kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
3,525,312
all_set[all_set['Deck'] == 'G']<feature_engineering>
df_result_aggs = pd.DataFrame() df_result_filter_aggs = pd.DataFrame() df_result_season = df_result[(df_result["Season"]>=(this_season - total_season)) &(df_result["Season"]<(this_season-1)) ] for value in range(16): df_result_agg = df_result_season[df_result_season["SeedDiff"]==value].groupby("SeedDiff" ).agg({"upset": ["mean", "count"]}) df_result_agg.columns = [col[0]+"_"+col[1]+"_"+"all" for col in df_result_agg.columns] df_result_filter_agg = df_result_season[df_result_season["SeedDiff"]==value].groupby("Seed_combi" ).agg({"upset": ["mean", "count"]}) df_result_filter_agg.columns = [col[0]+"_"+col[1] for col in df_result_filter_agg.columns] if value==0: df_result_agg["upset_mean_all"] = 0.5 df_result_filter_agg["upset_mean"] = 0.5 df_result_aggs = pd.concat([df_result_aggs, df_result_agg]) df_result_filter_aggs = pd.concat([df_result_filter_aggs, df_result_filter_agg]) df_result_aggs df_result_filter_aggs.tail(10 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
deck_fare = {} for deck in all_set['Deck'].unique() : if len(deck)== 1 and deck in 'ABCDEF': deck_fare[deck] = all_set[ (all_set['Cabin'].apply(lambda x: True if type(x)== str else False)) & (all_set['Deck'] == deck) ]['Fare'].mean() deck_fare<feature_engineering>
df_result = df_result.join(df_result_aggs, how='left', on="SeedDiff" ).join(df_result_filter_aggs, how='left', on='Seed_combi') df_result["upset_prob"] = [m if c > 20 else a for a, m, c in zip(df_result["upset_mean_all"], df_result["upset_mean"], df_result["upset_count"])] df_result.tail()
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
def find_deck(fare): dist = 1000 res = 'F' for key in deck_fare.keys() : new_dist = np.abs(fare - deck_fare[key]) if new_dist < dist: dist = new_dist res = key return res all_set.loc[all_set['Cabin'].isna() , 'Deck'] = all_set['Fare'].apply(find_deck )<feature_engineering>
valid = df_result[(df_result["Season"]==(this_season-1)) ] log_loss(valid['upset'], valid['upset_prob'] )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['Family'] = 1 + all_set['SibSp'] + all_set['Parch'] all_set['Alone'] = all_set['Family'].apply(lambda x: 1 if x == 1 else 0 )<feature_engineering>
valid = df_result[(df_result["Season"]==(this_season-1)) ] valid = valid.join(df_result_aggs.drop("upset_count_all", axis=1), how='left', on='SeedDiff') valid.fillna(0, inplace=True) log_loss(valid['upset'], valid['upset_prob_manually'] )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
age_by_title = {} for title in all_set['Title'].unique() : age_by_title[title] = all_set[ (all_set['Age'].apply(lambda x: True if type(x)== float else False)) & (all_set['Title'] == title) ]['Age'].mean() age_by_title<feature_engineering>
log_loss(valid['upset'], np.clip(valid['upset_prob_manually'], 0.05, 0.95))
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set.loc[all_set['Age'].isna() , 'Age'] = all_set['Title'].apply(lambda x: age_by_title[x] )<categorify>
df_seed_2019 = df_seed[df_seed["Season"]==2019]
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['AgeBin'] = pd.qcut(all_set['Age'], 5) all_set['AgeCode'] = all_set['AgeBin'] all_set = label_encode(all_set, 'AgeCode' )<feature_engineering>
this_season=2019 total_season=10 train = df_result[(df_result["Season"]>=(this_season - total_season)) ] print(train.shape) df_result["Seed_combi"]=[str(ws)+'_'+str(ls)if ws<ls else str(ls)+'_'+str(ws)for ws, ls in zip(df_result["WSeed"], df_result["LSeed"])] df_result.head()
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['AgeDist'] = 1/ np.exp(np.abs(all_set['Age'] - all_set[all_set['Survived'] == 1]['Age'].median()))<categorify>
df_result_aggs = pd.DataFrame() df_result_filter_aggs = pd.DataFrame() for value in range(16): df_result_agg = df_result[df_result["SeedDiff"]==value].groupby("SeedDiff" ).agg({"upset": ["mean", "count"]}) df_result_agg.columns = [col[0]+"_"+col[1]+"_"+"all" for col in df_result_agg.columns] df_result_filter_agg = df_result[df_result["SeedDiff"]==value].groupby("Seed_combi" ).agg({"upset": ["mean", "count"]}) df_result_filter_agg.columns = [col[0]+"_"+col[1] for col in df_result_filter_agg.columns] if value==0: df_result_agg["upset_mean_all"] = 0.5 df_result_filter_agg["upset_mean"] = 0.5 df_result_aggs = pd.concat([df_result_aggs, df_result_agg]) df_result_filter_aggs = pd.concat([df_result_filter_aggs, df_result_filter_agg]) df_result_aggs df_result_filter_aggs.tail(10 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set = label_encode(all_set, 'Sex') compare(all_set, 'Sex' )<categorify>
df_result_aggs.loc[0, 'upset_mean_all'] = 0.5 df_result_aggs.loc[10, 'upset_mean_all'] =(0.0 + df_result_aggs.loc[11, 'upset_mean_all'])/ 2 df_result_aggs.loc[11, 'upset_mean_all'] =(0.0 + df_result_aggs.loc[15, 'upset_mean_all'])/ 2 df_result_aggs.loc[12, 'upset_mean_all'] =(0.0 + df_result_aggs.loc[15, 'upset_mean_all'])/ 2 df_result_aggs.loc[13, 'upset_mean_all'] =(0.0 + df_result_aggs.loc[15, 'upset_mean_all'])/ 2 df_result_aggs.loc[14, 'upset_mean_all'] =(0.0 + df_result_aggs.loc[15, 'upset_mean_all'])/ 2 df_result_aggs = df_result_aggs.fillna(-1) sns.barplot(df_result_aggs.index, df_result_aggs.upset_mean_all) plt.title('probability of upset based on past result aggretation') plt.show()
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set = label_encode(all_set, 'Embarked') compare(all_set, 'Embarked' )<categorify>
test = pd.read_csv(".. /input/WSampleSubmissionStage2.csv") test = pd.DataFrame(np.array([ID.split("_")for ID in test["ID"]]), columns=["Season", "TeamA", "TeamB"], dtype=int) test.head(3) test = test.merge(df_seed_2019, how='left', left_on=["Season", "TeamA"], right_on=["Season", "TeamID"]) test = test.rename(columns={"seed_int": "TeamA_seed"} ).drop("TeamID", axis=1) test = test.merge(df_seed_2019, how='left', left_on=["Season", "TeamB"], right_on=["Season", "TeamID"]) test = test.rename(columns={"seed_int": "TeamB_seed"} ).drop("TeamID", axis=1) test['SeedDiff'] = np.abs(test.TeamA_seed - test.TeamB_seed) test.head(3 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set = label_encode(all_set, 'Deck') compare(all_set, 'Deck' )<count_values>
test["Seed_combi"]=[str(a)+'_'+str(b)if a<b else str(b)+'_'+str(a)for a, b in zip(test["TeamA_seed"], test["TeamB_seed"])] test.head() test = test.join(df_result_aggs, how='left', on="SeedDiff" ).join(df_result_filter_aggs, how='left', on='Seed_combi' ).fillna(-1) test["upset_prob"] = [m if c > 20 else a for a, m, c in zip(test["upset_mean_all"], test["upset_mean"], test["upset_count"])] test["win_prob"] = [(1-upset_prob)if teamA<teamB else upset_prob if teamA>teamB else 0.5 for teamA, teamB, upset_prob in zip(test['TeamA_seed'], test['TeamB_seed'], test['upset_prob'])] test.tail()
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['Title'].value_counts()<count_unique_values>
submit = pd.read_csv(".. /input/WSampleSubmissionStage2.csv") submit["Pred"] = test['win_prob'] submit.to_csv("submission_agg_all_manually_noclip.csv", index=False) submit.head()
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
<categorify><EOS>
clipped_sub = np.clip(test['win_prob'], 0.05, 0.95) submit = pd.read_csv(".. /input/WSampleSubmissionStage2.csv") submit["Pred"] = clipped_sub submit.to_csv("submission_agg_all_manually_cliped.csv", index=False) submit.head()
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
<SOS> metric: LogLoss Kaggle data source: womens-machine-learning-competition-2019<categorify>
import numpy as np import pandas as pd from sklearn.metrics import log_loss from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import ExtraTreesClassifier
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
all_set = label_encode(all_set, 'Title') compare(all_set, 'Title' )<feature_engineering>
teams = pd.read_csv('.. /input/wdatafiles/WTeams.csv') teams2 = pd.read_csv('.. /input/wdatafiles/WTeamSpellings.csv', encoding='latin-1') season_cresults = pd.read_csv('.. /input/wdatafiles/WRegularSeasonCompactResults.csv') season_dresults = pd.read_csv('.. /input/wdatafiles/WRegularSeasonDetailedResults.csv') tourney_cresults = pd.read_csv('.. /input/wdatafiles/WNCAATourneyCompactResults.csv') tourney_dresults = pd.read_csv('.. /input/wdatafiles/WNCAATourneyDetailedResults.csv') slots = pd.read_csv('.. /input/wdatafiles/WNCAATourneySlots.csv') seeds = pd.read_csv('.. /input/wdatafiles/WNCAATourneySeeds.csv') seeds = {'_'.join(map(str,[int(k1),k2])) :int(v[1:3])for k1, v, k2 in seeds[['Season', 'Seed', 'TeamID']].values} seeds = {**seeds, **{k.replace('2018_','2019_'):seeds[k] for k in seeds if '2018_' in k}} cities = pd.read_csv('.. /input/wdatafiles/WCities.csv') gcities = pd.read_csv('.. /input/wdatafiles/WGameCities.csv') seasons = pd.read_csv('.. /input/wdatafiles/WSeasons.csv') sub = pd.read_csv('.. /input/WSampleSubmissionStage2.csv' )
