kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
10,296,992
y = "revenue" x = h2o_df.columns x.remove(y )<choose_model_class>
callback_lrs = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x) epochs = 40 history = [0]*10 for j in range(10): X_train1, X_valid1, y_train1, y_valid1 = train_test_split(X_train, y_train, test_size = 0.1) history[j] = model[j].fit_generator(datagen.flow(X_train1, y_train1, batch_size = batch_size), epochs = epochs, verbose = 0, validation_data =(X_valid1, y_valid1), callbacks = [callback_lrs]) print('CNN:', j+1, 'Epochs =', epochs, 'Train accuracy:', max(history[j].history['accuracy']), 'Validation accuracy:', max(history[j].history['val_accuracy']))
Digit Recognizer
10,296,992
<train_model><EOS>
results = np.zeros(( X_test.shape[0],10)) for j in range(10): results = results + model[j].predict(X_test) y_test_class = np.argmax(results, axis = 1) submission = pd.DataFrame({'ImageId': list(range(1, len(y_test_class)+1)) , 'Label': np.array(y_test_class)}) submission.to_csv('submission.csv', index=False) print(submission )
Digit Recognizer
7,206,401
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test>
%matplotlib inline
Digit Recognizer
7,206,401
pred = aml.predict(h2o_valid) pred.head()<save_model>
data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') print(data.shape )
Digit Recognizer
7,206,401
h2o.save_model(aml.leader, path="./model_bin" )<train_model>
test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') print(test_data.shape )
Digit Recognizer
7,206,401
params = {'objective': 'reg:linear', 'eta': 0.01, 'max_depth': 6, 'min_child_weight': 3, 'subsample': 0.8, 'colsample_bytree': 0.8, 'colsample_bylevel': 0.50, 'gamma': 1.45, 'eval_metric': 'rmse', 'seed': 12, 'silent': True} xgb_data = [(xgb.DMatrix(X_train, y_train), 'train'),(xgb.DMatrix(X_valid, y_valid), 'valid')] print('Starting training...') xgb_model = xgb.train(params, xgb.DMatrix(X_train, y_train), 10000, xgb_data, verbose_eval=300, early_stopping_rounds=300 )<predict_on_test>
sample_submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') print(sample_submission.shape )
Digit Recognizer
7,206,401
xgb_pred = xgb_model.predict(xgb.DMatrix(X_valid))<drop_column>
encoder = OneHotEncoder(sparse=False,categories='auto') yy = [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9]] encoder.fit(yy) train_label = train_label.reshape(-1,1) val_label = val_label.reshape(-1,1) train_label = encoder.transform(train_label) val_label = encoder.transform(val_label) print('train_label shape: %s'%str(train_label.shape)) print('val_label shape: %s'%str(val_label.shape))
Digit Recognizer
7,206,401
X_test = test.drop('revenue',axis=1 )<prepare_x_and_y>
import numpy as np import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.layers.normalization import BatchNormalization from keras.layers import LeakyReLU
Digit Recognizer
7,206,401
X_test[X_test==np.inf]=np.nan X_test.fillna(X_test.mean() , inplace=True )<predict_on_test>
model = Sequential() model.add(Conv2D(32,(3, 3), activation='relu', input_shape=(28, 28, 1),padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(32,(3, 3), activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64,(3, 3), activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(64,(3, 3), activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(128, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(128, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(256, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(Conv2D(256, kernel_size=5, activation='relu',padding='same')) model.add(BatchNormalization(momentum=0.9, epsilon=1e-5, gamma_initializer="uniform")) model.add(LeakyReLU(alpha=0.1)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu', name='my_dense')) model.add(Dropout(0.5)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.summary()
Digit Recognizer
7,206,401
test_pred_xgb = xgb_model.predict(xgb.DMatrix(( X_test)) , ntree_limit=xgb_model.best_ntree_limit )<choose_model_class>
datagen = ImageDataGenerator( rotation_range=15, width_shift_range=0.2, height_shift_range=0.2, shear_range = 15, horizontal_flip = False, zoom_range = 0.20 )
Digit Recognizer
7,206,401
model = CatBoostRegressor(iterations=100000, learning_rate=0.005, depth=5, eval_metric='RMSE', colsample_bylevel=0.8, random_seed = 21, bagging_temperature = 0.2, metric_period = None, early_stopping_rounds=200 ) model.fit(X_train, y_train,eval_set=(X_valid, y_valid),use_best_model=True,verbose=500) val_pred = model.predict(X_valid) print('RMSE',np.sqrt(mean_squared_error(val_pred,y_valid))) test_pred_cat = model.predict(X_test )<init_hyperparams>
model.compile(loss='categorical_crossentropy',optimizer=Adam() ,metrics=['accuracy']) datagen.fit(train_image) history = model.fit_generator(datagen.flow(train_image,train_label, batch_size=32), epochs = 75, shuffle=True, validation_data =(val_image,val_label), verbose = 1, steps_per_epoch=train_image.shape[0] // 32 )
Digit Recognizer
7,206,401
params = {'objective':'regression', 'num_leaves' : 30, 'min_data_in_leaf' : 20, 'max_depth' : 9, 'learning_rate': 0.004, 'feature_fraction':0.9, "bagging_freq": 1, "bagging_fraction": 0.9, 'lambda_l1': 0.2, "bagging_seed": 11, "metric": 'rmse', "random_state" : 11, "verbosity": -1} record = dict() model = lgb.train(params , lgb.Dataset(X_train, y_train) , num_boost_round = 100000 , valid_sets = [lgb.Dataset(X_valid, y_valid)] , verbose_eval = 500 , early_stopping_rounds = 500 , callbacks = [lgb.record_evaluation(record)] ) best_idx = np.argmin(np.array(record['valid_0']['rmse'])) val_pred = model.predict(X_valid, num_iteration = model.best_iteration) test_pred_gbm = model.predict(X_test, num_iteration = model.best_iteration )<save_to_csv>
intermediate_output = intermediate_layer_model.predict(train_image) intermediate_output = pd.DataFrame(data=intermediate_output )
Digit Recognizer
7,206,401
sub = pd.read_csv('.. /input/tmdb-box-office-prediction/sample_submission.csv') df_sub = pd.DataFrame() df_sub['id'] = sub['id'] final_pred = 0.3*test_pred_xgb + 0.7*test_pred_cat df_sub['revenue'] = np.expm1(final_pred) print(df_sub['revenue']) df_sub.to_csv("submission.csv", index=False )<import_modules>
val_data = intermediate_output[40000:]
Digit Recognizer
7,206,401
confusion_matrix) <define_variables>
submission_cnn = model.predict(test_image )
Digit Recognizer
7,206,401
