kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
6,485,130
test_data = pd.read_csv("/kaggle/input/titanic/test.csv") test_data.head()<define_variables>
learn = cnn_learner(data, base_arch = models.resnet34, metrics = accuracy,model_dir="/tmp/models", callback_fns=ShowGraph)
Digit Recognizer
6,485,130
women = train_data.loc[train_data.Sex == 'female']["Survived"] rate_women = sum(women)/len(women) print("% of women who survived:", rate_women )<define_variables>
doc(fit_one_cycle )
Digit Recognizer
6,485,130
men = train_data.loc[train_data.Sex == 'male']["Survived"] rate_men = sum(men)/len(men) print("% of men who survived:", rate_men )<count_missing_values>
learn.fit_one_cycle(3 )
Digit Recognizer
6,485,130
for column in train_data.columns: print("%-15s%3d" %(column, pd.isnull(train_data[column] ).sum()))<count_missing_values>
learn.save('model1' )
Digit Recognizer
6,485,130
for column in test_data.columns: print("%-15s%3d" %(column, pd.isnull(test_data[column] ).sum()))<count_duplicates>
learn.load('model1' )
Digit Recognizer
6,485,130
print(train_data.drop_duplicates().groupby('Embarked')['PassengerId'].count() )<feature_engineering>
learn.lr_find()
Digit Recognizer
6,485,130
train_data['Embarked'] = train_data['Embarked'].fillna("S" )<feature_engineering>
learn.fit_one_cycle(30 , slice(1e-3, 1e-2))
Digit Recognizer
6,485,130
test_data['Fare'] = test_data['Fare'].fillna(0 )<feature_engineering>
interp = ClassificationInterpretation.from_learner(learn )
Digit Recognizer
6,485,130
train_data['TicketLength'] = train_data['Ticket'].apply(lambda x: len(x))<feature_engineering>
class_score , y = learn.get_preds(DatasetType.Test )
Digit Recognizer
6,485,130
test_data['TicketLength'] = test_data['Ticket'].apply(lambda x: len(x))<save_to_csv>
probabilities = class_score[0].tolist() [f"{index}: {probabilities[index]}" for index in range(len(probabilities)) ]
Digit Recognizer
6,485,130
y = train_data["Survived"] features = ["Pclass", "Sex", "SibSp", "Parch", "Fare", "Embarked", "TicketLength"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1) model.fit(X, y) predictions = model.predict(X_test) output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('submission.csv', index=False) print("Your submission was successfully saved!" )<import_modules>
class_score = np.argmax(class_score, axis=1 )
Digit Recognizer
6,485,130
import random import html import pandas as pd import numpy as np import matplotlib.pyplot as plt from tqdm.notebook import tqdm import tensorflow as tf import tensorflow.keras.backend as K import os from scipy.stats import spearmanr from scipy.optimize import minimize from transformers import * from tensorflow.keras.layers import Flatten, Dense, Dropout, GlobalAveragePooling1D from tensorflow.keras.models import Model from sklearn.model_selection import KFold from scipy.stats import spearmanr<set_options>
ImageId = [os.path.splitext(path)[0] for path in os.listdir(TEST)] ImageId = [int(path)for path in ImageId] ImageId = [ID+1 for ID in ImageId]
Digit Recognizer
6,485,130
<set_options><EOS>
submission = pd.DataFrame({ "ImageId": ImageId, "Label": class_score }) submission.to_csv("submission.csv", index=False) display(submission.head(3)) display(submission.tail(3))
Digit Recognizer
9,904,099
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering>
import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, BatchNormalization from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tensorflow.keras.utils import to_categorical from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split
Digit Recognizer
9,904,099
seed = 13 random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) tf.random.set_seed(seed )<load_from_csv>
df_train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') df_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
9,904,099
def get_data() : print('getting test and train data...') path = '.. /input/google-quest-challenge/' train = pd.read_csv(path+'train.csv') test = pd.read_csv(path+'test.csv') submission = pd.read_csv(path+'sample_submission.csv') y = train[train.columns[11:]] X = train[['question_title', 'question_body', 'answer']] X_test = test[['question_title', 'question_body', 'answer']] X.question_body = X.question_body.apply(html.unescape) X.question_title = X.question_title.apply(html.unescape) X.answer = X.answer.apply(html.unescape) X_test.question_body = X_test.question_body.apply(html.unescape) X_test.question_title = X_test.question_title.apply(html.unescape) X_test.answer = X_test.answer.apply(html.unescape) return X, X_test, y, train, test<load_pretrained>
X_train = df_train.drop('label', axis=1 ).values y_train = df_train['label'].values.reshape(-1,1) X_test = df_test.values
Digit Recognizer
9,904,099
def get_tokenizer(model_name): print(f'getting tokenizer for {model_name}...') if model_name == 'xlnet-base-cased': tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased') elif model_name == 'roberta-base': tokenizer = RobertaTokenizer.from_pretrained('roberta-base') elif model_name == 'bert-base-uncased': tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') return tokenizer<categorify>
X_train = X_train.astype('float32')/255.0 X_test = X_test.astype('float32')/255.0
Digit Recognizer
9,904,099
def fix_length(tokens, max_sequence_length=512, q_max_len=254, a_max_len=254, model_type='questions'): if model_type == 'questions': length = len(tokens) if length > max_sequence_length: tokens = tokens[:max_sequence_length-1] return tokens else: question_tokens, answer_tokens = tokens q_len = len(question_tokens) a_len = len(answer_tokens) if q_len + a_len + 3 > max_sequence_length: if a_max_len <= a_len and q_max_len <= q_len: q_new_len_head = q_max_len//2 question_tokens = question_tokens[:q_new_len_head] + question_tokens[-q_new_len_head:] a_new_len_head = a_max_len//2 answer_tokens = answer_tokens[:a_new_len_head] + answer_tokens[-a_new_len_head:] elif q_len <= a_len and q_len < q_max_len: a_max_len = a_max_len +(q_max_len - q_len - 1) a_new_len_head = a_max_len//2 answer_tokens = answer_tokens[:a_new_len_head] + answer_tokens[-a_new_len_head:] elif a_len < q_len: q_max_len = q_max_len +(a_max_len - a_len - 1) q_new_len_head = q_max_len//2 question_tokens = question_tokens[:q_new_len_head] + question_tokens[-q_new_len_head:] return question_tokens, answer_tokens<categorify>
X_train = X_train.reshape(-1,28,28,1) X_test = X_test.reshape(-1,28,28,1) y_train = to_categorical(y_train) target_count = y_train.shape[1]
