kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
3,729,811
model = CNNStacking(CFG['target_size']) states = [torch.load(STAGE2_DIR+f'/fold{fold}_best.pth')for fold in CFG['trn_fold']] test_dataset = StackingDataset(stage1_predictions) test_loader = DataLoader(test_dataset, batch_size=CFG['batch_size'], shuffle=False, num_workers=CFG['num_workers'], pin_memory=True) predictions = inference(model, states, test_loader, device) test['label'] = predictions.argmax(1) test[['image_id', 'label']].to_csv(OUTPUT_DIR+'submission.csv', index=False )<import_modules>
log_dir = '.. /work'
Digit Recognizer
3,729,811
from fastai.vision.all import * import albumentations<define_variables>
train_df_n = train_df.astype('float32')/ 255 test_df_n = test_df.astype('float32')/ 255 train_np_n = train_df_n.values test_np_n = test_df_n.values print(train_np_n.shape) print(test_np_n.shape )
Digit Recognizer
3,729,811
set_seed(42 )<categorify>
X_train, X_val, y_train, y_val = train_test_split(train_np_n, train_label_np, test_size=0.25, random_state=42) print(X_train.shape) print(y_train.shape) print(X_val.shape) print(y_val.shape )
Digit Recognizer
3,729,811
class AlbumentationsTransform(RandTransform): "A transform handler for multiple `Albumentation` transforms" split_idx,order=None,2 def __init__(self, train_aug, valid_aug): store_attr() def before_call(self, b, split_idx): self.idx = split_idx def encodes(self, img: PILImage): if self.idx == 0: aug_img = self.train_aug(image=np.array(img)) ['image'] else: aug_img = self.valid_aug(image=np.array(img)) ['image'] return PILImage.create(aug_img )<prepare_x_and_y>
print(y_train.shape) print(y_val.shape) Y_train = to_categorical(y_train) Y_val = to_categorical(y_val) print(Y_train.shape) print(Y_val.shape )
Digit Recognizer
3,729,811
def get_x(row): return data_path/row['image_id'] def get_y(row): return row['label']<choose_model_class>
def step_decay_for_conv2(epoch): x = 0.0005 if epoch >= 20: x = 0.0001 if epoch >= 40: x = 0.00005 return x lr_decay = LearningRateScheduler(step_decay_for_conv2,verbose=0 )
Digit Recognizer
3,729,811
class CassavaModel(Module): def __init__(self, num_classes): self.effnet = EfficientNet.from_pretrained("efficientnet-b3") self.dropout = nn.Dropout(0.1) self.out = nn.Linear(1536, num_classes) def forward(self, image): batch_size, _, _, _ = image.shape x = self.effnet.extract_features(image) x = F.adaptive_avg_pool2d(x, 1 ).reshape(batch_size, -1) outputs = self.out(self.dropout(x)) return outputs<define_variables>
def create_model2() : inputs_mnist = Input(shape=(28,28,1)) inputs = Conv2D(filters=64, kernel_size=(3,3), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs_mnist) inputs = Conv2D(filters=128, kernel_size=(3,3), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs) inputs = BatchNormalization()(inputs) inputs = MaxPooling2D(pool_size=(2,2))(inputs) inputs = Conv2D(filters=128, kernel_size=(3,3), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs) inputs = Conv2D(filters=128, kernel_size=(3,3), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs) inputs = BatchNormalization()(inputs) inputs = MaxPooling2D(pool_size=(2,2))(inputs) inputs = Conv2D(filters=128, kernel_size=(3,3), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs) inputs = Conv2D(filters=128, kernel_size=(3,3), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs) inputs = BatchNormalization()(inputs) inputs = MaxPooling2D(pool_size=(2,2))(inputs) inputs = Conv2D(filters=128, kernel_size=(3,3), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs) inputs = Conv2D(filters=128, kernel_size=(3,3), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs) inputs = BatchNormalization()(inputs) inputs_last = MaxPooling2D(pool_size=(2,2))(inputs) inputs2 = Conv2D(filters=64, kernel_size=(5,5), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs_mnist) inputs2 = Conv2D(filters=128, kernel_size=(5,5), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs2) inputs2 = BatchNormalization()(inputs2) inputs2 = MaxPooling2D(pool_size=(2,2))(inputs2) inputs2 = Conv2D(filters=128, kernel_size=(5,5), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs2) inputs2 = Conv2D(filters=128, kernel_size=(5,5), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs2) inputs2 = BatchNormalization()(inputs2) inputs2 = MaxPooling2D(pool_size=(2,2))(inputs2) inputs2 = Conv2D(filters=128, kernel_size=(5,5), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs2) inputs2 = Conv2D(filters=128, kernel_size=(5,5), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs2) inputs2 = BatchNormalization()(inputs2) inputs2 = MaxPooling2D(pool_size=(2,2))(inputs2) inputs2 = Conv2D(filters=128, kernel_size=(5,5), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs2) inputs2 = Conv2D(filters=128, kernel_size=(5,5), padding='same', bias_regularizer=regularizers.l2(0.005))(inputs2) inputs2 = BatchNormalization()(inputs2) inputs2_last = MaxPooling2D(pool_size=(2,2))(inputs2) inputs_ad_ls = Flatten()(inputs_last) inputs_ad_ls = Dense(units=4096, activation='relu' )(inputs_ad_ls) inputs_ad_ls = Dropout(rate=0.5 )(inputs_ad_ls) inputs_ad_ls = Dense(units=4096, activation='relu' )(inputs_ad_ls) inputs_ad_ls = Dropout(rate=0.5 )(inputs_ad_ls) outputs_ad_ls = Dense(units=10, activation='softmax', name='1st_fc' )(inputs_ad_ls) inputs2_ad_ls = Flatten()(inputs2_last) inputs2_ad_ls = Dense(units=4096, activation='relu' )(inputs2_ad_ls) inputs2_ad_ls = Dropout(rate=0.5 )(inputs2_ad_ls) inputs2_ad_ls = Dense(units=4096, activation='relu' )(inputs2_ad_ls) inputs2_ad_ls = Dropout(rate=0.5 )(inputs2_ad_ls) outputs2_ad_ls = Dense(units=10, activation='softmax', name='2nd_fc' )(inputs2_ad_ls) inputs3 = keras.layers.concatenate([inputs_last, inputs2_last]) inputs_2_fc = Flatten()(inputs3) inputs_2_fc = Dense(units=8192, activation='relu' )(inputs_2_fc) inputs_2_fc = Dropout(rate=0.5 )(inputs_2_fc) inputs_2_fc = Dense(units=4096, activation='relu' )(inputs_2_fc) inputs_2_fc = Dropout(rate=0.5 )(inputs_2_fc) inputs_2_fc = Dense(units=4096, activation='relu' )(inputs_2_fc) inputs_2_fc = Dropout(rate=0.5 )(inputs_2_fc) outputs = Dense(units=10, activation='softmax', name='last_fc' )(inputs_2_fc) model = Model(inputs=[inputs_mnist], outputs=[outputs, outputs_ad_ls, outputs2_ad_ls]) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'], loss_weights=[1.0, 0.2, 0.2]) model.summary() return model
Digit Recognizer
3,729,811
Path('/kaggle/input' ).ls()<load_pretrained>
_model = create_model2()
Digit Recognizer
3,729,811
learn = load_learner(Path('/kaggle/input/effnet-inference/inference(1)'), cpu=False )<define_variables>
def fit_the_model(_model, _epochs): original_hist = _model.fit(np.array(X_train), [np.array(Y_train),np.array(Y_train),np.array(Y_train)], epochs=_epochs, batch_size=batch_size, verbose=1, callbacks=[lr_decay], validation_data=(np.array(X_val), [np.array(Y_val),np.array(Y_val),np.array(Y_val)])) return original_hist
Digit Recognizer
3,729,811
path = Path(".. /input") data_path = path/'cassava-leaf-disease-classification'<load_from_csv>
def fit_the_model_with_data(_model, _epochs, X_train, Y_train, X_val, Y_val, _cp): original_hist = _model.fit(np.array(X_train), [np.array(Y_train),np.array(Y_train),np.array(Y_train)], epochs=_epochs, batch_size=batch_size, verbose=0, callbacks=[lr_decay, _cp], validation_data=(np.array(X_val), [np.array(Y_val),np.array(Y_val),np.array(Y_val)])) return original_hist
Digit Recognizer
