kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
11,475,252
sub = pd.merge( sample_submission, subm, how="left", left_on='ID', right_on='image_id', )<count_missing_values>
def model() : model = Sequential() model.add(Conv2D(32, kernel_size = 3, activation='relu', input_shape =(28, 28, 1))) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 3, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Conv2D(128, kernel_size = 4, activation='relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) adam = tf.keras.optimizers.Adam( learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False) model.compile(optimizer=adam, loss="categorical_crossentropy", metrics=["accuracy"]) early = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=50) checkpoint_path = 'training_1/cp.ckpt' checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) print(model.summary()) history = model.fit(xtrain, ytrain, epochs=100, callbacks=[cp_callback, early], validation_data=(xval, yval)) prediction = model.predict(test) prediction = np.argmax(prediction, axis=1) return history, prediction
Digit Recognizer
11,475,252
def isNaN(num): return num != num<feature_engineering>
history, prediction = model()
Digit Recognizer
11,475,252
for i, row in sub.iterrows() : if isNaN(row['pred']): continue sub.PredictionString.loc[i] = row['pred']<save_to_csv>
data = {"ImageId": image_id, "Label":prediction} results = pd.DataFrame(data) results.to_csv("result.csv",index=False )
Digit Recognizer
11,475,252
sub.to_csv('submission_1.csv', index=False )<load_from_csv>
from keras.preprocessing.image import ImageDataGenerator
Digit Recognizer
11,475,252
cell_df = pd.read_csv('cell_df.csv') cell_df.head() cell_df['cls'] = ''<feature_engineering>
datagen_train = datagen_valid = ImageDataGenerator( featurewise_center = False, samplewise_center = False, featurewise_std_normalization = False, samplewise_std_normalization = False, zca_whitening = False, horizontal_flip = False, vertical_flip = False, fill_mode = 'nearest', rotation_range = 10, zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1) datagen_train.fit(xtrain) train_gen = datagen_train.flow(xtrain, ytrain, batch_size=64) datagen_valid.fit(xval) valid_gen = datagen_valid.flow(xval, yval, batch_size=64 )
Digit Recognizer
11,475,252
threshold = 0.0 for i in range(preds.shape[0]): p = torch.nonzero(preds[i] > threshold ).squeeze().numpy().tolist() if type(p)!= list: p = [p] if len(p)== 0: cls = [(preds[i].argmax().item() , preds[i].max().item())] else: cls = [(x, preds[i][x].item())for x in p] cell_df['cls'].loc[i] = cls<categorify>
model = Sequential([ Conv2D(32, kernel_size=(3, 3), activation='relu', padding='same', input_shape =(28,28,1)) , Conv2D(32, kernel_size=(3, 3), activation='relu'), BatchNormalization() , MaxPool2D(pool_size=(2, 2)) , Dropout(0.2), Conv2D(64, kernel_size=(3, 3), activation='relu', padding='same'), Conv2D(64, kernel_size=(3, 3), activation='relu'), BatchNormalization() , MaxPool2D(pool_size=(2, 2)) , Dropout(0.2), Conv2D(128, kernel_size=(3, 3), activation='relu', padding='same'), Conv2D(128, kernel_size=(3, 3), activation='relu'), BatchNormalization() , MaxPool2D(pool_size=(2, 2)) , Dropout(0.2), Flatten() , Dense(512, activation='relu'), Dropout(0.5), Dense(10, activation = "softmax") ]) adam = tf.keras.optimizers.Adam( learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False) model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) early = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=50) checkpoint_path = 'training_1/cp.ckpt' checkpoint_dir = os.path.dirname(checkpoint_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1) print(model.summary()) history = model.fit(( train_gen), epochs=100, callbacks=[cp_callback, early], validation_data=(valid_gen)) prediction = model.predict(test) prediction = np.argmax(prediction, axis=1 )
Digit Recognizer
11,475,252
<feature_engineering><EOS>
data = {"ImageId": image_id, "Label":prediction} results = pd.DataFrame(data) results.to_csv("result_data_generator.csv",index=False )
Digit Recognizer
11,486,725
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<groupby>
mnist_test = pd.read_csv(".. /input/mnist-in-csv/mnist_test.csv") mnist_train = pd.read_csv(".. /input/mnist-in-csv/mnist_train.csv" )
Digit Recognizer
11,486,725
subm = cell_df.groupby(['image_id'])['pred'].apply(lambda x: ' '.join(x)).reset_index() subm.head()<load_from_csv>
sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv") train = pd.read_csv(".. /input/digit-recognizer/train.csv" )
Digit Recognizer
11,486,725
sample_submission = pd.read_csv('.. /input/hpa-single-cell-image-classification/sample_submission.csv') sample_submission.head()<merge>
test['dataset'] = 'test'
Digit Recognizer
