kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
4,340,698
for col in cat_dataset: cat_dataset[col] = cat_dataset[col].astype('category') <data_type_conversions>
def train_classifier(Y_pseudo, params=params_4): preds, oof, auc_all = initialize_cv() print(f"Computing centroids and covariances for the four clusters(two per class ).") for i in tqdm(range(magic_min, magic_max+1)) : X, X_test, Y, idx_train, idx_test = get_data(i=i, data=data) auc_folds=np.array([]) folds = StratifiedKFold(n_splits=NFOLDS, random_state=RS) for train_index, val_index in folds.split(X, Y): X_train, Y_train = X[train_index, :], Y[train_index] X_val, Y_val = X[val_index, :], Y[val_index] if Y_pseudo is None: params['means_init'], params['precisions_init'] = clusters_stats(X_train, Y_train) else: X_aug, Y_aug = pseudolabeling(X_train, X_test, Y_train, Y_pseudo, idx_test) params['means_init'], params['precisions_init'] = clusters_stats(X_aug, Y_aug.ravel()) clf = GaussianMixture(**params) clf.fit(np.concatenate([X_train, X_test], axis = 0)) oof[idx_train[val_index]] = np.sum(clf.predict_proba(X_val)[:, 2:], axis=1) preds[idx_test] += np.sum(clf.predict_proba(X_test)[:,2: ], axis=1)/NFOLDS auc = roc_auc_score(Y_val, oof[idx_train[val_index]]) auc_folds = np.append(auc_folds, auc) auc_all = np.append(auc_all, np.mean(auc_folds)) report_results(oof, auc_all) return preds, oof, auc_all
Instant Gratification
4,340,698
num_dataset = dataset.select_dtypes(exclude=['object','category'] ).astype('float64' )<define_variables>
Y_pseudo, oof, auc_all = train_classifier(Y_pseudo=None )
Instant Gratification
4,340,698
pos = np.where(num_dataset < 0) pos[0]<feature_engineering>
preds_gmm, oof_gmm, auc_gmm = train_classifier(Y_pseudo=Y_pseudo) sub['target'] = preds_gmm sub.to_csv('submission_gmm.csv',index=False )
Instant Gratification
4,340,698
num_dataset.loc[ num_dataset['RemodAfterBuilt'] < 0,'RemodAfterBuilt'] = 0 num_dataset.loc[ num_dataset['SoldAfterBuilt'] < 0,'SoldAfterBuilt'] = 0<define_variables>
def get_labels(X_train, Y_train, params=params_2_qda): X_train_0 = X_train[Y_train==0] X_train_1 = X_train[Y_train==1] clf_0 = GaussianMixture(**params) labels_0 = clf_0.fit_predict(X_train_0 ).reshape(-1, 1) clf_1 = GaussianMixture(**params) labels_1 = clf_1.fit_predict(X_train_1 ).reshape(-1, 1) labels_1[labels_1==0] = 2 labels_1[labels_1==1] = 3 X_l = np.vstack(( X_train_0, X_train_1)) Y_l = np.vstack(( labels_0, labels_1)) perm = np.random.permutation(len(X_l)) X_l = X_l[perm] Y_l = Y_l[perm] return X_l, Y_l
Instant Gratification
4,340,698
pos = np.where(num_dataset < 0) pos[0]<feature_engineering>
def train_qda(Y_pseudo, low, high, params=params_qda): preds, oof, auc_all = initialize_cv() print(f"Computing centroids and covariances for the four clusters(two per class ).") for i in tqdm(range(magic_min, magic_max+1)) : X, X_test, Y, idx_train, idx_test = get_data(i=i, data=data) auc_folds=np.array([]) folds = StratifiedKFold(n_splits=NFOLDS, random_state=RS) for train_index, val_index in folds.split(X, Y): X_train, Y_train = X[train_index, :], Y[train_index] X_val, Y_val = X[val_index, :], Y[val_index] clf = QuadraticDiscriminantAnalysis(**params) if Y_pseudo is None: X_l, Y_l = get_labels(X_train, Y_train) else: X_aug, Y_aug = pseudolabeling_qda(X_train, X_test, Y_train, Y_pseudo, idx_test, low, high) X_l, Y_l = get_labels(X_aug, Y_aug.ravel()) clf.fit(X_l, Y_l.ravel()) oof[idx_train[val_index]] = np.sum(clf.predict_proba(X_val)[:, 2:], axis=1) preds[idx_test] += np.sum(clf.predict_proba(X_test)[:,2: ], axis=1)/NFOLDS auc = roc_auc_score(Y_val, oof[idx_train[val_index]]) auc_folds = np.append(auc_folds, auc) auc_all = np.append(auc_all, np.mean(auc_folds)) report_results(oof, auc_all, clf_name='QDA') return preds, oof, auc_all
Instant Gratification
4,340,698
skew_feats = skew_feats[abs(skew_feats)> 1] print(skew_feats) for feat in skew_feats.index: num_dataset[feat] = np.log1p(num_dataset[feat] )<categorify>
Y_pseudo=preds_gmm for rp, low, high in zip(rp_values, low_vals, high_vals): parmas_qda = {'reg_param': rp} Y_pseudo, oof_qda, auc_qda = train_qda(Y_pseudo=Y_pseudo, low=low, high=high, params=params_qda) preds_qda = Y_pseudo sub['target'] = preds_qda sub.to_csv('submission_qda.csv',index=False )
Instant Gratification
4,340,698
cat_dataset = pd.get_dummies(cat_dataset, columns = cat_dataset.columns);<define_variables>
preds_highest = preds_gmm oof_highest = oof_gmm mask =(auc_qda > auc_gmm) print(f"The number of models where QDA's predictions are better is {sum(mask)}." )
Instant Gratification
4,340,698
np.where(num_dataset < 0 )<feature_engineering>
for i in tqdm(range(magic_min, magic_max+1)) : if mask[i]: _, _, _, idx_train, idx_test = get_data(i=i, data=data) oof_highest[idx_train] = oof_qda[idx_train] preds_highest[idx_test] = preds_qda[idx_test] auc = roc_auc_score(train['target'].values, oof_highest) print(f"The 'highest' ROC AUC score is {auc}." )
Instant Gratification
4,340,698
for x in num_dataset: num_dataset[x] =(num_dataset[x] - num_dataset[x].mean())/(num_dataset[x].std()) <count_missing_values>
sub['target'] = preds_highest sub.to_csv('submission_highest.csv',index=False )
Instant Gratification
4,340,698
sum(np.isnan(num_dataset ).any() )<correct_missing_values>
oof_all = pd.DataFrame() preds_all = pd.DataFrame() oof_all['gmm'] = rankdata(oof_gmm)/len(oof_gmm) oof_all['qda'] = rankdata(oof_qda)/len(oof_qda) preds_all['gmm'] = rankdata(preds_gmm)/len(preds_gmm) preds_all['qda'] = rankdata(preds_qda)/len(preds_qda) lr = LogisticRegression() lr.fit(oof_all.values, train['target'].values) preds_lr = lr.predict_proba(preds_all.values)[:,1] preds_train = lr.predict_proba(oof_all)[:,1] auc = roc_auc_score(train['target'].values, preds_train) print(f"The final ROC AUC score is {auc}." )
Instant Gratification
4,340,698
np.where(np.isnan(num_dataset))<count_missing_values>
sub['target'] = preds_lr sub.to_csv('submission_lr.csv',index=False )
Instant Gratification
4,340,698
<prepare_x_and_y><EOS>
w = 0.02 mask =(preds_gmm <(0.5 + w)) &(preds_gmm >(0.5 - w)) preds = rankdata(preds_gmm)/len(preds_gmm) preds[mask] = preds_lr[mask] sub['target'] = preds sub.to_csv('submission_picking.csv',index=False )
Instant Gratification
4,323,861
<SOS> metric: AUC Kaggle data source: instant-gratification<count_missing_values>
warnings.filterwarnings("ignore")
Instant Gratification
4,323,861
sum(X_test.isnull().sum()) X.shape<import_modules>
train = pd.read_csv('.. /input/train.csv') train_t = train.copy() test = pd.read_csv('.. /input/test.csv' )
Instant Gratification
4,323,861
cross_val_score, \ StratifiedKFold, \ learning_curve,\ KFold,\ cross_val_predict; sns.set(style='white', context='notebook', palette='deep'); warnings.filterwarnings(action='ignore', category=UserWarning) <train_model>
cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] reg_best = [0.5, 0.2, 0.3, 0.2, 0.5, 0.1, 0.1, 0.2, 0.3, 0.5, 0.2, 0.4, 0.1, 0.3, 0.1, 0.4, 0.3, 0.2, 0.2, 0.5, 0.1, 0.4, 0.4, 0.1, 0.5, 0.4, 0.1, 0.4, 0.4, 0.1, 0.1, 0.3, 0.4, 0.1, 0.5, 0.2, 0.3, 0.1, 0.1, 0.5, 0.5, 0.5, 0.3, 0.5, 0.4, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.1, 0.3, 0.1, 0.1, 0.4, 0.2, 0.3, 0.1, 0.1, 0.5, 0.2, 0.4, 0.1, 0.1, 0.1, 0.1, 0.4, 0.2, 0.1, 0.1, 0.5, 0.4, 0.1, 0.3, 0.2, 0.4, 0.1, 0.3, 0.5, 0.1, 0.5, 0.1, 0.5, 0.1, 0.1, 0.4, 0.5, 0.4, 0.2, 0.1, 0.1, 0.4, 0.5, 0.2, 0.5, 0.5, 0.4, 0.1, 0.5, 0.5, 0.3, 0.5, 0.2, 0.4, 0.4, 0.1, 0.4, 0.4, 0.1, 0.1, 0.5, 0.5, 0.5, 0.1, 0.2, 0.4, 0.1, 0.4, 0.5, 0.5, 0.5, 0.2, 0.2, 0.2, 0.5, 0.1, 0.1, 0.3, 0.5, 0.3, 0.1, 0.4, 0.1, 0.3, 0.1, 0.2, 0.5, 0.5, 0.1, 0.1, 0.1, 0.4, 0.1, 0.5, 0.5, 0.5, 0.1, 0.5, 0.5, 0.1, 0.5, 0.5, 0.2, 0.4, 0.2, 0.1, 0.5, 0.3, 0.5, 0.2, 0.4, 0.4, 0.5, 0.2, 0.3, 0.1, 0.1, 0.5, 0.1, 0.5, 0.5, 0.5, 0.5, 0.1, 0.5, 0.4, 0.1, 0.4, 0.3, 0.4, 0.4, 0.3, 0.1, 0.4, 0.4, 0.2, 0.5, 0.4, 0.4, 0.2, 0.1, 0.2, 0.5, 0.5, 0.1, 0.5, 0.3, 0.4, 0.5, 0.1, 0.5, 0.5, 0.5, 0.1, 0.1, 0.3, 0.2, 0.5, 0.1, 0.5, 0.5, 0.4, 0.1, 0.5, 0.1, 0.5, 0.1, 0.3, 0.3, 0.1, 0.1, 0.1, 0.4, 0.3, 0.1, 0.1, 0.4, 0.3, 0.3, 0.4, 0.5, 0.2, 0.1, 0.5, 0.5, 0.4, 0.4, 0.3, 0.1, 0.1, 0.5, 0.1, 0.1, 0.1, 0.1, 0.3, 0.3, 0.2, 0.1, 0.5, 0.4, 0.3, 0.1, 0.3, 0.1, 0.2, 0.4, 0.5, 0.3, 0.1, 0.1, 0.3, 0.3, 0.4, 0.4, 0.2, 0.5, 0.1, 0.5, 0.3, 0.1, 0.2, 0.5, 0.1, 0.1, 0.5, 0.4, 0.1, 0.5, 0.5, 0.5, 0.3, 0.2, 0.4, 0.5, 0.4, 0.3, 0.1, 0.4, 0.3, 0.2, 0.2, 0.1, 0.4, 0.4, 0.1, 0.2, 0.1, 0.5, 0.3, 0.2, 0.1, 0.2, 0.3, 0.2, 0.5, 0.4, 0.5, 0.5, 0.1, 0.1, 0.4, 0.3, 0.3, 0.4, 0.3, 0.2, 0.5, 0.4, 0.1, 0.1, 0.4, 0.1, 0.1, 0.5, 0.4, 0.1, 0.4, 0.5, 0.3, 0.2, 0.5, 0.4, 0.4, 0.5, 0.1, 0.1, 0.5, 0.5, 0.5, 0.1, 0.5, 0.1, 0.5, 0.2, 0.1, 0.1, 0.1, 0.5, 0.5, 0.4, 0.5, 0.1, 0.3, 0.5, 0.5, 0.3, 0.5, 0.1, 0.3, 0.1, 0.4, 0.3, 0.5, 0.5, 0.5, 0.4, 0.2, 0.5, 0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.5, 0.4, 0.3, 0.1, 0.5, 0.5, 0.2, 0.3, 0.5, 0.5, 0.1, 0.1, 0.1, 0.5, 0.3, 0.1, 0.4, 0.1, 0.1, 0.5, 0.5, 0.4, 0.1, 0.5, 0.4, 0.2, 0.5, 0.1, 0.4, 0.1, 0.1, 0.1, 0.4, 0.2, 0.1, 0.2, 0.2, 0.5, 0.4, 0.1, 0.1, 0.1, 0.4, 0.5, 0.4, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.3, 0.5, 0.3, 0.5, 0.5, 0.5, 0.5, 0.5, 0.3, 0.5, 0.5, 0.1, 0.5, 0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.5, 0.5, 0.1, 0.1, 0.4, 0.3, 0.1, 0.2, 0.1, 0.1, 0.1, 0.3, 0.5, 0.2, 0.1, 0.3, 0.2, 0.4, 0.4, 0.2, 0.1, 0.3, 0.1, 0.1, 0.4, 0.1, 0.2, 0.4, 0.5, 0.3, 0.1, 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.4, 0.1, 0.4, 0.2, 0.1, 0.1, 0.4, 0.1, 0.5, 0.2, 0.1, 0.1, 0.3, 0.5, 0.1, 0.5, 0.5, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2, 0.3]
Instant Gratification
4,323,861
def train_model(estimator=None, X_train=None,y_train=None,X_cv=None,y_cv=None,scoring=None): m = estimator if(scoring == 'neg_mean_squared_error'): m.fit(X_train,np.log1p(y_train)) if(scoring == 'neg_mean_squared_log_error'): m.fit(X_train,y_train) pred=estimator.predict(X_cv) if(scoring == 'neg_mean_squared_error'): score = np.sqrt(mean_squared_error(np.log1p(y_cv),pred)) if(scoring == 'neg_mean_squared_log_error'): score = np.sqrt(mean_squared_log_error(y_cv,pred)) return score,m<save_to_csv>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) data2 = VarianceThreshold(threshold=2 ).fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = QuadraticDiscriminantAnalysis(reg_best[i]) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}')
