kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
11,485,474
def shop_name2city(sn): sn = sn.split() [0] if sn == 'Цифровой' or sn == 'Интернет-магазин': sn = 'Internet' if sn[0] == '!': sn = sn[1:] return sn df_shops['city'] = df_shops['shop_name'].apply(shop_name2city) df_shops['city_enc'] = LabelEncoder().fit_transform(df_shops['city'] ).astype('int8') city_info = pd.read_pickle(adpath + 'city_info.pkl') df_shops['city_size'] = df_shops['city'].map(city_info['city_size'] )<categorify>
K.clear_session() model = Sequential() model.add(Conv2D(32,(3, 3), activation='tanh', input_shape=(28, 28, 1), padding="SAME")) model.add(Conv2D(32,(3, 3), activation='tanh', padding="SAME")) model.add(AveragePooling2D(pool_size=(2, 2))) model.add(Dropout(0.3)) model.add(Conv2D(64,(3, 3), activation='tanh', padding="SAME")) model.add(Conv2D(64,(3, 3), activation='tanh', padding="SAME")) model.add(AveragePooling2D(pool_size=(2, 2))) model.add(Dropout(0.3)) model.add(Conv2D(128,(3, 3), activation='tanh', padding="SAME")) model.add(Conv2D(128,(3, 3), activation='tanh', padding="SAME")) model.add(AveragePooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(784, activation='tanh')) model.add(Dropout(0.2)) model.add(Dense(256, activation='tanh')) model.add(Dropout(0.2)) model.add(Dense(128, activation='tanh')) model.add(Dropout(0.2)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='Adamax', metrics=['accuracy'] )
Digit Recognizer
11,485,474
class Items() : def __init__(self, df_items, df_itemcat): self.df_items = df_items self.df_itemcat = df_itemcat self.set_hl_cat() self.make_items_ext() self.item_features = ['item_category_id', 'hl_cat_id'] def set_hl_cat(self): self.df_itemcat['hl_cat_id'] = self.df_itemcat['item_category_name'].str.split(n=1, expand=True)[0] self.df_itemcat['hl_cat_id'] = LabelEncoder().fit_transform(self.df_itemcat['hl_cat_id']) def make_items_ext(self): self.df_items = df_items.merge(self.df_itemcat, how = 'left', left_on = 'item_category_id', right_index = True) def get_items_df(self): return self.df_items[self.item_features].astype('int32' )<concatenate>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
11,485,474
items = Items(df_items, df_itemcat )<prepare_output>
K.clear_session() hh = model.fit(generator.flow(X_train, y_train_cat, batch_size=64), validation_data=(X_test, y_test_cat), steps_per_epoch=len(X_train)/ 64, epochs=30, verbose=1, callbacks=[learning_rate_reduction] )
Digit Recognizer
11,485,474
class TT_Extended() : def __init__(self, df_train, df_test, items, df_shops, calendar, cmode, verbose=True): self.info = verbose self.df_train = df_train.copy() self.df_test = df_test.copy() self.df_shops = df_shops.copy() self.calendar = self.set_calender(calendar.copy()) self.idx_columns = ['date_block_num', 'shop_id', 'item_id'] self.df_test['date_block_num'] = 34 self.df_test['item_cnt_month'] = 0. self.df_test['item_cnt_month'] = self.df_test['item_cnt_month'].astype('float32') self.df_train[self.idx_columns] = self.df_train[self.idx_columns].astype('int32') self.df_test[self.idx_columns] = self.df_test[self.idx_columns].astype('int32') self.df_train_cleaning(cmode) self.item_mean_features = [] self.shop_mean_features = [] self.lag_names_to_clip = [] self.df_items = items.get_items_df() self.item_ext_features = list(self.df_items.columns) self.df_items_ext = self.items_ext() self.df_bb = self.build_bb() self.df_train_ext = self.df_train_agg(cmin = 0, cmax = 1000, drop = None) self.add_test_df() self.df_train_ext = self.df_train_extention() def df_train_cleaning(self, mode): assert mode in ['keep', 'drop', 'block', 'total', 't+b'] if self.info: print('Cleaning train dataframe...( Mode -', mode, ')') shop_idx = self.df_train[(self.df_train['shop_id'] == 9)| (self.df_train['shop_id'] == 20)].index self.df_train.drop(shop_idx, inplace=True) self.df_train = self.df_train[(self.df_train['item_price'] > 0)& (self.df_train['item_price'] < 51000)] self.df_train = self.df_train[self.df_train['item_cnt_day'] <= 1000] shop_repl_dict = {0 : 57, 1 : 58, 11 : 10, 40 : 39} self.df_train['shop_id'] = self.df_train['shop_id'].apply( lambda s: shop_repl_dict.get(s)if s in shop_repl_dict else s) if mode == 'drop': self.df_train = self.df_train[self.df_train['item_cnt_day'] > 0] elif mode == 'block': item_block_cnt = self.df_train.groupby(['date_block_num', 'shop_id', 'item_id'])['item_cnt_day'].sum() items_to_drop = item_block_cnt[item_block_cnt <= 0].index self.df_train = self.df_train[~self.df_train.set_index( ['date_block_num', 'shop_id', 'item_id'] ).index.isin(items_to_drop)] elif mode == 'total': item_total_cnt = self.df_train.groupby(['shop_id', 'item_id'])['item_cnt_day'].sum() items_to_drop = item_total_cnt[item_total_cnt <= 0].index self.df_train = self.df_train[~self.df_train.set_index( ['shop_id', 'item_id'] ).index.isin(items_to_drop)] elif mode == 't+b': item_total_cnt = self.df_train.groupby(['shop_id', 'item_id'])['item_cnt_day'].sum() items_to_drop = item_total_cnt[item_total_cnt <= 0].index self.df_train = self.df_train[~self.df_train.set_index( ['shop_id', 'item_id'] ).index.isin(items_to_drop)] item_block_cnt = self.df_train.groupby(['date_block_num', 'shop_id', 'item_id'])['item_cnt_day'].sum() items_to_drop = item_block_cnt[item_block_cnt <= 0].index self.df_train = self.df_train[~self.df_train.set_index( ['date_block_num', 'shop_id', 'item_id'] ).index.isin(items_to_drop)] return def set_calender(self, calendar): calendar['date_block_num'] =(calendar['year'] - 2013)*12 +(calendar['month'] - 1) calendar['hdays'] = calendar['mdays'] - calendar['wdays'] calendar.set_index('date_block_num', inplace=True) return calendar def items_ext(self): dfi = self.df_items.copy() dfi['fsb'] = self.df_train.groupby('item_id')['date_block_num'].min() dfi['fsb'].fillna(34, inplace=True) dfi['fsb'] = dfi['fsb'].astype('int8') self.item_ext_features += ['fsb'] return dfi def build_bb(self): if self.info: print('Building index dataframe...') df_work = [] for block_num in self.df_train['date_block_num'].unique() : cur_shops = self.df_train.loc[self.df_train['date_block_num'] == block_num, 'shop_id'].unique() cur_items = self.df_train.loc[self.df_train['date_block_num'] == block_num, 'item_id'].unique() df_work.append(np.array(list(product(*[[block_num], cur_shops, cur_items])) , dtype='int32')) df_work = pd.DataFrame(np.vstack(df_work), columns = self.idx_columns) return df_work def df_train_agg(self, cmin = 0, cmax = 20, drop = None): if self.info: print('Aggregation...') df_work = self.df_train.groupby(self.idx_columns ).agg({'item_price' : np.mean, 'item_cnt_day': np.sum}) df_work.reset_index(inplace=True) df_work = df_work.rename(columns={'item_cnt_day': 'item_cnt_month'}) df_work = pd.merge(self.df_bb, df_work, on=self.idx_columns, how='left') df_work['item_cnt_month'] = df_work['item_cnt_month'].astype('float32' ).fillna(0.).clip(cmin, cmax) df_work['item_price'] = df_work['item_price'].astype('float32' ).fillna(0.) df_tmp = self.df_train[self.df_train['item_cnt_day'] > 0].groupby(self.idx_columns ).agg({'item_cnt_day': 'count'}) df_tmp.reset_index(inplace=True) df_tmp = df_tmp.rename(columns={'item_cnt_day': 'item_rate_month'}) df_work = pd.merge(df_work, df_tmp, on=self.idx_columns, how='left') df_work['item_rate_month'] = df_work['item_rate_month'].astype('float32' ).fillna(0.) del df_tmp if drop: df_work.drop(drop, axis=1, inplace=True) return df_work def add_test_df(self): self.df_train_ext = pd.concat([self.df_train_ext, self.df_test], ignore_index=True, sort=False, keys=self.idx_columns) def add_item_means(self, df, feature = None): if feature == None : group_items = ['date_block_num','item_id'] feature = 'item_cnt' else: group_items = ['date_block_num','item_id'] + [feature] feature_mean_name = feature + '_mean' if