kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
4,090,518
dep_var = 'Survived' cat_names = ['Pclass', 'Sex', 'Embarked', 'Title', 'Deck'] cont_names = ['Age', 'Fare', 'SibSp', 'Parch'] procs = [FillMissing, Categorify, Normalize] test = TabularList.from_df(test_df, cat_names=cat_names, cont_names=cont_names, procs=procs) data =(TabularList.from_df(train_df, path='.', cat_names=cat_names, cont_names=cont_names, procs=procs) .split_by_idx(list(range(0,200))) .label_from_df(cols=dep_var) .add_test(test, label=0) .databunch() )<define_variables>
clfs_best = {'QDA': QuadraticDiscriminantAnalysis(reg_param=rp_best)} preds_best, auc_best = train_classifier('QDA', clfs=clfs_best, Y_pseudo=Y_pseudo, verbose=0) print(f"AUC: {auc_best}" )
Instant Gratification
4,090,518
<train_model><EOS>
sub['target'] = preds_best sub.to_csv('submission.csv',index=False )
Instant Gratification
4,362,670
<SOS> metric: AUC Kaggle data source: instant-gratification<train_model>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') train.head()
Instant Gratification
4,362,670
learn.fit(1, 1e-3 )<predict_on_test>
def get_mean_cov(x,y): model = GraphicalLasso() ones =(y==1 ).astype(bool) x2 = x[ones] model.fit(x2) p1 = model.precision_ m1 = model.location_ onesb =(y==0 ).astype(bool) x2b = x[onesb] model.fit(x2b) p2 = model.precision_ m2 = model.location_ ms = np.stack([m1,m2]) ps = np.stack([p1,p2]) return ms,ps
Instant Gratification
4,362,670
preds, targets = learn.get_preds() predictions = np.argmax(preds, axis = 1) pd.crosstab(predictions, targets )<predict_on_test>
cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3, train2['target']): ms, ps = get_mean_cov(train3[train_index,:],train2.loc[train_index]['target'].values) gm = GaussianMixture(n_components=2, init_params='random', covariance_type='full', tol=0.001,reg_covar=0.001, max_iter=100, n_init=1,means_init=ms, precisions_init=ps) gm.fit(np.concatenate([train3,test3],axis = 0)) oof[idx1[test_index]] = gm.predict_proba(train3[test_index,:])[:,0] preds[idx2] += gm.predict_proba(test3)[:,0] / skf.n_splits auc = roc_auc_score(train['target'],oof) print('QDA scores CV =',round(auc,5))
Instant Gratification
4,362,670
predictions, *_ = learn.get_preds(DatasetType.Test) labels = np.argmax(predictions, 1 )<save_to_csv>
cat_dict = dict() cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) cat_dict[i] = train3.shape[1]
Instant Gratification
4,362,670
sub_df = pd.DataFrame({'PassengerId': test_df['PassengerId'], 'Survived': labels}) sub_df.to_csv('submission.csv', index=False )<set_options>
test['target'] = preds oof_qda = np.zeros(len(train)) preds_qda = np.zeros(len(test)) oof_knn = np.zeros(len(train)) preds_knn = np.zeros(len(test)) oof_svnu = np.zeros(len(train)) preds_svnu = np.zeros(len(test)) oof_svc = np.zeros(len(train)) preds_svc = np.zeros(len(test)) oof_rf = np.zeros(len(train)) preds_rf = np.zeros(len(test)) oof_mlp = np.zeros(len(train)) preds_mlp = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) pca = PCA(n_components=cat_dict[k], random_state= 1234) pca.fit(train2p[cols]) train3p = pca.transform(train2p[cols]) train3 = pca.transform(train2[cols]) test3 = pca.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_qda[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_qda[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = neighbors.KNeighborsClassifier(n_neighbors=17, p=2.9) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_knn[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_knn[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = NuSVC(probability=True, kernel='poly', degree=4, gamma='auto', random_state=4, nu=0.59, coef0=0.053) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_svnu[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_svnu[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = svm.SVC(probability=True, kernel='poly', degree=4, gamma='auto', random_state=42) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_svc[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_svc[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = RandomForestClassifier(n_estimators=100,random_state=1) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_rf[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_rf[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = neural_network.MLPClassifier(random_state=3, activation='relu', solver='lbfgs', tol=1e-06, hidden_layer_sizes=(250,)) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_mlp[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_mlp[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits if k%32==0: print(k) auc = roc_auc_score(train['target'],oof_qda) print('Pseudo Labeled QDA scores CV =',round(auc,5)) auc = roc_auc_score(train['target'],oof_knn) print('Pseudo Labeled KNN scores CV =',round(auc,5)) auc = roc_auc_score(train['target'],oof_svnu) print('Pseudo Labeled SVNU scores CV =',round(auc,5)) auc = roc_auc_score(train['target'],oof_svc) print('Pseudo Labeled SVC scores CV =',round(auc,5)) auc = roc_auc_score(train['target'],oof_rf) print('Pseudo Labeled RF scores CV =',round(auc,5)) auc = roc_auc_score(train['target'],oof_mlp) print('Pseudo Labeled MLP scores CV =',round(auc,5))
Instant Gratification
4,362,670
warnings.filterwarnings('ignore' )<load_from_csv>
test['target'] = preds oof_qda2 = np.zeros(len(train)) preds_qda2 = np.zeros(len(test)) oof_knn2 = np.zeros(len(train)) preds_knn2 = np.zeros(len(test)) oof_svnu2 = np.zeros(len(train)) preds_svnu2 = np.zeros(len(test)) oof_svc2 = np.zeros(len(train)) preds_svc2 = np.zeros(len(test)) oof_rf2 = np.zeros(len(train)) preds_rf2 = np.zeros(len(test)) oof_mlp2 = np.zeros(len(train)) preds_mlp2 = np.zeros(len(test)) for k in range(512): train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = test[test['wheezy-copper-turtle-magic']==k] test2p = test2[(test2['target']<=0.01)|(test2['target']>=0.99)].copy() test2p.loc[ test2p['target']>=0.5, 'target' ] = 1 test2p.loc[ test2p['target']<0.5, 'target' ] = 0 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2p[cols]) train3p = sel.transform(train2p[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p, train2p['target']): test_index3 = test_index[ test_index<len(train3)] clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_qda2[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_qda2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = neighbors.KNeighborsClassifier(n_neighbors=17, p=2.9) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_knn2[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_knn2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = NuSVC(probability=True, kernel='poly', degree=4, gamma='auto', random_state=4, nu=0.59, coef0=0.053) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_svnu2[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_svnu2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = svm.SVC(probability=True, kernel='poly', degree=4, gamma='auto', random_state=42) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_svc2[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_svc2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = RandomForestClassifier(n_estimators=100,random_state=1) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_rf2[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_rf2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits clf = neural_network.MLPClassifier(random_state=3, activation='relu', solver='lbfgs', tol=1e-06, hidden_layer_sizes=(250,)) clf.fit(train3p[train_index,:],train2p.loc[train_index]['target']) oof_mlp2[idx1[test_index3]] = clf.predict_proba(train3[test_index3,:])[:,1] preds_mlp2[test2.index] += clf.predict_proba(test3)[:,1] / skf.n_splits if k%32==0: print(k) auc = roc_auc_score(train['target'],oof_qda2) print('Pseudo Labeled QDA scores CV =',round(auc,5)) print('----------------') print('knn', roc_auc_score(train['target'], oof_knn2)) print('svc', roc_auc_score(train['target'], oof_svc2)) print('svnu', roc_auc_score(train['target'], oof_svnu2)) print('rf', roc_auc_score(train['target'], oof_rf2)) print('mlp', roc_auc_score(train['target'], oof_mlp2))
