kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
11,129,033
X_test = X_test[cols_list]<predict_on_test>
X_train = train.iloc[:,1:].values.astype('float32') y_train = train['label'].values.astype('int32') test = test.values.astype('float32') del train
Digit Recognizer
11,129,033
y_test_predict=xgb_best.predict(X_test) y_test_final = rev_trans(y_test_predict) df_test['count']=y_test_final<save_to_csv>
X_train = X_train / 255.0 test = test / 255.0
Digit Recognizer
11,129,033
df_test[['datetime','count']].to_csv('/kaggle/working/submissionNoParams.csv', index=False )<set_options>
X_train = X_train.reshape(X_train.shape[0], 28, 28, 1) test = test.reshape(test.shape[0], 28, 28, 1 )
Digit Recognizer
11,129,033
%matplotlib inline <load_from_csv>
y_train = to_categorical(y_train) y_train
Digit Recognizer
11,129,033
train_df = pd.read_csv('.. /input/bike-sharing-demand/train.csv') test_df = pd.read_csv('.. /input/bike-sharing-demand/test.csv') <count_missing_values>
np.random.seed(2 )
Digit Recognizer
11,129,033
print(train_df.isnull().values.any() ,' ',test_df.isnull().values.any() )<create_dataframe>
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size = 0.1, random_state = 2 )
Digit Recognizer
11,129,033
test = pd.DataFrame(test_df) test<create_dataframe>
model = Sequential() model.add(Conv2D(filters = 64, kernel_size =(5,5), padding = 'Same', activation = 'relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 64, kernel_size =(5,5), padding = 'Same', activation = 'relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(Conv2D(filters = 128, kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(Conv2D(filters = 128, kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(512, activation = 'relu')) model.add(Dropout(0.2)) model.add(Dense(10, activation = 'softmax'))
Digit Recognizer
11,129,033
train = pd.DataFrame(train_df) train<feature_engineering>
model.compile(optimizer="adam", loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
11,129,033
train['datetime'] = pd.to_datetime(train['datetime'], format = '%Y-%m-%dT%H:%M:%S') train['year'] = train['datetime'].dt.year train['month'] = train['datetime'].dt.month train['day'] = train['datetime'].dt.day train['hour'] = train['datetime'].dt.hour train<drop_column>
epochs = 50 batch_size = 64
Digit Recognizer
11,129,033
train = train_df.drop('datetime' , axis=1) train<sort_values>
datagen = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
11,129,033
train[["season", "count"]].groupby(['season'], as_index=False ).sum().sort_values(by='count', ascending=False )<sort_values>
history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_test,y_test), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size )
Digit Recognizer
11,129,033
train[["holiday", "count"]].groupby(['holiday'], as_index=False ).sum().sort_values(by='count', ascending=False )<sort_values>
results = model.predict(test)
Digit Recognizer
11,129,033
train[["workingday", "count"]].groupby(['workingday'], as_index=False ).sum().sort_values(by='count', ascending=False )<feature_engineering>
output = pd.concat([pd.Series(range(1,28001), name = 'ImageId'), results], axis = 1) output
Digit Recognizer
11,129,033
<create_dataframe><EOS>
output.to_csv('submission.csv', index=False )
Digit Recognizer
11,055,227
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering>
%matplotlib inline
Digit Recognizer
11,055,227
c=[] for i in test['hour']: if i>= 6 or i<= 1 : c.append("Day") else: c.append("Night") test['DayorNight']=c test['DayorNight']=pd.factorize(test['DayorNight'])[0].reshape(-1, 1) c=[] test = test.drop('datetime' , axis =1) test<feature_engineering>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
11,055,227
c=[] for i in train['hour']: if i>= 6 or i<= 1 : c.append("Day") else: c.append("Night") train['DayorNight']=c train['DayorNight']=pd.factorize(train['DayorNight'])[0].reshape(-1, 1) c=[] train.head(2 )<drop_column>
X_train = train.iloc[:,1:].values.astype('float32') y_train = train['label'].values.astype('int32') test = test.values.astype('float32') del train
Digit Recognizer
11,055,227
x = train x =x.drop('count',axis=1) x<split>
X_train = X_train / 255.0 test = test / 255.0
Digit Recognizer
11,055,227
x_train, x_val, y_train, y_val = train_test_split(x , y, train_size=0.8, test_size=0.2, random_state = 0 )<import_modules>
y_train = to_categorical(y_train) y_train
Digit Recognizer
11,055,227
import xgboost as xgb from sklearn.model_selection import cross_val_score, KFold from sklearn.metrics import accuracy_score from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_log_error <import_modules>
np.random.seed(2 )
Digit Recognizer
11,055,227
<compute_train_metric>
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size = 0.0001, random_state = 2 )
