kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
9,309,487
outputs = roberta_seq.predict(test_dataset) y_pred = outputs[0].argmax(axis=1 )<compute_test_metric>
model.add(Conv2D(64,(3,3),padding='same',activation= 'relu')) model.add(BatchNormalization()) model.add(Conv2D(64,(3,3),padding='same',activation= 'relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.4))
Digit Recognizer
9,309,487
print('Confusion matrix:') print(confusion_matrix(y_test,y_pred,labels=[0,1])) print() print('Classification report:') print(classification_report(y_test,y_pred,labels=[0,1],target_names=['not a disaster','disaster']))<define_variables>
model.add(Dense(256,activation= 'relu')) model.add(Dropout(0.25)) model.add(Dense(128,activation= 'relu')) model.add(Dropout(0.50)) model.add(Dense(10,activation= 'softmax'))
Digit Recognizer
9,309,487
tweets_test = list(df_test['text']) tweets_test = process_tweets(tweets_test) X_real_test = roberta_tokenizer(tweets_test,padding='max_length',max_length=max_len,return_tensors='tf') real_test_dataset = tf.data.Dataset.from_tensor_slices(dict(X_real_test)) real_test_dataset = real_test_dataset.batch(batch_size) real_test_dataset<predict_on_test>
optimizer =Adam(lr=0.004 )
Digit Recognizer
9,309,487
outputs_test = roberta_seq.predict(real_test_dataset) y_pred_test = outputs_test[0].argmax(axis=1 )<save_to_csv>
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
Digit Recognizer
9,309,487
results = pd.Series(y_pred_test,index=df_test.index,name='target') results.to_csv('./submission.csv' )<import_modules>
plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True) Image("model.png")
Digit Recognizer
9,309,487
import pandas as pd import numpy as np import cv2 from glob import glob import sklearn from sklearn.model_selection import GroupKFold, StratifiedKFold from sklearn.metrics import roc_auc_score, log_loss from sklearn import metrics from sklearn.metrics import log_loss from skimage import io import os from datetime import datetime import time import random import torchvision from torchvision import transforms from tqdm import tqdm import matplotlib.pyplot as plt import torch from torch import nn from torch.utils.data import Dataset,DataLoader from torch.utils.data.sampler import SequentialSampler, RandomSampler from torch.cuda.amp import autocast, GradScaler import warnings import joblib from scipy.ndimage.interpolation import zoom<init_hyperparams>
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)
Digit Recognizer
9,309,487
CFG = { 'fold_num': 12, 'seed': 719, 'model_arch': 'tf_efficientnet_b3_ns', 'img_size': 384, 'epochs': 120, 'train_bs': 28, 'valid_bs': 32, 'lr': 1e-2, 'num_workers': 5, 'accum_iter': 1, 'verbose_step': 2, 'device': 'cuda:0', 'tta': 10, 'used_epochs': [6,7,8,9], 'weights': [1,1,1,1] }<set_options>
datagen = ImageDataGenerator(zoom_range = 0.2, ) datagen.fit(x_train )
Digit Recognizer
9,309,487
def all_seed(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True<normalization>
hist = model.fit_generator(datagen.flow(x_train, y_train, batch_size=256), steps_per_epoch=600, epochs=15, verbose=1, validation_data=(x_test, y_test) )
Digit Recognizer
9,309,487
def get_img(path): im_bgr = cv2.imread(path) im_rgb = im_bgr[:, :, ::-1] return im_rgb<load_pretrained>
y_pred = model.predict(test, verbose = 1)
Digit Recognizer
9,309,487
img = get_img('.. /input/cassava-leaf-disease-classification/train_images/1000015157.jpg') plt.imshow(img) plt.show()<load_from_csv>
predictions=[] for i in range(len(test)) : a=np.where(y_pred[i] == max(y_pred[i])) predictions.append(a[0][0] )
Digit Recognizer
9,309,487
<count_values><EOS>
counter = range(1, len(predictions)+ 1) solution = pd.DataFrame({"ImageId": counter, "label": list(predictions)}) solution.to_csv("digit_recognizer8.csv", index = False )
Digit Recognizer
9,281,452
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv>
import pandas as pd import numpy as np import matplotlib.pyplot as plt from keras.models import Model, load_model from keras.layers import Conv2D, Input, MaxPooling2D, Dense, Dropout, Flatten from keras.layers import LeakyReLU from keras.layers.normalization import BatchNormalization from keras.preprocessing.image import ImageDataGenerator from keras.utils.np_utils import to_categorical from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from sklearn.model_selection import train_test_split
Digit Recognizer
9,281,452
sample_submission = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv') sample_submission.head()<categorify>
train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") submission = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv") X = train.drop(['label'],1 ).values Y = train['label'].values x_test = test.values X = X/255. x_test = x_test/255. X = X.reshape(-1,28,28,1) x_test = x_test.reshape(-1,28,28,1) Y = to_categorical(Y)
Digit Recognizer
9,281,452
class CassavaDataset(Dataset): def __init__(self, df, data_root, transforms = None, output_label = True): super().__init__() self.df = df.reset_index(drop = True ).copy() self.transforms = transforms self.data_root = data_root self.output_label = output_label def __len__(self): return self.df.shape[0] def __getitem__(self, index: int): path = "{}/{}".format(self.data_root, self.df.iloc[index]['image_id']) img = get_img(path) if self.transforms: img = self.transforms(image = img)['image'] if self.output_label: target = self.df.iloc[index]['label'] if self.output_label: return img, target else: return img<import_modules>
x_train, x_valid, y_train, y_valid = train_test_split(X,Y, test_size=0.1 )
Digit Recognizer
9,281,452
HorizontalFlip, VerticalFlip, Transpose, ShiftScaleRotate, HueSaturationValue,RandomResizedCrop, RandomBrightnessContrast, Compose, Normalize, Cutout, CoarseDropout, CenterCrop, Resize ) <categorify>
def get_model() : In = Input(shape=(28,28,1)) x = Conv2D(32,(3,3), padding="same" )(In) x = LeakyReLU(alpha=0.01 )(x) x = Conv2D(32,(3,3), padding="same" )(x) x = LeakyReLU(alpha=0.01 )(x) x = BatchNormalization()(x) x = MaxPooling2D(( 2,2))(x) x = Conv2D(64,(3,3), padding="same" )(x) x = LeakyReLU(alpha=0.01 )(x) x = Conv2D(64,(3,3), padding="same" )(x) x = LeakyReLU(alpha=0.01 )(x) x = BatchNormalization()(x) x = MaxPooling2D(( 2,2))(x) x = Dropout(0.2 )(x) x = Conv2D(128,(3,3), padding="same" )(x) x = LeakyReLU(alpha=0.01 )(x) x = Conv2D(128,(3,3), padding="same" )(x) x = LeakyReLU(alpha=0.01 )(x) x = BatchNormalization()(x) x = MaxPooling2D(( 2,2))(x) x = Dropout(0.2 )(x) x = Flatten()(x) x = Dense(512 )(x) x = LeakyReLU(alpha=0.01 )(x) x = BatchNormalization()(x) x = Dropout(0.2 )(x) x = Dense(256 )(x) x = LeakyReLU(alpha=0.01 )(x) x = BatchNormalization()(x) x = Dropout(0.2 )(x) x = Dense(128 )(x) x = LeakyReLU(alpha=0.01 )(x) x = BatchNormalization()(x) x = Dropout(0.2 )(x) Out = Dense(10, activation="softmax" )(x) model = Model(In, Out) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) return model model = get_model() model.summary()
Digit Recognizer
9,281,452
def get_train_transforms() : return Compose([ RandomResizedCrop(CFG['img_size'], CFG['img_size']), Transpose(p=0.5), HorizontalFlip(p=0.5), VerticalFlip(p=0.5), ShiftScaleRotate(p=0.5), HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5), RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), CoarseDropout(p=0.5), Cutout(p=0.5), ToTensorV2(p=1.0), ], p=1.)<categorify>
best_checkpoint = ModelCheckpoint('best.hdf5',monitor = 'val_loss', mode = "min", verbose = 1, save_best_only = True) lr_reduction = ReduceLROnPlateau(monitor = 'val_loss', patience = 3, verbose = 1, factor = 0.5, min_lr = 1e-6 )
Digit Recognizer
9,281,452
def get_inference_transforms() : return Compose([ RandomResizedCrop(CFG['img_size'], CFG['img_size']), Transpose(p=0.5), HorizontalFlip(p=0.5), VerticalFlip(p=0.5), HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5), RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), ToTensorV2(p=1.0), ], p=1.)<define_variables>
data_generator = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) epochs = 100 batch_size = 128 train_generator = data_generator.flow(x_train, y_train, batch_size=batch_size) valid_generator = data_generator.flow(x_valid, y_valid, batch_size=batch_size )
Digit Recognizer
9,281,452
package_path = '.. /input/pytorch-image-models/pytorch-image-models-master' sys.path.append(package_path) <import_modules>
hist = model.fit_generator(train_generator, epochs=epochs, steps_per_epoch = x_train.shape[0]//batch_size, validation_data = valid_generator, validation_steps = x_valid.shape[0]//batch_size, callbacks=[best_checkpoint, lr_reduction], verbose=1 )
Digit Recognizer
9,281,452
class CassavaImgClassifier(nn.Module): def __init__(self, model_arch, n_class, pretrained=False): super().__init__() self.model = timm.create_model(model_arch, pretrained=pretrained) n_features = self.model.classifier.in_features self.model.classifier = nn.Linear(n_features, n_class) def forward(self, x): x = self.model(x) return x<define_variables>
best = load_model("best.hdf5") preds = best.predict(x_test, verbose=1) preds = np.array([np.argmax(i)for i in preds]) preds
Digit Recognizer
9,281,452
<import_modules><EOS>