self.info: print('Adding item means for', feature, '...') df_tmp = df.groupby(group_items)['item_cnt_month'].mean() df_tmp = df_tmp.reset_index().rename(columns = {'item_cnt_month': feature_mean_name}) df = pd.merge(df, df_tmp, on=group_items, how='left') self.item_mean_features.append(feature_mean_name) del df_tmp return df def add_shop_means(self, df, feature): group_items = ['date_block_num', 'shop_id'] + [feature] feature_mean_name = feature + '_mean' if self.info: print('Adding shop means for', feature, '...') df_tmp = df.groupby(group_items)['item_cnt_month'].mean() df_tmp = df_tmp.reset_index().rename(columns = {'item_cnt_month': feature_mean_name}) df = pd.merge(df, df_tmp, on=group_items, how='left') self.shop_mean_features.append(feature) del df_tmp return df def df_train_extention(self, test_cat_only = False): df_work = self.df_train_ext.merge(df_shops[['city_enc', 'city_size']], how = 'left', on = 'shop_id') df_work = df_work.merge(self.calendar[['mdays', 'wdays', 'hdays']], how = 'left', left_on = 'date_block_num', right_index = True) df_work = df_work.merge(self.df_items_ext[self.item_ext_features], how = 'left', left_on = 'item_id', right_index = True) ssbn = self.df_train.groupby('shop_id')['date_block_num'].min().astype('int8') ssbn.name = 'ssbn' df_work = df_work.merge(ssbn, how = 'left', on = 'shop_id') if test_cat_only: test_cat = df_work[df_work['date_block_num'] == 34]['item_category_id'].unique() df_work = df_work[df_work['item_category_id'].isin(test_cat)] return df_work def make_base_df(self, keepnans = False): df_work = self.df_train_ext.copy() if keepnans: fill_value = None else: fill_value = 0 df_work = pd.pivot_table(df_work, values='item_cnt_month', index=['shop_id', 'item_id'], columns = 'date_block_num', aggfunc=np.sum, fill_value = fill_value) df_work.columns.name = '' return df_work def add_total_cnt(self, df): if self.info: print('Adding total count...') df_base = self.make_base_df() for i in range(1, 33): df_base[i + 1] += df_base[i] df_base = df_base.shift(1, axis=1 ).loc[:, 1:].astype('int32') df_base = df_base.melt(var_name='date_block_num', value_name='total_cnt', ignore_index=False) df = df.merge(df_base, how='left', on=self.idx_columns) del df_base return df def add_item_lags(self, df, feature_name, nlags=3, keepnans=False, dnc=False): if self.info: print('Adding item lags for', feature_name, '...') df_tmp = df[['date_block_num', 'shop_id', 'item_id', feature_name]] for i in range(nlags, 0, -1): lag_feature_name = feature_name +'_lag-' + str(i) if not dnc: self.lag_names_to_clip.append(lag_feature_name) df_shifted = df_tmp.copy() df_shifted.columns = ['date_block_num', 'shop_id', 'item_id', lag_feature_name] df_shifted['date_block_num'] += i df = pd.merge(df, df_shifted, on=['date_block_num', 'shop_id', 'item_id'], how='left') if keepnans: df[lag_feature_name] = df[lag_feature_name].astype('float32') else: df[lag_feature_name] = df[lag_feature_name].fillna(0 ).astype('float32') del df_tmp return df def add_shop_lags(self, df, feature_name, nlags=3, dnc=False): mean_feature_name = feature_name + '_mean' if self.info: print('Adding lags for', mean_feature_name, '...') df_tmp = df[['date_block_num', 'shop_id', feature_name, mean_feature_name]] for i in range(nlags, 0, -1): lag_feature_name = mean_feature_name + '_lag-' + str(i) if not dnc: self.lag_names_to_clip.append(lag_feature_name) df_shifted = df_tmp.copy() df_shifted.columns = ['date_block_num', 'shop_id', feature_name, lag_feature_name] df_shifted['date_block_num'] += i df = pd.merge(df, df_shifted.drop_duplicates() , on=['date_block_num', 'shop_id', feature_name], how='left') df[lag_feature_name] = df[lag_feature_name].fillna(0 ).astype('float32') del df_tmp del df_shifted return df def shop_clustering(self, df_work): print('No shop clusters provided') return df_work def build_work_db(self, hd, item_mean_features = [], shop_mean_features = [], add_total_cnt = False): if self.info: print('Building work dataframe...') df_work = self.df_train_ext.copy() df_work = self.add_item_means(df_work) for mf in item_mean_features: df_work = self.add_item_means(df_work, mf) for mf in shop_mean_features: df_work = self.add_shop_means(df_work, mf) df_work = self.add_item_lags(df_work, 'item_cnt_month', hd, keepnans=False) df_work = self.add_item_lags(df_work, 'item_rate_month', hd, dnc=True) df_work = self.add_item_lags(df_work, 'item_price', hd, dnc=True) for mf in self.item_mean_features: df_work = self.add_item_lags(df_work, mf, hd) for mf in self.shop_mean_features: df_work = self.add_shop_lags(df_work, mf, hd) df_work.drop(df_work[df_work['date_block_num'] < hd].index, inplace=True) df_work.drop(self.item_mean_features, axis=1, inplace=True) df_work.drop(['item_category_id_mean', 'item_price', 'item_rate_month'], axis=1, inplace=True) self.item_mean_features = [] self.shop_mean_features = [] df_work['qmean'] = df_work[['item_cnt_month_lag-1', 'item_cnt_month_lag-2', 'item_cnt_month_lag-3']].mean(skipna=True, axis=1) df_work['new'] = df_work['fsb'] == df_work['date_block_num'] df_work['fsb'] = df_work['date_block_num'] - df_work['fsb'] df_work['ssbn'] = df_work['date_block_num'] - df_work['ssbn'] df_work['month'] =(df_work['date_block_num']%12 ).astype('int8') idx = df_work[(df_work['item_price_lag-1'] == 0)&(df_work['item_price_lag-2'] != 0)].index df_work.loc[idx, 'item_price_lag-1'] = df_work.loc[idx, 'item_price_lag-2'] idx = df_work[(df_work['item_price_lag-2'] == 0)&(df_work['item_price_lag-3'] != 0)].index df_work.loc[idx, 'item_price_lag-2'] = df_work.loc[idx, 'item_price_lag-3'] df_work['grad-1'] = df_work['item_cnt_month_lag-1']/df_work['item_cnt_month_lag-2'] df_work['grad-1'] = df_work['grad-1'].replace([np.inf, -np.inf], np.nan ).fillna(0.) df_work['grad-2'] = df_work['item_cnt_month_lag-2']/df_work['item_cnt_month_lag-3'] df_work['grad-2'] = df_work['grad-2'].replace([np.inf, -np.inf], np.nan ).fillna(0.) df_work = self.shop_clustering(df_work) if add_total_cnt: df_work = self.add_total_cnt(df_work) col2clip = ['item_cnt_month', 'qmean'] + self.lag_names_to_clip df_work[col2clip] = df_work[col2clip].clip(0, 20) return df_work def get_work_db(self, hd = 3, item_mean_features = [], shop_mean_features = [], drop_features = None, add_total_cnt = False): df_work = self.build_work_db(hd, item_mean_features, shop_mean_features, add_total_cnt) if drop_features == None: return df_work else: return df_work.drop(drop_features, axis = 1 )<concatenate>
trained_weights = model.get_weights()
Digit Recognizer
11,485,474
%%time pfs = TT_Extended(df_train, df_test, items, df_shops, calendar, cmode='total' )<set_options>
learning_rate_reduction_2 = ReduceLROnPlateau(monitor='val_accuracy', patience=3, verbose=1, factor=0.3, min_lr=0.00001 )
Digit Recognizer
11,485,474
pfs.shop_clustering = simple_shop_clustering<drop_column>
K.clear_session() model.set_weights(trained_weights) h = model.fit(X_train, y_train_cat, batch_size = 64, validation_data=(X_test, y_test_cat), epochs=50, verbose=1, callbacks=[learning_rate_reduction_2] )
Digit Recognizer
11,485,474
%%time df_work = pfs.get_work_db(hd = 3, item_mean_features = ['city_enc'], shop_mean_features = ['item_category_id'], drop_features = ['wdays', 'hdays', 'ssbn'], add_total_cnt = False ).copy()<feature_engineering>
model.evaluate(X_test, y_test_cat )
Digit Recognizer
11,485,474
df_work['city_size'] = df_work['city_size'].round(1 )<prepare_x_and_y>
predictions = model.predict(test_data )
Digit Recognizer
11,485,474
X_train = df_work[df_work.date_block_num < 33].drop(['item_cnt_month'], axis=1) y_train = df_work[df_work.date_block_num < 33]['item_cnt_month'] X_valid = df_work[df_work.date_block_num == 33].drop(['item_cnt_month'], axis=1) y_valid = df_work[df_work.date_block_num == 33]['item_cnt_month'] X_test = df_work[df_work.date_block_num == 34].drop(['item_cnt_month'], axis=1 )<drop_column>