Digit Recognizer
11,055,227
xgbr = xgb.XGBRegressor(verbosity=0) xgbr.fit(x_train, y_train) score_xgbr = xgbr.score(x_train, y_train) print("Training score: ", score_xgbr) scores_xgbr = cross_val_score(xgbr, x_train, y_train,cv=10) print("Mean cross-validation score: %.2f" % scores_xgbr.mean()) y_pred_xgbr = xgbr.predict(x_val) print('Validation score' , xgbr.score(x_val , y_val)) rmsle_xgbr = mean_squared_log_error(y_pred_xgbr ,y_val) print("RMSLE: %.2f" % rmsle_xgbr) <compute_train_metric>
model = Sequential() model.add(Conv2D(filters = 64, kernel_size =(5,5), padding = 'Same', activation = 'relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 64, kernel_size =(5,5), padding = 'Same', activation = 'relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(Conv2D(filters = 128, kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(Conv2D(filters = 128, kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(512, activation = 'relu')) model.add(Dropout(0.2)) model.add(Dense(10, activation = 'softmax'))
Digit Recognizer
11,055,227
<predict_on_test>
model.compile(optimizer="adam", loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
11,055,227
pred =np.round(np.expm1(xgbr.predict(test)) ).astype(int) pred = pd.DataFrame({"datetime": test_df["datetime"],"count": np.fix(pred)}) pred.shape<set_options>
epochs = 38 batch_size = 64
Digit Recognizer
11,055,227
plt.style.use('bmh') %matplotlib inline <load_from_csv>
datagen = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
11,055,227
train_df=pd.read_csv('.. /input/bike-sharing-demand/train.csv') test_df=pd.read_csv('.. /input/bike-sharing-demand/test.csv') display(train_df.head() )<count_duplicates>
history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_test,y_test), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size )
Digit Recognizer
11,055,227
train_df.duplicated().sum() <count_missing_values>
results = model.predict(test)
Digit Recognizer
11,055,227
print(train_df.isnull().sum()) print(test_df.isnull().sum() )<feature_engineering>
output = pd.concat([pd.Series(range(1,28001), name = 'ImageId'), results], axis = 1) output
Digit Recognizer
11,055,227
<feature_engineering><EOS>
output.to_csv('submission.csv', index=False )
Digit Recognizer
3,829,911
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<drop_column>
%matplotlib inline np.random.seed(2) sns.set(style='white', context='notebook', palette='deep' )
Digit Recognizer
3,829,911
train_df.drop(columns = ['second','Minute'],inplace = True) test_df.drop(columns = ['second','Minute'],inplace = True )<rename_columns>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv") submit = pd.read_csv(".. /input/sample_submission.csv" )
Digit Recognizer
3,829,911
train_df = train_df.set_index('datetime') test_df = test_df.set_index('datetime') test_df_ID = test_df.index train_df.head()<drop_column>
x_train = train.iloc[:,1:] y_train = train.iloc[:,0]
Digit Recognizer
3,829,911
casual_df = train_df.drop(['registered','count'],axis = 1) casual_df.head()<drop_column>
x_train=x_train/255.0 test=test/255.0
Digit Recognizer
3,829,911
registered_df = train_df.drop(['casual','count'],axis = 1) registered_df.head()<feature_engineering>
x_train = x_train.values.reshape(-1,28,28,1) test = test.values.reshape(-1,28,28,1 )
Digit Recognizer
3,829,911
registered_df['rushHours'] = registered_df['Hour'].isin([8,17,18]) <feature_engineering>
y_train=to_categorical(y_train,num_classes=10) print(x_train.shape,y_train.shape,test.shape )
Digit Recognizer
3,829,911
registered_df['registered']=np.log1p(registered_df['registered']) registered_df['windspeed']=np.log1p(registered_df['windspeed']) <feature_engineering>
num_classes = y_train.shape[1] num_pixels = x_train.shape[1]
Digit Recognizer
3,829,911
casual_df['casual']=np.log1p(casual_df['casual']) casual_df['windspeed']=np.log1p(casual_df['windspeed']) <data_type_conversions>
seed=7 x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.10, random_state=seed )
Digit Recognizer
3,829,911
registered_df['rushHours'] = pd.factorize(registered_df['rushHours'])[0].reshape(-1, 1) registered_df['weekEnd'] = pd.factorize(registered_df['weekEnd'])[0].reshape(-1, 1) casual_df['weekEnd'] = pd.factorize(casual_df['weekEnd'])[0].reshape(-1, 1) <split>
def cnn_model() : model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(3,3),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.20)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.20)) model.add(Flatten()) model.add(Dense(128, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(128, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax")) model.compile(optimizer = 'adam' , loss = "categorical_crossentropy", metrics=["accuracy"]) return model model=cnn_model()