Digit Recognizer
9,904,099
def transformer_inputs(title, question, answer, tokenizer, model_type='questions', MAX_SEQUENCE_LENGTH = 512): if model_type == 'questions': question = f"{title} [SEP] {question}" question_tokens = tokenizer.tokenize(question) question_tokens = fix_length(question_tokens, model_type=model_type) ids_q = tokenizer.convert_tokens_to_ids(["[CLS]"] + question_tokens) padded_ids =(ids_q + [tokenizer.pad_token_id] *(MAX_SEQUENCE_LENGTH - len(ids_q)))[:MAX_SEQUENCE_LENGTH] token_type_ids =([0] * MAX_SEQUENCE_LENGTH)[:MAX_SEQUENCE_LENGTH] attention_mask =([1] * len(ids_q)+ [0] *(MAX_SEQUENCE_LENGTH - len(ids_q)))[:MAX_SEQUENCE_LENGTH] return padded_ids, token_type_ids, attention_mask else: question = f"{title} [SEP] {question}" question_tokens = tokenizer.tokenize(question) answer_tokens = tokenizer.tokenize(answer) question_tokens, answer_tokens = fix_length(tokens=(question_tokens, answer_tokens), model_type=model_type) ids = tokenizer.convert_tokens_to_ids(["[CLS]"] + question_tokens + ["[SEP]"] + answer_tokens + ["[SEP]"]) padded_ids = ids + [tokenizer.pad_token_id] *(MAX_SEQUENCE_LENGTH - len(ids)) token_type_ids = [0] *(1 + len(question_tokens)+ 1)+ [1] *(len(answer_tokens)+ 1)+ [0] *(MAX_SEQUENCE_LENGTH - len(ids)) attention_mask = [1] * len(ids)+ [0] *(MAX_SEQUENCE_LENGTH - len(ids)) return padded_ids, token_type_ids, attention_mask<categorify>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
9,904,099
def input_data(df, tokenizer, model_type='questions'): print(f'generating {model_type} input for transformer...') input_ids, input_token_type_ids, input_attention_masks = [], [], [] for title, body, answer in tqdm(zip(df["question_title"].values, df["question_body"].values, df["answer"].values)) : ids, type_ids, mask = transformer_inputs(title, body, answer, tokenizer, model_type=model_type) input_ids.append(ids) input_token_type_ids.append(type_ids) input_attention_masks.append(mask) return( np.asarray(input_ids, dtype=np.int32), np.asarray(input_attention_masks, dtype=np.int32), np.asarray(input_token_type_ids, dtype=np.int32))<load_pretrained>
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42 )
Digit Recognizer
9,904,099
def get_model(name): if name == 'xlnet-base-cased': config = XLNetConfig.from_pretrained('xlnet-base-cased', output_hidden_states=True) model = TFXLNetModel.from_pretrained('xlnet-base-cased', config=config) elif name == 'roberta-base': config = RobertaConfig.from_pretrained('roberta-base', output_hidden_states=True) model = TFRobertaModel.from_pretrained('roberta-base', config=config) elif name == 'bert-base-uncased': config = BertConfig.from_pretrained('bert-base-uncased', output_hidden_states=True) model = TFBertModel.from_pretrained('bert-base-uncased', config=config) return model<choose_model_class>
model = Sequential() model.add(Conv2D(filters=64, kernel_size=(3,3), padding='valid', activation='relu', input_shape=(28, 28, 1))) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(BatchNormalization()) model.add(Dense(target_count, activation='softmax')) optimizer = RMSprop(learning_rate=0.001,rho=0.99) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, verbose=1,patience=2, min_lr=0.00000001) callback = EarlyStopping(monitor='loss', patience=5) history = model.fit(datagen.flow(X_train,y_train, batch_size=64), epochs = 50, validation_data=(X_val, y_val), verbose = 1, callbacks=[reduce_lr, callback] )
Digit Recognizer
9,904,099
def create_model(name='xlnet-base-cased', model_type='questions'): print(f'creating model {name}...') K.clear_session() max_seq_length = 512 input_tokens = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_tokens") input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_mask") input_segment = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_segment") model = get_model(name) if(name == 'xlnet-base-cased'): sequence_output, hidden_states = model([input_tokens, input_mask]) elif(name=='roberta-base' and model_type!='questions'): sequence_output, pooler_output, hidden_states = model([input_tokens, input_mask]) else: sequence_output, pooler_output, hidden_states = model([input_tokens, input_mask, input_segment]) h12 = tf.reshape(hidden_states[-1][:,0],(-1,1,768)) h11 = tf.reshape(hidden_states[-2][:,0],(-1,1,768)) h10 = tf.reshape(hidden_states[-3][:,0],(-1,1,768)) h09 = tf.reshape(hidden_states[-4][:,0],(-1,1,768)) concat_hidden = tf.keras.layers.Concatenate(axis=2 )([h12, h11, h10, h09]) x = GlobalAveragePooling1D()(concat_hidden) x = Dropout(0.2 )(x) if model_type == 'answers': output = Dense(9, activation='sigmoid' )(x) elif model_type == 'questions': output = Dense(21, activation='sigmoid' )(x) else: output = Dense(30, activation='sigmoid' )(x) if(name == 'xlnet-base-cased')or(name=='roberta-base' and model_type!='questions'): model = Model(inputs=[input_tokens, input_mask], outputs=output) else: model = Model(inputs=[input_tokens, input_mask, input_segment], outputs=output) return model<categorify>
y_val_m = y_val.argmax(axis=1) y_val_hat_prob = model.predict(X_val) y_val_hat = y_val_hat_prob.argmax(axis=1) X_val_inc = X_val[y_val_m != y_val_hat, :, :, :] y_val_inc = y_val_m[y_val_m != y_val_hat] y_val_hat_inc = y_val_hat[y_val_m != y_val_hat] y_val_hat_prob_inc = y_val_hat_prob[y_val_m != y_val_hat]
Digit Recognizer
9,904,099
class data_generator: def __init__(self, X, X_test, tokenizer, type_): tokens, masks, segments = input_data(X_test, tokenizer, type_) self.test_data = {'input_tokens': tokens, 'input_mask': masks, 'input_segment': segments} self.tokens, self.masks, self.segments = input_data(X, tokenizer, type_) def generate_data(tr, cv, name='xlnet-base-cased', model_type='questions'): if name!='xlnet-base-cased': train_data = {'input_tokens': self.tokens[tr], 'input_mask': self.masks[tr], 'input_segment': self.segments[tr]} cv_data = {'input_tokens': self.tokens[cv], 'input_mask': self.masks[cv], 'input_segment': self.segments[cv]} else: train_data = {'input_tokens': self.tokens[tr], 'input_mask': self.masks[tr]} cv_data = {'input_tokens': self.tokens[cv], 'input_mask': self.masks[cv]} if model_type=='questions': y_tr = y.values[tr, 21:] y_cv = y.values[cv, 21:] elif model_type=='answers': y_tr = y.values[tr, 21:] y_cv = y.values[cv, 21:] else: y_tr = y.values[tr] y_cv = y.values[cv] return train_data, cv_data, y_tr, y_cv<categorify>