Instant Gratification
4,362,670
class ReadCsvData(object): def __init__(self): df_train = pd.read_csv('.. /input/train.csv') df_test = pd.read_csv('.. /input/test.csv') self._train = df_train.drop(['label'], axis=1 ).values self._labels = df_train['label'].values self._test = df_test.values def get_data(self): self._train = self._train.astype(np.float32) self._train = np.multiply(self._train, 1.0 / 255.0) self._test = self._test.astype(np.float32) self._test = np.multiply(self._test, 1.0 / 255.0) self._labels = np.identity(10)[self._labels] return self._train, self._labels,self._test<define_variables>
Instant Gratification
4,362,670
class DataSet(object): def __init__(self, images, labels): assert images.shape[0] == labels.shape[0],('images.shape: %s labels.shape: %s' %(images.shape, labels.shape)) self._num_examples = images.shape[0] self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 def next_batch(self, batch_size): start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: self._epochs_completed += 1 perm = np.arange(self._num_examples) np.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end]<prepare_x_and_y>
auc = roc_auc_score(train['target'],oof_qda2*0.6+oof_svnu2*0.25 + oof_svc2*0.05 +oof_rf2*0.1) print('Pseudo Labeled BLEND scores CV =',round(auc,5))
Instant Gratification
4,362,670
sess = tf.InteractiveSession() x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 50], stddev=0.1)) b_conv1 = tf.Variable(tf.constant(0.1, shape=[50]))<define_search_space>
auc = roc_auc_score(train['target'],oof_qda2*0.5+oof_svnu2*0.3 + oof_svc2*0.05 + oof_knn2*0.025 + oof_rf2*0.1 + oof_mlp2*0.025) print('Pseudo Labeled BLEND2 scores CV =',round(auc,5))
Instant Gratification
4,362,670
x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME')+ b_conv1) h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME' )<init_hyperparams>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = preds_qda2 sub.to_csv('submission.csv',index=False) plt.hist(preds,bins=100) plt.title('Final Test.csv predictions') plt.show()
Instant Gratification
4,362,670
W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 50, 100], stddev=0.1)) b_conv2 = tf.Variable(tf.constant(0.1, shape=[100])) h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME')+ b_conv2) h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME' )<concatenate>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = preds_qda2*0.6+preds_svnu2*0.25 + preds_svc2*0.05 +preds_rf2*0.1 sub.to_csv('submission_blend.csv',index=False) plt.hist(preds,bins=100) plt.title('Blend Test.csv predictions') plt.show()
Instant Gratification
4,362,670
<categorify><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = preds_qda2*0.5+preds_svnu2*0.3 + preds_svc2*0.05 + preds_knn2*0.025 + preds_rf2*0.1 + preds_mlp2*0.025 sub.to_csv('submission_blend2.csv',index=False) plt.hist(preds,bins=100) plt.title('Blend2 Test.csv predictions') plt.show()
Instant Gratification
4,308,791
<SOS> metric: AUC Kaggle data source: instant-gratification<prepare_x_and_y>
sns.set_style('darkgrid') pd.options.display.float_format = '{:,.3f}'.format print(os.listdir(".. /input"))
Instant Gratification
4,308,791
W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(0.1, shape=[10])) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2)+ b_fc2 )<compute_train_metric>
%%time train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') print(train.shape, test.shape )
Instant Gratification
4,308,791
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4 ).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) predict = tf.argmax(y_conv,1 )<features_selection>
null_cnt = train.isnull().sum().sort_values() print('null count:', null_cnt[null_cnt > 0] )
Instant Gratification
4,308,791
sess.run(tf.global_variables_initializer() )<load_from_csv>
print(train['wheezy-copper-turtle-magic'].describe()) print() print('unique value count:', train['wheezy-copper-turtle-magic'].nunique() )
Instant Gratification
4,308,791
input_data=ReadCsvData() x_train, y_label, x_test = input_data.get_data()<define_variables>
numcols = train.drop(['id','target','wheezy-copper-turtle-magic'],axis=1 ).select_dtypes(include='number' ).columns.values
Instant Gratification
4,308,791
Batch_size=100 Train_Number=5300 accracies = []<train_model>
X_subset = train[train['wheezy-copper-turtle-magic'] == 0][numcols] Y_subset = train[train['wheezy-copper-turtle-magic'] == 0]['target'] for k in range(2, 10): knc = KNeighborsClassifier(n_neighbors=k) knc.fit(X_subset, Y_subset) score = knc.score(X_subset, Y_subset) print("[{}] score: {:.2f}".format(k, score))
Instant Gratification
4,308,791
print('Start Learning', datetime.now() ,) for j in range(3): train_dataset = DataSet(x_train,y_label) for i in range(Train_Number): batch_x, batch_y = train_dataset.next_batch(Batch_size) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={x:batch_x, y_: batch_y, rate: 0.0}) accracies.append(train_accuracy) print("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch_x, y_: batch_y, rate: 0.5}) print("step %d, training accuracy %g"%(i, train_accuracy)) print('Finish Learning', datetime.now() , )<save_to_csv>
all_data = train.append(test, sort=False ).reset_index(drop=True) del train, test gc.collect() all_data.head()
Instant Gratification
4,308,791
submission_file=pd.DataFrame({'ImageId':np.arange(1,(x_test.shape[0] + 1)) , 'Label':predict.eval(feed_dict={x: x_test, rate: 0.0})}) print(submission_file) submission_file.to_csv("submission_v1.csv", index=False) print('Save submission', datetime.now() , )<load_from_csv>
constant_column = [col for col in all_data.columns if all_data[col].nunique() == 1] print('drop columns:', constant_column) all_data.drop(constant_column, axis=1, inplace=True )
Instant Gratification
4,308,791
data_folder = Path(".. /input") train_df = pd.read_csv(".. /input/train.csv") test_df = pd.read_csv(".. /input/sample_submission.csv") test_img = ImageList.from_df(test_df, path=data_folder/'test', folder='test') trfm = get_transforms(do_flip=True, flip_vert=True, max_rotate=10.0, max_zoom=1.1, max_lighting=0.2, max_warp=0.2, p_affine=0.75, p_lighting=0.75) train_img =(ImageList.from_df(train_df, path=data_folder/'train', folder='train') .split_by_rand_pct(0.01) .label_from_df() .add_test(test_img) .transform(trfm, size=128) .databunch(path='.', bs=64, device= torch.device('cuda:0')) .normalize(imagenet_stats) ) learn = cnn_learner(train_img, models.densenet161, metrics=[error_rate, accuracy] )<train_model>
corr_matrix = all_data.corr().abs() upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1 ).astype(np.bool)) to_drop = [c for c in upper.columns if any(upper[c] > 0.95)] del upper drop_column = all_data.columns[to_drop] print('drop columns:', drop_column)
Instant Gratification
4,308,791
lr = 3e-02 learn.fit_one_cycle(5, slice(lr))<save_to_csv>
X_train = all_data[all_data['target'].notnull() ].reset_index(drop=True) X_test = all_data[all_data['target'].isnull() ].drop(['target'], axis=1 ).reset_index(drop=True) del all_data gc.collect() X_train.drop(['id'], axis=1, inplace=True) X_test_ID = X_test.pop('id') Y_train = X_train.pop('target') print(X_train.shape, X_test.shape )
Instant Gratification
4,308,791
preds,_ = learn.get_preds(ds_type=DatasetType.Test) test_df.has_cactus = preds.numpy() [:, 0] test_df.to_csv('submission.csv', index=False )<set_options>
oof_preds = np.zeros(X_train.shape[0]) sub_preds = np.zeros(X_test.shape[0]) splits = 11 for i in range(512): train2 = X_train[X_train['wheezy-copper-turtle-magic'] == i][numcols] train2_y = Y_train[X_train['wheezy-copper-turtle-magic'] == i] test2 = X_test[X_test['wheezy-copper-turtle-magic'] == i][numcols] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5) train2 = sel.fit_transform(train2) test2 = sel.transform(test2) skf = StratifiedKFold(n_splits=splits, random_state=42) for train_index, test_index in skf.split(train2, train2_y): clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train2[train_index], train2_y.iloc[train_index]) oof_preds[idx1[test_index]] = clf.predict_proba(train2[test_index])[:,1] sub_preds[idx2] += clf.predict_proba(test2)[:,1] / skf.n_splits