submission['Label'] = preds submission.to_csv("submission.csv", index=False) submission.head()
Digit Recognizer
8,147,528
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
8,147,528
if __name__ == '__main__': all_seed(CFG['seed']) folds = StratifiedKFold(n_splits=CFG['fold_num'] ).split(np.arange(train.shape[0]), train.label.values) for fold,(trn_idx, val_idx)in enumerate(folds): if fold > 0: break print('Inference fold {} started'.format(fold)) valid_ = train.loc[val_idx,:].reset_index(drop=True) valid_ds = CassavaDataset(valid_, '.. /input/cassava-leaf-disease-classification/train_images/', transforms = get_inference_transforms() , output_label=False) test = pd.DataFrame() test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/')) test_ds = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms = get_inference_transforms() , output_label=False) val_loader = torch.utils.data.DataLoader( valid_ds, batch_size = CFG['valid_bs'], num_workers = CFG['num_workers'], shuffle = False, pin_memory = False, ) tst_loader = torch.utils.data.DataLoader( test_ds, batch_size = CFG['valid_bs'], num_workers = CFG['num_workers'], shuffle = False, pin_memory = False, ) device = torch.device(CFG['device']) model = EnsembleClassifier(CFG['model_arch'], train.label.nunique() ).to(device) val_preds = [] tst_preds = [] for i, epoch in enumerate(CFG['used_epochs']): model.load(torch.load('.. /input/fork-pytorch-efficientnet-baseline-train-amp-a/{}_fold_{}_{}'.format(CFG['model_arch'], fold, epoch))) with torch.no_grad() : for _ in range(CFG['tta']): val_preds += [CFG['weights'][i]/sum(CFG['weights'])/CFG['tta']*inference_one_epoch(model, val_loader, device)] tst_preds += [CFG['weights'][i]/sum(CFG['weights'])/CFG['tta']*inference_one_epoch(model, tst_loader, device)] val_preds = np.mean(val_preds, axis=0) tst_preds = np.mean(tst_preds, axis=0) print('fold {} validation loss = {:.5f}'.format(fold, log_loss(valid_.label.values, val_preds))) print('fold {} validation accuracy = {:.5f}'.format(fold,(valid_.label.values==np.argmax(val_preds, axis=1)).mean())) del model torch.cuda.empty_cache()<feature_engineering>
X_train = train.drop(labels=["label"], axis=1) Y_train = train['label'] del train X_train = X_train / 255. test = test / 255. X_train = X_train.values.reshape(-1, 28, 28, 1) test = test.values.reshape(-1, 28, 28, 1)
Digit Recognizer
8,147,528
test['label'] = np.argmax(tst_preds, axis=1) test.head()<save_to_csv>
X_train, X_val, Y_train, Y_val = train_test_split( X_train, Y_train, test_size=0.1, random_state=42 )
Digit Recognizer
8,147,528
test.to_csv('submission.csv', index = False )<define_variables>
datagen = ImageDataGenerator( rotation_range=10, zoom_range=(1.15, 0.95), width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False, shear_range=5 )
Digit Recognizer
8,147,528
package_paths = [ '.. /input/pytorch-image-models/pytorch-image-models-master', '.. /input/adamp-optimizer/AdamP-master/adamp' ] for pth in package_paths: sys.path.append(pth )<import_modules>
init = RandomNormal(stddev=0.02) model = Sequential([ Conv2D(32, 3, input_shape=(28, 28, 1), activation='relu', kernel_initializer=init), BatchNormalization() , Conv2D(32, 3, activation='relu', kernel_initializer=init), BatchNormalization() , Conv2D(32, 5, strides=2, padding='same', activation='relu', kernel_initializer=init), BatchNormalization() , Dropout(0.4), Conv2D(64, 3, activation='relu', kernel_initializer=init), BatchNormalization() , Conv2D(64, 3, activation='relu', kernel_initializer=init), BatchNormalization() , Conv2D(64, 5, strides=2, padding='same', activation='relu', kernel_initializer=init), BatchNormalization() , Dropout(0.4), Conv2D(128, 4, activation='relu', kernel_initializer=init), BatchNormalization() , Flatten() , Dropout(0.4), Dense(10, activation='softmax') ]) model.summary()
Digit Recognizer
8,147,528
from glob import glob from sklearn.model_selection import GroupKFold, StratifiedKFold import cv2 from skimage import io import torch from torch import nn import os from datetime import datetime import time import random import cv2 import torchvision from torchvision import transforms import pandas as pd import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt from torch.utils.data import Dataset,DataLoader from torch.utils.data.sampler import SequentialSampler, RandomSampler from torch.cuda.amp import autocast, GradScaler from torch.nn.modules.loss import _WeightedLoss import torch.nn.functional as F import timm import sklearn import warnings import joblib from sklearn.metrics import roc_auc_score, log_loss from sklearn import metrics import warnings import cv2 from scipy.ndimage.interpolation import zoom<set_options>
model.compile( optimizer=Adam(lr=1e-3), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] )
Digit Recognizer
8,147,528
CFG = { 'valid': False, 'fold_num': 5, 'seed': 719, 'model_arch1': 'tf_efficientnet_b4_ns', 'model_arch2': 'tf_efficientnet_b4_ns', 'model_arch3' : 'regnety_040', 'model_arch4' : 'regnety_040', 'model_arch5': 'tf_efficientnet_b4_ns', 'model_arch6': 'regnety_040', 'ckpt_path2': 'regnety4noresetadamp', 'ckpt_path3': 'regnety4nocv', 'weight' : [1/6 for _ in range(6)], 'img_size1': 512, 'img_size2': 512, 'img_size3': 512, 'img_size4': 512, 'epochs': 10, 'tta_num' : 3, 'train_bs': 64, 'valid_bs': 64, 'T_0': 10, 'lr': 1e-4, 'min_lr': 1e-6, 'weight_decay':1e-6, 'num_workers': 4, 'accum_iter': 2, 'verbose_step': 1, 'device': 'cuda:0', 'used_epochs': [5, 6, 7, 8, 9] }<load_from_csv>
learning_rate_reduction = ReduceLROnPlateau( monitor='val_sparse_categorical_accuracy', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
8,147,528
train = pd.read_csv('.. /input/cassava-leaf-disease-classification/train.csv') train.head()<load_from_csv>
history = model.fit( datagen.flow(X_train, Y_train, batch_size=64), epochs=45, validation_data=(X_val, Y_val), callbacks=[learning_rate_reduction], use_multiprocessing=True )
Digit Recognizer
8,147,528
<set_options><EOS>
results = model.predict(test) results = np.argmax(results, axis=1) submission = pd.concat([ pd.Series(range(1,28001), name="ImageId"), pd.Series(results, name="Label") ], axis=1) submission.to_csv("submission.csv", index=False )
Digit Recognizer
1,021,412
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<prepare_x_and_y>
%matplotlib inline
Digit Recognizer
1,021,412
def rand_bbox(size, lam): W = size[0] H = size[1] cut_rat = np.sqrt(1.- lam) cut_w = np.int(W * cut_rat) cut_h = np.int(H * cut_rat) cx = np.random.randint(W) cy = np.random.randint(H) bbx1 = np.clip(cx - cut_w // 2, 0, W) bby1 = np.clip(cy - cut_h // 2, 0, H) bbx2 = np.clip(cx + cut_w // 2, 0, W) bby2 = np.clip(cy + cut_h // 2, 0, H) return bbx1, bby1, bbx2, bby2 class CassavaDataset(Dataset): def __init__(self, df, data_root, transforms=None, output_label=True, ): super().__init__() self.df = df.reset_index(drop=True ).copy() self.transforms = transforms self.data_root = data_root self.output_label = output_label if self.output_label == True: self.labels = self.df['label'].values def __len__(self): return self.df.shape[0] def __getitem__(self, index: int): if self.output_label: target = self.labels[index] img = get_img("{}/{}".format(self.data_root, self.df.loc[index]['image_id'])) if self.transforms: img = self.transforms(image=img)['image'] if self.output_label == True: return img, target else: return img<categorify>
train_df = pd.read_csv(".. /input/train.csv") test_df = pd.read_csv(".. /input/test.csv")
Digit Recognizer
1,021,412
HorizontalFlip, VerticalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90, Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue, IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, RandomResizedCrop, IAASharpen, IAAEmboss, RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, Cutout, CoarseDropout, ShiftScaleRotate, CenterCrop, Resize, Rotate, ShiftScaleRotate, CenterCrop, Resize, Rotate, RandomShadow, RandomSizedBBoxSafeCrop, ChannelShuffle, MotionBlur ) def get_train_transforms() : return Compose([ RandomResizedCrop(CFG['img_size1'], CFG['img_size1']), Transpose(p=0.5), HorizontalFlip(p=0.5), VerticalFlip(p=0.5), ShiftScaleRotate(p=0.5), HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5), RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), CoarseDropout(p=0.5), Cutout(p=0.5), ToTensorV2(p=1.0), ], p=1.) def get_valid_transforms() : return Compose([ CenterCrop(CFG['img_size1'], CFG['img_size1'], p=1.) , Resize(CFG['img_size1'], CFG['img_size1']), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), ToTensorV2(p=1.0), ], p=1.) def get_inference_transforms1() : return Compose([ OneOf([ Resize(CFG['img_size1'], CFG['img_size1'], p=1.) , CenterCrop(CFG['img_size1'], CFG['img_size1'], p=1.) , RandomResizedCrop(CFG['img_size1'], CFG['img_size1'], p=1.) ], p=1.) , Transpose(p=0.5), HorizontalFlip(p=0.5), VerticalFlip(p=0.5), Resize(CFG['img_size1'], CFG['img_size1']), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), ToTensorV2(p=1.0), ], p=1.) def get_inference_transforms2() : return Compose([ OneOf([ Resize(CFG['img_size2'], CFG['img_size2'], p=1.) , CenterCrop(CFG['img_size2'], CFG['img_size2'], p=1.) , RandomResizedCrop(CFG['img_size2'], CFG['img_size2'], p=1.) ], p=1.) , Transpose(p=0.5), HorizontalFlip(p=0.5), VerticalFlip(p=0.5), Resize(CFG['img_size2'], CFG['img_size2']), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), ToTensorV2(p=1.0), ], p=1.)<choose_model_class>