for i in range(0,10): act = y_val_inc[i] pred = y_val_hat_inc[i] print('Actual: {}; Confidence(act/pred): \t{} - {:.0f}% \t{} - {:.0f}%'.format(act, act, y_val_hat_prob_inc[i][act]*100, pred, y_val_hat_prob_inc[i][pred]*100))
Digit Recognizer
9,904,099
def optimize_ranks(preds, unique_labels): print(f'optimizing the predicted values...') new_preds = np.zeros(preds.shape) for i in range(preds.shape[1]): interpolate_bins = np.digitize(preds[:, i], bins=unique_labels, right=False) if len(np.unique(interpolate_bins)) == 1: new_preds[:, i] = preds[:, i] else: new_preds[:, i] = unique_labels[interpolate_bins] return new_preds<count_unique_values>
y_test_hat = model.predict(X_test ).argmax(axis=1) df_submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') df_submission['Label'] = y_test_hat.astype('int32') df_submission.to_csv('Submission.csv', index=False) print('Submission saved!' )
Digit Recognizer
9,904,099
def get_exp_labels(train): X = train.iloc[:, 11:] unique_labels = np.unique(X.values) denominator = 60 q = np.arange(0, 101, 100 / denominator) exp_labels = np.percentile(unique_labels, q) return exp_labels<compute_test_metric>
import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout, BatchNormalization from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tensorflow.keras.utils import to_categorical from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split
Digit Recognizer
9,904,099
def compute_spearmanr_ignore_nan(trues, preds): rhos = [] for tcol, pcol in zip(np.transpose(trues), np.transpose(preds)) : rhos.append(spearmanr(tcol, pcol ).correlation) return np.nanmean(rhos )<compute_test_metric>
df_train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') df_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
9,904,099
def rhos(y, y_pred): return tf.py_function(compute_spearmanr_ignore_nan,(y, y_pred), tf.double )<train_model>
X_train = df_train.drop('label', axis=1 ).values y_train = df_train['label'].values.reshape(-1,1) X_test = df_test.values
Digit Recognizer
9,904,099
def fit_model(model, model_name, model_type, data_gen, file_path, train, use_saved_weights=True): path = '.. /input/google-qna-predicted-data/' if use_saved_weights: print(f'getting saved weights for {model_name}...') model.load_weights(path+file_path) else: print(f'fitting data on {model_name}...') optimizer = tf.keras.optimizers.Adam(learning_rate=0.00002) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=[rhos]) kf = KFold(n_splits=5, random_state=42) for tr, cv in kf.split(np.arange(train.shape[0])) : tr_data, cv_data, y_tr, y_cv = data_gen.generate_data(tr, cv, model_name, model_type) model.fit(tr_data, y_tr, epochs=1, batch_size=4, validation_data=(cv_data, y_cv)) model.save_weights(file_path) return model<concatenate>
X_train = X_train.astype('float32')/255.0 X_test = X_test.astype('float32')/255.0
Digit Recognizer
9,904,099
def get_weighted_avg(model_predictions): xlnet_q, xlnet_a, roberta_q, roberta_a, roberta_qa, bert_q, bert_a, bert_qa = model_predictions xlnet_concat = np.concatenate(( xlnet_q, xlnet_a), axis=1) bert_concat = np.concatenate(( bert_q, bert_a), axis=1) roberta_concat = np.concatenate(( roberta_q, roberta_a), axis=1) predict =(roberta_qa + bert_qa + xlnet_concat + bert_concat + roberta_concat)/5 return predict<define_variables>
X_train = X_train.reshape(-1,28,28,1) X_test = X_test.reshape(-1,28,28,1) y_train = to_categorical(y_train) target_count = y_train.shape[1]
Digit Recognizer
9,904,099
def get_predictions(predictions_present=True, model_saved_weights_present=True): msw = model_saved_weights_present X, X_test, y, train, test = get_data() path = '.. /input/google-qna-predicted-data/' model_names = ['xlnet-base-cased', 'roberta-base', 'bert-base-uncased'] model_types = ['questions', 'answers', 'questions_answers'] saved_weights_names = ['xlnet_q.h5', 'xlnet_a.h5', 'roberta_q.h5', 'roberta_a.h5', 'roberta_qa.h5', 'bert_q.h5', 'bert_a.h5', 'bert_qa.h5'] saved_model_predictions = [path+'xlnet_q.csv', path+'xlnet_a.csv', path+'roberta_q.csv', path+'roberta_a.csv', path+'roberta_qa.csv', path+'bert_q.csv', path+'bert_a.csv', path+'bert_qa.csv'] model_predictions = [] if predictions_present: model_predictions = [pd.read_csv(file_name ).values for file_name in saved_model_predictions] else: i = 0 for name_ in model_names: for type_ in model_types: if name_ == 'xlnet-base-cased' and type_ == 'questions_answers': continue print('-'*100) model = create_model(name_, type_) tokenizer = get_tokenizer(name_) data_gen = data_generator(X, X_test, tokenizer, type_) model = fit_model(model, name_, type_, data_gen, saved_weights_names[i], train, msw) print(f'getting target predictions from {name_}...') model_predictions.append(model.predict(data_gen.test_data)) i+=1 predicted_labels = get_weighted_avg(model_predictions) exp_labels = get_exp_labels(train) optimized_predicted_labels = optimize_ranks(predicted_labels, exp_labels) df = pd.concat([test['qa_id'], pd.DataFrame(optimized_predicted_labels, columns=train.columns[11:])], axis=1) print('done...!') return df<save_to_csv>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
9,904,099
submission = get_predictions(predictions_present=True) <save_to_csv>
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42 )
Digit Recognizer
9,904,099
submission = pd.read_csv('.. /input/google-qna-predicted-data/output.csv') sample_submission = pd.read_csv('.. /input/google-quest-challenge/sample_submission.csv') sample_submission = pd.read_csv('.. /input/google-quest-challenge/sample_submission.csv') id_in_sub = set(submission.qa_id) id_in_sample_submission = set(sample_submission.qa_id) diff = id_in_sample_submission - id_in_sub sample_submission = pd.concat([submission, sample_submission[sample_submission.qa_id.isin(diff)]] ).reset_index(drop=True) sample_submission.to_csv("submission.csv", index=False )<set_options>
model = Sequential() model.add(Conv2D(filters=64, kernel_size=(3,3), padding='valid', activation='relu', input_shape=(28, 28, 1))) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3,3), padding='valid', activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(BatchNormalization()) model.add(Dense(target_count, activation='softmax')) optimizer = RMSprop(learning_rate=0.001,rho=0.99) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.3, verbose=1,patience=2, min_lr=0.00000001) callback = EarlyStopping(monitor='loss', patience=5) history = model.fit(datagen.flow(X_train,y_train, batch_size=64), epochs = 50, validation_data=(X_val, y_val), verbose = 1, callbacks=[reduce_lr, callback] )