11,486,725
sub = pd.merge( sample_submission, subm, how="left", left_on='ID', right_on='image_id', ) sub.head()<feature_engineering>
train['dataset'] = 'train'
Digit Recognizer
11,486,725
def isNaN(num): return num != num for i, row in sub.iterrows() : if isNaN(row['pred']): continue sub.PredictionString.loc[i] = row['pred']<save_to_csv>
dataset = pd.concat([train.drop('label', axis=1), test] ).reset_index()
Digit Recognizer
11,486,725
sub.to_csv('submission.csv', index=False )<save_to_csv>
mnist = pd.concat([mnist_train, mnist_test] ).reset_index(drop=True) labels = mnist['label'].values mnist.drop('label', axis=1, inplace=True) mnist.columns = cols
Digit Recognizer
11,486,725
sub.to_csv('submission.csv', index=False )<load_from_csv>
idx_mnist = mnist.sort_values(by=list(mnist.columns)).index dataset_from = dataset.sort_values(by=list(mnist.columns)) ['dataset'].values original_idx = dataset.sort_values(by=list(mnist.columns)) ['index'].values
Digit Recognizer
11,486,725
data_train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') data_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )<count_missing_values>
for i in range(len(idx_mnist)) : if dataset_from[i] == 'test': sample_submission.loc[original_idx[i], 'Label'] = labels[idx_mnist[i]]
Digit Recognizer
11,486,725
<create_dataframe><EOS>
sample_submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,427,431
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<drop_column>
from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns
Digit Recognizer
11,427,431
true_labels = data_train.label data_train = data_train.drop('label', axis = 1 )<categorify>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
11,427,431
tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300) data_train_embedded = tsne.fit_transform(sample.drop('label', axis = 1))<train_model>
Y_train = train["label"] X_train = train.drop(labels = ["label"],axis = 1 )
Digit Recognizer
11,427,431
X_train, X_holdout, y_train, y_holdout = train_test_split(data_train_pd.drop('label', axis = 1), data_train_pd.label, test_size = 0.25, random_state=0) knn = KNeighborsClassifier(n_neighbors=10, n_jobs=-1) knn.fit(X_train, y_train) <train_model>
X_train = X_train / 255.0 test = test / 255.0
Digit Recognizer
11,427,431
X_train, X_holdout, y_train, y_holdout = train_test_split(data_train_pd.drop('label', axis = 1), data_train_pd.label, test_size = 0.25, random_state=0) bnbclf = BernoulliNB() bnbclf.fit(X_train, y_train )<compute_test_metric>
Y_train = np_utils.to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
11,427,431
print("Accuracy score: {:.2f}".format(bnbclf.score(X_holdout, y_holdout))) print("Cross-entropy loss: {:.2f}".format(log_loss(np.array(y_holdout), bnbclf.predict_proba(X_holdout))))<train_on_grid>
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1 )
Digit Recognizer
11,427,431
bnb_params = {'alpha': np.arange(0.01, 0.1, 0.05), 'binarize' : np.arange(0, 0.5, 0.2), 'fit_prior': [True, False] } bnbcv = GridSearchCV(bnbclf, param_grid = bnb_params, cv = 3 )<train_model>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
11,427,431
bnbcv.fit(X_train, y_train) bnb_best = bnbcv.best_estimator_<find_best_params>
model.compile(optimizer = 'Adam' , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
11,427,431
bnbcv.best_params_<compute_test_metric>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
11,427,431
print("Accuracy score: {:.2f}".format(bnb_best.score(X_holdout, y_holdout))) print("Cross-entropy loss: {:.2f}".format(log_loss(np.array(y_holdout), bnb_best.predict_proba(X_holdout))))<choose_model_class>
epochs = 20 batch_size = 86
Digit Recognizer
11,427,431
model = Sequential() model.add(Convolution2D(32,(3, 3), activation='relu', input_shape=(28,28,1))) model.add(MaxPooling2D(pool_size=(2,2))) model.add(BatchNormalization(axis=1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones",)) model.add(Convolution2D(32,(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(BatchNormalization(axis=1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones",)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))<feature_engineering>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False)
Digit Recognizer
11,427,431
data_train = data_train / 255 data_test = data_test / 255<prepare_x_and_y>
datagen.fit(X_train )
Digit Recognizer
11,427,431
y = np.array(pd.get_dummies(true_labels))<split>
from keras.callbacks import ReduceLROnPlateau
Digit Recognizer
11,427,431
X_train, X_holdout, y_train, y_holdout = train_test_split(data_train, y, test_size = 0.25, random_state=17 )<choose_model_class>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
11,427,431
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, min_lr=0.000001, verbose=1 )<train_model>