PRETRAINED_MODEL_NAME = 'bert-base-uncased' LABELS_NUMBER = 2 MAX_LENGHT = 512 BATCH_SIZE = 6 LEARNING_RATE = 2e-5 EPOCHS_NUMBER = 1 N_PREDICTIONS_TO_SHOW = 10<load_from_csv>
intermediate_test_output = intermediate_layer_model.predict(test_image) intermediate_test_output = pd.DataFrame(data=intermediate_test_output )
Digit Recognizer
7,206,401
train_data = pd.read_csv('.. /input/nlp-getting-started/train.csv') print(train_data.shape) train_data.head(3 )<load_from_csv>
xgbmodel = XGBClassifier(objective='multi:softprob', num_class= 10) xgbmodel.fit(intermediate_output, train_label1) xgbmodel.score(val_data, val_label1 )
Digit Recognizer
7,206,401
test_data = pd.read_csv('.. /input/nlp-getting-started/test.csv') print(test_data.shape) test_data.head(3 )<load_pretrained>
submission_xgb = xgbmodel.predict(intermediate_test_output )
Digit Recognizer
7,206,401
tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME, do_lower_case=True )<string_transform>
submission_cnn = submission_cnn.astype(int) submission_xgb = submission_xgb.astype(int)
Digit Recognizer
7,206,401
vocabulary = tokenizer.get_vocab() print(f'Size of the vocabulary: {len(vocabulary)}') print(f'Some tokens of the vocabulary: {list(vocabulary.keys())[5000:5010]}' )<categorify>
submission_cnn label = np.argmax(submission_cnn,1) id_ = np.arange(0,label.shape[0]) label
Digit Recognizer
7,206,401
def prepare_sequence(text): prepared_sequence = tokenizer.encode_plus( text, add_special_tokens = True, max_length = MAX_LENGHT, padding = 'max_length', return_attention_mask = True ) return prepared_sequence<categorify>
final_sub = submission_xgb
Digit Recognizer
7,206,401
test_sentence = 'Is this jacksonville?' test_sentence_encoded = prepare_sequence(test_sentence) token_ids = test_sentence_encoded["input_ids"] print(f'Test sentence: {test_sentence}') print(f'Keys: {test_sentence_encoded.keys() }') print(f'Tokens: {tokenizer.convert_ids_to_tokens(token_ids)[:12]}') print(f'Token IDs: {token_ids[:12]}') print(f'Segment IDs: {test_sentence_encoded["token_type_ids"][:12]}') print(f'Mask IDs {test_sentence_encoded["attention_mask"][:12]}') print(f'Input dimension: {len(token_ids)}' )<categorify>
save = pd.DataFrame({'ImageId':sample_submission.ImageId,'label':final_sub}) print(save.head(10)) save.to_csv('submission.csv',index=False )
Digit Recognizer
231,224
def map_example_to_dict(input_ids, attention_masks, token_type_ids, label): mapped_example = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_masks, } return mapped_example, label def encode_examples(texts_and_labels): input_ids_list = [] token_type_ids_list = [] attention_mask_list = [] label_list = [] for text, label in texts_and_labels: bert_input = prepare_sequence(text) input_ids_list.append(bert_input['input_ids']) token_type_ids_list.append(bert_input['token_type_ids']) attention_mask_list.append(bert_input['attention_mask']) label_list.append([label]) dataset = tf.data.Dataset.from_tensor_slices( (input_ids_list, attention_mask_list, token_type_ids_list, label_list) ) dataset_mapped = dataset.map(map_example_to_dict) return dataset_mapped<prepare_x_and_y>
train = pd.read_csv(".. /input/train.csv") print(train.shape) train.head()
Digit Recognizer
231,224
X = train_data["text"] y = train_data["target"]<split>
z_train = Counter(train['label']) z_train
Digit Recognizer
231,224
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.10, random_state=1 )<count_values>
test= pd.read_csv(".. /input/test.csv") print(test.shape) test.head()
Digit Recognizer
231,224
n_training_examples = X_train.shape[0] n_positive_training_examples = y_train.value_counts() [1] n_negative_training_examples = y_train.value_counts() [0] print(f'Number examples in training dataset: {n_training_examples}') print(f'Number of positive examples in training dataset: {n_positive_training_examples}') print(f'Number of negative examples in training dataset: {n_negative_training_examples}' )<define_variables>
x_train =(train.ix[:,1:].values ).astype('float32') y_train = train.ix[:,0].values.astype('int32') x_test = test.values.astype('float32' )
Digit Recognizer
231,224
train_dataset = list(zip(X_train, y_train)) val_dataset = list(zip(X_val, y_val))<categorify>
x_train = x_train/255.0 x_test = x_test/255.0
Digit Recognizer
231,224
ds_train_encoded = encode_examples(train_dataset ).shuffle(10000 ).batch(BATCH_SIZE) ds_val_encoded = encode_examples(val_dataset ).batch(BATCH_SIZE )<load_pretrained>
batch_size = 64 num_classes = 10 epochs = 20 input_shape =(28, 28, 1 )
Digit Recognizer
231,224
def get_model() : config = AutoConfig.from_pretrained(PRETRAINED_MODEL_NAME, hidden_dropout_prob=0.2, num_labels=LABELS_NUMBER) model = TFBertForSequenceClassification.from_pretrained(PRETRAINED_MODEL_NAME, config=config) return model<choose_model_class>
y_train = keras.utils.to_categorical(y_train, num_classes) X_train, X_val, Y_train, Y_val = train_test_split(X_train, y_train, test_size = 0.1, random_state=42 )
Digit Recognizer
231,224
model = get_model() optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy') model.compile(optimizer=optimizer, loss=loss, metrics=[metric] )<train_model>
model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',kernel_initializer='he_normal',input_shape=input_shape)) model.add(Conv2D(32, kernel_size=(3, 3),activation='relu',kernel_initializer='he_normal')) model.add(MaxPool2D(( 2, 2))) model.add(Dropout(0.20)) model.add(Conv2D(64,(3, 3), activation='relu',padding='same',kernel_initializer='he_normal')) model.add(Conv2D(64,(3, 3), activation='relu',padding='same',kernel_initializer='he_normal')) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(128,(3, 3), activation='relu',padding='same',kernel_initializer='he_normal')) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.RMSprop() , metrics=['accuracy']) learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.0001) datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=15, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False )
Digit Recognizer
231,224
weight_for_0 =(1 / n_negative_training_examples)*(n_training_examples)/2.0 weight_for_1 =(1 / n_positive_training_examples)*(n_training_examples)/2.0 class_weight = {0: weight_for_0, 1: weight_for_1} print('Weight for class 0: {:.2f}'.format(weight_for_0)) print('Weight for class 1: {:.2f}'.format(weight_for_1))<train_model>
datagen.fit(X_train) h = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 1, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction], )