Digit Recognizer
3,829,911
Y_registered=registered_df.registered registered_df.drop(columns=['registered','atemp'],inplace = True) X_train, X_valid, y_train, y_valid = train_test_split(registered_df,Y_registered, train_size=0.8, test_size=0.2,random_state=0 )<train_model>
datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1) datagen.fit(x_train )
Digit Recognizer
3,829,911
def get_best_model(X_train, X_valid, y_train, y_valid): estimators=[('et',ExtraTreesRegressor()),('hgr', HistGradientBoostingRegressor())] models=[RandomForestRegressor() ,AdaBoostRegressor() ,BaggingRegressor() ,SVR() ,LinearRegression() ,DecisionTreeRegressor() ,ExtraTreesRegressor() , HistGradientBoostingRegressor() ,VotingRegressor(estimators=estimators)] model_names=['RandomForestRegressor','AdaBoostRegressor','BaggingRegressor','SVR','LinearRegression','DecisionTreeRegressor','ExtraTreesRegressor',' HistGradientBoostingRegressor','VotingRegressor'] rmsle=[] d={} for model in range(len(models)) : clf=models[model] clf.fit(X_train,y_train) print("model_name : ",model_names[model]) print(clf.get_params()) test_pred=clf.predict(X_valid) rmsle.append(np.sqrt(mean_squared_log_error(abs(test_pred),(y_valid)))) d={'Modelling Algo':model_names,'RMSLE':rmsle} rmsle_frame=pd.DataFrame(d) print(f'{rmsle_frame} ______________________________________________________________________________________') sns.factorplot(y='Modelling Algo',x='RMSLE',data=rmsle_frame,kind='bar',size=5,aspect=2) plt.show() <train_model>
history = model.fit_generator(datagen.flow(x_train,y_train, batch_size=batch_size), epochs = epochs, validation_data =(x_test,y_test), verbose = 1, steps_per_epoch=x_train.shape[0], callbacks=callbacks_list )
Digit Recognizer
3,829,911
get_best_model(X_train, X_valid, y_train, y_valid )<compute_test_metric>
submit.Label =model.predict_classes(test )
Digit Recognizer
3,829,911
<train_on_grid><EOS>
submit.head() submit.to_csv('submit.csv',index=False )
Digit Recognizer
7,280,484
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test>
print("Tensorflow DL Version: " + tf.__version__) print("Setup Completed" )
Digit Recognizer
7,280,484
pred_registered = best_HistGradientAlgo_registered.predict(X_valid) print(rmsle(pred_registered,y_valid))<split>
train_file = ".. /input/digit-recognizer/train.csv" predict_file = ".. /input/digit-recognizer/test.csv" submission_file = ".. /input/digit-recognizer/sample_submission.csv" train_data = pd.read_csv(train_file, sep=',') predict_data = pd.read_csv(predict_file, sep=',') print("Files Preparation Completed" )
Digit Recognizer
7,280,484
Y_casual=casual_df.casual casual_df.drop(columns=['casual','atemp'],inplace = True) X_train, X_valid, y_train, y_valid = train_test_split(casual_df,Y_casual, train_size=0.8, test_size=0.2,random_state=0 )<train_model>
print('**************************Train File Preliminary Investigation**************************') print('1.Train File Shape:', train_data.shape) missing_val_count_by_column =(train_data.isnull().sum()) print('2.Train File Missing Valu:', missing_val_count_by_column[missing_val_count_by_column > 0]) print(" Missing Values in Train File: {}".format(train_data.isna().any().any())) print('3.Train File Variables Information:') print(train_data.info()) print('4.Train File Variables Unique Number:') print(train_data.nunique()) print(' ') print('**************************Prediction File Preliminary Investigation**************************') print('1.Test File Shape:', predict_data.shape) missing_val_count_by_column =(predict_data.isnull().sum()) print('2.Test File Missing Value:', missing_val_count_by_column[missing_val_count_by_column > 0]) print(" Missing Values in Test File: {}".format(predict_data.isna().any().any())) print('3.Test File Variables Information:') print(predict_data.info()) print('4.Test File Variables Unique Number:') print(predict_data.nunique() )
Digit Recognizer
7,280,484
get_best_model(X_train, X_valid, y_train, y_valid )<train_on_grid>
def label_conversion(data, num_classes = 10): label_array = np.array(data, dtype='uint8') label_array = to_categorical(label_array,num_classes=num_classes) return label_array def images_conversion(data, img_row = 28, imag_col = 28): image_array = np.array(data, dtype='uint8') image_array = np.reshape(image_array,(len(image_array), img_row, imag_col, 1)) image_array = image_array *(1./ 255)- 0.5 image_array = np.reshape(image_array,(len(image_array), img_row, imag_col, 1)) return image_array print("Function Established Completed" )
Digit Recognizer
7,280,484