pred = np.argmax(predictions, axis = 1) pred.shape
Digit Recognizer
11,485,474
del df_work<init_hyperparams>
sample = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
11,485,474
<save_to_csv><EOS>
output = pd.DataFrame({'ImageId': sample.ImageId, 'Label': pred}) output.to_csv('my_submission.csv', index=False) print("Your submission was successfully saved!" )
Digit Recognizer
11,530,975
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv>
mnist_test = pd.read_csv(".. /input/mnist-in-csv/mnist_test.csv") mnist_train = pd.read_csv(".. /input/mnist-in-csv/mnist_train.csv" )
Digit Recognizer
11,530,975
warnings.filterwarnings(action='ignore') data_path = '/kaggle/input/competitive-data-science-predict-future-sales/' sales_train = pd.read_csv(data_path + 'sales_train.csv') shops = pd.read_csv(data_path + 'shops.csv') items = pd.read_csv(data_path + 'items.csv') item_categories = pd.read_csv(data_path + 'item_categories.csv') test = pd.read_csv(data_path + 'test.csv') submission = pd.read_csv(data_path + 'sample_submission.csv' )<data_type_conversions>
sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv") train = pd.read_csv(".. /input/digit-recognizer/train.csv" )
Digit Recognizer
11,530,975
def downcast(df, verbose=True): start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: dtype_name = df[col].dtype.name if dtype_name == 'object': pass elif dtype_name == 'bool': df[col] = df[col].astype('int8') elif dtype_name.startswith('int')or(df[col].round() == df[col] ).all() : df[col] = pd.to_numeric(df[col], downcast='integer') else: df[col] = pd.to_numeric(df[col], downcast='float') end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('{:.1f}% compressed'.format(100 *(start_mem - end_mem)/ start_mem)) return df all_df = [sales_train, shops, items, item_categories, test] for df in all_df: df = downcast(df )<filter>
test['dataset'] = 'test'
Digit Recognizer
11,530,975
sales_train = sales_train[sales_train['item_price'] > 0] sales_train = sales_train[sales_train['item_price'] < 50000] sales_train = sales_train[sales_train['item_cnt_day'] > 0] sales_train = sales_train[sales_train['item_cnt_day'] < 1000]<feature_engineering>
train['dataset'] = 'train'
Digit Recognizer
11,530,975
sales_train.loc[sales_train['shop_id'] == 0, 'shop_id'] = 57 sales_train.loc[sales_train['shop_id'] == 1, 'shop_id'] = 58 sales_train.loc[sales_train['shop_id'] == 10, 'shop_id'] = 11 sales_train.loc[sales_train['shop_id'] == 39, 'shop_id'] = 40 test.loc[test['shop_id'] == 0, 'shop_id'] = 57 test.loc[test['shop_id'] == 1, 'shop_id'] = 58 test.loc[test['shop_id'] == 10, 'shop_id'] = 11 test.loc[test['shop_id'] == 39, 'shop_id'] = 40<feature_engineering>
dataset = pd.concat([train.drop('label', axis=1), test] ).reset_index()
Digit Recognizer
11,530,975
shops['city'] = shops['shop_name'].apply(lambda x: x.split() [0] )<feature_engineering>
mnist = pd.concat([mnist_train, mnist_test] ).reset_index(drop=True) labels = mnist['label'].values mnist.drop('label', axis=1, inplace=True) mnist.columns = cols
Digit Recognizer
11,530,975
shops.loc[shops['city'] =='!Якутск', 'city'] = 'Якутск'<categorify>
idx_mnist = mnist.sort_values(by=list(mnist.columns)).index dataset_from = dataset.sort_values(by=list(mnist.columns)) ['dataset'].values original_idx = dataset.sort_values(by=list(mnist.columns)) ['index'].values
Digit Recognizer
11,530,975
label_encoder = LabelEncoder() shops['city'] = label_encoder.fit_transform(shops['city'] )<drop_column>
for i in range(len(idx_mnist)) : if dataset_from[i] == 'test': sample_submission.loc[original_idx[i], 'Label'] = labels[idx_mnist[i]]
Digit Recognizer
11,530,975
shops = shops.drop('shop_name', axis=1) shops.head()<drop_column>
sample_submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,484,816
items = items.drop(['item_name'], axis=1 )<groupby>
sns.set()
Digit Recognizer
11,484,816
items['first_sale_date'] = sales_train.groupby('item_id' ).agg({'date_block_num': 'min'})['date_block_num'] items.head()<count_missing_values>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') train
Digit Recognizer
11,484,816
items[items['first_sale_date'].isna() ]<data_type_conversions>
X_train = train.drop(['label'],axis = 1) y_train = train['label']
Digit Recognizer
11,484,816
items['first_sale_date'] = items['first_sale_date'].fillna(34 )<feature_engineering>
X_test = test
Digit Recognizer
11,484,816
item_categories['category'] = item_categories['item_category_name'].apply(lambda x: x.split() [0] )<count_values>
print('Number of null values in training set is : ',train.isnull().sum().unique()) print('Number of null values in test set is : ',test.isnull().sum().unique() )
Digit Recognizer
11,484,816
item_categories['category'].value_counts()<feature_engineering>
X_train_reshaped = X_train.values.reshape(-1,28,28,1) X_test_reshaped = X_test.values.reshape(-1,28,28,1) X_train_normalised = X_train_reshaped/255. X_test_normalised = X_test_reshaped/255 .
Digit Recognizer
11,484,816
def make_etc(x): if len(item_categories[item_categories['category']==x])>= 5: return x else: return 'etc' item_categories['category'] = item_categories['category'].apply(make_etc )<categorify>
y_train_encoded = to_categorical(y_train,num_classes=10 )
Digit Recognizer
11,484,816
label_encoder = LabelEncoder() item_categories['category'] = label_encoder.fit_transform(item_categories['category']) item_categories = item_categories.drop('item_category_name', axis=1 )<merge>
X_train_final,X_val,y_train_final,y_val = train_test_split(X_train_normalised,y_train_encoded,test_size = 0.2,random_state = 42 )
Digit Recognizer
11,484,816
group = sales_train.groupby(idx_features ).agg({'item_cnt_day': 'sum', 'item_price': 'mean'}) group = group.reset_index() group = group.rename(columns={'item_cnt_day': 'item_cnt_month', 'item_price': 'item_price_mean'}) train = train.merge(group, on=idx_features, how='left') train.head()<set_options>
model = Sequential() model.add(Conv2D(input_shape=(28,28,1),filters=64,kernel_size=(3,3),padding="same", activation="relu")) model.add(BatchNormalization()) model.add(Conv2D(filters=32,kernel_size=(3,3),padding="same", activation="relu")) model.add(MaxPool2D(pool_size=(2,2),strides=(2,2))) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3,3), padding="same", activation="relu")) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size=(3,3), padding="same", activation="relu")) model.add(Dropout(0.3)) model.add(MaxPool2D(pool_size=(2,2),strides=(2,2))) model.add(Flatten()) model.add(BatchNormalization()) model.add(Dense(units=256,activation="relu")) model.add(Dropout(0.3)) model.add(Dense(units=10, activation="softmax"))
Digit Recognizer
11,484,816
del group gc.collect() ;<merge>
model.compile(loss = 'categorical_crossentropy',optimizer = 'adam',metrics = ['accuracy']) model.summary()
Digit Recognizer
11,484,816
group = sales_train.groupby(idx_features ).agg({'item_cnt_day': 'count'}) group = group.reset_index() group = group.rename(columns={'item_cnt_day': 'item_count'}) train = train.merge(group, on=idx_features, how='left') del group, sales_train gc.collect() train.head()<categorify>
callbacks = [ EarlyStopping(monitor = 'loss', patience = 6), ReduceLROnPlateau(monitor = 'loss', patience = 4) ]
Digit Recognizer
11,484,816
test['date_block_num'] = 34 all_data = pd.concat([train, test.drop('ID', axis=1)], ignore_index=True, keys=idx_features) all_data = all_data.fillna(0) all_data.head()<merge>
model.fit(X_train_final,y_train_final, batch_size = 64, epochs = 100, verbose = 1, validation_data =(X_val,y_val), callbacks = callbacks )
Digit Recognizer
11,484,816