3,729,811
test_df = pd.read_csv(data_path/'sample_submission.csv') test_df.head()<prepare_output>
from sklearn.model_selection import KFold import numpy as np
Digit Recognizer
3,729,811
test_copy = test_df.copy() test_copy['image_id'] = test_copy['image_id'].apply(lambda x: f'test_images/{x}' )<train_model>
X = np.copy(train_np_n) y = np.copy(train_label_np) kf = KFold(n_splits=4,shuffle=True) kf.get_n_splits(X) print(kf )
Digit Recognizer
3,729,811
test_dl = learn.dls.test_dl(test_copy )<predict_on_test>
_i = 0 for train_index, val_index in kf.split(X): filepath=".. /work/kfold_cp"+str(_i)+".hdf5" _cp = ModelCheckpoint(filepath, monitor='val_last_fc_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='max', period=1) _m = create_model2() ; X_t, X_v = X[train_index], X[val_index] y_t, y_v = y[train_index], y[val_index] X_t = X_t.reshape(X_t.shape[0],28,28,1) X_v = X_v.reshape(X_v.shape[0],28,28,1) Y_t = to_categorical(y_t) Y_v = to_categorical(y_v) print(X_t.shape, y_t.shape, Y_t.shape, X_v.shape, y_v.shape, Y_v.shape) epochs=100 history = fit_the_model_with_data(_m, epochs, X_t, Y_t, X_v, Y_v, _cp) check_result(history.history); _m.save(".. /work/"+"kfold"+str(_i)+'.h5') _i += 1
Digit Recognizer
3,729,811
preds, _ = learn.get_preds(dl=test_dl )<feature_engineering>
model_cp0 = load_model(".. /work/kfold_cp0.hdf5") model_cp1 = load_model(".. /work/kfold_cp1.hdf5") model_cp2 = load_model(".. /work/kfold_cp2.hdf5") model_cp3 = load_model(".. /work/kfold_cp3.hdf5" )
Digit Recognizer
3,729,811
test_df['label'] = preds.argmax(dim=-1 ).numpy()<save_to_csv>
def pred_argmax(_model, _data, _label=np.array([0])) : c_prob, c_prob1, c_prob2 = _model.predict(_data) pred= np.argmax(c_prob, axis=1) if len(_label)!= 1: correct = np.argmax(_label,axis=1) else: correct = 0 return c_prob, pred, correct def pred_argmax2(_model,_gen, _data, _label=np.array([0])) : _batch_size=128 _s = len(_data)/ _batch_size c_prob = _model.predict_generator(_gen.flow(_data,batch_size=_batch_size,shuffle=None), steps=_s) pred= np.argmax(c_prob, axis=1) if len(_label)!= 1: correct = np.argmax(_label,axis=1) else: correct = 0 return c_prob, pred, correct def disp_image(_data, _pred, _correct, _list, _isdisplay="off"): pair_list = [] wrong_list = [] for _i in _list: if _isdisplay == "on": plt.imshow(_data[_i].reshape(28, 28), cmap=plt.get_cmap('gray')) plt.show() pair_list.append(str(_correct[_i])+" as "+str(_pred[_i])) wrong_list.append(_pred[_i]) return pair_list, wrong_list
Digit Recognizer
3,729,811
test_df.to_csv('submission.csv', index=False )<define_variables>
X_all = train_np_n.reshape(train_np_n.shape[0], 28, 28, 1) Y_all = to_categorical(train_label_np) print(X_all.shape) print(Y_all.shape)
Digit Recognizer
3,729,811
package_paths = [ '.. /input/pytorch-image-models/pytorch-image-models-master' ] for pth in package_paths: sys.path.append(pth )<import_modules>
X0_cp_all_prob, X0_cp_all_pred, X0_cp_all_correct = pred_argmax(model_cp0, X_all,Y_all) X1_cp_all_prob, X1_cp_all_pred, X1_cp_all_correct = pred_argmax(model_cp1, X_all,Y_all) X2_cp_all_prob, X2_cp_all_pred, X2_cp_all_correct = pred_argmax(model_cp2, X_all,Y_all) X3_cp_all_prob, X3_cp_all_pred, X3_cp_all_correct = pred_argmax(model_cp3, X_all,Y_all) _d0_cp = np.not_equal(X0_cp_all_pred, X0_cp_all_correct) _d1_cp = np.not_equal(X1_cp_all_pred, X1_cp_all_correct) _d2_cp = np.not_equal(X2_cp_all_pred, X2_cp_all_correct) _d3_cp = np.not_equal(X3_cp_all_pred, X3_cp_all_correct) print(sum(_d0_cp)) print(sum(_d1_cp)) print(sum(_d2_cp)) print(sum(_d3_cp)) DF_cp = np.argmin([sum(_d0_cp),sum(_d1_cp),sum(_d2_cp),sum(_d3_cp)], axis=0) print(DF_cp )
Digit Recognizer
3,729,811
<load_from_csv>
X0_test_prob, X0_test_pred, X0_test_correct = pred_argmax(model_cp0, X_test) X1_test_prob, X1_test_pred, X1_test_correct = pred_argmax(model_cp1, X_test) X2_test_prob, X2_test_pred, X2_test_correct = pred_argmax(model_cp2, X_test) X3_test_prob, X3_test_pred, X3_test_correct = pred_argmax(model_cp3, X_test)
Digit Recognizer
3,729,811
submission = pd.read_csv('.. /input/cassava-leaf-disease-classification/sample_submission.csv') submission.head()<set_options>
pred_info_test = np.concatenate([X0_test_pred.reshape(X0_test_pred.shape[0],1), X1_test_pred.reshape(X1_test_pred.shape[0],1), X2_test_pred.reshape(X2_test_pred.shape[0],1), X3_test_pred.reshape(X3_test_pred.shape[0],1)], axis=1) print(pred_info_test.shape) print(pred_info_test )
Digit Recognizer
3,729,811
def seed_everything(seed): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True def get_img(path): im_bgr = cv2.imread(path) im_rgb = im_bgr[:, :, ::-1] return im_rgb ShiftScaleRotate, Normalize, Compose, CenterCrop, Resize, HorizontalFlip, VerticalFlip, Transpose, RandomResizedCrop, HueSaturationValue, RandomBrightnessContrast, CoarseDropout, Cutout ) def get_infer_transforms() : return Compose([ CenterCrop(config['img_size'], config['img_size'], p=1.0), Resize(config['img_size'], config['img_size']), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), ToTensorV2(p=1.0), ], p=1.0 )<categorify>
def return_result(preds): _c = Counter(preds) _v = _c.most_common(1)[0][0] _n = _c.most_common(1)[0][1] if _n == 4 or _n ==3: return _v else: return preds[DF_cp]
Digit Recognizer
3,729,811
class LeafDataset(Dataset): def __init__(self, df, img_dir, transforms=None, include_labels=True): super().__init__() self.df = df self.img_dir = img_dir self.transforms = transforms self.include_labels = include_labels if include_labels: self.labels = self.df['label'].values def __len__(self): return len(self.df) def __getitem__(self, index: int): img = get_img("{}/{}".format(self.img_dir, self.df.loc[index]['image_id'])) if self.transforms: img = self.transforms(image=img)['image'] if self.include_labels: label = self.labels[index] return img, label else: return img;<choose_model_class>
rdf_test = pd.DataFrame(pred_info_test ).apply(return_result, axis=1) rdf_test
Digit Recognizer
3,729,811
class LeafDiseaseClassifier(nn.Module): def __init__(self, model_arch, num_classes, pretrained=False): super().__init__() self.model = timm.create_model(model_arch, pretrained=pretrained) n_features = self.model.classifier.in_features self.model.classifier = nn.Linear(n_features, num_classes) def forward(self, x): x = self.model(x) return x def freeze_batch_norm(self): layers = [mod for mod in self.model.children() ] for layer in layers: if isinstance(layer, nn.BatchNorm2d): for param in layer.parameters() : param.requires_grad = False elif isinstance(layer, nn.Sequential): for seq_layers in layer.children() : if isinstance(layer, nn.BatchNorm2d): param.requires_grad = False<create_dataframe>
pred_df["label"]=rdf_test pred_df
Digit Recognizer
3,729,811
if __name__ == '__main__': seed_everything(config['seed']) test = pd.DataFrame() test['image_id'] = list(os.listdir('.. /input/cassava-leaf-disease-classification/test_images/')) test_ds = LeafDataset(test, '.. /input/cassava-leaf-disease-classification/test_images/', transforms=get_infer_transforms() , include_labels=False) test_loader = torch.utils.data.DataLoader( test_ds, batch_size=config['test_bs'], num_workers=config['num_workers'], shuffle=False, ) device = torch.device(config['device']) model = LeafDiseaseClassifier(config['model_arch'], config['num_classes'] ).to(device) model.load_state_dict(torch.load('.. /input/effnet-b4/tf_efficientnet_b4_ns_Fold4_Epoch5_Acc_0.8952.pth')) model.eval() preds = [] pbar = tqdm(enumerate(test_loader), total=len(test_loader)) for step,(test_batch)in pbar: test_batch = test_batch.to(device ).float() test_preds = model(test_batch) preds += [torch.softmax(test_preds, 1 ).detach().cpu().numpy() ] preds = np.concatenate(preds, axis=0) <save_to_csv>
