)
if self.reshape is not None:
img = np_resize(img, self.reshape)
if self.gamma is not None:
img = adjust_gamma(img, gamma=self.gamma)
X[i,] = img
return X
def __generate_y(self, list_IDs_batch):
if self.reshape is None:
y = np.empty(( self.batch_size, *self.dim, self.n_classes), dtype=int)
else:
y = np.empty(( self.batch_size, *self.reshape, self.n_classes), dtype=int)
for i, ID in enumerate(list_IDs_batch):
im_name = self.df['ImageId'].iloc[ID]
image_df = self.target_df[self.target_df['ImageId'] == im_name]
rles = image_df['EncodedPixels'].values
if self.reshape is not None:
masks = build_masks(rles, input_shape=self.dim, reshape=self.reshape)
else:
masks = build_masks(rles, input_shape=self.dim)
y[i, ] = masks
return y
def __load_grayscale(self, img_path):
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
img = img.astype(np.float32)/ 255.
img = np.expand_dims(img, axis=-1)
return img
def __load_rgb(self, img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32)/ 255.
return img
def __random_transform(self, img, masks):
composition = albu.Compose([
albu.HorizontalFlip() ,
])
composed = composition(image=img, mask=masks)
aug_img = composed['image']
aug_masks = composed['mask']
return aug_img, aug_masks
def __augment_batch(self, img_batch, masks_batch):
for i in range(img_batch.shape[0]):
img_batch[i, ], masks_batch[i, ] = self.__random_transform(
img_batch[i, ], masks_batch[i, ])
return img_batch, masks_batch
|
Understanding Clouds from Satellite Images
|
5,815,864 |
train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" )<data_type_conversions>
|
def H(lst, name, use_gn=False):
if use_gn:
norm = GroupNormalization(groups=1, name=name+'_gn')
else:
norm = BatchNormalization(name=name+'_bn')
x = concatenate(lst)
num_filters = int(x.shape.as_list() [-1]/2)
x = Conv2D(num_filters,(2, 2), padding='same', name=name )(x)
x = norm(x)
x = LeakyReLU(alpha=0.1, name=name+'_activation' )(x)
return x
def U(x, use_gn=False):
if use_gn:
norm = GroupNormalization(groups=1)
else:
norm = BatchNormalization()
num_filters = int(x.shape.as_list() [-1]/2)
x = Conv2DTranspose(num_filters,(3, 3), strides=(2, 2), padding='same' )(x)
x = norm(x)
x = LeakyReLU(alpha=0.1 )(x)
return x
|
Understanding Clouds from Satellite Images
|
5,815,864 |
print(train.dtypes[:5])
print(train.dtypes[:5] )<feature_engineering>
|
def EfficientUNet(input_shape):
backbone = efn.EfficientNetB4(
weights=None,
include_top=False,
input_shape=input_shape
)
input = backbone.input
x00 = backbone.input
x10 = backbone.get_layer('stem_activation' ).output
x20 = backbone.get_layer('block2d_add' ).output
x30 = backbone.get_layer('block3d_add' ).output
x40 = backbone.get_layer('block5f_add' ).output
x50 = backbone.get_layer('block7b_add' ).output
x01 = H([x00, U(x10)], 'X01')
x11 = H([x10, U(x20)], 'X11')
x21 = H([x20, U(x30)], 'X21')
x31 = H([x30, U(x40)], 'X31')
x41 = H([x40, U(x50)], 'X41')
x02 = H([x00, x01, U(x11)], 'X02')
x12 = H([x11, U(x21)], 'X12')
x22 = H([x21, U(x31)], 'X22')
x32 = H([x31, U(x41)], 'X32')
x03 = H([x00, x01, x02, U(x12)], 'X03')
x13 = H([x12, U(x22)], 'X13')
x23 = H([x22, U(x32)], 'X23')
x04 = H([x00, x01, x02, x03, U(x13)], 'X04')
x14 = H([x13, U(x23)], 'X14')
x05 = H([x00, x01, x02, x03, x04, U(x14)], 'X05')
x_out = Concatenate(name='bridge' )([x01, x02, x03, x04, x05])
x_out = Conv2D(4,(3,3), padding="same", name='final_output', activation="sigmoid" )(x_out)
return Model(inputs=input, outputs=x_out)
model = EfficientUNet(( 320, 480 ,3))
model.summary()
|
Understanding Clouds from Satellite Images
|
5,815,864 |
xtrain = xtrain / 255.0
test = test / 255.0<categorify>
|
model.load_weights(".. /input/cloudmodels/EfficientNetB4.h5" )
|
Understanding Clouds from Satellite Images
|
5,815,864 |
print(type(ytrain))
nclasses = ytrain.max() - ytrain.min() + 1
print("Shape of ytrain before: ", ytrain.shape)
ytrain = to_categorical(ytrain, num_classes = nclasses)
print("Shape of ytrain after: ", ytrain.shape)
print(type(ytrain))<split>
|
minsizes = [20000 ,20000, 22500, 10000]
|
Understanding Clouds from Satellite Images
|
5,815,864 |
seed = 2
np.random.seed(seed)
split_pct = 0.1
xtrain, xval, ytrain, yval = train_test_split(xtrain,
ytrain,
test_size=split_pct,
random_state=seed,
shuffle=True,
stratify=ytrain
)
print(xtrain.shape, ytrain.shape, xval.shape, yval.shape )<import_modules>