all_data = all_data.merge(shops, on='shop_id', how='left') all_data = all_data.merge(items, on='item_id', how='left') all_data = all_data.merge(item_categories, on='item_category_id', how='left') all_data = downcast(all_data) del shops, items, item_categories gc.collect() ;<prepare_output>
score = model.evaluate(X_val,y_val,verbose = 0) print('The loss on validation set is {0} and the accuracy is {1}'.format(round(score[0],3),round(score[1],3)) )
Digit Recognizer
11,484,816
def resumetable(df): print(f'Data Shape: {df.shape}') summary = pd.DataFrame(df.dtypes, columns=['Dtypes']) summary['Null'] = df.isnull().sum().values summary['Uniques'] = df.nunique().values summary['First_values'] = df.loc[0].values summary['Second_values'] = df.loc[1].values summary['Third_values'] = df.loc[2].values return summary<groupby>
results = model.predict(X_test_normalised) results = np.argmax(results,axis = 1) results = pd.Series(results,name='Label')
Digit Recognizer
11,484,816
def add_mean_features(df, mean_features, idx_features): assert(idx_features[0] == 'date_block_num')and \ len(idx_features)in [2, 3] if len(idx_features)== 2: feature_name = idx_features[1] + '_mean_sales' else: feature_name = idx_features[1] + '_' + idx_features[2] + '_mean_sales' group = df.groupby(idx_features ).agg({'item_cnt_month': 'mean'}) group = group.reset_index() group = group.rename(columns={'item_cnt_month': feature_name}) df = df.merge(group, on=idx_features, how='left') df = downcast(df, False) mean_features.append(feature_name) del group gc.collect() return df, mean_features<feature_engineering>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_result.csv",index=False )
Digit Recognizer
11,088,963
item_mean_features = [] all_data, item_mean_features = add_mean_features(df=all_data, mean_features=item_mean_features, idx_features=['date_block_num', 'item_id']) all_data, item_mean_features = add_mean_features(df=all_data, mean_features=item_mean_features, idx_features=['date_block_num', 'item_id', 'city'] )<drop_column>
print(tf.__version__)
Digit Recognizer
11,088,963
shop_mean_features = [] all_data, shop_mean_features = add_mean_features(df=all_data, mean_features=shop_mean_features, idx_features=['date_block_num', 'shop_id', 'item_category_id'] )<feature_engineering>
train_data = pd.read_csv('.. /input/digit-recognizer/train.csv') test_data = pd.read_csv('.. /input/digit-recognizer/test.csv') print("train data shape: {}".format(train_data.shape)) print("test data shape: {}".format(test_data.shape)) X, Y = train_data.drop(['label'], axis=1), train_data['label'] del train_data
Digit Recognizer
11,088,963
def add_lag_features(df, lag_features_to_clip, idx_features, lag_feature, nlags=3, clip=False): df_temp = df[idx_features + [lag_feature]].copy() for i in range(1, nlags+1): lag_feature_name = lag_feature +'_lag' + str(i) df_temp.columns = idx_features + [lag_feature_name] df_temp['date_block_num'] += i df = df.merge(df_temp.drop_duplicates() , on=idx_features, how='left') df[lag_feature_name] = df[lag_feature_name].fillna(0) if clip: lag_features_to_clip.append(lag_feature_name) df = downcast(df, False) del df_temp gc.collect() return df, lag_features_to_clip<define_variables>
X = X/255.0 test_features = test_data/255.0 Y = keras.utils.to_categorical(Y, num_classes=10) X = X.values.reshape(-1,28,28,1) test_features = test_features.values.reshape(-1,28,28,1 )
Digit Recognizer
11,088,963
lag_features_to_clip = [] idx_features = ['date_block_num', 'shop_id', 'item_id'] all_data, lag_features_to_clip = add_lag_features(df=all_data, lag_features_to_clip=lag_features_to_clip, idx_features=idx_features, lag_feature='item_cnt_month', nlags=3, clip=True )<drop_column>
X_train, X_val, y_train, y_val = train_test_split(X, Y, test_size = 0.1, random_state=2 )
Digit Recognizer
11,088,963
all_data, lag_features_to_clip = add_lag_features(df=all_data, lag_features_to_clip=lag_features_to_clip, idx_features=idx_features, lag_feature='item_count', nlags=3) all_data, lag_features_to_clip = add_lag_features(df=all_data, lag_features_to_clip=lag_features_to_clip, idx_features=idx_features, lag_feature='item_price_mean', nlags=3 )<prepare_x_and_y>
datagen = keras.preprocessing.image.ImageDataGenerator(rotation_range=15, width_shift_range=0.1, zoom_range=0.1, height_shift_range=0.1) datagen.fit(X_train )
Digit Recognizer
11,088,963
X_test_temp = all_data[all_data['date_block_num'] == 34] X_test_temp[item_mean_features].sum()<categorify>
input_shape =(28, 28, 1) model = keras.Sequential() model.add(keras.layers.Conv2D(filters=32, kernel_size=(5, 5), activation="relu", input_shape=input_shape, padding="Same")) model.add(keras.layers.Conv2D(filters=32, kernel_size=(5, 5), activation="relu", padding="Same")) model.add(keras.layers.Dropout(0.25)) model.add(keras.layers.MaxPooling2D(( 2, 2))) model.add(keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation="relu", padding="Same")) model.add(keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation="relu", padding="Same")) model.add(keras.layers.Dropout(0.25)) model.add(keras.layers.MaxPooling2D(( 2, 2))) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(256, activation='relu')) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.Dense(10)) model.summary()
Digit Recognizer
11,088,963
for item_mean_feature in item_mean_features: all_data, lag_features_to_clip = add_lag_features(df=all_data, lag_features_to_clip=lag_features_to_clip, idx_features=idx_features, lag_feature=item_mean_feature, nlags=3) all_data = all_data.drop(item_mean_features, axis=1 )<feature_engineering>
adam_opt = keras.optimizers.Adam(learning_rate=0.0008, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False) model.compile(optimizer=adam_opt, loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), metrics = ['accuracy']) history = model.fit_generator(datagen.flow(X_train, y_train, batch_size=96), steps_per_epoch=len(X_train)/96, epochs=30, validation_data=(X_val, y_val), validation_freq=1, shuffle=True )
Digit Recognizer
11,088,963
<drop_column><EOS>
submission = pd.DataFrame() submission['ImageId'] = pd.Series(range(1,28001)) submission['Label'] = results submission.to_csv('cnn_submission.csv',index=False )
Digit Recognizer
11,048,711
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<feature_engineering>
conv = Conv2D(filters=32, kernel_size=3, strides=1, padding="SAME" )
Digit Recognizer
11,048,711
all_data['item_cnt_month_lag_mean'] = all_data[['item_cnt_month_lag1', 'item_cnt_month_lag2', 'item_cnt_month_lag3']].mean(axis=1 )<feature_engineering>
max_pool = MaxPool2D(pool_size=2 )
Digit Recognizer
11,048,711
all_data[lag_features_to_clip + ['item_cnt_month', 'item_cnt_month_lag_mean']] = all_data[lag_features_to_clip +['item_cnt_month', 'item_cnt_month_lag_mean']].clip(0, 20 )<feature_engineering>
global_avg_pool = GlobalAvgPool2D()
Digit Recognizer
11,048,711
all_data['lag_grad1'] = all_data['item_cnt_month_lag1']/all_data['item_cnt_month_lag2'] all_data['lag_grad1'] = all_data['lag_grad1'].replace([np.inf, -np.inf], np.nan ).fillna(0) all_data['lag_grad2'] = all_data['item_cnt_month_lag2']/all_data['item_cnt_month_lag3'] all_data['lag_grad2'] = all_data['lag_grad2'].replace([np.inf, -np.inf], np.nan ).fillna(0 )<feature_engineering>
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.callbacks import ReduceLROnPlateau from functools import partial
Digit Recognizer
11,048,711
all_data['brand_new'] = all_data['first_sale_date'] == all_data['date_block_num']<drop_column>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv") print(train.shape) print(test.shape )
Digit Recognizer
11,048,711
all_data['duration_after_first_sale'] = all_data['date_block_num'] - all_data['first_sale_date'] all_data = all_data.drop('first_sale_date', axis=1 )<feature_engineering>
Y_train = train["label"] X_train = train.drop(labels = ["label"],axis = 1) X_test = test Y_train.value_counts()