train_data = train_df.values test_data = test_df.values
Digit Recognizer
1,021,412
class CassvaImgClassifier(nn.Module): def __init__(self, model_arch, n_class, pretrained=False): super().__init__() self.model = timm.create_model(model_arch, pretrained=pretrained) if model_arch == 'regnety_040': self.model.head = nn.Sequential( nn.AdaptiveAvgPool2d(( 1,1)) , nn.Flatten() , nn.Linear(1088, n_class) ) elif model_arch == 'regnety_320': self.model.head = nn.Sequential( nn.AdaptiveAvgPool2d(( 1,1)) , nn.Flatten() , nn.Linear(3712, n_class) ) elif model_arch == 'regnety_080': self.model.head = nn.Sequential( nn.AdaptiveAvgPool2d(( 1,1)) , nn.Flatten() , nn.Linear(2016, n_class) ) elif model_arch == 'regnety_160': self.model.head = nn.Sequential( nn.AdaptiveAvgPool2d(( 1,1)) , nn.Flatten() , nn.Linear(3024, n_class) ) else: n_features = self.model.classifier.in_features self.model.classifier = nn.Linear(n_features, n_class) def forward(self, x): x = self.model(x) return x<choose_model_class>
labels = train_data[:,0] train = train_data[:,1:]/255
Digit Recognizer
1,021,412
class CassvaImgClassifier_ViT(nn.Module): def __init__(self, model_arch, n_class, pretrained=False): super().__init__() self.model = timm.create_model(model_arch, pretrained=pretrained) self.model.head = nn.Linear(self.model.head.in_features, n_class) for module in self.model.modules() : if isinstance(module, nn.BatchNorm2d): if hasattr(module, 'weight'): module.weight.requires_grad_(False) if hasattr(module, 'bias'): module.bias.requires_grad_(False) def forward(self, x): x = self.model(x) return x<create_dataframe>
dummy_y = keras.utils.to_categorical(labels) x_train, x_test, y_train, y_test = train_test_split(train, dummy_y, test_size=0.1, random_state=166,stratify=labels )
Digit Recognizer
1,021,412
def prepare_dataloader(df, trn_idx, val_idx, data_root='.. /input/cassava-leaf-disease-classification/train_images/'): train_ = df.loc[trn_idx,:].reset_index(drop=True) valid_ = df.loc[val_idx,:].reset_index(drop=True) train_ds = CassavaDataset(train_, data_root, transforms=get_train_transforms() , output_label=True) valid_ds = CassavaDataset(valid_, data_root, transforms=get_valid_transforms() , output_label=True) train_loader = torch.utils.data.DataLoader( train_ds, batch_size=CFG['train_bs'], pin_memory=False, drop_last=False, shuffle=True, num_workers=CFG['num_workers'], ) val_loader = torch.utils.data.DataLoader( valid_ds, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) return train_loader, val_loader def train_one_epoch(epoch, model, loss_fn, optimizer, train_loader, device, scheduler=None, schd_batch_update=False): model.train() t = time.time() running_loss = None for step,(imgs, image_labels)in enumerate(train_loader): imgs = imgs.to(device ).float() image_labels = image_labels.to(device ).long() with autocast() : image_preds = model(imgs) loss = loss_fn(image_preds, image_labels) scaler.scale(loss ).backward() if running_loss is None: running_loss = loss.item() else: running_loss = running_loss *.99 + loss.item() *.01 if(( step + 1)% CFG['accum_iter'] == 0)or(( step + 1)== len(train_loader)) : scaler.step(optimizer) scaler.update() optimizer.zero_grad() if scheduler is not None and schd_batch_update: scheduler.step() if scheduler is not None and not schd_batch_update: scheduler.step() def valid_one_epoch(epoch, model, loss_fn, val_loader, device, scheduler=None, schd_loss_update=False): model.eval() t = time.time() loss_sum = 0 sample_num = 0 image_preds_all = [] image_targets_all = [] for step,(imgs, image_labels)in enumerate(val_loader): imgs = imgs.to(device ).float() image_labels = image_labels.to(device ).long() image_preds = model(imgs) image_preds_all += [torch.argmax(image_preds, 1 ).detach().cpu().numpy() ] image_targets_all += [image_labels.detach().cpu().numpy() ] loss = loss_fn(image_preds, image_labels) loss_sum += loss.item() *image_labels.shape[0] sample_num += image_labels.shape[0] image_preds_all = np.concatenate(image_preds_all) image_targets_all = np.concatenate(image_targets_all) print('epoch = {}'.format(epoch+1), 'validation multi-class accuracy = {:.4f}'.format(( image_preds_all==image_targets_all ).mean())) if scheduler is not None: if schd_loss_update: scheduler.step(loss_sum/sample_num) else: scheduler.step() def inference_one_epoch(model, data_loader, device): model.eval() image_preds_all = [] with torch.no_grad() : for step,(imgs)in enumerate(data_loader): imgs = imgs.to(device ).float() image_preds = model(imgs) image_preds_all += [torch.softmax(image_preds, 1 ).detach().cpu().numpy() ] image_preds_all = np.concatenate(image_preds_all, axis=0) return image_preds_all<train_model>
model = Sequential() callbacks = [keras.callbacks.ModelCheckpoint('minist.h5', monitor='val_acc', verbose=1, save_best_only=True, mode='auto')] model.add(Conv2D(64, kernel_size=(3, 3), activation='relu',padding='same', input_shape=(28,28,1))) model.add(Conv2D(64,(3, 3),padding='same', activation='relu')) model.add(Conv2D(128,(3, 3),padding='same', activation='relu')) model.add(Conv2D(128,(28, 28),activation='relu')) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.summary() sgd = SGD(lr=0.01, momentum=0.9) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) model.fit(x_train, y_train, batch_size=128, epochs=50, verbose=1, validation_data=(x_test, y_test),callbacks=callbacks )
Digit Recognizer
1,021,412
def freeze_batchnorm_stats(net): try: for m in net.modules() : if isinstance(m,nn.BatchNorm2d)or isinstance(m,nn.LayerNorm): m.eval() except ValuError: print('error with batchnorm2d or layernorm') return def unfreeze_batchnorm_stats(net): try: for m in net.modules() : if isinstance(m,nn.BatchNorm2d)or isinstance(m,nn.LayerNorm): m.train() except ValuError: print('error with batchnorm2d or layernorm') return<normalization>
model.load_weights('minist.h5' )
Digit Recognizer
1,021,412
class LabelSmoothingCrossEntropy(nn.Module): def __init__(self, smoothing=0.1): super(LabelSmoothingCrossEntropy, self ).__init__() assert smoothing < 1.0 self.smoothing = smoothing self.confidence = 1.- smoothing def forward(self, x, target): logprobs = torch.nn.functional.log_softmax(x, dim=-1) nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) nll_loss = nll_loss.squeeze(1) smooth_loss = -logprobs.mean(dim=-1) loss = self.confidence * nll_loss + self.smoothing * smooth_loss return loss.mean()<feature_engineering>
predict = model.predict(test )
Digit Recognizer
1,021,412
if __name__ == '__main__': seed_everything(CFG['seed']) oof_preds = np.zeros(len(train)) print('Model 1 Start') sub1 = [] folds = StratifiedKFold(n_splits=CFG['fold_num'] ).split(np.arange(train.shape[0]), train.label.values) for fold,(trn_idx, val_idx)in enumerate(folds): print('Inference fold {} started'.format(fold)) test = pd.DataFrame() test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/')) test_ds2 = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms2() , output_label=False) tst_loader2 = torch.utils.data.DataLoader( test_ds2, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) device = torch.device(CFG['device']) model1 = CassvaImgClassifier(CFG['model_arch1'], train.label.nunique() ).to(device) tst_preds = [] model1.load_state_dict(torch.load('.. /input/leaf-weight-v9-2/model9_2/swa_{}_fold_{}_{}'.format(CFG['model_arch1'], fold, '9'))) for tta in range(CFG['tta_num']): tst_preds += [inference_one_epoch(model1, tst_loader2, device)] sub1 += [np.mean(tst_preds, axis=0)] del model1; torch.cuda.empty_cache() print('Model 2 Start') sub2 = [] folds = StratifiedKFold(n_splits=CFG['fold_num'] ).split(np.arange(train.shape[0]), train.label.values) for fold,(trn_idx, val_idx)in enumerate(folds): print('Inference fold {} started'.format(fold)) test = pd.DataFrame() test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/')) test_ds2 = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms2() , output_label=False) tst_loader2 = torch.utils.data.DataLoader( test_ds2, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) device = torch.device(CFG['device']) model2 = CassvaImgClassifier(CFG['model_arch2'], train.label.nunique() ).to(device) tst_preds = [] model2.load_state_dict(torch.load('.. /input/905-training-efficientnetb4-merged-bs32/swa_{}_fold_{}_{}'.format(CFG['model_arch2'], fold, '9'))) for tta in range(CFG['tta_num']): tst_preds += [inference_one_epoch(model2, tst_loader2, device)] sub2 += [np.mean(tst_preds, axis=0)] del model2; torch.cuda.empty_cache() print('Model 3 Start') sub3 = [] folds = StratifiedKFold(n_splits=CFG['fold_num'] ).split(np.arange(train.shape[0]), train.label.values) for fold,(trn_idx, val_idx)in enumerate(folds): print('Inference fold {} started'.format(fold)) test = pd.DataFrame() test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/')) test_ds2 = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms2() , output_label=False) tst_loader2 = torch.utils.data.DataLoader( test_ds2, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) device = torch.device(CFG['device']) model3 = CassvaImgClassifier(CFG['model_arch3'], train.label.nunique() ).to(device) tst_preds = [] model3.load_state_dict(torch.load('.. /input/regnety4noresetadamp/swa_{}_fold_{}_{}'.format(CFG['model_arch3'], fold, '19'))) for tta in range(CFG['tta_num']): tst_preds += [inference_one_epoch(model3, tst_loader2, device)] sub3 += [np.mean(tst_preds, axis=0)] del model3; torch.cuda.empty_cache() print('Model 4 Start') sub4 = [] folds = StratifiedKFold(n_splits=CFG['fold_num'] ).split(np.arange(train.shape[0]), train.label.values) for fold,(trn_idx, val_idx)in enumerate(folds): print('Inference fold {} started'.format(fold)) test = pd.DataFrame() test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/')) test_ds2 = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms2() , output_label=False) tst_loader2 = torch.utils.data.DataLoader( test_ds2, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) device = torch.device(CFG['device']) model4 = CassvaImgClassifier(CFG['model_arch4'], train.label.nunique() ).to(device) tst_preds = [] model4.load_state_dict(torch.load('.. /input/0214v1-hwkim-regnet-40-reset-swalr-swastep-ep24/swa_{}_fold_{}_{}'.format(CFG['model_arch4'], fold, '23'))) for tta in range(CFG['tta_num']): tst_preds += [inference_one_epoch(model4, tst_loader2, device)] sub4 += [np.mean(tst_preds, axis=0)] del model4; torch.cuda.empty_cache() print('Model 5 Start') sub5 = [] folds = StratifiedKFold(n_splits=CFG['fold_num'] ).split(np.arange(train.shape[0]), train.label.values) for fold,(trn_idx, val_idx)in enumerate(folds): print('Inference fold {} started'.format(fold)) test = pd.DataFrame() test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/')) test_ds2 = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms2() , output_label=False) tst_loader2 = torch.utils.data.DataLoader( test_ds2, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) device = torch.device(CFG['device']) model5 = CassvaImgClassifier(CFG['model_arch5'], train.label.nunique() ).to(device) tst_preds = [] model5.load_state_dict(torch.load('.. /input/905-training-efficientnetb4-seed720/swa_{}_fold_{}_{}'.format(CFG['model_arch5'], fold, '9'))) for tta in range(CFG['tta_num']): tst_preds += [inference_one_epoch(model5, tst_loader2, device)] sub5 += [np.mean(tst_preds, axis=0)] del model5; torch.cuda.empty_cache() print('Model 6 Start') sub6 = [] folds = StratifiedKFold(n_splits=CFG['fold_num'] ).split(np.arange(train.shape[0]), train.label.values) for fold,(trn_idx, val_idx)in enumerate(folds): print('Inference fold {} started'.format(fold)) test = pd.DataFrame() test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/')) test_ds2 = CassavaDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_inference_transforms2() , output_label=False) tst_loader2 = torch.utils.data.DataLoader( test_ds2, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) device = torch.device(CFG['device']) model6 = CassvaImgClassifier(CFG['model_arch6'], train.label.nunique() ).to(device) tst_preds = [] model6.load_state_dict(torch.load('.. /input/reg-distill/swa_{}_fold_{}_{}'.format(CFG['model_arch6'], fold, '19'))) for tta in range(CFG['tta_num']): tst_preds += [inference_one_epoch(model6, tst_loader2, device)] sub6 += [np.mean(tst_preds, axis=0)] del model6; torch.cuda.empty_cache() sub1 = [e * CFG['weight'][0] for e in sub1] sub2 = [e * CFG['weight'][1] for e in sub2] sub3 = [e * CFG['weight'][2] for e in sub3] sub4 = [e * CFG['weight'][3] for e in sub4] sub5 = [e * CFG['weight'][4] for e in sub5] sub6 = [e * CFG['weight'][5] for e in sub6] sub = [e1 + e2 + e3 + e4 + e5 + e6 for(e1, e2, e3, e4, e5, e6)in zip(sub1,sub2,sub3, sub4, sub5, sub6)]<feature_engineering>
results = np.argmax(predict,axis = 1 )
Digit Recognizer
1,021,412
test['label'] = np.argmax(np.mean(sub, axis=0), axis=1) test.head()<save_to_csv>
submission = pd.DataFrame({"ImageId":range(1,28001),"Label":results}) submission.to_csv("cnn_mnist.csv",index=False )
Digit Recognizer
4,249,570
test.to_csv('submission.csv', index=False )<define_variables>
input_df = pd.read_csv(".. /input/train.csv") test_df = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
4,249,570
CONFIG_NAME = 'stacking12.yml' debug = False STAGE2_DIR = '.. /input/train-stacking-2dcnn-ver3/output'<define_variables>
input_data = input_df.drop(['label'], axis=1 ).values / 255.0 input_labels = input_df['label'] test_data = test_df.values / 255.0 train_data, valid_data, train_labels, valid_labels = train_test_split(input_data, input_labels, test_size = 0.15, random_state=2) train_data = train_data.reshape(-1,28,28,1) valid_data = valid_data.reshape(-1,28,28,1) test_data = test_data.reshape(-1,28,28,1) train_labels = to_categorical(train_labels, 10) valid_labels = to_categorical(valid_labels, 10) print("Train: ",train_data.shape, train_labels.shape) print("Valid: ",valid_data.shape, valid_labels.shape) print("Test: ",test_data.shape )
Digit Recognizer
4,249,570
CONFIG_PATH = f'{STAGE2_DIR}/{CONFIG_NAME}' with open(CONFIG_PATH)as f: config = yaml.load(f) INFO = config['info'] TAG = config['tag'] CFG = config['cfg'] OUTPUT_DIR = './' DATA_PATH = '.. /input/cassava-leaf-disease-classification'<define_variables>
data_augment = ImageDataGenerator(rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1 )
Digit Recognizer
4,249,570
<import_modules>
model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32,(5,5), padding='same', activation='relu', input_shape=(28,28,1)) , tf.keras.layers.Conv2D(32,(5,5), padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(64,(3,3), padding='same', activation='relu'), tf.keras.layers.Conv2D(64,(3,3), padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten() , tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.4), tf.keras.layers.Dense(10, activation='softmax') ]) model.summary()
Digit Recognizer
4,249,570
sys.path.append('.. /input/pytorch-image-models/pytorch-image-models-master') Compose, OneOf, Normalize, Resize, RandomResizedCrop, RandomCrop, HorizontalFlip, VerticalFlip, RandomBrightness, RandomContrast, RandomBrightnessContrast, Rotate, ShiftScaleRotate, Cutout, IAAAdditiveGaussianNoise, Transpose, CenterCrop ) warnings.filterwarnings('ignore') if CFG['debug']: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') else: device = torch.device('cuda') start_time = datetime.datetime.now() start_time_str = start_time.strftime('%m%d%H%M' )<load_from_csv>
annealer = ReduceLROnPlateau( monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
4,249,570
train = pd.read_csv(f'{DATA_PATH}/train.csv') test = pd.read_csv(f'{DATA_PATH}/sample_submission.csv') label_map = pd.read_json(f'{DATA_PATH}/label_num_to_disease_map.json', orient='index') if CFG['debug']: train = train.sample(n=1000, random_state=CFG['seed'] ).reset_index(drop=True )<define_variables>
optim = tf.keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) model.compile(optimizer=optim, loss="categorical_crossentropy", metrics=['accuracy']) num_epochs = 30 batch_size = 86 history = model.fit_generator( data_augment.flow(train_data, train_labels, batch_size=batch_size), steps_per_epoch=train_data.shape[0]//batch_size, validation_data=(valid_data, valid_labels), epochs=num_epochs, callbacks=[annealer] )
Digit Recognizer
4,249,570
model_dirs = [] for stage1 in CFG['stage1_models']: num = str(stage1 ).rjust(2, '0') output_dir_ = glob.glob(f'.. /input/{num}*/') assert len(output_dir_)== 1, output_dir_ model_dirs.append(output_dir_[0]) model_dirs<load_pretrained>
predictions = model.predict(test_data) pred_list = [] for index, pred in enumerate(predictions): pred_list.append({"ImageId": index+1, "Label": np.argmax(pred)}) sub_df = pd.DataFrame(pred_list) sub_df.to_csv("submission.csv", index=False )
Digit Recognizer
3,916,180
normal_configs = [] tta_configs = [] normal_model_dirs = [] tta_model_dirs = [] for model_dir in model_dirs: assert len(glob.glob(f'{model_dir}/*.yml')) ==1 config_path = glob.glob(f'{model_dir}/*.yml')[0] with open(config_path)as f: config = yaml.load(f) if 'valid_augmentation' in config['tag'].keys() : tta_model_dirs.append(model_dir) tta_configs.append(config) else: normal_model_dirs.append(model_dir) normal_configs.append(config )<compute_test_metric>
import numpy as np import pandas as pd import random
Digit Recognizer
3,916,180
def get_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def remove_glob(pathname, recursive=True): for p in glob.glob(pathname, recursive=recursive): if os.path.isfile(p): os.remove(p) @contextmanager def timer(name): t0 = time.time() LOGGER.info(f'[{name}] start') yield LOGGER.info(f'[{name}] done in {time.time() - t0:.0f} s.') def seed_torch(seed=42): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True <define_variables>
import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras import backend as K
Digit Recognizer
3,916,180
TRAIN_PATH = '.. /input/cassava-leaf-disease-classification/train_images' TEST_PATH = '.. /input/cassava-leaf-disease-classification/test_images'<normalization>
import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split
Digit Recognizer
3,916,180