HistGradientAlgo_casual = HistGradientBoostingRegressor() param = { 'max_iter':[i for i in range(115,118)], 'max_depth' : [i for i in range(13,18)], 'max_leaf_nodes':[25] } gridSearch_HistGradientAlgo_casual=GridSearchCV(HistGradientAlgo_casual,param,scoring=myScorer,cv=5,verbose=3) gridSearch_HistGradientAlgo_casual.fit(X_train, y_train) best_HistGradientAlgo_casual=gridSearch_HistGradientAlgo_casual.best_estimator_ bestHistGradientAlgo_testScore_casual=best_HistGradientAlgo_casual.score(X_train, y_train )<predict_on_test>
y = label_conversion(train_data[output_list[0]], num_classes = num_classes) X = images_conversion(train_data.drop(output_list[0], axis=1), img_row = img_rows, imag_col = img_cols) X_predict = images_conversion(predict_data, img_row = img_rows, imag_col = img_cols) print("Conversion Completed" )
Digit Recognizer
7,280,484
pred_casual = best_HistGradientAlgo_casual.predict(X_valid) print(rmsle(pred_casual,y_valid))<predict_on_test>
print("Training Data: {} Labels: {}".format(X, y))
Digit Recognizer
7,280,484
test_df['windspeed']=np.log1p(test_df['windspeed']) test_df['rushHours'] = test_df['Hour'].isin([8,17,18]) test_df['rushHours'] = pd.factorize(test_df['rushHours'])[0].reshape(-1, 1) test_df['weekEnd'] = pd.factorize(test_df['weekEnd'])[0].reshape(-1, 1) test_df.drop(columns=['atemp'],inplace = True) pred_casual = np.round(np.expm1(best_HistGradientAlgo_casual.predict(test_df.drop('rushHours',axis = 1)))).astype(int) pred_registered = np.round(np.expm1(best_HistGradientAlgo_registered.predict(test_df)) ).astype(int) <create_dataframe>
print("Prediction Data: {} ".format(X_predict))
Digit Recognizer
7,280,484
pred_registered = pd.DataFrame(pred_registered,columns = ['count']) pred_registered<create_dataframe>
data_aug = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) print("Data Augmentation Setting Completed" )
Digit Recognizer
7,280,484
pred_casual = pd.DataFrame(pred_casual,columns = ['count']) pred_casual<prepare_output>
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=0) print("Data Preparation Completed" )
Digit Recognizer
7,280,484
predictions = pd.DataFrame({'datetime':test_df_ID}) predictions['count'] = pred_registered['count'] + pred_casual['count']<save_to_csv>
l_model_name = 'lenet5_model' v_model_name = 'vgg_model' batch_size = 64 num_classes = 10 epoch_num = 6 dropout_rate = 0.5 oz = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=1e-4, amsgrad=False) sgd = keras.optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) print("Parameters Setting Completed" )
Digit Recognizer
7,280,484
predictions.to_csv('submission.csv', index=False) print("Your submission was successfully saved!" )<import_modules>
lenet5_model_history = lenet5_model.fit_generator(data_aug.flow(X_train, y_train, batch_size=batch_size), epochs = epoch_num, validation_data =(X_test, y_test), verbose = 2, steps_per_epoch=X_train.shape[0], callbacks=[l_tb_callback, l_lr_callback, l_ck_callback, l_best_callback]) lenet5_model.save(l_model_name+'.h5') del lenet5_model print("Training Completed!" )
Digit Recognizer
7,280,484
from IPython.display import Image<define_variables>
vgg_model_history = vgg_model.fit_generator(data_aug.flow(X_train, y_train, batch_size=batch_size), epochs = epoch_num, validation_data =(X_test, y_test), verbose = 2, steps_per_epoch=X_train.shape[0], callbacks=[v_tb_callback, v_lr_callback, v_ck_callback, v_best_callback]) vgg_model.save(v_model_name+'.h5') del vgg_model print("Training Completed!" )
Digit Recognizer
7,280,484
Image(filename=".. /input/sf-picture/sf1.jpg" )<set_options>
def best_model(histories, key='categorical_crossentropy'): ini_flag = bool(1) best_model = None best_score = 0 for name, history in histories: val_score_record = history['val_'+key] for score in val_score_record: if ini_flag: best_score = score best_model = name ini_flag = bool(0) if best_score > score: best_score = score best_model = name return best_model best_model_name = best_model([(l_model_name, lenet5_model_history.history), (v_model_name, vgg_model_history.history)]) print(best_model_name )
Digit Recognizer
7,280,484
%matplotlib inline %config InlineBackend.figure_format = 'retina' sns.set_style("white") rcParams['figure.figsize'] =(8,4) <load_from_csv>
Digit Recognizer
7,280,484
df = pd.read_csv(".. /input/sf-crime/train.csv.zip",dtype={"X":np.float32,"Y":np.float32} )<count_duplicates>
load_model = keras.models.load_model(best_model_name+'.h5') print("Check Model:") load_model.evaluate(X_test, y_test) sample_submission = pd.read_csv(submission_file) submission_id = sample_submission["ImageId"] submission = pd.DataFrame({ "ImageId": submission_id, "Label": np.argmax(load_model.predict(X_predict), axis=1) }) submission.to_csv('submission.csv', index=False) print("Submission File Produced Completed" )
Digit Recognizer
1,811,546
print(df.duplicated(keep=False ).value_counts()) df = df.drop_duplicates()<data_type_conversions>