pred_df.to_csv('submission.csv', index=False )
Digit Recognizer
4,269,364
test['label'] = np.argmax(preds, axis=1) test.head() test.to_csv('submission.csv', index=False )<find_best_params>
dataset=pd.read_csv('.. /input/train.csv' )
Digit Recognizer
4,269,364
del model torch.cuda.empty_cache()<load_from_csv>
y=dataset['label']
Digit Recognizer
4,269,364
train=pd.read_csv(r'.. /input/bike-sharing-demand/train.csv') test=pd.read_csv(r'.. /input/bike-sharing-demand/test.csv') df=train.copy() test_df=test.copy() df.head()<feature_engineering>
X_train=dataset.iloc[:,1:]
Digit Recognizer
4,269,364
df['datetime'] = pd.to_datetime(df['datetime']) test_df['datetime'] = pd.to_datetime(test_df['datetime']) df['year'] = df['datetime'].apply(lambda x: x.year) df['month'] = df['datetime'].apply(lambda x: x.month) df['day'] = df['datetime'].apply(lambda x: x.day) df['hour'] = df['datetime'].apply(lambda x: x.hour) test_df['year'] = test_df['datetime'].apply(lambda x: x.year) test_df['month'] = test_df['datetime'].apply(lambda x: x.month) test_df['day'] = test_df['datetime'].apply(lambda x: x.day) test_df['hour'] = test_df['datetime'].apply(lambda x: x.hour) df.drop(['datetime', 'casual', 'registered'], axis=1, inplace=True) test_df.drop(['datetime'], axis=1, inplace=True) df<categorify>
X_test=pd.read_csv('.. /input/test.csv' )
Digit Recognizer
4,269,364
df = pd.get_dummies(df, columns=['year', 'month', 'day', 'hour', 'holiday', 'workingday', 'season', 'weather']) test_df = pd.get_dummies(test_df, columns=['year', 'month', 'day', 'hour', 'holiday', 'workingday', 'season', 'weather']) df, test_df = df.align(test_df, join='left', axis=1) test_df = test_df.drop(['count'], axis=1) print(df.shape) print(test_df.shape )<compute_test_metric>
X_train=X_train/255.0 X_test=X_test/255.0
Digit Recognizer
4,269,364
def rmsle(y, pred): log_y = np.log1p(y) log_pred = np.log1p(pred) squared_error =(log_y - log_pred)**2 rmsle = np.sqrt(np.mean(squared_error)) return rmsle<train_on_grid>
from keras.models import Sequential from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPool2D from keras.preprocessing.image import ImageDataGenerator from keras.utils.np_utils import to_categorical from sklearn.model_selection import train_test_split, cross_val_score import itertools
Digit Recognizer
4,269,364
df_train_target = df['count'] df_train_features = df.drop('count',axis=1) def print_best_params(model, params): grid_model = GridSearchCV( model, param_grid = params, cv=5, scoring='neg_mean_squared_error') grid_model.fit(df_train_features, df_train_target) rmse = np.sqrt(-1*grid_model.best_score_) print( '{0} 5 CV 시 최적 평균 RMSE 값 {1}, 최적 alpha:{2}'.format(model.__class__.__name__, np.round(rmse, 4), grid_model.best_params_)) return grid_model.best_estimator_<feature_engineering>
target=to_categorical(y,10 )
Digit Recognizer
4,269,364
df['count'] = np.log1p(df['count'] )<train_model>
X_t, X_v, Y_t, Y_v = train_test_split(X_train, target, test_size = 0.1 )
Digit Recognizer
4,269,364
x_train,x_test,y_train,y_test=train_test_split(df.drop('count',axis=1),df['count'],test_size=0.3,random_state=42) lr_reg = LinearRegression() lr_reg.fit(x_train, y_train) lr_pred = lr_reg.predict(x_test) y_test_exp = np.expm1(y_test) lr_pred_exp = np.expm1(lr_pred) print('LinearRegression RMSLE:', rmsle(y_test_exp, lr_pred_exp)) <compute_train_metric>
model=Sequential() model.add(Conv2D(filters=64,kernel_size=(7,7),padding = 'Same', activation ='relu', input_shape =(28,28,1)) )
Digit Recognizer
4,269,364
rf_model = RandomForestRegressor() rf_model.fit(x_train, y_train) rf_pred = rf_model.predict(x_test) y_test_exp = np.expm1(y_test) rf_pred_exp = np.expm1(rf_pred) print('RandomForest RMSLE:', rmsle(y_test_exp, rf_pred_exp))<compute_test_metric>
model.add(Conv2D(filters=64,kernel_size=(7,7),padding = 'Same', activation ='relu'))
Digit Recognizer
4,269,364
xgb_model = XGBRegressor(learning_rate=0.2) xgb_model.fit(x_train, y_train) xgb_pred = xgb_model.predict(x_test) y_test_exp = np.expm1(y_test) xgb_pred_exp = np.expm1(xgb_pred) print('xgboost RMSLE:', rmsle(y_test_exp, xgb_pred_exp))<import_modules>
model.add(MaxPool2D(pool_size=(2,2)) )
Digit Recognizer
4,269,364
lgb_params = { 'learning_rate' : [0.05], 'n_estimators':[500], 'max_bin' : [80], } lgb_model = LGBMRegressor() lgb_model.fit(x_train, y_train) lgb_pred = lgb_model.predict(x_test) y_test_exp = np.expm1(y_test) lgb_pred_exp = np.expm1(lgb_pred) print('LGBMRegressor RMSLE:', rmsle(y_test_exp,lgb_pred_exp)) lgb_estimator = print_best_params(lgb_model, lgb_params) <prepare_x_and_y>
model.add(Dropout(0.3))
Digit Recognizer
4,269,364
X_train = df.drop(['count'], axis=1) y_train = df['count'] X_test = test_df X_test<load_from_csv>
model.add(Conv2D(filters = 128, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 128, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)) )
Digit Recognizer
4,269,364
lgb_model = LGBMRegressor() lgb_model.fit(X_train, y_train) pred = lgb_model.predict(X_test) pred_exp = np.expm1(pred) submission = pd.read_csv('.. /input/bike-sharing-demand/sampleSubmission.csv') submission.loc[:, 'count'] = pred_exp submission<save_to_csv>
model.add(Dropout(0.3)) model.add(Flatten()) model.add(Dense(512, activation = "relu", use_bias= True)) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
4,269,364
submission.to_csv('submission.csv', index=False )<save_to_csv>
model.compile(optimizer = 'adam' , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
4,269,364
submission.to_csv('submission.csv', index=False )<set_options>
datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.2, width_shift_range=0.2, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_t )
Digit Recognizer
4,269,364
warnings.filterwarnings('always') warnings.filterwarnings('ignore') style.use('fivethirtyeight') sns.set(style='whitegrid',color_codes=True) <load_from_csv>
model.fit_generator(datagen.flow(X_t,Y_t, batch_size= 82), epochs = 60, validation_data =(X_v,Y_v), verbose = 2, steps_per_epoch=X_t.shape[0] // 82)
Digit Recognizer
4,269,364
train=pd.read_csv(r'.. /input/bike-sharing-demand/train.csv') test=pd.read_csv(r'.. /input/bike-sharing-demand/test.csv') df=train.copy() test_df=test.copy() df.head()<count_values>
ewsult=model.predict(X_test )
Digit Recognizer
4,269,364
df.season.value_counts()<count_values>
ewsult=np.argmax(ewsult,axis=1 )
Digit Recognizer
4,269,364
df.holiday.value_counts() <count_values>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),ewsult],axis = 1) submission.to_csv("cnnmodel.csv",index=False )
Digit Recognizer
3,809,504
df.workingday.value_counts() <count_values>
x_train = pd.read_csv('.. /input/train.csv') x_train.head()
Digit Recognizer
3,809,504
df.weather.value_counts() <categorify>
dim_x = 28 dim_y = 28 batch_size=32 x_train.shape y_train = np.array(x_train['label']) x_train.drop('label', axis = 1, inplace = True) x_train = np.array(x_train.values) print("data shapes", x_train.shape, y_train.shape, "classes: ",len(np.unique(y_train))) classes = len(np.unique(y_train)) x_train = x_train.reshape(( -1, dim_x,dim_y,1)) print(np.unique(y_train)) y = np.zeros(( np.shape(y_train)[0],len(np.unique(y_train)))) for ii in range(len(y_train)) : y[ii,y_train[ii]] = 1 y_train = y