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction] )
Digit Recognizer
11,427,431
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) result = model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1, validation_data=(X_holdout, y_holdout), callbacks = [reduce_lr] )<choose_model_class>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
11,427,431
layer_names = [layer.name for layer in model.layers] layer_outputs = [layer.output for layer in model.layers] layer_outputs = [layer_outputs[0], layer_outputs[2]] feature_map_model = Model(model.input, layer_outputs) im = X_train[99:100,:] feature_maps = feature_map_model.predict(im )<train_model>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("submission.csv",index=False )
Digit Recognizer
10,925,075
augumentator = tf.keras.preprocessing.image.ImageDataGenerator( rotation_range=15, width_shift_range=0.15, shear_range=0.1, zoom_range=0.1, validation_split=0.0, horizontal_flip=False, vertical_flip=False) augumentator.fit(X_train )<train_model>
%matplotlib inline
Digit Recognizer
10,925,075
history = model.fit(augumentator.flow(X_train, y_train, batch_size = 32), epochs = 10, validation_data =(X_holdout, y_holdout), verbose = 1, callbacks = [reduce_lr] )<load_pretrained>
train_df = pd.read_csv('.. /input/digit-recognizer/train.csv') test_df = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
10,925,075
mnist = tf.keras.datasets.mnist (X_train_mnist, y_train_mnist),(X_val_mnist, y_val_mnist)= mnist.load_data()<categorify>
X = train_df.drop('label',axis=1) y = train_df['label'] X = X.values.reshape(-1,28,28,1) X = X/255 y = to_categorical(y) print(plt.imshow(X[2][:,:,0])) print(str(y[1]))
Digit Recognizer
10,925,075
y_train_mnist = np.array(pd.get_dummies(pd.Series(y_train_mnist))) y_holdout_mnist = np.array(pd.get_dummies(pd.Series(y_val_mnist)) )<define_variables>
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=123 )
Digit Recognizer
10,925,075
X_train_mnist = X_train_mnist.reshape(-1, 28, 28, 1) X_holdout_mnist = X_val_mnist.reshape(-1, 28, 28, 1) X_train_mnist = X_train_mnist / 255 X_holdout_mnist = X_holdout_mnist /255<concatenate>
datagen = ImageDataGenerator(zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1, rotation_range = 10 )
Digit Recognizer
10,925,075
X_train_ext = np.concatenate(( X_train, X_train_mnist), axis = 0) X_holdout_ext = np.concatenate(( X_holdout, X_holdout_mnist), axis = 0) y_train_ext = np.concatenate(( y_train, y_train_mnist), axis = 0) y_holdout_ext = np.concatenate(( y_holdout, y_holdout_mnist), axis = 0 )<train_model>
model = Sequential()
Digit Recognizer
10,925,075
model.fit(X_train_ext, y_train_ext, batch_size=32, epochs=20, verbose=1, validation_data=(X_holdout, y_holdout), callbacks = [reduce_lr] )<save_to_csv>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(3, 3), activation = 'relu', input_shape =(28, 28, 1))) model.add(BatchNormalization()) model.add(Conv2D(filters = 32, kernel_size =(3, 3), activation = 'relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 32, kernel_size =(5, 5), activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPool2D(strides =(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3, 3), activation = 'relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(3, 3), activation = 'relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(5, 5), activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPool2D(strides =(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation = 'relu')) model.add(Dropout(0.5)) model.add(Dense(1024, activation = 'relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation = 'softmax'))
Digit Recognizer
10,925,075
predictions = model.predict(data_test ).argmax(axis = 1) predictions submission = pd.DataFrame({'ImageId':np.arange(1, len(predictions)+1), 'Label':predictions}) submission.to_csv('submission.csv', index=False )<import_modules>
model.compile(optimizer='adam',metrics=['accuracy'],loss='categorical_crossentropy' )
Digit Recognizer
10,925,075
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten from tensorflow.keras import utils from tensorflow.keras.preprocessing import image from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint import tensorflow as tf from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import matplotlib.pyplot as plt<load_from_csv>
reduction_lr = ReduceLROnPlateau(monitor='val_accuracy',patience=2, verbose=1, factor=0.2, min_lr=0.00001 )
Digit Recognizer
10,925,075
data_train = np.loadtxt('/kaggle/input/digit-recognizer/train.csv', skiprows = 1, delimiter= ',') data_train[0:5]<train_model>
hist = model.fit_generator(datagen.flow(X_train,y_train,batch_size=32),epochs=20,validation_data =(X_test,y_test),callbacks=[reduction_lr] )