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
all_set['FarePerFamilyMember'] = all_set['Fare'] / all_set['Family'] all_set['FareBin'] = pd.qcut(all_set['Fare'], 5) all_set['FareCode'] = all_set['FareBin'] all_set = label_encode(all_set, 'FareCode') all_set['Fare'] = all_set['Fare'].apply(lambda x: np.log(x)if x > 0 else np.log(3.0))<drop_column>
teams2 = teams2.groupby(by='TeamID', as_index=False)['TeamNameSpelling'].count() teams2.columns = ['TeamID', 'TeamNameCount'] teams = pd.merge(teams, teams2, how='left', on=['TeamID']) del teams2
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
all_tmp = all_set.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin', 'AgeBin', 'AgeCode', 'AgeDist', 'FareBin', 'FareCode'] )<categorify>
season_cresults['ST'] = 'S' season_dresults['ST'] = 'S' tourney_cresults['ST'] = 'T' tourney_dresults['ST'] = 'T' games = pd.concat(( season_dresults, tourney_dresults), axis=0, ignore_index=True) games.reset_index(drop=True, inplace=True) games['WLoc'] = games['WLoc'].map({'A': 1, 'H': 2, 'N': 3} )
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
all_dum = pd.get_dummies(all_tmp, drop_first=True) print(all_dum.shape) train_set = all_dum[all_dum['Survived'] < 3].copy() test_set = all_dum[all_dum['Survived'] == 3].copy()<prepare_x_and_y>
games['ID'] = games.apply(lambda r: '_'.join(map(str, [r['Season']]+sorted([r['WTeamID'],r['LTeamID']]))), axis=1) games['IDTeams'] = games.apply(lambda r: '_'.join(map(str, sorted([r['WTeamID'],r['LTeamID']]))), axis=1) games['Team1'] = games.apply(lambda r: sorted([r['WTeamID'],r['LTeamID']])[0], axis=1) games['Team2'] = games.apply(lambda r: sorted([r['WTeamID'],r['LTeamID']])[1], axis=1) games['IDTeam1'] = games.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team1']])) , axis=1) games['IDTeam2'] = games.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team2']])) , axis=1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
X = train_set.copy() try: X.drop(columns=['Survived'], inplace=True) except: pass y = train_set['Survived'].copy() scaler = StandardScaler().fit(X) scl_X = scaler.transform(X) tX = test_set.copy() try: tX.drop(columns=['Survived'], inplace=True) except: pass scl_tX = scaler.transform(tX )<split>
games['Team1Seed'] = games['IDTeam1'].map(seeds ).fillna(0) games['Team2Seed'] = games['IDTeam2'].map(seeds ).fillna(0 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
train_X, val_X, train_y, val_y = train_test_split(scl_X, y, test_size=0.33, random_state=42, stratify=y )<train_model>
games['ScoreDiff'] = games['WScore'] - games['LScore'] games['Pred'] = games.apply(lambda r: 1.if sorted([r['WTeamID'],r['LTeamID']])[0]==r['WTeamID'] else 0., axis=1) games['ScoreDiffNorm'] = games.apply(lambda r: r['ScoreDiff'] * -1 if r['Pred'] == 0.else r['ScoreDiff'], axis=1) games['SeedDiff'] = games['Team1Seed'] - games['Team2Seed'] games = games.fillna(-1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
rfc = RandomForestClassifier(n_estimators=100) rfc.fit(train_X, train_y) score = rfc.score(val_X, val_y) print('RandomForestClassifier =', score) pred_y = rfc.predict(val_X) target_names = ['DEAD', 'SURVIVED'] print(classification_report(val_y, pred_y,target_names=target_names))<find_best_params>
sub['WLoc'] = 3 sub['Season'] = sub['ID'].map(lambda x: x.split('_')[0]) sub['Season'] = sub['ID'].map(lambda x: x.split('_')[0]) sub['Season'] = sub['Season'].astype(int) sub['Team1'] = sub['ID'].map(lambda x: x.split('_')[1]) sub['Team2'] = sub['ID'].map(lambda x: x.split('_')[2]) sub['IDTeams'] = sub.apply(lambda r: '_'.join(map(str, [r['Team1'], r['Team2']])) , axis=1) sub['IDTeam1'] = sub.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team1']])) , axis=1) sub['IDTeam2'] = sub.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team2']])) , axis=1) sub['Team1Seed'] = sub['IDTeam1'].map(seeds ).fillna(0) sub['Team2Seed'] = sub['IDTeam2'].map(seeds ).fillna(0) sub['SeedDiff'] = sub['Team1Seed'] - sub['Team2Seed'] sub = sub.fillna(-1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
best_model = 0 best_score = score<find_best_params>
games = pd.merge(games, gb, how='left', left_on='IDTeams', right_on='IDTeams_c_score') sub = pd.merge(sub, gb, how='left', left_on='IDTeams', right_on='IDTeams_c_score' )
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
clfs = [] clfs.append(( 'ada', AdaBoostClassifier)) clfs.append(( 'bag', BaggingClassifier)) clfs.append(( 'rnd', RandomForestClassifier)) clfs.append(( 'knn', KNeighborsClassifier)) clfs.append(( 'mlp', MLPClassifier)) clfs.append(( 'ext', ExtraTreesClassifier)) clfs.append(( 'log', LogisticRegression)) clfs.append(( 'gbm', GradientBoostingClassifier)) params = [] params.append({'n_estimators': np.arange(10,500,10), 'learning_rate':[float(x/100.) for x in np.arange(1,10)]}) params.append({'n_estimators': np.arange(10,500,10)}) params.append({'n_estimators': np.arange(10,500,10)}) params.append({'n_neighbors': np.arange(3,15)}) params.append({'hidden_layer_sizes': [(100,),(200,),(300,),(400,),(500,)]}) params.append({'n_estimators': np.arange(10,200,10)}) params.append({'max_iter': np.arange(10,500,10)}) params.append({'n_estimators': np.arange(10,500,10), 'learning_rate':[float(x/100.) for x in np.arange(1,10)], 'max_depth':np.arange(3,10)} )<train_on_grid>
col = [c for c in games.columns if c not in ['ID', 'DayNum', 'ST', 'Team1', 'Team2', 'IDTeams', 'IDTeam1', 'IDTeam2', 'WTeamID', 'WScore', 'LTeamID', 'LScore', 'NumOT', 'Pred', 'ScoreDiff', 'ScoreDiffNorm', 'WLoc'] + c_score_col]
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
best_estimators = [] best_params = [] estimators_weights = [] k = len(params) for idx in range(len(clfs)) : gs = RandomizedSearchCV(clfs[idx][1]() , params[idx], cv=5) gs.fit(train_X, train_y) estimators_weights.append(gs.score(val_X, val_y)) best_estimators.append(gs.best_estimator_) best_params.append(gs.best_params_) print(k, clfs[idx][0], gs.best_params_) k -= 1<define_variables>
model = ExtraTreesClassifier(n_estimators=200) model.fit(games[col].fillna(-1), games['Pred']) predictions = model.predict(games[col].fillna(-1)).clip(0,1) print('Log Loss:', log_loss(games['Pred'], predictions))
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
estimator_list = list(zip([name for(name, model)in clfs], best_estimators))<train_model>
sub['Pred'] = model.predict(sub[col].fillna(-1)).clip(1,0) sub[['ID', 'Pred']].to_csv('submission_et.csv', index=False )
Google Cloud & NCAA® ML Competition 2019-Women's
3,317,893
<predict_on_test><EOS>
FileLink('./submission_et.csv' )
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
<SOS> metric: LogLoss Kaggle data source: womens-machine-learning-competition-2019<train_model>
import numpy as np import pandas as pd from sklearn.metrics import log_loss from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import AdaBoostClassifier
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
fit_X = np.zeros(( train_y.shape[0], len(best_estimators))) fit_X = pd.DataFrame(fit_X) pred_X = np.zeros(( val_y.shape[0], len(best_estimators))) pred_X = pd.DataFrame(pred_X) test_X = np.zeros(( scl_tX.shape[0], len(best_estimators))) test_X = pd.DataFrame(test_X) print("Fitting models.") cols = list() for i,(name, m)in enumerate(estimator_list): print("%s..." % name, end=" ", flush=False) fit_X.iloc[:, i] = m.predict_proba(train_X)[:, 1] pred_X.iloc[:, i] = m.predict_proba(val_X)[:, 1] test_X.iloc[:, i] = m.predict_proba(scl_tX)[:, 1] cols.append(name) print("done") fit_X.columns = cols pred_X.columns = cols test_X.columns = cols<train_on_grid>