Instant Gratification
4,308,791
%matplotlib inline sns.set(style='white', context='notebook', palette='deep' )<load_from_csv>
len(X_train[(oof_preds > 0.3)&(oof_preds < 0.7)] )
Instant Gratification
4,308,791
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv") IDtest = test["PassengerId"]<drop_column>
X_train = X_train[(oof_preds <= 0.3)|(oof_preds >= 0.7)] Y_train = Y_train[(oof_preds <= 0.3)|(oof_preds >= 0.7)]
Instant Gratification
4,308,791
train = train.drop(Outliers_to_drop, axis = 0 ).reset_index(drop=True )<concatenate>
X_test_p1 = X_test[(sub_preds <= 0.01)].copy() X_test_p2 = X_test[(sub_preds >= 0.99)].copy() X_test_p1['target'] = 0 X_test_p2['target'] = 1 print(X_test_p1.shape, X_test_p2.shape) Y_train = pd.concat([Y_train, X_test_p1.pop('target'), X_test_p2.pop('target')], axis=0) X_train = pd.concat([X_train, X_test_p1, X_test_p2], axis=0) Y_train.reset_index(drop=True, inplace=True) X_train.reset_index(drop=True, inplace=True )
Instant Gratification
4,308,791
train_len = len(train) dataset = pd.concat(objs=[train, test], axis=0 ).reset_index(drop=True )<count_missing_values>
_= for i in range(512): train_f =(X_train['wheezy-copper-turtle-magic'] == i) test_f =(X_test['wheezy-copper-turtle-magic'] == i) X_train_sub = X_train[train_f][numcols] Y_train_sub = Y_train[train_f] X_test_sub = X_test[test_f][numcols] lda = LDA(n_components=1) lda.fit(X_train_sub, Y_train_sub) X_train.loc[train_f, 'lda'] = lda.transform(X_train_sub ).reshape(-1) X_test.loc[test_f, 'lda'] = lda.transform(X_test_sub ).reshape(-1) knc = KNeighborsClassifier(n_neighbors=3) knc.fit(X_train_sub, Y_train_sub) X_train.loc[train_f, 'knc'] = knc.predict_proba(X_train_sub)[:,1] X_test.loc[test_f, 'knc'] = knc.predict_proba(X_test_sub)[:,1]
Instant Gratification
4,308,791
dataset = dataset.fillna(np.nan) dataset.isnull().sum()<feature_engineering>
oof_preds = np.zeros(X_train.shape[0]) sub_preds = np.zeros(X_test.shape[0]) splits = 11 for i in range(512): train2 = X_train[X_train['wheezy-copper-turtle-magic'] == i][numcols] train2_y = Y_train[X_train['wheezy-copper-turtle-magic'] == i] test2 = X_test[X_test['wheezy-copper-turtle-magic'] == i][numcols] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5) train2 = sel.fit_transform(train2) test2 = sel.transform(test2) skf = StratifiedKFold(n_splits=splits, random_state=42) for train_index, test_index in skf.split(train2, train2_y): clf = QuadraticDiscriminantAnalysis(reg_param=0.5) clf.fit(train2[train_index], train2_y.iloc[train_index]) oof_preds[idx1[test_index]] = clf.predict_proba(train2[test_index])[:,1] sub_preds[idx2] += clf.predict_proba(test2)[:,1] / skf.n_splits
Instant Gratification
4,308,791
<feature_engineering><EOS>
submission = pd.DataFrame({ 'id': X_test_ID, 'target': sub_preds }) submission.to_csv("submission.csv", index=False )
Instant Gratification
4,399,207
<SOS> metric: AUC Kaggle data source: instant-gratification<data_type_conversions>
%matplotlib inline np.random.seed(1111) warnings.filterwarnings('ignore' )
Instant Gratification
4,399,207
dataset["Embarked"] = dataset["Embarked"].fillna("S" )<categorify>
train = pd.read_csv('.. /input/instant-gratification/train.csv') test = pd.read_csv('.. /input/instant-gratification/test.csv') cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']]
Instant Gratification
4,399,207
dataset["Sex"] = dataset["Sex"].map({"male": 0, "female":1} )<feature_engineering>
gm_list = pickle.load(open('.. /input/models-v5/gm_models_v5.pkl', 'rb'))
Instant Gratification
4,399,207
index_NaN_age = list(dataset["Age"][dataset["Age"].isnull() ].index) for i in index_NaN_age : age_med = dataset["Age"].median() age_pred = dataset["Age"][(( dataset['SibSp'] == dataset.iloc[i]["SibSp"])&(dataset['Parch'] == dataset.iloc[i]["Parch"])&(dataset['Pclass'] == dataset.iloc[i]["Pclass"])) ].median() if not np.isnan(age_pred): dataset['Age'].iloc[i] = age_pred else : dataset['Age'].iloc[i] = age_med<feature_engineering>
class MyGM(GaussianMixture): def __init__(self, n_components=1, covariance_type='full', tol=1e-3, reg_covar=1e-6, max_iter=100, n_init=1, init_params='kmeans', weights_init=None, means_init=None, precisions_init=None, random_state=None, warm_start=False, verbose=0, verbose_interval=10, init_clusters=None, y=None): super().__init__( n_components=n_components, tol=tol, reg_covar=reg_covar, max_iter=max_iter, n_init=n_init, init_params=init_params, random_state=random_state, warm_start=warm_start, verbose=verbose, verbose_interval=verbose_interval) self.init_clusters_ = np.asarray(init_clusters ).astype('int') self.y = y def _initialize_parameters(self, X, random_state): n_samples, _ = X.shape if self.init_params == 'kmeans': resp = np.zeros(( n_samples, self.n_components)) label = cluster.KMeans(n_clusters=self.n_components, n_init=1, random_state=random_state ).fit(X ).labels_ resp[np.arange(n_samples), label] = 1 elif self.init_params == 'random': resp = random_state.rand(n_samples, self.n_components) resp /= resp.sum(axis=1)[:, np.newaxis] elif self.init_params == 'clusters': resp = np.zeros(( n_samples, self.n_components)) resp[np.arange(self.init_clusters_.shape[0]), self.init_clusters_] = 1 else: raise ValueError("Unimplemented initialization method '%s'" % self.init_params) self._initialize(X, resp) def estimate_log_ratio(self, X): weighted_log_prob = self._estimate_weighted_log_prob(X) return logsumexp(weighted_log_prob[:, 1::2], axis=1)- logsumexp(weighted_log_prob[:, 0::2], axis=1)
Instant Gratification
4,399,207
dataset_title = [i.split(",")[1].split(".")[0].strip() for i in dataset["Name"]] dataset["Title"] = pd.Series(dataset_title) dataset["Title"].head()<categorify>
class MyBGM(BayesianGaussianMixture): def __init__(self, n_components=1, covariance_type='full', tol=1e-3, reg_covar=1e-6, max_iter=100, n_init=1, init_params='kmeans', weight_concentration_prior_type='dirichlet_process', weight_concentration_prior=None, mean_precision_prior=None, mean_prior=None, degrees_of_freedom_prior=None, covariance_prior=None, random_state=None, warm_start=False, verbose=0, verbose_interval=10, init_clusters=None): super().__init__( n_components=n_components, covariance_type=covariance_type, tol=tol, reg_covar=reg_covar, max_iter=max_iter, n_init=n_init, init_params=init_params, weight_concentration_prior_type=weight_concentration_prior_type, weight_concentration_prior=weight_concentration_prior, mean_precision_prior=mean_precision_prior, mean_prior=mean_prior, degrees_of_freedom_prior=degrees_of_freedom_prior, covariance_prior=covariance_prior, random_state=random_state, warm_start=warm_start, verbose=verbose, verbose_interval=verbose_interval) self.init_clusters_ = np.asarray(init_clusters ).astype('int') def _initialize_parameters(self, X, random_state): n_samples, _ = X.shape if self.init_params == 'kmeans': resp = np.zeros(( n_samples, self.n_components)) label = cluster.KMeans(n_clusters=self.n_components, n_init=1, random_state=random_state ).fit(X ).labels_ resp[np.arange(n_samples), label] = 1 elif self.init_params == 'random': resp = random_state.rand(n_samples, self.n_components) resp /= resp.sum(axis=1)[:, np.newaxis] elif self.init_params == 'clusters': resp = np.zeros(( n_samples, self.n_components)) resp[np.arange(self.init_clusters_.shape[0]), self.init_clusters_] = 1 elif self.init_params == 'proba': resp = self.init_proba_.copy() resp[np.arange(self.init_clusters_.shape[0]), self.init_clusters_] = 1 resp /= resp.sum(axis=1)[:, np.newaxis] else: raise ValueError("Unimplemented initialization method '%s'" % self.init_params) self._initialize(X, resp )
Instant Gratification
4,399,207
dataset["Title"] = dataset["Title"].replace(['Lady', 'the Countess','Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset["Title"] = dataset["Title"].map({"Master":0, "Miss":1, "Ms" : 1 , "Mme":1, "Mlle":1, "Mrs":1, "Mr":2, "Rare":3}) dataset["Title"] = dataset["Title"].astype(int )<drop_column>
roc_auc_score(train["target"], oof_preds )
Instant Gratification
4,399,207
