kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
6,338,895 |
kfolds=StratifiedKFold(n_splits=3)
scores=[]
svc=SVC(random_state=42)
rdf=RandomForestClassifier(random_state=42)
ada=AdaBoostClassifier(random_state=42)
log=LogisticRegression(random_state=42)
grb=GradientBoostingClassifier(random_state=42)
dct=DecisionTreeClassifier(random_state=42)
ext=ExtraTreesClassifier(random_state=42)
xgb=XGBRFClassifier(random_state=42)
xgbc=XGBClassifier(random_state=42)
models=[svc,rdf,ada,log,grb,dct,ext,xgb,xgbc]
for model in models:
scores.append(cross_val_score(model,train,target,cv=kfolds,n_jobs=-1))
scores_mean=np.mean(scores,axis=1 )<train_on_grid>
|
def rle_decode(mask_rle: str = '', shape: tuple =(1400, 2100)) :
s = mask_rle.split()
starts, lengths = [np.asarray(x, dtype=int)for x in(s[0:][::2], s[1:][::2])]
starts -= 1
ends = starts + lengths
img = np.zeros(shape[0] * shape[1], dtype=np.uint8)
for lo, hi in zip(starts, ends):
img[lo:hi] = 1
return img.reshape(shape, order='F' )
|
Understanding Clouds from Satellite Images
|
6,338,895 |
def grid_search(estimator,param,X,y):
grid=GridSearchCV(estimator, param, n_jobs=-1, cv=kfolds, return_train_score=True)
grid.fit(X,y)
grid_results=grid.cv_results_
print('
BestParams and Score :
',grid.best_params_,'
',grid.best_score_)
return grid.best_estimator_ , grid, estimator<train_on_grid>
|
def np_resize(img, input_shape):
height, width = input_shape
return cv2.resize(img,(width, height))
def mask2rle(img):
pixels= img.T.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return ' '.join(str(x)for x in runs)
def rle2mask(rle, input_shape):
width, height = input_shape[:2]
mask= np.zeros(width*height ).astype(np.uint8)
array = np.asarray([int(x)for x in rle.split() ])
starts = array[0::2]
lengths = array[1::2]
current_position = 0
for index, start in enumerate(starts):
mask[int(start):int(start+lengths[index])] = 1
current_position += lengths[index]
return mask.reshape(height, width ).T
def build_masks(rles, input_shape, reshape=None):
depth = len(rles)
if reshape is None:
masks = np.zeros(( *input_shape, depth))
else:
masks = np.zeros(( *reshape, depth))
for i, rle in enumerate(rles):
if type(rle)is str:
if reshape is None:
masks[:, :, i] = rle2mask(rle, input_shape)
else:
mask = rle2mask(rle, input_shape)
reshaped_mask = np_resize(mask, reshape)
masks[:, :, i] = reshaped_mask
return masks
def build_rles(masks, reshape=None):
width, height, depth = masks.shape
rles = []
for i in range(depth):
mask = masks[:, :, i]
if reshape:
mask = mask.astype(np.float32)
mask = np_resize(mask, reshape ).astype(np.int64)
rle = mask2rle(mask)
rles.append(rle)
return rles
|
Understanding Clouds from Satellite Images
|
6,338,895 |
def random_grid_search(estimator,param_d,X,y,n):
grid=RandomizedSearchCV(estimator, param_d, n_jobs=-1, cv=kfolds, return_train_score=True, n_iter=n)
grid.fit(X,y)
grid_results=grid.cv_results_
print('
BestParams and Score :
',grid.best_params_,'
',grid.best_score_)
return grid.best_estimator_ , grid, estimator<define_search_space>
|
class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, df, target_df=None, mode='fit',
base_path='/kaggle/input/understanding_cloud_organization/train_images',
batch_size=32, dim=(1400, 2100), n_channels=3, reshape=None,
augment=False, n_classes=4, random_state=2019, shuffle=True):
self.dim = dim
self.batch_size = batch_size
self.df = df
self.mode = mode
self.base_path = base_path
self.target_df = target_df
self.list_IDs = list_IDs
self.reshape = reshape
self.n_channels = n_channels
self.augment = augment
self.n_classes = n_classes
self.shuffle = shuffle
self.random_state = random_state
self.on_epoch_end()
np.random.seed(self.random_state)
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs)/ self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
list_IDs_batch = [self.list_IDs[k] for k in indexes]
X = self.__generate_X(list_IDs_batch)
if self.mode == 'fit':
y = self.__generate_y(list_IDs_batch)
if self.augment:
X, y = self.__augment_batch(X, y)
print(X,y)
return X, y
elif self.mode == 'predict':
return X
else:
raise AttributeError('The mode parameter should be set to "fit" or "predict".')
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.seed(self.random_state)
np.random.shuffle(self.indexes)
def __generate_X(self, list_IDs_batch):
'Generates data containing batch_size samples'
if self.reshape is None:
X = np.empty(( self.batch_size, *self.dim, self.n_channels))
else:
X = np.empty(( self.batch_size, *self.reshape, self.n_channels))
for i, ID in enumerate(list_IDs_batch):
im_name = self.df['ImageId'].iloc[ID]
img_path = f"{self.base_path}/{im_name}"
img = self.__load_rgb(img_path)
if self.reshape is not None:
img = np_resize(img, self.reshape)
X[i,] = img
return X
def __generate_y(self, list_IDs_batch):
if self.reshape is None:
y = np.empty(( self.batch_size, *self.dim, self.n_classes), dtype=int)
else:
y = np.empty(( self.batch_size, *self.reshape, self.n_classes), dtype=int)
for i, ID in enumerate(list_IDs_batch):
im_name = self.df['ImageId'].iloc[ID]
image_df = self.target_df[self.target_df['ImageId'] == im_name]
rles = image_df['EncodedPixels'].values
if self.reshape is not None:
masks = build_masks(rles, input_shape=self.dim, reshape=self.reshape)
else:
masks = build_masks(rles, input_shape=self.dim)
y[i, ] = masks
return y
def __load_grayscale(self, img_path):
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
img = img.astype(np.float32)/ 255.
img = np.expand_dims(img, axis=-1)
return img
def __load_rgb(self, img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img.astype(np.float32)/ 255.
return img
def __random_transform(self, img, masks):
composition = albu.Compose([
albu.HorizontalFlip() ,
albu.VerticalFlip() ,
albu.ShiftScaleRotate(rotate_limit=45, shift_limit=0.15, scale_limit=0.15)
])
composed = composition(image=img, mask=masks)
aug_img = composed['image']
aug_masks = composed['mask']
return aug_img, aug_masks
def __augment_batch(self, img_batch, masks_batch):
for i in range(img_batch.shape[0]):
img_batch[i, ], masks_batch[i, ] = self.__random_transform(
img_batch[i, ], masks_batch[i, ])
return img_batch, masks_batch
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'C':[0.6, 0.8,1,1.15,1.2,1.23,1.4], 'kernel':['rbf'], 'gamma':[0.1] }
]
svc_best, svc_grid, svc=grid_search(SVC(random_state=42, probability=True),param_grid,X=train,y=target )<train_on_grid>
|
BATCH_SIZE = 4
train_idx, val_idx = train_test_split(
mask_count_df.index, random_state=2019, test_size=0.2
)
train_generator = DataGenerator(
train_idx,
df=mask_count_df,
target_df=train_csv,
batch_size=BATCH_SIZE,
reshape=(320, 480),
augment=True,
n_channels=3,
n_classes=4
)
val_generator = DataGenerator(
val_idx,
df=mask_count_df,
target_df=train_csv,
batch_size=BATCH_SIZE,
reshape=(320, 480),
augment=False,
n_channels=3,
n_classes=4
)
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'C': uniform(0.9,0.3), 'kernel':['rbf'], 'gamma':[0.1] }
]
svc_best, svc_grid, svc =random_grid_search(SVC(random_state=42, probability=True),param_grid,X=train,y=target,n=20 )<define_search_space>
|
!pip install -U git+https://github.com/qubvel/efficientnet
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'learning_rate':[0.1], 'n_estimators':[30,50,100,200,240], 'max_depth':[2,3,4] }
]
gbc_best, gbc_grid, gbc =grid_search(GradientBoostingClassifier(random_state=42),param_grid,X=train,y=target )<train_on_grid>
|
!pip install segmentation-models --quiet
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'learning_rate':[0.1], 'n_estimators': randint(80,110), 'max_depth':[3] }
]
gbc_best, gbc_grid, gbc =random_grid_search(GradientBoostingClassifier(random_state=42),param_grid,X=train,y=target,n=20 )<define_search_space>
|
from keras.layers import Dense
from keras.models import Model
from keras.optimizers import Adam, Nadam
from keras.callbacks import Callback, ModelCheckpoint
from keras.losses import binary_crossentropy
import albumentations as albu
import segmentation_models as sm
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'penalty':['l1','l2'],'C':[0.1,0.8,0.9,1,1.1,1.2,1.3,5], 'tol':[1e-4,1e-3],'solver':['liblinear']}
]
log_best, log_grid, log =grid_search(LogisticRegression(random_state=42),param_grid,X=train,y=target )<train_on_grid>
|
def dice_coef(y_true, y_pred, smooth=1):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return(2.* intersection + smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth)
def dice_loss(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = y_true_f * y_pred_f
score =(2.* K.sum(intersection)+ smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth)
return 1.- score
def bce_dice_loss(y_true, y_pred):
return binary_crossentropy(y_true, y_pred)+ dice_loss(y_true, y_pred )
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'penalty':['l1'],'C': uniform(0.7,0.3), 'tol':[1e-4],'solver':['liblinear']}