class TestDataset(Dataset): def __init__(self, df, transform=None): self.df = df self.file_names = df['image_id'].values self.transform = transform def __len__(self): return len(self.df) def __getitem__(self, idx): file_name = self.file_names[idx] file_path = f'{TEST_PATH}/{file_name}' image = cv2.imread(file_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if self.transform: augmented = self.transform(image=image) image = augmented['image'] return image class TTADataset(Dataset): def __init__(self, df, image_path, ttas): self.df = df self.file_names = df['image_id'].values self.labels = df['label'].values self.image_path = image_path self.ttas = ttas def __len__(self)-> int: return len(self.df) def __getitem__(self, idx): file_name = self.file_names[idx] file_path = f'{self.image_path}/{file_name}' image = cv2.imread(file_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) imglist=[tta(image=image)['image'] for tta in self.ttas] image=torch.stack(imglist) label = torch.tensor(self.labels[idx] ).long() return image, label<normalization>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv")
Digit Recognizer
3,916,180
def _get_augmentations(aug_list, cfg): process = [] for aug in aug_list: if aug == 'Resize': process.append(Resize(cfg['size'], cfg['size'])) elif aug == 'RandomResizedCrop': process.append(RandomResizedCrop(cfg['size'], cfg['size'])) elif aug == 'CenterCrop': process.append(CenterCrop(CFG['size'], CFG['size'])) elif aug == 'Transpose': process.append(Transpose(p=0.5)) elif aug == 'HorizontalFlip': process.append(HorizontalFlip(p=0.5)) elif aug == 'VerticalFlip': process.append(VerticalFlip(p=0.5)) elif aug == 'ShiftScaleRotate': process.append(ShiftScaleRotate(p=0.5)) elif aug == 'Normalize': process.append(Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], )) else: raise ValueError(f'{aug} is not suitable') process.append(ToTensorV2()) return process def get_transforms(*, aug_list, cfg): return Compose( _get_augmentations(aug_list, cfg) )<choose_model_class>
y_train = train["label"] X_train = train.drop(labels = ["label"],axis = 1 )
Digit Recognizer
3,916,180
class CustomModel(nn.Module): def __init__(self, model_name, target_size, pretrained=False): super().__init__() self.model = timm.create_model(model_name, pretrained=pretrained) if hasattr(self.model, 'classifier'): n_features = self.model.classifier.in_features self.model.classifier = nn.Linear(n_features, target_size) elif hasattr(self.model, 'fc'): n_features = self.model.fc.in_features self.model.fc = nn.Linear(n_features, target_size) elif hasattr(self.model, 'head'): n_features = self.model.head.in_features self.model.head = nn.Linear(n_features, target_size) def forward(self, x): x = self.model(x) return x<categorify>
def prep_data(X_train, y_train, test): X_train = X_train.astype('float32')/ 255 test = test.astype('float32')/255 X_train = X_train.values.reshape(-1,28,28,1) test = test.values.reshape(-1,28,28,1) y_train = keras.utils.np_utils.to_categorical(y_train) classes = y_train.shape[1] X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size = 0.2, random_state = int(time.time())) return X_train, y_train, X_test, y_test, classes, test
Digit Recognizer
3,916,180
def inference_tta(model, states, tta_loader, device): model.to(device) tk0 = tqdm(enumerate(tta_loader), total=len(tta_loader)) probs = [] for i,(images, _)in tk0: images = images.to(device) batch_size, n_crops, c, h, w = images.size() images = images.view(-1, c, h, w) avg_preds = [] for state in states: model.load_state_dict(state['model']) model.eval() with torch.no_grad() : y_preds = model(images ).softmax(1) y_preds = y_preds.view(batch_size, n_crops,-1) avg_preds.append(y_preds.to('cpu' ).numpy()) avg_preds = np.mean(avg_preds, axis=0) probs.append(avg_preds) del images, _, y_preds, avg_preds torch.cuda.empty_cache() probs = np.concatenate(probs) return probs<create_dataframe>
X_train, y_train, X_test, y_test, out_neurons, test = prep_data(X_train, y_train, test )
Digit Recognizer
3,916,180
def main_tta(config, model_dir): INFO = config['info'] TAG = config['tag'] CFG = config['cfg'] CFG['train'] = False CFG['inference'] = True inference_batch_size = 8 seed_torch(seed=CFG['seed']) model = CustomModel(TAG['model_name'], CFG['target_size'], pretrained=False) states = [torch.load(path)for path in glob.glob(f'{model_dir}/*.pth')] ttas = get_ttas(CFG) tta_dataset = TTADataset(test, TEST_PATH, ttas=ttas) tta_loader = DataLoader(tta_dataset, batch_size=inference_batch_size, shuffle=False, num_workers=2, pin_memory=True) predictions = inference_tta(model, states, tta_loader, device) return predictions<categorify>
model = Sequential([ Conv2D(32, kernel_size =(3, 3), padding = 'same', activation = 'relu', input_shape =(28,28,1)) , Conv2D(32, kernel_size =(3, 3), activation = 'relu', padding = 'same'), MaxPool2D(pool_size =(2, 2)) , Dropout(0.25), Conv2D(64, kernel_size =(3, 3), activation = 'relu', padding = 'same'), Conv2D(64, kernel_size =(3, 3), activation = 'relu', padding = 'same'), MaxPool2D(pool_size =(2, 2)) , Dropout(0.25), Conv2D(128, kernel_size =(3, 3), activation = 'relu', padding = 'same'), Conv2D(128, kernel_size =(3, 3), activation = 'relu', padding = 'same'), MaxPool2D(pool_size =(2, 2)) , Dropout(0.25), Conv2D(128, kernel_size =(3, 3), activation = 'relu', padding = 'same'), Conv2D(128, kernel_size =(3, 3), activation = 'relu', padding = 'same'), MaxPool2D(pool_size =(2, 2)) , Dropout(0.25), Flatten() , Dense(512, activation = 'relu'), Dropout(0.5), Dense(256, activation = 'relu'), Dropout(0.5), Dense(out_neurons, activation = 'softmax') ]) model.summary() sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss = 'categorical_crossentropy', optimizer = sgd , metrics = ['accuracy'] )
Digit Recognizer
3,916,180
data_num = len(test) model_num = len(model_dirs) target_num = CFG['target_size'] channel_num = 4 stage1_predictions = np.zeros(( model_num, data_num, channel_num, target_num), dtype=np.float) for config, model_dir in zip(tta_configs, tta_model_dirs): stage1_predictions[model_dirs.index(model_dir)] = main_tta(config, model_dir) weights_opt_feats = stage1_predictions.mean(axis=2) stage1_predictions = stage1_predictions.transpose(1, 2, 0, 3 )<categorify>
model.fit(X_train, y_train, batch_size = 512, epochs = 180, validation_data =(X_test, y_test), verbose = 0);
Digit Recognizer
3,916,180
class StackingDataset(Dataset): def __init__(self, X: np.ndarray, y: Optional[np.ndarray] = None): self.X = X self.y = y def __len__(self): return self.X.shape[0] def __getitem__(self, idx): if self.y is None: return torch.tensor(self.X[idx], dtype=torch.float) else: return( torch.tensor(self.X[idx], dtype=torch.float), torch.tensor(self.y[idx], dtype=torch.long), )<choose_model_class>
result = model.evaluate(X_test, y_test, verbose = 0) print('Accuracy: ', result[1]) print('Error: %.2f%%' %(100- result[1]*100)) y_pred = model.predict(test, verbose=0 )
Digit Recognizer
3,916,180
class CNNStacking(nn.Module): def __init__(self, n_labels): super(CNNStacking, self ).__init__() self.sq = nn.Sequential( nn.Conv2d(in_channels=4, out_channels=8, kernel_size=(3, 1), bias=False), nn.ReLU() , nn.Conv2d(in_channels=8, out_channels=16, kernel_size=(3, 1), bias=False), nn.ReLU() , nn.Flatten() , nn.Linear(in_features=16* n_labels, out_features=4 * n_labels), nn.ReLU() , nn.Linear(in_features=4 * n_labels, out_features=n_labels), ) def forward(self, x): return self.sq(x )<predict_on_test>
solution = np.argmax(y_pred,axis = 1) solution = pd.Series(solution, name="Label" ).astype(int) submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),solution],axis = 1) submission.to_csv("mnist_with_cnn.csv",index=False )
Digit Recognizer
4,829,753
def inference(model, states, test_loader, device): model.to(device) tk0 = tqdm(enumerate(test_loader), total=len(test_loader)) probs = [] for i,(features)in tk0: features = features.to(device) avg_preds = [] for state in states: model.load_state_dict(state['model']) model.eval() with torch.no_grad() : y_preds = model(features) avg_preds.append(y_preds.softmax(1 ).to('cpu' ).numpy()) avg_preds = np.mean(avg_preds, axis=0) probs.append(avg_preds) probs = np.concatenate(probs) return probs<save_to_csv>
np.random.seed(7) %matplotlib inline
Digit Recognizer
4,829,753
model = CNNStacking(CFG['target_size']) states = [torch.load(STAGE2_DIR+f'/fold{fold}_best.pth')for fold in CFG['trn_fold']] test_dataset = StackingDataset(stage1_predictions) test_loader = DataLoader(test_dataset, batch_size=CFG['batch_size'], shuffle=False, num_workers=CFG['num_workers'], pin_memory=True) pred_stacking = inference(model, states, test_loader, device) <load_pretrained>
train_path = '.. //input//train.csv' test_path = '.. //input//test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.info() test_df.info()
Digit Recognizer
4,829,753
with open('.. /input/train-weights-optimization/best_weights.json', 'r')as f: weights_dict = json.load(f) weights_dict<define_variables>
pd.options.display.max_rows = 1000 print(train_df.isnull().sum() )
Digit Recognizer
4,829,753
pred_weights_opt = np.zeros(weights_opt_feats.shape[1:], dtype=np.float) for idx, key in enumerate(model_dirs): pred_weights_opt += weights_opt_feats[idx] * weights_dict[key[:-1]]<define_variables>