<feature_engineering><EOS>
sub = pd.read_csv('.. /input/instant-gratification/sample_submission.csv') sub['target'] = test_preds sub.to_csv('submission.csv',index=False )
Instant Gratification
4,394,358
<SOS> metric: AUC Kaggle data source: instant-gratification<categorify>
warnings.filterwarnings('ignore') train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] print(train.shape, test.shape) oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}') for itr in range(4): test['target'] = preds test.loc[test['target'] > 0.955, 'target'] = 1 test.loc[test['target'] < 0.045, 'target'] = 0 usefull_test = test[(test['target'] == 1)|(test['target'] == 0)] new_train = pd.concat([train, usefull_test] ).reset_index(drop=True) print(usefull_test.shape[0], "Test Records added for iteration : ", itr) print(new_train.head(100))
Instant Gratification
4,394,358
dataset['Single'] = dataset['Fsize'].map(lambda s: 1 if s == 1 else 0) dataset['SmallF'] = dataset['Fsize'].map(lambda s: 1 if s == 2 else 0) dataset['MedF'] = dataset['Fsize'].map(lambda s: 1 if 3 <= s <= 4 else 0) dataset['LargeF'] = dataset['Fsize'].map(lambda s: 1 if s >= 5 else 0 )<categorify>
warnings.filterwarnings('ignore') train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] print(train.shape, test.shape) oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}') for itr in range(4): test['target'] = preds test.loc[test['target'] > 0.94, 'target'] = 1 test.loc[test['target'] < 0.06, 'target'] = 0 usefull_test = test[(test['target'] == 1)|(test['target'] == 0)] new_train = pd.concat([train, usefull_test] ).reset_index(drop=True) print(usefull_test.shape[0], "Test Records added for iteration : ", itr) new_train.loc[oof > 0.98, 'target'] = 1 new_train.loc[oof < 0.02, 'target'] = 0 oof3 = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = new_train[new_train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train[train['wheezy-copper-turtle-magic']==i].index idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]] test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): oof_test_index = [t for t in test_index if t < len(idx1)] clf = QuadraticDiscriminantAnalysis(0.5) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) if len(oof_test_index)> 0: oof3[idx1[oof_test_index]] = clf.predict_proba(train3[oof_test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof3) print(f'AUC: {auc:.5}') sub2 = pd.read_csv('.. /input/sample_submission.csv') sub2['target'] = preds
Instant Gratification
4,394,358
dataset = pd.get_dummies(dataset, columns = ["Title"]) dataset = pd.get_dummies(dataset, columns = ["Embarked"], prefix="Em" )<feature_engineering>
warnings.filterwarnings('ignore') train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] print(train.shape, test.shape) oof = np.zeros(len(train)) preds = np.zeros(len(test)) params = [{'reg_param': [0.1, 0.2, 0.3, 0.4, 0.5]}] reg_params = np.zeros(512) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): qda = QuadraticDiscriminantAnalysis() clf = GridSearchCV(qda, params, cv=4) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) reg_params[i] = clf.best_params_['reg_param'] oof[idx1[test_index]] = clf.predict_proba(train3[test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof) print(f'AUC: {auc:.5}') for itr in range(10): test['target'] = preds test.loc[test['target'] > 0.955, 'target'] = 1 test.loc[test['target'] < 0.045, 'target'] = 0 usefull_test = test[(test['target'] == 1)|(test['target'] == 0)] new_train = pd.concat([train, usefull_test] ).reset_index(drop=True) print(usefull_test.shape[0], "Test Records added for iteration : ", itr) new_train.loc[oof > 0.995, 'target'] = 1 new_train.loc[oof < 0.005, 'target'] = 0 oof4 = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = new_train[new_train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train[train['wheezy-copper-turtle-magic']==i].index idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=2)) ,('scaler', StandardScaler())]) data2 = pipe.fit_transform(data[cols]) train3 = data2[:train2.shape[0]] test3 = data2[train2.shape[0]:] skf = StratifiedKFold(n_splits=11, random_state=time.time) for train_index, test_index in skf.split(train2, train2['target']): oof_test_index = [t for t in test_index if t < len(idx1)] clf = QuadraticDiscriminantAnalysis(reg_params[i]) clf.fit(train3[train_index,:],train2.loc[train_index]['target']) if len(oof_test_index)> 0: oof4[idx1[oof_test_index]] = clf.predict_proba(train3[oof_test_index,:])[:,1] preds[idx2] += clf.predict_proba(test3)[:,1] / skf.n_splits auc = roc_auc_score(train['target'], oof4) print(f'AUC: {auc:.5}') sub3 = pd.read_csv('.. /input/sample_submission.csv') sub3['target'] = preds
Instant Gratification
4,394,358
dataset["Cabin"] = pd.Series([i[0] if not pd.isnull(i)else 'X' for i in dataset['Cabin'] ] )<categorify>
print('CV score ensemble=',round(roc_auc_score(train['target'],oof2*0.35 + oof3*0.25+ oof4*0.4),5))
Instant Gratification
4,394,358
dataset = pd.get_dummies(dataset, columns = ["Cabin"],prefix="Cabin" )<feature_engineering>
sub = pd.read_csv('.. /input/sample_submission.csv') sub.head()
Instant Gratification
4,394,358
Ticket = [] for i in list(dataset.Ticket): if not i.isdigit() : Ticket.append(i.replace(".","" ).replace("/","" ).strip().split(' ')[0]) else: Ticket.append("X") dataset["Ticket"] = Ticket dataset["Ticket"].head()<categorify>
sub['target'] = 1/3*sub1.target + 1/3*sub2.target + 1/3*sub3.target
Instant Gratification
4,394,358
dataset = pd.get_dummies(dataset, columns = ["Ticket"], prefix="T" )<categorify>
sub.to_csv('submission.csv', index = False) sub.head()
Instant Gratification
4,424,337
dataset["Pclass"] = dataset["Pclass"].astype("category") dataset = pd.get_dummies(dataset, columns = ["Pclass"],prefix="Pc" )<drop_column>
def permute_predict(y): _y = y.copy() _c1 = _y < 0.00001 _c2 = _y > 0.99999 _y[_c1] = _y[_c1].max() - _y[_c1] + _y[_c1].min() _y[_c2] = _y[_c2].max() - _y[_c2] + _y[_c2].min() return _y
Instant Gratification
4,424,337
dataset.drop(labels = ["PassengerId"], axis = 1, inplace = True )<drop_column>
warnings.filterwarnings('ignore' )
Instant Gratification
4,424,337
train = dataset[:train_len] test = dataset[train_len:] test.drop(labels=["Survived"],axis = 1,inplace=True )<prepare_x_and_y>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') train.head()
Instant Gratification
4,424,337
train["Survived"] = train["Survived"].astype(int) Y_train = train["Survived"] X_train = train.drop(labels = ["Survived"],axis = 1 )<choose_model_class>
cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic' )
Instant Gratification
4,424,337
lr = LogisticRegression()<import_modules>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) data2 = VarianceThreshold(2.3 ).fit_transform(data[cols]) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] for c in range(train3.shape[1]): low_=np.quantile(train3[:,c] , 0.001) up_=np.quantile(train3[:,c], 0.999) train3[:,c]=np.clip(train3[:,c],low_, up_) test3[:,c]=np.clip(test3[:,c],low_, up_) skf = StratifiedKFold(n_splits=11, random_state=42) for train_index, test_index in skf.split(train2, train2['target']): gmm=GMM(n_components=5, random_state=42, covariance_type='full') gmm.fit(np.vstack([train3[train_index], test3])) gmm_1_train=gmm.predict_proba(train3[train_index]) gmm_1_val=gmm.predict_proba(train3[test_index]) gmm_1_test=gmm.predict_proba(test3) gmm=GMM(n_components=4, random_state=42, covariance_type='full') gmm.fit(np.vstack([train3[train_index], test3])) gmm_2_train=gmm.predict_proba(train3[train_index]) gmm_2_val=gmm.predict_proba(train3[test_index]) gmm_2_test=gmm.predict_proba(test3) gmm=GMM(n_components=6, random_state=42, covariance_type='full') gmm.fit(np.vstack([train3[train_index], test3])) gmm_3_train=gmm.predict_proba(train3[train_index]) gmm_3_val=gmm.predict_proba(train3[test_index]) gmm_3_test=gmm.predict_proba(test3) bgm=BGM(n_components=5, random_state=42) bgm.fit(np.vstack([train3[train_index], test3])) bgm_1_train=bgm.predict_proba(train3[train_index]) bgm_1_val=bgm.predict_proba(train3[test_index]) bgm_1_test=bgm.predict_proba(test3) bgm=BGM(n_components=4, random_state=42) bgm.fit(np.vstack([train3[train_index], test3])) bgm_2_train=bgm.predict_proba(train3[train_index]) bgm_2_val=bgm.predict_proba(train3[test_index]) bgm_2_test=bgm.predict_proba(test3) bgm=BGM(n_components=6, random_state=42) bgm.fit(np.vstack([train3[train_index], test3])) bgm_3_train=bgm.predict_proba(train3[train_index]) bgm_3_val=bgm.predict_proba(train3[test_index]) bgm_3_test=bgm.predict_proba(test3) _train = np.hstack(( train3[train_index], gmm_1_train, gmm_2_train, gmm_3_train, bgm_1_train, bgm_2_train, bgm_3_train)) _val = np.hstack(( train3[test_index], gmm_1_val, gmm_2_val, gmm_3_val, bgm_1_val, bgm_2_val, bgm_3_val)) _test = np.hstack(( test3, gmm_1_test, gmm_2_test, gmm_3_test, bgm_1_test, bgm_2_test, bgm_3_test)) clf = QuadraticDiscriminantAnalysis(reg_param=0.04, tol=0.01) clf.fit(_train,train2.loc[train_index]['target']) oof[idx1[test_index]] = clf.predict_proba(_val)[:,1] preds[idx2] += clf.predict_proba(_test)[:,1] / skf.n_splits print(i, roc_auc_score(train2['target'], oof[idx1])) print(roc_auc_score(train['target'], oof))