Instant Gratification
4,323,861
def gen_submission(csvname=None,X_test=None,models=None,scoring=None): if(scoring == 'neg_mean_squared_error'): pred=np.expm1(models.predict(X_test)) if(scoring == 'neg_mean_squared_log_error'): pred=models.predict(X_test) result = pd.concat([ids,pd.Series(pred ).astype('float64')],axis=1); result.columns = ['Id','SalePrice'] result.to_csv(csvname+r'.csv',index=False) pass<data_type_conversions>
auc = roc_auc_score(train_t['target'], oof) print(f'AUC: {auc:.5}' )
Instant Gratification
4,323,861
X = X.astype('float64' )<count_missing_values>
train.loc[oof > 0.99, 'target'] = 1 train.loc[oof < 0.01, 'target'] = 0
Instant Gratification
4,323,861
sum(np.isnan(X ).all() )<count_values>
oof_ls = np.zeros(len(train)) pred_te_ls = np.zeros(len(test)) for k in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2['target']=-1 train2p = pd.concat([train2,test2],axis=0) train2p.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2p[cols]) train4p = sel.transform(train2p[cols]) train4 = sel.transform(train2[cols]) test4 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train4p, train2p['target']): test_index3 = test_index[ test_index<len(train4)] clf = LabelSpreading(gamma=0.01,kernel='rbf', max_iter=10,n_jobs=-1) clf.fit(train4p[train_index,:],train2p.loc[train_index]['target']) oof_ls[idx1[test_index3]] = clf.predict_proba(train4[test_index3,:])[:,1] pred_te_ls[test2.index] += clf.predict_proba(test4)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof_ls) print('CV for LabelSpreading =',round(auc,5))
Instant Gratification
4,323,861
sum(np.isinf(X ).any() )<drop_column>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) data2 = VarianceThreshold(threshold=2 ).fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] train4 = np.hstack([train3,np.array([oof_ls[idx1]] ).T]) test4 = np.hstack([test3,np.array([pred_te_ls[idx2]] ).T]) skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train4, train2['target']): clf = QuadraticDiscriminantAnalysis(reg_best[i]) clf.fit(train4[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train4[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test4)[:,1] / skf.n_splits auc = roc_auc_score(train_t['target'], oof) print(f'AUC: {auc:.5}' )
Instant Gratification
4,323,861
<split><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = preds sub.to_csv('submission.csv',index=False )
Instant Gratification
4,365,744
<SOS> metric: AUC Kaggle data source: instant-gratification<compute_train_metric>
warnings.filterwarnings('ignore') train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] print(train.shape, test.shape) oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}') for itr in range(4): test['target'] = preds test.loc[test['target'] > 0.955, 'target'] = 1 test.loc[test['target'] < 0.045, 'target'] = 0 usefull_test = test[(test['target'] == 1)|(test['target'] == 0)] new_train = pd.concat([train, usefull_test] ).reset_index(drop=True) print(usefull_test.shape[0], "Test Records added for iteration : ", itr) new_train.loc[oof > 0.995, 'target'] = 1 new_train.loc[oof < 0.005, 'target'] = 0 oof2 = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = new_train[new_train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train[train['wheezy-copper-turtle-magic']==i].index idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]] test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=time.time) for train_index, test_index in skf.split(train2, train2['target']): oof_test_index = [t for t in test_index if t < len(idx1)] clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) if len(oof_test_index)> 0: oof2[idx1[oof_test_index]] = clf.predict_proba(train3[oof_test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof2) print(f'AUC: {auc:.5}') sub1 = pd.read_csv('.. /input/sample_submission.csv') sub1['target'] = preds
Instant Gratification
4,365,744
scores = -1 * cross_val_score(LR_lasso,X,np.log1p(y),scoring=scoring,cv=5) np.sqrt(scores ).mean()<choose_model_class>
warnings.filterwarnings('ignore') train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] print(train.shape, test.shape) oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}') for itr in range(4): test['target'] = preds test.loc[test['target'] > 0.94, 'target'] = 1 test.loc[test['target'] < 0.06, 'target'] = 0 usefull_test = test[(test['target'] == 1)|(test['target'] == 0)] new_train = pd.concat([train, usefull_test] ).reset_index(drop=True) print(usefull_test.shape[0], "Test Records added for iteration : ", itr) new_train.loc[oof > 0.98, 'target'] = 1 new_train.loc[oof < 0.02, 'target'] = 0 oof2 = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = new_train[new_train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train[train['wheezy-copper-turtle-magic']==i].index idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]] test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): oof_test_index = [t for t in test_index if t < len(idx1)] clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) if len(oof_test_index)> 0: oof2[idx1[oof_test_index]] = clf.predict_proba(train3[oof_test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof2) print(f'AUC: {auc:.5}') sub2 = pd.read_csv('.. /input/sample_submission.csv') sub2['target'] = preds
Instant Gratification
4,365,744
LR = Lasso() kf = StratifiedKFold(n_splits=10,shuffle=True) lasso_param_grid = { "alpha":[0.001,0.0005,0.0007] , "max_iter":[1000,800,500], "tol":[0.001,0.002,0.005,0.01,0.02,0.04,], } rcv_param_grid = {} gsLR = GridSearchCV(LR,param_grid = lasso_param_grid, cv=5,n_jobs= -1, verbose = 1) gsLR.scoring = scoring gsLR.fit(X,np.log1p(y)) bestLR= gsLR.best_estimator_ print(bestLR) print(np.sqrt(-gsLR.best_score_))<compute_train_metric>
warnings.filterwarnings('ignore') train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] print(train.shape, test.shape) oof = np.zeros(len(train)) preds = np.zeros(len(test)) params = [{'reg_param': [0.1, 0.2, 0.3, 0.4, 0.5]}] reg_params = np.zeros(512) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): qda = QuadraticDiscriminantAnalysis() clf = GridSearchCV(qda, params, cv=4) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) reg_params[i] = clf.best_params_['reg_param'] oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}') for itr in range(10): test['target'] = preds test.loc[test['target'] > 0.955, 'target'] = 1 test.loc[test['target'] < 0.045, 'target'] = 0 usefull_test = test[(test['target'] == 1)|(test['target'] == 0)] new_train = pd.concat([train, usefull_test] ).reset_index(drop=True) print(usefull_test.shape[0], "Test Records added for iteration : ", itr) new_train.loc[oof > 0.995, 'target'] = 1 new_train.loc[oof < 0.005, 'target'] = 0 oof2 = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = new_train[new_train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train[train['wheezy-copper-turtle-magic']==i].index idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]] test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=time.time) for train_index, test_index in skf.split(train2, train2['target']): oof_test_index = [t for t in test_index if t < len(idx1)] clf = QuadraticDiscriminantAnalysis(reg_params[i]) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) if len(oof_test_index)> 0: oof2[idx1[oof_test_index]] = clf.predict_proba(train3[oof_test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof2) print(f'AUC: {auc:.5}') sub3 = pd.read_csv('.. /input/sample_submission.csv') sub3['target'] = preds
Instant Gratification
4,365,744
def rmse_cv(model): rmse= np.sqrt(-cross_val_score(model, X, np.log1p(y), scoring="neg_mean_squared_error", cv = 5)) return(rmse )<import_modules>
sub = pd.read_csv('.. /input/sample_submission.csv') sub.head()
Instant Gratification
4,365,744
print(os.listdir(".. /input")) warnings.filterwarnings("ignore") <define_variables>
sub['target'] = 1/3*sub1.target + 1/3*sub2.target + 1/3*sub3.target
Instant Gratification
4,365,744
<load_from_csv><EOS>
sub.to_csv('submission.csv', index = False) sub.head()
Instant Gratification
3,961,870
<SOS> metric: AUC Kaggle data source: instant-gratification<load_from_csv>
import numpy as np, pandas as pd, os from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis, LinearDiscriminantAnalysis from sklearn.feature_selection import VarianceThreshold from sklearn.model_selection import StratifiedKFold, KFold from sklearn.metrics import roc_auc_score from tqdm import tqdm, tqdm_notebook from sklearn.covariance import EmpiricalCovariance from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import sympy from sklearn import svm, neighbors, linear_model, neural_network from xgboost import XGBClassifier from sklearn.covariance import * from sklearn.utils.validation import check_random_state from sklearn.mixture import * from sklearn.cluster import *
Instant Gratification
3,961,870
print("Lecture des fichiers test.csv") test = pd.read_csv(ROOT_DIR+"test.csv",sep=',') print(test.shape )<load_from_csv>
%time train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') sub = pd.read_csv('.. /input/sample_submission.csv') train.head()
Instant Gratification
3,961,870
print("Lecture des fichiers gender_submission.csv") submit = pd.read_csv(ROOT_DIR+"gender_submission.csv",sep=',') print(submit.shape )<concatenate>
warnings.filterwarnings('ignore' )
Instant Gratification
3,961,870
print("Concatenation train + test") train['X'] = 'X' test['X'] = 'Y' big = pd.concat([train,test] )<feature_engineering>
def dist(array, centre): x=float(0) for i in range(len(array)) : x +=(( array[i]-centre[i])*(array[i]-centre[i])) return x def get_c(data): data.drop('labels', axis=1, inplace=True) centre = [1]*data.shape[1] for i in range(data.shape[1]): if data[i].mean() < 0: centre[i] = -1 return(centre) def my_min(a, b, c): if a<b: if a<c: return a return c if b<c: return b return c
Instant Gratification
3,961,870