Digit Recognizer
10,925,075
x_train = data_train[:, 1:] x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) input_shape =(28, 28, 1 )<feature_engineering>
final_loss, final_acc = model.evaluate(X_test, y_test, verbose=0) print("Final loss: {0:.4f}, final accuracy: {1:.4f}".format(final_loss, final_acc))
Digit Recognizer
10,925,075
x_train = x_train / 255.0<prepare_x_and_y>
test_df = test_df.values.reshape(-1, 28, 28, 1)/ 255 y_pred = model.predict(test_df, batch_size = 64) y_pred = np.argmax(y_pred,axis = 1) y_pred = pd.Series(y_pred,name="Label") y_pred
Digit Recognizer
10,925,075
<categorify><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),y_pred],axis = 1) submission.to_csv("submission.csv",index=False )
Digit Recognizer
11,722,614
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<split>
mnist_test = pd.read_csv(".. /input/mnist-digit-recognizer/mnist_test.csv") mnist_train = pd.read_csv(".. /input/mnist-digit-recognizer/mnist_train.csv") sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv") train = pd.read_csv(".. /input/digit-recognizer/train.csv" )
Digit Recognizer
11,722,614
random_seed = 2 X_train, X_val, Y_train, Y_val = train_test_split(x_train, y_train, test_size = 0.1, random_state=random_seed )<choose_model_class>
test['dataset'] = 'test'
Digit Recognizer
11,722,614
datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.10, width_shift_range=0.1, height_shift_range=0.1) <choose_model_class>
train['dataset'] = 'train'
Digit Recognizer
11,722,614
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax")) model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"] )<choose_model_class>
dataset = pd.concat([train.drop('label', axis=1), test] ).reset_index()
Digit Recognizer
11,722,614
checkpoint = ModelCheckpoint('mnist-cnn.h5', monitor='val_acc', save_best_only=True, verbose=1 )<choose_model_class>
mnist = pd.concat([mnist_train, mnist_test] ).reset_index(drop=True) labels = mnist['label'].values mnist.drop('label', axis=1, inplace=True) mnist.columns = cols
Digit Recognizer
11,722,614
learn_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) <train_model>
idx_mnist = mnist.sort_values(by=list(mnist.columns)).index dataset_from = dataset.sort_values(by=list(mnist.columns)) ['dataset'].values original_idx = dataset.sort_values(by=list(mnist.columns)) ['index'].values
Digit Recognizer
11,722,614
batch_size=96 history = model.fit(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs=30, validation_data=(X_val, Y_val), steps_per_epoch=X_train.shape[0] // batch_size, verbose=1, callbacks=[checkpoint, learn_rate_reduction] )<load_from_csv>
for i in range(len(idx_mnist)) : if dataset_from[i] == 'test': sample_submission.loc[original_idx[i], 'Label'] = labels[idx_mnist[i]]
Digit Recognizer
11,722,614
data_test = np.loadtxt('/kaggle/input/digit-recognizer/test.csv', skiprows = 1, delimiter=',') x_test = data_test.reshape(data_test.shape[0], 28, 28, 1) x_test /= 255.0<predict_on_test>
sample_submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,691,016
predict = model.predict(x_test) predict = np.argmax(predict, axis=1 )<concatenate>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") print(train.shape) train.head()
Digit Recognizer
11,691,016
out = np.column_stack(( range(1, predict.shape[0]+1), predict))<save_to_csv>
test= pd.read_csv(".. /input/digit-recognizer/test.csv") print(test.shape) test.head()
Digit Recognizer
11,691,016
np.savetxt('submission.csv', out, header="ImageId,Label", comments="", fmt="%d,%d" )<set_options>
Y_train = train["label"] X_train = train.drop(columns = ["label"],axis = 1 )
Digit Recognizer
11,691,016
%matplotlib inline <load_from_csv>
X_train = X_train / 255.0 test = test / 255.0 print("x_train shape: ",X_train.shape) print("test shape: ",test.shape )
Digit Recognizer
11,691,016
train_data = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test_data = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )<prepare_x_and_y>
Y_train = to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
11,691,016
X = train_data.drop(["label"],axis = 1 ).values Y = train_data["label"].values<prepare_x_and_y>
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1,random_state = 2) print("x_train shape",X_train.shape) print("x_test shape",X_val.shape) print("y_train shape",Y_train.shape) print("y_test shape",Y_val.shape )
Digit Recognizer
11,691,016