]
log_best, log_grid, log =random_grid_search(LogisticRegression(random_state=42),param_grid,X=train,y=target,n=20 )<train_on_grid>
|
model = sm.Unet(
'resnet18',
classes=4,
input_shape=(320, 480, 3),
activation='sigmoid'
)
model.compile(optimizer=Nadam(lr=0.0002), loss=bce_dice_loss, metrics=[dice_coef])
model.summary()
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'n_estimators':randint(20,60),'max_depth':[4], 'gamma':[0.1]}
]
xgb_best, xgb_grid, xgb =random_grid_search(XGBRFClassifier(random_state=42),param_grid,X=train,y=target,n=20 )<train_on_grid>
|
sub_df = pd.read_csv('/kaggle/input/understanding_cloud_organization/sample_submission.csv')
sub_df['ImageId'] = sub_df['Image_Label'].apply(lambda x: x.split('_')[0])
test_imgs = pd.DataFrame(sub_df['ImageId'].unique() , columns=['ImageId'] )
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'n_estimators': randint(70,120),'max_depth':[3], 'gamma':[0.1]}
]
xgbc_best, xgbc_grid, xgbc =random_grid_search(XGBClassifier(random_state=42),param_grid,X=train,y=target,n=20 )<define_search_space>
|
resnetpath = '/kaggle/input/resnet18/modelefficient.h5'
model.load_weights(resnetpath)
test_df = []
for i in range(0, test_imgs.shape[0], 500):
batch_idx = list(
range(i, min(test_imgs.shape[0], i + 500))
)
test_generator = DataGenerator(
batch_idx,
df=test_imgs,
shuffle=False,
mode='predict',
dim=(350, 525),
reshape=(320, 480),
n_channels=3,
base_path='/kaggle/input/understanding_cloud_organization/test_images',
target_df=sub_df,
batch_size=1,
n_classes=4
)
batch_pred_masks = model.predict_generator(
test_generator,
workers=1,
verbose=1
)
for j, b in enumerate(batch_idx):
filename = test_imgs['ImageId'].iloc[b]
image_df = sub_df[sub_df['ImageId'] == filename].copy()
pred_masks = batch_pred_masks[j, ].round().astype(int)
pred_rles = build_rles(pred_masks, reshape=(350, 525))
image_df['EncodedPixels'] = pred_rles
test_df.append(image_df )
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'n_estimators': [30,50,100,200,300],'learning_rate':[0.9,1.0,1.1,1.2,1.3]}
]
ada_best, ada_grid, ada =grid_search(AdaBoostClassifier(random_state=42),param_grid,X=train,y=target )<train_on_grid>
|
os.listdir('/kaggle/input/csvfiledl/SubmissionDLearningFinal.csv' )
|
Understanding Clouds from Satellite Images
|
6,338,895 |
param_grid = [
{'n_estimators': randint(20,50),'learning_rate':[1.3]}
]
ada_best, ada_grid, ada =random_grid_search(AdaBoostClassifier(random_state=42),param_grid,X=train,y=target,n=20 )<define_search_space>
|
df = pd.read_csv('/kaggle/input/csvfiledl/SubmissionDLearningFinal.csv' )
|
Understanding Clouds from Satellite Images
|
6,338,895 |
<train_on_grid><EOS>
|
df.to_csv('FinaldeepLearning.csv',index = False )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<train_on_grid>
|
seed(10)
set_random_seed(10)
%matplotlib inline
|
Understanding Clouds from Satellite Images
|
6,145,495 |
param_grid = [
{'n_estimators': randint(80,150),'max_depth':[5], 'criterion':['gini']}
]
ext_best, ext_grid, ext =random_grid_search(ExtraTreesClassifier(random_state=42),param_grid,X=train,y=target,n=20 )<train_on_grid>
|
!pip install keras-rectified-adam
|
Understanding Clouds from Satellite Images
|
6,145,495 |
models=[
('svc', svc_best),
('log', log_best),
('xgb',xgb_best),
('gbc', gbc_best),
('xgbc', xgbc_best),
('ada', xgbc_best),
('rdf',rdf_best),
('ext',ext_best)
]
vot_hard = VotingClassifier(estimators=models, voting='hard', n_jobs=-1)
vot_hard.fit(train,target)
vot_soft = VotingClassifier(estimators=models, voting='soft', n_jobs=-1)
vot_soft.fit(train,target)
stack=StackingClassifier(estimators=models,cv=kfolds,n_jobs=-1,stack_method='predict_proba')
stack.fit(train,target)
prediction_hard=vot_hard.predict(test)
prediction_soft=vot_soft.predict(test)
prediction_stack=stack.predict(test)
<compute_train_metric>
|
test_imgs_folder = '.. /input/understanding_cloud_organization/test_images/'
train_imgs_folder = '.. /input/understanding_cloud_organization/train_images/'
num_cores = multiprocessing.cpu_count()
|
Understanding Clouds from Satellite Images
|
6,145,495 |
kfolds=StratifiedKFold(n_splits=3)
scores=[]
models=[vot_hard,vot_soft,stack]
for model in models:
scores.append(cross_val_score(model,train,target,cv=kfolds))
scores_mean=np.mean(scores,axis=1 )<save_to_csv>
|
train_df = pd.read_csv('.. /input/understanding_cloud_organization/train.csv')
train_df.head()
|
Understanding Clouds from Satellite Images
|
6,145,495 |
Survived_hard = pd.Series(prediction_hard, name="Survived")
result_hard = pd.concat([Id,Survived_hard],axis=1)
result_hard.to_csv("submission_hard.csv",index=False)
Survived_soft = pd.Series(prediction_soft, name="Survived")
result_soft = pd.concat([Id,Survived_soft],axis=1)
result_soft.to_csv("submission_soft.csv",index=False)
Survived_stack = pd.Series(prediction_stack, name="Survived")
result_stack = pd.concat([Id,Survived_stack],axis=1)
result_stack.to_csv("submission_stack.csv",index=False )<load_from_csv>
|
train_df = train_df[~train_df['EncodedPixels'].isnull() ]
train_df['Image'] = train_df['Image_Label'].map(lambda x: x.split('_')[0])
train_df['Class'] = train_df['Image_Label'].map(lambda x: x.split('_')[1])
classes = train_df['Class'].unique()
train_df = train_df.groupby('Image')['Class'].agg(set ).reset_index()
for class_name in classes:
train_df[class_name] = train_df['Class'].map(lambda x: 1 if class_name in x else 0)
train_df.head()
|
Understanding Clouds from Satellite Images
|
6,145,495 |
train = pd.read_csv('.. /input/titanic/train.csv')
test = pd.read_csv('.. /input/titanic/test.csv' )<prepare_x_and_y>
|
img_2_ohe_vector = {img:vec for img, vec in zip(train_df['Image'], train_df.iloc[:, 2:].values)}
|
Understanding Clouds from Satellite Images
|
6,145,495 |
train_x = train.drop(['Survived'], axis=1)
train_y = train['Survived']<create_dataframe>
|
train_imgs, val_imgs = train_test_split(train_df['Image'].values,
test_size=0.17,
stratify=train_df['Class'].map(lambda x: str(sorted(list(x)))) ,
random_state=2019 )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
test_x = test.copy()<import_modules>
|
class DataGenenerator(Sequence):
def __init__(self, images_list=None, folder_imgs=train_imgs_folder,
batch_size=16, shuffle=True, augmentation=None,
resized_height=256, resized_width=256, num_channels=3):
self.batch_size = batch_size
self.shuffle = shuffle
self.augmentation = augmentation
if images_list is None:
self.images_list = os.listdir(folder_imgs)
else:
self.images_list = deepcopy(images_list)
self.folder_imgs = folder_imgs
self.len = len(self.images_list)// self.batch_size
self.resized_height = resized_height
self.resized_width = resized_width
self.num_channels = num_channels
self.num_classes = 4
self.is_test = not 'train' in folder_imgs
if not shuffle and not self.is_test:
self.labels = [img_2_ohe_vector[img] for img in self.images_list[:self.len*self.batch_size]]
def __len__(self):
return self.len
def on_epoch_start(self):
if self.shuffle:
random.shuffle(self.images_list)
def __getitem__(self, idx):
current_batch = self.images_list[idx * self.batch_size:(idx + 1)* self.batch_size]
X = np.empty(( self.batch_size, self.resized_height, self.resized_width, self.num_channels))
y = np.empty(( self.batch_size, self.num_classes))
for i, image_name in enumerate(current_batch):
path = os.path.join(self.folder_imgs, image_name)
img = cv2.resize(cv2.imread(path),(self.resized_height, self.resized_width)).astype(np.float32)
if not self.augmentation is None:
augmented = self.augmentation(image=img)
img = augmented['image']
X[i, :, :, :] = img/255.0
if not self.is_test:
y[i, :] = img_2_ohe_vector[image_name]
return X, y
def get_labels(self):
if self.shuffle:
images_current = self.images_list[:self.len*self.batch_size]
labels = [img_2_ohe_vector[img] for img in images_current]
else:
labels = self.labels
return np.array(labels )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
from sklearn.preprocessing import LabelEncoder<drop_column>
|
albumentations_train = Compose([
VerticalFlip() , HorizontalFlip() , Rotate(limit=10), GridDistortion()
], p=1 )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
train_x = train_x.drop(['PassengerId'], axis=1)
test_x = test_x.drop(['PassengerId'], axis=1 )<drop_column>
|
data_generator_train = DataGenenerator(train_imgs, augmentation=albumentations_train)
data_generator_train_eval = DataGenenerator(train_imgs, shuffle=False)
data_generator_val = DataGenenerator(val_imgs, shuffle=False )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
train_x = train_x.drop(['Name', 'Ticket', 'Cabin'], axis=1)
test_x = test_x.drop(['Name', 'Ticket', 'Cabin'], axis=1 )<categorify>
|
class PrAucCallback(Callback):
def __init__(self, data_generator, num_workers=num_cores,
early_stopping_patience=5,
plateau_patience=3, reduction_rate=0.5,
stage='train', checkpoints_path='checkpoints/'):
super(Callback, self ).__init__()