print(test_df.isnull().sum() )
Digit Recognizer
4,829,753
BLENDING_WEIGHTS = { "stacking": 0.5, "weights_opt": 0.5 }<prepare_output>
X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255
Digit Recognizer
4,829,753
predictions = pred_stacking * BLENDING_WEIGHTS['stacking'] + pred_weights_opt * BLENDING_WEIGHTS['weights_opt'] predictions<save_to_csv>
def inception_block(inputs): tower_one = MaxPooling2D(( 3,3), strides=(1,1), padding='same' )(inputs) tower_one = Conv2D(6,(1,1), activation='relu', border_mode='same' )(tower_one) tower_two = Conv2D(6,(1,1), activation='relu', border_mode='same' )(inputs) tower_two = Conv2D(6,(3,3), activation='relu', border_mode='same' )(tower_two) tower_three = Conv2D(6,(1,1), activation='relu', border_mode='same' )(inputs) tower_three = Conv2D(6,(5,5), activation='relu', border_mode='same' )(tower_three) x = concatenate([tower_one, tower_two, tower_three], axis=3) return x def inception_model(x_train): inputs = Input(x_train.shape[1:]) x = inception_block(inputs) x = Dropout(0.25 )(x) x = Conv2D(32,(3, 3), padding='same' )(x) x = Activation('relu' )(x) x = BatchNormalization()(x) x = Conv2D(32,(3, 3), padding='same' )(x) x = Activation('relu' )(x) x = BatchNormalization()(x) x = MaxPooling2D(pool_size=(2, 2))(x) x = Dropout(0.25 )(x) x = Flatten()(x) x = Dense(64, activation='relu' )(x) x = Dropout(0.5 )(x) predictions = Dense(10, activation='softmax' )(x) model = Model(input=inputs, output=predictions) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
Digit Recognizer
4,829,753
test['label'] = predictions.argmax(1) test[['image_id', 'label']].to_csv(OUTPUT_DIR+'submission.csv', index=False )<define_variables>
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] )
Digit Recognizer
4,829,753
package_path = '.. /input/pytorch-image-models/pytorch-image-models-master' sys.path.append(package_path) DATA_DIR = '.. /input/cassava-leaf-disease-classification' MODEL_DIR_0 = '.. /input/gpu-vit-noisearch-amp-aug-fold-0' MODEL_DIR_1 = '.. /input/gpu-vit-noisearch-amp-aug-fold-1' MODEL_DIR_2 = '.. /input/gpu-vit-noisearch-amp-aug-fold-2' MODEL_DIR_3 = '.. /input/gpu-vit-noisearch-amp-aug-fold-3' MODEL_DIR_4 = '.. /input/gpu-vit-noisearch-amp-aug-fold-4' MODEL_DIR_01 = '.. /input/gpu-en-b4-ns-noisearch-amp-aug-fold-0' MODEL_DIR_11 = '.. /input/gpu-en-b4-ns-noisearch-amp-aug-fold-1' MODEL_DIR_21 = '.. /input/gpu-en-b4-ns-noisearch-amp-aug-fold-2' MODEL_DIR_31 = '.. /input/gpu-en-b4-ns-noisearch-amp-aug-fold-3' MODEL_DIR_41 = '.. /input/gpu-en-b4-ns-noisearch-amp-aug-fold-4' MODEL_DIR_02 = '.. /input/gpu-seresnext-noisearch-amp-aug-fold-0' MODEL_DIR_12 = '.. /input/gpu-seresnext-noisearch-amp-aug-fold-1' MODEL_DIR_22 = '.. /input/gpu-seresnext-noisearch-amp-aug-fold-2' MODEL_DIR_32 = '.. /input/gpu-seresnext-noisearch-amp-aug-fold-3' MODEL_DIR_42 = '.. /input/gpu-seresnext-noisearch-amp-aug-fold-4' MODEL_DIR_03 = '.. /input/gpu-en-b4-ns-amp-aug-fold-0' MODEL_DIR_13 = '.. /input/gpu-en-b4-ns-amp-aug-fold-1' MODEL_DIR_23 = '.. /input/gpu-en-b4-ns-amp-aug-fold-2' MODEL_DIR_33 = '.. /input/gpu-en-b4-ns-amp-aug-fold-3' MODEL_DIR_43 = '.. /input/gpu-en-b4-ns-amp-aug-fold-4' <import_modules>
history = model.fit(X_train, Y_train, batch_size=100, epochs=100, validation_split=0.1, shuffle=True )
Digit Recognizer
4,829,753
HorizontalFlip, VerticalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90, Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue, IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, RandomResizedCrop, IAASharpen, IAAEmboss, RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, Cutout, CoarseDropout, ShiftScaleRotate, CenterCrop, Resize ) <init_hyperparams>
scores_train = model.evaluate(X_train, Y_train) print(" %s: %.2f%%" %(model.metrics_names[1], scores_train[1]*100))
Digit Recognizer
4,829,753
CFG = { 'fold_num': 5, 'seed': 719, 'model_arch': 'vit_base_patch16_384', 'img_size': 384, 'epochs': 10, 'train_bs': 16, 'valid_bs': 16, 'lr': 1e-4, 'num_workers': 4, 'accum_iter': 1, 'verbose_step': 1, 'device': 'cuda:0', 'tta': 3, 'used_epochs': [7,8,9], 'weights': [1,1,1,1,1,1] }<define_variables>
predictions = model.predict(X_test) predictions = np.argmax(predictions, axis = 1) predictions
Digit Recognizer
4,829,753
EPOCHS0 = { 0: [9,8,6,5], 1: [5,6,4,8], 2: [8,9,7,6], 3: [8,7,9,6], 4: [9,8,7,4] } EPOCHS1 = { 0: [8,9,7,6], 1: [9,4,8,6], 2: [9,7,8,4], 3: [5,8,9,3], 4: [6,7,8,9] } EPOCHS2 = { 0: [8,9,6,7], 1: [9,8,5,6], 2: [9,7,5,4], 3: [5,8,9,4], 4: [5,8,9,7] } EPOCHS3 = { 0: [8,9,7,6], 1: [2,7,9,5], 2: [5,6,9,7], 3: [8,9,7,6], 4: [4,5,8,7] } <load_from_csv>
result=pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) ,"Label": predictions}) result.to_csv("mnist_cnn_only_v1.csv", index=False, header=True )
Digit Recognizer
1,970,319
train = pd.read_csv(f'{DATA_DIR}/train.csv' )<set_options>
warnings.filterwarnings('ignore' )
Digit Recognizer
1,970,319
def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True def get_img(path): im_bgr = cv2.imread(path) im_rgb = im_bgr[:, :, ::-1] return im_rgb<categorify>
train_df = pd.read_csv('.. /input/train.csv') test_df = pd.read_csv('.. /input/test.csv') print(train_df.shape) print(test_df.shape )
Digit Recognizer
1,970,319
class CassavaDataset(Dataset): def __init__(self, df, data_root, transforms=None, output_label=True): super().__init__() self.df = df.reset_index(drop=True ).copy() self.transforms = transforms self.data_root = data_root self.output_label = output_label def __len__(self): return self.df.shape[0] def __getitem__(self, index: int): if self.output_label: target = self.df.iloc[index]['label'] img = get_img(f"{self.data_root}/{self.df.loc[index]['image_id']}") if self.transforms: img = self.transforms(image=img)['image'] if self.output_label: return img, target else: return img<choose_model_class>
print('Missing values in training dataset : %d' %np.sum(train_df.isnull().sum())) print('Missing values in testing dataset : %d' %np.sum(test_df.isnull().sum()))
Digit Recognizer
1,970,319
class CassvaImgClassifierN(nn.Module): def __init__(self, model_arch, n_class, pretrained=False): super().__init__() self.model = timm.create_model(model_arch, pretrained=pretrained) n_features = self.model.classifier.in_features self.model.classifier = nn.Linear(n_features, n_class) def forward(self, x): x = self.model(x) return x<choose_model_class>
train_df = train_df/255.0 test_df = test_df/255.0 train_df = train_df.values.reshape(-1,28,28,1) test_df = test_df.values.reshape(-1,28,28,1 )
Digit Recognizer
1,970,319
class CassvaImgClassifier(nn.Module): def __init__(self, model_arch, n_class, pretrained=False): super().__init__() self.n_class = n_class self.model = timm.create_model(model_arch, pretrained=pretrained) if 'vit' in model_arch: n_features = self.model.head.in_features self.model.head = nn.Identity() if 'eff' in model_arch: n_features = self.model.classifier.in_features self.model.classifier = nn.Identity() if 'resnext' in model_arch: n_features = self.model.fc.in_features self.model.fc = nn.Identity() self.layer_noise = nn.Linear(n_features, n_class) self.layer_pure = nn.Linear(n_features, n_class) def forward(self, x): x = self.model(x) x1 = self.layer_noise(x) x2 = self.layer_pure(x) x1 = x1 + x2 return x1, x2<find_best_model_class>
train_y = to_categorical(train_label, num_classes = 10) print('one hot encoding vector of %d :' %train_label[3] , train_y[3] )
Digit Recognizer
1,970,319
def inference_one_epoch(model, data_loader, device): model.eval() image_preds_all = [] pbar = tqdm(enumerate(data_loader), total=len(data_loader)) for step,(imgs)in pbar: imgs = imgs.to(device ).float() _, image_preds = model(imgs) image_preds_all += [torch.sigmoid(image_preds ).detach().cpu().numpy() ] image_preds_all = np.concatenate(image_preds_all, axis=0) return image_preds_all<create_dataframe>
x_train,x_val,y_train,y_val = train_test_split(train_df,train_y,test_size = 0.2, random_state = 2)
Digit Recognizer
1,970,319
def run_inference(fold, MODEL_DIR, model_arch, epoch_list): print(f'Inference fold {fold} started') test = pd.DataFrame() test['image_id'] = list(os.listdir(f'{DATA_DIR}/test_images/')) if 'vit' in model_arch: T = get_inference_transforms_384() else: T = get_inference_transforms() test_ds = CassavaDataset( test, f'{DATA_DIR}/test_images/', transforms=T, output_label=False) tst_loader = torch.utils.data.DataLoader( test_ds, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) device = torch.device(CFG['device']) model = CassvaImgClassifier(model_arch, train.label.nunique() ).to(device) tst_preds = [] for i, epoch in enumerate(epoch_list[fold][:1]): model.load_state_dict(torch.load(f'{MODEL_DIR}/{model_arch}_fold_{fold}_{epoch}')) with torch.no_grad() : for _ in range(CFG['tta']): tst_image_preds = inference_one_epoch(model, tst_loader, device) tst_preds += [(1/CFG['tta'])*tst_image_preds] tst_preds = np.sum(tst_preds, axis=0) del model torch.cuda.empty_cache() return tst_preds<create_dataframe>
dataGenerator = ImageDataGenerator(rotation_range = 10, width_shift_range = 0.1, height_shift_range = 0.1, zoom_range = 0.1) dataGenerator.fit(x_train )
Digit Recognizer