Digit Recognizer
3,809,504
season=pd.get_dummies(df['season'],prefix='season') df=pd.concat([df,season],axis=1) df.head() season=pd.get_dummies(test_df['season'],prefix='season') test_df=pd.concat([test_df,season],axis=1) test_df.head()<categorify>
no_validation = int(0.1 *(x_train.shape[0])) x_val = x_train[0:no_validation,...] y_val = y_train[0:no_validation,...] x_train = x_train[no_validation:,...] y_train = y_train[no_validation:,...] print(x_train.shape, y_train.shape, x_val.shape, y_val.shape) train_datagen = ImageDataGenerator(rescale = 1./255,\ rotation_range=30,\ width_shift_range=0.025,\ height_shift_range=0.025,\ shear_range=0.35,\ zoom_range=0.075) train_generator = train_datagen.flow(x=x_train,\ y=y_train,\ batch_size=batch_size,\ shuffle=True) test_datagen = ImageDataGenerator(rescale=1./255) val_generator = test_datagen.flow(x=x_val,\ y=y_val,\ batch_size=batch_size,\ shuffle=True )
Digit Recognizer
3,809,504
weather=pd.get_dummies(df['weather'],prefix='weather') df=pd.concat([df,weather],axis=1) df.head() weather=pd.get_dummies(test_df['weather'],prefix='weather') test_df=pd.concat([test_df,weather],axis=1) test_df.head()<drop_column>
model = Sequential() model.add(Conv2D(filters=96, kernel_size=(5,5), strides=1,input_shape=(dim_x,dim_y,1), activation=tf.nn.relu)) model.add(MaxPooling2D(pool_size=2, strides=2)) model.add(Conv2D(filters=256, kernel_size=(5,5), strides=1, activation=tf.nn.relu)) model.add(Conv2D(filters=384, kernel_size=(3,3), strides=1, activation=tf.nn.relu)) model.add(Conv2D(filters=384, kernel_size=(3,3), strides=1, activation=tf.nn.relu)) model.add(SpatialDropout2D(rate=0.67)) model.add(Conv2D(filters=250, kernel_size=(3,3), strides=1, activation=tf.nn.relu)) model.add(MaxPooling2D(pool_size=2, strides=2)) model.add(Flatten()) model.add(Reshape(( 250,1))) model.add(AveragePooling1D(pool_size=25,strides=25)) model.add(Reshape(( [10]))) model.add(Activation(tf.nn.softmax)) model.summary() model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=1e-4), metrics=['accuracy'] )
Digit Recognizer
3,809,504
df.drop(['season','weather'],inplace=True,axis=1) df.head() test_df.drop(['season','weather'],inplace=True,axis=1) test_df.head()<feature_engineering>
def learning_schedule(epoch): if epoch <= 1: lr = 3e-4 elif epoch <= 10: lr = 1e-5 elif epoch <= 50: lr = 3e-6 elif epoch <= 150: lr = 1e-6 else: lr = 1e-8 return lr lrate = LearningRateScheduler(learning_schedule) early = EarlyStopping(monitor='val_acc', min_delta=0, patience=600, verbose=1, mode='auto' )
Digit Recognizer
3,809,504
df["hour"] = [t.hour for t in pd.DatetimeIndex(df.datetime)] df["day"] = [t.dayofweek for t in pd.DatetimeIndex(df.datetime)] df["month"] = [t.month for t in pd.DatetimeIndex(df.datetime)] df['year'] = [t.year for t in pd.DatetimeIndex(df.datetime)] df['year'] = df['year'].map({2011:0, 2012:1}) df.head() test_df["hour"] = [t.hour for t in pd.DatetimeIndex(test_df.datetime)] test_df["day"] = [t.dayofweek for t in pd.DatetimeIndex(test_df.datetime)] test_df["month"] = [t.month for t in pd.DatetimeIndex(test_df.datetime)] test_df['year'] = [t.year for t in pd.DatetimeIndex(test_df.datetime)] test_df['year'] = test_df['year'].map({2011:0, 2012:1}) test_df.head()<drop_column>
steps_per_epoch = int(len(y_train)/batch_size) max_epochs = 4096 history = model.fit_generator(generator=train_generator,\ steps_per_epoch=steps_per_epoch,\ validation_data=val_generator,\ validation_steps=50,\ epochs=max_epochs,\ callbacks=[early, lrate],\ verbose=2 )
Digit Recognizer
3,809,504
df.drop('datetime',axis=1,inplace=True) df.head()<drop_column>
x_test = pd.read_csv('.. /input/test.csv') x_test.head() x_test = np.array(x_test.values) x_test = x_test / 255. print("data shape", x_test.shape) x_test = x_test.reshape(( -1, dim_x,dim_y,1))
Digit Recognizer
3,809,504
df.drop(['casual','registered'],axis=1,inplace=True )<feature_engineering>
y_pred = model.predict(x_test )
Digit Recognizer
3,809,504
df.drop(['month'],inplace=True,axis=1) test_df.drop(['month'],inplace=True,axis=1) df['holiday'] = df['holiday'] df['workingday'] = df['workingday']<filter>
results = np.argmax(y_pred,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
4,996,129
df[(df.atemp-df.temp ).abs() >10]<train_model>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') print(train.shape) print(test.shape) n_train_img = train.shape[0] MAX_LR=3e-3 VALID_PCT=3000/n_train_img VALID_PCT=.1 VALID_PCT
Digit Recognizer
4,996,129
line_fitter = LinearRegression() line_fitter.fit(df['temp'].values.reshape(-1,1), df['atemp'].values.reshape(-1,1))<predict_on_test>
class ArrayDataset(Dataset): "Sample numpy array dataset" def __init__(self, x, y): self.x, self.y = x, y self.c = 10 def __len__(self): return len(self.x) def __getitem__(self, i): return self.x[i], self.y[i] def reshape_and_normalize(arr): return arr.astype(np.float32 ).reshape([-1, 1, 28, 28])/255.0 def conv2(ni,nf): return conv_layer(ni,nf,stride=2) def conv_and_res(ni,nf): return nn.Sequential(conv2(ni, nf), res_block(nf)) def create_nn(n_channel=1): model = nn.Sequential( conv_and_res(n_channel, 8), conv_and_res(8, 16), conv_and_res(16, 32), conv_and_res(32, 16), conv2(16, 10), Flatten() ) return model def get_preds(learn): pred, _ = learn.get_preds(ds_type=DatasetType.Test) print(len(pred)) pred = pd.Series(np.argmax(pred, 1)) print(pred.unique()) return pred def get_callbacks() : return [partial(EarlyStoppingCallback, patience=3 )] def create_learner(data, model): learn = Learner(data, model, loss_func = nn.CrossEntropyLoss() , metrics=accuracy, callback_fns=get_callbacks()) return learn def create_submission(learn, file='learn.csv'): pred = get_preds(learn) submission = pd.DataFrame({'ImageId': range(1,1+len(pred)) , 'Label': pred}) submission.to_csv(file, index=False) return
Digit Recognizer
4,996,129
pred_result = line_fitter.predict(df[(df.atemp-df.temp ).abs() >10]['temp'].values.reshape(-1,1))<find_best_model_class>
%%time data = prepare_dataset(train, test) learn = create_learner(data, create_nn()) learn.fit_one_cycle(1, max_lr=MAX_LR) learn.lr_find(end_lr=10) learn.recorder.plot()
Digit Recognizer
4,996,129
df.columns.to_series().groupby(df.dtypes ).groups x_train,x_test,y_train,y_test=train_test_split(df.drop('count',axis=1),df['count'],test_size=0.25,random_state=42) models=[RandomForestRegressor() ] model_names=['RandomForestRegressor'] rmsle=[] d={} for model in range(len(models)) : clf=models[model] clf.fit(x_train,y_train) test_pred=clf.predict(x_test) rmsle.append(np.sqrt(mean_squared_log_error(test_pred,y_test))) d={'Modelling Algo':model_names,'RMSLE':rmsle} d<train_on_grid>
def prepare_dataset(train, test): X = reshape_and_normalize(train.drop('label', axis=1 ).values) y = train.label.values train_x, valid_x, train_y, valid_y = train_test_split(X, y,test_size=VALID_PCT) test_x = reshape_and_normalize(test.values) train_ds, valid_ds = ArrayDataset(train_x, train_y), ArrayDataset(valid_x, valid_y) test_ds = ArrayDataset(test_x, [EmptyLabel() ]*len(test_x)) data = ImageDataBunch.create(train_ds, valid_ds, test_ds, bs=100, num_workers=1) print("Train/Valid/Test sizes:", len(train_ds), len(valid_ds), len(test_ds)) return data
Digit Recognizer
4,996,129