self.data_generator = data_generator
self.num_workers = num_workers
self.class_names = ['Fish', 'Flower', 'Sugar', 'Gravel']
self.history = [[] for _ in range(len(self.class_names)+ 1)]
self.early_stopping_patience = early_stopping_patience
self.plateau_patience = plateau_patience
self.reduction_rate = reduction_rate
self.stage = stage
self.best_pr_auc = -float('inf')
if not os.path.exists(checkpoints_path):
os.makedirs(checkpoints_path)
self.checkpoints_path = checkpoints_path
def compute_pr_auc(self, y_true, y_pred):
pr_auc_mean = 0
print(f"
{'
")
for class_i in range(len(self.class_names)) :
precision, recall, _ = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i])
pr_auc = auc(recall, precision)
pr_auc_mean += pr_auc/len(self.class_names)
print(f"PR AUC {self.class_names[class_i]}, {self.stage}: {pr_auc:.3f}
")
self.history[class_i].append(pr_auc)
print(f"
{'
PR AUC mean, {self.stage}: {pr_auc_mean:.3f}
{'
")
self.history[-1].append(pr_auc_mean)
return pr_auc_mean
def is_patience_lost(self, patience):
if len(self.history[-1])> patience:
best_performance = max(self.history[-1][-(patience + 1):-1])
return best_performance == self.history[-1][-(patience + 1)] and best_performance >= self.history[-1][-1]
def early_stopping_check(self, pr_auc_mean):
if self.is_patience_lost(self.early_stopping_patience):
self.model.stop_training = True
def model_checkpoint(self, pr_auc_mean, epoch):
if pr_auc_mean > self.best_pr_auc:
for checkpoint in glob.glob(os.path.join(self.checkpoints_path, 'classifier_densenet169_epoch_*')) :
os.remove(checkpoint)
self.best_pr_auc = pr_auc_mean
self.model.save(os.path.join(self.checkpoints_path, f'classifier_densenet169_epoch_{epoch}_val_pr_auc_{pr_auc_mean}.h5'))
print(f"
{'
Saved new checkpoint
{'
")
def reduce_lr_on_plateau(self):
if self.is_patience_lost(self.plateau_patience):
new_lr = float(keras.backend.get_value(self.model.optimizer.lr)) * self.reduction_rate
keras.backend.set_value(self.model.optimizer.lr, new_lr)
print(f"
{'
Reduced learning rate to {new_lr}.
{'
")
def on_epoch_end(self, epoch, logs={}):
y_pred = self.model.predict_generator(self.data_generator, workers=self.num_workers)
y_true = self.data_generator.get_labels()
pr_auc_mean = self.compute_pr_auc(y_true, y_pred)
if self.stage == 'val':
self.early_stopping_check(pr_auc_mean)
self.model_checkpoint(pr_auc_mean, epoch)
self.reduce_lr_on_plateau()
def get_pr_auc_history(self):
return self.history
|
Understanding Clouds from Satellite Images
|
6,145,495 |
for c in ['Sex', 'Embarked']:
le = LabelEncoder()
le.fit(train_x[c].fillna('NA'))
train_x[c] = le.transform(train_x[c].fillna('NA'))
test_x[c] = le.transform(test_x[c].fillna('NA'))<import_modules>
|
train_metric_callback = PrAucCallback(data_generator_train_eval)
val_callback = PrAucCallback(data_generator_val, stage='val' )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
from xgboost import XGBClassifier<train_model>
|
def dice_coef(y_true, y_pred, smooth=1):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return(2.* intersection + smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth)
def dice_loss(y_true, y_pred):
smooth = 1.
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = y_true_f * y_pred_f
score =(2.* K.sum(intersection)+ smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth)
return 1.- score
def bce_dice_loss(y_true, y_pred):
return binary_crossentropy(y_true, y_pred)+ dice_loss(y_true, y_pred )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
model = XGBClassifier(n_estimators=20, random_state=71)
model.fit(train_x, train_y )<predict_on_test>
|
!pip install -U git+https://github.com/qubvel/efficientnet
|
Understanding Clouds from Satellite Images
|
6,145,495 |
pred = model.predict_proba(test_x)[:, 1]<define_variables>
|
def get_model() :
K.clear_session()
base_model = efn.EfficientNetB4(weights='imagenet', include_top=False, pooling='avg', input_shape=(256, 256, 3))
x = base_model.output
y_pred = Dense(4, activation='sigmoid' )(x)
return Model(inputs=base_model.input, outputs=y_pred)
model = get_model()
|
Understanding Clouds from Satellite Images
|
6,145,495 |
pred_label = np.where(pred > 0.5, 1, 0 )<save_to_csv>
|
from keras_radam import RAdam
|
Understanding Clouds from Satellite Images
|
6,145,495 |
submission = pd.DataFrame({'PassengerId': test['PassengerId'], 'Survived': pred_label})
submission.to_csv('submission_first.csv', index=False )<import_modules>
|
for base_layer in model.layers[:-5]:
base_layer.trainable = False
model.compile(optimizer=RAdam(warmup_proportion=0.1, min_lr=1e-5), loss=bce_dice_loss)
history_0 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=30,
callbacks=[train_metric_callback, val_callback],
workers=num_cores,
verbose=1
)
|
Understanding Clouds from Satellite Images
|
6,145,495 |
from sklearn.metrics import log_loss, accuracy_score
from sklearn.model_selection import KFold<define_variables>
|
for base_layer in model.layers[:-1]:
base_layer.trainable = True
model.compile(optimizer=RAdam(warmup_proportion=0.1, min_lr=1e-5), loss=bce_dice_loss)
history_1 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=20,
callbacks=[train_metric_callback, val_callback],
workers=num_cores,
verbose=1,
initial_epoch=1
)
|
Understanding Clouds from Satellite Images
|
6,145,495 |
scores_accuracy = []
scores_logloss = []<train_model>
|
class_names = ['Fish', 'Flower', 'Sugar', 'Gravel']
def get_threshold_for_recall(y_true, y_pred, class_i, recall_threshold=0.94, precision_threshold=0.94, plot=False):
precision, recall, thresholds = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i])
i = len(thresholds)- 1
best_recall_threshold = None
while best_recall_threshold is None:
next_threshold = thresholds[i]
next_recall = recall[i]
if next_recall >= recall_threshold:
best_recall_threshold = next_threshold
i -= 1
best_precision_threshold = [thres for prec, thres in zip(precision, thresholds)if prec >= precision_threshold][0]
if plot:
plt.figure(figsize=(10, 7))
plt.step(recall, precision, color='r', alpha=0.3, where='post')
plt.fill_between(recall, precision, alpha=0.3, color='r')
plt.axhline(y=precision[i + 1])
recall_for_prec_thres = [rec for rec, thres in zip(recall, thresholds)
if thres == best_precision_threshold][0]
plt.axvline(x=recall_for_prec_thres, color='g')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.legend(['PR curve',
f'Precision {precision[i + 1]:.2f} corresponding to selected recall threshold',
f'Recall {recall_for_prec_thres:.2f} corresponding to selected precision threshold'])
plt.title(f'Precision-Recall curve for Class {class_names[class_i]}')
return best_recall_threshold, best_precision_threshold
y_pred = model.predict_generator(data_generator_val, workers=num_cores)
y_true = data_generator_val.get_labels()
recall_thresholds = dict()
precision_thresholds = dict()
for i, class_name in tqdm(enumerate(class_names)) :
recall_thresholds[class_name], precision_thresholds[class_name] = get_threshold_for_recall(y_true, y_pred, i, plot=True )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
kf = KFold(n_splits=4, shuffle=True, random_state=71)
for tr_idx, va_idx in kf.split(train_x):
tr_x, va_x = train_x.iloc[tr_idx], train_x.iloc[va_idx]
tr_y, va_y = train_y.iloc[tr_idx], train_y.iloc[va_idx]
model = XGBClassifier(n_estimators=20, random_state=71)
model.fit(tr_x, tr_y)
va_pred = model.predict_proba(va_x)[:, 1]
logloss = log_loss(va_y, va_pred)
accuracy = accuracy_score(va_y, va_pred > 0.5)
scores_logloss.append(logloss)
scores_accuracy.append(accuracy )<compute_test_metric>
|
data_generator_test = DataGenenerator(folder_imgs=test_imgs_folder, shuffle=False)
y_pred_test = model.predict_generator(data_generator_test, workers=num_cores )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
logloss = np.mean(scores_logloss)
accuracy = np.mean(scores_accuracy)
print(f'logloss: {logloss:.4f}, accuracy: {accuracy:.4f}' )<import_modules>
|
image_labels_empty = set()
for i,(img, predictions)in enumerate(zip(os.listdir(test_imgs_folder), y_pred_test)) :
for class_i, class_name in enumerate(class_names):
if predictions[class_i] < recall_thresholds[class_name]:
image_labels_empty.add(f'{img}_{class_name}' )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
import itertools<define_search_space>
|
submission = pd.read_csv('.. /input/efficient-net-b4-unet-clouds/submission.csv')
submission.head()
|
Understanding Clouds from Satellite Images
|
6,145,495 |
param_space = {
'max_depth': [3, 5, 7],
'min_child_weight': [1.0, 2.0, 4.0]
}<concatenate>
|
predictions_nonempty = set(submission.loc[~submission['EncodedPixels'].isnull() , 'Image_Label'].values )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
param_combinations = itertools.product(param_space['max_depth'], param_space['min_child_weight'] )<define_variables>
|
print(f'{len(image_labels_empty.intersection(predictions_nonempty)) } masks would be removed' )