train = pd.read_csv('.. /input/train.csv') labels = train.iloc[:,0].values.astype('int32') X_train =(train.iloc[:,1:].values ).astype('float32') X_test =(pd.read_csv('.. /input/test.csv' ).values ).astype('float32') X_train = X_train.reshape(-1,28,28,1) X_test = X_test.reshape(-1,28,28,1) y_train = tf.keras.utils.to_categorical(labels) print("Check data") print(labels) print(X_train[0].shape) print(y_train )
Digit Recognizer
1,811,546
def convert_dataframe(df): df["Dates"] = pd.to_datetime(df["Dates"],infer_datetime_format=True) df['Date'] = df['Dates'].dt.date df["Year"] = df["Dates"].dt.year.astype(np.int32) df["Month"] = df["Dates"].dt.month.astype(np.int32) df["Day"] = df["Dates"].dt.day.astype(np.int32) df["Hour"] = df["Dates"].dt.hour.astype(np.int32) df["Minute"] = df["Dates"].dt.minute.astype(np.int32) df["Day_week_numeric"] = df["Dates"].dt.dayofweek.astype(np.int32) df["Weekend"]= np.where(( df["Day_week_numeric"] >= 4)&(df["Day_week_numeric"] <=6),1,0) df["count_days"] =(df['Date'] - df['Date'].min() ).apply(lambda x: x.days) df["Block"] = df.Address.str.contains("Block" ).astype(np.int32) df = df.drop(["Date","Address"],axis=1) return df<create_dataframe>
( train_imagesRaw, train_labelsRaw),(test_imagesRaw, test_labelsRaw)= mnist.load_data()
Digit Recognizer
1,811,546
df_date = convert_dataframe(df )<categorify>
X_train_keras = train_imagesRaw.reshape(-1,28,28,1) X_test_keras = test_imagesRaw.reshape(-1,28,28,1) print("X_train_keras",X_train_keras.shape) print("X_test_keras",X_test_keras.shape) train_labels_keras = tf.keras.utils.to_categorical(train_labelsRaw) test_labels_keras = tf.keras.utils.to_categorical(test_labelsRaw) print("train_labels_keras ",train_labels_keras.shape) print("test_labels_keras ", test_labels_keras.shape )
Digit Recognizer
1,811,546
label_cat = LabelEncoder() df_date["Category_encode"] = label_cat.fit_transform(df_date.Category) label_dist = LabelEncoder() df_date["PdDistric_encode"] = label_dist.fit_transform(df_date.PdDistrict) <filter>
train_images = np.concatenate(( X_train_keras,X_train,X_test_keras), axis=0) print("new Concatenated train_images ", train_images.shape) print("_"*50) train_labels = np.concatenate(( train_labels_keras,y_train,test_labels_keras), axis=0) print("new Concatenated train_labels ", train_labels.shape )
Digit Recognizer
1,811,546
df_outliers = df_date.loc[df_date.Y < 90.].copy()<train_model>
scale = np.max(train_images) train_images /= scale X_test /= scale print("Max: {}".format(scale))
Digit Recognizer
1,811,546
X = df_outliers.drop(["Dates","Category","Descript","DayOfWeek","PdDistrict","Resolution","Category_encode"],axis=1 ).copy() y = df_outliers["Category_encode"] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.25, random_state = 21) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_val = scaler.transform(X_val) kmeans = KMeans(n_clusters=6,random_state=0 ).fit(X_train) <prepare_output>
input_size = train_images.shape n_logits = train_labels.shape[1] print("Input: {}".format(input_size)) print("Output: {}".format(n_logits))
Digit Recognizer
1,811,546
X_train_df = pd.DataFrame(X_train) X_val_df = pd.DataFrame(X_val) X_train_df["Kmean"] = kmeans.labels_ X_val_df["Kmean"] = kmeans.predict(X_val )<train_model>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) epochs = 30 batch_size = 512 X_train, X_val, Y_train, Yval = train_test_split(train_images, train_labels, train_size = 0.90) datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
1,811,546
classifier = RandomForestClassifier(n_jobs = -1,random_state =50,max_depth=10,max_features="auto",min_samples_split=4) classifier.fit(X_train_df, y_train )<predict_on_test>
model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3),padding='same', activation='relu', input_shape=input_size[1:])) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None)) model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), padding='same', activation='relu')) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Dropout(0.25)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(256, activation='relu')) model.add(tf.keras.layers.Dense(256, activation='relu')) model.add(tf.keras.layers.Dense(256, activation='relu')) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(n_logits, activation='softmax')) optimizer = tf.keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.summary()
Digit Recognizer
1,811,546
predict_proba = classifier.predict_proba(X_val_df) log_loss(y_val,predict_proba )<load_from_csv>
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Yval), verbose = 1, steps_per_epoch=X_train.shape[0] )
Digit Recognizer
1,811,546
<categorify><EOS>