big['XName'] = big['Name'].apply(lambda x: str(x)[0:str(x ).find(',')] if str(x ).find(',')!= -1 else x) big['TName'] = big['Name'].apply(lambda x: str(x)[str(x ).find(',')+2:str(x ).find('.')+1:] if str(x ).find('.')!= -1 else x) big['XCabin'] = big['Cabin'].apply(lambda x: 'U' if(x is np.nan or x != x)else str(x)[0]) big['LTick'] = big['Ticket'].apply(lambda x: str(x)[0:str(x ).find(' ')] if str(x ).find(' ')!= -1 else ' ') K = big.groupby(['Ticket'] ).groups for name,group in K.items() : if len(group)> 1: CN = list(set([ str(x)[0] for x in big['Cabin'].iloc[group] ])- set(['n'])) if(len(CN)== 0): big['XCabin'].iloc[group] = 'U' else: big['XCabin'].iloc[group] = CN[0]<feature_engineering>
def classify(data, val, test, y): data = pd.DataFrame(train3) data['target'] = y zero = data[data['target'] == 1] one = data[data['target'] == 0] zero.drop('target', axis=1, inplace=True) one.drop('target', axis=1, inplace=True) clf = KMeans(n_clusters=3) labels = clf.fit_predict(zero) zero['labels'] = labels zero_0 =(zero[zero['labels'] == 0]) zero_1 =(zero[zero['labels'] == 1]) zero_2 =(zero[zero['labels'] == 2]) clf = KMeans(n_clusters=3) labels = clf.fit_predict(one) one['labels'] = labels one_0 =(one[one['labels'] == 0]) one_1 =(one[one['labels'] == 1]) one_2 =(one[one['labels'] == 2]) c_z_0 = get_c(zero_0) c_z_1 = get_c(zero_1) c_z_2 = get_c(zero_2) c_o_0 = get_c(one_0) c_o_1 = get_c(one_1) c_o_2 = get_c(one_2) pred_val = [0]*val.shape[0] for i in range(val.shape[0]): array = val.loc[i] dist0_0 = dist(array, c_z_0) dist0_1 = dist(array, c_z_1) dist0_2 = dist(array, c_z_2) dist1_0 = dist(array, c_o_0) dist1_1 = dist(array, c_o_1) dist1_2 = dist(array, c_o_2) aggr =(dist0_0+dist0_1+dist0_2 +dist1_0+dist1_1+dist1_2)/3 dist1 =(dist1_0+dist1_1+dist1_2)/ 3 dist0 =(dist0_0+dist0_1+dist0_2)/ 3 pred_val[i] = 1-1/np.exp(dist1/aggr) pred_test = [0]*test.shape[0] for i in range(test.shape[0]): array = test.loc[i] dist0_0 = dist(array, c_z_0) dist0_1 = dist(array, c_z_1) dist0_2 = dist(array, c_z_2) dist1_0 = dist(array, c_o_0) dist1_1 = dist(array, c_o_1) dist1_2 = dist(array, c_o_2) aggr =(dist0_0+dist0_1+dist0_2 +dist1_0+dist1_1+dist1_2)/4 dist1 =(dist1_0+dist1_1+dist1_2)/ 3 dist0 =(dist0_0+dist0_1+dist0_2)/ 3 pred_test[i] = 1-1/np.exp(dist1/aggr) return np.array(pred_val), np.array(pred_test)
Instant Gratification
3,961,870
big['XFam'] = big['SibSp'] + big['Parch'] + 1 big['XFam'] = np.log1p(( big['XFam'] - big['XFam'].mean())/ big['XFam'].std() )<feature_engineering>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) cols = [c for c in train.columns if c not in ['id', 'target']] for k in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==k] test2 = test[test['wheezy-copper-turtle-magic']==k] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) data2 = VarianceThreshold(threshold=2 ).fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for i,(train_index, test_index)in enumerate(skf.split(train3, train2['target'])) : oof[idx1[test_index]], test_pred = classify(pd.DataFrame(train3[train_index,:]), pd.DataFrame(train3[test_index,:]), pd.DataFrame(test3), train2.loc[train_index]['target']) preds[idx2] += test_pred / skf.n_splits print(roc_auc_score(train2.loc[test_index]['target'], oof[idx1[test_index]])) if k==5: break auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}')
Instant Gratification
4,311,731
big['Last_Name'] = big['Name'].apply(lambda x: str.split(x, ",")[0]) big['Fare'].fillna(big['Fare'].mean() , inplace=True) DEFAULT_SURVIVAL_VALUE = 0.5 big['Family_Survival'] = DEFAULT_SURVIVAL_VALUE for grp, grp_df in big[['Survived','Name', 'Last_Name', 'Fare', 'Ticket', 'PassengerId', 'SibSp', 'Parch', 'Age', 'Cabin']].groupby(['Last_Name', 'Fare']): if(len(grp_df)!= 1): for ind, row in grp_df.iterrows() : smax = grp_df.drop(ind)['Survived'].max() smin = grp_df.drop(ind)['Survived'].min() passID = row['PassengerId'] if(smax == 1.0): big.loc[big['PassengerId'] == passID, 'Family_Survival'] = 1 elif(smin==0.0): big.loc[big['PassengerId'] == passID, 'Family_Survival'] = 0 print("Number of passengers with family survival information:", big.loc[big['Family_Survival']!=0.5].shape[0] )<groupby>
warnings.filterwarnings('ignore') train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv' )
Instant Gratification
4,311,731
for _, grp_df in big.groupby('Ticket'): if(len(grp_df)!= 1): for ind, row in grp_df.iterrows() : if(row['Family_Survival'] == 0)|(row['Family_Survival']== 0.5): smax = grp_df.drop(ind)['Survived'].max() smin = grp_df.drop(ind)['Survived'].min() passID = row['PassengerId'] if(smax == 1.0): big.loc[big['PassengerId'] == passID, 'Family_Survival'] = 1 elif(smin==0.0): big.loc[big['PassengerId'] == passID, 'Family_Survival'] = 0 print("Number of passenger with family/group survival information: "+str(big[big['Family_Survival']!=0.5].shape[0]))<drop_column>
RANDOM_SEED = 4123 cols = [ c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic'] ] def get_mean_cov(x,y): model = GraphicalLasso() ones =(y==1 ).astype(bool) x2 = x[ones] model.fit(x2) p1 = model.precision_ m1 = model.location_ onesb =(y==0 ).astype(bool) x2b = x[onesb] model.fit(x2b) p2 = model.precision_ m2 = model.location_ ms = np.stack([m1,m2]) ps = np.stack([p1,p2]) return ms,ps
Instant Gratification
4,311,731
del big['Ticket'], big['Cabin'], big['Name'], big['XName'], big['Last_Name']<count_values>
%%time SKIP_COMMIT = True if SKIP_COMMIT: sub = pd.read_csv('.. /input/sample_submission.csv') if sub.shape[0] < 200000: sub = pd.read_csv('.. /input/sample_submission.csv') sub.to_csv('submission.csv', index=False) raise ValueError('Stop!!!') oof_nusvc = np.zeros(len(train)) preds_nusvc = np.zeros(len(test)) oof_nb= np.zeros(len(train)) preds_nb = np.zeros(len(test)) oof_lr = np.zeros(len(train)) preds_lr = np.zeros(len(test)) oof_qda = np.zeros(len(train)) preds_qda = np.zeros(len(test)) oof_lp = np.zeros(len(train)) preds_lp = np.zeros(len(test)) oof_lgbm = np.zeros(len(train)) preds_lgbm = np.zeros(len(test)) oof_gm = np.zeros(len(train)) preds_gm = np.zeros(len(test)) oof_rf = np.zeros(len(train)) preds_rf = np.zeros(len(test)) params_lgbm_1 = { 'boosting_type': 'gbdt', 'objective': 'xentropy', 'metric': ['auc'], 'num_leaves': 31, 'learning_rate': 0.5, 'feature_fraction': 1.0, 'bagging_fraction': 1.0, 'bagging_freq': 18, 'num_threads': 8, 'lambda_l2': 5.0, 'max_bin': 3 } for i in range(512): print(i, end=' ') train2 = train[train['wheezy-copper-turtle-magic']==i] idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==i] idx2 = test2.index data = pd.concat( [ train2, test2 ], axis=0 ) train2.reset_index(drop=True, inplace=True) train_size = train2.shape[0] sel = VarianceThreshold(threshold=1.5) tmp = sel.fit_transform( data[cols] ) train3 = tmp[:train_size, :] test3 = tmp[train_size:, :] ss = StandardScaler() tmp_scaled = ss.fit_transform(tmp) train3_scaled = tmp_scaled[:train_size, :] test3_scaled = tmp_scaled[train_size:, :] poly = PolynomialFeatures(degree=2) tmp_poly = poly.fit_transform(tmp_scaled) train3_poly = tmp_poly[:train_size, :] test3_poly = tmp_poly[train_size:, :] gm_clf_4 = mixture.GaussianMixture( n_components=4, random_state=RANDOM_SEED ) gm_tmp_4 = gm_clf_4.fit_predict(tmp ).reshape(-1, 1) le_4 = OneHotEncoder() gm_tmp_4 = le_4.fit_transform(gm_tmp_4 ).todense() gm_train3_4 = gm_tmp_4[:train_size, :] gm_test3_4 = gm_tmp_4[train_size:, :] gm_clf_6 = mixture.GaussianMixture( n_components=6, random_state=RANDOM_SEED ) gm_tmp_6 = gm_clf_6.fit_predict(tmp ).reshape(-1, 1) le_6 = OneHotEncoder() gm_tmp_6 = le_6.fit_transform(gm_tmp_6 ).todense() gm_train3_6 = gm_tmp_6[:train_size, :] gm_test3_6 = gm_tmp_6[train_size:, :] skf = StratifiedKFold( n_splits=11, random_state=RANDOM_SEED, shuffle=True ) for train_index, test_index in skf.split(train3, train2['target']): train_train_index, train_val_index = train_test_split( train_index, test_size=0.3, random_state=RANDOM_SEED ) train_dataset = lgb.Dataset( np.hstack( ( train3_scaled[train_train_index,:], gm_tmp_4[:train_size, :][train_train_index, :].tolist() , gm_tmp_6[:train_size, :][train_train_index, :].tolist() , train3_poly[train_train_index,:] ) ), train2.loc[train_train_index]['target'], free_raw_data=False ) valid_dataset = lgb.Dataset( np.hstack( ( train3_scaled[train_val_index,:], gm_tmp_4[:train_size, :][train_val_index, :].tolist() , gm_tmp_6[:train_size, :][train_val_index, :].tolist() , train3_poly[train_val_index,:] ) ), train2.loc[train_val_index]['target'], free_raw_data=False ) gm = lgb.train( params_lgbm_1, train_dataset, num_boost_round=1000, early_stopping_rounds=20, valid_sets=(train_dataset, valid_dataset), valid_names=('train', 'valid'), feature_name=[str(l)for l in range( np.hstack( ( train3_scaled[test_index,:], gm_tmp_4[:train_size, :][test_index, :].tolist() , gm_tmp_6[:train_size, :][test_index, :].tolist() , train3_poly[test_index,:] ) ).shape[1] )], categorical_feature=[str(l)for l in range( train3_scaled.shape[1], train3_scaled.shape[1] + gm_tmp_4.shape[1] + gm_tmp_6.shape[1] ) ], verbose_eval=0 ) oof_lgbm[idx1[test_index]] = gm.predict( np.hstack( ( train3_scaled[test_index,:], gm_tmp_4[:train_size, :][test_index, :].tolist() , gm_tmp_6[:train_size, :][test_index, :].tolist() , train3_poly[test_index,:] ) ) ) preds_lgbm[idx2] += gm.predict( np.hstack( ( test3_scaled, gm_test3_4.tolist() , gm_test3_6.tolist() , test3_poly ) ) )/ skf.n_splits ms, ps = get_mean_cov( train3[train_index, :], train2.loc[train_index]['target'].values ) gm = mixture.GaussianMixture( n_components=2, init_params='random', covariance_type='full', tol=0.001, reg_covar=0.001, max_iter=100, n_init=1, means_init=ms, precisions_init=ps, random_state=RANDOM_SEED ) gm.fit(tmp) oof_gm[idx1[test_index]] = gm.predict_proba( train3[test_index,:] )[:, 0] preds_gm[idx2] += gm.predict_proba( test3 )[:, 0] / skf.n_splits lp = LabelPropagation( kernel='rbf', gamma=0.15301581563198507, n_jobs=-1 ) lp.fit( train3_scaled[train_index,:], train2.loc[train_index]['target'] ) oof_lp[idx1[test_index]] = lp.predict_proba( train3_scaled[test_index, :] )[:,1] preds_lp[idx2] += lp.predict_proba( test3_scaled )[:,1] / skf.n_splits clf = NuSVC( probability=True, kernel='poly', degree=2, gamma='auto', random_state=RANDOM_SEED, nu=0.27312143533915767, coef0=0.4690615598786931 ) clf.fit( np.hstack( ( train3_scaled[train_index,:], gm_train3_4[train_index, :], gm_train3_6[train_index, :] ) ), train2.loc[train_index]['target'] ) oof_nusvc[idx1[test_index]] = clf.predict_proba( np.hstack( ( train3_scaled[test_index,:], gm_train3_4[test_index, :], gm_train3_6[test_index, :] ) ) )[:,1] preds_nusvc[idx2] += clf.predict_proba( np.hstack( ( test3_scaled, gm_test3_4, gm_test3_6 ) ) )[:,1] / skf.n_splits clf = RandomForestClassifier( max_depth=4, n_jobs=-1, n_estimators=20 ) clf.fit( np.hstack( ( train3_scaled[train_index,:], gm_train3_4[train_index, :], gm_train3_6[train_index, :] ) ), train2.loc[train_index]['target'] ) oof_rf[idx1[test_index]] = clf.predict_proba( np.hstack( ( train3_scaled[test_index,:], gm_train3_4[test_index, :], gm_train3_6[test_index, :] ) ) )[:,1] preds_rf[idx2] += clf.predict_proba( np.hstack( ( test3_scaled, gm_test3_4, gm_test3_6 ) ) )[:,1] / skf.n_splits clf = QuadraticDiscriminantAnalysis( reg_param=0.5674164995882528 ) clf.fit( train3[train_index,:], train2.loc[train_index]['target'] ) oof_qda[idx1[test_index]] += clf.predict_proba( train3[test_index, :] )[:,1] preds_qda[idx2] += clf.predict_proba( test3 )[:,1] / skf.n_splits clf = linear_model.LogisticRegression( solver='saga', penalty='l2', C=0.01, tol=0.001, random_state=RANDOM_SEED ) clf.fit( train3_poly[train_index,:], train2.loc[train_index]['target'] ) oof_lr[idx1[test_index]] = clf.predict_proba( train3_poly[test_index,:] )[:,1] preds_lr[idx2] += clf.predict_proba( test3_poly )[:,1] / skf.n_splits clf = GaussianNB() clf.fit( np.hstack( ( train3_scaled[train_index,:], gm_train3_6[train_index, :], gm_train3_4[train_index, :] ) ), train2.loc[train_index]['target'] ) oof_nb[idx1[test_index]] = clf.predict_proba( np.hstack( ( train3_scaled[test_index,:], gm_train3_6[test_index, :], gm_train3_4[test_index, :] ) ) )[:,1] preds_nb[idx2] += clf.predict_proba( np.hstack( ( test3_scaled, gm_test3_6, gm_test3_4 ) ) )[:,1] / skf.n_splits print(' svcnu', roc_auc_score(train['target'], oof_nusvc)) print('gm', roc_auc_score(train['target'], oof_gm)) print('qda', roc_auc_score(train['target'], oof_qda)) print('log reg poly', roc_auc_score(train['target'], oof_lr)) print('gnb', roc_auc_score(train['target'], oof_nb)) print('lp', roc_auc_score(train['target'], oof_lp)) print('lgbm', roc_auc_score(train['target'], oof_lgbm)) print('rf', roc_auc_score(train['target'], oof_rf)) oof_qda = oof_qda.reshape(-1, 1) preds_qda = preds_qda.reshape(-1, 1) oof_lr = oof_lr.reshape(-1, 1) preds_lr = preds_lr.reshape(-1, 1) oof_nusvc = oof_nusvc.reshape(-1, 1) preds_nusvc = preds_nusvc.reshape(-1, 1) oof_nb = oof_nb.reshape(-1, 1) preds_nb = preds_nb.reshape(-1, 1) oof_lp = oof_lp.reshape(-1, 1) preds_lp = preds_lp.reshape(-1, 1) oof_gm = oof_gm.reshape(-1, 1) preds_gm = preds_gm.reshape(-1, 1) oof_lgbm = oof_lgbm.reshape(-1, 1) preds_lgbm = preds_lgbm.reshape(-1, 1) oof_rf = oof_rf.reshape(-1, 1) preds_rf = preds_rf.reshape(-1, 1) tr_2 = np.concatenate( ( oof_qda, oof_nusvc, oof_lr, oof_nb, oof_lp, oof_gm, oof_lgbm, oof_rf ), axis=1 ) te_2 = np.concatenate( ( preds_qda, preds_nusvc, preds_lr, preds_nb, preds_lp, preds_gm, preds_lgbm, preds_rf ), axis=1 ) print(np.corrcoef(tr_2, rowvar=False)) params = { 'boosting_type': 'gbdt', 'objective': 'xentropy', 'metric': ['auc'], 'num_leaves': 3, 'learning_rate': 0.1, 'feature_fraction': 0.4, 'bagging_fraction': 0.4, 'bagging_freq': 5, 'num_threads': 8 } params.update( { 'bagging_fraction': 0.9687497922020039, 'bagging_freq': 100, 'feature_fraction': 0.7578027095458152, 'lambda_l2': 4.871836452096843, 'learning_rate': 0.41230192513715164, 'max_bin': 20, 'num_leaves': 8 } ) oof_boosting_2_bad_cv = np.zeros(train.shape[0]) pred_te_boosting_2_bad_cv = np.zeros(test.shape[0]) train2 = train.copy() train2.reset_index(drop=True,inplace=True) skf = StratifiedKFold( n_splits=11, random_state=RANDOM_SEED, shuffle=True ) for train_index, test_index in skf.split(tr_2, train2['target']): train_dataset = lgb.Dataset( np.hstack( ( tr_2[train_index, :], tr_2[train_index, :] ** 2.587508645172711 ) ), train2['target'][train_index], free_raw_data=False ) valid_dataset = lgb.Dataset( np.hstack( ( tr_2[test_index, :] , tr_2[test_index, :] ** 2.587508645172711 ) ), train2['target'][test_index], free_raw_data=False ) gbm = lgb.train( params, train_dataset, num_boost_round=1000, early_stopping_rounds=100, valid_sets=(train_dataset, valid_dataset), valid_names=('train', 'valid'), verbose_eval=100 ) oof_boosting_2_bad_cv[test_index] = gbm.predict( np.hstack( ( tr_2[test_index, :], tr_2[test_index, :] ** 2.587508645172711 ) ) ) pred_te_boosting_2_bad_cv += gbm.predict( np.hstack( ( te_2, te_2 ** 2.587508645172711 ) ) )/ skf.n_splits print('gnb', roc_auc_score(train['target'], oof_boosting_2_bad_cv)) sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = pred_te_boosting_2_bad_cv sub.to_csv('submission.csv', index=False )
Instant Gratification
4,239,340
print(big['TName'].value_counts()) big['XWho'] = big['TName'] for i in [ 'Master.', 'Sir.', 'Don.', 'Lady.', 'Dona.', 'the Countess.', 'Mme.' ]: big['XWho'][big['TName'] == i] = "High." for i in [ 'Col.', 'Major.', 'Capt.' ]: big['XWho'][big['TName'] == i] = "Mil." for i in [ 'Mr.', 'Dr.', 'Rev.' ]: big['XWho'][big['TName'] == i] = "Mr." for i in [ 'Mrs.', 'Ms.', 'Mlle.', 'Miss.' ]: big['XWho'][big['TName'] == i] = "Miss." big['XWho'][~big['TName'].isin([ 'Sir.', 'Don.', 'Lady.', 'Dona.', 'the Countess.', 'Col.', 'Major.', 'Capt.', 'Mr.', 'Master.', 'Dr.', 'Rev.', 'Mrs.', 'Ms.', 'Mlle.', 'Mme.', 'Miss.' ])] = "Oth." print(big['XWho'].value_counts() )<categorify>
def get_mean_cov(x,y): model = GraphicalLasso() ones =(y==1 ).astype(bool) x2 = x[ones] model.fit(x2) p1 = model.precision_ m1 = model.location_ onesb =(y==0 ).astype(bool) x2b = x[onesb] model.fit(x2b) p2 = model.precision_ m2 = model.location_ ms = np.stack([m1,m2]) ps = np.stack([p1,p2]) return ms,ps
Instant Gratification
4,239,340
for col in [ 'Sex', 'Pclass', 'XWho', 'Embarked', 'LTick', 'XCabin', 'TName' ]: dummy = pd.get_dummies(big[col],prefix=str(col),prefix_sep="__") big = pd.concat([big, dummy], axis=1) big.drop(col, inplace=True, axis=1) for col in [ 'XFam' ]: lbl = LabelEncoder() lbl.fit(list(big[col].values)) big[col] = lbl.transform(list(big[col].values))<filter>
cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) ms, ps = get_mean_cov(train3,train2['target'].values) skf = StratifiedKFold(n_splits=15, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3, train2['target']): P = train3[train_index,:] T = train2.loc[train_index]['target'].values gm = GaussianMixture(n_components=2, init_params='kmeans', covariance_type='full', tol=0.1,reg_covar=0.1, max_iter=150, n_init=5,means_init=ms, precisions_init=ps) gm.fit(np.concatenate([P,test3],axis = 0)) oof[idx1[test_index]] = gm.predict_proba(train3[test_index,:])[:,0] preds[idx2] += gm.predict_proba(test3)[:,0] / skf.n_splits auc = roc_auc_score(train['target'],oof) print('QDA scores CV =',round(auc,5))
Instant Gratification
4,239,340
<feature_engineering><EOS>
sub = pd.read_csv('.. /input/instant-gratification/sample_submission.csv') sub['target'] = preds sub.to_csv('submission.csv',index=False )
Instant Gratification
4,324,396
<feature_engineering><EOS>
warnings.filterwarnings('ignore') train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] print(train.shape, test.shape) oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}') for itr in range(4): test['target'] = preds test.loc[test['target'] > 0.955, 'target'] = 1 test.loc[test['target'] < 0.045, 'target'] = 0 usefull_test = test[(test['target'] == 1)|(test['target'] == 0)] new_train = pd.concat([train, usefull_test] ).reset_index(drop=True) print(usefull_test.shape[0], "Test Records added for iteration : ", itr) new_train.loc[oof > 0.995, 'target'] = 1 new_train.loc[oof < 0.005, 'target'] = 0 oof2 = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = new_train[new_train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train[train['wheezy-copper-turtle-magic']==i].index idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]] test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=time.time) for train_index, test_index in skf.split(train2, train2['target']): oof_test_index = [t for t in test_index if t < len(idx1)] clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) if len(oof_test_index)> 0: oof2[idx1[oof_test_index]] = clf.predict_proba(train3[oof_test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof2) print(f'AUC: {auc:.5}') sub1 = pd.read_csv('.. /input/sample_submission.csv') sub1['target'] = preds
Instant Gratification
4,268,684
<SOS> metric: AUC Kaggle data source: instant-gratification<feature_engineering>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') train.head() cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic' )
Instant Gratification
4,268,684
train['Fare'] = np.log1p(( train['Fare'] - train['Fare'].mean())/ train['Fare'].std()) test['Fare'] = np.log1p(( test['Fare'] - test['Fare'].mean())/ test['Fare'].std() )<feature_engineering>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) data2 = VarianceThreshold(threshold=2 ).fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}' )
Instant Gratification
4,268,684
train['c_mean'] = pd.Series(train.mean(axis=1), index=train.index) c_mean_max = train['c_mean'].max() c_mean_min = train['c_mean'].min() c_mean_scaled =(train.c_mean-c_mean_min)/ c_mean_max train['c_mean_s'] = pd.Series(c_mean_scaled, index=train.index) del train['c_mean'] train['c_std'] = pd.Series(train.std(axis=1), index=train.index) c_std_max = train['c_std'].max() c_std_min = train['c_std'].min() c_std_scaled =(train.c_std-c_std_min)/ c_std_max train['c_std_s'] = np.log1p(pd.Series(c_std_scaled, index=train.index)) del train['c_std'] test['c_mean'] = pd.Series(test.mean(axis=1), index=test.index) c_mean_max = test['c_mean'].max() c_mean_min = test['c_mean'].min() c_mean_scaled =(test.c_mean-c_mean_min)/ c_mean_max test['c_mean_s'] = np.log1p(pd.Series(c_mean_scaled, index=test.index)) del test['c_mean'] test['c_std'] = pd.Series(test.std(axis=1), index=test.index) c_std_max = test['c_std'].max() c_std_min = test['c_std'].min() c_std_scaled =(test.c_std-c_std_min)/ c_std_max test['c_std_s'] = pd.Series(c_std_scaled, index=test.index) del test['c_std'] print(train.shape, test.shape )<count_duplicates>