teams = pd.read_csv('.. /input/wdatafiles/WTeams.csv') teams2 = pd.read_csv('.. /input/wdatafiles/WTeamSpellings.csv', encoding='latin-1') season_cresults = pd.read_csv('.. /input/wdatafiles/WRegularSeasonCompactResults.csv') season_dresults = pd.read_csv('.. /input/wdatafiles/WRegularSeasonDetailedResults.csv') tourney_cresults = pd.read_csv('.. /input/wdatafiles/WNCAATourneyCompactResults.csv') tourney_dresults = pd.read_csv('.. /input/wdatafiles/WNCAATourneyDetailedResults.csv') slots = pd.read_csv('.. /input/wdatafiles/WNCAATourneySlots.csv') seeds = pd.read_csv('.. /input/wdatafiles/WNCAATourneySeeds.csv') seeds = {'_'.join(map(str,[int(k1),k2])) :int(v[1:3])for k1, v, k2 in seeds[['Season', 'Seed', 'TeamID']].values} seeds = {**seeds, **{k.replace('2018_','2019_'):seeds[k] for k in seeds if '2018_' in k}} cities = pd.read_csv('.. /input/wdatafiles/WCities.csv') gcities = pd.read_csv('.. /input/wdatafiles/WGameCities.csv') seasons = pd.read_csv('.. /input/wdatafiles/WSeasons.csv') sub = pd.read_csv('.. /input/WSampleSubmissionStage1.csv' )
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
meta_estimator = GradientBoostingClassifier() meta_params = {'n_estimators': np.arange(10,500,10), 'learning_rate':[float(x/100.) for x in np.arange(1,10)], 'max_depth':np.arange(3,10)} meta_estimator = RandomizedSearchCV(GradientBoostingClassifier() , meta_params, cv=5) meta_estimator.fit(fit_X, train_y) score = meta_estimator.score(pred_X, val_y) print('MetaEstimator =', score) if score > best_score: best_model = 2 best_score = score<predict_on_test>
teams2 = teams2.groupby(by='TeamID', as_index=False)['TeamNameSpelling'].count() teams2.columns = ['TeamID', 'TeamNameCount'] teams = pd.merge(teams, teams2, how='left', on=['TeamID']) del teams2
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
pred_y = meta_estimator.predict(pred_X) target_names = ['DEAD', 'SURVIVED'] print(classification_report(val_y, pred_y,target_names=target_names))<train_model>
season_cresults['ST'] = 'S' season_dresults['ST'] = 'S' tourney_cresults['ST'] = 'T' tourney_dresults['ST'] = 'T' games = pd.concat(( season_dresults, tourney_dresults), axis=0, ignore_index=True) games.reset_index(drop=True, inplace=True) games['WLoc'] = games['WLoc'].map({'A': 1, 'H': 2, 'N': 3} )
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
models = ['RandomForestClassifier', 'VotingClassifier', 'MetaEstimator'] print('Best model = ', models[best_model] )<save_to_csv>
games['ID'] = games.apply(lambda r: '_'.join(map(str, [r['Season']]+sorted([r['WTeamID'],r['LTeamID']]))), axis=1) games['IDTeams'] = games.apply(lambda r: '_'.join(map(str, sorted([r['WTeamID'],r['LTeamID']]))), axis=1) games['Team1'] = games.apply(lambda r: sorted([r['WTeamID'],r['LTeamID']])[0], axis=1) games['Team2'] = games.apply(lambda r: sorted([r['WTeamID'],r['LTeamID']])[1], axis=1) games['IDTeam1'] = games.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team1']])) , axis=1) games['IDTeam2'] = games.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team2']])) , axis=1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
if best_model == 0: predictions = rfc.predict(scl_tX) elif best_model == 1: predictions = vclf.predict(scl_tX) else: predictions = meta_estimator.predict(test_X) PassengerId = test_df['PassengerId'].values results = pd.DataFrame({ 'PassengerId': PassengerId, 'Survived': predictions }) results.to_csv('results.csv', index=False )<load_from_csv>
games['Team1Seed'] = games['IDTeam1'].map(seeds ).fillna(0) games['Team2Seed'] = games['IDTeam2'].map(seeds ).fillna(0 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
gender_data = pd.read_csv('/kaggle/input/titanic/gender_submission.csv') train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv' )<drop_column>
games['ScoreDiff'] = games['WScore'] - games['LScore'] games['Pred'] = games.apply(lambda r: 1.if sorted([r['WTeamID'],r['LTeamID']])[0]==r['WTeamID'] else 0., axis=1) games['ScoreDiffNorm'] = games.apply(lambda r: r['ScoreDiff'] * -1 if r['Pred'] == 0.else r['ScoreDiff'], axis=1) games['SeedDiff'] = games['Team1Seed'] - games['Team2Seed'] games = games.fillna(-1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
train_data = train_data.drop(['Ticket', 'Cabin'], axis = 1) test_data = test_data.drop(['Ticket', 'Cabin'], axis = 1 )<feature_engineering>
sub['WLoc'] = 3 sub['Season'] = sub['ID'].map(lambda x: x.split('_')[0]) sub['Season'] = sub['ID'].map(lambda x: x.split('_')[0]) sub['Season'] = sub['Season'].astype(int) sub['Team1'] = sub['ID'].map(lambda x: x.split('_')[1]) sub['Team2'] = sub['ID'].map(lambda x: x.split('_')[2]) sub['IDTeams'] = sub.apply(lambda r: '_'.join(map(str, [r['Team1'], r['Team2']])) , axis=1) sub['IDTeam1'] = sub.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team1']])) , axis=1) sub['IDTeam2'] = sub.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team2']])) , axis=1) sub['Team1Seed'] = sub['IDTeam1'].map(seeds ).fillna(0) sub['Team2Seed'] = sub['IDTeam2'].map(seeds ).fillna(0) sub['SeedDiff'] = sub['Team1Seed'] - sub['Team2Seed'] sub = sub.fillna(-1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
df = [train_data, test_data] for row in df: row['Title'] = row.Name.str.extract('([A-Za-z]+)\.', expand=False) pd.crosstab(train_data['Title'], train_data['Sex'] )<feature_engineering>
games = pd.merge(games, gb, how='left', left_on='IDTeams', right_on='IDTeams_c_score') sub = pd.merge(sub, gb, how='left', left_on='IDTeams', right_on='IDTeams_c_score' )
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
for row in df: row['Title'] = row['Title'].replace(['Lady', 'Countess','Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') row['Title'] = row['Title'].replace('Mlle', 'Miss') row['Title'] = row['Title'].replace('Ms', 'Miss') row['Title'] = row['Title'].replace('Mme', 'Mrs') train_data[['Title', 'Survived']].groupby(['Title'], as_index=False ).mean()<categorify>
col = [c for c in games.columns if c not in ['ID', 'DayNum', 'ST', 'Team1', 'Team2', 'IDTeams', 'IDTeam1', 'IDTeam2', 'WTeamID', 'WScore', 'LTeamID', 'LScore', 'NumOT', 'Pred', 'ScoreDiff', 'ScoreDiffNorm', 'WLoc'] + c_score_col]
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} for row in df: row['Title'] = row['Title'].map(title_mapping) row['Title'] = row['Title'].fillna(0 )<drop_column>
model = AdaBoostClassifier(n_estimators=200, learning_rate=1.4) model.fit(games[col].fillna(-1), games['Pred']) predictions = model.predict(games[col].fillna(-1)).clip(0,1) print('Log Loss:', log_loss(games['Pred'], predictions))
Google Cloud & NCAA® ML Competition 2019-Women's
3,089,040
<define_variables><EOS>
sub['Pred'] = model.predict(sub[col].fillna(-1)).clip(0,1) sub[['ID', 'Pred']].to_csv('submission.csv', index=False )
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
<SOS> metric: LogLoss Kaggle data source: womens-machine-learning-competition-2019<categorify>
import numpy as np import pandas as pd from sklearn.metrics import log_loss from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import AdaBoostClassifier
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
encoder = LabelEncoder() train_data['Sex'] = encoder.fit_transform(train_data['Sex']) test_data['Sex'] = encoder.fit_transform(test_data['Sex'] )<define_variables>
teams = pd.read_csv('.. /input/wdatafiles/WTeams.csv') teams2 = pd.read_csv('.. /input/wdatafiles/WTeamSpellings.csv', encoding='latin-1') season_cresults = pd.read_csv('.. /input/wdatafiles/WRegularSeasonCompactResults.csv') season_dresults = pd.read_csv('.. /input/wdatafiles/WRegularSeasonDetailedResults.csv') tourney_cresults = pd.read_csv('.. /input/wdatafiles/WNCAATourneyCompactResults.csv') tourney_dresults = pd.read_csv('.. /input/wdatafiles/WNCAATourneyDetailedResults.csv') slots = pd.read_csv('.. /input/wdatafiles/WNCAATourneySlots.csv') seeds = pd.read_csv('.. /input/wdatafiles/WNCAATourneySeeds.csv') seeds = {'_'.join(map(str,[int(k1),k2])) :int(v[1:3])for k1, v, k2 in seeds[['Season', 'Seed', 'TeamID']].values} seeds = {**seeds, **{k.replace('2018_','2019_'):seeds[k] for k in seeds if '2018_' in k}} cities = pd.read_csv('.. /input/wdatafiles/WCities.csv') gcities = pd.read_csv('.. /input/wdatafiles/WGameCities.csv') seasons = pd.read_csv('.. /input/wdatafiles/WSeasons.csv') sub = pd.read_csv('.. /input/WSampleSubmissionStage1.csv' )
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
guess_ages = np.zeros(( 2,3)) df = [train_data, test_data] guess_ages <find_best_params>
teams2 = teams2.groupby(by='TeamID', as_index=False)['TeamNameSpelling'].count() teams2.columns = ['TeamID', 'TeamNameCount'] teams = pd.merge(teams, teams2, how='left', on=['TeamID']) del teams2
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