predictions = model.predict_classes(X_test, verbose=0) print(predictions) pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) , "Label": predictions} ).to_csv("preds.csv", index=False, header=True)
Digit Recognizer
6,583,149
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<normalization>
!pip install keras-tuner
Digit Recognizer
6,583,149
test_data_scaler = scaler.transform(test_data_final )<predict_on_test>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') labels = train.iloc[:,0].values.astype('int32') X_train =(train.iloc[:,1:].values ).astype('float32') X_test =(pd.read_csv('.. /input/digit-recognizer/test.csv' ).values ).astype('float32') X_train = X_train.reshape(-1,28,28,1) X_test = X_test.reshape(-1,28,28,1) y_train = tf.keras.utils.to_categorical(labels) print("Check data") print(labels) print(X_train[0].shape) print(y_train )
Digit Recognizer
6,583,149
test_data_final = pd.DataFrame(test_data_scaler) test_data_final["Kmean"] = kmeans.predict(test_data_final) <predict_on_test>
( train_imagesRaw, train_labelsRaw),(test_imagesRaw, test_labelsRaw)= mnist.load_data()
Digit Recognizer
6,583,149
test_data_pred_proba = classifier.predict_proba(test_data_final) keys = label_cat.classes_ <prepare_output>
X_train_keras = train_imagesRaw.reshape(-1,28,28,1) X_test_keras = test_imagesRaw.reshape(-1,28,28,1) print("X_train_keras",X_train_keras.shape) print("X_test_keras",X_test_keras.shape) train_labels_keras = tf.keras.utils.to_categorical(train_labelsRaw) test_labels_keras = tf.keras.utils.to_categorical(test_labelsRaw) print("train_labels_keras ",train_labels_keras.shape) print("test_labels_keras ", test_labels_keras.shape )
Digit Recognizer
6,583,149
result = pd.DataFrame(data=test_data_pred_proba,columns=keys) result.head(3 )<save_to_csv>
train_images = np.concatenate(( X_train_keras,X_train,X_test_keras), axis=0) print("new Concatenated train_images ", train_images.shape) print("_"*50) train_labels = np.concatenate(( train_labels_keras,y_train,test_labels_keras), axis=0) print("new Concatenated train_labels ", train_labels.shape )
Digit Recognizer
6,583,149
result.to_csv(path_or_buf="classifier_sf.csv",index=True, index_label = 'Id' )<load_from_csv>
scale = np.max(train_images) train_images /= scale X_test /= scale print("Max: {}".format(scale))
Digit Recognizer
6,583,149
train = pd.read_csv(".. /input/titanic/train.csv", index_col='PassengerId') test = pd.read_csv('.. /input/titanic/test.csv', index_col='PassengerId') train.head(10 )<sort_values>
X_train, X_val, y_train, y_val = train_test_split(train_images, train_labels, test_size=0.10 )
Digit Recognizer
6,583,149
train.corr().abs() ['Survived'].sort_values(ascending=False )<count_missing_values>
input_size = X_train.shape n_logits = y_train.shape[1] print("Input: {}".format(input_size)) print("Output: {}".format(n_logits))
Digit Recognizer
6,583,149
print(train.isnull().sum()) print(' The observation ratio of missing Cabin values is',round(train['Cabin'].isnull().sum() /len(train),2)) print('The observation ratio of missing Age values is',round(train['Age'].isnull().sum() /len(train),2)) print(' ') print(test.isnull().sum()) print(' The observation ratio of missing Cabin values is',round(test['Cabin'].isnull().sum() /len(test),2)) print('The observation ratio of missing Age values is',round(test['Age'].isnull().sum() /len(test),2))<prepare_output>
def build_model(hp): num_layers = hp.Int('num_layers', min_value=2, max_value=16, step=2) lr = hp.Choice('learning_rate', [1e-3, 5e-4]) inputs = layers.Input(shape=(28, 28, 1)) x = inputs for idx in range(num_layers): idx = str(idx) filters = hp.Int('filters_' + idx, 32, 256, step=32, default=64) x = layers.Conv2D(filters=filters, kernel_size=3, padding='same', activation='relu' )(x) if x.shape[1] >= 8: pool_type = hp.Choice('pool_' + idx, values=['max', 'avg']) if pool_type == 'max': x = layers.MaxPooling2D(2 )(x) elif pool_type == 'avg': x = layers.AveragePooling2D(2 )(x) x = layers.Flatten()(x) x = layers.Dense(256, activation='relu' )(x) x = layers.Dense(256, activation='relu' )(x) x = layers.Dense(256, activation='relu' )(x) x = layers.Dropout(0.5 )(x) outputs = layers.Dense(n_logits, activation='softmax' )(x) model = keras.Model(inputs, outputs) model.compile(optimizer=Adam(lr), loss='categorical_crossentropy', metrics=['accuracy']) return model
Digit Recognizer
6,583,149
train_copy = train.copy() train_copy['Cabin'] = train_copy['Cabin'].apply(lambda x: 0 if pd.isnull(x)else 1 )<sort_values>
tuner = RandomSearch( build_model, objective='val_accuracy', max_trials=8, executions_per_trial=3, directory='my_dir', project_name='mnist') tuner.search_space_summary()
Digit Recognizer
6,583,149
train.corr().abs() ['Age'].sort_values(ascending=False )<train_model>
tuner.search(X_train, y_train, epochs=30, validation_data=(X_val, y_val))