Digit Recognizer
11,048,711
all_data['month'] = all_data['date_block_num']%12<prepare_x_and_y>
X_train = X_train / 255.0 X_test = X_test / 255.0
Digit Recognizer
11,048,711
X_train = all_data[all_data['date_block_num'] < 33] X_train = X_train.drop(['item_cnt_month'], axis=1) X_valid = all_data[all_data['date_block_num'] == 33] X_valid = X_valid.drop(['item_cnt_month'], axis=1) X_test = all_data[all_data['date_block_num'] == 34] X_test = X_test.drop(['item_cnt_month'], axis=1) y_train = all_data[all_data['date_block_num'] < 33]['item_cnt_month'] y_valid = all_data[all_data['date_block_num'] == 33]['item_cnt_month'] del all_data gc.collect() ;<create_dataframe>
print(Y_train[0:5]) Y_train = to_categorical(Y_train, num_classes = 10) print(Y_train[0:5] )
Digit Recognizer
11,048,711
params = {'metric': 'rmse', 'num_leaves': 255, 'learning_rate': 0.005, 'feature_fraction': 0.75, 'bagging_fraction': 0.75, 'bagging_freq': 5, 'force_col_wise' : True, 'random_state': 10} cat_features = ['shop_id', 'city', 'item_category_id', 'category', 'month'] dtrain = lgb.Dataset(X_train, y_train) dvalid = lgb.Dataset(X_valid, y_valid) lgb_model = lgb.train(params=params, train_set=dtrain, num_boost_round=1500, valid_sets=(dtrain, dvalid), early_stopping_rounds=150, categorical_feature=cat_features, verbose_eval=100 )<save_to_csv>
random_seed = 2 X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.15, random_state=random_seed )
Digit Recognizer
11,048,711
preds = lgb_model.predict(X_test ).clip(0,20) submission['item_cnt_month'] = preds submission.to_csv('submission.csv', index=False )<drop_column>
DefaultConv2D = partial(Conv2D, kernel_size=3, activation='relu', padding="SAME") model = Sequential([ DefaultConv2D(filters=32, kernel_size=5, input_shape=[28, 28, 1]), DefaultConv2D(filters=32, kernel_size=5), MaxPooling2D(pool_size=2), DefaultConv2D(filters=64), DefaultConv2D(filters=64), MaxPooling2D(pool_size=2), Flatten() , Dense(units=256, activation='relu'), Dropout(0.5), Dense(units=10, activation='softmax'), ] )
Digit Recognizer
11,048,711
del X_train, y_train, X_valid, y_valid, X_test, lgb_model, dtrain, dvalid gc.collect() ;<load_from_csv>
model.compile(loss="categorical_crossentropy", optimizer="nadam", metrics=["accuracy"] )
Digit Recognizer
11,048,711
sales_train = pd.read_csv('.. /input/competitive-data-science-predict-future-sales/sales_train.csv') items = pd.read_csv('.. /input/competitive-data-science-predict-future-sales/items.csv') test_ids = pd.read_csv('.. /input/competitive-data-science-predict-future-sales/test.csv') sales_train = sales_train.drop(['date'], axis=1) sales_train.head()<merge>
reduce_learning_rate = ReduceLROnPlateau(monitor = 'val_acc', patience = 3, verbose = 1, factor = 0.3, min_lr = 0.00001 )
Digit Recognizer
11,048,711
ids = list(np.arange(test_ids['ID'].max() +1)) *(sales_train['date_block_num'].max() +1) dates = list(np.arange(sales_train['date_block_num'].max() +1)) *(test_ids['ID'].max() +1) dates.sort() date_id_dict = {'ID' : ids, 'date_block_num' : dates} date_id_df = pd.DataFrame.from_dict(date_id_dict) date_id_df = date_id_df.merge(test_ids, on='ID') date_id_df.head()<merge>
history = model.fit(X_train, Y_train, batch_size = 100, epochs = 20,validation_data =(X_val,Y_val), callbacks=[reduce_learning_rate] )
Digit Recognizer
11,048,711
grouped = sales_train.groupby(['date_block_num', 'shop_id', 'item_id'], as_index=False) item_cnt = pd.DataFrame(grouped.sum()) item_cnt = item_cnt.drop(['item_price'], axis=1) grouped = sales_train.groupby(['shop_id', 'item_id']) avg_price = pd.DataFrame(grouped.mean() ['item_price']) monthly_sales = item_cnt.merge(avg_price, on=['shop_id', 'item_id']) monthly_sales = monthly_sales.merge(test_ids, on=['shop_id', 'item_id']) monthly_sales.head()<merge>
score = model.evaluate(X_val, Y_val, verbose=0) print('Validation loss:', score[0]) print('Validation accuracy:', score[1] )
Digit Recognizer
11,048,711
item_price = monthly_sales[['item_price', 'ID']] monthly_sales = monthly_sales.drop(['item_price'], axis=1) monthly_sales = date_id_df.merge(monthly_sales, how='left', on=['ID', 'date_block_num']) monthly_sales = monthly_sales.drop(['shop_id_y', 'item_id_y'], axis=1) monthly_sales['item_cnt_day'].fillna(0, inplace=True) monthly_sales = monthly_sales.merge(item_price, how='left', on='ID') monthly_sales['item_price'].fillna(monthly_sales['item_price'].mean() , inplace=True) monthly_sales = monthly_sales.drop_duplicates() column_dict = {'shop_id_x' : 'shop_id', 'item_id_x' : 'item_id', 'item_cnt_day' : 'item_cnt_month', 'item_price' : 'avg_price'} monthly_sales = monthly_sales.rename(columns=column_dict) monthly_sales.head()<merge>
print("[INFO] evaluating network...") predictions = model.predict(X_val) print(classification_report(Y_val.argmax(axis=1),predictions.argmax(axis=1)) )
Digit Recognizer
11,048,711
monthly_sales = monthly_sales.merge(items, on='item_id') monthly_sales = monthly_sales.drop(['item_name'], axis=1) month = pd.DataFrame([x%12+1 for x in monthly_sales['date_block_num']], columns=['month']) year = pd.DataFrame([np.floor(x/12)+2013 for x in monthly_sales['date_block_num']], columns=['year']) monthly_sales = pd.concat([monthly_sales, month, year], axis=1) monthly_sales = monthly_sales[['ID', 'date_block_num', 'shop_id', 'item_category_id', 'avg_price', 'month', 'year', 'item_cnt_month']] monthly_sales.head()<merge>
results = model.predict(X_test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
11,048,711
def calculate_item_cnt_lagged(df, lag): tmp = df[['date_block_num', 'ID', 'item_cnt_month']] shifted = tmp.copy() shifted.columns = ['date_block_num', 'ID', 'item_cnt_lag'+str(lag)] shifted.date_block_num = shifted.date_block_num + lag df = pd.merge(df, shifted, on=['date_block_num', 'ID'], how='left') return df for lag in range(1, 13): monthly_sales = calculate_item_cnt_lagged(monthly_sales, lag) monthly_sales = monthly_sales[monthly_sales['date_block_num'] > 11] monthly_sales.head()<merge>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist.csv",index=False )
Digit Recognizer
11,025,326
id_price = monthly_sales[['ID', 'avg_price']] x_test_df = test_ids.merge(items, on='item_id') x_test_df = x_test_df.merge(id_price, how='left', on='ID') x_test_df.insert(loc=2, column='month', value=11) x_test_df.insert(loc=3, column='year', value=2015) x_test_df.insert(loc=4, column='date_block_num', value=34) x_test_df = x_test_df.drop_duplicates() x_test_df['avg_price'].fillna(x_test_df['avg_price'].mean() , inplace=True) monthly_sales_subset = monthly_sales[['ID', 'date_block_num', 'shop_id', 'item_category_id', 'avg_price', 'month', 'year', 'item_cnt_month']] x_all_df = pd.concat(( x_test_df, monthly_sales_subset)) for lag in range(1, 13): x_all_df = calculate_item_cnt_lagged(x_all_df, lag) x_test_df = x_all_df[x_all_df['date_block_num'] == 34] x_test_df = x_test_df[['ID', 'shop_id', 'item_category_id', 'avg_price', 'month', 'year', 'item_cnt_lag1', 'item_cnt_lag2', 'item_cnt_lag3', 'item_cnt_lag4', 'item_cnt_lag5', 'item_cnt_lag6', 'item_cnt_lag7', 'item_cnt_lag8', 'item_cnt_lag9', 'item_cnt_lag10', 'item_cnt_lag11', 'item_cnt_lag12']] x_test_df.head()<import_modules>
import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split, KFold import tensorflow as tf from tensorflow.keras import models, layers, optimizers from tensorflow.keras.utils import to_categorical
Digit Recognizer
11,025,326
from scipy.sparse import hstack, vstack from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error from sklearn.preprocessing import OneHotEncoder, normalize<prepare_x_and_y>
train_df = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test_df = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") sub_df = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv") train_df.shape, test_df.shape