|
Understanding Clouds from Satellite Images
|
6,145,495 |
params = []
scores = []<train_model>
|
submission.loc[submission['Image_Label'].isin(image_labels_empty), 'EncodedPixels'] = np.nan
submission.to_csv('submission_segmentation_and_classifier_efficientnetb4_16btch_size.csv', index=None )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
for max_depth, min_child_weight in param_combinations:
score_folds = []
kf = KFold(n_splits=4, shuffle=True, random_state=123456)
for tr_idx, va_idx in kf.split(train_x):
tr_x, va_x = train_x.iloc[tr_idx], train_x.iloc[va_idx]
tr_y, va_y = train_y.iloc[tr_idx], train_y.iloc[va_idx]
model = XGBClassifier(n_estimators=20, random_state=71, max_depth=max_depth, min_child_weight=min_child_weight)
model.fit(tr_x, tr_y)
va_pred = model.predict_proba(va_x)[:, 1]
logloss = log_loss(va_y, va_pred)
score_folds.append(logloss)
score_mean = np.mean(score_folds)
params.append(( max_depth, min_child_weight))
scores.append(score_mean )<find_best_params>
|
!pip install catalyst
!pip install pretrainedmodels
!pip install git+https://github.com/qubvel/segmentation_models.pytorch
!pip install pytorch_toolbelt
!pip install torchvision==0.4
!pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext".. /input/apex-325f5a0/apex-master/
|
Understanding Clouds from Satellite Images
|
5,581,710 |
best_idx = np.argsort(scores)[0]
best_param = params[best_idx]
print(f'max_depth: {best_param[0]}, min_child_weight: {best_param[1]}' )<import_modules>
|
train_on_gpu = True
%matplotlib inline
device=torch.device('cuda' )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
from sklearn.preprocessing import OneHotEncoder<drop_column>
|
path = '.. /input/understanding_cloud_organization'
img_paths = '.. /input/understanding-clouds-resized'
os.listdir(path )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_x2 = train.drop(['Survived'], axis=1)
test_x2 = test.copy()<drop_column>
|
train = pd.read_csv(f'{path}/train.csv')
sub = pd.read_csv(f'{path}/sample_submission.csv' )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_x2 = train_x2.drop(['PassengerId'], axis=1)
test_x2 = test_x2.drop(['PassengerId'], axis=1 )<drop_column>
|
n_train = len(os.listdir(f'{img_paths}/train_images_525/train_images_525'))
n_test = len(os.listdir(f'{img_paths}/test_images_525/test_images_525'))
print(f'There are {n_train} images in train dataset')
print(f'There are {n_test} images in test dataset' )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_x2 = train_x2.drop(['Name', 'Ticket', 'Cabin'], axis=1)
test_x2 = test_x2.drop(['Name', 'Ticket', 'Cabin'], axis=1 )<categorify>
|
train['Image_Label'].apply(lambda x: x.split('_')[1] ).value_counts()
|
Understanding Clouds from Satellite Images
|
5,581,710 |
cat_cols = ['Sex', 'Embarked', 'Pclass']
ohe = OneHotEncoder(categories='auto', sparse=False)
ohe.fit(train_x2[cat_cols].fillna('NA'))<define_variables>
|
train.loc[train['EncodedPixels'].isnull() == False, 'Image_Label'].apply(lambda x: x.split('_')[1] ).value_counts()
|
Understanding Clouds from Satellite Images
|
5,581,710 |
ohe_columns = []
for i, c in enumerate(cat_cols):
ohe_columns += [f'{c}_{v}' for v in ohe.categories_[i]]<create_dataframe>
|
train.loc[train['EncodedPixels'].isnull() == False, 'Image_Label'].apply(lambda x: x.split('_')[0] ).value_counts().value_counts()
|
Understanding Clouds from Satellite Images
|
5,581,710 |
ohe_train_x2 = pd.DataFrame(ohe.transform(train_x2[cat_cols].fillna('NA')) , columns=ohe_columns)
ohe_test_x2 = pd.DataFrame(ohe.transform(test_x2[cat_cols].fillna('NA')) , columns=ohe_columns )<drop_column>
|
train['label'] = train['Image_Label'].apply(lambda x: x.split('_')[1])
train['im_id'] = train['Image_Label'].apply(lambda x: x.split('_')[0])
sub['label'] = sub['Image_Label'].apply(lambda x: x.split('_')[1])
sub['im_id'] = sub['Image_Label'].apply(lambda x: x.split('_')[0] )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_x2 = train_x2.drop(cat_cols, axis=1)
test_x2 = test_x2.drop(cat_cols, axis=1 )<concatenate>
|
id_mask_count = train.loc[train['EncodedPixels'].isnull() == False, 'Image_Label'].apply(lambda x: x.split('_')[0] ).value_counts().\
reset_index().rename(columns={'index': 'img_id', 'Image_Label': 'count'})
train_ids, valid_ids = train_test_split(id_mask_count['img_id'].values, random_state=42, stratify=id_mask_count['count'], test_size=0.1)
test_ids = sub['Image_Label'].apply(lambda x: x.split('_')[0] ).drop_duplicates().values
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_x2 = pd.concat([train_x2, ohe_train_x2], axis=1)
test_x2 = pd.concat([test_x2, ohe_test_x2], axis=1 )<data_type_conversions>
|
image_name = '8242ba0.jpg'
image = get_img(image_name)
mask = make_mask(train, image_name )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
num_cols = ['Age', 'SibSp', 'Parch', 'Fare']
for col in num_cols:
train_x2[col].fillna(train_x2[col].mean() , inplace=True)
test_x2[col].fillna(train_x2[col].mean() , inplace=True )<feature_engineering>
|
class CloudDataset(Dataset):
def __init__(self, df: pd.DataFrame = None, datatype: str = 'train', img_ids: np.array = None,
transforms = albu.Compose([albu.HorizontalFlip() ,AT.ToTensor() ]),
preprocessing=None):
self.df = df
if datatype != 'test':
self.data_folder = f"{img_paths}/train_images_525/train_images_525"
else:
self.data_folder = f"{img_paths}/test_images_525/test_images_525"
self.img_ids = img_ids
self.transforms = transforms
self.preprocessing = preprocessing
def __getitem__(self, idx):
image_name = self.img_ids[idx]
mask = make_mask(self.df, image_name)
image_path = os.path.join(self.data_folder, image_name)
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
augmented = self.transforms(image=img, mask=mask)
img = augmented['image']
mask = augmented['mask']
if self.preprocessing:
preprocessed = self.preprocessing(image=img, mask=mask)
img = preprocessed['image']
mask = preprocessed['mask']
return img, mask
def __len__(self):
return len(self.img_ids )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_x2['Fare'] = np.log1p(train_x2['Fare'])
test_x2['Fare'] = np.log1p(test_x2['Fare'] )<import_modules>
|
ENCODER = 'resnet18'
ENCODER_WEIGHTS = 'imagenet'
ACTIVATION = None
model = smp.Unet(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=4,
activation=ACTIVATION,
)
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
from sklearn.linear_model import LogisticRegression<train_model>
|
num_workers = 4
bs = 32
train_dataset = CloudDataset(df=train, datatype='train', img_ids=train_ids, transforms = get_training_augmentation() , preprocessing=get_preprocessing(preprocessing_fn))
valid_dataset = CloudDataset(df=train, datatype='valid', img_ids=valid_ids, transforms = get_validation_augmentation() , preprocessing=get_preprocessing(preprocessing_fn))
train_loader = DataLoader(train_dataset, batch_size=bs, shuffle=True, num_workers=num_workers)
valid_loader = DataLoader(valid_dataset, batch_size=bs, shuffle=False, num_workers=num_workers)
loaders = {
"train": train_loader,
"valid": valid_loader
}
|
Understanding Clouds from Satellite Images
|
5,581,710 |
model_xgb = XGBClassifier(n_estimators=20, random_state=71)
model_xgb.fit(train_x, train_y)
pred_xgb = model_xgb.predict_proba(test_x)[:, 1]<train_model>
|
def dice_loss(input, target):
input = torch.sigmoid(input)
smooth = 1.0
iflat = input.view(-1)
tflat = target.view(-1)
intersection =(iflat * tflat ).sum()
return(( 2.0 * intersection + smooth)/(iflat.sum() + tflat.sum() + smooth))
class FocalLoss(nn.Module):
def __init__(self, gamma):
super().__init__()
self.gamma = gamma
def forward(self, input, target):
if not(target.size() == input.size()):
raise ValueError("Target size({})must be the same as input size({})"
.format(target.size() , input.size()))
max_val =(-input ).clamp(min=0)
loss = input - input * target + max_val + \
(( -max_val ).exp() +(-input - max_val ).exp() ).log()
invprobs = F.logsigmoid(-input *(target * 2.0 - 1.0))
loss =(invprobs * self.gamma ).exp() * loss
return loss.mean()
class MixedLoss(nn.Module):
def __init__(self, alpha, gamma):
super().__init__()
self.alpha = alpha
self.focal = FocalLoss(gamma)
def forward(self, input, target):
loss = self.alpha*self.focal(input, target)- torch.log(dice_loss(input, target))
return loss.mean()
|
Understanding Clouds from Satellite Images
|
5,581,710 |
model_lr = LogisticRegression(solver='lbfgs', max_iter=300)
model_lr.fit(train_x2, train_y)
pred_lr = model_lr.predict_proba(test_x2)[:, 1]<define_variables>
|
num_epochs = 25
logdir = "./logs/segmentation_unet"
optimizer = torch.optim.Adam([
{'params': model.decoder.parameters() , 'lr': 1e-2},
{'params': model.encoder.parameters() , 'lr': 1e-3},
])
opt_level = 'O1'
model.cuda()
model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level)
scheduler = ReduceLROnPlateau(optimizer, factor=0.5, patience=2)
criterion = smp.utils.losses.BCEDiceLoss(eps=1.)