train.loc[oof > 0.99, 'target'] = 1 train.loc[oof < 0.01, 'target'] = 0
Instant Gratification
4,268,684
print(train.shape) train.drop_duplicates(inplace=True) print(train.shape )<data_type_conversions>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) sel = VarianceThreshold(threshold=1.5 ).fit(data[cols]) data2 = sel.transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3, train2['target']): clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof) print('QDA scores CV =',round(auc,5))
Instant Gratification
4,268,684
print(" <*> Debut") kDate = time.strftime('%d%m%y_%H%M%S',time.localtime()) start = time.time() y_train = train['Survived'].values.astype(np.float64) x_train = train.drop(['PassengerId', 'Survived'], axis=1 ).values.astype(np.float64) x_test = test.drop(['PassengerId'], axis=1 ).values.astype(np.float64) print('Shape train: {} Shape test: {} Shape Y: {}'.format(x_train.shape, x_test.shape, y_train.shape)) NSplit = 5 SliceTrain = 0.75 SliceTest = 0.25 models = [] NIter = 0 TScore = 0 print("Entrainement") rs = StratifiedShuffleSplit(n_splits=NSplit, random_state=99, test_size=SliceTest) for train_index, test_index in rs.split(x_train, y_train): X_train = x_train[train_index] Y_train = y_train[train_index] X_valid = x_train[test_index] Y_valid = y_train[test_index] rfc_params = {} rfc_params['n_estimators'] = 200 rfc_params['learning_rate'] = 0.015 rfc_params['max_depth'] = 250 rfc_params['max_features'] = "auto" rfc_params['min_samples_split'] = 0.7 rfc_params['min_samples_leaf'] = 0.01 rfc_params['random_state'] = 0 rfc_params['verbose'] = 0 sum_score = 0 score = 0 clf = GradientBoostingClassifier(**rfc_params) clf.fit(X_train, Y_train) models.append(clf) score = clf.score(X_valid, Y_valid) print(" <*> Entrainement ",NIter," avec ", SliceTrain, " pour train et ",SliceTest," pour test - Score : ", score) TScore += score NIter += 1 TScore /= NSplit print(" <*> ---------------- Resultats CV ------------------ ") print(" <*> params : ",rfc_params) print(" <*> Score Moyenne training : ", TScore) print("Verification avec le train") score = 0 SCLOG = 0 NIter = 0 for clf in models: PTrain = clf.predict(x_train) score = clf.score(x_train, y_train) SCLOG += score NIter += 1 SCLOG /= NSplit print(" <*> Score Moyenne Train : ", SCLOG) print("Predictions") NIter = 0 ctb_pred1 = [] for clf in models: PTest = clf.predict(x_test) ctb_pred1.append(PTest) NIter += 1 PTest = [0] * len(ctb_pred1[0]) for i in range(NSplit): PTest += ctb_pred1[i] PTest /= NSplit print(pd.DataFrame(PTest ).head()) end = time.time() print(" <*> Duree : ",end - start) print(" <*> Fin" )<save_to_csv>
cat_dict = dict() cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) cat_dict[i] = train3.shape[1]
Instant Gratification
4,268,684
print(" Mise a jour des colonnes submit") submit['Survived'] = np.clip(PTest, 0, 1 ).astype(int) localtime = time.localtime(time.time()) WDate = str(localtime.tm_mday ).rjust(2, '0')+str(localtime.tm_mon ).rjust(2, '0')+str(localtime.tm_year) SUBFIC = SUBINT_DIR+"Titanic_GBR_"+str(kDate)+".csv" print(" <*> Ecriture deb CSV/7z : ", SUBFIC) submit.to_csv(SUBFIC, index=False) print(" <*> Ecriture fin CSV/7z : ", SUBFIC )<set_options>
test['target'] = preds oof_var = np.zeros(len(train)) preds_var = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) pca = PCA(n_components=cat_dict[k], random_state= 1234) pca.fit(train2p[cols]) train3p = pca.transform(train2p[cols]) train3 = pca.transform(train2[cols]) test3 = pca.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_var[idx1[test_index3]] += clf.predict_proba(train3[test_index3,:])[:,1] preds_var[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof_var) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,268,684
plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus'] = False def readCsv(file): with open(file, encoding='utf8', mode='r')as f: return pd.read_csv(f) def seeNorm(series): sns.distplot(series) print('偏度系数', series.skew()) print('峰度系数', series.kurt()) def drawHeatMap(dataset, target, k=-1): corrmat = dataset.corr() cols = dataset.columns if -1 != k: cols = corrmat.nlargest(k, target)[target].index cm = np.corrcoef(dataset[cols].values.T) sns.set(font_scale=1.25) hm = sns.heatmap(cm, cbar=True, annot = True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values, cmap='coolwarm') plt.show() return cols def drawPairplot(dataset, cols): sns.set() sns.pairplot(dataset[cols], size=2.5) plt.show() def seeMissing(dataset): total = dataset.isnull().sum() percent =(total/dataset.isnull().count())*100 total = total.drop(total[total == 0].index) percent = percent.drop(percent[percent == 0].index) total = total.sort_values(ascending=False) percent = percent.sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Missing Ratio']) print(missing_data.head(20)) f, ax = plt.subplots(figsize=(15,12)) plt.xticks(rotation='90') if percent.count() != 0: sns.barplot(x=percent.index, y =percent) plt.xlabel('Features', fontsize=15) plt.ylabel('Percent of missing values', fontsize=15) plt.title('Percent missing data by feature', fontsize=15) def drawScatter(dataset, colx, coly): fig, ax = plt.subplots() ax.scatter(x=dataset[colx], y = dataset[coly]) plt.xlabel(colx, fontsize=13) plt.ylabel(coly, fontsize=13) plt.show() def drawDist(dataset, col, title=''): print('skewness', dataset[col].skew()) print('kurt', dataset[col].kurt()) sns.distplot(dataset[col], fit = norm) (mu, sigma)= norm.fit(dataset[col]) print('mu = {:.2f} and sigma = {:.2f}'.format(mu, sigma)) plt.legend(['Normal dist.( $\mu=$ {:.2f} and $\sigma=$ {:.2f}'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('{} distribution'.format(title)) plt.show() def drawQQ(dataset, col): fig = plt.figure() res = stats.probplot(dataset[col], plot=plt) plt.show() def drawBox(dataset, xcol, ycol): plt.figure(figsize=(18, 8)) sns.boxplot(x=dataset[xcol], y=dataset[ycol]) def delCol(dataset, col): dataset.drop(columns=col, axis=1, inplace=True) class AveragingModels(BaseEstimator, RegressorMixin, TransformerMixin): def __init__(self, models): self.models = models def fit(self, X, y): self.models_ = [clone(x)for x in self.models] for model in self.models_: model.fit(X, y) return self def predict(self, X): predictions = np.column_stack([ model.predict(X)for model in self.models_ ]) return np.mean(predictions, axis=1) class AveragingModels(BaseEstimator, RegressorMixin, TransformerMixin): def __init__(self, models): self.models = models def fit(self, X, y): self.models_ = [clone(x)for x in self.models] for model in self.models_: model.fit(X, y) return self def predict(self, X): predictions = np.column_stack([ model.predict(X)for model in self.models_ ]) return np.mean(predictions, axis = 1) class DataMining() : def __init__(self): dirname = '/kaggle/input/titanic' self.train = readCsv('{}/train.csv'.format(dirname)) self.test = readCsv('{}/test.csv'.format(dirname)) self.idName = 'PassengerId' self.targetName = 'Survived' self.trainX = self.train.drop([self.idName, self.targetName], axis = 1) self.trainY = self.train[self.targetName] self.testId = self.test[self.idName] self.testX = self.test.drop(self.idName, axis = 1) def preprocessing(self): self.fillMissing() self.mergeDataset() self.dataset = self.dataset.fillna(np.nan) self.dataset.drop(['Name'], axis=1, inplace=True) print(self.dataset.head()) self.labelEncoding(['Sex', 'Ticket', 'Cabin', 'Embarked']) self.splitDataset() def mergeDataset(self): self.train_len = self.trainX.shape[0] self.dataset = pd.concat([self.trainX, self.testX], axis=0 ).reset_index(drop=True) def splitDataset(self): self.trainX = self.dataset[:self.train_len] self.testX = self.dataset[self.train_len :] self.trainY = self.trainY.astype(int) def fillMedian(self, col, kind='train'): if kind != 'train': self.testX[col] = self.testX[col].fillna(self.testX[col].median()) else: self.trainX[col] = self.trainX[col].fillna(self.trainX[col].median()) def fillMode(self, col, kind='train'): if kind != 'train': self.testX[col] = self.testX[col].fillna(self.testX[col].mode() [0]) else: self.trainX[col] = self.trainX[col].fillna(self.trainX[col].mode() [0]) def fillMissing(self): self.fillMedian('Age') self.fillMode('Cabin') self.fillMode('Embarked') self.fillMode('Cabin', 'test') self.fillMode('Fare', 'test') self.fillMode('Age', 'test') def labelEncoding(self, col): enc = LabelEncoder() self.dataset[col] = self.dataset[col].apply(enc.fit_transform) def clearOutlier(self): feats = self.train.dtypes[self.train.dtypes != 'object'].index print(feats) for f in feats: Q1 = self.train[f].quantile (.25) Q3 = self.train[f].quantile (.75) IQR = Q3 - Q1 threshold = 1.5 * IQR self.train[(self.train[f] < Q1 - threshold)|(self.train[f] > Q3 + threshold)] = np.nan def exploring(self): self.preprocessing() print(' train missing') print(self.trainX.isnull().sum()) print(' test missing') print(self.testX.isnull().sum()) print(self.dataset.head()) tmp = pd.concat([self.trainX, self.trainY], axis=1 ).reset_index(drop=True) drawHeatMap(tmp, self.targetName, -1) def score(self, model, name=''): n_folds = 9 kf = KFold(n_splits= n_folds, random_state=1, shuffle=True) score = cross_val_score(model, self.trainX.values, self.trainY, cv=kf) print("{}score: {:.2f}%".format(name, score.mean() *100.0)) def predict(self): self.ensemble() self.wrapAns() def ensemble(self): all_ans = [] for i in range(len(self.models)) : self.models[i].fit(self.trainX, self.trainY) all_ans.append(self.models[i].predict(self.testX)) self.testY = all_ans[1] def wrapAns(self): submission = pd.DataFrame() submission[self.idName] = self.testId submission[self.targetName] = self.testY.astype('int') save_dir = '/kaggle/working' submission.to_csv('{}/submission.csv'.format(save_dir), index=False) print('the result has been written into the file "submission.csv"') def modeling(self): lr = LogisticRegression(random_state=1) rf = RandomForestClassifier(random_state=1, n_estimators=200, criterion = 'entropy', min_samples_leaf=1, min_samples_split=4) gboost = GradientBoostingClassifier(learning_rate=0.2,max_depth = 4,n_estimators =100) self.models = [ rf, gboost ] def evaluate(self): for model in self.models: self.score(model) dm = DataMining() dm.preprocessing() dm.modeling() dm.predict() <set_options>