Instant Gratification
4,424,337
from sklearn.naive_bayes import GaussianNB<choose_model_class>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = permute_predict(preds) sub.to_csv('submission.csv',index=False) plt.hist(preds,bins=100) plt.title('Final Test.csv predictions') plt.show()
Instant Gratification
4,388,308
gnb = GaussianNB()<import_modules>
%matplotlib inline
Instant Gratification
4,388,308
from keras.models import Sequential<import_modules>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') train.head()
Instant Gratification
4,388,308
from keras.layers import Dense,BatchNormalization,Dropout<import_modules>
def data_augmentation(X, y): mean_train2_0 = X[y==0].mean() mean_train2_1 = X[y==1].mean() train2_0 = 2*mean_train2_0.reshape(1,-1)- X[y==0] train2_1 = 2*mean_train2_1.reshape(1,-1)- X[y==1] tmp_train2_0 = np.vstack([X[y==0], train2_0]) tmp_train2_1 = np.vstack([X[y==1], train2_1]) train2 = np.vstack([tmp_train2_0, tmp_train2_1]) y2 = np.array([0]*len(tmp_train2_0)+ [1]*len(tmp_train2_1)) return np.vstack([X, train2]), np.concatenate([y, y2])
Instant Gratification
4,388,308
from keras import callbacks<choose_model_class>
def get_kmeans_clusters(x, y, k_pos=1, k_neg=1): x_zeros = x[y==0] x_ones = x[y==1] model_0 = KMeans(n_clusters=k_neg) model_1 = KMeans(n_clusters=k_pos) model_0.fit(x_zeros) model_1.fit(x_ones) model_0_clus = [x_zeros[model_0.labels_==k] for k in range(model_0.n_clusters)] model_1_clus = [x_ones[model_1.labels_==k] for k in range(model_1.n_clusters)] return model_1_clus + model_0_clus def fit_multicluster_gmm(x, y, xt, k_pos, k_neg, max_iter=100): clusters = get_kmeans_clusters(x, y, k_pos=k_pos, k_neg=k_neg) for i in range(len(clusters)) : x_cluster = clusters[i] model = ShrunkCovariance() model.fit(x_cluster) if(i==0): ps = np.expand_dims(model.precision_, axis=0) ms = np.expand_dims(model.location_, axis=0) else: ps = np.concatenate([ps, np.expand_dims(model.precision_, axis=0)], axis=0) ms = np.concatenate([ms, np.expand_dims(model.location_, axis=0)], axis=0) gm = mixture.GaussianMixture(n_components=k_pos+k_neg, init_params='random', covariance_type='full', tol=0.001, reg_covar=0.001, max_iter=100, n_init=5, means_init=ms, precisions_init=ps) gm.fit(np.vstack(( x.astype(np.float), xt.astype(np.float)))) preds = gm.predict_proba(x.astype(np.float)) [:,0] score = roc_auc_score(y, preds) return score, gm, k_pos, k_neg def get_mean_cov(x,y, model=GraphicalLasso() , max_iter=100): try: model.set_params(**{'max_iter':200}) except: pass ones =(y==1 ).astype(bool) x2 = x[ones] model.fit(x2) p1 = model.precision_ m1 = model.location_ onesb =(y==0 ).astype(bool) x2b = x[onesb] model.fit(x2b) p2 = model.precision_ m2 = model.location_ ms = np.stack([m1,m2]) ps = np.stack([p1,p2]) return ms,ps
Instant Gratification
4,388,308
model = Sequential()<choose_model_class>
def extract_wheezy_copper_turtle_magic(train, i): train2 = train[train['wheezy-copper-turtle-magic']==i].copy() test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index target = train2['target'].astype(np.int ).values train2.reset_index(drop=True, inplace=True) return train2.drop(['id', 'target'], axis=1), test2.drop(['id'], axis=1), idx1, idx2, target
Instant Gratification
4,388,308
model.add(Dense(32,activation = "relu",input_shape =(66,))) model.add(Dense(64,activation = "relu")) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Dense(1,activation = 'sigmoid'))<train_model>
cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') oof = np.zeros(len(train)) test_preds = np.zeros(len(test)) oof_gmm = np.zeros(len(train)) test_preds_gmm = np.zeros(len(test)) oof_gmm_2 = np.zeros(len(train)) test_preds_gmm_2 = np.zeros(len(test)) trials = 3 cat_dict = dict() cluster_report = list() for i in tqdm(range(512)) : train2, test2, idx1, idx2, target = extract_wheezy_copper_turtle_magic(train, i) data = pd.concat([pd.DataFrame(train2[cols]), pd.DataFrame(test2[cols])]) pipe = Pipeline([('vt', VarianceThreshold(threshold=1.5)) ]) train3 = pipe.fit_transform(train2[cols]) test3 = pipe.fit_transform(test2[cols]) data2 = StandardScaler().fit_transform(PCA(n_components=40, random_state=4 ).fit_transform(data[cols])) train3 = data2[:train2.shape[0]]; test3 = data2[train2.shape[0]:] cat_dict[i] = train3.shape[1] try: score, gm, k_pos, k_neg = fit_multicluster_gmm(x=train3, y=target, xt=test3, k_pos=1, k_neg=3) except: score, gm, k_pos, k_neg = fit_multicluster_gmm(x=train3, y=target, xt=test3, k_pos=1, k_neg=1) oof_gmm[idx1] = gm.predict_proba(train3)[:,0] test_preds_gmm[idx2] += gm.predict_proba(test3)[:,0] try: score, gm, k_pos, k_neg = fit_multicluster_gmm(x=train3, y=target, xt=test3, k_pos=3, k_neg=3) except: score, gm, k_pos, k_neg = fit_multicluster_gmm(x=train3, y=target, xt=test3, k_pos=1, k_neg=1) clusters = gm.predict_proba(train3 ).shape[1] oof_gmm_2[idx1] = np.sum(gm.predict_proba(train3)[:,:clusters//2], axis=1) test_preds_gmm_2[idx2] += np.sum(gm.predict_proba(test3)[:,:clusters//2], axis=1 )
Instant Gratification
4,388,308
model.compile(optimizer = "adam",loss ="binary_crossentropy",metrics = ['accuracy']) reduce_lr = callbacks.ReduceLROnPlateau(monitor='acc', factor=0.2,patience=3, min_lr=0.0001) model.fit(X_train,Y_train,epochs = 30,callbacks = [reduce_lr] )<predict_on_test>
oof_auc_gmm = roc_auc_score(train['target'], oof_gmm) print('OOF AUC: =',round(oof_auc_gmm, 5)) oof_auc_gmm_2 = roc_auc_score(train['target'], oof_gmm_2) print('OOF AUC: =',round(oof_auc_gmm_2, 5)) oof_auc_blend = roc_auc_score(train['target'],(0.3*oof_gmm+0.7*oof_gmm_2)) print('OOF AUC: =',round(oof_auc_blend, 5))
Instant Gratification
4,388,308
<categorify><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = test_preds_gmm sub.to_csv('submission_gmm.csv',index=False) sub['target'] = test_preds_gmm_2 sub.to_csv('submission_gmm_2.csv',index=False) sub['target'] =(test_preds_gmm + test_preds_gmm_2)/2 sub.to_csv('submission_blend.csv',index=False )
Instant Gratification
4,409,887
<SOS> metric: AUC Kaggle data source: instant-gratification<normalization>
import numpy as np, pandas as pd, os from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis, LinearDiscriminantAnalysis from sklearn.feature_selection import VarianceThreshold from sklearn.model_selection import StratifiedKFold, KFold from sklearn.metrics import roc_auc_score from tqdm import tqdm from sklearn.covariance import EmpiricalCovariance from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import sympy
Instant Gratification
4,409,887
y = sig(y) y<create_dataframe>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') train.head()
Instant Gratification
4,409,887
ans2 = pd.DataFrame(IDtest )<feature_engineering>
def get_mean_cov(x,y): model = OAS() ones =(y==1 ).astype(bool) x2 = x[ones] model.fit(x2) p1 = model.precision_ m1 = model.location_ onesb =(y==0 ).astype(bool) x2b = x[onesb] model.fit(x2b) p2 = model.precision_ m2 = model.location_ ms = np.stack([m1,m2]) ps = np.stack([p1,p2]) return ms,ps