runner = SupervisedRunner()
|
Understanding Clouds from Satellite Images
|
5,581,710 |
pred = pred_xgb * 0.8 + pred_lr * 0.2
pred_label = np.where(pred > 0.5, 1, 0 )<save_to_csv>
|
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
loaders=loaders,
callbacks=[DiceCallback() , EarlyStoppingCallback(patience=5, min_delta=0.001)],
logdir=logdir,
num_epochs=num_epochs,
verbose=True
)
|
Understanding Clouds from Satellite Images
|
5,581,710 |
submission = pd.DataFrame({'passengerId': test['PassengerId'], 'Survived': pred_label})
submission.to_csv('submission_ensemble.csv', index=False )<set_options>
|
encoded_pixels = []
loaders = {"infer": valid_loader}
runner.infer(
model=model,
loaders=loaders,
callbacks=[
CheckpointCallback(
resume=f"{logdir}/checkpoints/best.pth"),
InferCallback()
],
)
valid_masks = []
probabilities = np.zeros(( 2220, 350, 525), dtype = np.float32)
for i,(batch, output)in enumerate(tqdm.tqdm(zip(
valid_dataset, runner.callbacks[0].predictions["logits"]))):
image, mask = batch
for m in mask:
if m.shape !=(350, 525):
m = cv2.resize(m, dsize=(525, 350), interpolation=cv2.INTER_LINEAR)
valid_masks.append(m)
for j, probability in enumerate(output):
if probability.shape !=(350, 525):
probability = cv2.resize(probability, dsize=(525, 350), interpolation=cv2.INTER_LINEAR)
probabilities[i * 4 + j, :, :] = probability
|
Understanding Clouds from Satellite Images
|
5,581,710 |
%matplotlib inline
<load_from_csv>
|
torch.cuda.empty_cache()
gc.collect()
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_df = pd.read_csv('.. /input/train.csv')
test_df = pd.read_csv('.. /input/test.csv')
combine = [train_df, test_df]<sort_values>
|
class_params = {}
for class_id in range(4):
print(class_id)
attempts = []
for t in range(0, 100, 5):
t /= 100
for ms in [5000, 10000, 15000, 20000, 22500, 25000]:
masks = []
for i in range(class_id, len(probabilities), 4):
probability = probabilities[i]
predict, num_predict = post_process(sigmoid(probability), t, ms)
masks.append(predict)
d = []
for i, j in zip(masks, valid_masks[class_id::4]):
if(i.sum() == 0)&(j.sum() == 0):
d.append(1)
else:
d.append(dice(i, j))
attempts.append(( t, ms, np.mean(d)))
attempts_df = pd.DataFrame(attempts, columns=['threshold', 'size', 'dice'])
attempts_df = attempts_df.sort_values('dice', ascending=False)
print(attempts_df.head())
best_threshold = attempts_df['threshold'].values[0]
best_size = attempts_df['size'].values[0]
class_params[class_id] =(best_threshold, best_size )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<sort_values>
|
del masks
del valid_masks
del probabilities
gc.collect()
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_df[["Sex", "Survived"]].groupby(['Sex'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<sort_values>
|
print(class_params )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_df[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<sort_values>
|
attempts_df = pd.DataFrame(attempts, columns=['threshold', 'size', 'dice'] )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_df[["Parch", "Survived"]].groupby(['Parch'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<feature_engineering>
|
attempts_df = attempts_df.sort_values('dice', ascending=False)
attempts_df.head(10 )
|
Understanding Clouds from Satellite Images
|
5,581,710 |
for dataset in combine:
dataset['Title'] = dataset.Name.str.extract('([A-Za-z]+)\.', expand=False)
pd.crosstab(train_df['Title'], train_df['Sex'] )<feature_engineering>
|
best_threshold = attempts_df['threshold'].values[0]
best_size = attempts_df['size'].values[0]
|
Understanding Clouds from Satellite Images
|
5,581,710 |
for dataset in combine:
dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Jonkheer', 'Dona'], 'Lady')
dataset['Title'] = dataset['Title'].replace(['Capt', 'Don', 'Major', 'Sir'], 'Sir')
dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
train_df[['Title', 'Survived']].groupby(['Title'], as_index=False ).mean()<categorify>
|
for i,(input, output)in enumerate(zip(
valid_dataset, runner.callbacks[0].predictions["logits"])) :
image, mask = input
image_vis = image.transpose(1, 2, 0)
mask = mask.astype('uint8' ).transpose(1, 2, 0)
pr_mask = np.zeros(( 350, 525, 4))
for j in range(4):
probability = cv2.resize(output[:, :, j], dsize=(525, 350), interpolation=cv2.INTER_LINEAR)
pr_mask[:, :, j], _ = post_process(sigmoid(probability), class_params[j][0], class_params[j][1])
visualize_with_raw(image=image_vis, mask=pr_mask, original_image=image_vis, original_mask=mask, raw_image=image_vis, raw_mask=output.transpose(1, 2, 0))
if i >= 2:
break
|
Understanding Clouds from Satellite Images
|
5,581,710 |
title_mapping = {"Col": 1, "Dr": 2, "Lady": 3, "Master": 4, "Miss": 5, "Mr": 6, "Mrs": 7, "Rev": 8, "Sir": 9}
for dataset in combine:
dataset['Title'] = dataset['Title'].map(title_mapping)
dataset['Title'] = dataset['Title'].fillna(0)
train_df.head()<drop_column>
|
torch.cuda.empty_cache()
gc.collect()
|
Understanding Clouds from Satellite Images
|
5,581,710 |
train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine = [train_df, test_df]
train_df.shape, test_df.shape<data_type_conversions>
|
test_dataset = CloudDataset(df=sub, datatype='test', img_ids=test_ids, transforms = get_validation_augmentation() , preprocessing=get_preprocessing(preprocessing_fn))
test_loader = DataLoader(test_dataset, batch_size=8, shuffle=False, num_workers=0)
loaders = {"test": test_loader}
|
Understanding Clouds from Satellite Images
|
5,581,710 |
for dataset in combine:
dataset['Sex'] = dataset['Sex'].map({'female': 1, 'male': 0} ).astype(int)
train_df.head()<define_variables>
|
del train_dataset, train_loader
|
Understanding Clouds from Satellite Images
|
5,581,710 |
guess_ages = np.zeros(( 2,3))
guess_ages<find_best_params>
|
del valid_dataset, valid_loader
gc.collect()
|
Understanding Clouds from Satellite Images
|
5,581,710 |
for dataset in combine:
for i in range(0, 2):
for j in range(0, 3):
guess_df = dataset[(dataset['Sex'] == i)& \
(dataset['Pclass'] == j+1)]['Age'].dropna()
age_guess = guess_df.median()
guess_ages[i,j] = int(age_guess/0.5 + 0.5)* 0.5
for i in range(0, 2):
for j in range(0, 3):
dataset.loc[(dataset.Age.isnull())&(dataset.Sex == i)&(dataset.Pclass == j+1),\
'Age'] = guess_ages[i,j]
dataset['Age'] = dataset['Age'].astype(int)
train_df.head()<sort_values>
|
encoded_pixels = []
image_id = 0
for i, test_batch in enumerate(tqdm.tqdm(loaders['test'])) :
runner_out = runner.predict_batch({"features": test_batch[0].cuda() })['logits']
for i, batch in enumerate(runner_out):
for probability in batch:
probability = probability.cpu().detach().numpy()
if probability.shape !=(350, 525):
probability = cv2.resize(probability, dsize=(525, 350), interpolation=cv2.INTER_LINEAR)
predict, num_predict = post_process(sigmoid(probability), class_params[image_id % 4][0], class_params[image_id % 4][1])
if num_predict == 0:
encoded_pixels.append('')
else:
r = mask2rle(predict)
encoded_pixels.append(r)
image_id += 1
|
Understanding Clouds from Satellite Images
|
5,581,710 |
<feature_engineering><EOS>
|
sub['EncodedPixels'] = encoded_pixels
sub.to_csv('submission.csv', columns=['Image_Label', 'EncodedPixels'], index=False )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<drop_column>