test['target'] = preds_var oof_var2 = np.zeros(len(train)) preds_var2 = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2p[cols]) train3p = sel.transform(train2p[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_var2[idx1[test_index3]] += clf.predict_proba(train3[test_index3,:])[:,1] preds_var2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof_var2) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,268,684
%matplotlib inline<define_variables>
auc = roc_auc_score(train['target'],0.5*(oof_var+ oof_var2)) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,268,684
<load_pretrained><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = 0.5* preds_var + 0.5*preds_var2 sub.to_csv('submission.csv',index=False) plt.hist(preds,bins=100) plt.title('Final Test.csv predictions') plt.show()
Instant Gratification
4,304,570
<SOS> metric: AUC Kaggle data source: instant-gratification<load_from_csv>
warnings.filterwarnings('ignore' )
Instant Gratification
4,304,570
train_csv = pd.read_csv(extracted_files_path + '/training.csv') test_csv = pd.read_csv(extracted_files_path + '/test.csv') looktable_csv = pd.read_csv(Id_table_path )<drop_column>
train1 = pd.read_csv('.. /input/train.csv') test1 = pd.read_csv('.. /input/test.csv') cols1 = [c for c in train1.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']]
Instant Gratification
4,304,570
feature_8 = ['left_eye_center_x', 'left_eye_center_y', 'right_eye_center_x','right_eye_center_y', 'nose_tip_x', 'nose_tip_y', 'mouth_center_bottom_lip_x', 'mouth_center_bottom_lip_y', 'Image'] train_8_csv = train_csv[feature_8].dropna().reset_index() train_30_csv = train_csv.dropna().reset_index()<categorify>
def instant_model(train, test, cols = cols1, clf = QuadraticDiscriminantAnalysis(0.5), selection = "PCA"): oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic'] == i] test2 = test[test['wheezy-copper-turtle-magic'] == i] idx1 = train2.index idx2 = test2.index data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) if selection == "variance": data2 = StandardScaler().fit_transform(VarianceThreshold(threshold=2 ).fit_transform(data[cols])) train3 = pd.DataFrame(data2[:train2.shape[0]], index = idx1) test3 = pd.DataFrame(data2[train2.shape[0]:], index = idx2) elif selection == "PCA": pca = PCA(n_components = 40, random_state= 1234) pca.fit(data[:train2.shape[0]]) train3 = pd.DataFrame(pca.transform(data[:train2.shape[0]]), index = idx1) test3 = pd.DataFrame(pca.transform(data[train2.shape[0]:]), index = idx2) train3['target'] = train2['target'] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train3, train3['target']): clf = clf X_train = train3.iloc[train_index, :].drop(["target"], axis = 1) X_test = train3.iloc[test_index, :].drop(["target"], axis = 1) y_train = train3.iloc[train_index, :]['target'] y_test = train3.iloc[test_index, :]['target'] clf.fit(X_train, y_train) train_prob = clf.predict_proba(X_train)[:,1] test_prob = clf.predict_proba(X_test)[:,1] oof[idx1[test_index]] = test_prob preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}') return oof, preds
Instant Gratification
4,304,570
def str_to_array(pd_series): data_size = len(pd_series) X = np.zeros(shape=(data_size,96,96,1), dtype=np.float32) for i in tqdm(range(data_size)) : img_str = pd_series[i] img_list = img_str.split(' ') img_array = np.array(img_list, dtype=np.float32) img_array = img_array.reshape(96,96,1) X[i] = img_array return X<save_to_csv>
def get_newtrain(train, test, preds, oof): test['target'] = preds test.loc[test['target'] > 0.985, 'target'] = 1 test.loc[test['target'] < 0.015, 'target'] = 0 usefull_test = test[(test['target'] == 1)|(test['target'] == 0)] new_train = pd.concat([train, usefull_test] ).reset_index(drop=True) new_train.loc[oof > 0.985, 'target'] = 1 new_train.loc[oof < 0.015, 'target'] = 0 return new_train
Instant Gratification
4,304,570
X_train_30 = str_to_array(train_30_csv['Image']) labels_30 = train_30_csv.drop(['index','Image'], axis=1) y_train_30 = labels_30.to_numpy(dtype=np.float32) print('X_train with 30 feature shape: ', X_train_30.shape) print('y_train with 30 feature shape: ', y_train_30.shape )<save_to_csv>
oof_temp, preds_temp = instant_model(train1, test1, selection = 'variance') newtrain1 = get_newtrain(train1, test1, preds_temp, oof_temp )
Instant Gratification
4,304,570
X_train_8 = str_to_array(train_8_csv['Image']) labels_8 = train_8_csv.drop(['index','Image'], axis=1) y_train_8 = labels_8.to_numpy(dtype=np.float32) print('X_train with 8 feature shape: ', X_train_8.shape) print('y_train with 8 feature shape: ', y_train_8.shape )<choose_model_class>
oof_qda_var, preds_qda_var = instant_model(newtrain1, test1, selection = 'variance') oof_knn_var, preds_knn_var = instant_model(newtrain1, test1, \ clf = KNeighborsClassifier(n_neighbors = 7, p = 2, weights = 'distance'),\ selection = 'variance' )
Instant Gratification
4,304,570
def create_model(output_n = 30): model = keras.models.Sequential([ keras.layers.InputLayer(input_shape=[96,96,1]), keras.layers.Conv2D(filters=32, kernel_size=[5,5], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=32, kernel_size=[5,5], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.MaxPool2D(pool_size=[2,2]), keras.layers.Conv2D(filters=64, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=64, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.MaxPool2D(pool_size=[2,2]), keras.layers.Conv2D(filters=128, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=128, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.MaxPool2D(pool_size=[2,2]), keras.layers.Conv2D(filters=256, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=256, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.MaxPool2D(pool_size=[2,2]), keras.layers.Conv2D(filters=512, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=512, kernel_size=[3,3], padding='same', use_bias=False), keras.layers.LeakyReLU(alpha =.1), keras.layers.BatchNormalization() , keras.layers.Flatten() , keras.layers.Dense(units=512, activation='relu'), keras.layers.Dropout (.1), keras.layers.Dense(units=output_n), ]) model.compile(optimizer = 'adam' , loss = "mean_squared_error", metrics=["mae"]) return model<choose_model_class>
oof_qda_pca, preds_qda_pca = instant_model(newtrain1, test1) oof_knn_pca, preds_knn_pca = instant_model(newtrain1, test1, \ clf = KNeighborsClassifier(n_neighbors = 7, p = 2, weights = 'distance'))
Instant Gratification
4,304,570
model_30 = create_model(output_n=30) model_8 = create_model(output_n=8 )<choose_model_class>
logit = LogisticRegression() newX_train_stack = pd.DataFrame({"QDA_var": oof_qda_var, "QDA_pca": oof_qda_pca, \ "KNN_var": oof_knn_var, "KNN_pca": oof_knn_pca}) newX_test_stack = pd.DataFrame({"QDA_var": preds_qda_var, "QDA_pca": preds_qda_pca, \ "KNN_var": preds_knn_var, "KNN_pca": preds_knn_pca}) newy_stack = newtrain1['target'] logit.fit(newX_train_stack, newy_stack) pred_stack_train = logit.predict_proba(newX_train_stack)[:,1] pred_stack_test = logit.predict_proba(newX_test_stack)[:,1] print("ROC_AUC: {0}".format(roc_auc_score(newy_stack, pred_stack_train))) stack_result = logit.predict_proba(newX_test_stack)[:,1]
Instant Gratification
4,304,570
<train_model><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = stack_result sub.to_csv('submission_4stack.csv',index=False )
Instant Gratification
4,270,029
<SOS> metric: AUC Kaggle data source: instant-gratification<train_model>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') train.head()
Instant Gratification
4,270,029
history = model_8.fit(X_train_8, y_train_8, validation_split=.1, batch_size=64, epochs=100, callbacks=[LR_callback,EarlyStop_callback] )<train_model>
def get_mean_cov(x,y): model = GraphicalLasso() ones =(y==1 ).astype(bool) x2 = x[ones] model.fit(x2) p1 = model.precision_ m1 = model.location_ onesb =(y==0 ).astype(bool) x2b = x[onesb] model.fit(x2b) p2 = model.precision_ m2 = model.location_ ms = np.stack([m1,m2]) ps = np.stack([p1,p2]) return ms,ps
Instant Gratification
4,270,029
X_test = str_to_array(test_csv['Image']) print('X_test shape: ', X_test.shape )<predict_on_test>
cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3, train2['target']): ms, ps = get_mean_cov(train3[train_index,:],train2.loc[train_index]['target'].values) gm = GaussianMixture(n_components=2, init_params='random', covariance_type='full', tol=0.001,reg_covar=0.001, max_iter=100, n_init=1,means_init=ms, precisions_init=ps) gm.fit(np.concatenate([train3,test3],axis = 0)) oof[idx1[test_index]] = gm.predict_proba(train3[test_index,:])[:,0] preds[idx2] += gm.predict_proba(test3)[:,0] / skf.n_splits auc = roc_auc_score(train['target'],oof) print('QDA scores CV =',round(auc,5))
Instant Gratification
4,270,029
y_hat_30 = model_30.predict(X_test) y_hat_8 = model_8.predict(X_test) print('Predictions shape', y_hat_30.shape) print('Predictions shape', y_hat_8.shape )<feature_engineering>
cat_dict = dict() cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) cat_dict[i] = train3.shape[1]
Instant Gratification
4,270,029
feature_8_ind = [0, 1, 2, 3, 20, 21, 28, 29] for i in range(8): print('Copy "{}" feature column from y_hat_8 --> y_hat_30'.format(feature_8[i])) y_hat_30[:,feature_8_ind[i]] = y_hat_8[:,i]<define_variables>
test['target'] = preds oof_var = np.zeros(len(train)) preds_var = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) pca = PCA(n_components=cat_dict[k], random_state= 1234) pca.fit(train2p[cols]) train3p = pca.transform(train2p[cols]) train3 = pca.transform(train2[cols]) test3 = pca.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_var[idx1[test_index3]] += clf.predict_proba(train3[test_index3,:])[:,1] preds_var[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof_var) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,270,029