Instant Gratification
4,409,887
ans2["Survived"] = y<save_to_csv>
cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') oof = np.zeros(len(train)) preds = np.zeros(len(test)) for i in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = StratifiedKFold(n_splits=11, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3, train2['target']): x_train, y_train = train3[train_index,:], train2.loc[train_index]['target'].values x_train_0 = x_train[y_train==0] x_train_1 = x_train[y_train==1] brc = Birch(branching_factor=50, n_clusters=3, threshold=0.4, compute_labels=True) labels_0 = brc.fit_predict(x_train_0) labels_1 = brc.fit_predict(x_train_1) zero_mean = [] zero_cov = [] for l in np.unique(labels_0): model = OAS() model.fit(x_train_0[labels_0==l]) p = model.precision_ m = model.location_ zero_mean.append(m) zero_cov.append(p) one_mean = [] one_cov = [] for l in np.unique(labels_1): model = OAS() model.fit(x_train_1[labels_1==l]) p = model.precision_ m = model.location_ one_mean.append(m) one_cov.append(p) ms = np.stack(zero_mean + one_mean) ps = np.stack(zero_cov + one_cov) gm = GaussianMixture(n_components=6, init_params='random', covariance_type='full', tol=0.001,reg_covar=0.001, max_iter=100, n_init=1, means_init=ms, precisions_init=ps) gm.fit(np.concatenate([train3[train_index,:],test3],axis = 0)) oof[idx1[test_index]] = gm.predict_proba(train3[test_index,:])[:, 0:3].mean(axis=1) preds[idx2] += gm.predict_proba(test3)[:, 0:3].mean(axis=1)/ skf.n_splits print('AUC ', i, roc_auc_score(1- train2['target'], oof[idx1])) auc = roc_auc_score(1 - train['target'],oof) print('QDA scores CV =',round(auc,5))
Instant Gratification
4,409,887
ans2.to_csv("sub.csv",index = False )<data_type_conversions>
auc = roc_auc_score(1 - train['target'],oof) print('QDA scores CV =',round(auc,5))
Instant Gratification
4,409,887
x_train = np.load('.. /input/reducing-image-sizes-to-32x32/X_train.npy') x_test = np.load('.. /input/reducing-image-sizes-to-32x32/X_test.npy') y_train = np.load('.. /input/reducing-image-sizes-to-32x32/y_train.npy') print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255. x_test /= 255 .<train_model>
x_test_0 = pd.read_csv('.. /input/test.csv') x_test_0['target']=preds
Instant Gratification
4,409,887
datagen_train = ImageDataGenerator( width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True) datagen_train.fit(x_train )<import_modules>
cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic' )
Instant Gratification
4,409,887
from keras.applications import DenseNet121 from keras.layers import * from keras.models import Sequential<choose_model_class>
oof = np.zeros(len(train)) preds = np.zeros(len(test)) for k in tqdm_notebook(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==k] train2p = train2.copy() ; idx1 = train2.index test2 = x_test_0[x_test_0['wheezy-copper-turtle-magic']==k] test2p = test2 train2p = pd.concat([train2p,test2p],axis=0) train2p.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2p[cols]) train3p = sel.transform(train2p[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) skf = KFold(n_splits=17, random_state=42, shuffle=True) for train_index, test_index in skf.split(train3p): test_index3 = test_index[ test_index<len(train3)] clf = neighbors.KNeighborsRegressor(n_neighbors=9, weights='distance') clf.fit(train3p[train_index,:], train2p.loc[train_index]['target']) oof[idx1[test_index3]] = clf.predict(train3[test_index3,:]) preds[test2.index] += clf.predict(test3)/ skf.n_splits if k%64==0: print(k) auc = roc_auc_score(train['target'], oof) print('Pseudo Labeled QDA scores CV =',round(auc,5))
Instant Gratification
4,409,887
<choose_model_class><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = preds sub.to_csv('submission.csv',index=False) plt.hist(preds,bins=100) plt.title('Final Test.csv predictions') plt.show()
Instant Gratification
4,275,635
<SOS> metric: AUC Kaggle data source: instant-gratification<choose_model_class>
PATH_BASE = Path('.. /input') PATH_WORKING = Path('.. /working' )
Instant Gratification
4,275,635
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] )<train_model>
train = pd.read_csv(PATH_BASE/'train.csv') test = pd.read_csv(PATH_BASE/'test.csv' )
Instant Gratification
4,275,635
str_ = 'Traning Started' os.system('echo '+str_ )<train_model>
def get_mean_cov(x,y): model = GraphicalLasso(max_iter=200) ones =(y==1 ).astype(bool) x2 = x[ones] model.fit(x2) p1 = model.precision_ m1 = model.location_ onesb =(y==0 ).astype(bool) x2b = x[onesb] model.fit(x2b) p2 = model.precision_ m2 = model.location_ ms = np.stack([m1,m2]) ps = np.stack([p1,p2]) return ms,ps
Instant Gratification
4,275,635
batch_size = 128 epochs = 25 checkpoint = ModelCheckpoint( 'model.h5', monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto' ) history = model.fit( x=x_train, y=y_train, batch_size=64, epochs=10, callbacks=[checkpoint], validation_split=0.1 )<load_pretrained>
def projectMeans(means): means[means>0]=1 means[means<=0]=-1 return means def _compute_precision_cholesky(covariances, covariance_type): estimate_precision_error_message =("Hell no") if covariance_type in 'full': n_components, n_features, _ = covariances.shape precisions_chol = np.empty(( n_components, n_features, n_features)) for k, covariance in enumerate(covariances): try: cov_chol = linalg.cholesky(covariance, lower=True) except linalg.LinAlgError: raise ValueError(estimate_precision_error_message) precisions_chol[k] = linalg.solve_triangular(cov_chol, np.eye(n_features), lower=True ).T return precisions_chol def _estimate_gaussian_covariances_full(resp, X, nk, means, reg_covar): n_components, n_features = means.shape covariances = np.empty(( n_components, n_features, n_features)) for k in range(n_components): diff = X - means[k] covariances[k] = np.dot(resp[:, k] * diff.T, diff)/ nk[k] covariances[k].flat[::n_features + 1] += reg_covar return covariances def _estimate_gaussian_parameters2(X, resp, reg_covar, covariance_type): nk = resp.sum(axis=0)+ 10 * np.finfo(resp.dtype ).eps means = np.dot(resp.T, X)/ nk[:, np.newaxis] means = projectMeans(means) covariances = {"full": _estimate_gaussian_covariances_full}[covariance_type](resp, X, nk, means, reg_covar) return nk, means, covariances class GaussianMixture2(GaussianMixture): def _m_step(self, X, log_resp): resp = np.exp(log_resp) sums = resp.sum(0) if sums.max() - sums.min() > 2: for i in range(3): resp = len(X)* resp / resp.sum(0)/ len(sums) resp = resp/resp.sum(1)[:,None] n_samples, _ = X.shape self.weights_, self.means_, self.covariances_ =( _estimate_gaussian_parameters2(X, resp, self.reg_covar, self.covariance_type)) self.weights_ /= n_samples self.precisions_cholesky_ = _compute_precision_cholesky( self.covariances_, self.covariance_type) random.seed(1234) np.random.seed(1234) os.environ['PYTHONHASHSEED'] = str(1234 )
Instant Gratification
4,275,635
model.load_weights('model.h5' )<predict_on_test>