|
sigmoid = lambda x: 1 /(1 + np.exp(-x))
|
Understanding Clouds from Satellite Images
|
5,815,864 |
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense, Dropout, Lambda, Flatten, BatchNormalization
from keras.layers import Conv2D, MaxPool2D, AvgPool2D
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau<choose_model_class>
|
test_df = []
subsize = 500
for i in range(0, test_imgs.shape[0], subsize):
batch_idx = list(
range(i, min(test_imgs.shape[0], i + subsize))
)
test_generator = DataGenerator(
batch_idx,
df=test_imgs,
shuffle=False,
mode='predict',
dim=(350, 525),
reshape=(320, 480),
gamma=0.8,
n_channels=3,
base_path='.. /input/understanding_cloud_organization/test_images',
target_df=sub_df,
batch_size=1,
n_classes=4
)
batch_pred_masks = model.predict_generator(
test_generator,
workers=1,
verbose=1
)
for j, b in enumerate(batch_idx):
filename = test_imgs['ImageId'].iloc[b]
image_df = sub_df[sub_df['ImageId'] == filename].copy()
pred_masks = batch_pred_masks[j, ]
pred_masks = cv2.resize(pred_masks, dsize=(525, 350), interpolation=cv2.INTER_LINEAR)
arrt = np.array([])
for t in range(4):
a, num_predict = post_process(sigmoid(pred_masks[:, :, t]), 0.6, minsizes[t])
if(arrt.shape ==(0,)) :
arrt = a.reshape(350, 525, 1)
else:
arrt = np.append(arrt, a.reshape(350, 525, 1), axis = 2)
pred_rles = build_rles(arrt, reshape=(350, 525))
image_df['EncodedPixels'] = pred_rles
test_df.append(image_df)
sub_df = pd.concat(test_df )
|
Understanding Clouds from Satellite Images
|
5,815,864 |
<choose_model_class><EOS>
|
sub_df = sub_df[['Image_Label', 'EncodedPixels']]
sub_df.to_csv('submission.csv', index=False)
display(sub_df.head(10))
|
Understanding Clouds from Satellite Images
|
5,644,971 |
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<choose_model_class>
|
!pip uninstall keras -y
!pip install keras==2.2.5
!pip install segmentation-models --quiet
!pip install tta-wrapper --quiet
|
Understanding Clouds from Satellite Images
|
5,644,971 |
lr_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 )<init_hyperparams>
|
import os
import json
import albumentations as albu
import cv2
import keras
from keras import backend as K
from keras.models import Model
from keras.layers import Input
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D
from keras.layers.merge import concatenate
from keras.losses import binary_crossentropy
from keras.callbacks import Callback, ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
from skimage.exposure import adjust_gamma
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import segmentation_models as sm
|
Understanding Clouds from Satellite Images
|
5,644,971 |
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=30,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(xtrain )<define_variables>
|
class AdamAccumulate(Optimizer):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., amsgrad=False, accum_iters=1, **kwargs):
if accum_iters < 1:
raise ValueError('accum_iters must be >= 1')
super(AdamAccumulate, self ).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.amsgrad = amsgrad
self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations))
self.accum_iters_float = K.cast(self.accum_iters, K.floatx())
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
completed_updates = K.cast(K.tf.floordiv(self.iterations, self.accum_iters), K.floatx())
if self.initial_decay > 0:
lr = lr *(1./(1.+ self.decay * completed_updates))
t = completed_updates + 1
lr_t = lr *(K.sqrt(1.- K.pow(self.beta_2, t)) /(1.- K.pow(self.beta_1, t)))
update_switch = K.equal(( self.iterations + 1)% self.accum_iters, 0)
update_switch = K.cast(update_switch, K.floatx())
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
gs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
if self.amsgrad:
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
else:
vhats = [K.zeros(1)for _ in params]
self.weights = [self.iterations] + ms + vs + vhats
for p, g, m, v, vhat, tg in zip(params, grads, ms, vs, vhats, gs):
sum_grad = tg + g
avg_grad = sum_grad / self.accum_iters_float
m_t =(self.beta_1 * m)+(1.- self.beta_1)* avg_grad
v_t =(self.beta_2 * v)+(1.- self.beta_2)* K.square(avg_grad)
if self.amsgrad:
vhat_t = K.maximum(vhat, v_t)
p_t = p - lr_t * m_t /(K.sqrt(vhat_t)+ self.epsilon)