Digit Recognizer
9,904,099
%matplotlib inline <load_from_csv>
y_val_m = y_val.argmax(axis=1) y_val_hat_prob = model.predict(X_val) y_val_hat = y_val_hat_prob.argmax(axis=1) X_val_inc = X_val[y_val_m != y_val_hat, :, :, :] y_val_inc = y_val_m[y_val_m != y_val_hat] y_val_hat_inc = y_val_hat[y_val_m != y_val_hat] y_val_hat_prob_inc = y_val_hat_prob[y_val_m != y_val_hat]
Digit Recognizer
9,904,099
train_df = pd.read_csv(".. /input/GiveMeSomeCredit/cs-training.csv") test_df = pd.read_csv(".. /input/GiveMeSomeCredit/cs-test.csv") combine = [train_df, test_df]<create_dataframe>
for i in range(0,10): act = y_val_inc[i] pred = y_val_hat_inc[i] print('Actual: {}; Confidence(act/pred): \t{} - {:.0f}% \t{} - {:.0f}%'.format(act, act, y_val_hat_prob_inc[i][act]*100, pred, y_val_hat_prob_inc[i][pred]*100))
Digit Recognizer
9,904,099
<count_missing_values><EOS>
y_test_hat = model.predict(X_test ).argmax(axis=1) df_submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') df_submission['Label'] = y_test_hat.astype('int32') df_submission.to_csv('Submission.csv', index=False) print('Submission saved!' )
Digit Recognizer
9,782,103
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_variables>
%matplotlib inline for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
Digit Recognizer
9,782,103
def detect_outliers(df,n,features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col], 25) Q3 = np.percentile(df[col],75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outlier_list_col = df[(df[col] < Q1 - outlier_step)|(df[col] > Q3 + outlier_step)].index outlier_indices.extend(outlier_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list(k for k, v in outlier_indices.items() if v > n) return multiple_outliers<define_variables>
ds_train = pd.read_csv('.. /input/digit-recognizer/train.csv') ds_test = pd.read_csv('.. /input/digit-recognizer/test.csv')
Digit Recognizer
9,782,103
Outliers_to_drop = detect_outliers(train_df,3,train_df.columns.values[2:]) print("异常值:",round(len(Outliers_to_drop)/train_df.shape[0]*100,2),"%") train_df.loc[Outliers_to_drop]<count_duplicates>
val_size = 0.1 X_all = ds_train.loc[:, ds_train.columns != 'label'].to_numpy() y_all = ds_train['label'].to_numpy() test = ds_test.to_numpy()
Digit Recognizer
9,782,103
train_df.duplicated().value_counts()<filter>
X_all = X_all / 255.0 X_all = X_all.reshape(-1,28,28,1) test = test / 255.0 test = test.reshape(-1,28,28,1) y_all = to_categorical(y_all, num_classes = 10) X_train, X_val, y_train, y_val = model_selection.train_test_split(X_all, y_all, test_size=val_size, random_state=1 )
Digit Recognizer
9,782,103
len(train_df.loc[train_df['age'] == 0] )<define_variables>
optimizer = RMSprop(lr=0.001, rho=0.9, decay=0.0 )
Digit Recognizer
9,782,103
late_pay_cols = ['NumberOfTime30-59DaysPastDueNotWorse','NumberOfTimes90DaysLate','NumberOfTime60-89DaysPastDueNotWorse']<count_values>
def get_simple_model() : model = Sequential() model.add(Flatten(input_shape=(28,28,1))) model.add(Dense(64, activation = 'sigmoid')) model.add(Dropout(0.2)) model.add(Dense(24, activation = 'sigmoid')) model.add(Dropout(0.2)) model.add(Dense(10, activation = 'softmax')) model.compile(optimizer = optimizer, loss = "categorical_crossentropy", metrics=["accuracy"]) return model
Digit Recognizer
9,782,103
train_df["NumberOfTime30-59DaysPastDueNotWorse"].value_counts().sort_index()<count_values>
def get_cnn_model() : model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax")) model.compile(optimizer = optimizer, loss = "categorical_crossentropy", metrics=["accuracy"]) return model
Digit Recognizer
9,782,103
train_df["NumberOfTimes90DaysLate"].value_counts().sort_index()<count_values>
def test_submission(model): results = model.predict(test) results = np.argmax(results, axis=1) results = pd.Series(results, name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
9,782,103
train_df["NumberOfTime60-89DaysPastDueNotWorse"].value_counts().sort_index()<feature_engineering>
cnn_model_2, _ = train_model(get_cnn_model() , epochs = 30) test_submission(cnn_model_2 )
Digit Recognizer
9,041,790
distinct_triples_counts = dict() for arr in train_df.loc[train_df["NumberOfTimes90DaysLate"] > 17][late_pay_cols].values: triple = ",".join(list(map(str, arr))) if triple not in distinct_triples_counts: distinct_triples_counts[triple] = 0 else: distinct_triples_counts[triple] += 1 distinct_triples_counts<count_values>
from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.utils import np_utils
Digit Recognizer
9,041,790
train_df.loc[train_df["DebtRatio"] > train_df["DebtRatio"].quantile(0.975)]['MonthlyIncome'].value_counts()<filter>
( X_train, y_train),(X_test, y_test)= mnist.load_data()
Digit Recognizer
9,041,790
len(train_df[(train_df["DebtRatio"] > train_df["DebtRatio"].quantile(0.9)) &(train_df['SeriousDlqin2yrs'] == train_df['MonthlyIncome'])] )<count_values>
num_pixels = X_train.shape[1] * X_train.shape[2] X_train = X_train.reshape(( X_train.shape[0], num_pixels)).astype('float32') X_test = X_test.reshape(( X_test.shape[0], num_pixels)).astype('float32' )
Digit Recognizer
9,041,790
train_df["NumberRealEstateLoansOrLines"].value_counts()<count_values>
X_train = X_train / 255 X_test = X_test / 255
Digit Recognizer
9,041,790
train_df["NumberOfDependents"].value_counts()<rename_columns>
y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1]
Digit Recognizer
9,041,790
for df in combine: df.rename(columns={'Unnamed: 0':'ID'}, inplace=True )<data_type_conversions>
def baseline_model() : model = Sequential() model.add(Dense(num_pixels, input_dim=num_pixels, kernel_initializer='normal', activation='relu')) model.add(Dense(num_classes, kernel_initializer='normal', activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
Digit Recognizer
9,041,790
for df in combine: df['NumberOfDependents'].fillna(0, inplace=True )<prepare_x_and_y>
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2) scores = model.evaluate(X_test, y_test, verbose=0) print("Baseline Error: %.2f%%" %(100-scores[1]*100))
Digit Recognizer
9,041,790
def randomforest_filled_func(df): train = df[df.MonthlyIncome.notnull() ] test = df[df.MonthlyIncome.isnull() ] train_x = train.iloc[:,2:].drop('MonthlyIncome',axis=1) train_y = train['MonthlyIncome'] test_x = test.iloc[:,2:].drop('MonthlyIncome',axis=1) rfr = RandomForestRegressor(random_state=2021, n_estimators=200,max_depth=3,n_jobs=-1) rfr.fit(train_x, train_y) predicted = rfr.predict(test_x ).round(0) print(predicted) df.loc[(df.MonthlyIncome.isnull()), 'MonthlyIncome'] = predicted return df<statistical_test>