1,970,319
def run_inferenceN(fold, MODEL_DIR, model_arch): print(f'Inference fold {fold} started') test = pd.DataFrame() test['image_id'] = list(os.listdir(f'{DATA_DIR}/test_images/')) test_ds = CassavaDataset( test, f'{DATA_DIR}/test_images/', transforms=get_inference_transforms() , output_label=False) tst_loader = torch.utils.data.DataLoader( test_ds, batch_size=CFG['valid_bs'], num_workers=CFG['num_workers'], shuffle=False, pin_memory=False, ) device = torch.device(CFG['device']) model = CassvaImgClassifierN(model_arch, train.label.nunique() ).to(device) tst_preds = [] for i, epoch in enumerate(CFG['used_epochs']): model.load_state_dict( torch.load(f'{MODEL_DIR}/{model_arch}_fold_{fold}_{epoch}')) with torch.no_grad() : for _ in range(CFG['tta']): tst_image_preds = inference_one_epochN(model, tst_loader, device) tst_preds += [(1/ CFG['tta'])*tst_image_preds] tst_preds = np.mean(tst_preds, axis=0) del model torch.cuda.empty_cache() return tst_preds<define_variables>
ExampleImg = train_df[10][:,:,0] def translate(img,x,y): transMat = np.float32([[1,0,x],[0,1,y]]) shifted = cv2.warpAffine(img,transMat,(img.shape[1],img.shape[0])) return shifted def rotate(img,angle): (h,w)= img.shape[:2] center =(w/2,h/2) rotatMat = cv2.getRotationMatrix2D(center,angle,1) rotated = cv2.warpAffine(img,rotatMat,(w,h)) return rotated def zoom(img,scale): (oh,ow)= img.shape[:2] zoomed = cv2.resize(img, None, fx = scale, fy = scale) (nh,nw)= zoomed.shape[:2] extend1 = int(( oh - nh)/ 2.0 + 0.5) extend2 = oh -(nh+extend1) zoomed = cv2.copyMakeBorder(zoomed,extend1,extend2,extend1,extend2,cv2.BORDER_CONSTANT,0) return zoomed shifted = translate(ExampleImg,0,3) rotated = rotate(ExampleImg,10) zoomed = zoom(ExampleImg,0.8) plt.figure(figsize =(10,20)) plt.subplot(1,4,1) plt.imshow(ExampleImg,cmap = plt.cm.binary) plt.title('Original') plt.subplot(1,4,2) plt.imshow(rotated,cmap = plt.cm.binary) plt.title('rotated: 10 deg') plt.subplot(1,4,3) plt.imshow(shifted,cmap = plt.cm.binary) plt.title('shifted: y-3') plt.subplot(1,4,4) plt.imshow(zoomed,cmap = plt.cm.binary) plt.title('zoomed: 0.8 scale') plt.show()
Digit Recognizer
1,970,319
preds0 = run_inference(0, MODEL_DIR_0, 'vit_base_patch16_384', EPOCHS0) preds1 = run_inference(1, MODEL_DIR_1, 'vit_base_patch16_384', EPOCHS0) preds2 = run_inference(2, MODEL_DIR_2, 'vit_base_patch16_384', EPOCHS0) preds3 = run_inference(3, MODEL_DIR_3, 'vit_base_patch16_384', EPOCHS0) preds4 = run_inference(4, MODEL_DIR_4, 'vit_base_patch16_384', EPOCHS0) PRED0 =(preds0 + preds1 + preds2 + preds3 + preds4)/5<define_variables>
def build_CNN(input_shape, output_units = 10): input_layer = keras.layers.Input(input_shape, name = "input_layer") x = Conv2D(filters = 64, kernel_size =(3,3), padding = 'same' )(input_layer) x = BatchNormalization()(x) x = Activation('relu' )(x) x = Conv2D(filters = 64, kernel_size =(3,3), padding = 'same' )(x) x = BatchNormalization()(x) x = Activation('relu' )(x) x = MaxPooling2D(pool_size=(2,2))(x) x = Dropout(0.25 )(x) x = Conv2D(filters = 32, kernel_size =(3,3), padding = 'same' )(x) x = BatchNormalization()(x) x = Activation('relu' )(x) x = Conv2D(filters = 32, kernel_size =(3,3), padding = 'same' )(x) x = BatchNormalization()(x) x = Activation('relu' )(x) x = MaxPooling2D(pool_size=(2,2))(x) x = Dropout(0.25 )(x) x = Flatten()(x) x = Dense(units = 512 )(x) x = BatchNormalization()(x) x = Activation('relu' )(x) x = Dense(units = 256 )(x) x = BatchNormalization()(x) x = Activation('relu' )(x) x = Dropout(0.25 )(x) x = Dense(units = 128 )(x) x = BatchNormalization()(x) x = Activation('relu' )(x) x = Dense(units = 64, activation = 'relu' )(x) output_layer = Dense(units = output_units, activation = 'softmax', name = "output_layer" )(x) model = keras.models.Model(inputs = [input_layer], outputs = [output_layer]) return model
Digit Recognizer
1,970,319
preds0 = run_inference(0, MODEL_DIR_01, 'tf_efficientnet_b4_ns', EPOCHS1) preds1 = run_inference(1, MODEL_DIR_11, 'tf_efficientnet_b4_ns', EPOCHS1) preds2 = run_inference(2, MODEL_DIR_21, 'tf_efficientnet_b4_ns', EPOCHS1) preds3 = run_inference(3, MODEL_DIR_31, 'tf_efficientnet_b4_ns', EPOCHS1) preds4 = run_inference(4, MODEL_DIR_41, 'tf_efficientnet_b4_ns', EPOCHS1) PRED1 =(preds0 + preds1 + preds2 + preds3 + preds4)/5<define_variables>
batch_size = 128 epochs = 300 momentum = 0.95 lr = 5e-4 ES = keras.callbacks.EarlyStopping(monitor = "val_loss", patience = 10, verbose = 1) model = build_CNN(x_train.shape[1:],10) optimizer = keras.optimizers.SGD(lr = lr, momentum = 0.95) model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['accuracy']) model.summary() history = model.fit_generator(dataGenerator.flow(x_train, y_train, batch_size = batch_size), epochs = epochs, verbose = 2, validation_data =(x_val,y_val), steps_per_epoch = x_train.shape[0]/batch_size )
Digit Recognizer
1,970,319
preds0 = run_inference(0, MODEL_DIR_02, 'seresnext50_32x4d', EPOCHS2) preds1 = run_inference(1, MODEL_DIR_12, 'seresnext50_32x4d', EPOCHS2) preds2 = run_inference(2, MODEL_DIR_22, 'seresnext50_32x4d', EPOCHS2) preds3 = run_inference(3, MODEL_DIR_32, 'seresnext50_32x4d', EPOCHS2) preds4 = run_inference(4, MODEL_DIR_42, 'seresnext50_32x4d', EPOCHS2) PRED2 =(preds0 + preds1 + preds2 + preds3 + preds4)/5<define_variables>
final_prediction = model.predict(test_df) final_prediction = np.argmax(final_prediction, axis = 1 )
Digit Recognizer
1,970,319
preds0 = run_inferenceN(0, MODEL_DIR_03, 'tf_efficientnet_b4_ns',) preds1 = run_inferenceN(1, MODEL_DIR_13, 'tf_efficientnet_b4_ns',) preds2 = run_inferenceN(2, MODEL_DIR_23, 'tf_efficientnet_b4_ns',) preds3 = run_inferenceN(3, MODEL_DIR_33, 'tf_efficientnet_b4_ns',) preds4 = run_inferenceN(4, MODEL_DIR_43, 'tf_efficientnet_b4_ns') PRED3 =(preds0 + preds1 + preds2 + preds3 + preds4)/5<define_variables>
submission = pd.DataFrame({'ImageId':np.arange(1,final_prediction.shape[0]+1,1),'Label':final_prediction}) submission.to_csv('submission_v5.csv',index = False )
Digit Recognizer
4,442,168
tst_preds =(PRED0 + 2*PRED1 + PRED2 + PRED3)/5<save_to_csv>
%matplotlib inline seed = 4098653265 seed_all(seed, det_cudnn=True) def mnist_learner(data: ImageDataBunch, model_name: Optional[str] = None)-> Learner: cbs =(( partial(SaveModelCallback, monitor='accuracy', name=model_name),) if model_name else None) lrn = cnn_learner(data, models.resnet152, metrics=accuracy, opt_func=partial(optim.SGD, momentum=0.9), callback_fns=cbs) seed = 224391980 seed_all(seed, det_cudnn=True) return lrn
Digit Recognizer
4,442,168
test = pd.DataFrame() test['image_id'] = list(os.listdir(f'{DATA_DIR}/test_images/')) test['label'] = np.argmax(tst_preds, axis=1) test.to_csv('submission.csv', index=False )<define_variables>
data = ImageDataBunch.from_csv('data', test='test', num_workers=0) data.test_ds.x.items = np.array(sorted(data.test_ds.x.items, key=attrgetter('stem'))) learner = mnist_learner(data, 'best-freezed') learner.lr_find() learner.recorder.plot(suggestion=True )
Digit Recognizer
4,442,168
CONFIG_NAME = 'stacking12.yml' debug = False STAGE2_DIR = '.. /input/train-stacking-2dcnn-ver3/output'<define_variables>
learner.fit_one_cycle(30, 1.3e-2 )
Digit Recognizer
4,442,168
CONFIG_PATH = f'{STAGE2_DIR}/{CONFIG_NAME}' with open(CONFIG_PATH)as f: config = yaml.load(f) INFO = config['info'] TAG = config['tag'] CFG = config['cfg'] OUTPUT_DIR = './' DATA_PATH = '.. /input/cassava-leaf-disease-classification'<define_variables>
learner = mnist_learner(data ).load('best-freezed') corr_args = DatasetFormatter.from_most_unsure(learner, 100) corr = PredictionsCorrector(*corr_args )
Digit Recognizer
4,442,168
<import_modules>
corr.corrections = { 275: 5, 927: 6, 3080: 0, 3162: 3, 3485: 8, 3700: 5, 3740: 9, 4680: 1, 5215: 1, 5276: 1, 5928: 5, 6789: 3, 7026: 4, 9040: 2, 9202: 7, 9744: 3, 9814: 4, 9924: 2, 10344: 9, 11370: 8, 11746: 8, 11862: 8, 12620: 8, 12864: 9, 14579: 9, 14742: 0, 16204: 9, 16281: 5, 16452: 4, 17589: 8, 17931: 5, 18166: 1, 19351: 1, 19896: 8, 20052: 9, 20509: 5, 20665: 1, 20946: 3, 21388: 1, 22253: 8, 22465: 4, 22527: 1, 22632: 8, 22823: 4, 23874: 1, 24015: 4, 24155: 4, 24662: 8, 25527: 6, 25915: 8, 26913: 3, 27372: 3, 27402: 2 } corr.show_corrections(9, figsize=(14.5, 11))
Digit Recognizer
4,442,168
sys.path.append('.. /input/pytorch-image-models/pytorch-image-models-master') Compose, OneOf, Normalize, Resize, RandomResizedCrop, RandomCrop, HorizontalFlip, VerticalFlip, RandomBrightness, RandomContrast, RandomBrightnessContrast, Rotate, ShiftScaleRotate, Cutout, IAAAdditiveGaussianNoise, Transpose, CenterCrop ) warnings.filterwarnings('ignore') if CFG['debug']: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') else: device = torch.device('cuda') start_time = datetime.datetime.now() start_time_str = start_time.strftime('%m%d%H%M' )<load_from_csv>
preds = corr.corrected_labels() submission = pd.DataFrame( preds, columns=('Label',), index=pd.Index(( 1 + int(p.stem)for p in data.test_ds.x.items), name='ImageId') ).sort_index() submission.to_csv('submission.csv') submission.head(10 )
Digit Recognizer
4,442,168