Digit Recognizer
6,583,149
<prepare_output><EOS>
predictions_vector = model.predict(X_test, verbose=0) predictions = np.argmax(predictions_vector,axis=1) pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) , "Label": predictions} ).to_csv("preds.csv", index=False, header=True )
Digit Recognizer
7,204,871
<feature_engineering><EOS>
import pandas as pd
Digit Recognizer
7,204,871
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering>
import pandas as pd
Digit Recognizer
7,204,871
class feature_engineering(BaseEstimator, TransformerMixin): def __init__(self, columns=None): self.columns = columns def fit(self, X, y=None, **fit_params): return self def transform(self, X, **transform_params): X['Title'] = X.Name.str.split(',' ).str[1].str.split('.' ).str[0].str.strip() X['Title'] = X['Title'].apply(lambda x: x if x in ['Mrs', 'Master', 'Miss', 'Dr','Mr','Rev' ] else 'else') X['Family_Size'] = X['SibSp']+X['Parch'] + 1 X = X.drop(columns=['SibSp', 'Parch']) X['has_cabin'] = X['Cabin'].apply(lambda x: 0 if pd.isnull(x)else 1) return X<categorify>
true_test = pd.read_csv(".. /input/mnist-in-csv/mnist_test.csv") true_train = pd.read_csv(".. /input/mnist-in-csv/mnist_train.csv") sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") given_test = pd.read_csv(".. /input/digit-recognizer/test.csv") given_train = pd.read_csv(".. /input/digit-recognizer/train.csv" )
Digit Recognizer
7,204,871
cat_pipeline = Pipeline([ ("imputer", SimpleImputer(strategy="most_frequent")) , ("cat_encoder", OneHotEncoder()), ] )<feature_engineering>
cols = given_test.columns given_test['dataset'] = 'test' given_train['dataset'] = 'train'
Digit Recognizer
7,204,871
num_attribs = ["Age", "Fare","Family_Size"] cat_attribs = [ "Sex", "Embarked","Pclass","Title","has_cabin"] columns_trans = ColumnTransformer([ ("num", num_pipeline, num_attribs), ("cat", cat_pipeline, cat_attribs), ] )<drop_column>
given_dataset = pd.concat([given_train.drop('label', axis=1), given_test] ).reset_index() true_mnist = pd.concat([true_train, true_test] ).reset_index(drop=True) labels = true_mnist['label'].values true_mnist.drop('label', axis=1, inplace=True) true_mnist.columns = cols
Digit Recognizer
7,204,871
full_pipeline = Pipeline([ ('age_inferer', age_inferer(['Age', 'Pclass'])) , ('feature_engineering', feature_engineering()), ('ColumnTransformer', columns_trans), ] )<prepare_x_and_y>
true_idx = true_mnist.sort_values(by=list(true_mnist.columns)).index dataset_from = given_dataset.sort_values(by=list(true_mnist.columns)) ['dataset'].values original_idx = given_dataset.sort_values(by=list(true_mnist.columns)) ['index'].values
Digit Recognizer
7,204,871
y_train = train["Survived"] train = train.drop(columns=["Survived"]) x_train = full_pipeline.fit_transform(train) <prepare_x_and_y>
for i in range(len(true_idx)) : if dataset_from[i] == 'test': sample_submission.loc[original_idx[i], 'Label'] = labels[true_idx[i]]
Digit Recognizer
7,204,871
<compute_test_metric><EOS>
sample_submission.to_csv('submission.csv', index=False )
Digit Recognizer
2,217,921
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_model>
%matplotlib notebook
Digit Recognizer
2,217,921
final_classifier = SVC(probability=True) final_classifier.fit(x_train, y_train) x_test = full_pipeline.transform(test) result = final_classifier.predict(x_test) <save_to_csv>
dataRawTrain = pd.read_csv('.. /input/train.csv') dataRawTest = pd.read_csv('.. /input/test.csv') dataTrain = np.array(dataRawTrain.iloc[:,1:] ).astype('uint8') dataTrain = dataTrain.reshape(-1, 1, 28, 28) targetTrain = np.array(dataRawTrain.iloc[:,:1]) zz = np.zeros([len(targetTrain), 10]) for i, d in enumerate(targetTrain): zz[i][d.squeeze() ] = 0.66 targetTrain = zz dataTest = np.array(dataRawTest.iloc[:,:] ).astype('uint8') dataTest = dataTest.reshape(-1, 1, 28, 28) for i in range(1): plt.matshow(dataTrain[i][0], cmap='rainbow') plt.suptitle('class: {}'.format(targetTrain[i])) for i in range(1): plt.matshow(dataTest[i][0], cmap='rainbow') plt.show()
Digit Recognizer
2,217,921
submission = pd.DataFrame({'PassengerId':test.index,'Survived':result}) submission.to_csv('submissionRF_optim_param.csv',index=False )<set_options>