( X_train, y_train),(X_test, y_test)= mnist.load_data() X_train = X_train.reshape(( X_train.shape[0], 28, 28, 1)).astype('float32') X_test = X_test.reshape(( X_test.shape[0], 28, 28, 1)).astype('float32') X_train = X_train / 255 X_test = X_test / 255 y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] def baseline_model() : model = Sequential() model.add(Conv2D(32,(5, 5), input_shape=(28, 28, 1), activation='relu')) model.add(MaxPooling2D()) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model model_simple = baseline_model() model_simple.summary()
Digit Recognizer
9,041,790
for df in combine: df = randomforest_filled_func(df )<filter>
model_simple.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200) scores = model_simple.evaluate(X_test, y_test, verbose=1) print("CNN Error: %.2f%%" %(100-scores[1]*100))
Digit Recognizer
9,041,790
train_df = train_df[train_df['age'] > 0]<filter>
( X_train, y_train),(X_test, y_test)= mnist.load_data() X_train = X_train.reshape(( X_train.shape[0], 28, 28, 1)).astype('float32') X_test = X_test.reshape(( X_test.shape[0], 28, 28, 1)).astype('float32') X_train = X_train / 255 X_test = X_test / 255 y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] def large_model() : model = Sequential() model.add(Conv2D(30,(5, 5), input_shape=(28, 28, 1), activation='relu')) model.add(MaxPooling2D()) model.add(Conv2D(15,(3, 3), activation='relu')) model.add(MaxPooling2D()) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(50, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model model_large = large_model() model_large.summary()
Digit Recognizer
9,041,790
train_df = train_df[train_df['RevolvingUtilizationOfUnsecuredLines'] < 13]<filter>
model_large.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200) scores = model_large.evaluate(X_test, y_test, verbose=1) print("Large CNN Error: %.2f%%" %(100-scores[1]*100))
Digit Recognizer
9,041,790
train_df = train_df[train_df['NumberOfTimes90DaysLate'] <= 17]<filter>
( X_train, y_train),(X_test, y_test)= mnist.load_data() X_train = X_train.reshape(( X_train.shape[0], 28, 28, 1)).astype('float32') X_test = X_test.reshape(( X_test.shape[0], 28, 28, 1)).astype('float32') X_train = X_train / 255 X_test = X_test / 255 y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] def larger_model() : model = Sequential() model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu', input_shape=(28,28,1))) model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu')) model.add(Conv2D(filters=128, kernel_size=3, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.1)) model.add(Conv2D(filters=128, kernel_size=3, padding='same', activation='relu')) model.add(Conv2D(filters=192, kernel_size=3, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.1)) model.add(Conv2D(filters=192, kernel_size=5, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2, padding='same')) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model model_larger = larger_model() model_larger.summary()
Digit Recognizer
9,041,790
train_df = train_df.loc[train_df["DebtRatio"] <= train_df["DebtRatio"].quantile(0.975)]<count_duplicates>
model_larger.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=100) scores = model_larger.evaluate(X_test, y_test, verbose=1) print("Larger CNN Error: %.2f%%" %(100-scores[1]*100))
Digit Recognizer
9,041,790
train_df.duplicated().value_counts()<remove_duplicates>
X_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' ).values.astype('float32') X_test = X_test.reshape(-1, 28, 28, 1) X_test = X_test.astype('float32')/255 testY = model_larger.predict_classes(X_test, verbose=1 )
Digit Recognizer
9,041,790
train_df = train_df.drop_duplicates()<split>
sub = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') sub['Label'] = testY sub.to_csv('submission.csv',index=False )
Digit Recognizer
9,041,790
x_train = train_df.iloc[:,2:] y_train = train_df['SeriousDlqin2yrs'].astype('uint8') train_X, test_X, train_y, test_y = train_test_split(x_train,y_train,test_size=.1,random_state=2021, stratify = y_train )<find_best_model_class>
YouTubeVideo('3JQ3hYko51Y', width=800, height=450 )
Digit Recognizer
9,041,790
num_estimators = range(100,401,10) train_scores = [] test_scores = [] for num_estimator in num_estimators: lgbm = LGBMClassifier(is_unbalance = True,num_leaves=60,learning_rate=0.02,n_estimators=num_estimator) lgbm.fit(train_X,train_y) pre_y1 = lgbm.predict_proba(train_X)[:,1] pre_y2 = lgbm.predict_proba(test_X)[:,1] train_scores.append(roc_auc_score(train_y, pre_y1)) test_scores.append(roc_auc_score(test_y, pre_y2)) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(num_estimators,test_scores,label='Testing Score') ax.set_xlabel(r'num') ax.set_ylabel(r'auc') ax.set_title('num_estimators') ax.legend(loc='best') plt.show()<find_best_params>
from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.utils import np_utils
Digit Recognizer
9,041,790
num_estimators[test_scores.index(max(test_scores)) ]<filter>
( X_train, y_train),(X_test, y_test)= mnist.load_data()
Digit Recognizer
9,041,790
learning_rates [test_scores.index(max(test_scores)) ]<filter>
num_pixels = X_train.shape[1] * X_train.shape[2] X_train = X_train.reshape(( X_train.shape[0], num_pixels)).astype('float32') X_test = X_test.reshape(( X_test.shape[0], num_pixels)).astype('float32' )
Digit Recognizer
9,041,790
max_bins[test_scores.index(max(test_scores)) ]<filter>
X_train = X_train / 255 X_test = X_test / 255
Digit Recognizer
9,041,790
num_leaves[test_scores.index(max(test_scores)) ]<filter>
y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1]
Digit Recognizer
9,041,790
max_depths[test_scores.index(max(test_scores)) ]<filter>
def baseline_model() : model = Sequential() model.add(Dense(num_pixels, input_dim=num_pixels, kernel_initializer='normal', activation='relu')) model.add(Dense(num_classes, kernel_initializer='normal', activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
Digit Recognizer
9,041,790
feature_fractions[test_scores.index(max(test_scores)) ]<train_model>
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200, verbose=2) scores = model.evaluate(X_test, y_test, verbose=0) print("Baseline Error: %.2f%%" %(100-scores[1]*100))
Digit Recognizer
9,041,790
lgbm = LGBMClassifier(is_unbalance = True,max_depth=14,num_leaves=30,max_bin=40,learning_rate=0.025,n_estimators=180,feature_fraction=0.6) lgbm.fit(train_X,train_y) pre_y = lgbm.predict_proba(test_X)[:,1]<predict_on_test>