cols = [c for c in train.columns if c not in ['id', 'target']] cols.remove('wheezy-copper-turtle-magic') oof = np.zeros(len(train)) preds = np.zeros(len(test)) N_RAND_INIT = 2 N_CLUST_OPT = 3 N_TEST = 1 all_acc = np.zeros(( 512, N_CLUST_OPT, N_RAND_INIT)) all_roc = np.zeros(( 512, N_CLUST_OPT, N_RAND_INIT)) cluster_cnt = np.zeros(( 512, N_CLUST_OPT, N_RAND_INIT)) j_selection = np.zeros(N_CLUST_OPT) for i in tqdm(range(512)) : train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) sel = VarianceThreshold(threshold=1.5 ).fit(train2[cols]) train3 = sel.transform(train2[cols]) test3 = sel.transform(test2[cols]) test_index = range(len(train3)) yf = train2['target'] ms, ps = get_mean_cov(train3,yf) cc_list = [] nc_list = 2*(np.array(range(N_CLUST_OPT)) + 2) for j in range(N_CLUST_OPT): cc_list.append(['cluster_' + str(i)for i in range(nc_list[j])]) gm_list = [] acc = np.zeros(( N_CLUST_OPT, N_RAND_INIT)) res_list = [] ctc_list = [] for j in range(N_CLUST_OPT): gm_list.append([]) res_list.append([]) ctc_list.append([]) nc = nc_list[j] cl = int(0.5*nc) for k in range(N_RAND_INIT): ps_list = np.concatenate([ps]*cl, axis=0) th_step = 100/(cl+1) th_p = np.arange(th_step,99,th_step)+ 0.5*(np.random.rand(cl)- 0.5)*th_step th = np.percentile(ms,th_p) ms_list = [] for t in range(cl): ms_new = ms.copy() ms_new[ms>=th[t]]=1 ms_new[ms<th[t]]=-1 ms_list.append(ms_new) ms_list = np.concatenate(ms_list, axis=0) perm = np.random.permutation(nc) ps_list = ps_list[perm] ms_list = ms_list[perm] gm = GaussianMixture2(n_components=nc, init_params='random', covariance_type='full', tol=0.0001,reg_covar=0.001, max_iter=5000, n_init=1, means_init=ms_list, precisions_init=ps_list, random_state=1234) gm.fit(np.concatenate([train3,test3],axis = 0)) res = pd.concat([pd.DataFrame(gm.predict_proba(train3), columns = cc_list[j]), yf.to_frame().reset_index(drop=True)], sort=False, axis=1) cluster_to_class = res.groupby('target' ).agg('mean' ).values.argmax(0) cluster_cnt[i,j,k] = cluster_to_class.sum() res = pd.concat([pd.DataFrame(gm.predict_proba(train3), columns = cc_list[j]), pd.DataFrame(cluster_to_class, index=cc_list[j], columns=['target'] ).transpose() ], sort=False, axis=0 ).\ transpose().groupby('target' ).agg(sum ).transpose() res_list[j].append(res[1]) gm_list[j].append(gm) ctc_list[j].append(cluster_to_class) acc[j,k] =(res.values.argmax(1)== yf.values ).mean() all_acc[i,j,k] = acc[j,k] all_roc[i,j,k] = roc_auc_score(yf.values, res[1]) best_j = acc.mean(1 ).argmax() j_selection[best_j] += 1 for k in np.argsort(acc[best_j,:])[-N_TEST:]: res2 = pd.concat([pd.DataFrame(gm_list[best_j][k].predict_proba(test3), columns = cc_list[best_j]), pd.DataFrame(ctc_list[best_j][k], index=cc_list[best_j], columns=['target'] ).transpose() ], sort=False, axis=0 ).\ transpose().groupby('target' ).agg(sum ).transpose() oof[idx1] += res_list[best_j][k]/N_TEST preds[idx2] += res2[1]/N_TEST if i%10==0: print('QMM scores CV =',round(roc_auc_score(train['target'],oof),5)) auc = roc_auc_score(train['target'],oof) print(j_selection) print('Final QMM scores CV =',round(auc,5))
Instant Gratification
4,275,635
pred = model.predict_classes(x_test,verbose=1 )<load_from_csv>
for j in range(N_CLUST_OPT): print(np.all(cluster_cnt[:,j,:] == 0.5*nc_list[j]))
Instant Gratification
4,275,635
<save_to_csv><EOS>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['target'] = preds sub.to_csv('submission.csv',index=False) plt.hist(preds,bins=100) plt.title('Final Test.csv predictions') plt.show()
Instant Gratification
3,125,588
def build_model(transformer, max_len=512): input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") sequence_output = transformer(input_word_ids)[0] cls_token = sequence_output[:, 0, :] out = Dense(1, activation='sigmoid' )(cls_token) model = Model(inputs=input_word_ids, outputs=out) model.compile(Adam(lr=1e-5), loss='binary_crossentropy', metrics=['accuracy']) return model<load_from_csv>
from sklearn.metrics import log_loss from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import RandomForestRegressor
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") submission = pd.read_csv("/kaggle/input/nlp-getting-started/sample_submission.csv" )<load_pretrained>
teams = pd.read_csv('.. /input/wdatafiles/WTeams.csv') teams2 = pd.read_csv('.. /input/wdatafiles/WTeamSpellings.csv', encoding='latin-1') season_cresults = pd.read_csv('.. /input/wdatafiles/WRegularSeasonCompactResults.csv') season_dresults = pd.read_csv('.. /input/wdatafiles/WRegularSeasonDetailedResults.csv') tourney_cresults = pd.read_csv('.. /input/wdatafiles/WNCAATourneyCompactResults.csv') tourney_dresults = pd.read_csv('.. /input/wdatafiles/WNCAATourneyDetailedResults.csv') slots = pd.read_csv('.. /input/wdatafiles/WNCAATourneySlots.csv') seeds = pd.read_csv('.. /input/wdatafiles/WNCAATourneySeeds.csv') seeds = {'_'.join(map(str,[int(k1),k2])) :int(v[1:3])for k1, v, k2 in seeds[['Season', 'Seed', 'TeamID']].values} seeds = {**seeds, **{k.replace('2018_','2019_'):seeds[k] for k in seeds if '2018_' in k}} cities = pd.read_csv('.. /input/wdatafiles/WCities.csv') gcities = pd.read_csv('.. /input/wdatafiles/WGameCities.csv') seasons = pd.read_csv('.. /input/wdatafiles/WSeasons.csv') sub = pd.read_csv('.. /input/WSampleSubmissionStage1.csv' )
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
%%time transformer_layer = transformers.TFDistilBertModel.from_pretrained('distilbert-base-uncased') tokenizer = transformers.DistilBertTokenizer.from_pretrained('distilbert-base-uncased' )<categorify>
teams2 = teams2.groupby(by='TeamID', as_index=False)['TeamNameSpelling'].count() teams2.columns = ['TeamID', 'TeamNameCount'] teams = pd.merge(teams, teams2, how='left', on=['TeamID']) del teams2
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
train_input = bert_encode(train.text.values, tokenizer, max_len=160) test_input = bert_encode(test.text.values, tokenizer, max_len=160) train_labels = train.target.values<train_model>
season_cresults['ST'] = 'S' season_dresults['ST'] = 'S' tourney_cresults['ST'] = 'T' tourney_dresults['ST'] = 'T' games = pd.concat(( season_dresults, tourney_dresults), axis=0, ignore_index=True) games.reset_index(drop=True, inplace=True) games['WLoc'] = games['WLoc'].map({'A': 1, 'H': 2, 'N': 3} )
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
train_history = model.fit( train_input, train_labels, validation_split=0.2, epochs=4, batch_size=32 )<save_to_csv>
games['ID'] = games.apply(lambda r: '_'.join(map(str, [r['Season']]+sorted([r['WTeamID'],r['LTeamID']]))), axis=1) games['IDTeams'] = games.apply(lambda r: '_'.join(map(str, sorted([r['WTeamID'],r['LTeamID']]))), axis=1) games['Team1'] = games.apply(lambda r: sorted([r['WTeamID'],r['LTeamID']])[0], axis=1) games['Team2'] = games.apply(lambda r: sorted([r['WTeamID'],r['LTeamID']])[1], axis=1) games['IDTeam1'] = games.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team1']])) , axis=1) games['IDTeam2'] = games.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team2']])) , axis=1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
test_pred = model.predict(test_input, verbose=1) submission['target'] = test_pred.round().astype(int) submission.to_csv('submission.csv', index=False )<import_modules>
games['Team1Seed'] = games['IDTeam1'].map(seeds ).fillna(0) games['Team2Seed'] = games['IDTeam2'].map(seeds ).fillna(0 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
import gc import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import layers, optimizers from tensorflow.keras.callbacks import ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split<load_from_csv>
games['ScoreDiff'] = games['WScore'] - games['LScore'] games['Pred'] = games.apply(lambda r: 1.if sorted([r['WTeamID'],r['LTeamID']])[0]==r['WTeamID'] else 0., axis=1) games['ScoreDiffNorm'] = games.apply(lambda r: r['ScoreDiff'] * -1 if r['Pred'] == 0.else r['ScoreDiff'], axis=1) games['SeedDiff'] = games['Team1Seed'] - games['Team2Seed'] games = games.fillna(-1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
X = pd.read_csv('.. /input/train.csv') X_test = pd.read_csv('.. /input/test.csv') Y = X[['label']] X = X.drop(["label"], axis=1) X_train = X.values.reshape(X.shape[0], 28, 28, 1) Y_train = tf.keras.utils.to_categorical(Y.values, 10) X_test = X_test.values.reshape(X_test.shape[0], 28, 28, 1 )<split>
c_score_col = ['NumOT', 'WFGM', 'WFGA', 'WFGM3', 'WFGA3', 'WFTM', 'WFTA', 'WOR', 'WDR', 'WAst', 'WTO', 'WStl', 'WBlk', 'WPF', 'LFGM', 'LFGA', 'LFGM3', 'LFGA3', 'LFTM', 'LFTA', 'LOR', 'LDR', 'LAst', 'LTO', 'LStl', 'LBlk', 'LPF'] c_score_agg = ['sum', 'mean', 'median', 'max', 'min', 'std', 'skew', 'nunique'] gb = games.groupby(by=['IDTeams'] ).agg({k: c_score_agg for k in c_score_col} ).reset_index() gb.columns = [''.join(c)+ '_c_score' for c in gb.columns] games = games[games['ST']=='T']
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=42) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_val = X_val.astype('float32') X_train /= 255 X_test /= 255 X_val /= 255<train_model>