Digit Recognizer
231,224
model.fit(ds_train_encoded, epochs=EPOCHS_NUMBER, validation_data=ds_val_encoded, class_weight = class_weight )<predict_on_test>
final_loss, final_acc = model.evaluate(X_val, Y_val, verbose=0) print("Final loss: {0:.6f}, final accuracy: {1:.6f}".format(final_loss, final_acc))
Digit Recognizer
231,224
val_predictions = model.predict(ds_val_encoded) val_probabilities = softmax(val_predictions[0], axis=1) y_val_predictions = np.argmax(val_probabilities, axis=1 ).flatten()<categorify>
layer_outputs = [layer.output for layer in model.layers[:8]] activation_model = models.Model(input=model.input, output=layer_outputs) activations = activation_model.predict(test_im.reshape(1,28,28,1)) first_layer_activation = activations[0] plt.matshow(first_layer_activation[0, :, :, 4], cmap='viridis' )
Digit Recognizer
231,224
def encode_test_examples(texts): input_ids_list = [] token_type_ids_list = [] attention_mask_list = [] for text in texts: bert_input = prepare_sequence(text) input_ids_list.append(bert_input['input_ids']) token_type_ids_list.append(bert_input['token_type_ids']) attention_mask_list.append(bert_input['attention_mask']) dataset = tf.data.Dataset.from_tensor_slices( (input_ids_list, attention_mask_list, token_type_ids_list) ) dataset_mapped = dataset.map(map_test_example_to_dict) return dataset_mapped def map_test_example_to_dict(input_ids, attention_masks, token_type_ids): mapped_example = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_masks, } return mapped_example<categorify>
model.layers[:-1]
Digit Recognizer
231,224
X_test = test_data["text"] test_dataset = list(X_test) ds_test_encoded = encode_test_examples(test_dataset ).batch(BATCH_SIZE )<predict_on_test>
layer_names = [] for layer in model.layers[:-1]: layer_names.append(layer.name) images_per_row = 16 for layer_name, layer_activation in zip(layer_names, activations): if layer_name.startswith('conv'): n_features = layer_activation.shape[-1] size = layer_activation.shape[1] n_cols = n_features // images_per_row display_grid = np.zeros(( size * n_cols, images_per_row * size)) for col in range(n_cols): for row in range(images_per_row): channel_image = layer_activation[0,:, :, col * images_per_row + row] channel_image -= channel_image.mean() channel_image /= channel_image.std() channel_image *= 64 channel_image += 128 channel_image = np.clip(channel_image, 0, 255 ).astype('uint8') display_grid[col * size :(col + 1)* size, row * size :(row + 1)* size] = channel_image scale = 1./ size plt.figure(figsize=(scale * display_grid.shape[1], scale * display_grid.shape[0])) plt.title(layer_name) plt.grid(False) plt.imshow(display_grid, aspect='auto', cmap='viridis' )
Digit Recognizer
231,224
test_predictions = model.predict(ds_test_encoded) test_probabilities = softmax(test_predictions[0], axis=1) y_test_predictions = np.argmax(test_probabilities, axis=1 ).flatten()<save_to_csv>
layer_names = [] for layer in model.layers[:-1]: layer_names.append(layer.name) images_per_row = 16 for layer_name, layer_activation in zip(layer_names, activations): if layer_name.startswith('max'): n_features = layer_activation.shape[-1] size = layer_activation.shape[1] n_cols = n_features // images_per_row display_grid = np.zeros(( size * n_cols, images_per_row * size)) for col in range(n_cols): for row in range(images_per_row): channel_image = layer_activation[0,:, :, col * images_per_row + row] channel_image -= channel_image.mean() channel_image /= channel_image.std() channel_image *= 64 channel_image += 128 channel_image = np.clip(channel_image, 0, 255 ).astype('uint8') display_grid[col * size :(col + 1)* size, row * size :(row + 1)* size] = channel_image scale = 1./ size plt.figure(figsize=(scale * display_grid.shape[1], scale * display_grid.shape[0])) plt.title(layer_name) plt.grid(False) plt.imshow(display_grid, aspect='auto', cmap='viridis' )
Digit Recognizer
231,224
final_submission = pd.DataFrame(data={"id":test_data["id"], "target":y_test_predictions}) final_submission.to_csv("submissionTweets.csv", index=False )<set_options>
layer_names = [] for layer in model.layers[:-1]: layer_names.append(layer.name) images_per_row = 16 for layer_name, layer_activation in zip(layer_names, activations): if layer_name.startswith('drop'): n_features = layer_activation.shape[-1] size = layer_activation.shape[1] n_cols = n_features // images_per_row display_grid = np.zeros(( size * n_cols, images_per_row * size)) for col in range(n_cols): for row in range(images_per_row): channel_image = layer_activation[0,:, :, col * images_per_row + row] channel_image -= channel_image.mean() channel_image /= channel_image.std() channel_image *= 64 channel_image += 128 channel_image = np.clip(channel_image, 0, 255 ).astype('uint8') display_grid[col * size :(col + 1)* size, row * size :(row + 1)* size] = channel_image scale = 1./ size plt.figure(figsize=(scale * display_grid.shape[1], scale * display_grid.shape[0])) plt.title(layer_name) plt.grid(False) plt.imshow(display_grid, aspect='auto', cmap='viridis' )
Digit Recognizer
231,224
warnings.filterwarnings('ignore') <categorify>
Y_pred = model.predict(X_val) Y_pred_classes = np.argmax(Y_pred, axis = 1) Y_true_classes = np.argmax(Y_val, axis = 1 )
Digit Recognizer
231,224
def bert_encode(texts, tokenizer, max_len=512): all_tokens = [] for text in texts: text = tokenizer.tokenize(text) text = text[:max_len-2] input_sequence = ["[CLS]"] + text + ["[SEP]"] pad_len = max_len - len(input_sequence) tokens = tokenizer.convert_tokens_to_ids(input_sequence) tokens += [0] * pad_len pad_masks = [1] * len(input_sequence)+ [0] * pad_len segment_ids = [0] * max_len all_tokens.append(tokens) return np.array(all_tokens) def build_model(transformer, max_len=512): input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") sequence_output = transformer(input_word_ids)[0] cls_token = sequence_output[:, 0, :] out = Dense(1, activation='sigmoid' )(cls_token) model = Model(inputs=input_word_ids, outputs=out) model.compile(Adam(lr=1e-5), loss='binary_crossentropy', metrics=['accuracy']) return model<load_from_csv>
target_names = ["Class {}".format(i)for i in range(num_classes)] print(classification_report(Y_true_classes, Y_pred_classes, target_names=target_names))
Digit Recognizer
231,224