no_of_test=[500] params_dict={'n_estimators':no_of_test,'n_jobs':[-1],'max_features':["auto",'sqrt','log2']} clf_rf=GridSearchCV(estimator=RandomForestRegressor() ,param_grid=params_dict,scoring='neg_mean_squared_log_error') clf_rf.fit(x_train,y_train) pred=clf_rf.predict(x_test) print(( np.sqrt(mean_squared_log_error(pred,y_test))))<find_best_params>
tfms = get_transforms(do_flip=False) len(tfms) tfms
Digit Recognizer
4,996,129
clf_rf.best_params_<save_to_csv>
%%time data = ImageDataBunch.from_folder('png/train', bs=100, ds_tfms=tfms, valid_pct=VALID_PCT ) data.add_test(ImageList.from_df(test_df, '.')) data.normalize() data
Digit Recognizer
4,996,129
pred=clf_rf.predict(test_df.drop('datetime',axis=1)) d={'datetime':test['datetime'],'count':pred} ans=pd.DataFrame(d) ans.to_csv('answer.csv',index=False )<load_from_csv>
data.show_batch(figsize=(7,6))
Digit Recognizer
4,996,129
!unzip.. /input/jigsaw-toxic-comment-classification-challenge/train.csv.zip !unzip.. /input/jigsaw-toxic-comment-classification-challenge/test.csv.zip !unzip.. /input/jigsaw-toxic-comment-classification-challenge/test_labels.csv.zip !unzip.. /input/jigsaw-toxic-comment-classification-challenge/sample_submission.csv.zip<define_variables>
%%time learn1 = create_learner(data, create_nn(3)) learn1.fit_one_cycle(1, max_lr=MAX_LR) learn1.lr_find(end_lr=10) learn1.recorder.plot()
Digit Recognizer
4,996,129
TRAIN = './train.csv' TEST = './test.csv' TEST_LABEL = './test_labels.csv' SAMPLE = './sample_submission.csv' EPOCHS = 2 MAX_TOKEN_COUNT = 128 BATCH_SIZE = 32<set_options>
learn1.fit_one_cycle(100, max_lr=MAX_LR) learn1.recorder.plot()
Digit Recognizer
4,996,129
%matplotlib inline %config InlineBackend.figure_format='retina' RANDOM_SEED = 42 sns.set(style='whitegrid', palette='muted', font_scale=1.2) HAPPY_COLORS_PALETTE = [" sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE)) rcParams['figure.figsize'] = 12, 8 pl.seed_everything(RANDOM_SEED )<load_from_csv>
%%time learn2 = cnn_learner(data, models.resnet50, metrics=[accuracy], callback_fns=get_callbacks()) learn2.fit_one_cycle(1, max_lr=MAX_LR) learn2.lr_find(end_lr=10) learn2.recorder.plot()
Digit Recognizer
4,996,129
df = pd.read_csv(TRAIN) test_df = pd.read_csv(TEST) test_label = pd.read_csv(TEST_LABEL) sample_sub = pd.read_csv(SAMPLE) df.describe()<split>
%%time learn2.fit_one_cycle(100, max_lr=MAX_LR) learn2.recorder.plot()
Digit Recognizer
4,996,129
<create_dataframe><EOS>
!rm -Rf png
Digit Recognizer
3,605,350
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_pretrained>
import numpy as np import pandas as pd from IPython.display import Image import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from tensorflow.python import keras from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, Dropout, MaxPool2D, BatchNormalization, Activation from tensorflow.python.keras.callbacks import ReduceLROnPlateau from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.python.keras.optimizers import RMSprop, Adam from tensorflow.python.keras.activations import relu from tensorflow.python.keras.utils import plot_model from tensorflow.python.keras.losses import categorical_crossentropy
Digit Recognizer
3,605,350
BERT_MODEL_NAME = 'bert-base-cased' tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME )<create_dataframe>
digit_data = pd.read_csv('.. /input/train.csv') digit_data.head(5 )
Digit Recognizer
3,605,350
train_dataset = ToxicCommentsDataset( train_df, tokenizer, max_token_len=MAX_TOKEN_COUNT ) val_dataset = ToxicCommentsDataset( val_df, tokenizer, max_token_len=MAX_TOKEN_COUNT ) <create_dataframe>
img_rows, img_cols = 28,28 num_classes = 10 def data_prep_train(raw,val_frac): num_images = int(raw.shape[0]) y_full = keras.utils.to_categorical(raw.label, num_classes) X_as_array = raw.values[:,1:] X_shaped_array = X_as_array.reshape(num_images, img_rows, img_cols, 1) X_full = X_shaped_array / 255 X_train, X_val, y_train, y_val = train_test_split(X_full, y_full, test_size=val_frac) return X_train, X_val, y_train, y_val def data_prep_predict(raw): num_images = int(raw.shape[0]) X_as_array = raw.values X_shaped_array = X_as_array.reshape(num_images, img_rows, img_cols, 1) X = X_shaped_array / 255 return X
Digit Recognizer
3,605,350
test_dataset = ToxicCommentsDataset( test_df, tokenizer, max_token_len=MAX_TOKEN_COUNT, test=True ) <load_pretrained>
def build_model(layer_sizes=[32, 32, 64, 64, 256], kernel_sizes=[5,5,3,3], activation = 'relu'): model = Sequential() model.add(Conv2D(layer_sizes[0], kernel_size=kernel_sizes[0], padding = 'same', input_shape=(img_rows, img_cols, 1))) model.add(BatchNormalization()) model.add(Activation(activation)) model.add(Conv2D(layer_sizes[1], kernel_size=kernel_sizes[1], padding = 'same')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(rate=0.25)) model.add(Conv2D(layer_sizes[2], kernel_size=kernel_sizes[2], padding = 'same')) model.add(BatchNormalization()) model.add(Activation(activation)) model.add(Conv2D(layer_sizes[3], kernel_size=kernel_sizes[3], padding = 'same')) model.add(BatchNormalization()) model.add(Activation(activation)) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(rate=0.25)) model.add(Flatten()) model.add(Dense(layer_sizes[4])) model.add(BatchNormalization()) model.add(Activation(activation)) model.add(Dropout(rate=0.5)) model.add(Dense(num_classes, activation='softmax')) return model my_model = build_model() plot_model(my_model, to_file='my_model.png', show_shapes=True, show_layer_names=True) Image('my_model.png' )
Digit Recognizer
3,605,350
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False) test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False )<set_options>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False, )
Digit Recognizer
3,605,350
gc.collect()<choose_model_class>
def train_model(model, optimizer='adam', batch_size=64, epochs=1, verbose=1, callbacks=[]): model.compile(loss=categorical_crossentropy, optimizer=optimizer, metrics=['accuracy']) history = model.fit(datagen.flow(X_train, y_train, batch_size=batch_size), epochs=epochs, verbose=verbose, validation_data=(X_val,y_val), callbacks=callbacks) return history
Digit Recognizer
3,605,350
class ToxicCommentTagger(nn.Module): def __init__(self, n_classes: int, n_training_steps=None, n_warmup_steps=None): super().__init__() self.bert = BertModel.from_pretrained(BERT_MODEL_NAME, return_dict=True) self.classifier = nn.Linear(self.bert.config.hidden_size, n_classes) self.n_training_steps = n_training_steps self.n_warmup_steps = n_warmup_steps self.criterion = nn.BCELoss() def forward(self, input_ids, attention_mask, labels=None): output = self.bert(input_ids, attention_mask=attention_mask) output = self.classifier(output.pooler_output) output = torch.sigmoid(output) loss = 0 if labels is not None: loss = self.criterion(output, labels) return loss, output<set_options>
X_train, X_val, y_train, y_val = data_prep_train(digit_data,0.1) leaky_relu = lambda x: relu(x, alpha=0.1) optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) lr_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) my_model = build_model(activation=leaky_relu) history = train_model(my_model, optimizer=optimizer, epochs=40, batch_size = 128, verbose=1, callbacks=[lr_reduction]) plt.figure(figsize=(20,9)) plt.plot(range(20,41),history.history['val_acc'][19:], color='red', label='validation accuracy') plt.plot(range(20,41),history.history['acc'][19:], color='blue', label='accuracy') legend = plt.legend(loc='best', shadow=True) plt.show()
Digit Recognizer
3,605,350
<choose_model_class><EOS>