|
seed(10)
set_random_seed(10)
%matplotlib inline
|
Understanding Clouds from Satellite Images
|
5,715,541 |
train_df = train_df.drop(['AgeBand'], axis=1)
combine = [train_df, test_df]
train_df.head()<sort_values>
|
test_imgs_folder = '.. /input/understanding_cloud_organization/test_images/'
train_imgs_folder = '.. /input/understanding_cloud_organization/train_images/'
num_cores = multiprocessing.cpu_count()
|
Understanding Clouds from Satellite Images
|
5,715,541 |
for dataset in combine:
dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<feature_engineering>
|
train_df = pd.read_csv('.. /input/understanding_cloud_organization/train.csv')
train_df.head()
|
Understanding Clouds from Satellite Images
|
5,715,541 |
for dataset in combine:
dataset['IsAlone'] = 0
dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1
train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False ).mean()<drop_column>
|
train_df = train_df[~train_df['EncodedPixels'].isnull() ]
train_df['Image'] = train_df['Image_Label'].map(lambda x: x.split('_')[0])
train_df['Class'] = train_df['Image_Label'].map(lambda x: x.split('_')[1])
classes = train_df['Class'].unique()
train_df = train_df.groupby('Image')['Class'].agg(set ).reset_index()
for class_name in classes:
train_df[class_name] = train_df['Class'].map(lambda x: 1 if class_name in x else 0)
train_df.head()
|
Understanding Clouds from Satellite Images
|
5,715,541 |
train_df = train_df.drop(['Parch',], axis=1)
test_df = test_df.drop(['Parch'], axis=1)
combine = [train_df, test_df]
train_df.head()<feature_engineering>
|
img_2_ohe_vector = {img:vec for img, vec in zip(train_df['Image'], train_df.iloc[:, 2:].values)}
|
Understanding Clouds from Satellite Images
|
5,715,541 |
for dataset in combine:
dataset['Age*Class'] = dataset.Age * dataset.Pclass
train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10 )<correct_missing_values>
|
train_imgs, val_imgs = train_test_split(train_df['Image'].values,
test_size=0.2,
stratify=train_df['Class'].map(lambda x: str(sorted(list(x)))) ,
random_state=10 )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
freq_port = train_df.Embarked.dropna().mode() [0]
freq_port<sort_values>
|
class DataGenenerator(Sequence):
def __init__(self, images_list=None, folder_imgs=train_imgs_folder,
batch_size=32, shuffle=True, augmentation=None,
resized_height=224, resized_width=224, num_channels=3):
self.batch_size = batch_size
self.shuffle = shuffle
self.augmentation = augmentation
if images_list is None:
self.images_list = os.listdir(folder_imgs)
else:
self.images_list = deepcopy(images_list)
self.folder_imgs = folder_imgs
self.len = len(self.images_list)// self.batch_size
self.resized_height = resized_height
self.resized_width = resized_width
self.num_channels = num_channels
self.num_classes = 4
self.is_test = not 'train' in folder_imgs
if not shuffle and not self.is_test:
self.labels = [img_2_ohe_vector[img] for img in self.images_list[:self.len*self.batch_size]]
def __len__(self):
return self.len
def on_epoch_start(self):
if self.shuffle:
random.shuffle(self.images_list)
def __getitem__(self, idx):
current_batch = self.images_list[idx * self.batch_size:(idx + 1)* self.batch_size]
X = np.empty(( self.batch_size, self.resized_height, self.resized_width, self.num_channels))
y = np.empty(( self.batch_size, self.num_classes))
for i, image_name in enumerate(current_batch):
path = os.path.join(self.folder_imgs, image_name)
img = cv2.resize(cv2.imread(path),(self.resized_height, self.resized_width)).astype(np.float32)
if not self.augmentation is None:
augmented = self.augmentation(image=img)
img = augmented['image']
X[i, :, :, :] = img/255.0
if not self.is_test:
y[i, :] = img_2_ohe_vector[image_name]
return X, y
def get_labels(self):
if self.shuffle:
images_current = self.images_list[:self.len*self.batch_size]
labels = [img_2_ohe_vector[img] for img in images_current]
else:
labels = self.labels
return np.array(labels )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
for dataset in combine:
dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)
train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<data_type_conversions>
|
albumentations_train = Compose([
VerticalFlip() , HorizontalFlip() , Rotate(limit=30), GridDistortion()
], p=1 )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
for dataset in combine:
dataset['Embarked'] = dataset['Embarked'].map({'S': 0, 'C': 1, 'Q': 2} ).astype(int)
train_df.head()<data_type_conversions>
|
data_generator_train = DataGenenerator(train_imgs, augmentation=albumentations_train)
data_generator_train_eval = DataGenenerator(train_imgs, shuffle=False)
data_generator_val = DataGenenerator(val_imgs, shuffle=False )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
test_df['Fare'].fillna(test_df['Fare'].dropna().median() , inplace=True)
test_df.head()<sort_values>
|
class PrAucCallback(Callback):
def __init__(self, data_generator, num_workers=num_cores,
early_stopping_patience=5,
plateau_patience=3, reduction_rate=0.5,
stage='train', checkpoints_path='checkpoints/'):
super(Callback, self ).__init__()
self.data_generator = data_generator
self.num_workers = num_workers
self.class_names = ['Fish', 'Flower', 'Sugar', 'Gravel']
self.history = [[] for _ in range(len(self.class_names)+ 1)]
self.early_stopping_patience = early_stopping_patience
self.plateau_patience = plateau_patience
self.reduction_rate = reduction_rate
self.stage = stage
self.best_pr_auc = -float('inf')
if not os.path.exists(checkpoints_path):
os.makedirs(checkpoints_path)
self.checkpoints_path = checkpoints_path
def compute_pr_auc(self, y_true, y_pred):
pr_auc_mean = 0
print(f"
{'
")
for class_i in range(len(self.class_names)) :
precision, recall, _ = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i])
pr_auc = auc(recall, precision)
pr_auc_mean += pr_auc/len(self.class_names)
print(f"PR AUC {self.class_names[class_i]}, {self.stage}: {pr_auc:.3f}
")
self.history[class_i].append(pr_auc)
print(f"
{'
PR AUC mean, {self.stage}: {pr_auc_mean:.3f}
{'
")
self.history[-1].append(pr_auc_mean)
return pr_auc_mean
def is_patience_lost(self, patience):
if len(self.history[-1])> patience:
best_performance = max(self.history[-1][-(patience + 1):-1])
return best_performance == self.history[-1][-(patience + 1)] and best_performance >= self.history[-1][-1]
def early_stopping_check(self, pr_auc_mean):
if self.is_patience_lost(self.early_stopping_patience):
self.model.stop_training = True
def model_checkpoint(self, pr_auc_mean, epoch):
if pr_auc_mean > self.best_pr_auc:
for checkpoint in glob.glob(os.path.join(self.checkpoints_path, 'classifier_densenet169_epoch_*')) :
os.remove(checkpoint)
self.best_pr_auc = pr_auc_mean
self.model.save(os.path.join(self.checkpoints_path, f'classifier_densenet169_epoch_{epoch}_val_pr_auc_{pr_auc_mean}.h5'))
print(f"
{'
Saved new checkpoint
{'
")
def reduce_lr_on_plateau(self):
if self.is_patience_lost(self.plateau_patience):
new_lr = float(keras.backend.get_value(self.model.optimizer.lr)) * self.reduction_rate
keras.backend.set_value(self.model.optimizer.lr, new_lr)
print(f"
{'
Reduced learning rate to {new_lr}.