train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") submission = pd.read_csv("/kaggle/input/nlp-getting-started/sample_submission.csv" )<choose_model_class>
predicted_classes = model.predict_classes(X_test) submissions=pd.DataFrame({"ImageId": list(range(1,len(predicted_classes)+1)) , "Label": predicted_classes}) submissions.to_csv("asd.csv", index=False, header=True )
Digit Recognizer
231,224
<split><EOS>
model.save('my_model_1.h5') json_string = model.to_json()
Digit Recognizer
10,869,544
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<compute_test_metric>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') X_train =(train.iloc[:,1:].values ).astype('float32') y_train = train.iloc[:,0].values.astype('int32') X_test = test.values.astype('float32') X_train_scaled = X_train.reshape(X_train.shape[0], 28, 28,1)/ 255 X_test_scaled = X_test.reshape(X_test.shape[0], 28, 28,1)/ 255 y_train = to_categorical(y_train) X_train_mean = train.iloc[:, 1:].sum().sum() /(train.shape[0] * train.shape[1]) X_test_mean = test.iloc[:, 1:].sum().sum() /(test.shape[0] * test.shape[1]) X_train_normalized =(( X_train - X_train_mean)/ X_train_mean ).reshape(train.shape[0], 28, 28,1) X_test_normalized =(( X_test - X_test_mean)/ X_test_mean ).reshape(test.shape[0], 28, 28,1 )
Digit Recognizer
10,869,544
def metrics(y_true, y_pred): print(" F1-score: ", round(f1_score(y_true, y_pred), 2)) print("Precision: ", round(precision_score(y_true, y_pred), 2)) print("Recall: ", round(recall_score(y_true, y_pred), 2))<train_model>
def format_predictions(model, test_data=X_test_scaled): preds = model.predict(test_data) preds_test = [] for i in preds: preds_test.append(np.argmax(i)) return preds_test early_stop = EarlyStopping(monitor='val_loss', patience=20, mode='min', restore_best_weights=True) def scheduler(epoch, lr): if epoch < 20: return lr return lr *(0.9 **(( epoch - 19)// 10)) rate_scheduler = LearningRateScheduler(scheduler )
Digit Recognizer
10,869,544
start_time = time.time() train_history = model.fit(X_train, y_train, epochs = 3, batch_size = 8) end_time = time.time() print(" =>Training time :", round(end_time - start_time, 1), 's' )<predict_on_test>
def conv_block1(In, std): out = SeparableConv2D(16,(3, 3), kernel_initializer=TruncatedNormal(0, std, 1))(In) out = BatchNormalization()(out) out = SeparableConv2D(16,(1, 1), kernel_initializer=TruncatedNormal(0, std-1e-5, 1))(out) return out def conv_block2(In, std): out = SeparableConv2D(16,(3, 1), kernel_initializer=TruncatedNormal(0, std, 1), padding='same' )(In) out = SeparableConv2D(16,(1, 3), kernel_initializer=TruncatedNormal(0, std+1e-4, 1), padding='same' )(out) out = MaxPooling2D(2 )(out) return out def conv_block3(In, std): out = SeparableConv2D(16,(5, 3), kernel_initializer=TruncatedNormal(0, std, 1), padding='same' )(In) out = BatchNormalization()(out) out = SeparableConv2D(16,(3, 5), kernel_initializer=TruncatedNormal(0, std+1e-4, 1))(out) out = MaxPooling2D(2 )(out) return out
Digit Recognizer
10,869,544
start_time = time.time() test_pred = model.predict(X_test, verbose=1 ).round().astype(int) end_time = time.time() print(' =>Average Inference Time :', round(( end_time - start_time)/ len(test_pred)* 1000, 1), 'ms') metrics(y_test, test_pred )<save_to_csv>
scaled_input = tf.keras.Input(shape=(28,28,1)) norm_in = BatchNormalization(name='norm_in' )(scaled_input) out1 = [] for i in range(0, 8): out1.append(conv_block1(norm_in, 1e3/10**(i))) out2 = [] for i in range(0, 8, 2): out2.append(Add()([out1[i], out1[i+1]])) for i in range(0, len(out2)) : out2[i] = conv_block2(out2[i], 1e4/10**(i)) out2[i] = conv_block3(out2[i], 10/10**(i // 2)) flats = Concatenate()([Flatten()(out)for out in out2]) d1 = Dense(1024, kernel_initializer=TruncatedNormal(mean=10, stddev=2, seed=11), bias_initializer=TruncatedNormal(mean=0, stddev=0.5, seed=11), kernel_regularizer=l1(0.01) )(flats) d1 = BatchNormalization()(d1) d2 = Dense(1024, kernel_initializer=TruncatedNormal(mean=1, stddev=0.02, seed=11), bias_initializer=TruncatedNormal(mean=0, stddev=0.5, seed=11), kernel_regularizer=l1(0.01) )(d1) d2 = BatchNormalization()(d2) final_prediction = Dense(10, activation='softmax' )(d2) model = tf.keras.Model(inputs=[scaled_input], outputs=[final_prediction] )
Digit Recognizer
10,869,544
submission['target'] = model.predict(test_input, verbose=1 ).round().astype(int) submission.to_csv('submission.csv', index=False )<install_modules>
model.count_params() / 1e6
Digit Recognizer
10,869,544
!pip install transformers<import_modules>
model.compile(optimizer=Adam(0.0075), loss=CategoricalCrossentropy() , metrics=['accuracy'] )
Digit Recognizer
10,869,544
import torch from torch.utils.data import TensorDataset, random_split from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from transformers import BertTokenizer, get_linear_schedule_with_warmup from transformers import BertForSequenceClassification, AdamW, BertConfig import torch.nn.functional as F import pandas as pd import numpy as np import time import datetime import random, re import seaborn as sns import matplotlib.pyplot as plt<set_options>
def scheduler(epoch, lr): if epoch < 20: return lr elif lr > 5e-5: return lr *(0.95 **(epoch // 10 - 1)) return lr hist = model.fit(X_train_scaled, y_train, epochs= 2000, batch_size=128, callbacks=[ LearningRateScheduler(scheduler), tfdocs.modeling.EpochDots() , ReduceLROnPlateau( monitor='val_accuracy', factor=0.6, patience=20, verbose=1, mode='auto', min_delta=1e-4, cooldown=0, min_lr=1e-15 ) ], verbose=True, validation_split=0.33, shuffle=True )
Digit Recognizer
10,869,544
if torch.cuda.is_available() : device = torch.device("cuda") print('There are %d GPU(s)available.{}'.format(torch.cuda.device_count())) print('We will use the GPU: {}'.format(torch.cuda.get_device_name(0))) else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") seed_val = 42 random.seed(seed_val) np.random.seed(seed_val) torch.manual_seed(seed_val) torch.cuda.manual_seed_all(seed_val )<load_from_csv>
submission = pd.DataFrame({ "ImageId": [i+1 for i in range(0, 28000)], "Label": format_predictions(model) }) submission.to_csv('s.csv', index=False )
Digit Recognizer
10,869,544
train = pd.read_csv('.. /input/nlp-getting-started/train.csv') test = pd.read_csv('.. /input/nlp-getting-started/test.csv') pd.set_option('display.max_colwidth', 150) train.head()<train_model>
try : tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu) except: print('No TPU being used!')