sub['WLoc'] = 3 sub['Season'] = sub['ID'].map(lambda x: x.split('_')[0]) sub['Season'] = sub['ID'].map(lambda x: x.split('_')[0]) sub['Season'] = sub['Season'].astype(int) sub['Team1'] = sub['ID'].map(lambda x: x.split('_')[1]) sub['Team2'] = sub['ID'].map(lambda x: x.split('_')[2]) sub['IDTeams'] = sub.apply(lambda r: '_'.join(map(str, [r['Team1'], r['Team2']])) , axis=1) sub['IDTeam1'] = sub.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team1']])) , axis=1) sub['IDTeam2'] = sub.apply(lambda r: '_'.join(map(str, [r['Season'], r['Team2']])) , axis=1) sub['Team1Seed'] = sub['IDTeam1'].map(seeds ).fillna(0) sub['Team2Seed'] = sub['IDTeam2'].map(seeds ).fillna(0) sub['SeedDiff'] = sub['Team1Seed'] - sub['Team2Seed'] sub = sub.fillna(-1 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.10, width_shift_range=0.1, height_shift_range=0.1) datagen.fit(X_train )<choose_model_class>
games = pd.merge(games, gb, how='left', left_on='IDTeams', right_on='IDTeams_c_score') sub = pd.merge(sub, gb, how='left', left_on='IDTeams', right_on='IDTeams_c_score' )
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
model = tf.keras.Sequential() model.add(layers.Conv2D(32, kernel_size=(5, 5), activation='relu', padding='same', input_shape=(28, 28, 1))) model.add(layers.BatchNormalization()) model.add(layers.Conv2D(32,(5, 5), activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.2)) model.add(layers.Conv2D(64,(3, 3), activation='relu', padding='same')) model.add(layers.BatchNormalization()) model.add(layers.Conv2D(64,(3, 3), activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Dropout(0.2)) model.add(layers.Conv2D(128,(3, 3), activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D(pool_size=(2, 2), padding='same')) model.add(layers.Dropout(0.2)) model.add(layers.Flatten()) model.add(layers.Dense(1024, activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.3)) model.add(layers.Dense(512, activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.3)) model.add(layers.Dense(256, activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.3)) model.add(layers.Dense(10, activation='softmax')) model.summary()<choose_model_class>
col = [c for c in games.columns if c not in ['ID', 'DayNum', 'ST', 'Team1', 'Team2', 'IDTeams', 'IDTeam1', 'IDTeam2', 'WTeamID', 'WScore', 'LTeamID', 'LScore', 'NumOT', 'Pred', 'ScoreDiff', 'ScoreDiffNorm', 'WLoc'] + c_score_col]
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
model.compile(loss="categorical_crossentropy", optimizer=optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0), metrics=['accuracy']) reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.5, patience=3, min_lr=0.00001, verbose=1 )<train_model>
forest = RandomForestRegressor(n_estimators=100, bootstrap=True, n_jobs=-1) forest.fit(games[col].fillna(-1), games['Pred'] )
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
model.fit(datagen.flow(X_train, Y_train, batch_size=128), epochs=30, validation_data=(X_val, Y_val), verbose=1, steps_per_epoch=X_train.shape[0] // 128, callbacks=[reduce_lr] )<save_to_csv>
predictions = forest.predict(games[col].fillna(-1)).clip(0,1) print('Log Loss:', log_loss(games['Pred'], predictions))
Google Cloud & NCAA® ML Competition 2019-Women's
3,125,588
<set_options><EOS>
sub['Pred'] = forest.predict(sub[col].fillna(-1)).clip(0,1) sub[['ID', 'Pred']].to_csv('fibal.csv', index=False )
Google Cloud & NCAA® ML Competition 2019-Women's
3,102,219
<SOS> metric: LogLoss Kaggle data source: womens-machine-learning-competition-2019<categorify>
df1 = pd.read_csv('.. /input/myncaa/W-0.1-hamid.csv') df2 = pd.read_csv('.. /input/myncaa/W-0.12-duketemon.csv') df1.head()
Google Cloud & NCAA® ML Competition 2019-Women's
3,102,219
def label_encode(df, column_name): ordered_column = np.sort(df[column_name].unique()) df[column_name] = df[column_name].map( dict(zip(np.sort(df[column_name].unique()),[x for x in range(len(df[column_name].unique())) ])) ) return df def compare(df,column_name, with_table=False, with_graph=True, compare_to='Survived'): if with_table: print(df[df[compare_to] < 3].groupby([compare_to,column_name] ).size().sort_index()) if with_graph: g = sns.FacetGrid(df, col=compare_to ).map(sns.distplot, column_name) def show_correlation(df, column_name='Survived'): return df.corr() [column_name].apply(abs ).sort_values(na_position='first' ).reset_index() def get_IQR(df, column_name): Q3 = df[column_name].quantile(0.75) Q1 = df[column_name].quantile(0.25) IQR = Q3 - Q1 return Q1, Q3, IQR def detect_outliers(df, n, features): outlier_indices = [] for col in features: Q1, Q3, IQR = get_IQR(df, col) outlier_step = 1.5 * IQR outlier_list_col = df[(df[col] < Q1 - outlier_step)|(df[col] > Q3 + outlier_step)].index outlier_indices.extend(outlier_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list(k for k, v in outlier_indices.items() if v > n) return multiple_outliers<load_from_csv>
df1['Pred'] =.94*df1['Pred'] +.06*df2['Pred'] df1.head()
Google Cloud & NCAA® ML Competition 2019-Women's
3,102,219
<feature_engineering><EOS>
df1.to_csv('sub.csv',index=False )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
<SOS> metric: LogLoss Kaggle data source: womens-machine-learning-competition-2019<feature_engineering>
%matplotlib inline InteractiveShell.ast_node_interactivity = "all"
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['Surname'] = all_set['Name'].apply(lambda x: x.split(',')[0].strip() )<feature_engineering>
data_dir = '.. /input/stage2wdatafiles/' df_seed = pd.read_csv(data_dir + 'WNCAATourneySeeds.csv') df_result = pd.read_csv(data_dir + 'WNCAATourneyCompactResults.csv') df_seed.tail(3) df_result.tail(3 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['FamilySurvival'] = 0.5 for surname in all_set['Surname'].unique() : df = all_set[all_set['Surname'] == surname] if df.shape[0] > 1: smin = df['Survived'].min() smax = df['Survived'].max() for idx, row in df.iterrows() : passengerid = row['PassengerId'] if smax == 1.0: all_set.loc[all_set['PassengerId'] == passengerid, 'FamilySurvival'] = 1.0 elif smin == 0.0: all_set.loc[all_set['PassengerId'] == passengerid, 'FamilySurvival'] = 0.0<count_values>
def seed_to_int(seed): s_int = int(seed[1:3]) return s_int def clean_df(df_seed, df_result): df_seed['seed_int'] = df_seed['Seed'].apply(seed_to_int) df_seed.drop(['Seed'], axis=1, inplace=True) df_result.drop(['DayNum', 'WLoc', 'NumOT'], axis=1, inplace=True) return df_seed, df_result df_seed, df_result = clean_df(df_seed, df_result) df_seed.head(3) df_result.head(3 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['Embarked'].value_counts()<feature_engineering>
def merge_seed_result(df_seed, df_result): df_win_seed = df_seed.rename(columns={'TeamID':'WTeamID', 'seed_int':'WSeed'}) df_loss_seed = df_seed.rename(columns={'TeamID':'LTeamID', 'seed_int':'LSeed'}) df_result = df_result.merge(df_win_seed, how='left', on=['Season', 'WTeamID']) df_result = df_result.merge(df_loss_seed, how='left', on=['Season', 'LTeamID']) df_result['SeedDiff'] = np.abs(df_result['WSeed'] - df_result['LSeed']) df_result['ScoreDiff'] = np.abs(df_result['WScore'] - df_result['LScore']) return df_result df_result = merge_seed_result(df_seed, df_result) df_result.head(3 )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['Embarked'] = all_set['Embarked'].fillna('S' )<count_missing_values>
df_result = df_result[df_result['ScoreDiff']>3]
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set[all_set['Fare'].isna() ]<data_type_conversions>
df_result['upset'] = [1 if ws > ls else 0 for ws, ls, in zip(df_result["WSeed"], df_result["LSeed"])] print("upset probability") df_result['upset'].value_counts() / len(df_result)* 100
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['Fare'].fillna(all_set[all_set['Embarked'] == 'S']['Fare'].mean() , inplace=True )<feature_engineering>
this_season=2019 total_season=10 train = df_result[(df_result["Season"]>=(this_season - total_season)) &(df_result["Season"]<(this_season-1)) ] print(train.shape )
Google Cloud & NCAA® ML Competition 2019-Women's
3,525,312
all_set['Deck'] = all_set['Cabin'].apply(lambda x: x[0] if type(x)== str else '' )<filter>
df_result["Seed_combi"]=[str(ws)+'_'+str(ls)if ws<ls else str(ls)+'_'+str(ws)for ws, ls in zip(df_result["WSeed"], df_result["LSeed"])] df_result.head(3 )
Google Cloud & NCAA® ML Competition 2019-Women's