( X_train, y_train),(X_test, y_test)= mnist.load_data() X_train = X_train.reshape(( X_train.shape[0], 28, 28, 1)).astype('float32') X_test = X_test.reshape(( X_test.shape[0], 28, 28, 1)).astype('float32') X_train = X_train / 255 X_test = X_test / 255 y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] def baseline_model() : model = Sequential() model.add(Conv2D(32,(5, 5), input_shape=(28, 28, 1), activation='relu')) model.add(MaxPooling2D()) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model model_simple = baseline_model() model_simple.summary()
Digit Recognizer
9,041,790
test_df_x = test_df.iloc[:,2:] pre_y2 = lgbm.predict_proba(test_df_x)[:,1]<load_from_csv>
model_simple.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200) scores = model_simple.evaluate(X_test, y_test, verbose=1) print("CNN Error: %.2f%%" %(100-scores[1]*100))
Digit Recognizer
9,041,790
result = pd.read_csv('/kaggle/input/GiveMeSomeCredit/sampleEntry.csv') result['Probability'] = pre_y2 result.to_csv('./submit.csv',index=False) reload = pd.read_csv('./submit.csv') reload<load_from_csv>
( X_train, y_train),(X_test, y_test)= mnist.load_data() X_train = X_train.reshape(( X_train.shape[0], 28, 28, 1)).astype('float32') X_test = X_test.reshape(( X_test.shape[0], 28, 28, 1)).astype('float32') X_train = X_train / 255 X_test = X_test / 255 y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] def large_model() : model = Sequential() model.add(Conv2D(30,(5, 5), input_shape=(28, 28, 1), activation='relu')) model.add(MaxPooling2D()) model.add(Conv2D(15,(3, 3), activation='relu')) model.add(MaxPooling2D()) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(50, activation='relu')) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model model_large = large_model() model_large.summary()
Digit Recognizer
9,041,790
warnings.filterwarnings("ignore") x_train = pd.read_csv('/kaggle/input/GiveMeSomeCredit/cs-training.csv') x_test = pd.read_csv('/kaggle/input/GiveMeSomeCredit/cs-test.csv') combine = [x_train, x_test]<count_missing_values>
model_large.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=200) scores = model_large.evaluate(X_test, y_test, verbose=1) print("Large CNN Error: %.2f%%" %(100-scores[1]*100))
Digit Recognizer
9,041,790
x_train.isnull().mean()<count_missing_values>
( X_train, y_train),(X_test, y_test)= mnist.load_data() X_train = X_train.reshape(( X_train.shape[0], 28, 28, 1)).astype('float32') X_test = X_test.reshape(( X_test.shape[0], 28, 28, 1)).astype('float32') X_train = X_train / 255 X_test = X_test / 255 y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] def larger_model() : model = Sequential() model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu', input_shape=(28,28,1))) model.add(Conv2D(filters=64, kernel_size=3, padding='same', activation='relu')) model.add(Conv2D(filters=128, kernel_size=3, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.1)) model.add(Conv2D(filters=128, kernel_size=3, padding='same', activation='relu')) model.add(Conv2D(filters=192, kernel_size=3, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2)) model.add(Dropout(0.1)) model.add(Conv2D(filters=192, kernel_size=5, padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2, padding='same')) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model model_larger = larger_model() model_larger.summary()
Digit Recognizer
9,041,790
x_test.isnull().mean()<count_missing_values>
model_larger.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=100) scores = model_larger.evaluate(X_test, y_test, verbose=1) print("Larger CNN Error: %.2f%%" %(100-scores[1]*100))
Digit Recognizer
9,041,790
[x_train[x_train['NumberOfDependents'].isnull() ][x_train['MonthlyIncome'].notnull() ]['DebtRatio'].count() , x_test[x_test['NumberOfDependents'].isnull() ][x_test['MonthlyIncome'].notnull() ]['DebtRatio'].count() ]<define_variables>
X_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' ).values.astype('float32') X_test = X_test.reshape(-1, 28, 28, 1) X_test = X_test.astype('float32')/255 testY = model_larger.predict_classes(X_test, verbose=1 )
Digit Recognizer
9,041,790
x_train[x_train['NumberOfDependents'].notnull() ][x_train['MonthlyIncome'].isnull() ][['NumberOfDependents']].median()<import_modules>
sub = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') sub['Label'] = testY sub.to_csv('submission.csv',index=False )
Digit Recognizer
9,041,790
<feature_engineering><EOS>
YouTubeVideo('3JQ3hYko51Y', width=800, height=450 )
Digit Recognizer
8,921,515
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<filter>
import pandas as pd import numpy as np import time import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from keras.models import Model from keras.layers import Input, Conv2D, BatchNormalization, Activation from keras.layers import Add, Flatten, AveragePooling2D, Dense, Dropout from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.preprocessing.image import ImageDataGenerator from keras.utils import plot_model
Digit Recognizer
8,921,515
[len(x_train[x_train['NumberOfTime30-59DaysPastDueNotWorse'] == 98]), len(x_train[x_train['NumberOfTime60-89DaysPastDueNotWorse'] == 98]), len(x_train[x_train['NumberOfTimes90DaysLate'] == 98]), len(x_train[x_train['NumberOfTime30-59DaysPastDueNotWorse'] == 98][x_train['NumberOfTimes90DaysLate'] == 98][x_train['NumberOfTime60-89DaysPastDueNotWorse'] == 98])]<filter>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv") X = train.drop(columns=['label'] ).values.reshape(-1, 28, 28, 1)/ 255 y = train['label'].values test = test.values.reshape(-1, 28, 28, 1)/ 255 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1 )
Digit Recognizer
8,921,515
[len(x_test[x_test['NumberOfTime30-59DaysPastDueNotWorse'] == 98]), len(x_test[x_test['NumberOfTime60-89DaysPastDueNotWorse'] == 98]), len(x_test[x_test['NumberOfTimes90DaysLate'] == 98]), len(x_test[x_test['NumberOfTime30-59DaysPastDueNotWorse'] == 98][x_test['NumberOfTimes90DaysLate'] == 98][x_test['NumberOfTime60-89DaysPastDueNotWorse'] == 98])]<feature_engineering>