subm_examples = pd.read_csv('.. /input/test.csv') X_subm = data_prep_predict(subm_examples) y_subm = my_model.predict(X_subm) n_rows = y_subm.shape[0] y_subm = [np.argmax(y_subm[row,:])for row in range(n_rows)] output = pd.DataFrame({'ImageId': range(1,n_rows+1), 'Label': y_subm}) output.to_csv('submission.csv', index=False )
Digit Recognizer
3,946,383
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<define_variables>
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader, sampler from torchvision import transforms import numpy as np import pandas as pd import matplotlib.pyplot as plt import time from random import shuffle, randint from PIL import Image import math
Digit Recognizer
3,946,383
N_EPOCHS = EPOCHS steps_per_epoch=len(train_df)// BATCH_SIZE total_training_steps = steps_per_epoch * N_EPOCHS warmup_steps = total_training_steps // 5 warmup_steps, total_training_steps<choose_model_class>
class DigitDataset(Dataset): def __init__(self, csv_file, root_dir, train=False, transform=None): self.digit_df = pd.read_csv(root_dir + csv_file) self.transform = transform self.train = train def __len__(self): return len(self.digit_df) def __getitem__(self, item): if self.train: digit = self.digit_df.iloc[item, 1:].values digit = digit.astype('float' ).reshape(( 28, 28)) label = self.digit_df.iloc[item, 0] else: digit = self.digit_df.iloc[item, :].values digit = digit.astype('float' ).reshape(( 28, 28)) label = 0 sample = [digit, label] if self.transform: sample[0] = self.transform(sample[0]) return sample
Digit Recognizer
3,946,383
optimizer = AdamW(model.parameters() , lr=2e-5) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_training_steps )<train_model>
class Regularize(object): def __init__(self, max_pixel=255): self.max_pixel = max_pixel def __call__(self, digit): assert isinstance(digit, np.ndarray) digit = digit / self.max_pixel return digit class ToTensor(object): def __call__(self, digit): assert isinstance(digit, np.ndarray) digit = digit.reshape(( 1, 28, 28)) digit = torch.from_numpy(digit) digit = digit.float() return digit
Digit Recognizer
3,946,383
def train() : model.train() total_loss, total_accuracy = 0, 0 avg_loss = 0 total_preds=[] for step,batch in enumerate(train_dataloader): if step % 50 == 0 and not step == 0: print(' Batch {:>5,} of {:>5,}.'.format(step, len(train_dataloader))) input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) labels = batch["labels"].to(device) model.zero_grad() loss, outputs = model(input_ids, attention_mask, labels) total_loss = total_loss + loss.item() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters() , 1.0) optimizer.step() scheduler.step() outputs=outputs.detach().cpu().numpy() total_preds.append(outputs) avg_loss = total_loss / len(train_dataloader) print(f"{step}: {avg_loss}") total_preds = np.concatenate(total_preds, axis=0) return avg_loss, total_preds<import_modules>
data_np = DigitDataset('train.csv', '.. /input/', train=True) print("Number of Training Images: ", len(data_np)) plt.imshow(data_np[5][0], cmap='gray') plt.show() print("Label for the Image: ", data_np[5][1] )
Digit Recognizer
3,946,383
<train_model>
composed_transform = transforms.Compose([Regularize() , ToTensor() ]) data_torch = DigitDataset('train.csv', '.. /input/', train=True, transform=composed_transform) dataloader = DataLoader(data_torch, batch_size=4, shuffle=True, num_workers=4) for i, data in enumerate(dataloader, 0): digits, labels = data print("Type of Digits: ", type(digits)) print("Dimension of the Tensor: ", digits.shape) print("Type of Labels: ", type(labels)) print("Dimension of the Tensor: ", labels.shape) if i == 0: break
Digit Recognizer
3,946,383
def evaluate() : print(" Evaluating...") model.eval() total_loss, total_accuracy = 0, 0 total_preds = [] total_labels = [] for step,batch in enumerate(val_dataloader): if step % 50 == 0 and not step == 0: print(' Batch {:>5,} of {:>5,}.'.format(step, len(val_dataloader))) input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) labels = batch["labels"].to(device) with torch.no_grad() : loss, outputs = model(input_ids, attention_mask, labels) total_loss = total_loss + loss.item() outputs = outputs.detach().cpu().numpy() labels = labels.detach().cpu().numpy() total_preds.append(outputs) total_labels.append(labels) avg_loss = total_loss / len(val_dataloader) print(f"{step}: {avg_loss}") total_preds = np.concatenate(total_preds, axis=0) total_labels = np.concatenate(total_labels, axis=0) true = np.array(total_labels) pred = np.array(total_preds>0.5) for i, name in enumerate(LABEL_COLUMNS): try: print(f"{name} roc_auc {roc_auc_score(true[:, i], pred[:, i])}") except Exception as e: print(e) pass print(f"Evaluate loss {total_loss / len(val_dataloader)}") return avg_loss, total_preds, total_labels<train_model>
def digits_per_class(digit_df, indices): assert isinstance(digit_df, pd.DataFrame) assert isinstance(indices, list) digit_num = [0 for num in range(10)] for idx in indices: label = digit_df.iloc[idx, 0] digit_num[label] += 1 return digit_num
Digit Recognizer
3,946,383
%%time best_valid_loss = float('inf') train_losses=[] valid_losses=[] EPOCHS = 2 for epoch in range(EPOCHS): print(' Epoch {:} / {:}'.format(epoch + 1, EPOCHS)) train_loss, _ = train() valid_loss, _, _ = evaluate() if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict() , 'saved_weights.pt') train_losses.append(train_loss) valid_losses.append(valid_loss) print(f' Training Loss: {train_loss:.3f}') print(f'Validation Loss: {valid_loss:.3f}' )<train_model>
digit_class_num = digits_per_class(data_torch.digit_df, [num for num in range(len(data_torch)) ]) for i, num in enumerate(digit_class_num, 0): print("Number of Images for Digit ", i, ": ", num) print("Overall Images: ", sum(digit_class_num))
Digit Recognizer
3,946,383
def test() : print(" Testing...") model.eval() total_loss, total_accuracy = 0, 0 total_preds = [] _ids = [] for step,batch in enumerate(test_dataloader): if step % 50 == 0 and not step == 0: print(' Batch {:>5,} of {:>5,}.'.format(step, len(test_dataloader))) _id = batch["_id"] input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) with torch.no_grad() : loss, outputs = model(input_ids, attention_mask) total_loss = total_loss + loss outputs = outputs _ids.append(_id) total_preds.append(outputs) avg_loss = total_loss / len(test_dataloader) _ids = np.concatenate(_ids, axis=0) total_preds = torch.cat(total_preds, axis=0) results = dict(id=_ids, predictions = total_preds ) return avg_loss, total_preds, results<compute_train_metric>
def train_validate_split(digit_df, test_ratio=0.2): assert isinstance(digit_df, pd.DataFrame) digit_num = len(digit_df) overall_indices = [num for num in range(digit_num)] overall_class_num = digits_per_class(digit_df, overall_indices) test_class_num = [int(num*test_ratio)for num in overall_class_num] tmp_test_class_num = [0 for num in range(10)] shuffle(overall_indices) train_indices = [] val_indices = [] for idx in overall_indices: tmp_label = digit_df.iloc[idx, 0] if tmp_test_class_num[tmp_label] < test_class_num[tmp_label]: val_indices.append(idx) tmp_test_class_num[tmp_label] += 1 else: train_indices.append(idx) return train_indices, val_indices
Digit Recognizer
3,946,383
def evaluate_roc(probs, y_true): preds = probs fpr, tpr, threshold = roc_curve(y_true, preds) roc_auc = auc(fpr, tpr) print(f'AUC: {roc_auc:.4f}') y_pred = np.where(preds >= 0.5, 1, 0) accuracy = accuracy_score(y_true, y_pred) print(f'Accuracy: {accuracy*100:.2f}%') plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show()<compute_train_metric>