for row in df: for i in range(0, 2): for j in range(0, 3): guess_df = row[(row['Sex'] == i)& \ (row['Pclass'] == j+1)]['Age'].dropna() age_guess = guess_df.median() guess_ages[i,j] = int(age_guess/0.5 + 0.5)* 0.5 for i in range(0, 2): for j in range(0, 3): row.loc[(row.Age.isnull())&(row.Sex == i)&(row.Pclass == j+1),\ 'Age'] = guess_ages[i,j] row['Age'] = row['Age'].astype(int) train_data.head()<feature_engineering>
season_cresults['ST'] = 'S' season_dresults['ST'] = 'S' tourney_cresults['ST'] = 'T' tourney_dresults['ST'] = 'T' games = pd.concat(( season_dresults, tourney_dresults), axis=0, ignore_index=True) games.reset_index(drop=True, inplace=True) games['WLoc'] = games['WLoc'].map({'A': 1, 'H': 2, 'N': 3} )
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
train_data['AgeBand'] = pd.cut(train_data['Age'], 5) train_data.head()<sort_values>
games['ID'] = games.apply(lambda r: '_'.join(map(str, [r['Season']]+sorted([r['WTeamID'],r['LTeamID']]))), axis=1) games['IDTeams'] = games.apply(lambda r: '_'.join(map(str, sorted([r['WTeamID'],r['LTeamID']]))), axis=1) games['Team1'] = games.apply(lambda r: sorted([r['WTeamID'],r['LTeamID']])[0], axis=1) games['Team2'] = games.apply(lambda r: sorted([r['WTeamID'],r['LTeamID']])[1], axis=1) games['IDTeam1'] = games.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team1']])) , axis=1) games['IDTeam2'] = games.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team2']])) , axis=1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
train_data[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False ).mean().sort_values(by='AgeBand', ascending=True )<categorify>
games['Team1Seed'] = games['IDTeam1'].map(seeds ).fillna(0) games['Team2Seed'] = games['IDTeam2'].map(seeds ).fillna(0 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
train_data['AgeBand'] = encoder.fit_transform(train_data['AgeBand']) train_data.head()<categorify>
games['ScoreDiff'] = games['WScore'] - games['LScore'] games['Pred'] = games.apply(lambda r: 1.if sorted([r['WTeamID'],r['LTeamID']])[0]==r['WTeamID'] else 0., axis=1) games['ScoreDiffNorm'] = games.apply(lambda r: r['ScoreDiff'] * -1 if r['Pred'] == 0.else r['ScoreDiff'], axis=1) games['SeedDiff'] = games['Team1Seed'] - games['Team2Seed'] games = games.fillna(-1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
test_data['AgeBand'] = pd.cut(test_data['Age'], 5) test_data['AgeBand'] = encoder.fit_transform(test_data['AgeBand']) test_data.head()<sort_values>
sub['WLoc'] = 3 sub['Season'] = sub['ID'].map(lambda x: x.split('_')[0]) sub['Season'] = sub['ID'].map(lambda x: x.split('_')[0]) sub['Season'] = sub['Season'].astype(int) sub['Team1'] = sub['ID'].map(lambda x: x.split('_')[1]) sub['Team2'] = sub['ID'].map(lambda x: x.split('_')[2]) sub['IDTeams'] = sub.apply(lambda r: '_'.join(map(str, [r['Team1'], r['Team2']])) , axis=1) sub['IDTeam1'] = sub.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team1']])) , axis=1) sub['IDTeam2'] = sub.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team2']])) , axis=1) sub['Team1Seed'] = sub['IDTeam1'].map(seeds ).fillna(0) sub['Team2Seed'] = sub['IDTeam2'].map(seeds ).fillna(0) sub['SeedDiff'] = sub['Team1Seed'] - sub['Team2Seed'] sub = sub.fillna(-1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
df = [train_data, test_data] for row in df: row['FamilySize'] = row['SibSp'] + row['Parch'] + 1 train_data[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<feature_engineering>
games = pd.merge(games, gb, how='left', left_on='IDTeams', right_on='IDTeams_c_score') sub = pd.merge(sub, gb, how='left', left_on='IDTeams', right_on='IDTeams_c_score' )
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
for row in df: row['IsAlone'] = 0 row.loc[row['FamilySize'] == 1, 'IsAlone'] = 1 train_data[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False ).mean()<drop_column>
col = [c for c in games.columns if c not in ['ID', 'DayNum', 'ST', 'Team1', 'Team2', 'IDTeams', 'IDTeam1', 'IDTeam2', 'WTeamID', 'WScore', 'LTeamID', 'LScore', 'NumOT', 'Pred', 'ScoreDiff', 'ScoreDiffNorm', 'WLoc'] + c_score_col]
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
train_data = train_data.drop(['Parch', 'SibSp'], axis = 1) test_data = test_data.drop(['Parch', 'SibSp'], axis = 1 )<feature_engineering>
model = AdaBoostClassifier(n_estimators=200, learning_rate=1.4) model.fit(games[col].fillna(-1), games['Pred']) predictions = model.predict(games[col].fillna(-1)).clip(0,1) print('Log Loss:', log_loss(games['Pred'], predictions))
Google Cloud & NCAA® ML Competition 2019-Women's
3,231,074
<feature_engineering><EOS>
sub['Pred'] = model.predict(sub[col].fillna(-1)).clip(0,1) sub[['ID', 'Pred']].to_csv('submission.csv', index=False )
Google Cloud & NCAA® ML Competition 2019-Women's
6,654,012
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<install_modules>
!pip install tensorflow-gpu==1.14.0 --quiet !pip install keras==2.2.4 --quiet
Understanding Clouds from Satellite Images
6,654,012
!pip install pyspellchecker<set_options>
!pip install tta-wrapper --quiet seed = 0 seed_everything(seed) warnings.filterwarnings("ignore" )
Understanding Clouds from Satellite Images
6,654,012
np.random.seed(31415) spell = spc.SpellChecker()<categorify>
train = pd.read_csv('.. /input/understanding_cloud_organization/train.csv') submission = pd.read_csv('.. /input/understanding_cloud_organization/sample_submission.csv') train['image'] = train['Image_Label'].apply(lambda x: x.split('_')[0]) train['label'] = train['Image_Label'].apply(lambda x: x.split('_')[1]) submission['image'] = submission['Image_Label'].apply(lambda x: x.split('_')[0]) test = pd.DataFrame(submission['image'].unique() , columns=['image']) train_df = pd.pivot_table(train, index=['image'], values=['EncodedPixels'], columns=['label'], aggfunc=np.min ).reset_index() train_df.columns = ['image', 'Fish_mask', 'Flower_mask', 'Gravel_mask', 'Sugar_mask'] print('Compete set samples:', len(train_df)) print('Test samples:', len(submission)) display(train.head() )
Understanding Clouds from Satellite Images
6,654,012
def add_location_to_text(row): if row['location'] is not np.nan: return row['text']+" "+row['location'] return row['text'] def add_keywords_to_text(row): if row['keyword'] is not np.nan: return row['text']+" "+row['keyword'] return row['text'] def add_sp1(text): def prepocess_text_for_spell(words): words = list(filter(lambda x: len(x)>0, words)) return list(filter(lambda x: not x.startswith(" x[0] != x[0].capitalize() , words)) words = prepocess_text_for_spell(text.split(" ")) return len(spell.unknown(words)) def add_wc(text): return len(text.split(' ')) def number_hash(text): words = list(filter(lambda x: len(x)>0, text.split(' '))) return len(list(filter(lambda x: x.startswith(' def number_of_chars(text): return len(text) def has_keyword(keyword): return int(not keyword is np.nan) def has_location(location): return int(not location is np.nan) def apply_all_feature(df): df.loc[:,'sp1'] = df['text'].apply(add_sp1 ).values df.loc[:,'wc'] = df['text'].apply(add_wc ).values df.loc[:,'hst'] = df['text'].apply(number_hash ).values df.loc[:,'ch'] = df['text'].apply(number_of_chars ).values df.loc[:,'loc'] = df['location'].apply(has_location ).values df.loc[:,'text'] = df.apply(add_location_to_text,axis=1) df.loc[:,'text'] = df.apply(add_keywords_to_text,axis=1) df.loc[:,'hl'] = df.apply(has_location,axis=1) df.loc[:,'hk'] = df.apply(has_keyword,axis=1) def build_features(df_train,df_test,use_extra=True,use_nmf=False): Y_train = df_train['target'].values n_train = len(Y_train) n_test = len(df_test) df_train = df_train.drop('target',axis=1) vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,stop_words='english',strip_accents='ascii',min_df=0.,ngram_range=(1,2)) df = df_train.append(df_test, ignore_index = True, sort=False) assert len(df)==n_train+n_test df.loc[:,'text'] = df['text'].apply(lambda x: x.lower()) X = vectorizer.fit_transform(df['text']) if use_extra: apply_all_feature(df) X_custom = sklearn.preprocessing.scale(df[['sp1','wc','hst','ch','loc']].values,with_mean=False) X = scipy.sparse.hstack(( X,X_custom)).tocsr() if use_nmf: model = NMF(n_components=15, init='random', random_state=0) X = scipy.sparse.hstack(( X,model.fit_transform(X),model.fit_transform(X.log1p())) ).tocsr() X_train = X[:n_train] X_test = X[n_train:,:] if 'target' in df_test.columns: Y_test = df_test['target'] return X_train,X_test,Y_train,Y_test else: return X_train,X_test,Y_train,None<load_from_csv>