X = X.reshape([42000,28,28,1]) Y = Y.reshape([42000,1] )<categorify>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(3,3),activation = 'relu', kernel_initializer='he_normal', input_shape =(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(filters = 32, kernel_size =(3,3), activation = 'relu', kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size =(2,2))) model.add(Dropout(0.4)) model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation = 'relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size =(2,2), strides =(2,2))) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dropout(0.4)) model.add(Dense(10, activation = 'softmax'))
Digit Recognizer
11,691,016
Y = to_categorical(Y, num_classes = 10 )<split>
optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999 )
Digit Recognizer
11,691,016
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.1, random_state = 14 )<feature_engineering>
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
11,691,016
x_train = x_train/255 x_test = x_test/255<choose_model_class>
epochs = 39 batch_size = 64
Digit Recognizer
11,691,016
model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64,(3,3), padding = 'same', activation='relu', input_shape=(28, 28, 1)) , tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(64,(3,3), padding = 'same', activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(128,(3,3), padding = 'same', activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(128,(3,3), padding = 'same', activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten() , tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation='softmax') ] )<choose_model_class>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0.10, zoom_range = 0.10, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
11,691,016
optimizer = Adam(learning_rate = 0.001, beta_1 = 0.9, beta_2 = 0.999) model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['accuracy'] )<choose_model_class>
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x) history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), steps_per_epoch=X_train.shape[0] // batch_size, callbacks=[annealer] )
Digit Recognizer
11,691,016
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.6, min_lr=0.00001 )<define_variables>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("sub.csv",index=False)
Digit Recognizer
11,664,799
batch_size = 64 epochs = 30<train_model>
train = pd.read_csv(r".. /input/digit-recognizer/train.csv",dtype = np.float32) train_label = train.label.values train_image = train.loc[:,train.columns != "label"].values/255 train_image, valid_image, train_label, valid_label = train_test_split(train_image, train_label, test_size = 0.2, random_state = 7) train_image = torch.from_numpy(train_image) train_label = torch.from_numpy(train_label ).type(torch.LongTensor) valid_image = torch.from_numpy(valid_image) valid_label = torch.from_numpy(valid_label ).type(torch.LongTensor) batch_size = 100 n_iters = 15000 num_epochs = n_iters /(len(train_image)/ batch_size) num_epochs = int(num_epochs) print('num_epochs',num_epochs) train = torch.utils.data.TensorDataset(train_image,train_label) valid = torch.utils.data.TensorDataset(valid_image,valid_label) train_loader = DataLoader(train, batch_size = batch_size, shuffle = False) valid_loader = DataLoader(valid, batch_size = batch_size, shuffle = False)
Digit Recognizer
11,664,799
train_datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, shear_range = 0.1, horizontal_flip=False, vertical_flip=False ) train_datagen.fit(x_train )<train_model>
class res18model(nn.Module): def __init__(self, num_classes=10): super().__init__() self.backbone = torchvision.models.resnet18(pretrained=True) self.backbone.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) in_features = self.backbone.fc.in_features self.logit = nn.Linear(in_features, num_classes) def forward(self, x): batch_size, C, H, W = x.shape x = self.backbone.conv1(x) x = self.backbone.bn1(x) x = self.backbone.relu(x) x = self.backbone.maxpool(x) x = self.backbone.layer1(x) x = self.backbone.layer2(x) x = self.backbone.layer3(x) x = self.backbone.layer4(x) x = F.adaptive_avg_pool2d(x,1 ).reshape(batch_size,-1) x = F.dropout(x, 0.25, self.training) x = self.logit(x) return x
Digit Recognizer
11,664,799
history = model.fit( train_datagen.flow(x_train,y_train,batch_size = batch_size), validation_data =(x_test,y_test), batch_size = batch_size, steps_per_epoch = x_train.shape[0]//batch_size, epochs = epochs, verbose = 1, callbacks=[learning_rate_reduction] )<compute_test_metric>
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device)
Digit Recognizer
11,664,799
model.evaluate(x_test,y_test )<predict_on_test>
model = res18model(num_classes=10) model.to(device) criterion = nn.CrossEntropyLoss() learning_rate = 0.01 optimizer = torch.optim.SGD(model.parameters() , lr=learning_rate, momentum=0.9 )
Digit Recognizer
11,664,799
test_pred = model.predict(data) test_pred = np.argmax(test_pred,axis=1) print(test_pred.shape )<load_from_csv>