train_data, val_data = train_validate_split(data_torch.digit_df) train_class_num = digits_per_class(data_torch.digit_df, train_data) val_class_num = digits_per_class(data_torch.digit_df, val_data) for i, num in enumerate(train_class_num, 0): print("Number of Images for Digit ", i, "- Train: ", num, "Validate: ", val_class_num[i]) print("Train Images: ", sum(train_class_num), "Validate Images: ", sum(val_class_num))
Digit Recognizer
3,946,383
avg_loss, total_preds, total_labels = evaluate()<compute_test_metric>
train_sampler = sampler.SubsetRandomSampler(train_data) train_dataloader = DataLoader(data_torch, batch_size=4, shuffle=False, sampler=train_sampler, num_workers=4 )
Digit Recognizer
3,946,383
for i, name in enumerate(LABEL_COLUMNS): print(f"label: {name}") evaluate_roc(total_preds[:,i]>0.5, total_labels[:,i] )<compute_test_metric>
class BasicLeNet(nn.Module): def __init__(self): super(BasicLeNet, self ).__init__() self.features = nn.Sequential( nn.Conv2d(1, 6, 5), nn.ReLU(inplace=True), nn.MaxPool2d(2), nn.Conv2d(6, 16, 5), nn.ReLU(inplace=True), nn.MaxPool2d(2) ) self.classifier = nn.Sequential( nn.Linear(16*4*4, 120), nn.ReLU(inplace=True), nn.Linear(120, 84), nn.ReLU(inplace=True), nn.Linear(84, 10) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), 16*4*4) x = self.classifier(x) return x
Digit Recognizer
3,946,383
avg_test_loss, total_test_preds, sub = test()<create_dataframe>
def training(network, criterion, optimizer, epoch_num, test=True): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("Start Training with", device, epoch_num, "overall epoch") network.to(device) composed_transform = transforms.Compose([Regularize() , ToTensor() ]) digit_dataset = DigitDataset('train.csv', '.. /input/', train=True, transform=composed_transform) if test: train_indices, val_indices = train_validate_split(digit_dataset.digit_df) train_sampler = sampler.SubsetRandomSampler(train_indices) val_sampler = sampler.SubsetRandomSampler(val_indices) train_dataloader = DataLoader( digit_dataset, batch_size=32, shuffle=False, sampler=train_sampler, num_workers=4, pin_memory=True ) val_dataloader = DataLoader( digit_dataset, batch_size=32, shuffle=False, sampler=val_sampler, num_workers=4, pin_memory=True ) print("Training with validation, ", "Overall Data:", len(train_indices)+len(val_indices)) print("Training Data:", len(train_indices), "Validate Data:", len(val_indices)) else: train_dataloader = DataLoader( digit_dataset, batch_size=32, shuffle=True, num_workers=4, pin_memory=True ) val_dataloader = None print("Training all data, ", "Overall Data:", len(digit_dataset)) batch_num = 0 ita = [] loss_avg = [] val_acc = [] for epoch in range(epoch_num): running_loss = 0.0 for i, data in enumerate(train_dataloader, 0): digits, labels = data digits, labels = digits.to(device), labels.to(device) optimizer.zero_grad() outputs = network(digits) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() batch_num += 1 if test == True and i % 500 == 499: ita.append(batch_num) loss_avg.append(running_loss/500.) val_acc.append(validating(network, val_dataloader)) running_loss = 0. if test: train_accuracy = validating(network, train_dataloader) val_accuracy = validating(network, val_dataloader) print('Training accuracy: %.5f' %(train_accuracy)) print('Validation accuracy: %.5f' %(val_accuracy)) return network, ita, loss_avg, val_acc
Digit Recognizer
3,946,383
D = pd.DataFrame() D['id'] = sub['id'] D<data_type_conversions>
def validating(network, loader): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") correct_num = 0 total_num = 0 for i, data in enumerate(loader, 0): digits, labels = data total_num += labels.size(0) digits, labels = digits.to(device), labels.to(device) outputs = network(digits) _, predicted = torch.max(outputs, 1) correct_num +=(( predicted == labels ).sum().to("cpu")).item() accuracy = correct_num / total_num return accuracy
Digit Recognizer
3,946,383
D[LABEL_COLUMNS] =(sub['predictions'].cpu().numpy()) D<save_to_csv>
lenet = BasicLeNet() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(lenet.parameters()) lenet, batch_ita, loss_list, val_acc_list = training(lenet, criterion, optimizer, 30 )
Digit Recognizer
3,946,383
D.to_csv("submission.csv", index=False )<import_modules>
class DigitDataset(Dataset): def __init__(self, csv_file, root_dir, train=False, argument=True, transform=None): self.digit_df = pd.read_csv(root_dir + csv_file) self.transform = transform self.train = train self.argument = argument def __len__(self): if self.argument: return 2 * len(self.digit_df) else: return len(self.digit_df) def __getitem__(self, item): if item < len(self.digit_df): if self.train: digit = self.digit_df.iloc[item, 1:].values digit = digit.astype('float' ).reshape(( 28, 28)) label = self.digit_df.iloc[item, 0] else: digit = self.digit_df.iloc[item, :].values digit = digit.astype('float' ).reshape(( 28, 28)) label = 0 else: assert self.argument and self.train digit = self.digit_df.iloc[item % len(self.digit_df), 1:].values digit = digit.astype('float' ).reshape(( 28, 28)) rand_theta =(randint(-20, 20)/ 180)* math.pi rand_x = randint(-2, 2) rand_y = randint(-2, 2) rand_scale = randint(9, 11)* 0.1 digit = digit_argument(digit, rand_theta, [rand_x, rand_y], rand_scale) label = self.digit_df.iloc[item % len(self.digit_df), 0] sample = [digit, label] if self.transform: sample[0] = self.transform(sample[0]) return sample
Digit Recognizer
3,946,383
import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from sklearn.linear_model import LogisticRegression from tensorflow import keras from keras import layers from keras.callbacks import Callback from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from textblob import TextBlob from textblob import Word import re import string <load_from_disk>
def train_validate_split(digit_df, test_ratio=0.2, argument=True): assert isinstance(digit_df, pd.DataFrame) digit_num = len(digit_df) overall_indices = [num for num in range(digit_num)] overall_class_num = digits_per_class(digit_df, overall_indices) test_class_num = [int(num*test_ratio)for num in overall_class_num] tmp_test_class_num = [0 for num in range(10)] shuffle(overall_indices) train_indices = [] val_indices = [] for idx in overall_indices: tmp_label = digit_df.iloc[idx, 0] if tmp_test_class_num[tmp_label] < test_class_num[tmp_label]: val_indices.append(idx) tmp_test_class_num[tmp_label] += 1 else: train_indices.append(idx) if argument: train_indices.append(idx + digit_num) return train_indices, val_indices
Digit Recognizer
3,946,383
!unzip -q "/kaggle/input/jigsaw-toxic-comment-classification-challenge/*.zip" !dir<load_from_csv>
class EnhancedLeNet(nn.Module): def __init__(self): super(EnhancedLeNet, self ).__init__() self.features = nn.Sequential( nn.Conv2d(1, 64, 5, padding=2), nn.ReLU(inplace=True), nn.Conv2d(64, 64, 5, padding=2), nn.ReLU(inplace=True), nn.BatchNorm2d(64), nn.MaxPool2d(2), nn.Conv2d(64, 128, 5, padding=2), nn.ReLU(inplace=True), nn.Conv2d(128, 128, 5, padding=2), nn.ReLU(inplace=True), nn.BatchNorm2d(128), nn.MaxPool2d(2), ) self.classifier = nn.Sequential( nn.Linear(128*7*7, 512), nn.ReLU(inplace=True), nn.BatchNorm1d(512), nn.Linear(512, 10) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), 128*7*7) x = self.classifier(x) return x
Digit Recognizer
3,946,383