{'
")
def on_epoch_end(self, epoch, logs={}):
y_pred = self.model.predict_generator(self.data_generator, workers=self.num_workers)
y_true = self.data_generator.get_labels()
pr_auc_mean = self.compute_pr_auc(y_true, y_pred)
if self.stage == 'val':
self.early_stopping_check(pr_auc_mean)
self.model_checkpoint(pr_auc_mean, epoch)
self.reduce_lr_on_plateau()
def get_pr_auc_history(self):
return self.history
|
Understanding Clouds from Satellite Images
|
5,715,541 |
train_df['FareBand'] = pd.qcut(train_df['Fare'], 4)
train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False ).mean().sort_values(by='FareBand', ascending=True )<data_type_conversions>
|
train_metric_callback = PrAucCallback(data_generator_train_eval)
val_callback = PrAucCallback(data_generator_val, stage='val' )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
for dataset in combine:
dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
dataset.loc[(dataset['Fare'] > 7.91)&(dataset['Fare'] <= 14.454), 'Fare'] = 1
dataset.loc[(dataset['Fare'] > 14.454)&(dataset['Fare'] <= 31), 'Fare'] = 2
dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
dataset['Fare'] = dataset['Fare'].astype(int)
train_df = train_df.drop(['FareBand'], axis=1)
combine = [train_df, test_df]
train_df.head(10 )<prepare_x_and_y>
|
def get_model() :
K.clear_session()
base_model = DenseNet169(weights='imagenet', include_top=False, pooling='avg', input_shape=(224, 224, 3))
x = base_model.output
y_pred = Dense(4, activation='sigmoid' )(x)
return Model(inputs=base_model.input, outputs=y_pred)
model = get_model()
|
Understanding Clouds from Satellite Images
|
5,715,541 |
X_train = train_df.drop("Survived", axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId", axis=1 ).copy()
X_train.head(10 )<compute_train_metric>
|
for base_layer in model.layers[:-1]:
base_layer.trainable = False
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy')
history_0 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=1,
callbacks=[train_metric_callback, val_callback],
workers=num_cores,
verbose=1
)
|
Understanding Clouds from Satellite Images
|
5,715,541 |
logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
Y_pred = logreg.predict(X_test)
acc_log = round(logreg.score(X_train, Y_train)* 100, 2)
acc_log<compute_train_metric>
|
for base_layer in model.layers[:-1]:
base_layer.trainable = True
model.compile(optimizer=Adam(lr=1e-5), loss='binary_crossentropy')
history_1 = model.fit_generator(generator=data_generator_train,
validation_data=data_generator_val,
epochs=2,
callbacks=[train_metric_callback, val_callback],
workers=num_cores,
verbose=1,
initial_epoch=1
)
|
Understanding Clouds from Satellite Images
|
5,715,541 |
svc = SVC()
svc.fit(X_train, Y_train)
Y_pred = svc.predict(X_test)
acc_svc = round(svc.score(X_train, Y_train)* 100, 2)
acc_svc<predict_on_test>
|
model = load_model('.. /input/clouds-classifier-files/classifier_densenet169_epoch_21_val_pr_auc_0.8365921057512743.h5' )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(X_train, Y_train)* 100, 2)
acc_knn<predict_on_test>
|
Image(".. /input/clouds-classifier-files/loss_hist_densenet169.png" )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
gaussian = GaussianNB()
gaussian.fit(X_train, Y_train)
Y_pred = gaussian.predict(X_test)
acc_gaussian = round(gaussian.score(X_train, Y_train)* 100, 2)
acc_gaussian<compute_train_metric>
|
Image(".. /input/clouds-classifier-files/pr_auc_hist_densenet169.png" )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
perceptron = Perceptron()
perceptron.fit(X_train, Y_train)
Y_pred = perceptron.predict(X_test)
acc_perceptron = round(perceptron.score(X_train, Y_train)* 100, 2)
acc_perceptron<choose_model_class>
|
class_names = ['Fish', 'Flower', 'Sugar', 'Gravel']
def get_threshold_for_recall(y_true, y_pred, class_i, recall_threshold=0.95, precision_threshold=0.94, plot=False):
precision, recall, thresholds = precision_recall_curve(y_true[:, class_i], y_pred[:, class_i])
i = len(thresholds)- 1
best_recall_threshold = None
while best_recall_threshold is None:
next_threshold = thresholds[i]
next_recall = recall[i]
if next_recall >= recall_threshold:
best_recall_threshold = next_threshold
i -= 1
best_precision_threshold = [thres for prec, thres in zip(precision, thresholds)if prec >= precision_threshold][0]
if plot:
plt.figure(figsize=(10, 7))
plt.step(recall, precision, color='r', alpha=0.3, where='post')
plt.fill_between(recall, precision, alpha=0.3, color='r')
plt.axhline(y=precision[i + 1])
recall_for_prec_thres = [rec for rec, thres in zip(recall, thresholds)
if thres == best_precision_threshold][0]
plt.axvline(x=recall_for_prec_thres, color='g')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.legend(['PR curve',
f'Precision {precision[i + 1]:.2f} corresponding to selected recall threshold',
f'Recall {recall_for_prec_thres:.2f} corresponding to selected precision threshold'])
plt.title(f'Precision-Recall curve for Class {class_names[class_i]}')
return best_recall_threshold, best_precision_threshold
y_pred = model.predict_generator(data_generator_val, workers=num_cores)
y_true = data_generator_val.get_labels()
recall_thresholds = dict()
precision_thresholds = dict()
for i, class_name in tqdm(enumerate(class_names)) :
recall_thresholds[class_name], precision_thresholds[class_name] = get_threshold_for_recall(y_true, y_pred, i, plot=True )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
Y_pred = decision_tree.predict(X_test)
acc_decision_tree = round(decision_tree.score(X_train, Y_train)* 100, 2)
acc_decision_tree<compute_train_metric>
|
data_generator_test = DataGenenerator(folder_imgs=test_imgs_folder, shuffle=False)
y_pred_test = model.predict_generator(data_generator_test, workers=num_cores )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train)* 100, 2)
acc_random_forest<train_model>
|
image_labels_empty = set()
for i,(img, predictions)in enumerate(zip(os.listdir(test_imgs_folder), y_pred_test)) :
for class_i, class_name in enumerate(class_names):
if predictions[class_i] < recall_thresholds[class_name]:
image_labels_empty.add(f'{img}_{class_name}' )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
grad_boost = GradientBoostingClassifier(n_estimators = 100)
grad_boost.fit(X_train, Y_train)
Y_pred = grad_boost.predict(X_test)
grad_boost.score(X_train, Y_train)
acc_grad_boost = round(grad_boost.score(X_train, Y_train)* 100, 2)
acc_grad_boost<compute_train_metric>
|
submission = pd.read_csv('.. /input/efficient-net-b4-unet-clouds/submission.csv')
submission.head()
|
Understanding Clouds from Satellite Images
|
5,715,541 |
Ridge= RidgeClassifierCV()
Ridge.fit(X_train, Y_train)
Y_pred = Ridge.predict(X_test)
acc_Ridge= round(Ridge.score(X_train, Y_train)* 100, 2)
acc_Ridge<create_dataframe>
|
predictions_nonempty = set(submission.loc[~submission['EncodedPixels'].isnull() , 'Image_Label'].values )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
models = pd.DataFrame({
'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 'Random Forest', 'Naive Bayes', 'Perceptron', 'Grad boost','Decision Tree'],
'Score': [acc_svc, acc_knn, acc_log, acc_random_forest, acc_gaussian, acc_perceptron, acc_grad_boost, acc_decision_tree]})
models.sort_values(by='Score', ascending=False )<split>
|
print(f'{len(image_labels_empty.intersection(predictions_nonempty)) } masks would be removed' )
|
Understanding Clouds from Satellite Images
|
5,715,541 |
<train_on_grid><EOS>
|
submission.loc[submission['Image_Label'].isin(image_labels_empty), 'EncodedPixels'] = np.nan
submission.to_csv('submission_segmentation_and_classifier.csv', index=None )
|
Understanding Clouds from Satellite Images
|
6,632,007 |
<SOS> metric: Dice Kaggle data source: understanding-clouds-from-satellite-images<train_model>
|
kernel_start = time.time()
LIMIT = 8.8
DO_TRAIN = True
DO_TEST = True
USE_TTA = True
RAND = 12345
!pip install tensorflow-gpu==1.14.0 --quiet
!pip install keras==2.2.4 --quiet
!pip install segmentation-models --quiet
|
Understanding Clouds from Satellite Images
|
6,632,007 |
best_clf.fit(X_dev, y_dev)
acc_eval = accuracy_score(y_eval, best_clf.predict(X_eval))
dict_clf[name] = {
'best_par': best_params,
'best_clf': best_clf,
'best_score': best_score,
'score_eval': acc_eval,
'fit_time': t,
}
acc_eval<train_on_grid>
|
sub = pd.read_csv('.. /input/understanding_cloud_organization/sample_submission.csv')
sub['Image'] = sub['Image_Label'].map(lambda x: x.split('.')[0])
sub['Label'] = sub['Image_Label'].map(lambda x: x.split('_')[1])
sub['p'] = pd.read_csv('.. /input/cloud-classifiers/pred_cls.csv' ).p.values
sub['p'] += np.load('.. /input/cloud-classifiers/pred_cls0.npy' ).reshape(( -1)) * 0.5
sub['p'] += pd.read_csv('.. /input/cloud-classifiers/pred_cls3.csv' ).p.values * 3.0
sub['p'] += np.load('/kaggle/input/cloud-classifiers/pred_cls4b.npy')* 0.6
sub['p'] /= 5.1
train = pd.read_csv('.. /input/cloud-images-resized/train_384x576.csv')
train['Image'] = train['Image_Label'].map(lambda x: x.split('.')[0])