count = 0 for epoch in range(num_epochs): for i,(images, labels)in enumerate(train_loader): train = images.view(100,1,28,28) train = train.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(train) loss = criterion(outputs, labels) loss.backward() optimizer.step() count += 1 if count % 500 == 0: correct = 0 total = 0 for images, labels in valid_loader: test = images.view(100,1,28,28) test = test.to(device) labels = labels.to(device) outputs = model(test) predicted = torch.max(outputs.data, 1)[1] total += len(labels) correct +=(predicted == labels ).sum() accuracy = 100 * correct / float(total) print('Iteration: {} Loss: {} Accuracy: {} %'.format(count, loss.data, accuracy))
Digit Recognizer
11,664,799
sample_submission = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv") sample_submission<prepare_output>
test = pd.read_csv(r".. /input/digit-recognizer/test.csv",dtype = np.float32) test_image = test.loc[:,:].values/255 test_image = torch.from_numpy(test_image) test_loader = DataLoader(test_image, batch_size = batch_size, shuffle = False)
Digit Recognizer
11,664,799
index = sample_submission.ImageId data = {'ImageId' : index,'Label': test_pred} df = pd.DataFrame(data) df.head<save_to_csv>
submission_df = pd.DataFrame(submission) submission_df.columns = submission_df.iloc[0] submission_df = submission_df.drop(0, axis=0) submission_df.to_csv("submission.csv", index=False )
Digit Recognizer
11,456,822
df.to_csv('submission.csv', index=False )<import_modules>
import tensorflow as tf from tensorflow import keras import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow.keras import layers, Sequential, optimizers from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.utils import to_categorical import matplotlib.pyplot as plt
Digit Recognizer
11,456,822
import pandas as pd<load_from_csv>
Digit Recognizer
11,456,822
mnist_test = pd.read_csv("/kaggle/input/mnist-fashion-data-classification/mnist_test.csv") mnist_train = pd.read_csv("/kaggle/input/mnist-fashion-data-classification/mnist_train.csv") <load_from_csv>
raw_csv = "/kaggle/input/digit-recognizer/train.csv" test_csv = "/kaggle/input/digit-recognizer/test.csv" raw_df = pd.read_csv(raw_csv) test_df = pd.read_csv(test_csv )
Digit Recognizer
11,456,822
sample_submission = pd.read_csv("/kaggle/input/digit-recognizer/sample_submission.csv") train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )<feature_engineering>
def get_image_and_label(data_frame): IMGs = data_frame.drop(["label"], axis=1 ).values if 'label' in data_frame.columns else data_frame.values IMGs = np.array([image.reshape(( 28, 28)) for image in IMGs]) IMGs = np.expand_dims(IMGs, axis=3) labels = data_frame['label'].values if 'label' in data_frame.columns else None return IMGs, labels
Digit Recognizer
11,456,822
test['dataset'] = 'test'<feature_engineering>
raw_IMGs, raw_labels = get_image_and_label(raw_df) test_IMGs, _ = get_image_and_label(test_df )
Digit Recognizer
11,456,822
train['dataset'] = 'train'<concatenate>
classes = len(set(raw_labels)) classes
Digit Recognizer
11,456,822
dataset = pd.concat([train.drop('label', axis=1), test] ).reset_index()<concatenate>
raw_labels = to_categorical(raw_labels, num_classes=classes)
Digit Recognizer
11,456,822
mnist = pd.concat([mnist_train, mnist_test] ).reset_index(drop=True) labels = mnist['label'].values mnist.drop('label', axis=1, inplace=True) mnist.columns = cols<sort_values>
train_IMGs, validation_IMGs, trian_labels, validation_labels = \ train_test_split(raw_IMGs, raw_labels, test_size=0.1, random_state=42)
Digit Recognizer
11,456,822
idx_mnist = mnist.sort_values(by=list(mnist.columns)).index dataset_from = dataset.sort_values(by=list(mnist.columns)) ['dataset'].values original_idx = dataset.sort_values(by=list(mnist.columns)) ['index'].values<feature_engineering>
model = Sequential([ layers.Conv2D(64,(3,3), activation="relu", input_shape=(28,28,1)) , layers.BatchNormalization() , layers.MaxPooling2D(( 2,2)) , layers.Conv2D(128,(3, 3), activation="relu"), layers.BatchNormalization() , layers.MaxPooling2D(( 2,2)) , layers.Conv2D(256,(3,3), activation="relu"), layers.BatchNormalization() , layers.Flatten() , layers.Dense(1024, activation="relu"), layers.Dropout(0.2), layers.Dense(256, activation="relu"), layers.Dropout(0.2), layers.Dense(64, activation="relu"), layers.Dropout(0.2), layers.Dense(32, activation="relu"), layers.Dropout(0.2), layers.Dense(16, activation="relu"), layers.Dropout(0.2), layers.Dense(int(classes), activation="softmax") ])
Digit Recognizer
11,456,822
for i in range(len(idx_mnist)) : if dataset_from[i] == 'test': sample_submission.loc[original_idx[i], 'Label'] = labels[idx_mnist[i]]<save_to_csv>
model.compile(loss="categorical_crossentropy", optimizer=optimizers.Adam(learning_rate=1e-4), metrics=['accuracy'] )