def residual_block(inputs, filters, strides=1): y = inputs x = Conv2D( filters=filters, kernel_size=3, strides=strides, padding='same', )(inputs) x = BatchNormalization()(x) x = Activation('relu' )(x) x = Conv2D( filters=filters, kernel_size=3, strides=1, padding='same', )(x) x = BatchNormalization()(x) if strides > 1: y = Conv2D( filters=filters, kernel_size=3, strides=strides, padding='same', )(y) y = BatchNormalization()(y) x = Add()([x, y]) x = Activation('relu' )(x) return x def resnet(input_shape, num_classes, filters, stages): inputs = Input(shape=input_shape) x = Conv2D( filters=filters, kernel_size=7, strides=1, padding='same', )(inputs) x = BatchNormalization()(x) x = Activation('relu' )(x) for stage in stages: x = residual_block(x, filters, strides=2) for i in range(stage-1): x = residual_block(x, filters) filters *= 2 x = AveragePooling2D(4 )(x) x = Flatten()(x) x = Dropout(0.3 )(x) x = Dense(int(filters/4), activation='relu' )(x) outputs = Dense(num_classes, activation='softmax' )(x) model = Model(inputs=inputs, outputs=outputs) return model
Digit Recognizer
8,921,515
for dataset in combine: dataset.loc[dataset['MonthlyIncome'].isnull() ,'DebtRatio'] = dataset.loc[dataset['MonthlyIncome'].isnull() ,'DebtRatio'] / 3915; dataset.loc[dataset['MonthlyIncome'] == 1,'DebtRatio'] = dataset.loc[dataset['MonthlyIncome'] == 1,'DebtRatio'] / 3915; dataset.loc[dataset['MonthlyIncome'] == 0,'DebtRatio'] = dataset.loc[dataset['MonthlyIncome'] == 0,'DebtRatio'] / 3915;<categorify>
def train_model(epochs, filters, stages, batch_size, visualize=False): model = resnet( input_shape=X[0].shape, num_classes=np.unique(y ).shape[-1], filters=filters, stages=stages ) model.compile( loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'] ) checkpoint = ModelCheckpoint( filepath=f'resnet-{int(time.time())}.dhf5', monitor='loss', save_best_only=True ) annealer = LearningRateScheduler(lambda x: 1e-3 * 0.8**x) callbacks = [checkpoint, annealer] datagen = ImageDataGenerator( rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1 ) datagen.fit(X) history = model.fit_generator( datagen.flow(X_train, y_train, batch_size=batch_size), validation_data=(X_test, y_test), epochs=epochs, verbose=2, workers=12, callbacks=callbacks ) if visualize: fig, axarr = plt.subplots(1, 2, figsize=(16, 8)) axarr[0].plot(history.history['accuracy']) axarr[0].plot(history.history['val_accuracy']) axarr[0].set_title('Model accuracy') axarr[0].set_ylabel('Accuracy') axarr[0].set_xlabel('Epoch') axarr[0].legend(['Train', 'Test'], loc='upper left') axarr[1].plot(history.history['loss']) axarr[1].plot(history.history['val_loss']) axarr[1].set_title('Model loss') axarr[1].set_ylabel('Loss') axarr[1].set_xlabel('Epoch') axarr[1].legend(['Train', 'Test'], loc='upper left') plt.show() return model
Digit Recognizer
8,921,515
for dataset in combine: dataset.drop(columns = ['Unnamed: 0'], inplace = True) dataset['RevolvingUtilizationOfUnsecuredLines'].mask(dataset['RevolvingUtilizationOfUnsecuredLines'] > 2, 2, inplace=True) dataset['NumberOfTime60-89DaysPastDueNotWorse'].mask(dataset['NumberOfTime60-89DaysPastDueNotWorse'] > 95, 20, inplace=True) dataset['NumberOfTime30-59DaysPastDueNotWorse'].mask(dataset['NumberOfTime30-59DaysPastDueNotWorse'] > 95, 20, inplace=True) dataset['NumberOfTimes90DaysLate'].mask(dataset['NumberOfTimes90DaysLate'] > 95, 20, inplace=True) dataset['90_sum'] = dataset['NumberOfTime30-59DaysPastDueNotWorse'] + dataset['NumberOfTimes90DaysLate'] + dataset['NumberOfTime60-89DaysPastDueNotWorse'] dataset['DebtRatio'].mask(dataset['DebtRatio'] > 400, 400, inplace=True) dataset['MonthlyIncome'].replace(np.nan, 0, inplace=True) dataset['MonthlyIncome'].replace(1, 0, inplace=True) dataset['NumberOfDependents'].replace(np.nan, 0, inplace=True) x_train = x_train[x_train['age'] > 20] x_train = x_train[x_train['MonthlyIncome'] <= 1e6] x_train = x_train[x_train['NumberRealEstateLoansOrLines'] <= 50]<split>
models = [] for i in range(1): print('-------------------------') print('Model: ', i+1) print('-------------------------') model = train_model( epochs=10, filters=64, stages=[3, 3, 3], batch_size=128, visualize=True ) models.append(model )
Digit Recognizer
8,921,515
result = x_train['SeriousDlqin2yrs' ] data = x_train.drop(['SeriousDlqin2yrs'], axis = 1) train_data, test_data, train_result, test_result = train_test_split(data, result, test_size = 0.2, stratify = result, random_state=33 )<import_modules>
predictions = [] for model in models: predictions.append(model.predict(test)) predictions = np.sum(predictions, axis=0) predictions = np.argmax(predictions, axis=1) submission = pd.DataFrame({'ImageId': np.arange(1, 28001, 1), 'Label': predictions}) submission.to_csv('mnist_resnet_submission.csv', index=False )
Digit Recognizer
8,678,113
models = [] scores = [] models.append("AdaBoost") print("AdaBoost:") model = AdaBoostClassifier() result = cross_val_score(model,train_data,train_result,scoring='roc_auc',cv=StratifiedKFold(n_splits=10)) print('mean score:', result.mean()) scores.append(result.mean()) models.append("LGBM") print("LGBM:") model = LGBMClassifier() result = cross_val_score(model,train_data,train_result,scoring='roc_auc',cv=StratifiedKFold(n_splits=10)) print('mean score:', result.mean()) scores.append(result.mean()) models.append("XGBoost") print("XGBoost:") model = XGBClassifier(eval_metric = 'auc') result = cross_val_score(model,train_data,train_result,scoring='roc_auc',cv=StratifiedKFold(n_splits=10)) print('mean score:', result.mean()) scores.append(result.mean()) models.append("GBDT") print("GBDT:") model = GradientBoostingClassifier() result = cross_val_score(model,train_data,train_result,scoring='roc_auc',cv=StratifiedKFold(n_splits=10)) print('mean score:', result.mean()) scores.append(result.mean()) models.append("RandomForest") print("RandomForest:") model = RandomForestClassifier() result = cross_val_score(model,train_data,train_result,scoring='roc_auc',cv=StratifiedKFold(n_splits=10)) print('mean score:', result.mean()) scores.append(result.mean()) models.append("SVM") print("SVM:") model = svm.SVC() result = cross_val_score(model,train_data,train_result,scoring='roc_auc',cv=StratifiedKFold(n_splits=10)) print('mean score:', result.mean()) scores.append(result.mean()) <choose_model_class>
train = pd.read_csv(".. /input/train.csv") print(train.shape) train.head()
Digit Recognizer
8,678,113
model = LGBMClassifier() model.fit(train_data, train_result) predict_proba = model.predict_proba(test_data)[:,1] roc_auc_score(test_result, predict_proba )<find_best_model_class>
test= pd.read_csv(".. /input/test.csv") print(test.shape) test.head()
Digit Recognizer
8,678,113