Digit Recognizer
11,025,326
x_train_price = np.array(monthly_sales['avg_price'] ).reshape(-1, 1) x_test_price = np.array(x_test_df['avg_price'] ).reshape(-1, 1) x_train_price = normalize(x_train_price) x_test_price = normalize(x_test_price) x_train_lags = np.array(monthly_sales[['item_cnt_lag1', 'item_cnt_lag2', 'item_cnt_lag3', 'item_cnt_lag4', 'item_cnt_lag5', 'item_cnt_lag6', 'item_cnt_lag7', 'item_cnt_lag8', 'item_cnt_lag9', 'item_cnt_lag10', 'item_cnt_lag11', 'item_cnt_lag12']]) x_test_lags = np.array(x_test_df[['item_cnt_lag1', 'item_cnt_lag2', 'item_cnt_lag3', 'item_cnt_lag4', 'item_cnt_lag5', 'item_cnt_lag6', 'item_cnt_lag7', 'item_cnt_lag8', 'item_cnt_lag9', 'item_cnt_lag10', 'item_cnt_lag11', 'item_cnt_lag12']]) x_train_categorical = np.array(monthly_sales[['shop_id', 'item_category_id', 'month', 'year']]) x_test_categorical = np.array(x_test_df[['shop_id', 'item_category_id', 'month', 'year']]) x_all_categorical = np.concatenate(( x_train_categorical, x_test_categorical)) y_train = np.array(monthly_sales['item_cnt_month']) encoder = OneHotEncoder() encoder.fit(x_all_categorical) x_train_categorical = encoder.transform(x_train_categorical) x_test_categorical = encoder.transform(x_test_categorical) x_train = hstack([x_train_categorical, x_train_price, x_train_lags]) x_test = hstack([x_test_categorical, x_test_price, x_test_lags]) y_train = np.clip(y_train, 0, 20) print(x_train.shape) print(x_test.shape )<compute_train_metric>
train_X, test_X = train_test_split(train_df, test_size=0.2, random_state=1) train_y, test_y = train_X.pop("label"), test_X.pop("label") train_X, test_X = train_X.values, test_X.values train_X.shape
Digit Recognizer
11,025,326
gradient_boost = GradientBoostingRegressor(n_estimators=500) gradient_boost.fit(x_train, y_train) train_pred = gradient_boost.predict(x_train) rmse = np.sqrt(mean_squared_error(y_train, train_pred)) print(f"RMSE on training set: {rmse}" )<save_to_csv>
train_X = train_X.reshape(( train_X.shape[0], 28, 28, 1)) test_X = test_X.reshape(( test_X.shape[0], 28, 28, 1)) train_X, test_X = train_X / 255.0, test_X / 255.0 train_y = to_categorical(train_y) test_y = to_categorical(test_y) train_X.shape, test_X.shape, train_y.shape, test_y.shape
Digit Recognizer
11,025,326
test_pred = gradient_boost.predict(x_test) test_pred = x_test_df.assign(item_cnt_month=test_pred) test_pred = test_pred[['ID', 'item_cnt_month']] test_pred = test_pred.sort_values(by='ID') test_pred.to_csv('submission.csv', index=False )<set_options>
model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32,(5, 5), activation="relu", kernel_initializer="he_uniform", kernel_regularizer=tf.keras.regularizers.l2(0.001), padding="same", input_shape=(28, 28, 1)) , tf.keras.layers.Conv2D(32,(5, 5), activation="relu", kernel_initializer="he_uniform", kernel_regularizer=tf.keras.regularizers.l2(0.001), padding="same"), tf.keras.layers.MaxPooling2D(( 2, 2)) , tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(64,(3, 3), activation="relu", kernel_initializer="he_uniform", kernel_regularizer=tf.keras.regularizers.l2(0.001), padding="same"), tf.keras.layers.Conv2D(64,(3, 3), activation="relu", kernel_initializer="he_uniform", kernel_regularizer=tf.keras.regularizers.l2(0.001), padding="same"), tf.keras.layers.Dropout(0.25), tf.keras.layers.MaxPooling2D(( 2, 2)) , tf.keras.layers.Flatten() , tf.keras.layers.Dense(256, activation="relu", kernel_initializer="uniform"), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation="softmax") ]) model.compile(optimizer=tf.keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-02, decay=0.0), loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True), metrics=["accuracy"]) history = model.fit(train_X, train_y, epochs=17, validation_split=0.2, verbose=1) score = model.evaluate(test_X, test_y, verbose=0) print(f"Test_loss: {score[0]} / Test accuracy: {score[1]}" )
Digit Recognizer
11,025,326
sns.set(style="darkgrid") rcParams['figure.figsize'] = 12, 4<load_from_csv>
n_folds = 10 acc_fold = [] loss_fold = [] inputs = np.concatenate(( train_X, test_X), axis=0) targets = np.concatenate(( train_y, test_y), axis=0)
Digit Recognizer
11,025,326
items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') cats = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv' )<feature_engineering>
def evaluate_model(inputs, targets, n_folds=n_folds): kfold = KFold(n_splits=n_folds, shuffle=True, random_state=2) fold_no = 1 for train_ix, test_ix in kfold.split(inputs, targets): print(f"Train for fold {fold_no}...") history = model.fit(inputs[train_ix], targets[train_ix], epochs=7, verbose=1) scores = model.evaluate(inputs[test_ix], targets[test_ix], verbose=0) print(f"Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1]*100}%") acc_fold.append(scores[1] * 100) loss_fold.append(scores[0]) fold_no = fold_no + 1 evaluate_model(inputs, targets) print("score per fold" )
Digit Recognizer
11,025,326
train =( train [ (train['item_price'] > 0)& (train['item_price'] < 300000)& (train['item_cnt_day'] < 1000) ] .reset_index(drop = True) ) train.loc[train['item_cnt_day'] < 0, 'item_cnt_day'] = 0<feature_engineering>
test_df = test_df.values test_df = test_df.reshape(( test_df.shape[0], 28, 28, 1)) test_df = test_df / 255.0
Digit Recognizer
11,025,326
for i in [(0, 57),(1, 58),(10, 11)]: train.loc[train['shop_id'] == i[0], 'shop_id'] = i[1] test.loc[test['shop_id'] == i[0], 'shop_id'] = i[1]<feature_engineering>
pred = model.predict(test_df) pred = [np.argmax(y, axis=None, out=None)for y in pred]
Digit Recognizer
11,025,326
shops.loc[shops['shop_name'] == 'Сергиев Посад ТЦ "7Я"', 'shop_name'] = 'СергиевПосад ТЦ "7Я"' shops['city'] = shops.shop_name.str.split(' ' ).map(lambda x: x[0]) shops['category'] = shops.shop_name.str.split(' ' ).map(lambda x: x[1]) shops.loc[shops['city'] == '!Якутск', 'city'] = 'Якутск'<feature_engineering>
sub_df["Label"] = pred sub_df.head()
Digit Recognizer
11,025,326
categories = [] for categ in shops['category'].unique() : if len(shops[shops['category'] == categ])> 4: categories.append(categ) shops['category'] = shops['category'].apply(lambda x: x if x in categories else 'other' )<categorify>
sub_df.to_csv("my_submision1.csv", index=False )
Digit Recognizer
10,987,682
shops['shop_category'] = LabelEncoder().fit_transform(shops['category']) shops['shop_city'] = LabelEncoder().fit_transform(shops['city']) shops = shops[['shop_id', 'shop_category', 'shop_city']] <feature_engineering>
train = np.loadtxt('/kaggle/input/digit-recognizer/train.csv', delimiter=',', skiprows=1) test = np.loadtxt('/kaggle/input/digit-recognizer/test.csv', delimiter=',', skiprows=1 )
Digit Recognizer
10,987,682
cats['type_code'] =( cats['item_category_name'] .apply( lambda x: x.split(' ')[0] ) .astype(str) ) cats.loc[ (cats['type_code'] == 'Игровые')| (cats['type_code'] == 'Аксессуары'), 'category' ] = 'Игры' <feature_engineering>
train_label = train[:, 0] train_img = np.resize(train[:, 1:],(train.shape[0], 28, 28, 1)) test_img = np.resize(test,(test.shape[0], 28, 28, 1))
Digit Recognizer
10,987,682
categories = [] for categ in cats['type_code'].unique() : if len(cats[cats['type_code'] == categ])> 4: categories.append(categ) cats['type_code'] = cats['type_code'].apply(lambda x: x if x in categories else 'etc' )<categorify>
x_train, x_val, y_train, y_val = train_test_split(train_img, train_label, test_size=0.2, random_state=42 )
Digit Recognizer
10,987,682
cats['type_code'] = LabelEncoder().fit_transform(cats['type_code']) cats['split'] =( cats['item_category_name'] .apply(lambda x: x.split('-')) ) cats['subtype'] =( cats['split'] .apply( lambda x: x[1].strip() if len(x)>= 2 else x[0].strip() ) ) cats['subtype_code'] = LabelEncoder().fit_transform(cats['subtype']) cats = cats[['item_category_id', 'subtype_code', 'type_code']]<categorify>