X_train, X_val = train_test_split(train_df, test_size=0.2, random_state=seed) X_train['set'] = 'train' X_val['set'] = 'validation' test['set'] = 'test' print('Train samples: ', len(X_train)) print('Validation samples: ', len(X_val))
Understanding Clouds from Satellite Images
6,654,012
train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") submission = pd.read_csv("/kaggle/input/nlp-getting-started/sample_submission.csv") df_train,df_test = sklearn.model_selection.train_test_split(train,test_size=0.33) X_train,X_test,Y_train,Y_test = build_features(df_train,df_test,use_extra=True,use_nmf=True )<choose_model_class>
BACKBONE = 'resnet18' BATCH_SIZE = 16 EPOCHS = 40 LEARNING_RATE = 1e-3 HEIGHT = 384 WIDTH = 480 CHANNELS = 3 N_CLASSES = 4 ES_PATIENCE = 5 RLROP_PATIENCE = 3 DECAY_DROP = 0.2 model_path = 'uNet_%s_%sx%s.h5' %(BACKBONE, HEIGHT, WIDTH )
Understanding Clouds from Satellite Images
6,654,012
rreg = RidgeClassifier(alpha=.8,solver='sag') lass = Lasso(alpha=.01) rf = RandomForestClassifier(max_depth=20, random_state=0, n_estimators=100) svm = LinearSVC(penalty='l2',max_iter=10000) svm = SVC(kernel='linear',max_iter=10000 )<predict_on_test>
train_generator = DataGenerator( directory=train_images_dest_path, dataframe=X_train, target_df=train, batch_size=BATCH_SIZE, target_size=(HEIGHT, WIDTH), n_channels=CHANNELS, n_classes=N_CLASSES, preprocessing=preprocessing, augmentation=augmentation, seed=seed) valid_generator = DataGenerator( directory=validation_images_dest_path, dataframe=X_val, target_df=train, batch_size=BATCH_SIZE, target_size=(HEIGHT, WIDTH), n_channels=CHANNELS, n_classes=N_CLASSES, preprocessing=preprocessing, seed=seed )
Understanding Clouds from Satellite Images
6,654,012
rreg.fit(X_train, Y_train) Y_pred = rreg.predict(X_test) print(sklearn.metrics.classification_report(Y_test,Y_pred))<train_model>
model = sm.Unet(backbone_name=BACKBONE, encoder_weights='imagenet', classes=N_CLASSES, activation='sigmoid', input_shape=(HEIGHT, WIDTH, CHANNELS)) checkpoint = ModelCheckpoint(model_path, monitor='val_loss', mode='min', save_best_only=True, save_weights_only=True) es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) rlrop = ReduceLROnPlateau(monitor='val_loss', mode='min', patience=RLROP_PATIENCE, factor=DECAY_DROP, min_lr=1e-6, verbose=1) metric_list = [dice_coef, sm.metrics.iou_score] callback_list = [checkpoint, es, rlrop] optimizer = RAdam(learning_rate=LEARNING_RATE, warmup_proportion=0.1) model.compile(optimizer=optimizer, loss=sm.losses.bce_dice_loss, metrics=metric_list) model.summary()
Understanding Clouds from Satellite Images
6,654,012
lass.fit(X_train, Y_train) Y_pred = list(map(lambda x: x>=.5, lass.predict(X_test))) print(sklearn.metrics.classification_report(Y_test,Y_pred))<predict_on_test>
STEP_SIZE_TRAIN = len(X_train)//BATCH_SIZE STEP_SIZE_VALID = len(X_val)//BATCH_SIZE history = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, callbacks=callback_list, epochs=EPOCHS, verbose=2 ).history
Understanding Clouds from Satellite Images
6,654,012
rf.fit(X_train, Y_train) Y_pred = rf.predict(X_test) print(sklearn.metrics.classification_report(Y_test,Y_pred))<predict_on_test>
class_names = ['Fish ', 'Flower', 'Gravel', 'Sugar '] best_tresholds = [.5,.5,.5,.35] best_masks = [25000, 20000, 22500, 15000] for index, name in enumerate(class_names): print('%s treshold=%.2f mask size=%d' %(name, best_tresholds[index], best_masks[index]))
Understanding Clouds from Satellite Images
6,654,012
svm.fit(X_train, Y_train) Y_pred = svm.predict(X_test) print(sklearn.metrics.classification_report(Y_test,Y_pred))<prepare_x_and_y>
train_metrics = get_metrics(model, train, X_train, train_images_dest_path, best_tresholds, best_masks, seed=seed, preprocessing=preprocessing, set_name='Train') display(train_metrics) validation_metrics = get_metrics(model, train, X_val, validation_images_dest_path, best_tresholds, best_masks, seed=seed, preprocessing=preprocessing, set_name='Validation') display(validation_metrics )
Understanding Clouds from Satellite Images
6,654,012
x_train,x_test,y_train,y_test = build_features(train, test, use_extra = True, use_nmf = True) kf = KFold(n_splits=5 )<find_best_model_class>
model = tta_segmentation(model, h_flip=True, v_flip=True, h_shift=(-10, 10), v_shift=(-10, 10), merge='mean' )
Understanding Clouds from Satellite Images
6,654,012
F = [] A = np.round(np.linspace(0,1,11),2) for a in tqdm(A): rreg = RidgeClassifier(alpha=a,solver='sag') f1 = [] for i,(train_index, test_index)in enumerate(kf.split(x_train)) : kf_x_train, kf_y_train = x_train[train_index], y_train[train_index] kf_x_val, kf_y_val = x_train[test_index], y_train[test_index] rreg.fit(kf_x_train, kf_y_train) y_pred = rreg.predict(kf_x_val) res = sklearn.metrics.classification_report(kf_y_val,y_pred, output_dict=True) f1.append(res['1']['f1-score']) F.append(f1 )<prepare_x_and_y>
test_df = [] for i in range(0, test.shape[0], 300): batch_idx = list(range(i, min(test.shape[0], i + 300))) batch_set = test[batch_idx[0]: batch_idx[-1]+1] test_generator = DataGenerator( directory=test_images_dest_path, dataframe=batch_set, target_df=submission, batch_size=1, target_size=(HEIGHT, WIDTH), n_channels=CHANNELS, n_classes=N_CLASSES, preprocessing=preprocessing, seed=seed, mode='predict', shuffle=False) preds = model.predict_generator(test_generator) for index, b in enumerate(batch_idx): filename = test['image'].iloc[b] image_df = submission[submission['image'] == filename].copy() pred_masks = preds[index, ].round().astype(int) pred_rles = build_rles(pred_masks, reshape=(350, 525)) image_df['EncodedPixels'] = pred_rles pred_masks_post = preds[index, ].astype('float32') for class_index in range(N_CLASSES): pred_mask = pred_masks_post[...,class_index] pred_mask = post_process(pred_mask, threshold=best_tresholds[class_index], min_size=best_masks[class_index]) pred_masks_post[...,class_index] = pred_mask pred_rles_post = build_rles(pred_masks_post, reshape=(350, 525)) image_df['EncodedPixels_post'] = pred_rles_post test_df.append(image_df) sub_df = pd.concat(test_df )
Understanding Clouds from Satellite Images
6,654,012
X_train,X_test,Y_train,Y_test = build_features(train,test,use_extra=True,use_nmf=True )<save_to_csv>
submission_df = sub_df[['Image_Label' ,'EncodedPixels']] submission_df.to_csv('submission.csv', index=False) display(submission_df.head() )
Understanding Clouds from Satellite Images
6,654,012
rreg = RidgeClassifier(alpha=.3,solver='sag') rreg.fit(X_train, Y_train) sub = rreg.predict(X_test) pd.DataFrame(np.array([test['id'].values,sub] ).T,columns=['id','target'] ).to_csv('submission.csv',sep=',', header=True, index=False )<set_options>
submission_df_post = sub_df[['Image_Label' ,'EncodedPixels_post']] submission_df_post.columns = ['Image_Label' ,'EncodedPixels'] submission_df_post.to_csv('submission_post.csv', index=False) display(submission_df_post.head() )
Understanding Clouds from Satellite Images
6,654,012
<import_modules><EOS>
if os.path.exists(train_images_dest_path): shutil.rmtree(train_images_dest_path) if os.path.exists(validation_images_dest_path): shutil.rmtree(validation_images_dest_path) if os.path.exists(test_images_dest_path): shutil.rmtree(test_images_dest_path )
Understanding Clouds from Satellite Images
6,830,010
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<import_modules>
seed(10) set_random_seed(10) %matplotlib inline
Understanding Clouds from Satellite Images
6,830,010
from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV<load_from_csv>
test_imgs_folder = '.. /input/understanding_cloud_organization/test_images/' train_imgs_folder = '.. /input/understanding_cloud_organization/train_images/' num_cores = multiprocessing.cpu_count()
Understanding Clouds from Satellite Images
6,830,010
train = pd.read_csv(".. /input/titanic/train.csv") test = pd.read_csv(".. /input/titanic/test.csv" )<count_missing_values>
train_df = pd.read_csv('.. /input/understanding_cloud_organization/train.csv') train_df.head()
Understanding Clouds from Satellite Images
6,830,010
train.isnull().sum()<count_missing_values>
train_df = train_df[~train_df['EncodedPixels'].isnull() ] train_df['Image'] = train_df['Image_Label'].map(lambda x: x.split('_')[0]) train_df['Class'] = train_df['Image_Label'].map(lambda x: x.split('_')[1]) classes = train_df['Class'].unique() train_df = train_df.groupby('Image')['Class'].agg(set ).reset_index() for class_name in classes: train_df[class_name] = train_df['Class'].map(lambda x: 1 if class_name in x else 0) train_df.head()