required_features = list(looktable_csv['FeatureName']) imageID = list(looktable_csv['ImageId']-1) feature_to_num = dict(zip(required_features[0:30], range(30)) )<define_variables>
test['target'] = preds_var oof_var2 = np.zeros(len(train)) preds_var2 = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2p[cols]) train3p = sel.transform(train2p[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_var2[idx1[test_index3]] += clf.predict_proba(train3[test_index3,:])[:,1] preds_var2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof_var2) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,270,029
feature_ind = [] for f in required_features: feature_ind.append(feature_to_num[f] )<define_variables>
auc = roc_auc_score(train['target'],0.5*(oof_var+ oof_var2)) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,270,029
<save_to_csv><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = 0.5* preds_var + 0.5*preds_var2 sub.to_csv('submission.csv',index=False) plt.hist(preds,bins=100) plt.title('Final Test.csv predictions') plt.show()
Instant Gratification
4,244,813
<SOS> metric: AUC Kaggle data source: instant-gratification<install_modules>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') train.head() cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic' )
Instant Gratification
4,244,813
!wget --quiet https://raw.githubusercontent.com/tensorflow/models/master/official/nlp/bert/tokenization.py !pip install keras !pip install tensorflow-hub !pip install tensorflow<import_modules>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) data2 = VarianceThreshold(threshold=2 ).fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}' )
Instant Gratification
4,244,813
import tokenization import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import classification_report from keras.callbacks import ModelCheckpoint import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras.layers import Dense, Input, Dropout from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model<set_options>
train.loc[oof > 0.99, 'target'] = 1 train.loc[oof < 0.01, 'target'] = 0
Instant Gratification
4,244,813
plt.style.use('fivethirtyeight') warnings.filterwarnings("ignore" )<load_from_csv>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) sel = VarianceThreshold(threshold=1.5 ).fit(data[cols]) data2 = sel.transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3, train2['target']): clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof) print('QDA scores CV =',round(auc,5))
Instant Gratification
4,244,813
dataset = pd.read_csv('.. /input/nlp-getting-started/train.csv') test = pd.read_csv('.. /input/nlp-getting-started/test.csv') submission = pd.read_csv('.. /input/nlp-getting-started/sample_submission.csv' )<choose_model_class>
cat_dict = dict() cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) cat_dict[i] = train3.shape[1]
Instant Gratification
4,244,813
bert_layer = \ hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/2", trainable=True )<define_variables>
test['target'] = preds oof_var = np.zeros(len(train)) preds_var = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) pca = PCA(n_components=cat_dict[k], random_state= 1234) pca.fit(train2p[cols]) train3p = pca.transform(train2p[cols]) train3 = pca.transform(train2[cols]) test3 = pca.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_var[idx1[test_index3]] += clf.predict_proba(train3[test_index3,:])[:,1] preds_var[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof_var) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,244,813
max_len = max([len(x.split())for x in dataset.text])+ 1<categorify>
test['target'] = preds_var oof_var2 = np.zeros(len(train)) preds_var2 = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2p[cols]) train3p = sel.transform(train2p[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_var2[idx1[test_index3]] += clf.predict_proba(train3[test_index3,:])[:,1] preds_var2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof_var2) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,244,813
def bert_encode(texts, tokenizer, max_len=None): all_tokens = [] all_masks = [] all_segments = [] for text in texts: text = tokenizer.tokenize(text) text = text[:max_len-2] input_sequence = ["[CLS]"] + text + ["[SEP]"] pad_len = max_len - len(input_sequence) tokens = tokenizer.convert_tokens_to_ids(input_sequence) tokens += [0] * pad_len pad_masks = [1] * len(input_sequence)+ [0] * pad_len segment_ids = [0] * max_len all_tokens.append(tokens) all_masks.append(pad_masks) all_segments.append(segment_ids) return np.array(all_tokens), np.array(all_masks), np.array(all_segments )<data_type_conversions>
auc = roc_auc_score(train['target'],0.5*(oof_var+ oof_var2)) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,244,813
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()<choose_model_class>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = 0.5* preds_var + 0.5*preds_var2 sub.to_csv('submission.csv',index=False) plt.hist(preds,bins=100) plt.title('Final Test.csv predictions') plt.show()
Instant Gratification
4,208,612
tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case )<categorify>
cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) sel = VarianceThreshold(threshold=1.5 ).fit(data[cols]) data2 = sel.transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3, train2['target']): clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof) print('QDA scores CV =',round(auc,5))
Instant Gratification
4,208,612
train_input = bert_encode(dataset.text.values, tokenizer, max_len=max_len) train_labels = dataset.target.values test_input = bert_encode(test.text, tokenizer, max_len=max_len )<choose_model_class>
cat_dict = dict() cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) cat_dict[i] = train3.shape[1]
Instant Gratification
4,208,612
all_inputs = [ Input(shape=(max_len,), dtype=tf.int32), Input(shape=(max_len,), dtype=tf.int32), Input(shape=(max_len,), dtype=tf.int32) ] __, sequence_output = bert_layer(all_inputs) x = sequence_output[:, 0, :] x = Dropout(0.5 )(x) x = Dense(units=32, activation='relu' )(x) x = Dense(1, activation='sigmoid' )(x) model = Model(all_inputs, outputs=x) model.compile(Adam(lr= 0.00001), loss='binary_crossentropy', metrics=['accuracy']) model.summary()<train_model>
test['target'] = preds oof_var = np.zeros(len(train)) preds_var = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) pca = PCA(n_components=cat_dict[k], random_state= 1234) pca.fit(train2p[cols]) train3p = pca.transform(train2p[cols]) train3 = pca.transform(train2[cols]) test3 = pca.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_var[idx1[test_index3]] += clf.predict_proba(train3[test_index3,:])[:,1] preds_var[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof_var) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,208,612
checkpoint = \ ModelCheckpoint('model.h5', monitor='val_loss', save_best_only=True, verbose=1) train_history = \ model.fit(train_input, train_labels, validation_split=0.2, epochs=5, callbacks=[checkpoint], batch_size=16 )<load_pretrained>
test['target'] = preds_var oof_var2 = np.zeros(len(train)) preds_var2 = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2p[cols]) train3p = sel.transform(train2p[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_var2[idx1[test_index3]] += clf.predict_proba(train3[test_index3,:])[:,1] preds_var2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'],oof_var2) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,208,612
model.load_weights('model.h5' )<save_to_csv>
auc = roc_auc_score(train['target'],0.5*(oof_var+ oof_var2)) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,208,612
<set_options><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = 0.5* preds_var + 0.5*preds_var2 sub.to_csv('submission.csv',index=False) plt.hist(preds,bins=100) plt.title('Final Test.csv predictions') plt.show()
Instant Gratification
4,121,252
<SOS> metric: AUC Kaggle data source: instant-gratification<load_from_csv>
import numpy as np, pandas as pd from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.feature_selection import VarianceThreshold from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
Instant Gratification
4,121,252
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv' )<count_missing_values>
print('Loading Train') train = pd.read_csv('.. /input/train.csv') print('Loading Test') test = pd.read_csv('.. /input/test.csv') print('Finish' )
Instant Gratification
4,121,252
train.isnull().sum()<count_missing_values>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) oof_QDA = np.zeros(len(train)) preds_QDA = np.zeros(len(test)) cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) poly = PolynomialFeatures(degree=2) sc = StandardScaler() data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) data2 = sc.fit_transform(poly.fit_transform(VarianceThreshold(threshold=1.5 ).fit_transform(data[cols]))) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) data2 = VarianceThreshold(threshold=1.5 ).fit_transform(data[cols]) train4 = data2[:train2.shape[0]]; test4 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = LogisticRegression(solver='saga',penalty='l2',C=0.01,tol=0.001) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits clf_QDA = QuadraticDiscriminantAnalysis(reg_param=0.5) clf_QDA.fit(train4[train_index,:],train2.loc[train_index]['target']) oof_QDA[idx1[test_index]] = clf_QDA.predict_proba(train4[test_index,:])[:,1] preds_QDA[idx2] += clf_QDA.predict_proba(test4)[:,1] / skf.n_splits if i%64==0: print(i, 'LR oof auc : ', round(roc_auc_score(train['target'][idx1], oof[idx1]), 5)) print(i, 'QDA oof auc : ', round(roc_auc_score(train['target'][idx1], oof_QDA[idx1]), 5))
Instant Gratification
4,121,252
train.isnull().sum()<string_transform>
test['target'] = preds oof = np.zeros(len(train)) preds = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2p[cols]) train3p = sel.transform(train2p[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) poly = PolynomialFeatures(degree=2 ).fit(train3p) train3p = poly.transform(train3p) train3 = poly.transform(train3) test3 = poly.transform(test3) sc2 = StandardScaler() train3p = sc2.fit_transform(train3p) train3 = sc2.transform(train3) test3 = sc2.transform(test3) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = LogisticRegression(solver='saga',penalty='l2',C=0.01,tol=0.001) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits if k%64==0: print(k, 'LR2 oof auc : ', round(roc_auc_score(train['target'][idx1], oof[idx1]), 5))