train = pd.read_csv(f'{DATA_PATH}/train.csv') test = pd.read_csv(f'{DATA_PATH}/sample_submission.csv') label_map = pd.read_json(f'{DATA_PATH}/label_num_to_disease_map.json', orient='index') if CFG['debug']: train = train.sample(n=1000, random_state=CFG['seed'] ).reset_index(drop=True )<define_variables>
! echo 64e2b22ef2bf4e7f8b179c497a81aeea11761ce1e242083a44c42a20c8a52c65 \ submission.csv | sha256sum -c
Digit Recognizer
7,390,641
model_dirs = [] for stage1 in CFG['stage1_models']: num = str(stage1 ).rjust(2, '0') output_dir_ = glob.glob(f'.. /input/{num}*/') assert len(output_dir_)== 1, output_dir_ model_dirs.append(output_dir_[0]) model_dirs<load_pretrained>
sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv") train = pd.read_csv(".. /input/digit-recognizer/train.csv" )
Digit Recognizer
7,390,641
normal_configs = [] tta_configs = [] normal_model_dirs = [] tta_model_dirs = [] for model_dir in model_dirs: assert len(glob.glob(f'{model_dir}/*.yml')) ==1 config_path = glob.glob(f'{model_dir}/*.yml')[0] with open(config_path)as f: config = yaml.load(f) if 'valid_augmentation' in config['tag'].keys() : tta_model_dirs.append(model_dir) tta_configs.append(config) else: normal_model_dirs.append(model_dir) normal_configs.append(config )<compute_test_metric>
X_train = train / 255.0 X_test = test / 255.0
Digit Recognizer
7,390,641
def get_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def remove_glob(pathname, recursive=True): for p in glob.glob(pathname, recursive=recursive): if os.path.isfile(p): os.remove(p) @contextmanager def timer(name): t0 = time.time() LOGGER.info(f'[{name}] start') yield LOGGER.info(f'[{name}] done in {time.time() - t0:.0f} s.') def seed_torch(seed=42): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True <define_variables>
X_train =(X_train.iloc[:,1:].values ).astype('float32') y_train = train['label'].astype('float32') X_test = X_test.values.astype('float32' )
Digit Recognizer
7,390,641
TRAIN_PATH = '.. /input/cassava-leaf-disease-classification/train_images' TEST_PATH = '.. /input/cassava-leaf-disease-classification/test_images'<normalization>
mean_px = X_train.mean().astype(np.float32) std_px = X_train.std().astype(np.float32) def standardize(x): return(x - mean_px)/std_px [mean_px, std_px]
Digit Recognizer
7,390,641
class TestDataset(Dataset): def __init__(self, df, transform=None): self.df = df self.file_names = df['image_id'].values self.transform = transform def __len__(self): return len(self.df) def __getitem__(self, idx): file_name = self.file_names[idx] file_path = f'{TEST_PATH}/{file_name}' image = cv2.imread(file_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if self.transform: augmented = self.transform(image=image) image = augmented['image'] return image class TTADataset(Dataset): def __init__(self, df, image_path, ttas): self.df = df self.file_names = df['image_id'].values self.labels = df['label'].values self.image_path = image_path self.ttas = ttas def __len__(self)-> int: return len(self.df) def __getitem__(self, idx): file_name = self.file_names[idx] file_path = f'{self.image_path}/{file_name}' image = cv2.imread(file_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) imglist=[tta(image=image)['image'] for tta in self.ttas] image=torch.stack(imglist) label = torch.tensor(self.labels[idx] ).long() return image, label<normalization>
print(y_train) y_train= to_categorical(y_train) num_classes = y_train.shape[1]
Digit Recognizer
7,390,641
def _get_augmentations(aug_list, cfg): process = [] for aug in aug_list: if aug == 'Resize': process.append(Resize(cfg['size'], cfg['size'])) elif aug == 'RandomResizedCrop': process.append(RandomResizedCrop(cfg['size'], cfg['size'])) elif aug == 'CenterCrop': process.append(CenterCrop(CFG['size'], CFG['size'])) elif aug == 'Transpose': process.append(Transpose(p=0.5)) elif aug == 'HorizontalFlip': process.append(HorizontalFlip(p=0.5)) elif aug == 'VerticalFlip': process.append(VerticalFlip(p=0.5)) elif aug == 'ShiftScaleRotate': process.append(ShiftScaleRotate(p=0.5)) elif aug == 'Normalize': process.append(Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], )) else: raise ValueError(f'{aug} is not suitable') process.append(ToTensorV2()) return process def get_transforms(*, aug_list, cfg): return Compose( _get_augmentations(aug_list, cfg) )<choose_model_class>
seed = 43 np.random.seed(seed) seed
Digit Recognizer
7,390,641
class CustomModel(nn.Module): def __init__(self, model_name, target_size, pretrained=False): super().__init__() self.model = timm.create_model(model_name, pretrained=pretrained) if hasattr(self.model, 'classifier'): n_features = self.model.classifier.in_features self.model.classifier = nn.Linear(n_features, target_size) elif hasattr(self.model, 'fc'): n_features = self.model.fc.in_features self.model.fc = nn.Linear(n_features, target_size) elif hasattr(self.model, 'head'): n_features = self.model.head.in_features self.model.head = nn.Linear(n_features, target_size) def forward(self, x): x = self.model(x) return x<categorify>
gen = image.ImageDataGenerator() X = X_train y = y_train X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.10, random_state=42) batches = gen.flow(X_train, y_train, batch_size=64) val_batches=gen.flow(X_val, y_val, batch_size=64)
Digit Recognizer
7,390,641
def inference_tta(model, states, tta_loader, device): model.to(device) tk0 = tqdm(enumerate(tta_loader), total=len(tta_loader)) probs = [] for i,(images, _)in tk0: images = images.to(device) batch_size, n_crops, c, h, w = images.size() images = images.view(-1, c, h, w) avg_preds = [] for state in states: model.load_state_dict(state['model']) model.eval() with torch.no_grad() : y_preds = model(images ).softmax(1) y_preds = y_preds.view(batch_size, n_crops,-1) avg_preds.append(y_preds.to('cpu' ).numpy()) avg_preds = np.mean(avg_preds, axis=0) probs.append(avg_preds) del images, _, y_preds, avg_preds torch.cuda.empty_cache() probs = np.concatenate(probs) return probs <create_dataframe>
gen =ImageDataGenerator(rotation_range=8, width_shift_range=0.08, shear_range=0.3, height_shift_range=0.08, zoom_range=0.08) batches = gen.flow(X_train, y_train, batch_size=64) val_batches = gen.flow(X_val, y_val, batch_size=64)
Digit Recognizer
7,390,641
def main_tta(config, model_dir): INFO = config['info'] TAG = config['tag'] CFG = config['cfg'] CFG['train'] = False CFG['inference'] = True inference_batch_size = 8 seed_torch(seed=CFG['seed']) model = CustomModel(TAG['model_name'], CFG['target_size'], pretrained=False) states = [torch.load(path)for path in glob.glob(f'{model_dir}/*.pth')] ttas = get_ttas(CFG) tta_dataset = TTADataset(test, TEST_PATH, ttas=ttas) tta_loader = DataLoader(tta_dataset, batch_size=inference_batch_size, shuffle=False, num_workers=2, pin_memory=True) predictions = inference_tta(model, states, tta_loader, device) return predictions<define_variables>
def get_bn_model() : model = Sequential([ Lambda(standardize, input_shape=(28,28,1)) , Conv2D(32,(3,3), activation='relu'), BatchNormalization() , Conv2D(32,(3,3), activation='relu'), MaxPooling2D() , BatchNormalization() , Conv2D(64,(3,3), activation='relu'), BatchNormalization() , Conv2D(64,(3,3), activation='relu'), MaxPooling2D() , Flatten() , BatchNormalization() , Dense(512, activation='relu'), BatchNormalization() , Dense(10, activation='softmax') ]) model.compile(Adam() , loss='categorical_crossentropy', metrics=['accuracy']) return model model= get_bn_model() model.optimizer.learning_rate=0.01 history=model.fit_generator(generator=batches, steps_per_epoch=batches.n, epochs=1, validation_data=val_batches, validation_steps=val_batches.n)
Digit Recognizer
7,390,641
data_num = len(test) model_num = len(model_dirs) target_num = CFG['target_size'] channel_num = 4 stage1_predictions = np.zeros(( model_num, data_num, channel_num, target_num), dtype=np.float) for config, model_dir in zip(tta_configs, tta_model_dirs): stage1_predictions[model_dirs.index(model_dir)] = main_tta(config, model_dir) stage1_predictions = stage1_predictions.transpose(1, 2, 0, 3 )<categorify>
model.optimizer.learning_rate=0.01 gen = image.ImageDataGenerator() batches = gen.flow(X, y, batch_size=64) history=model.fit_generator(generator=batches, steps_per_epoch=batches.n, epochs=3 )
Digit Recognizer
7,390,641
<choose_model_class><EOS>
predictions = model.predict_classes(X_test, verbose=0) submissions=pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) , "Label": predictions}) submissions.to_csv("DR.csv", index=False, header=True)
Digit Recognizer
3,729,811
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test>
batch_size=128 keras.__version__
Digit Recognizer
3,729,811
def inference(model, states, test_loader, device): model.to(device) tk0 = tqdm(enumerate(test_loader), total=len(test_loader)) probs = [] for i,(features)in tk0: features = features.to(device) avg_preds = [] for state in states: model.load_state_dict(state['model']) model.eval() with torch.no_grad() : y_preds = model(features) avg_preds.append(y_preds.softmax(1 ).to('cpu' ).numpy()) avg_preds = np.mean(avg_preds, axis=0) probs.append(avg_preds) probs = np.concatenate(probs) return probs<save_to_csv>
train_df = pd.read_csv('.. /input/train.csv') test_df = pd.read_csv('.. /input/test.csv') pred_df = pd.read_csv('.. /input/sample_submission.csv')
Digit Recognizer