Understanding Clouds from Satellite Images
6,830,010
train.isnull().sum()<feature_engineering>
img_2_ohe_vector = {img:vec for img, vec in zip(train_df['Image'], train_df.iloc[:, 2:].values)}
Understanding Clouds from Satellite Images
6,830,010
train.loc[:, "Age"] = train.groupby(["Pclass", "Sex"] ).Age.apply(lambda x: x.fillna(x.median())) test.loc[:, "Age"] = test.groupby(["Pclass", "Sex"] ).Age.apply(lambda x : x.fillna(x.median()))<drop_column>
train_imgs, val_imgs = train_test_split(train_df['Image'].values, test_size=0.2, stratify=train_df['Class'].map(lambda x: str(sorted(list(x)))) , random_state=10 )
Understanding Clouds from Satellite Images
6,830,010
train.drop(["Cabin", "Name", "Ticket", "Fare"], axis = "columns", inplace = True) test.drop(["Cabin", "Name", "Ticket", "Fare"], axis = "columns", inplace = True )<prepare_x_and_y>
class DataGenenerator(Sequence): def __init__(self, images_list=None, folder_imgs=train_imgs_folder, batch_size=32, shuffle=True, augmentation=None, resized_height=224, resized_width=224, num_channels=3): self.batch_size = batch_size self.shuffle = shuffle self.augmentation = augmentation if images_list is None: self.images_list = os.listdir(folder_imgs) else: self.images_list = deepcopy(images_list) self.folder_imgs = folder_imgs self.len = len(self.images_list)// self.batch_size self.resized_height = resized_height self.resized_width = resized_width self.num_channels = num_channels self.num_classes = 4 self.is_test = not 'train' in folder_imgs if not shuffle and not self.is_test: self.labels = [img_2_ohe_vector[img] for img in self.images_list[:self.len*self.batch_size]] def __len__(self): return self.len def on_epoch_start(self): if self.shuffle: random.shuffle(self.images_list) def __getitem__(self, idx): current_batch = self.images_list[idx * self.batch_size:(idx + 1)* self.batch_size] X = np.empty(( self.batch_size, self.resized_height, self.resized_width, self.num_channels)) y = np.empty(( self.batch_size, self.num_classes)) for i, image_name in enumerate(current_batch): path = os.path.join(self.folder_imgs, image_name) img = cv2.resize(cv2.imread(path),(self.resized_height, self.resized_width)).astype(np.float32) if not self.augmentation is None: augmented = self.augmentation(image=img) img = augmented['image'] X[i, :, :, :] = img/255.0 if not self.is_test: y[i, :] = img_2_ohe_vector[image_name] return X, y def get_labels(self): if self.shuffle: images_current = self.images_list[:self.len*self.batch_size] labels = [img_2_ohe_vector[img] for img in images_current] else: labels = self.labels return np.array(labels )
Understanding Clouds from Satellite Images
6,830,010
X = train.drop(["PassengerId", "Survived"], axis = "columns") y = train.Survived<split>
albumentations_train = Compose([ VerticalFlip() , HorizontalFlip() , Rotate(limit=30), GridDistortion() ], p=1 )
Understanding Clouds from Satellite Images
6,830,010
X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state = 1 )<define_variables>
data_generator_train = DataGenenerator(train_imgs, augmentation=albumentations_train) data_generator_train_eval = DataGenenerator(train_imgs, shuffle=False) data_generator_val = DataGenenerator(val_imgs, shuffle=False )
Understanding Clouds from Satellite Images
6,830,010
numerical_cols = ["Age", "Parch", "SibSp"] categorical_cols = ["Pclass", "Sex", "Embarked"]<categorify>
class PrAucCallback(Callback): def __init__(self, data_generator, num_workers=num_cores, early_stopping_patience=5, plateau_patience=3, reduction_rate=0.5, stage='train', checkpoints_path='checkpoints/'): super(Callback, self ).__init__() self.data_generator = data_generator self.num_workers = num_workers self.class_names = ['Fish', 'Flower', 'Sugar', 'Gravel'] self.history = [[] for _ in range(len(self.class_names)+ 1)] self.early_stopping_patience = early_stopping_patience self.plateau_patience = plateau_patience self.reduction_rate = reduction_rate self.stage = stage self.best_pr_auc = -float('inf') if not os.path.exists(checkpoints_path): os.makedirs(checkpoints_path) self.checkpoints_path = checkpoints_path def compute_pr_auc(self, y_true, y_pred): pr_auc_mean = 0 print(f" {' ") for class_i in range(len(self.class_names)) : precision, recall, _ = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i]) pr_auc = auc(recall, precision) pr_auc_mean += pr_auc/len(self.class_names) print(f"PR AUC {self.class_names[class_i]}, {self.stage}: {pr_auc:.3f} ") self.history[class_i].append(pr_auc) print(f" {' PR AUC mean, {self.stage}: {pr_auc_mean:.3f} {' ") self.history[-1].append(pr_auc_mean) return pr_auc_mean def is_patience_lost(self, patience): if len(self.history[-1])> patience: best_performance = max(self.history[-1][-(patience + 1):-1]) return best_performance == self.history[-1][-(patience + 1)] and best_performance >= self.history[-1][-1] def early_stopping_check(self, pr_auc_mean): if self.is_patience_lost(self.early_stopping_patience): self.model.stop_training = True def model_checkpoint(self, pr_auc_mean, epoch): if pr_auc_mean > self.best_pr_auc: for checkpoint in glob.glob(os.path.join(self.checkpoints_path, 'classifier_densenet169_epoch_*')) : os.remove(checkpoint) self.best_pr_auc = pr_auc_mean self.model.save(os.path.join(self.checkpoints_path, f'classifier_densenet169_epoch_{epoch}_val_pr_auc_{pr_auc_mean}.h5')) print(f" {' Saved new checkpoint {' ") def reduce_lr_on_plateau(self): if self.is_patience_lost(self.plateau_patience): new_lr = float(keras.backend.get_value(self.model.optimizer.lr)) * self.reduction_rate keras.backend.set_value(self.model.optimizer.lr, new_lr) print(f" {' Reduced learning rate to {new_lr}. {' ") def on_epoch_end(self, epoch, logs={}): y_pred = self.model.predict_generator(self.data_generator, workers=self.num_workers) y_true = self.data_generator.get_labels() pr_auc_mean = self.compute_pr_auc(y_true, y_pred) if self.stage == 'val': self.early_stopping_check(pr_auc_mean) self.model_checkpoint(pr_auc_mean, epoch) self.reduce_lr_on_plateau() def get_pr_auc_history(self): return self.history
Understanding Clouds from Satellite Images
6,830,010
numerical_transform = StandardScaler() categorical_tranform = Pipeline(steps = [ ("imputer", SimpleImputer(strategy = "most_frequent")) , ("onehot", OneHotEncoder(handle_unknown = "ignore")) ]) preprocessor = ColumnTransformer(transformers=[ ("num", numerical_transform, numerical_cols), ("cat", categorical_tranform, categorical_cols) ] )<train_on_grid>
train_metric_callback = PrAucCallback(data_generator_train_eval) val_callback = PrAucCallback(data_generator_val, stage='val' )
Understanding Clouds from Satellite Images
6,830,010
classifier = Pipeline(steps= [ ("preprocessor", preprocessor), ("model", LogisticRegression(max_iter = 10000)) ]) param_grid = { 'model__C': [0.001, 0.01, 0.1,1, 10, 100, 1000] } clf_LR = GridSearchCV(classifier, param_grid, cv = 5, scoring= "accuracy") clf_LR.fit(X_train, y_train )<find_best_score>
def get_model() : K.clear_session() base_model = DenseNet169(weights='imagenet', include_top=False, pooling='avg', input_shape=(224, 224, 3)) x = base_model.output y_pred = Dense(4, activation='sigmoid' )(x) return Model(inputs=base_model.input, outputs=y_pred) model = get_model()
Understanding Clouds from Satellite Images
6,830,010
print(clf_LR.best_params_) print(clf_LR.best_score_ )<train_on_grid>
for base_layer in model.layers[:-1]: base_layer.trainable = False model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy') history_0 = model.fit_generator(generator=data_generator_train, validation_data=data_generator_val, epochs=1, callbacks=[train_metric_callback, val_callback], workers=num_cores, verbose=1 )
Understanding Clouds from Satellite Images
6,830,010
classifier = Pipeline(steps= [ ("preprocessor", preprocessor), ("model", SVC()) ]) param_grid = { 'model__C': [0.01, 0.1,1, 10, 100], "model__gamma": [0.001, 0.01, 0.1, 1] } clf_SVC = GridSearchCV(classifier, param_grid, cv = 5, scoring= "accuracy") clf_SVC.fit(X_train, y_train )<find_best_params>
for base_layer in model.layers[:-1]: base_layer.trainable = True model.compile(optimizer=Adam(lr=1e-5), loss='binary_crossentropy') history_1 = model.fit_generator(generator=data_generator_train, validation_data=data_generator_val, epochs=2, callbacks=[train_metric_callback, val_callback], workers=num_cores, verbose=1, initial_epoch=1 )