self.updates.append(K.update(vhat,(1 - update_switch)* vhat + update_switch * vhat_t))
else:
p_t = p - lr_t * m_t /(K.sqrt(v_t)+ self.epsilon)
self.updates.append(K.update(m,(1 - update_switch)* m + update_switch * m_t))
self.updates.append(K.update(v,(1 - update_switch)* v + update_switch * v_t))
self.updates.append(K.update(tg,(1 - update_switch)* sum_grad))
new_p = p_t
if getattr(p, 'constraint', None)is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p,(1 - update_switch)* p + update_switch * new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)) ,
'beta_1': float(K.get_value(self.beta_1)) ,
'beta_2': float(K.get_value(self.beta_2)) ,
'decay': float(K.get_value(self.decay)) ,
'epsilon': self.epsilon,
'amsgrad': self.amsgrad}
base_config = super(AdamAccumulate, self ).get_config()
return dict(list(base_config.items())+ list(config.items()))
|
Understanding Clouds from Satellite Images
|
5,644,971 |
epochs = 15
batch_size = 64<train_model>
|
def post_process(probability, threshold, min_size):
mask = cv2.threshold(probability, threshold, 1, cv2.THRESH_BINARY)[1]
num_component, component = cv2.connectedComponents(mask.astype(np.uint8))
predictions = np.zeros(( 350, 525), np.float32)
num = 0
for c in range(1, num_component):
p =(component == c)
if p.sum() > min_size:
predictions[p] = 1
num += 1
return predictions, num
|
Understanding Clouds from Satellite Images
|
5,644,971 |
history = model.fit_generator(datagen.flow(xtrain,ytrain, batch_size=batch_size),
epochs=epochs,
validation_data=(xval,yval),
verbose=1,
steps_per_epoch=xtrain.shape[0] // batch_size,
callbacks=[lr_reduction] )<save_to_csv>
|
train_df = pd.read_csv('.. /input/understanding_cloud_organization/train.csv')
train_df['ImageId'] = train_df['Image_Label'].apply(lambda x: x.split('_')[0])
train_df['ClassId'] = train_df['Image_Label'].apply(lambda x: x.split('_')[1])
train_df['hasMask'] = ~ train_df['EncodedPixels'].isna()
print(train_df.shape)
train_df.head()
|
Understanding Clouds from Satellite Images
|
5,644,971 |
predictions = model.predict_classes(test, verbose=1)
submissions = pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) ,
"Label": predictions})
submissions.to_csv("mnist2908.csv", index=False, header=True )<import_modules>
|
mask_count_df = train_df.groupby('ImageId' ).agg(np.sum ).reset_index()
mask_count_df.sort_values('hasMask', ascending=False, inplace=True)
print(mask_count_df.shape)
mask_count_df.head()
|
Understanding Clouds from Satellite Images
|
5,644,971 |
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC<load_from_csv>
|
sub_df = pd.read_csv('.. /input/understanding_cloud_organization/sample_submission.csv')
sub_df['ImageId'] = sub_df['Image_Label'].apply(lambda x: x.split('_')[0])
test_imgs = pd.DataFrame(sub_df['ImageId'].unique() , columns=['ImageId'] )
|
Understanding Clouds from Satellite Images
|
5,644,971 |
train_data = pd.read_csv('.. /input/train.csv')
test_data = pd.read_csv('.. /input/test.csv' )<split>
|
def np_resize(img, input_shape):
height, width = input_shape
return cv2.resize(img,(width, height))
def mask2rle(img):
pixels= img.T.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return ' '.join(str(x)for x in runs)
def rle2mask(rle, input_shape):
width, height = input_shape[:2]
mask= np.zeros(width*height ).astype(np.uint8)
array = np.asarray([int(x)for x in rle.split() ])
starts = array[0::2]
lengths = array[1::2]
current_position = 0
for index, start in enumerate(starts):
mask[int(start):int(start+lengths[index])] = 1
current_position += lengths[index]
return mask.reshape(height, width ).T
def build_masks(rles, input_shape, reshape=None):
depth = len(rles)
if reshape is None:
masks = np.zeros(( *input_shape, depth))
else:
masks = np.zeros(( *reshape, depth))
for i, rle in enumerate(rles):
if type(rle)is str:
if reshape is None:
masks[:, :, i] = rle2mask(rle, input_shape)
else:
mask = rle2mask(rle, input_shape)
reshaped_mask = np_resize(mask, reshape)
masks[:, :, i] = reshaped_mask
return masks
def build_rles(masks, reshape=None):
width, height, depth = masks.shape
rles = []
for i in range(depth):
mask = masks[:, :, i]
if reshape:
mask = mask.astype(np.float32)
mask = np_resize(mask, reshape ).astype(np.int64)
rle = mask2rle(mask)
rles.append(rle)
return rles
|
Understanding Clouds from Satellite Images
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.