Digit Recognizer
11,456,822
sample_submission.to_csv('submission.csv', index=False )<load_from_csv>
train_datagen = ImageDataGenerator( rescale=1/255, rotation_range=20, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, shear_range=0.1 ) validation_datagen = ImageDataGenerator(rescale=1/255) test_datagen = ImageDataGenerator(rescale=1/255 )
Digit Recognizer
11,456,822
tf.random.set_seed(42) %matplotlib inline pd.set_option('display.max_rows', 10) pd.set_option('display.max_columns', None) pd.set_option('float_format', '{:f}'.format) mpl.rcParams['figure.dpi'] = 600 warnings.filterwarnings('ignore') tf.get_logger().setLevel('INFO') train_df = pd.read_csv('.. /input/digit-recognizer/train.csv') test_df = pd.read_csv('.. /input/digit-recognizer/test.csv') submission = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv', index_col = 'ImageId') x = train_df.drop(columns = 'label' ).values.reshape(-1, 28, 28) y = train_df['label'].values x_test = test_df.values.reshape(-1, 28, 28) n_labels = len(np.unique(y)) del train_df, test_df gc.collect()<choose_model_class>
train_generator = train_datagen.flow(train_IMGs, trian_labels, batch_size=32) validation_generator = train_datagen.flow(validation_IMGs, validation_labels, batch_size=32) test_generator = test_datagen.flow(test_IMGs, batch_size=32, shuffle=False) history = model.fit_generator(train_generator, epochs=150, validation_data=validation_generator, verbose=1 )
Digit Recognizer
11,456,822
def define_model(input_shape, n_classes, n_conv_branches, dropout): inputs = layers.Input(shape = input_shape) b_in = layers.experimental.preprocessing.Rescaling(1./ 255 )(inputs) branches = [b_in] * n_conv_branches for i in range(n_conv_branches): for filter_size in [32, 64, 128, 128]: branches[i] = layers.Conv2D( filters = filter_size, kernel_size = 3, padding = 'same', )(branches[i]) branches[i] = layers.MaxPool2D(pool_size =(2, 2))(branches[i]) branches[i] = layers.ReLU()(branches[i]) branches[i] = layers.Dropout(dropout )(branches[i]) if n_conv_branches > 1: b_out = layers.concatenate(branches) b_out = layers.Flatten()(b_out) else: b_out = layers.Flatten()(branches[0]) b_out = layers.Dense(units = 128 )(b_out) b_out = layers.BatchNormalization()(b_out) b_out = layers.ReLU()(b_out) b_out = layers.Dropout(dropout )(b_out) outputs = layers.Dense(units = n_classes )(b_out) return Model(inputs, outputs )<split>
accuracy = history.history["accuracy"] val_accuracy = history.history["val_accuracy"] loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(len(accuracy))
Digit Recognizer
11,456,822
N_SPLITS = 10 CHECKPOINT_DIR = './checkpoint' cv = StratifiedKFold(n_splits = N_SPLITS, random_state = 42, shuffle = True) oof_pred = np.zeros(( x_test.shape[0], n_labels)) cv_val_scores = np.zeros(N_SPLITS) histories = [] k = 0 for train_i, val_i in cv.split(x, y): x_train = x[train_i, :] x_valid = x[val_i, :] y_train = y[train_i] y_valid = y[val_i] model = define_model(( x.shape[1], x.shape[2], 1), n_labels, 2, 0.2) gc.collect() optimizer = Adam( learning_rate = 5e-4, ) model.compile( optimizer = optimizer, loss = SparseCategoricalCrossentropy(from_logits = True), metrics = ['accuracy'] ) checkpoint_call = ModelCheckpoint( filepath = CHECKPOINT_DIR, save_weights_only = True, monitor = 'val_accuracy', mode = 'max', save_best_only = True ) stopping_call = EarlyStopping( monitor = 'val_accuracy', patience = 50, mode = 'max' ) history = model.fit( x_train, y_train, validation_data =(x_valid, y_valid), epochs = 200, callbacks = [checkpoint_call, stopping_call], batch_size = 1024, ) histories += [history] model.load_weights(CHECKPOINT_DIR) predictor_model = tf.keras.Sequential([model, layers.Softmax() ]) cv_val_scores[k] = model.evaluate(x_valid, y_valid)[1] oof_pred += predictor_model.predict(x_test)/ N_SPLITS k += 1<compute_test_metric>
pred_labels = model.predict_generator(test_generator )
Digit Recognizer
11,456,822
print('Validation AUC: {:.6} ± {:.4}'.format(cv_val_scores.mean() , cv_val_scores.std()))<save_to_csv>
pred_labels = np.argmax(pred_labels, axis=-1) pred_labels
Digit Recognizer
11,456,822
submission.loc[:, 'Label'] = np.argmax(oof_pred, axis = 1) submission.to_csv('submission.csv' )<load_from_csv>
my_submission = pd.DataFrame({'ImageId': test_df.index + 1, 'Label': pred_labels}) my_submission.head()
Digit Recognizer
11,456,822
train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") train_image = np.array(train.drop(['label'], axis=1), dtype="float32")/ 255 train_image = train_image.reshape(-1, 28, 28, 1) train_label = tf.keras.utils.to_categorical(train['label']) test = np.array(test, dtype="float32")/ 255 test = test.reshape(-1, 28, 28, 1) show_images(train_image[:25], train_label[:25], shape=(5,5))<train_model>