Digit Recognizer
10,869,544
print('Number of training sentences: {:,} '.format(train.shape[0])) print('Number of test sentences: {:,} '.format(test.shape[0]))<categorify>
Digit Recognizer
10,869,544
def clean_text(text): text = text.lower() text = re.sub(r'[!]+','!',text) text = re.sub(r'[?]+','?',text) text = re.sub(r'[.]+','.',text) text = re.sub(r"'","",text) text = re.sub('\s+', '', text ).strip() text = re.sub(r'&amp;?',r'and', text) text = re.sub(r"https?:\/\/t.co\/[A-Za-z0-9]+", "", text) text = re.sub(r'[:"$%&\*+,-/:;<=>@\\^_`{|}~]+','',text) return text train.head()<load_pretrained>
Digit Recognizer
10,869,544
sentences = train.text.values labels = train.target.values sentences_test = test.text.values tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True )<categorify>
Digit Recognizer
10,869,544
print(' Original: ', sentences[0]) print('Tokenized: ', tokenizer.tokenize(sentences[0])) print('Token IDs: ', tokenizer.convert_tokens_to_ids(tokenizer.tokenize(sentences[0]))) <define_variables>
Digit Recognizer
10,869,544
max_len = 0 for sent in sentences: input_ids = tokenizer.encode(sent, add_special_tokens=True) max_len = max(max_len, len(input_ids)) print('Max sentence length: ', max_len) <categorify>
Digit Recognizer
10,427,138
input_ids = [] attention_masks = [] for sent in sentences: encoded_dict = tokenizer.encode_plus( sent, add_special_tokens = True, max_length = 64, pad_to_max_length = True, return_attention_mask = True, return_tensors = 'pt', ) input_ids.append(encoded_dict['input_ids']) attention_masks.append(encoded_dict['attention_mask']) input_ids = torch.cat(input_ids, dim=0) attention_masks = torch.cat(attention_masks, dim=0) labels = torch.tensor(labels) print('Original sentence: ', sentences[0]) print('Token IDs list:', input_ids[0]) <split>
%matplotlib inline
Digit Recognizer
10,427,138
dataset = TensorDataset(input_ids, attention_masks, labels) train_size = int(0.8 * len(dataset)) val_size = len(dataset)- train_size train_dataset, val_dataset = random_split(dataset, [train_size, val_size]) print('{:>5,} training samples'.format(train_size)) print('{:>5,} validation samples'.format(val_size))<load_pretrained>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
10,427,138
batch_size = 32 train_dataloader = DataLoader( train_dataset, sampler = RandomSampler(train_dataset), batch_size = batch_size ) validation_dataloader = DataLoader( val_dataset, sampler = SequentialSampler(val_dataset), batch_size = batch_size )<load_pretrained>
x_train = np.array(x_train) test = np.array(test )
Digit Recognizer
10,427,138
model = BertForSequenceClassification.from_pretrained( "bert-base-uncased", num_labels = 2, output_attentions = False, output_hidden_states = False, ) model.cuda()<choose_model_class>
y_train = to_categorical(y_train,10 )
Digit Recognizer
10,427,138
optimizer = AdamW(model.parameters() , lr = 2e-5, eps = 1e-8 ) epochs = 4 total_steps = len(train_dataloader)* epochs scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps = 0, num_training_steps = total_steps )<compute_test_metric>
x_train, x_val, y_train, y_val=train_test_split(x_train,y_train,test_size=0.1 )
Digit Recognizer
10,427,138
def flat_accuracy(preds, labels): pred_flat = np.argmax(preds, axis=1 ).flatten() labels_flat = labels.flatten() return np.sum(pred_flat == labels_flat)/ len(labels_flat) def format_time(elapsed): elapsed_rounded = int(round(( elapsed))) return str(datetime.timedelta(seconds=elapsed_rounded))<train_model>
model = Sequential()
Digit Recognizer
10,427,138
training_stats = [] total_t0 = time.time() for epoch_i in range(0, epochs): print("") print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs)) print('Training...') t0 = time.time() total_train_loss = 0 model.train() for step, batch in enumerate(train_dataloader): if step % 40 == 0 and not step == 0: elapsed = format_time(time.time() - t0) print(' Batch {:>5,} of {:>5,}.Elapsed: {:}.'.format(step, len(train_dataloader), elapsed)) b_input_ids = batch[0].to(device) b_input_mask = batch[1].to(device) b_labels = batch[2].to(device) model.zero_grad() loss, logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels) total_train_loss += loss.item() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters() , 1.0) optimizer.step() scheduler.step() avg_train_loss = total_train_loss / len(train_dataloader) training_time = format_time(time.time() - t0) print("") print(" Average training loss: {0:.2f}".format(avg_train_loss)) print(" Training epcoh took: {:}".format(training_time)) print("") print("Running Validation...") t0 = time.time() model.eval() total_eval_accuracy = 0 total_eval_loss = 0 nb_eval_steps = 0 for batch in validation_dataloader: b_input_ids = batch[0].to(device) b_input_mask = batch[1].to(device) b_labels = batch[2].to(device) with torch.no_grad() : (loss, logits)= model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels) total_eval_loss += loss.item() logits = logits.detach().cpu().numpy() label_ids = b_labels.to('cpu' ).numpy() total_eval_accuracy += flat_accuracy(logits, label_ids) avg_val_accuracy = total_eval_accuracy / len(validation_dataloader) print(" Accuracy: {0:.2f}".format(avg_val_accuracy)) avg_val_loss = total_eval_loss / len(validation_dataloader) validation_time = format_time(time.time() - t0) print(" Validation Loss: {0:.2f}".format(avg_val_loss)) print(" Validation took {:} time".format(validation_time)) training_stats.append( { 'epoch': epoch_i + 1, 'Training Loss': avg_train_loss, 'Valid.Loss': avg_val_loss, 'Valid.Accur.': avg_val_accuracy, 'Training Time': training_time, 'Validation Time': validation_time } ) print("") print("Training complete!") print("Total training took {:}(h:mm:ss)".format(format_time(time.time() -total_t0)) )<categorify>
model.add(Input(shape=(28, 28, 1))) model.add(Conv2D(filters=64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(1,1))) model.add(Conv2D(filters=64, kernel_size =(3,3),padding = 'Same',activation ='relu')) model.add(MaxPooling2D(pool_size=(1,1))) model.add(Conv2D(filters=64, kernel_size =(3,3),padding = 'Same',activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(128,(2,2),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Conv2D(128,(2,2),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
10,427,138