Understanding Clouds from Satellite Images
6,830,010
print(clf_SVC.best_params_) print(clf_SVC.best_score_ )<compute_train_metric>
model = load_model('.. /input/clouds-classifier-files/classifier_densenet169_epoch_21_val_pr_auc_0.8365921057512743.h5' )
Understanding Clouds from Satellite Images
6,830,010
models = [LogisticRegression(max_iter= 10000, C = 0.1), SVC(C = 10, gamma= 0.1), RandomForestClassifier(n_estimators= 50)] scores = [] for model in models: classifier = Pipeline(steps= [ ("preprocessor", preprocessor), ("model", model) ]) cross = cross_val_score(classifier, X_train, y_train) scores.append(np.average(cross)) scores<choose_model_class>
Image(".. /input/clouds-classifier-files/loss_hist_densenet169.png" )
Understanding Clouds from Satellite Images
6,830,010
classifier_final = Pipeline(steps= [ ("preprocessor", preprocessor), ("model", SVC(C = 10, gamma = 0.1)) ] )<train_model>
Image(".. /input/clouds-classifier-files/pr_auc_hist_densenet169.png" )
Understanding Clouds from Satellite Images
6,830,010
classifier_final.fit(X_train, y_train )<predict_on_test>
class_names = ['Fish', 'Flower', 'Sugar', 'Gravel'] def get_threshold_for_recall(y_true, y_pred, class_i, recall_threshold=0.95, precision_threshold=0.94, plot=False): precision, recall, thresholds = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i]) i = len(thresholds)- 1 best_recall_threshold = None while best_recall_threshold is None: next_threshold = thresholds[i] next_recall = recall[i] if next_recall >= recall_threshold: best_recall_threshold = next_threshold i -= 1 best_precision_threshold = [thres for prec, thres in zip(precision, thresholds)if prec >= precision_threshold][0] if plot: plt.figure(figsize=(10, 7)) plt.step(recall, precision, color='r', alpha=0.3, where='post') plt.fill_between(recall, precision, alpha=0.3, color='r') plt.axhline(y=precision[i + 1]) recall_for_prec_thres = [rec for rec, thres in zip(recall, thresholds) if thres == best_precision_threshold][0] plt.axvline(x=recall_for_prec_thres, color='g') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.legend(['PR curve', f'Precision {precision[i + 1]:.2f} corresponding to selected recall threshold', f'Recall {recall_for_prec_thres:.2f} corresponding to selected precision threshold']) plt.title(f'Precision-Recall curve for Class {class_names[class_i]}') return best_recall_threshold, best_precision_threshold y_pred = model.predict_generator(data_generator_val, workers=num_cores) y_true = data_generator_val.get_labels() recall_thresholds = dict() precision_thresholds = dict() for i, class_name in tqdm(enumerate(class_names)) : recall_thresholds[class_name], precision_thresholds[class_name] = get_threshold_for_recall(y_true, y_pred, i, plot=True )
Understanding Clouds from Satellite Images
6,830,010
pred = classifier_final.predict(X_valid) accuracy_score(y_valid, pred )<define_variables>
data_generator_test = DataGenenerator(folder_imgs=test_imgs_folder, shuffle=False) y_pred_test = model.predict_generator(data_generator_test, workers=num_cores )
Understanding Clouds from Satellite Images
6,830,010
PassengerId = test.PassengerId<drop_column>
image_labels_empty = set() for i,(img, predictions)in enumerate(zip(os.listdir(test_imgs_folder), y_pred_test)) : for class_i, class_name in enumerate(class_names): if predictions[class_i] < recall_thresholds[class_name]: image_labels_empty.add(f'{img}_{class_name}' )
Understanding Clouds from Satellite Images
6,830,010
test.drop("PassengerId", axis = "columns", inplace = True )<predict_on_test>
submission = pd.read_csv('.. /input/efficient-net-b4-unet-clouds/submission.csv') submission.head()
Understanding Clouds from Satellite Images
6,830,010
predictions = classifier_final.predict(test )<save_to_csv>
predictions_nonempty = set(submission.loc[~submission['EncodedPixels'].isnull() , 'Image_Label'].values )
Understanding Clouds from Satellite Images
6,830,010
output = pd.DataFrame({"PassengerId": PassengerId, "Survived": predictions}) output.to_csv("submission.csv", index = False )<set_options>
print(f'{len(image_labels_empty.intersection(predictions_nonempty)) } masks would be removed' )
Understanding Clouds from Satellite Images
6,830,010
%matplotlib inline sns.set(palette=sns.color_palette('Set2',9)) <install_modules>
submission.loc[submission['Image_Label'].isin(image_labels_empty), 'EncodedPixels'] = np.nan submission.to_csv('submission_segmentation_and_classifier.csv', index=None )
Understanding Clouds from Satellite Images
6,636,264
<import_modules>
def mask2rle(img): pixels= img.T.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return ' '.join(str(x)for x in runs) def rle2mask(mask_rle, shape=(2100, 1400)) : img = np.zeros(shape[0]*shape[1], dtype=np.uint8) if mask_rle != None and type(mask_rle)is str: s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int)for x in(s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths for lo, hi in zip(starts, ends): img[lo:hi] = 1 return img.reshape(shape ).T def normalize(images): return images/128-1 def denormalize(images): return(( images+1)*128 ).astype('uint8') def load_image(Image): path = TEST_PATH + Image img = cv2.imread(path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) if(img.shape !=(height, width, 3)) : img = cv2.resize(img,(width, height)) return img def resizeMask(mask, w, h): resmask = np.zeros(( h, w, mask.shape[2])) for i in range(mask.shape[2]): resmask[...,i] = cv2.resize(mask[...,i],(w,h)) return resmask
Understanding Clouds from Satellite Images
6,636,264
print(sns.__version__ )<load_from_csv>
TEST_PATH = '.. /input/understanding_cloud_organization/test_images/' test_df = pd.read_csv('.. /input/understanding_cloud_organization/sample_submission.csv') test_df['Label'] = test_df['Image_Label'].str.split("_", n = 1, expand = True)[1] test_df['Image'] = test_df['Image_Label'].str.split("_", n = 1, expand = True)[0] types = ['Fish', 'Flower', 'Gravel', 'Sugar'] pixel_thresholds = [0.5, 0.5, 0.5, 0.5 ] mask_sum_threshold = [10000, 10000, 10000, 9000] mask_threshold=[1000, 1000, 1000, 1000] def mask_reduce(mask): reduced_mask = np.zeros(mask.shape,np.float32) for idx in range(mask.shape[2]): label_num, labeled_mask = cv2.connectedComponents(mask[:,:, idx].astype(np.uint8)) for label in range(1, label_num): single_label_mask =(labeled_mask == label) if single_label_mask.sum() > mask_threshold[idx]: reduced_mask[single_label_mask, idx] = 1 return reduced_mask.astype('uint8') def mask_filter(mask): lim = np.sum(mask, axis=(0,1)) < mask_sum_threshold for i in range(len(lim)) : if lim[i]: mask[..., i] = 0 return mask def cleanup(pred): return(pred>pixel_thresholds ).astype('uint8') test_df.head()
Understanding Clouds from Satellite Images
6,636,264
train_path='/kaggle/input/titanic/train.csv' test_path='/kaggle/input/titanic/test.csv' titanic_train=pd.read_csv(train_path) titanic_test=pd.read_csv(test_path )<categorify>
path = '.. /input/single-models/' models = [] model1 = sm.FPN('resnet34', encoder_weights=None, classes=4, input_shape=(None, None, 3), activation='sigmoid') model1.load_weights(path+'Deotte-NormalBCEJaccard-FPN-Resnet34-val_loss-256.h5') models.append({"model": model1, 'weight': 1}) model2 = sm.Unet('efficientnetb0', encoder_weights=None, classes=4, input_shape=(None, None, 3), activation='sigmoid') model2.load_weights(path+'Deotte-NormalJackardBCE-NoPseudo-K0-256-ThisisGood-0.6483.h5') models.append({"model": model2, 'weight': 1}) model3 = sm.FPN('efficientnetb0', encoder_weights=None, classes=4, input_shape=(None, None, 3), activation='sigmoid') model3.load_weights(path+'Deotte-NormalBCEJaccard-FPN-val_loss-256.h5') models.append({"model": model3, 'weight': 1}) model4 = sm.Unet('efficientnetb0', encoder_weights=None, classes=4, input_shape=(None, None, 3), activation='sigmoid') model4.load_weights(path+'Deotte-perImageBCEJackard_real-noPseudo--256-0.6410.h5') models.append({"model": model4, 'weight': 1}) model5 = sm.FPN('efficientnetb0', encoder_weights=None, classes=4, input_shape=(None, None, 3), activation='sigmoid') model5.load_weights(path+'PerImageBCEJaccard-FPN-pseudo-256.h5') models.append({"model": model5, 'weight': 1}) model6 = sm.Unet('efficientnetb0', encoder_weights=None, classes=4, input_shape=(None, None, 3), activation='sigmoid') model6.load_weights(path+'NormalBCEJackard-Unet-Effnet-pseudo-256.h5') models.append({"model": model6, 'weight': 1}) model7 = sm.FPN('resnet34', encoder_weights=None, classes=4, input_shape=(None, None, 3), activation='sigmoid') model7.load_weights(path+'NormalBCEJaccard-FPN-Resnet34-pseudo-256.h5') models.append({"model": model7, 'weight': 1}) model8 = sm.Unet('efficientnetb0', encoder_weights=None, classes=4, input_shape=(None, None, 3), activation='sigmoid') model8.load_weights(path+'NormalBCEJackard-Unet-Effnet-pseudo-K1-256.h5') models.append({"model": model8, 'weight': 1}) model9 = sm.Unet('resnet34', encoder_weights=None, classes=4, input_shape=(None, None, 3), activation='sigmoid') model9.load_weights(path+'NormalBCEJackard-Unet-Resnet34-pseudo-K1-256.h5') models.append({"model": model9, 'weight': 1} )