epochs = 50 batch_size = 128 validation_steps = 10000
Digit Recognizer
10,987,682
def name_correction(x): x = x.lower() x = x.partition('[')[0] x = x.partition('(')[0] x = re.sub('\W+', ' ', x) x = x.replace(' ', ' ') x = x.strip() return x<feature_engineering>
model = tf.keras.models.Sequential() model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='same', activation=partial(tf.nn.leaky_relu, alpha=1e-2), input_shape=x_train.shape[1:])) model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding='same', activation=partial(tf.nn.leaky_relu, alpha=1e-2))) model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), padding='same', activation=partial(tf.nn.leaky_relu, alpha=1e-2))) model.add(tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), padding='same', activation=partial(tf.nn.leaky_relu, alpha=1e-2))) model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), padding='same', activation=partial(tf.nn.leaky_relu, alpha=1e-2))) model.add(tf.keras.layers.Conv2D(filters=192, kernel_size=(3,3), padding='same', activation=partial(tf.nn.leaky_relu, alpha=1e-2))) model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) model.add(tf.keras.layers.Conv2D(filters=192, kernel_size=(5,5), padding='same', activation=partial(tf.nn.leaky_relu, alpha=1e-2))) model.add(tf.keras.layers.MaxPool2D(pool_size=(2, 2))) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(256, activation=partial(tf.nn.leaky_relu, alpha=1e-2))) model.add(tf.keras.layers.Dropout(0.5)) model.add(tf.keras.layers.Dense(10, activation='softmax'))
Digit Recognizer
10,987,682
items['name1'], items['name2'] = items['item_name'].str.split('[', 1 ).str items['name1'], items['name3'] = items['item_name'].str.split('(', 1 ).str items['name2'] = items['name2'].str.replace('\W+', ' ' ).str.lower() items['name3'] = items['name3'].str.replace('\W+', ' ' ).str.lower() items = items.fillna('0') items['item_name'] = items['item_name'].apply(lambda x: name_correction(x)) items['name2'] = items['name2'].apply(lambda x: x[:-1] if x != '0' else '0' )<feature_engineering>
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4, epsilon=1e-8), loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
10,987,682
items['type'] =( items['name2'] .apply( lambda x: x[0:8] if x.split(' ')[0] == 'xbox' else x.split(' ')[0] ) ) items.loc[ (items['type'] == 'x360')| (items['type'] == 'xbox360')| (items['type'] == 'xbox 360'), 'type' ] = 'xbox 360' items.loc[items['type'] == '', 'type'] = 'mac' items.type =( items['type'] .apply( lambda x: x.replace(' ', '') ) ) items.loc[ (items['type'] == 'pc')| (items['type'] == 'pс')| (items['type'] == 'pс'), 'type' ] = 'pс' items.loc[items['type'] == 'рs3' , 'type'] = 'рs3'<drop_column>
data_aug = tf.keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False )
Digit Recognizer
10,987,682
group_sum =( items .groupby('type') .agg({'item_id': 'count'}) .reset_index() ) drop_cols = [] for categ in group_sum['type'].unique() : if group_sum.loc[(group_sum['type'] == categ), 'item_id'].values[0] <= 39: drop_cols.append(categ) items['name2'] =( items['name2'] .apply( lambda x: 'other' if x in drop_cols else x ) ) items = items.drop(['type'], axis=1 )<categorify>
callback = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_acc', patience=1, verbose=2, factor=0.5, min_lr=1e-7 )
Digit Recognizer
10,987,682
items['name2'] = LabelEncoder().fit_transform(items['name2']) items['name3'] = LabelEncoder().fit_transform(items['name3']) items.drop(['item_name', 'name1'], axis=1, inplace=True) <data_type_conversions>
y_train_labels = tf.keras.utils.to_categorical(y_train) y_val_labels = tf.keras.utils.to_categorical(y_val )
Digit Recognizer
10,987,682
matrix = [] cols = ['date_block_num', 'shop_id', 'item_id'] for i in range(34): sales = train[train['date_block_num'] == i] matrix.append( np.array( list(product( [i], sales['shop_id'].unique() , sales['item_id'].unique() )) , dtype = np.int16 ) ) matrix = pd.DataFrame(np.vstack(matrix), columns=cols) matrix = matrix.astype({ 'date_block_num': np.int8, 'shop_id': np.int8, 'item_id': np.int16 }) matrix.sort_values(cols, inplace=True )<feature_engineering>
train_aug = data_aug.flow(x_train, y_train_labels, batch_size=batch_size) val_aug = data_aug.flow(x_val, y_val_labels, batch_size=batch_size )
Digit Recognizer
10,987,682
train['revenue'] = train['item_cnt_day'] * train['item_price']<merge>
hist = model.fit(train_aug, steps_per_epoch=x_train.shape[0]//batch_size, epochs=epochs, validation_data=val_aug, validation_steps=validation_steps//batch_size, callbacks=[callback] )
Digit Recognizer
10,987,682
group =( train .groupby(['date_block_num', 'shop_id', 'item_id']) .agg({ 'item_cnt_day': 'sum' }) ) group.columns = ['item_cnt_month'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=cols, how='left') matrix['item_cnt_month'] =( matrix['item_cnt_month'] .fillna(0) .astype(np.float16) )<data_type_conversions>
y_pred = model.predict(x_val) y_pred_labels = np.argmax(y_pred, axis=1 )
Digit Recognizer
10,987,682
test['date_block_num'] = 34 test =( test .astype({ 'date_block_num': np.int8, 'shop_id': np.int8, 'item_id': np.int16 }) )<concatenate>
print(classification_report(y_val, y_pred_labels))
Digit Recognizer
10,987,682
matrix = pd.concat( [matrix, test.drop(['ID'], axis=1)], ignore_index=True, sort=False, keys=cols ) matrix.fillna(0, inplace=True )<merge>
y_pred_test = model.predict(test_img) y_pred_test_labels = np.argmax(y_pred_test, axis=1 )
Digit Recognizer
10,987,682
matrix = pd.merge(matrix, shops, on='shop_id', how='left') matrix = pd.merge(matrix, items, on='item_id', how='left') matrix = pd.merge(matrix, cats, on='item_category_id', how='left') matrix =( matrix .astype({ 'shop_city': np.int8, 'shop_category': np.int8, 'item_category_id': np.int8, 'subtype_code': np.int8, 'name2': np.int8, 'name3': np.int16, 'type_code': np.int8 }) )<merge>
submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') submission['Label'] = y_pred_test_labels.astype(int) submission.head(10 )
Digit Recognizer
10,987,682
def lag_feature(df, lags, cols): for col in cols: tmp = df[['date_block_num', 'shop_id', 'item_id', col]] for i in lags: shifted = tmp.copy() shifted.columns = ['date_block_num', 'shop_id', 'item_id', col + "_lag_" + str(i)] shifted['date_block_num'] = shifted['date_block_num'] + i df = pd.merge(df, shifted, on=['date_block_num', 'shop_id', 'item_id'], how='left') return df<concatenate>
submission.to_csv('submission.csv', index=False, header=True )
Digit Recognizer
10,939,062
matrix = lag_feature(matrix, [1, 2, 3], ['item_cnt_month'] )<merge>
import matplotlib.pyplot as plt from collections import Counter
Digit Recognizer
10,939,062
group =( matrix .groupby('date_block_num') .agg({ 'item_cnt_month' : 'mean' }) ) group.columns = ['date_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on='date_block_num', how="left") matrix['date_avg_item_cnt'] = matrix['date_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], ['date_avg_item_cnt']) matrix.drop(['date_avg_item_cnt'], axis=1, inplace=True )<merge>
fg_unet = pd.read_csv("/kaggle/input/mnist-w-fgunet-output/submission.csv") vgg = pd.read_csv("/kaggle/input/mnist-w-vgg16-output/submission.csv") resnet = pd.read_csv("/kaggle/input/mnist-w-resnet-output/submission.csv" )
Digit Recognizer
10,939,062
group =( matrix .groupby(['date_block_num', 'item_id']) .agg({ 'item_cnt_month': 'mean' }) ) group.columns = ['date_item_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'item_id'], how='left') matrix['date_item_avg_item_cnt'] = matrix['date_item_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1, 2, 3], ['date_item_avg_item_cnt']) matrix.drop(['date_item_avg_item_cnt'], axis=1, inplace=True )<merge>