print('Number of test sentences: {:,} '.format(test.shape[0])) sentences_test = test.text.values input_ids = [] attention_masks = [] for sent in sentences_test: encoded_dict = tokenizer.encode_plus( sent, add_special_tokens = True, max_length = 64, pad_to_max_length = True, return_attention_mask = True, return_tensors = 'pt', ) input_ids.append(encoded_dict['input_ids']) attention_masks.append(encoded_dict['attention_mask']) input_ids = torch.cat(input_ids, dim=0) attention_masks = torch.cat(attention_masks, dim=0) batch_size = batch_size prediction_data = TensorDataset(input_ids, attention_masks) prediction_sampler = SequentialSampler(prediction_data) prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size )<predict_on_test>
model.compile(loss=keras.losses.categorical_crossentropy,\ optimizer = tf.keras.optimizers.Adam() ,\ metrics=['accuracy'] )
Digit Recognizer
10,427,138
print('Predicting labels for {:,} test sentences...'.format(len(input_ids))) model.eval() predictions = [] for batch in prediction_dataloader: batch = tuple(t.to(device)for t in batch) b_input_ids, b_input_mask = batch with torch.no_grad() : outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) logits = outputs[0] predictions.append(logits) print('DONE!') <concatenate>
model.fit(x_train,y_train, batch_size = 128, epochs = 30, validation_data=(x_val,y_val))
Digit Recognizer
10,427,138
all_logits = torch.cat(predictions, dim=0) probs = F.softmax(all_logits, dim=1 ).cpu().numpy() probs<prepare_output>
y_pred = model.predict(x_val) y_pred_classes = np.argmax(y_pred,axis = 1) y_pred_classes y_true = np.argmax(y_val,axis = 1) y_true confusion_mtx = confusion_matrix(y_true, y_pred_classes) confusion_mtx
Digit Recognizer
10,427,138
threshold = 0.5 preds = np.where(probs[:, 1] > threshold, 1, 0) preds<count_values>
model.evaluate(x_val,y_val,verbose=0 )
Digit Recognizer
10,427,138
print("Number of tweets labeled as true disaster tweet: ", preds.sum() )<prepare_x_and_y>
train_image_generator = ImageDataGenerator()
Digit Recognizer
10,427,138
Y_test = preds<save_to_csv>
history = model.fit_generator(train_image_generator.flow(x_train,y_train, batch_size =32),epochs = 3,validation_data =(x_val,y_val))
Digit Recognizer
10,427,138
df_submission = pd.read_csv('.. /input/nlp-getting-started/sample_submission.csv', index_col=0 ).fillna('') df_submission['target'] = Y_test df_submission.to_csv('submission.csv') !head submission.csv<set_options>
y_pred = model.predict(x_val) y_pred_classes = np.argmax(y_pred,axis = 1) y_pred_classes
Digit Recognizer
10,427,138
warnings.filterwarnings('ignore') stop = set(stopwords.words('english')) %matplotlib inline plt.style.use('ggplot') <load_from_csv>
y_true = np.argmax(y_val,axis = 1) y_true
Digit Recognizer
10,427,138
train = pd.read_csv('.. /input/nlp-getting-started/train.csv') test = pd.read_csv('.. /input/nlp-getting-started/test.csv') submission = pd.read_csv('.. /input/nlp-getting-started/sample_submission.csv') train_sent, test_sent, train_label = train.text.values, test.text.values, train.target.values<train_model>
confusion_mtx = confusion_matrix(y_true, y_pred_classes) confusion_mtx
Digit Recognizer
10,427,138
word_tokenizer = Tokenizer() word_tokenizer.fit_on_texts(train_sent) vocab_length = len(word_tokenizer.word_index)+ 1<string_transform>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
10,427,138
<feature_engineering><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
10,403,729
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<split>
import tensorflow.keras as keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten from tensorflow.keras.layers import Conv2D, MaxPool2D import numpy as np import pandas as pd import matplotlib.pyplot as plt
Digit Recognizer
10,403,729
X_train, X_test, y_train, y_test = train_test_split(padded_sentences, train_label, test_size=0.25, random_state=42, shuffle=True) <train_model>
training_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
10,403,729
def training(model, model_name): checkpoint = ModelCheckpoint(model_name + '.h5', monitor = 'val_loss', verbose = 1, save_best_only = True) reduce_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.2, verbose = 1, patience = 5, min_lr = 0.001) early_stop = EarlyStopping(monitor='val_loss', patience=1) start_time = time.time() history = model.fit(X_train, y_train, epochs = 100, batch_size = 32, validation_data = [X_test, y_test], verbose = 1, callbacks = [reduce_lr, checkpoint, early_stop]) end_time = time.time() print(" =>Training time :", round(end_time - start_time, 1), 's') model.load_weights(model_name + '.h5') start_time = time.time() preds = model.predict_classes(X_test) end_time = time.time() print(' =>Average Inference Time :', round(( end_time - start_time)/ len(X_test)* 1000, 1), 'ms') print(' =>Model Size :', round(os.stat(model_name + '.h5' ).st_size /(1024 ** 2), 1), 'MB') metrics(y_test, preds) plot(history, [['loss', 'val_loss'],['accuracy', 'val_accuracy']] )<choose_model_class>
X_train = training_data.drop('label', axis=1 ).values y_train = training_data[['label']].values X_test = test_data.values test_data.shape
Digit Recognizer
10,403,729
def CNN() : model = Sequential() model.add(Embedding(input_dim=embedding_matrix.shape[0], output_dim=embedding_matrix.shape[1], weights=[embedding_matrix], input_length=length_long_sentence)) model.add(Conv1D(filters=32, kernel_size=8, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model model = CNN() model.summary()<train_model>
batch_size = 128 num_classes = 10 epochs = 12 img_rows, img_cols = 28, 28 input_shape =(1, img_rows, img_cols )
Digit Recognizer
10,403,729
training(model, 'model_cnn' )<choose_model_class>
X_train = X_train.reshape(-1,28,28,1) X_test = X_test.reshape(-1,28,28,1 )
Digit Recognizer
10,403,729
def RNN() : model = Sequential() model.add(Embedding(input_dim=embedding_matrix.shape[0], output_dim=embedding_matrix.shape[1], weights=[embedding_matrix], input_length=length_long_sentence)) model.add(Bidirectional(SimpleRNN(length_long_sentence, return_sequences = True, recurrent_dropout=0.2))) model.add(GlobalMaxPool1D()) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(length_long_sentence, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(length_long_sentence, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(1, activation = 'sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model model = RNN() model.summary()<train_model>