class NetMNIST2(nn.Module): flag = False def __init__(self): super(NetMNIST2, self ).__init__() self.conv0 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1, bias=True) self.relu0 = nn.PReLU() self.pool0 = nn.MaxPool2d(2) self.drop0 = nn.Dropout2d() self.conv1p = nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False) self.relu1p = nn.PReLU() self.drop1p = nn.Dropout2d() self.conv1 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=True) self.relu1 = nn.PReLU() self.pool1 = nn.MaxPool2d(2) self.drop1 = nn.Dropout2d() self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False) self.relu2 = nn.PReLU() self.pool2 = nn.MaxPool2d(2) self.drop2 = nn.Dropout2d() self.fc1 = nn.Linear(32 * 6 * 6, 10) self.fc1Prelu = nn.PReLU() self.fc2 = nn.Linear(10, 10) def forward(self, x): x = self.conv0(x) x = self.relu0(x) x = self.pool0(x) x = self.drop0(x) x = self.conv1p(x) x = self.relu1p(x) x = self.drop1p(x) x = self.conv1(x) x = self.relu1(x) x = self.pool1(x) x = self.drop1(x) x = self.conv2(x) x = self.relu2(x) x = self.pool2(x) x = self.drop2(x) x = x.view(-1, 128*3*3) x = self.fc1(x) x = self.fc1Prelu(x) x = torch.nn.functional.dropout(x) x = self.fc2(x) x = F.softmax(x, dim=1) return x
Digit Recognizer
2,217,921
%matplotlib inline style = "<style>svg{width: 70% !important; height: 60% !important;} </style>" HTML(style )<load_from_csv>
use_cuda = True device = torch.device("cuda" if use_cuda else "cpu") net = NetMNIST2().to(device) print(net) optimizer = optim.Adam(net.parameters() , lr=1e-4, weight_decay=1e-5) criterion = F.mse_loss def trainEpoch(e): net.train() for i,(data, target)in enumerate(loaderTrain): dataCUDA, targetCUDA = Variable(data ).to(device), Variable(target.float() ).to(device) optimizer.zero_grad() outModel = net(dataCUDA) loss = F.mse_loss(outModel, targetCUDA) loss.backward() optimizer.step() return loss def testLoss() : net.eval() fit = 0.0 for i,(data, target)in enumerate(loaderTest): dataCUDA, targetCUDA = Variable(data ).to(device), Variable(target.float() ).to(device) outModel = net(dataCUDA) pred = outModel.data.max(1)[1] targetMaxIndex = targetCUDA.data.max(1)[1] fit += pred.eq(targetMaxIndex ).cpu().sum() acc = float(fit.cpu())/ float(len(loaderTest.dataset)) return acc lossProgress = [] for e in range(5): lossTrain = trainEpoch(e) accTest = testLoss() lossProgress.append(accTest) print('Test epoch: {} acc: {}'.format(e, accTest)) print('Train epoch: {} loss: {}'.format(e, lossTrain)) plt.plot(lossProgress)
Digit Recognizer
2,217,921
<count_missing_values><EOS>
packSize = 10 inputLen = dataTestT.size(0) indexInput = np.arange(1, inputLen + 1) result = np.zeros([inputLen],dtype=int) print(inputLen / packSize) for i in range(int(inputLen / packSize)) : dataCUDA = Variable(dataTestT[i * packSize:i*packSize+packSize].cuda()) outModel = net(dataCUDA) result[i * packSize:i*packSize+packSize] = outModel.data.max(1)[1].cpu().numpy().squeeze() result=pd.DataFrame({'ImageId':indexInput, 'Label':result}) result.to_csv("submission.csv",index=False)
Digit Recognizer
8,959,201
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<prepare_x_and_y>
plt.style.use('ggplot')
Digit Recognizer
8,959,201
train_X = titanic_data.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis = 1) test_X = titanic_data_test.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis = 1) train_y = titanic_data.Survived<data_type_conversions>
train_df = pd.read_csv(".. /input/digit-recognizer/train.csv") test_df = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
8,959,201
train_X = train_X.fillna({'Age': train_X.Age.median() , 'Fare': train_X.Fare.median() }) test_X = test_X.fillna({'Age': test_X.Age.median() , 'Fare': test_X.Fare.median() } )<categorify>
X =(train_df.iloc[:,1:].values ).astype('float32') Y = train_df.iloc[:,0].values.astype('int32') test = test_df.values.astype('float32' )
Digit Recognizer
8,959,201
train_X = pd.get_dummies(train_X) test_X = pd.get_dummies(test_X )<count_missing_values>
X = X.reshape(X.shape[0], 28, 28, 1) Y = to_categorical(Y) test = test.reshape(test.shape[0], 28, 28, 1 )
Digit Recognizer
8,959,201
test_X.isnull().sum()<choose_model_class>
X = X.astype("float32")/ 255 test = test.astype("float32")/ 255
Digit Recognizer
8,959,201
clf_rf = RandomForestClassifier(n_jobs=-1, criterion='entropy', min_samples_split=2, min_samples_leaf=1) parameters = {'n_estimators': range(3,40), 'max_depth': range(1,10)} grid_search_cv_clf = GridSearchCV(clf_rf, parameters, cv = 5 )<train_on_grid>
X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size = 0.1, random_state=0 )
Digit Recognizer
8,959,201
grid_search_cv_clf.fit(train_X,train_y )<find_best_params>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
8,959,201
best_clf = grid_search_cv_clf.best_estimator_ grid_search_cv_clf.best_params_<compute_test_metric>
model = Sequential() model.add(Conv2D(32, kernel_size = 4, activation="relu", input_shape=(28,28,1))) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size = 3, activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size = 2, activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation="relu")) model.add(Dropout(0.25)) model.add(Dense(10, activation='softmax')) model.compile(loss="mean_squared_error", optimizer="rmsprop", metrics=['accuracy']) model.summary()
Digit Recognizer