model = LGBMClassifier(n_estimators = 290, learning_rate = 0.025,max_depth = 6, num_leaves = 22) model.fit(train_data, train_result) predict_proba = model.predict_proba(test_data)[:,1] roc_auc_score(test_result, predict_proba )<save_to_csv>
X_train =(train.iloc[:,1:].values ).astype('float32') y_train = train.iloc[:,0].values.astype('int32') X_test = test.values.astype('float32') X = X_train y = y_train X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.10, random_state=42 )
Digit Recognizer
8,678,113
x_test = x_test.drop(['SeriousDlqin2yrs'],axis=1) y_test = model.predict_proba(x_test)[:,1] ids = np.arange(1,101504) res = pd.DataFrame({'Id': ids, 'Probability': y_test}) res.to_csv("submission.csv", index=False )<load_from_csv>
\ mean_px = X_train.mean().astype(np.float32) std_px = X_train.std().astype(np.float32) def standardize(x): return(x-mean_px)/std_px
Digit Recognizer
8,678,113
train_df = pd.read_csv('/kaggle/input/GiveMeSomeCredit/cs-training.csv') test_df = pd.read_csv('/kaggle/input/GiveMeSomeCredit/cs-test.csv' )<count_missing_values>
y_train = np_utils.to_categorical(y_train,10) X = X.reshape(-1,28,28,1) y = np_utils.to_categorical(y,10 )
Digit Recognizer
8,678,113
train_df.isnull().sum()<count_missing_values>
seed = 43 np.random.seed(seed )
Digit Recognizer
8,678,113
test_df.isnull().sum()<filter>
from keras.models import Sequential from keras.layers.core import Lambda , Dense, Flatten, Dropout from keras.callbacks import EarlyStopping from keras.layers import BatchNormalization, Convolution2D , MaxPooling2D
Digit Recognizer
8,678,113
train_df.loc[train_df['age'] < 18]<remove_duplicates>
def get_bn_model() : model = Sequential([ Lambda(standardize, input_shape=(28,28,1)) , Convolution2D(32,(3,3), activation='relu'), BatchNormalization(axis=1), Convolution2D(32,(3,3), activation='relu'), MaxPooling2D() , BatchNormalization(axis=1), Convolution2D(64,(3,3), activation='relu'), BatchNormalization(axis=1), Convolution2D(64,(3,3), activation='relu'), MaxPooling2D() , Flatten() , BatchNormalization() , Dense(512, activation='relu'), BatchNormalization() , Dense(10, activation='softmax') ]) model.compile(Adam() , loss='categorical_crossentropy', metrics=['accuracy']) return model
Digit Recognizer
8,678,113
train_df.drop_duplicates(inplace=True )<rename_columns>
model= get_bn_model() gen =ImageDataGenerator(rotation_range=8, width_shift_range=0.08, shear_range=0.3, height_shift_range=0.08, zoom_range=0.08) batches = gen.flow(X, y, batch_size=64) history=model.fit_generator(generator=batches, steps_per_epoch=batches.n, epochs=1)
Digit Recognizer
8,678,113
<filter><EOS>
X_test.shape results = model.predict(X_test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("Aniket_Digit_pred2.csv",index=False )
Digit Recognizer
10,799,576
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_variables>
num_classes = 10 train_fname = '/kaggle/input/digit-recognizer/train.csv' train_db = pd.read_csv(train_fname) label = train_db['label'].to_numpy() label = to_categorical(label, num_classes=num_classes) data = train_db.drop('label', axis=1 ).to_numpy() data = data.reshape(( data.shape[0], 28, 28, 1)) data = data.astype('float32')/ 255 x_train = data [:32000] y_train = label[:32000] x_valid = data [32000:] y_valid = label[32000:] del train_db
Digit Recognizer
10,799,576
k = 0 for i in train_df['NumberOfDependents']: if i>8: train_df['NumberOfDependents'].values[k]=8 k +=1 k = 0 for i in test_df['NumberOfDependents']: if i>8: test_df['NumberOfDependents'].values[k]=8 k +=1<feature_engineering>
train_datagen = ImageDataGenerator(rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.1, zoom_range=0.1) batch_size = 16 train_generator = train_datagen.flow(x_train, y_train, batch_size=batch_size )
Digit Recognizer
10,799,576
train_df.loc[train_df['age'] < 18, 'age'] = train_df['age'].median()<feature_engineering>
model = Sequential([ Conv2D(32,(3, 3), activation='relu', input_shape=(28, 28, 1)) , Conv2D(32,(3, 3), activation='relu'), SeparableConv2D(32,(5, 5), activation='relu', padding='same'), BatchNormalization() , MaxPooling2D(( 2,2)) , SpatialDropout2D(0.35), Conv2D(64,(3, 3), activation='relu'), Conv2D(64,(3, 3), activation='relu'), SeparableConv2D(64,(5, 5), activation='relu', padding='same'), BatchNormalization() , MaxPooling2D(( 2,2)) , SpatialDropout2D(0.35), Flatten() , Dense(256, activation='relu', kernel_regularizer=l2(1e-3)) , Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) model.summary()
Digit Recognizer
10,799,576
train_df['MonthlyIncome'] = train_df['MonthlyIncome'].replace(np.nan,train_df['MonthlyIncome'].mean()) test_df['MonthlyIncome'] = test_df['MonthlyIncome'].replace(np.nan,test_df['MonthlyIncome'].mean()) train_df['NumberOfDependents'] = train_df['NumberOfDependents'].replace(np.nan,train_df['NumberOfDependents'].median()) test_df['NumberOfDependents'] = test_df['NumberOfDependents'].replace(np.nan,test_df['NumberOfDependents'].median() )<split>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) epochs = 30 performance = model.fit(train_generator, steps_per_epoch=x_train.shape[0] // batch_size, epochs=epochs, validation_data=(x_valid, y_valid), callbacks=[learning_rate_reduction] )
Digit Recognizer
10,799,576
<save_to_csv><EOS>
test_fname = '/kaggle/input/digit-recognizer/test.csv' test_db = pd.read_csv(test_fname) x_test = test_db.to_numpy() x_test = x_test.reshape(( x_test.shape[0], 28, 28, 1)) x_test = x_test.astype('float32')/ 255 predictions = np.argmax(model.predict(x_test), axis=1) imageIds = pd.Series(range(1,28001), name='ImageId') results = pd.Series(predictions , name='Label') submission = pd.concat([imageIds, results], axis=1) submission.to_csv("submission.csv", index=False, header=True)
Digit Recognizer
10,728,166
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<import_modules>
%matplotlib inline for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
Digit Recognizer
10,728,166
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score,roc_curve, auc from sklearn.ensemble import RandomForestRegressor from lightgbm import LGBMClassifier<load_from_csv>
df_train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") df_test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") df_submission = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv" )
Digit Recognizer
10,728,166
train=pd.read_csv('/kaggle/input/GiveMeSomeCredit/cs-training.csv') train.info() <feature_engineering>
print("Train File", df_train.isnull().any().sum()) print("Test File", df_test.isnull().any().sum() )
Digit Recognizer