X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print('x_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples' )
Digit Recognizer
10,403,729
training(model, 'model_rnn' )<choose_model_class>
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, stratify=y_train, test_size=0.15, random_state=42 )
Digit Recognizer
10,403,729
def BiGRU() : model = Sequential() model.add(Embedding(input_dim=embedding_matrix.shape[0], output_dim=embedding_matrix.shape[1], weights=[embedding_matrix], input_length=length_long_sentence)) model.add(Bidirectional(GRU(length_long_sentence, return_sequences = True, recurrent_dropout=0.2))) model.add(GlobalMaxPool1D()) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(length_long_sentence, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(length_long_sentence, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(1, activation = 'sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model model = BiGRU() model.summary()<train_model>
y_train = keras.utils.to_categorical(y_train, num_classes) y_val = keras.utils.to_categorical(y_val, num_classes) y_train.shape, y_val.shape
Digit Recognizer
10,403,729
training(model, 'model_bigru' )<choose_model_class>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
10,403,729
def BiLSTM() : model = Sequential() model.add(Embedding(input_dim=embedding_matrix.shape[0], output_dim=embedding_matrix.shape[1], weights=[embedding_matrix], input_length=length_long_sentence)) model.add(Bidirectional(LSTM(length_long_sentence, return_sequences = True, recurrent_dropout=0.2))) model.add(GlobalMaxPool1D()) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(length_long_sentence, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(length_long_sentence, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(1, activation = 'sigmoid')) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return model model = BiLSTM() model.summary()<train_model>
optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'] )
Digit Recognizer
10,403,729
training(model, 'model_bilstm' )<save_to_csv>
model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(X_val, y_val))
Digit Recognizer
10,403,729
submission.target = model.predict_classes(test_sentences) submission.to_csv("submission.csv", index=False )<import_modules>
score = model.evaluate(X_val, y_val, verbose=0) score
Digit Recognizer
10,403,729
import tensorflow as tf from tensorflow import keras import numpy as np import pandas as pd from matplotlib import pyplot as plt<load_from_csv>
results = model.predict(X_test) results = np.argmax(results, axis = 1) results = pd.Series(results, name="Label" )
Digit Recognizer
10,403,729
<count_values><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"), results],axis = 1) submission.to_csv("cnn_mnist.csv",index=False )
Digit Recognizer
10,394,678
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<count_values>
!pip install -q efficientnet_pytorch
Digit Recognizer
10,394,678
df.keyword.value_counts(dropna=False )<count_values>
import time import random import datetime import os import numpy as np import pandas as pd from sklearn import model_selection import torch from torch import nn from torch.utils.data import Dataset, DataLoader import efficientnet_pytorch import cv2 import albumentations as A from albumentations.pytorch.transforms import ToTensorV2 import matplotlib.pyplot as plt
Digit Recognizer
10,394,678
df.location.value_counts(dropna=False )<feature_engineering>
SEED = 42
Digit Recognizer
10,394,678
glove = {} with open(".. /input/glove6b/glove.6B.100d.txt")as f: for line in f: glove[line.split() [0]] = line.split() [1:]<count_values>
def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True seed_everything(SEED )
Digit Recognizer
10,394,678
word_counts = df.text.str.lower().str.split().explode().value_counts() word_counts.cumsum() [10000] / word_counts.sum()<string_transform>
class DataLoaderConfig: batch_size = 64 num_workers = 8 class TrainConfig: criterion = nn.CrossEntropyLoss n_epochs = 10 lr = 0.001 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau scheduler_params = dict( mode='min', factor=0.5, patience=1, verbose=False, threshold=0.0001, threshold_mode='abs', cooldown=0, min_lr=1e-8, eps=1e-08 ) DEVICE = torch.device('cuda')if torch.cuda.is_available() else torch.device('cpu' )
Digit Recognizer
10,394,678
NUM_WORDS = 10000 MAXLEN = 30 texts = df.text.str.lower() tokenizer = keras.preprocessing.text.Tokenizer(num_words=NUM_WORDS) tokenizer.fit_on_texts(texts) sequences = tokenizer.texts_to_sequences(texts) word_index = tokenizer.word_index data = keras.preprocessing.sequence.pad_sequences(sequences, maxlen=MAXLEN )<define_variables>
df = pd.read_csv('.. /input/digit-recognizer/train.csv') print(df.shape) df.head()
Digit Recognizer
10,394,678
labels = df.target<prepare_x_and_y>
y = df['label'].values X = df.drop(['label'], axis=1 ).values
Digit Recognizer
10,394,678
x_train = data y_train = labels<define_variables>
X_train, X_valid, y_train, y_valid = model_selection.train_test_split(X, y, test_size=0.2) X_train.shape, X_valid.shape, y_train.shape, y_valid.shape
Digit Recognizer
10,394,678
EMBEDDING_DIM = len(glove["the"]) embedding_matrix = np.zeros(( NUM_WORDS, EMBEDDING_DIM)) for word, i in word_index.items() : if i < NUM_WORDS: embedding_vector = glove.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector<choose_model_class>
class DatasetRetriever(Dataset): def __init__(self, X, y, transforms=None): super().__init__() self.X = X.reshape(-1, 28, 28 ).astype(np.float32) self.y = y self.transforms = transforms def __getitem__(self, index): image, target = self.X[index], self.y[index] image = np.stack([image] * 3, axis=-1) image /= 255. if self.transforms: image = self.transforms(image=image)['image'] return image, torch.tensor(target, dtype=torch.long) def __len__(self): return self.y.shape[0]
Digit Recognizer
10,394,678
model = keras.Sequential([ layers.Embedding(NUM_WORDS, EMBEDDING_DIM, input_length=MAXLEN, name='embedding'), layers.Bidirectional(layers.GRU(32, dropout=.2, recurrent_dropout=.2,)) , layers.Dense(1, activation='sigmoid'), ]) model.get_layer('embedding' ).set_weights([embedding_matrix]) model.get_layer('embedding' ).trainable = False optimizer = keras.optimizers.RMSprop(lr=1e-2) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['acc']) model.summary()<train_model>