my_submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,485,474
( image_train_mnist, label_train_mnist),(image_test_mnist, label_test_mnist)= mnist.load_data() image_mnist = np.concatenate(( image_train_mnist, image_test_mnist)) label_mnist = np.concatenate(( label_train_mnist, label_test_mnist)) image_mnist = image_mnist.reshape(-1,28,28,1) image_mnist = image_mnist.astype(np.float32)/ 255 label_mnist = tf.keras.utils.to_categorical(label_mnist,num_classes=10) images = np.concatenate(( train_image, image_mnist)) labels = np.concatenate(( train_label, label_mnist)) print("training image dataset shape:", images.shape) print("training label dataset shape:", labels.shape) show_images(images[:25], labels[:25], shape=(5,5))<define_variables>
data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv' )
Digit Recognizer
11,485,474
datagen = tf.keras.preprocessing.image.ImageDataGenerator( rotation_range=20, width_shift_range=0.20, shear_range=15, zoom_range=0.10, validation_split=0.25, horizontal_flip=False ) train_generator = datagen.flow( images, labels, batch_size=256, subset='training', ) validation_generator = datagen.flow( images, labels, batch_size=64, subset='validation', )<choose_model_class>
MinMaxScaler = preprocessing.MinMaxScaler() input_data = MinMaxScaler.fit_transform(input_data )
Digit Recognizer
11,485,474
def create_model() : model = tf.keras.Sequential([ tf.keras.layers.Reshape(( 28, 28, 1)) , tf.keras.layers.Conv2D(filters=32, kernel_size=(5,5), activation="relu", padding="same", input_shape=(28,28,1)) , tf.keras.layers.MaxPool2D(( 2,2)) , tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu", padding="same"), tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu", padding="same"), tf.keras.layers.MaxPool2D(( 2,2)) , tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), activation="relu", padding="same"), tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), activation="relu", padding="same"), tf.keras.layers.MaxPool2D(( 2,2)) , tf.keras.layers.Flatten() , tf.keras.layers.Dense(512, activation="sigmoid"), tf.keras.layers.Dropout(0.25), tf.keras.layers.Dense(512, activation="sigmoid"), tf.keras.layers.Dropout(0.25), tf.keras.layers.Dense(256, activation="sigmoid"), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(10, activation="sigmoid") ]) model.compile( optimizer="adam", loss = 'categorical_crossentropy', metrics = ['accuracy'] ) return model model = create_model()<train_model>
test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
11,485,474
history = model.fit_generator(train_generator, epochs=60, validation_data=validation_generator, callbacks=[reduce_lr,checkpoint], verbose=1 )<save_to_csv>
test_data = MinMaxScaler.fit_transform(test) test_data = test_data.reshape(-1, 28, 28, 1) test_data.shape
Digit Recognizer
11,485,474
df = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" ).astype("float32")/ 255.0 res = tf.keras.backend.argmax(model.predict(df)) csv = pd.DataFrame({'ImageId': range(1, len(res)+ 1), "Label": res}) csv.to_csv('submission.csv', index=False )<import_modules>
X_train, X_test, y_train, y_test = train_test_split(input_data, output_data.values, test_size=0.3, random_state=1 )
Digit Recognizer
11,485,474
import numpy as np import pandas as pd import scipy import sklearn from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OrdinalEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error from itertools import product from sklearn.cluster import KMeans import lightgbm as lgb<define_variables>
from keras.utils.np_utils import to_categorical
Digit Recognizer
11,485,474
dpath = '.. /input/competitive-data-science-predict-future-sales/' adpath ='.. /input/predict-future-sales/'<load_from_csv>
y_train_cat = to_categorical(y_train, 10) y_test_cat = to_categorical(y_test, 10 )
Digit Recognizer
11,485,474
df_train = pd.read_csv(dpath + 'sales_train.csv') df_test = pd.read_csv(dpath + 'test.csv', index_col='ID') df_shops = pd.read_csv(dpath + 'shops.csv', index_col='shop_id') df_items = pd.read_csv(dpath + 'items.csv', index_col='item_id') df_itemcat = pd.read_csv(dpath + 'item_categories.csv', index_col='item_category_id') sample_submission = pd.read_csv(dpath + 'sample_submission.csv', index_col='ID' )<load_from_csv>
from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, Dropout, AveragePooling2D import keras.backend as K
Digit Recognizer
11,485,474
calendar = pd.read_csv(adpath + 'calendar.csv', dtype='int16' )<categorify>
generator = ImageDataGenerator( width_shift_range=0.1, height_shift_range=0.1, rotation_range = 20, shear_range = 0.3, zoom_range = 0.3, horizontal_flip = True) generator.fit(X_train )
Digit Recognizer