train['Label'] = train['Image_Label'].map(lambda x: x.split('_')[1])
train2 = pd.DataFrame({'Image':train['Image'][::4]})
train2['e1'] = train['EncodedPixels'][::4].values
train2['e2'] = train['EncodedPixels'][1::4].values
train2['e3'] = train['EncodedPixels'][2::4].values
train2['e4'] = train['EncodedPixels'][3::4].values
train2.set_index('Image',inplace=True,drop=True)
train2.fillna('',inplace=True); train2.head()
train2[['d1','d2','d3','d4']] =(train2[['e1','e2','e3','e4']]!='' ).astype('int8')
for k in range(1,5): train2['o'+str(k)] = 0
train2[['o1','o2','o3','o4']] = np.load('.. /input/cloud-classifiers/oof_cls.npy')
train2[['o1','o2','o3','o4']] += np.load('.. /input/cloud-classifiers/oof_cls0.npy')* 0.5
train2[['o1','o2','o3','o4']] += np.load('.. /input/cloud-classifiers/oof_cls3.npy')* 3.0
train2[['o1','o2','o3','o4']] += np.load('.. /input/cloud-classifiers/oof_cls4b.npy')* 0.6
train2[['o1','o2','o3','o4']] /= 5.1
train2.head()
|
Understanding Clouds from Satellite Images
|
6,632,007 |
paramgrid = {
'n_estimators': [100, 150, 200, 250, 300, 400, 500],
'max_features': ['auto', 'log2'],
'min_samples_leaf': list(range(2, 7)) ,
'loss' : ['deviance', 'exponential'],
'learning_rate': [0.025, 0.05, 0.075, 0.1],
}
GS = GridSearchCV(GradientBoostingClassifier(random_state=77),
paramgrid,
cv=4)
t0 = time.time()
GS.fit(X_dev, y_dev)
t = time.time() - t0
best_clf = GS.best_estimator_
best_params = GS.best_params_
best_score = GS.best_score_
name = 'GB'
best_clf.fit(X_dev, y_dev)
acc_eval = accuracy_score(y_eval, best_clf.predict(X_eval))
dict_clf[name] = {
'best_par': best_params,
'best_clf': best_clf,
'best_score': best_score,
'score_eval': acc_eval,
'fit_time': t,
}<train_model>
|
def mask2rleXXX(img0, shape=(576,384), grow=(525,350)) :
a =(shape[1]-img0.shape[0])//2
b =(shape[0]-img0.shape[1])//2
img = np.zeros(( shape[1],shape[0]),dtype=np.uint8)
img[a:a+img0.shape[0],b:b+img0.shape[1]] = img0
img = cv2.resize(img,grow)
pixels= img.T.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return ' '.join(str(x)for x in runs)
def rle2maskX(mask_rle, shape=(2100,1400), shrink=1):
s = mask_rle.split()
starts, lengths = [np.asarray(x, dtype=int)for x in(s[0:][::2], s[1:][::2])]
starts -= 1
ends = starts + lengths
img = np.zeros(shape[0]*shape[1], dtype=np.uint8)
for lo, hi in zip(starts, ends):
img[lo:hi] = 1
return img.reshape(shape ).T[::shrink,::shrink]
def dice_coef(y_true, y_pred, smooth=1):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return(2.* intersection + smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth )
|
Understanding Clouds from Satellite Images
|
6,632,007 |
for clf in dict_clf.keys() :
print("{0} classifier:
\t- Best score = {1:.2%}".format(clf, dict_clf[clf]['best_score']))
print("\t- Score on evaluation set = {0:.2%}".format(dict_clf[clf]['score_eval']))
print("\t- Fitting time = {0:.1f} min".format(round(dict_clf[clf]['fit_time']/60, 1)))
print("\t- Best parameters:")
for par in sorted(dict_clf[clf]['best_par'].keys()):
print("\t\t* {0}: {1}".format(par, dict_clf[clf]['best_par'][par]))<predict_on_test>
|
class DataGenerator2(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, batch_size=24, shuffle=False, width=544, height=352, scale=1/128., sub=1., mode='train_seg',
path='.. /input/cloud-images-resized/train_images_384x576/', flips=False, augment=False, shrink1=1,
shrink2=1, dim=(576,384), clean=False):
'Initialization'
self.list_IDs = list_IDs
self.shuffle = shuffle
self.batch_size = batch_size
self.path = path
self.scale = scale
self.sub = sub
self.path = path
self.width = width
self.height = height
self.mode = mode
self.flips = flips
self.augment = augment
self.shrink1 = shrink1
self.shrink2 = shrink2
self.dim = dim
self.clean = clean
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
ct = int(np.floor(len(self.list_IDs)/ self.batch_size))
if len(self.list_IDs)>ct*self.batch_size: ct += 1
return int(ct)
def __getitem__(self, index):
'Generate one batch of data'
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
X, msk = self.__data_generation(indexes)
if self.augment: X, msk = self.__augment_batch(X, msk)
if(self.mode=='train_seg')|(self.mode=='validate_seg'): return X, msk
else: return X
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(int(len(self.list_IDs)))
if self.shuffle: np.random.shuffle(self.indexes)
def __data_generation(self, indexes):
'Generates data containing batch_size samples'
lnn = len(indexes); ex = self.shrink1; ax = self.shrink2
X = np.empty(( lnn,self.height,self.width,3),dtype=np.float32)
msk = np.empty(( lnn,self.height//ax,self.width//ax,4),dtype=np.int8)
for k in range(lnn):
img = cv2.imread(self.path + self.list_IDs[indexes[k]]+'.jpg')
img = img[::ex,::ex,:]
hflip = False; vflip = False
if(self.flips):
if np.random.uniform(0,1)>0.5: hflip=True
if np.random.uniform(0,1)>0.5: vflip=True
if vflip: img = cv2.flip(img,0)
if hflip: img = cv2.flip(img,1)
a = np.random.randint(0,self.dim[0]//ex//ax-self.width//ax+1)
b = np.random.randint(0,self.dim[1]//ex//ax-self.height//ax+1)
if(self.mode=='predict'):
a =(self.dim[0]//ex//ax-self.width//ax)//2
b =(self.dim[1]//ex//ax-self.height//ax)//2
img = img[b*ax:self.height+b*ax,a*ax:self.width+a*ax]
X[k,] = img*self.scale - self.sub
if(self.mode!='predict'):
for j in range(1,5):
rle = train2.loc[self.list_IDs[indexes[k]],'e'+str(j)]
if self.clean:
if train2.loc[self.list_IDs[indexes[k]],'o'+str(j)]<0.4:
rle = ''
mask = rle2maskX(rle,shrink=ex*ax,shape=self.dim)
if vflip: mask = np.flip(mask,axis=0)
if hflip: mask = np.flip(mask,axis=1)
msk[k,:,:,j-1] = mask[b:self.height//ax+b,a:self.width//ax+a]
return X, msk
def __random_transform(self, img, masks):
composition = albu.Compose([
albu.ShiftScaleRotate(rotate_limit=30, scale_limit=0.1, p=0.5)
])
composed = composition(image=img, mask=masks)
aug_img = composed['image']
aug_masks = composed['mask']
return aug_img, aug_masks
def __augment_batch(self, img_batch, masks_batch):
for i in range(img_batch.shape[0]):
img_batch[i, ], masks_batch[i, ] = self.__random_transform(
img_batch[i, ], masks_batch[i, ])
return img_batch, masks_batch
|
Understanding Clouds from Satellite Images
|
6,632,007 |
estimators = [('RF', dict_clf['RF']['best_clf']),
('GB', dict_clf['GB']['best_clf']),
('KNN', knn),('svc', svc),('trees', decision_tree)]
voter = VotingClassifier(estimators=estimators, voting='hard')
voter.fit(X_train, Y_train)
Y_pred = voter.predict(X_test ).astype(int )<save_to_csv>
|
class AdamAccumulate(Optimizer):
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=None, decay=0., amsgrad=False, accum_iters=8, **kwargs):
if accum_iters < 1:
raise ValueError('accum_iters must be >= 1')
super(AdamAccumulate, self ).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
self.amsgrad = amsgrad
self.accum_iters = K.variable(accum_iters, K.dtype(self.iterations))
self.accum_iters_float = K.cast(self.accum_iters, K.floatx())
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
completed_updates = K.cast(K.tf.floordiv(self.iterations, self.accum_iters), K.floatx())
if self.initial_decay > 0:
lr = lr *(1./(1.+ self.decay * completed_updates))
t = completed_updates + 1
lr_t = lr *(K.sqrt(1.- K.pow(self.beta_2, t)) /(1.- K.pow(self.beta_1, t)))
update_switch = K.equal(( self.iterations + 1)% self.accum_iters, 0)
update_switch = K.cast(update_switch, K.floatx())
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
gs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
if self.amsgrad:
vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
else:
vhats = [K.zeros(1)for _ in params]
self.weights = [self.iterations] + ms + vs + vhats
for p, g, m, v, vhat, tg in zip(params, grads, ms, vs, vhats, gs):
sum_grad = tg + g
avg_grad = sum_grad / self.accum_iters_float
m_t =(self.beta_1 * m)+(1.- self.beta_1)* avg_grad
v_t =(self.beta_2 * v)+(1.- self.beta_2)* K.square(avg_grad)
if self.amsgrad:
vhat_t = K.maximum(vhat, v_t)
p_t = p - lr_t * m_t /(K.sqrt(vhat_t)+ self.epsilon)
self.updates.append(K.update(vhat,(1 - update_switch)* vhat + update_switch * vhat_t))
else:
p_t = p - lr_t * m_t /(K.sqrt(v_t)+ self.epsilon)
self.updates.append(K.update(m,(1 - update_switch)* m + update_switch * m_t))
self.updates.append(K.update(v,(1 - update_switch)* v + update_switch * v_t))
self.updates.append(K.update(tg,(1 - update_switch)* sum_grad))
new_p = p_t
if getattr(p, 'constraint', None)is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p,(1 - update_switch)* p + update_switch * new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)) ,
'beta_1': float(K.get_value(self.beta_1)) ,
'beta_2': float(K.get_value(self.beta_2)) ,
'decay': float(K.get_value(self.decay)) ,
'epsilon': self.epsilon,
'amsgrad': self.amsgrad}
base_config = super(AdamAccumulate, self ).get_config()
return dict(list(base_config.items())+ list(config.items()))
|
Understanding Clouds from Satellite Images
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.