Instant Gratification
4,121,252
stopwords = list(STOP_WORDS) punct=string.punctuation def text_data_cleaning(sentence): doc = nlp(sentence) tokens = [] for token in doc: if token.lemma_ != "-PRON-": temp = token.lemma_.lower().strip() else: temp = token.lower_ tokens.append(temp) cleaned_tokens = [] for token in tokens: if token not in stopwords and token not in punct: cleaned_tokens.append(token) return " ".join(cleaned_tokens )<feature_engineering>
test['target'] = preds_QDA oof_QDA2 = np.zeros(len(train)) preds_QDA2 = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2p[cols]) train3p = sel.transform(train2p[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf_QDA2 = QuadraticDiscriminantAnalysis(reg_param=0.5) clf_QDA2.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_QDA2[idx1[test_index3]] = clf_QDA2.predict_proba(train3[test_index3,:])[:,1] preds_QDA2[test2.index] += clf_QDA2.predict_proba(test3)[:,1] / skf.n_splits if k%64==0: print(k, 'QDA2 oof auc : ', round(roc_auc_score(train['target'][idx1], oof_QDA2[idx1]), 5))
Instant Gratification
4,121,252
train['text'] = train.text.apply(lambda x: text_data_cleaning(x)) <feature_engineering>
print('LR auc: ', round(roc_auc_score(train['target'], oof),5)) print('QDA auc: ', round(roc_auc_score(train['target'], oof_QDA2),5))
Instant Gratification
4,121,252
train.keyword = train.keyword.fillna("") train['new_text'] = train.text test.keyword = test.keyword.fillna("") test['text'] = test.text test['text'] = test.text.apply(lambda x: text_data_cleaning(x))<split>
w_best = 0 oof_best = oof_QDA2 for w in np.arange(0,0.55,0.001): oof_blend = w*oof+(1-w)*oof_QDA2 if(roc_auc_score(train['target'], oof_blend)) >(roc_auc_score(train['target'], oof_best)) : w_best = w oof_best = oof_blend print(w_best) print('best weight: ', w_best) print('auc_best: ', round(roc_auc_score(train['target'], oof_best), 5))
Instant Gratification
4,121,252
<choose_model_class><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = w_best*preds +(1-w_best)*preds_QDA2 sub.to_csv('submission.csv', index=False) sub.head()
Instant Gratification
4,090,518
<SOS> metric: AUC Kaggle data source: instant-gratification<choose_model_class>
warnings.filterwarnings('ignore')
Instant Gratification
4,090,518
def build_model(embed): model = Sequential([ Input(shape=[], dtype=tf.string), embed, Dense(1024, activation='elu'), BatchNormalization() , Dropout(0.5), Dense(512, activation='elu'), BatchNormalization() , Dropout(0.35), Dense(256, activation='relu'), BatchNormalization() , Dropout(0.1), Dense(1, activation='sigmoid') ]) model.compile(Adam(lr=0.001), loss='binary_crossentropy', metrics=['accuracy']) return model<choose_model_class>
%%time path=Path('.. /input') def load_data(data): return pd.read_csv(data) with multiprocessing.Pool() as pool: train, test, sub = pool.map(load_data, [path/'train.csv', path/'test.csv', path/'sample_submission.csv'] )
Instant Gratification
4,090,518
earlyStopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1, mode='min') mcp_save = ModelCheckpoint('model.hdf5', save_best_only=True, monitor='val_loss', mode='min') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=7, verbose=2, epsilon=1e-4, mode='min' )<train_model>
NFOLDS=5 NTRIALS=100 RS=42 debug=0 lowest=0.01 highest=0.99
Instant Gratification
4,090,518
with tf.compat.v1.Session() as session: tf.compat.v1.keras.backend.set_session(session) session.run([tf.compat.v1.global_variables_initializer() , tf.compat.v1.tables_initializer() ]) history = model.fit( X_train, y_train, validation_data=(X_test,y_test), epochs=35, callbacks=[earlyStopping,reduce_lr_loss,mcp_save], batch_size=128 )<predict_on_test>
if debug: magic_max=2 magic_min=0 NFOLDS=2 NTRIALS=2 else: magic_max=train['wheezy-copper-turtle-magic'].max() magic_min=train['wheezy-copper-turtle-magic'].min()
Instant Gratification
4,090,518
with tf.Session() as session: tf.compat.v1.keras.backend.set_session(session) session.run(tf.global_variables_initializer()) session.run(tf.tables_initializer()) model.load_weights('model.hdf5') y_pred = model.predict(X_test) print(classification_report(y_test, y_pred.round().astype(int)) )<save_to_csv>
def preprocess(clfs=['QDA'], train=train, test=test, magic_min=magic_min, magic_max=magic_max): prepr = {} for i in range(magic_min, magic_max+1): X = train[train['wheezy-copper-turtle-magic']==i].copy() Y = X.pop('target' ).values X_test = test[test['wheezy-copper-turtle-magic']==i].copy() idx_train = X.index idx_test = X_test.index X.reset_index(drop=True,inplace=True) cols = [c for c in X.columns if c not in ['id', 'wheezy-copper-turtle-magic']] l=len(X) X_all = pd.concat([X[cols], X_test[cols]], ignore_index=True) X_vt = VarianceThreshold(threshold=1.5 ).fit_transform(X_all) prepr['vt_' + str(i)] = X_vt prepr['train_size_' + str(i)] = l prepr['idx_train_' + str(i)] = idx_train prepr['idx_test_' + str(i)] = idx_test prepr['target_' + str(i)] = Y return prepr
Instant Gratification
4,090,518
with tf.Session() as session: tf.compat.v1.keras.backend.set_session(session) session.run(tf.global_variables_initializer()) session.run(tf.tables_initializer()) model.load_weights('model.hdf5') sub = model.predict(test_data) subm = pd.DataFrame() subm['id'] = test['id'] subm['target'] = sub.round().astype(int) subm.to_csv("pred.csv", index = False )<install_modules>
%%time data = preprocess()
Instant Gratification
4,090,518
!pip install fastai --upgrade<import_modules>
def get_data(i, data): l = data['train_size_' + str(i)] X_all = data['vt_' + str(i)] X = X_all[:l, :] X_test = X_all[l:, :] Y = data['target_' + str(i)] idx_train = data['idx_train_' + str(i)] idx_test = data['idx_test_' + str(i)] return X, X_test, Y, idx_train, idx_test
Instant Gratification
4,090,518
from fastai import * from fastai.tabular import *<load_from_csv>
def pseudolabeling(X_train, X_test, Y_train, Y_pseudo, idx_test, lowest=lowest, highest=highest, test=test): assert len(test)== len(Y_pseudo), "The length of test does not match that of Y_pseudo!" Y_aug = Y_pseudo[idx_test] assert len(Y_aug)== len(X_test), "The length of Y_aug does not match that of X_test!" Y_aug[Y_aug > highest] = 1 Y_aug[Y_aug < lowest] = 0 mask =(Y_aug == 1)|(Y_aug == 0) Y_useful = Y_aug[mask] X_test_useful = X_test[mask] X_train_aug = np.vstack(( X_train, X_test_useful)) Y_train_aug = np.vstack(( Y_train.reshape(-1, 1), Y_useful.reshape(-1, 1))) return X_train_aug, Y_train_aug
Instant Gratification
4,090,518
input_path = '/kaggle/input/' train_df = pd.read_csv(f'{input_path}train.csv') test_df = pd.read_csv(f'{input_path}test.csv' )<feature_engineering>
def train_classifier(clf_name, clfs, data=data, train=train, test=test, debug=debug, NFOLDS=NFOLDS, RS=RS, Y_pseudo=None, magic_min=magic_min, magic_max=magic_max, lowest=lowest, highest=highest, verbose=1): auc_all = np.array([]) oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in range(magic_min, magic_max+1): X, X_test, Y, idx_train, idx_test = get_data(i=i, data=data) folds = StratifiedKFold(n_splits=NFOLDS, random_state=RS) auc_folds = np.array([]) for train_index, val_index in folds.split(X, Y): X_train, Y_train = X[train_index, :], Y[train_index] X_val, Y_val = X[val_index, :], Y[val_index] if Y_pseudo is not None: X_train_aug, Y_train_aug = pseudolabeling(X_train, X_test, Y_train, Y_pseudo, idx_test, lowest=lowest, highest=highest, test=test) clfs[clf_name].fit(X_train_aug, Y_train_aug) else: clfs[clf_name].fit(X_train, Y_train) oof[idx_train[val_index]] = clfs[clf_name].predict_proba(X_val)[:,1] preds[idx_test] += clfs[clf_name].predict_proba(X_test)[:,1]/NFOLDS auc = roc_auc_score(Y_val, oof[idx_train[val_index]]) auc_folds = np.append(auc_folds, auc) auc_all = np.append(auc_all, np.mean(auc_folds)) auc_combo = roc_auc_score(train['target'].values, oof) auc_av = np.mean(auc_all) std = np.std(auc_all)/(np.sqrt(NFOLDS)*np.sqrt(magic_max+1)) if verbose: print(f'The result summary for the {clf_name} classifier:') print(f'The combined CV score is {round(auc_combo, 5)}.') print(f'The folds average CV score is {round(auc_av, 5)}.') print(f'The standard deviation is {round(std, 5)}. ') return preds, auc_combo
Instant Gratification
4,090,518
for df in [train_df, test_df]: df['Title'] = df['Name'].str.split(',' ).str[1].str.split(' ' ).str[1] df['Deck'] = df['Cabin'].str[0] all_df = pd.concat([train_df, test_df], sort=False) mean_age_by_title = all_df.groupby('Title' ).mean() ['Age'] for df in [train_df, test_df]: for title, age in mean_age_by_title.iteritems() : df.loc[df['Age'].isnull() &(df['Title'] == title), 'Age'] = age<correct_missing_values>
%%time results = {} results['rp']=np.array([]) results['auc']=np.array([]) np.random.seed(RS) for j in range(NTRIALS): rp=10**(-2*np.random.rand()) clfs_init={'QDA': QuadraticDiscriminantAnalysis(reg_param=rp)} clfs={'QDA': QuadraticDiscriminantAnalysis(reg_param=rp)} Y_pseudo, _ = train_classifier('QDA', clfs=clfs_init, verbose=0) _, auc = train_classifier('QDA', clfs=clfs, Y_pseudo=Y_pseudo, verbose=0) results['rp']=np.append(results['rp'], rp) results['auc']=np.append(results['auc'], auc) print(f"Trial number {j}: AUC = {round(auc, 5)}, rp={round(rp, 5)}. " )
Instant Gratification
4,090,518
test_df.Fare.fillna(0,inplace=True )<split>
auc_max = np.max(results['auc']) i_max = np.argmax(results['auc']) rp_best = results['rp'][i_max] print(f"The highest AUC achived is {round(auc_max, 5)} for rp={round(rp_best, 5)}.") auc_min = np.min(results['auc']) i_min = np.argmin(results['auc']) print(f"The lowest AUC achived is {round(auc_min, 5)} for rp={round(results['rp'][i_min], 5)}.") print(f"The smallest value of `reg_param` that was explored during the search is {round(np.min(results['rp']), 5)}.") print(f"The larges value of `reg_param` that was explored during the search is {round(np.max(results['rp']), 5)}." )
Instant Gratification