train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") sub = pd.read_csv("/kaggle/input/mnist-w-resnet-output/submission.csv" )
Digit Recognizer
10,939,062
group =( matrix .groupby(['date_block_num', 'shop_id']) .agg({ 'item_cnt_month': 'mean' }) ) group.columns = ['date_shop_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'shop_id'], how='left') matrix['date_shop_avg_item_cnt'] = matrix['date_shop_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1, 2, 3], ['date_shop_avg_item_cnt']) matrix.drop(['date_shop_avg_item_cnt'], axis=1, inplace=True )<merge>
majority = sub.copy() no_maj = [] unequal = [] for i in range(len(vgg)) : lst = [fg_unet.iloc[i].Label, vgg.iloc[i].Label, resnet.iloc[i].Label] if not all(ele == lst[0] for ele in lst): unequal.append(i) count = Counter(lst ).most_common() if len(count)==len(lst): no_maj.append(i) majority.iloc[i].Label = lst[-1] img = test.iloc[i,:].values img = img.reshape(28, 28) print(i, lst) plt.imshow(img) plt.show() else: majority.iloc[i].Label = count[0][0] else: majority.iloc[i].Label = lst[0] print("Number of rows not all equal: ", len(unequal)) print("Number of rows with no majority: ", len(no_maj)) majority.to_csv("submission_maj.csv", index=False )
Digit Recognizer
10,939,062
group =( matrix .groupby(['date_block_num', 'shop_id', 'item_id']) .agg({ 'item_cnt_month': 'mean' }) ) group.columns = ['date_shop_item_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'shop_id', 'item_id'], how='left') matrix['date_shop_item_avg_item_cnt'] = matrix['date_shop_item_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1, 2, 3], ['date_shop_item_avg_item_cnt']) matrix.drop(['date_shop_item_avg_item_cnt'], axis=1, inplace=True )<merge>
from keras.models import load_model from keras.utils import to_categorical
Digit Recognizer
10,939,062
group =( matrix .groupby(['date_block_num', 'shop_id', 'subtype_code']) .agg({ 'item_cnt_month': 'mean' }) ) group.columns = ['date_shop_subtype_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'shop_id', 'subtype_code'], how='left') matrix['date_shop_subtype_avg_item_cnt'] = matrix['date_shop_subtype_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], ['date_shop_subtype_avg_item_cnt']) matrix.drop(['date_shop_subtype_avg_item_cnt'], axis=1, inplace=True )<data_type_conversions>
fg_unet = load_model("/kaggle/input/mnist-w-fgunet-output/best_model.h5") vgg = load_model("/kaggle/input/mnist-w-vgg16-output/best_model.h5") resnet = load_model("/kaggle/input/mnist-w-resnet-output/best_model.h5" )
Digit Recognizer
10,939,062
group =( matrix .groupby(['date_block_num', 'shop_city']) .agg({ 'item_cnt_month': 'mean' }) ) group.columns = ['date_city_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'shop_city'], how='left') matrix['date_city_avg_item_cnt'] = matrix['date_city_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], ['date_city_avg_item_cnt']) matrix.drop(['date_city_avg_item_cnt'], axis=1, inplace=True )<merge>
X = [train.iloc[i,1:].values for i in range(len(train)) ] X = [x.reshape(28,28)for x in X] X_28 = [x.reshape(28,28,1,1)for x in X] X_28 = np.array(X_28) X = [np.pad(x, 2)for x in X] X = np.array(X) X = X.reshape(X.shape[0],X.shape[1], X.shape[2],1) X = np.repeat(X, 3, axis=-1 )
Digit Recognizer
10,939,062
group =( matrix .groupby(['date_block_num', 'item_id', 'shop_city']) .agg({ 'item_cnt_month': 'mean' }) ) group.columns = ['date_item_city_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'item_id', 'shop_city'], how='left') matrix['date_item_city_avg_item_cnt'] = matrix['date_item_city_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], ['date_item_city_avg_item_cnt']) matrix.drop(['date_item_city_avg_item_cnt'], axis=1, inplace=True )<merge>
X_test = [test.iloc[i,:].values for i in range(len(test)) ] X_test = [x.reshape(28,28)for x in X_test] X_test_28 = [x.reshape(28,28,1,1)for x in X_test] X_test_28 = np.array(X_test_28) X_test = [np.pad(x, 2)for x in X_test] X_test = np.array(X_test) X_test = X_test.reshape(X_test.shape[0],X_test.shape[1], X_test.shape[2],1) X_test = np.repeat(X_test, 3, axis=-1 )
Digit Recognizer
10,939,062
group =( train .groupby('item_id') .agg({ 'item_price': 'mean' }) ) group.columns = ['item_avg_item_price'] group.reset_index(inplace=True) matrix = matrix.merge(group, on='item_id', how='left') matrix['item_avg_item_price'] = matrix['item_avg_item_price'].astype(np.float16) group =( train .groupby(['date_block_num', 'item_id']) .agg({ 'item_price': 'mean' }) ) group.columns = ['date_item_avg_item_price'] group.reset_index(inplace=True) matrix = matrix.merge(group, on=['date_block_num', 'item_id'], how='left') matrix['date_item_avg_item_price'] = matrix['date_item_avg_item_price'].astype(np.float16) lags = [1, 2, 3] matrix = lag_feature(matrix, lags, ['date_item_avg_item_price']) for i in lags: matrix['delta_price_lag_' + str(i)] =( matrix['date_item_avg_item_price_lag_' + str(i)] -\ matrix['item_avg_item_price'] )/ matrix['item_avg_item_price'] def select_trends(row): for i in lags: if row['delta_price_lag_' + str(i)]: return row['delta_price_lag_' + str(i)] return 0 matrix['delta_price_lag_'] = matrix.apply(select_trends, axis=1) matrix['delta_price_lag_'] = matrix['delta_price_lag_'].astype(np.float16) matrix['delta_price_lag_'].fillna(0, inplace=True) features_to_drop = ['item_avg_item_price', 'date_item_avg_item_price'] for i in lags: features_to_drop.append('date_item_avg_item_price_lag_' + str(i)) features_to_drop.append('delta_price_lag_' + str(i)) matrix.drop(features_to_drop, axis=1, inplace=True )<merge>
f_y_train = fg_unet.predict(X_28, verbose=1) v_y_train = vgg.predict(X, verbose=1) r_y_train = resnet.predict(X, verbose=1 )
Digit Recognizer
10,939,062
group =( train .groupby(['date_block_num', 'shop_id']) .agg({ 'revenue': 'sum' }) ) group.columns = ['date_shop_revenue'] group.reset_index(inplace=True) matrix = matrix.merge(group, on=['date_block_num', 'shop_id'], how='left') matrix['date_shop_revenue'] = matrix['date_shop_revenue'].astype(np.float32) group =( group .groupby('shop_id') .agg({ 'date_block_num': 'mean' }) ) group.columns = ['shop_avg_revenue'] group.reset_index(inplace=True) matrix = matrix.merge(group, on='shop_id', how='left') matrix['shop_avg_revenue'] = matrix['shop_avg_revenue'].astype(np.float32) matrix['delta_revenue'] =( matrix['date_shop_revenue'] - matrix['shop_avg_revenue'] )/ matrix['shop_avg_revenue'] matrix['delta_revenue'] = matrix['delta_revenue'].astype(np.float32) matrix = lag_feature(matrix, [1], ['delta_revenue']) matrix['delta_revenue_lag_1'] = matrix['delta_revenue_lag_1'].astype(np.float32) matrix.drop( ['date_shop_revenue', 'shop_avg_revenue', 'delta_revenue'], axis=1, inplace=True )<categorify>
f_y_test = fg_unet.predict(X_test_28, verbose=1) v_y_test = vgg.predict(X_test, verbose=1) r_y_test = resnet.predict(X_test, verbose=1 )
Digit Recognizer
10,939,062
matrix['month'] = matrix['date_block_num'] % 12 days = pd.Series([31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]) matrix['days'] = matrix['month'].map(days ).astype(np.int8 )<categorify>
n_classes = 10 y = [train.iloc[i,0] for i in range(len(train)) ] y = np.array(y) print(np.unique(y, return_counts=True)) y = to_categorical(y, num_classes=n_classes) y.shape
Digit Recognizer
10,939,062
matrix['item_shop_first_sale'] =( matrix['date_block_num'] - matrix.groupby(['item_id', 'shop_id'])['date_block_num'].transform('min') ) matrix['item_first_sale'] =( matrix['date_block_num'] - matrix.groupby(['item_id'])['date_block_num'].transform('min') )<drop_column>
X = np.hstack([f_y_train, v_y_train, r_y_train]) rid = Ridge() rid.fit(X, y )
Digit Recognizer
10,939,062
matrix = matrix[matrix['date_block_num'] >= 4] matrix.head().T<create_dataframe>
X_pred = np.hstack([f_y_test, v_y_test, r_y_test] )
Digit Recognizer