def get_train_transforms() : return A.Compose( [ A.Rotate(limit=10, border_mode=cv2.BORDER_REPLICATE, p=0.5), A.Cutout(num_holes=8, max_h_size=2, max_w_size=2, fill_value=0, p=0.5), A.Cutout(num_holes=8, max_h_size=1, max_w_size=1, fill_value=1, p=0.5), A.Resize(32, 32, p=1.) , ToTensorV2(p=1.0), ], p=1.0) def get_valid_transforms() : return A.Compose( [ A.Resize(32, 32, p=1.) , ToTensorV2(p=1.0), ], p=1.0 )
Digit Recognizer
10,394,678
early_stopping = keras.callbacks.EarlyStopping( patience=10, restore_best_weights=True, ) lr_decay = keras.callbacks.ReduceLROnPlateau() history = model.fit( x_train, y_train, epochs=50, batch_size=32, validation_split=.2, callbacks=[early_stopping, lr_decay] )<load_from_csv>
train_dataset = DatasetRetriever( X = X_train, y = y_train, transforms=get_train_transforms() , ) valid_dataset = DatasetRetriever( X = X_valid, y = y_valid, transforms=get_valid_transforms() , )
Digit Recognizer
10,394,678
test_df = pd.read_csv(".. /input/nlp-getting-started/test.csv", index_col=0) def preprocess(texts, labels=None, tokenizer=tokenizer): NUM_WORDS = 10000 MAXLEN = 30 texts = pd.Series(texts ).str.lower() sequences = tokenizer.texts_to_sequences(texts) data = keras.preprocessing.sequence.pad_sequences(sequences, maxlen=MAXLEN) return data, np.array(labels) x_test,_ = preprocess(test_df.text) preds = model.predict(x_test) preds<save_to_csv>
train_loader = DataLoader( train_dataset, batch_size=DataLoaderConfig.batch_size, shuffle=True, num_workers=DataLoaderConfig.num_workers, ) valid_loader = DataLoader( valid_dataset, batch_size=DataLoaderConfig.batch_size, shuffle=False, num_workers=DataLoaderConfig.num_workers, )
Digit Recognizer
10,394,678
answer_df = pd.read_csv( '.. /input/nlp-getting-started/sample_submission.csv', index_col=0 ) answer_df['target'] =(preds > 0.5 ).astype('uint8') answer_df.to_csv('submission.csv') !head submission.csv<install_modules>
class LossMeter: def __init__(self): self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.sum += val * n self.count += n self.avg = self.sum / self.count class AccMeter: def __init__(self): self.true_count = 0 self.all_count = 0 self.avg = 0 def update(self, y_true, y_pred): y_true = y_true.cpu().numpy().astype(int) y_pred = y_pred.cpu().numpy().argmax(axis=1 ).astype(int) self.true_count +=(y_true == y_pred ).sum() self.all_count += y_true.shape[0] self.avg = self.true_count / self.all_count
Digit Recognizer
10,394,678
!pip install -U tensorflow-text==2.3<install_modules>
class Fitter: def __init__( self, model, device, criterion, n_epochs, lr, sheduler=None, scheduler_params=None ): self.epoch = 0 self.n_epochs = n_epochs self.base_dir = './' self.log_path = f'{self.base_dir}/log.txt' self.best_summary_loss = np.inf self.model = model self.device = device self.optimizer = torch.optim.Adam(self.model.parameters() , lr=lr) if sheduler: self.scheduler = sheduler(self.optimizer, **scheduler_params) self.criterion = criterion().to(self.device) self.log(f'Fitter prepared.Device is {self.device}') def fit(self, train_loader, valid_loader): for e in range(self.n_epochs): current_lr = self.optimizer.param_groups[0]['lr'] self.log(f' {datetime.datetime.utcnow().isoformat() } LR: {current_lr}') t = int(time.time()) summary_loss, final_scores = self.train_one_epoch(train_loader) self.log( f'[RESULT]: Train.Epoch: {self.epoch}, ' + \ f'summary_loss: {summary_loss.avg:.5f}, ' + \ f'final_score: {final_scores.avg:.5f}, ' + \ f'time: {int(time.time())- t} s' ) t = int(time.time()) summary_loss, final_scores = self.validation(valid_loader) self.log( f'[RESULT]: Valid.Epoch: {self.epoch}, ' + \ f'summary_loss: {summary_loss.avg:.5f}, ' + \ f'final_score: {final_scores.avg:.5f}, ' + \ f'time: {int(time.time())- t} s' ) f_best = 0 if summary_loss.avg < self.best_summary_loss: self.best_summary_loss = summary_loss.avg f_best = 1 self.scheduler.step(metrics=summary_loss.avg) self.save(f'{self.base_dir}/last-checkpoint.bin') if f_best: self.save(f'{self.base_dir}/best-checkpoint.bin') print('New best checkpoint') self.epoch += 1 def validation(self, val_loader): self.model.eval() summary_loss = LossMeter() final_scores = AccMeter() t = int(time.time()) for step,(images, targets)in enumerate(val_loader): print( f'Valid Step {step}/{len(val_loader)}, ' + \ f'summary_loss: {summary_loss.avg:.5f}, ' + \ f'final_score: {final_scores.avg:.5f}, ' + \ f'time: {int(time.time())- t} s', end='\r' ) with torch.no_grad() : targets = targets.to(self.device) images = images.to(self.device) batch_size = images.shape[0] outputs = self.model(images) loss = self.criterion(outputs, targets) final_scores.update(targets, outputs) summary_loss.update(loss.detach().item() , batch_size) return summary_loss, final_scores def train_one_epoch(self, train_loader): self.model.train() summary_loss = LossMeter() final_scores = AccMeter() t = int(time.time()) for step,(images, targets)in enumerate(train_loader): print( f'Train Step {step}/{len(train_loader)}, ' + \ f'summary_loss: {summary_loss.avg:.5f}, ' + \ f'final_score: {final_scores.avg:.5f}, ' + \ f'time: {int(time.time())- t} s', end='\r' ) targets = targets.to(self.device) images = images.to(self.device) batch_size = images.shape[0] self.optimizer.zero_grad() outputs = self.model(images) loss = self.criterion(outputs, targets) loss.backward() final_scores.update(targets, outputs.detach()) summary_loss.update(loss.detach().item() , batch_size) self.optimizer.step() return summary_loss, final_scores def save(self, path): self.model.eval() torch.save({ 'model_state_dict': self.model.state_dict() , 'optimizer_state_dict': self.optimizer.state_dict() , 'scheduler_state_dict': self.scheduler.state_dict() , 'best_summary_loss': self.best_summary_loss, 'epoch': self.epoch, }, path) def load(self, path): checkpoint = torch.load(path) self.model.load_state_dict(checkpoint['model_state_dict']) self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) self.best_summary_loss = checkpoint['best_summary_loss'] self.epoch = checkpoint['epoch'] + 1 def log(self, message): print(message) with open(self.log_path, 'a+')as logger: logger.write(f'{message} ' )
Digit Recognizer