Understanding Clouds from Satellite Images
6,636,264
titanic_train['Cabin_t'] = titanic_train['Cabin_t'].replace(['A', 'B', 'C','T'], 'ABCT') titanic_train['Cabin_t'] = titanic_train['Cabin_t'].replace(['D', 'E'], 'DE') titanic_train['Cabin_t'] = titanic_train['Cabin_t'].replace(['F', 'G'], 'FG' )<feature_engineering>
def getClassifier(name): base = efn.EfficientNetB3(weights=None, include_top=False, input_shape=(None, None, 3), pooling='avg') base.trainable=True dropout_dense_layer = 0.3 classifier_model = Sequential() classifier_model.add(base) classifier_model.add(Dropout(dropout_dense_layer)) classifier_model.add(Dense(4, activation='sigmoid')) classifier_model.compile( loss='binary_crossentropy', optimizer=Adam() , metrics=['accuracy'] ) classifier_model.summary() classifier_model.load_weights(path+name) return classifier_model classifier_models = [] classifier_models.append(getClassifier('classifierB3-256.h5')) classifier_models.append(getClassifier('classifierB3-blackout00-smooth0-256.h5')) classifier_models.append(getClassifier('classifierB3-blackout04-256.h5'))
Understanding Clouds from Satellite Images
6,636,264
titanic_train['Name_m']=titanic_train['Name'].str.split(pat=', ',n=1,expand=True)[1].str.split(pat='.',n=1,expand=True)[0] def Name_transform(x): if x=='Mr': return 'Mr' elif x=='Mrs': return 'Mrs' elif x=='Miss': return 'Miss' else: return 'etc' titanic_train['Name_M']=titanic_train['Name_m'].apply(Name_transform )<categorify>
ids = test_df['Image'].unique() test_df.EncodedPixels = '' height = 256 width = int(height * 1.5) class_thresholds = [0.5, 0.5, 0.5, 0.5] for picIdx in range(len(ids)) : filename = ids[picIdx] img = load_image(filename) if picIdx % 100 == 0: print(picIdx) batch = np.zeros(( 4, height, width, 3)) batch[0] = img batch[1] = img[ :, ::-1, :] batch[2] = img[ ::-1, :, :] batch[3] = img[ ::-1, ::-1, :] batch = normalize(batch) predTTA = np.zeros(( batch.shape[0], img.shape[0], img.shape[1], 4)) for j in range(len(models)) : predTTA += models[j]['model'].predict(batch) predTTA /= len(models) pred =(predTTA[0, :, :, :]+predTTA[1, :, ::-1, :]+predTTA[2, ::-1, :, :]+predTTA[3, ::-1, ::-1, :])/4.0 if len(classifier_models)>0: classpred = np.zeros(( batch.shape[0], 4)) for j in range(len(classifier_models)) : classpred += classifier_models[j].predict(batch) classpred /= len(classifier_models) classpred = np.mean(classpred, axis=0) if np.sum(classpred>class_thresholds)== 0: classpred[np.argmax(classpred)]=1 pred = pred *(classpred>class_thresholds) pred = cleanup(pred) pred = mask_reduce(pred) pred = mask_filter(pred) pred = resizeMask(pred, 525, 350) for myType in types: name = filename+"_"+myType line = test_df[test_df.Image_Label == name].index[0] i=types.index(myType) maskrle = mask2rle(pred[..., i]) test_df.loc[line, 'EncodedPixels'] = maskrle sub = test_df[['Image_Label', 'EncodedPixels']] sub.to_csv('submission.csv', index=False) sub.head(30 )
Understanding Clouds from Satellite Images
6,636,264
titanic_train['Ticket_Freq']=titanic_train.groupby('Ticket')['Ticket'].transform('count' )<load_from_csv>
sub['Label'] = sub['Image_Label'].str.split("_", n = 1, expand = True)[1] sub['Image'] = sub['Image_Label'].str.split("_", n = 1, expand = True)[0] print(sub[(sub.Label == 'Fish')&(sub.EncodedPixels != '')]['Image'].count()) print(sub[(sub.Label == 'Sugar')&(sub.EncodedPixels != '')]['Image'].count()) print(sub[(sub.Label == 'Gravel')&(sub.EncodedPixels != '')]['Image'].count()) print(sub[(sub.Label == 'Flower')&(sub.EncodedPixels != '')]['Image'].count() )
Understanding Clouds from Satellite Images
6,338,895
titanic_train=pd.read_csv(train_path) titanic_test=pd.read_csv(test_path) target=titanic_train['Survived'] Id=titanic_test[['PassengerId']]<train_model>
path = '.. /input/understanding_cloud_organization'
Understanding Clouds from Satellite Images
6,338,895
class NullTransformer(BaseEstimator,TransformerMixin): def fit(self,df,y=None): return self def transform(self,df): df['Embarked'].fillna('S',inplace=True) df['Cabin'].fillna('X',inplace=True) missing_Fare_index=list(df['Fare'][df['Fare'].isnull() ].index) for index in missing_Fare_index: if df['Pclass'][index]==1: df['Fare'].iloc[index]=df.groupby('Pclass')['Fare'].median() [1] elif df['Pclass'][index]==2: df['Fare'].iloc[index]=df.groupby('Pclass')['Fare'].median() [2] elif df['Pclass'][index]==3: df['Fare'].iloc[index]=df.groupby('Pclass')['Fare'].median() [3] index_NaN_age = list(df["Age"][df["Age"].isnull() ].index) for index in index_NaN_age : if df['Pclass'][index]==1: df['Age'].iloc[index]=df.groupby('Pclass')['Age'].median() [1] elif df['Pclass'][index]==2: df['Age'].iloc[index]=df.groupby('Pclass')['Age'].median() [2] elif df['Pclass'][index]==3: df['Age'].iloc[index]=df.groupby('Pclass')['Age'].median() [3] return df<categorify>
Train_Dir = '/kaggle/input/understanding_cloud_organization/train_images' Test_Dir = 'kaggle/input/understanding_cloud_organization/test_images' for img in tqdm(os.listdir(Train_Dir)) : imgr = cv2.imread(os.path.join(Train_Dir,img))
Understanding Clouds from Satellite Images
6,338,895
class FeatureExtraction(BaseEstimator,TransformerMixin): def fit(self,df,y=None): return self def transform(self,df): df['Family']=df['SibSp']+df['Parch']+1 def groupfamily(x): if x==1: return 1 elif(2<=x)&(x<=4): return 2 elif(5<=x)&(x<=6): return 3 else: return 4 df['Family']=df['Family'].apply(groupfamily) df.drop(['SibSp','Parch','PassengerId'],inplace=True,axis=1) if 'Survived' in list(df.keys()): df.drop(['Survived'],inplace=True,axis=1) df['Ticket_freq']=df.groupby('Ticket')['Ticket'].transform('count') df.drop(['Ticket'],inplace=True,axis=1) df['Cabin']=df['Cabin'].str.get(i=0) df['Cabin'] = df['Cabin'].replace(['A', 'B', 'C','T'], 'ABCT') df['Cabin'] = df['Cabin'].replace(['D', 'E'], 'DE') df['Cabin'] = df['Cabin'].replace(['F', 'G'], 'FG') df['Name']=df['Name'].str.split(pat=', ',n=1,expand=True)[1].str.split(pat='.',n=1,expand=True)[0] def Name_transform(x): if x=='Mr': return 'Mr' elif x=='Mrs': return 'Mrs' elif x=='Miss': return 'Miss' else: return 'etc' df['Name']=df['Name'].apply(Name_transform) AGE_BINS=[-1,5,17,20,24,28,32,40,48,100] df['Age_cat']=pd.cut(df['Age'],AGE_BINS,labels=[0.,1.,2.,3.,4.,5.,6.,7.,8.]) FARE_BINS=[-1,7.35, 7.82, 8, 10, 13, 23,30, 45, 80, 150, 1000] df['Fare_cat']=pd.cut(df['Fare'],bins=FARE_BINS,labels=[0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.]) df.drop(['Age','Fare'],inplace=True,axis=1) return df<categorify>
train_csv_folder = '/kaggle/input/understanding_cloud_organization/train.csv' train_csv = pd.read_csv(train_csv_folder)
Understanding Clouds from Satellite Images
6,338,895
attribs=['Pclass','Name','Sex','Age','Ticket','Fare','Cabin','Embarked','SibSp','Parch'] num_attribs=['Pclass','Age_cat','Fare_cat',"Ticket_freq"] cat_attribs=['Name','Sex','Cabin','Embarked','Family'] pipeline1=Pipeline([ ('NT',NullTransformer()), ('FE',FeatureExtraction()) ]) train=pipeline1.fit_transform(titanic_train) test=pipeline1.transform(titanic_test) train=pd.get_dummies(train,columns=cat_attribs) test=pd.get_dummies(test,columns=cat_attribs) <data_type_conversions>
train_csv['ImageId'] = train_csv['Image_Label'].apply(lambda x: x.split('_')[0]) train_csv['ClassId'] = train_csv['Image_Label'].apply(lambda x: x.split('_')[1]) train_csv['hasmask'] = ~train_csv['EncodedPixels'].isna()
Understanding Clouds from Satellite Images
6,338,895
train=train.to_numpy() test=test.to_numpy()<choose_model_class>
mask_count_df = train_csv.groupby('ImageId' ).agg(np.sum ).reset_index() mask_count_df.sort_values('hasmask', ascending=False, inplace=True) print(mask_count_df.shape) mask_count_df.head(10 )
Understanding Clouds from Satellite Images