train_data_file = "train.csv" test_data_file = "test.csv" submission_file = "sample_submission.csv" train_data = pd.read_csv(train_data_file) test_data = pd.read_csv(test_data_file) submission_result = pd.read_csv(submission_file )<define_variables>
lenet = EnhancedLeNet() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(lenet.parameters()) lenet, batch_ita, loss_list, val_acc_list = training(lenet, criterion, optimizer, 30 )
Digit Recognizer
3,946,383
max_len = 120 embedding_dim = 300 vocabulary_size = 20000 num_tokens = vocabulary_size+1<categorify>
def testing(network): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") composed_transform = transforms.Compose([Regularize() , ToTensor() ]) digit_dataset = DigitDataset('test.csv', '.. /input/', train=False, argument=False, transform=composed_transform) test_dataloader = DataLoader( digit_dataset, batch_size=128, shuffle=False, num_workers=4, pin_memory=True ) test_results = [] for i, data in enumerate(test_dataloader, 0): digits, label = data digits = digits.to(device) outputs = network(digits) _, predicted = torch.max(outputs, 1) test_results += np.int_(predicted.to("cpu" ).numpy().squeeze() ).tolist() test_df = pd.read_csv(".. /input/sample_submission.csv") assert(len(test_df)== len(test_results)) test_df.loc[:, 'Label'] = test_results test_df.to_csv('test_results.csv', index=False) print("Test Results for Kaggle Generated..." )
Digit Recognizer
3,946,383
def preprocess(corpus): printable = set(string.printable) corpus = ''.join(filter(lambda x: x in printable, corpus)) corpus = corpus.lower() corpus = re.sub(r"won't", "will not", corpus) corpus = re.sub(r"can't", "can not", corpus) corpus = re.sub(r"ain't","is not", corpus) corpus = re.sub(r"shan't", "shall not", corpus) corputs = re.sub(r"let's", "let us", corpus) corpus = re.sub(r"n't", " not", corpus) corpus = re.sub(r"'re", " are", corpus) corpus = re.sub(r"'s", " is", corpus) corpus = re.sub(r"'d", " would", corpus) corpus = re.sub(r"'ll", " will", corpus) corpus = re.sub(r"'t", " not", corpus) corpus = re.sub(r"'ve", " have", corpus) corpus = re.sub(r"'m", " am", corpus) corpus = re.sub(r"'", " ", corpus) correction_list = {"youfuck": "you fuck", \ "fucksex": "fuck sex",\ "bitchbot": "bitch bot",\ "offfuck": "fuck off",\ "donkeysex": "donkey sex",\ "securityfuck": "security fuck",\ "ancestryfuck": "ancestry fuck",\ "turkeyfuck": "turkey fuck",\ "faggotgay": "faggot gay",\ "fuckbot": "fuck bot",\ "assfuckers": "ass fucker",\ "ckckck": "cock",\ "fuckfuck": "fuck",\ "lolol": "lol",\ "pussyfuck": "fuck",\ "gaygay": "gay",\ "haha": "ha",\ "sucksuck": "suck" } for old,new in correction_list.items() : corpus = corpus.replace(old,new) return corpus<prepare_x_and_y>
lenet = EnhancedLeNet() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(lenet.parameters()) lenet, batch_ita, loss_list, val_acc_list = training(lenet, criterion, optimizer, 50, test=False) testing(lenet )
Digit Recognizer
4,188,803
tokenizer = Tokenizer(num_words = vocabulary_size+1,\ filters='!" 0123456789',\ lower=True, split=' ') X_train_raw = train_data["comment_text"] X_test_raw = test_data["comment_text"] bad_comment_cat = ['toxic', 'severe_toxic', 'obscene', 'threat',\ 'insult', 'identity_hate'] Y_train = train_data[bad_comment_cat]<string_transform>
%matplotlib inline np.random.seed(2) sns.set(style='white', context='notebook', palette='deep' )
Digit Recognizer
4,188,803
X_train_raw = X_train_raw.apply(lambda x: preprocess(str(x))) X_test_raw = X_test_raw.apply(lambda x: preprocess(str(x))) tokenizer.fit_on_texts(X_train_raw) tokenizer.fit_on_texts(X_test_raw) X_train = pad_sequences(tokenizer.texts_to_sequences(X_train_raw),\ maxlen = max_len, truncating = "pre") X_test = pad_sequences(tokenizer.texts_to_sequences(X_test_raw),\ maxlen = max_len, truncating = "pre") x_train, x_val, y_train, y_val = train_test_split(X_train,Y_train,train_size=0.9, random_state=199) print(x_train.shape," ",y_train.shape," ",x_val.shape," ",y_val.shape )<categorify>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
4,188,803
def get_weights(embedding_vectors,embedding_dim): global num_tokens,tokenizer embedding_weights = np.zeros(( num_tokens,embedding_dim)) misses = 0 for word, i in tokenizer.word_index.items() : vector = embedding_vectors.get(word) if i>=num_tokens : break elif vector is not None: embedding_weights[i] = vector else: if len(word)<20: word = Word(word) word = word.spellcheck() [0][0] vector = embedding_vectors.get(str(word)) if vector is not None: embedding_weights[i] = vector else: misses +=1 else: misses +=1 print(f"The number of missed words is {misses}") return embedding_weights<string_transform>
X_train = X_train / 255.0 test = test / 255.0
Digit Recognizer
4,188,803
embedding_vectors_fasttext = {} with open("/kaggle/input/fasttext-crawl-300d-2m/crawl-300d-2M.vec","r")as file: file.readline() for line in file: word , vector = line.split(maxsplit=1) vector = np.fromstring(vector,"float32",sep=" ") embedding_vectors_fasttext[word] = vector<load_pretrained>
Y_train = to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
4,188,803
embedding_weights_fasttext = get_weights(embedding_vectors_fasttext,embedding_dim=300 )<feature_engineering>
random_seed = 2 X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed )
Digit Recognizer
4,188,803
embedding_vectors_glove = {} with open("/kaggle/input/glove6b/glove.6B.300d.txt","r")as file: for line in file: word , vector = line.split(maxsplit=1) vector = np.fromstring(vector,"float32",sep=" ") embedding_vectors_glove[word] = vector<load_pretrained>
model_test = Sequential() model_test.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model_test.add(MaxPool2D(pool_size=(2,2))) model_test.add(Dropout(0.5)) model_test.add(Flatten()) model_test.add(Dense(256, activation = "relu")) model_test.add(Dropout(0.5)) model_test.add(Dense(10, activation = "softmax"))
Digit Recognizer
4,188,803
embedding_weights_glove = get_weights(embedding_vectors_glove,embedding_dim=300 )<choose_model_class>
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) model_test.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"]) epochs = 2 batch_size = 86
Digit Recognizer
4,188,803
def GRU_model_glove() : global max_len,num_tokens,embedding_weights_glove inputs = layers.Input(shape=(max_len,)) x = layers.Embedding(input_dim=num_tokens,\ output_dim=embedding_dim,\ embeddings_initializer=keras.initializers.Constant(embedding_weights_glove),\ trainable=True )(inputs) x = layers.SpatialDropout1D(0.3 )(x) forward_layer = layers.GRU(42,return_sequences=True) backward_layer = layers.GRU(42,activation="relu",dropout=0.1,return_sequences=True,go_backwards=True) x = layers.Bidirectional(forward_layer,backward_layer=backward_layer )(x) x = layers.GlobalMaxPooling1D()(x) outputs = layers.Dense(units=6,activation='sigmoid' )(x) model = keras.models.Model(inputs=inputs, outputs=outputs, name="GRU_model_glove") model.compile(optimizer=tf.optimizers.Adam() ,\ loss=tf.losses.BinaryCrossentropy() ,\ metrics=['AUC']) return model GRU_model_glove = GRU_model_glove() GRU_model_glove.summary()<train_model>
history = model_test.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs, validation_data =(X_val, Y_val), verbose = 2 )
Digit Recognizer
4,188,803
history = GRU_model_glove.fit(x_train, y_train, epochs=2,\ batch_size=128, validation_data=(x_val,y_val))<choose_model_class>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer