kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
13,330,495
from keras.applications.nasnet import NASNetLarge from keras.applications.inception_resnet_v2 import InceptionResNetV2<choose_model_class>
image_gen_val = ImageDataGenerator(rescale=1./255) val_data_gen = image_gen_val.flow(X_val, y_val, batch_size=BATCH_SIZE )
Digit Recognizer
13,330,495
base_model = InceptionResNetV2(include_top=False, weights='imagenet', input_shape=(331,331,3) ) base_model.trainable = False<choose_model_class>
model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32,(3,3), activation='relu', input_shape=(28, 28, 1)) , tf.keras.layers.BatchNormalization(axis=1), tf.keras.layers.Conv2D(32,(3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64,(3,3), activation='relu'), tf.keras.layers.BatchNormalization(axis=1), tf.keras.layers.Conv2D(64,(3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Dropout(0.2), tf.keras.layers.Flatten() , tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ] )
Digit Recognizer
13,330,495
model = Sequential([ base_model, GlobalAveragePooling2D() , Dense(256,activation = 'relu'), Dropout(0.5), Dense(120,activation='softmax') ]) model.summary()<choose_model_class>
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy() , metrics=['accuracy'] )
Digit Recognizer
13,330,495
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'] )<choose_model_class>
epochs=20 history = model.fit_generator( train_data_gen, steps_per_epoch=int(np.ceil(total_train / float(BATCH_SIZE))), epochs=epochs, validation_data=val_data_gen, validation_steps=int(np.ceil(total_val / float(BATCH_SIZE))) )
Digit Recognizer
13,330,495
my_calls = [keras.callbacks.EarlyStopping(monitor='val_accuracy',patience=2), keras.callbacks.ModelCheckpoint("Model.h5",verbose=1,save_best_only=True)]<train_model>
epochs=17 history = model.fit_generator( full_data_gen, steps_per_epoch=int(np.ceil(total_full / float(BATCH_SIZE))), epochs=epochs )
Digit Recognizer
13,330,495
<load_pretrained><EOS>
predictions = model.predict_classes(X_test, verbose=0) submissions=pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) , "Label": predictions}) submissions.to_csv("DigitsClassif.csv", index=False, header=True )
Digit Recognizer
13,255,052
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class>
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split, StratifiedKFold import os import math
Digit Recognizer
13,255,052
testgen = Imgen(preprocessing_function=keras.applications.inception_resnet_v2.preprocess_input )<prepare_x_and_y>
class LN5(nn.Module): def __init__(self): super(LN5, self ).__init__() self.lc = nn.Sequential( nn.Conv2d(1, 6, 5, padding=2), nn.BatchNorm2d(6), nn.ReLU(inplace=True), nn.AvgPool2d(2, 2), nn.Conv2d(6, 16, 5), nn.BatchNorm2d(16), nn.ReLU(inplace=True), nn.AvgPool2d(2, 2), ) self.ll = nn.Sequential( nn.Dropout(0.3), nn.Linear(400, 120), nn.BatchNorm1d(120), nn.ReLU(inplace=True), nn.Dropout(0.3), nn.Linear(120, 84), nn.BatchNorm1d(84), nn.ReLU(inplace=True), nn.Dropout(0.3), nn.Linear(84, 10), ) def forward(self, x): x = self.lc(x) x = x.view(x.size(0), -1) x = self.ll(x) return x
Digit Recognizer
13,255,052
test_ds = testgen.flow_from_dataframe( sample_sub, directory = '.. /input/dog-breed-identification/test', x_col = 'id', y_col = None, target_size =(331,331), class_mode= None, batch_size=32, shuffle=False )<predict_on_test>
def train_model(tt_loader, conv_model, optimizer, scheduler, criterion): conv_model.train() for batch_idx,(data, target)in enumerate(tt_loader): data = data.unsqueeze(1) data, target = data, target optimizer.zero_grad() output = conv_model(data) loss = criterion(output, target) loss.backward() optimizer.step() scheduler.step() def evaluate(num_epoch, data_loader, conv_model): conv_model.eval() loss = 0 correct = 0 for data, target in data_loader: data = data.unsqueeze(1) data, target = data, target output = conv_model(data) loss += F.cross_entropy(output, target, reduction='sum' ).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() loss /= len(data_loader.dataset) print('{} Average Val Loss: {:.4f}, Val Accuracy: {}/{}({:.3f}%)'.format( num_epoch, loss, correct, len(data_loader.dataset), 100.* correct / len(data_loader.dataset))) return loss
Digit Recognizer
13,255,052
predictions = model.predict(test_ds,verbose=1 )<prepare_output>
def kfold(num_model, num_epochs, conv, train_images, train_labels): kf = StratifiedKFold(n_splits=num_model, shuffle=True, random_state=123) criterion = nn.CrossEntropyLoss() for k,(tr_idx, val_idx)in enumerate(kf.split(train_images, train_labels)) : print('start model {}'.format(k)) conv_model = LN5() optimizer = optim.Adam(params=conv_model.parameters() , lr=0.005) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5) tt_images = train_images[tr_idx] tt_labels = train_labels[tr_idx] val_images = train_images[val_idx] val_labels = train_labels[val_idx] tt_images = tt_images.reshape(tt_images.shape[0], 28, 28) tt_images_tensor = torch.tensor(tt_images)/255.0 tt_labels_tensor = torch.tensor(tt_labels) tt_tensor = TensorDataset(tt_images_tensor, tt_labels_tensor) tt_loader = DataLoader(tt_tensor, batch_size=420, shuffle=True) val_images = val_images.reshape(val_images.shape[0], 28, 28) val_images_tensor = torch.tensor(val_images)/255.0 val_labels_tensor = torch.tensor(val_labels) val_tensor = TensorDataset(val_images_tensor, val_labels_tensor) val_loader = DataLoader(val_tensor, batch_size=420, shuffle=True) for n in range(num_epochs): train_model(tt_loader, conv_model, optimizer, scheduler, criterion) evaluate(n, val_loader, conv_model) torch.save(conv_model.state_dict() , '.. /input/conv-10-100/conv_{}_{}_{}.pkl'.format(num_model,num_epochs,k)) conv.append(conv_model )
Digit Recognizer
13,255,052
pred = [np.argmax(i)for i in predictions]<define_variables>
def load_pkl(num_model, num_epochs, conv): for k in range(num_model): conv_model = LN5() conv_model.load_state_dict(torch.load('.. /input/conv-10-100/conv_{}_{}_{}.pkl'.format(num_model,num_epochs,k))) conv.append(conv_model) def total_loss(num_model, conv, train_images, train_labels): train_images = train_images.reshape(train_images.shape[0], 28, 28) train_images_tensor = torch.tensor(train_images)/255.0 train_labels_tensor = torch.tensor(train_labels) train_tensor = TensorDataset(train_images_tensor, train_labels_tensor) train_loader = DataLoader(train_tensor, batch_size=420, shuffle=True) loss = [] for k in range(num_model): loss.append(evaluate(-1, train_loader, conv[k])) return loss def predictions(num_model, conv, loss): for idx in range(num_model): conv[idx].eval() test_df = pd.read_csv(".. /input/digit-recognizer/test.csv") test_images =(test_df.iloc[:,:].values ).astype('float32') test_images = test_images.reshape(test_images.shape[0], 28, 28) test_images_tensor = torch.tensor(test_images)/255.0 test_loader = DataLoader(test_images_tensor, batch_size=280, shuffle=False) test_preds = torch.LongTensor() for i, data in enumerate(test_loader): data = data.unsqueeze(1) output = conv[0](data)*(0.1-loss[0]) for idx in range(1, num_model): output = output + conv[idx](data)*(0.02-loss[idx]) preds = output.cpu().data.max(1, keepdim=True)[1] test_preds = torch.cat(( test_preds, preds), dim=0) submission_df = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") submission_df['Label'] = test_preds.numpy().squeeze() submission_df.head() submission_df.to_csv('submission.csv', index=False )
Digit Recognizer
13,255,052
file_list = test_ds.filenames id_list = [] for name in file_list: m = re.sub('test/', '', name) m = re.sub('.jpg', '', m) id_list.append(m )<load_from_csv>
train_df = pd.read_csv(".. /input/digit-recognizer/train.csv") train_labels = train_df['label'].values train_images =(train_df.iloc[:,1:].values ).astype('float32') num_model = 10 num_epochs = 100 conv = []
Digit Recognizer
13,255,052
submission = pd.read_csv('.. /input/dog-breed-identification/sample_submission.csv' )<prepare_output>
load_pkl(num_model, num_epochs, conv) loss = total_loss(num_model, conv, train_images, train_labels) predictions(num_model, conv, loss )
Digit Recognizer
7,484,184
submission['id'] = id_list submission.iloc[:,1:] =predictions submission.head()<save_to_csv>
train_df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test_df = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') X_train = train_df.iloc[:, 1:].values.astype('float32') y_train = train_df.iloc[:, 0].values.astype('int16') X_test = test_df.values.astype('float32' )
Digit Recognizer
7,484,184
final_df = submission.set_index('id') final_df.to_csv('Submission.csv' )<set_options>
X_train = X_train / 255 X_test = X_test / 255 y_train = to_categorical(y_train) y_train.shape
Digit Recognizer
7,484,184
%%time %matplotlib inline<define_variables>
seed = 10 np.random.seed(seed )
Digit Recognizer
7,484,184
%%time train_dir = '.. /input/dog-breed-identification/train' test_dir ='.. /input/dog-breed-identification/test'<load_from_csv>
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Convolution2D, MaxPooling2D, BatchNormalization, Dense, Flatten, Dropout
Digit Recognizer
7,484,184
%%time def append_ext(fn): return fn+".jpg" traindf = pd.read_csv('.. /input/dog-breed-identification/labels.csv',dtype=str) testdf = pd.read_csv('.. /input/dog-breed-identification/sample_submission.csv',dtype=str) traindf["id"] = traindf["id"].apply(append_ext) testdf["id"] = testdf["id"].apply(append_ext) <define_variables>
train_x, val_x, train_y, val_y = train_test_split(X_train, y_train, test_size = 0.10, random_state = 42, stratify = y_train )
Digit Recognizer
7,484,184
%%time train_datagen=ImageDataGenerator(rescale=1./255., horizontal_flip = True, validation_split=0.02 )<define_variables>
model = Sequential() model.add(Convolution2D(32,(5, 5), activation = 'relu', padding = 'same', input_shape =(28, 28, 1))) model.add(MaxPooling2D(pool_size =(2, 2))) model.add(Convolution2D(64,(3, 3), activation = 'relu', padding = 'same')) model.add(MaxPooling2D(pool_size =(2, 2))) model.add(Dropout(0.3)) model.add(Convolution2D(128,(3, 3), activation = 'relu', padding = 'same')) model.add(MaxPooling2D(pool_size =(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(256,(3, 3), activation = 'relu', padding = 'same')) model.add(MaxPooling2D(pool_size =(2, 2))) model.add(Flatten()) model.add(Dense(512, activation = 'relu')) model.add(Dropout(0.25)) model.add(Dense(128, activation = 'relu')) model.add(Dropout(0.3)) model.add(Dense(10, activation = 'softmax')) model.compile(optimizer = 'Adam', loss = 'categorical_crossentropy', metrics = ['accuracy'] )
Digit Recognizer
7,484,184
BATCH_SIZE = 32<define_search_space>
history = model.fit(train_x, train_y, epochs = 15, batch_size = 64, validation_data =(val_x, val_y))
Digit Recognizer
7,484,184
<prepare_x_and_y><EOS>
predictions = model.predict_classes(X_test, verbose = 0) submissions = pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) , "Label": predictions}) submissions.to_csv("digit.csv", index = False, header = True )
Digit Recognizer
13,182,620
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<prepare_x_and_y>
submit = True
Digit Recognizer
13,182,620
x,y = next(train_generator )<create_dataframe>
( x_train, y_train),(x_test, y_test)= tf.keras.datasets.mnist.load_data() x_train_norm = x_train/255. x_test_norm = x_test/255 .
Digit Recognizer
13,182,620
valid_generator=train_datagen.flow_from_dataframe( dataframe=traindf, directory=train_dir, x_col="id", y_col="breed", subset="validation", batch_size=BATCH_SIZE, seed=42, shuffle=True, class_mode="categorical", target_size=image_size, color_mode="rgb") <prepare_x_and_y>
kaggle = pd.read_csv('.. /input/digit-recognizer/test.csv') kaggle_norm = np.asarray(kaggle/255.) k_train = pd.read_csv('.. /input/digit-recognizer/train.csv') k_labels = np.asarray(k_train['label']) k_train = k_train.drop(columns=['label']) k_train_norm = np.asarray(k_train/255.)
Digit Recognizer
13,182,620
test_datagen=ImageDataGenerator(rescale=1./255.) test_generator=test_datagen.flow_from_dataframe( dataframe=testdf, directory=test_dir, x_col="id", y_col=None, batch_size=BATCH_SIZE, seed=42, shuffle=False, class_mode=None, target_size=image_size, color_mode="rgb" )<choose_model_class>
k_train_norm = k_train_norm.reshape(42000, 28, 28, 1) kaggle_norm = kaggle_norm.reshape(28000, 28, 28, 1) x_train_norm = x_train_norm.reshape(60000, 28, 28, 1) x_test_norm = x_test_norm.reshape(10000, 28, 28, 1 )
Digit Recognizer
13,182,620
pretrained_model = tf.keras.applications.InceptionV3( weights='imagenet', include_top=False , input_shape=shape ) pretrained_model.trainable = False model = tf.keras.Sequential([ pretrained_model, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(120, activation='softmax') ] )<choose_model_class>
def train_model(model, train_features, train_label, epochs, batch_size=None, validation_split=None): history = model.fit(x=train_features, y=train_label, batch_size=batch_size, epochs=epochs, shuffle=True, validation_split=validation_split, verbose = 1) epochs = history.epoch hist = pd.DataFrame(history.history) return epochs, hist
Digit Recognizer
13,182,620
opt = tf.keras.optimizers.Adam(learning_rate=0.001) opt=tf.keras.optimizers.SGD(lr=1e-3, momentum=0.9) model.compile(optimizer = opt , loss="categorical_crossentropy", metrics=["accuracy"]) model.summary()<choose_model_class>
def create_X(learning_rate): model = tf.keras.models.Sequential() model.add(tf.keras.layers.Conv2D(32, 4, activation='relu', input_shape=(28, 28, 1))) model.add(tf.keras.layers.MaxPooling2D(( 2,2))) model.add(tf.keras.layers.Conv2D(64, 2, activation='relu')) model.add(tf.keras.layers.MaxPooling2D(( 2,2))) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(units=300, activation='relu')) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Dense(units=100, activation='softmax')) model.compile(optimizer=tf.keras.optimizers.Adam(lr=learning_rate), loss="sparse_categorical_crossentropy", metrics=['accuracy']) return model
Digit Recognizer
13,182,620
reduce = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss',factor=0.2,patience=5, min_lr=0.001) early = tf.keras.callbacks.EarlyStopping(patience=2, min_delta=0.001, restore_best_weights=True )<train_model>
def getKaggles() : kaggles = pd.DataFrame(columns=['ImageId','Label']) predicts = convoluterX.predict(kaggle_norm) for j in range(len(kaggle_norm)) : probs = predicts[j] max_id = np.argmax(probs) kaggles.at[j,'ImageId'] = j+1 kaggles.at[j,'Label'] = max_id return kaggles kaggles = getKaggles() kaggles.to_csv('submission.csv', columns=["ImageId","Label"], index=False )
Digit Recognizer
13,020,289
STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size STEP_SIZE_TEST = test_generator.n//test_generator.batch_size history = model.fit(train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=10, callbacks=[early], )<compute_test_metric>
import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, Input import matplotlib.pyplot as plt
Digit Recognizer
13,020,289
score = model.evaluate(valid_generator,batch_size=32) print("Accuracy: {:.2f}%".format(score[1] * 100)) print("Loss: ",score[0]) <import_modules>
data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') data_sub = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') X = data.iloc[:, 1:] y = data.iloc[:, 0]
Digit Recognizer
13,020,289
from sklearn.metrics import f1_score<predict_on_test>
X_train, X_test = X[:40000]/255.0, X[40000:]/255.0 y_train, y_test = y[:40000], y[40000:] X_valid, y_valid = X_train[:10000], y_train[:10000]
Digit Recognizer
13,020,289
Y_pred = model.predict(valid_generator) y_pred = np.argmax(Y_pred, axis=1 )<compute_test_metric>
model = tf.keras.models.Sequential([ Input(shape=X_train.shape[1:]), Dense(256, activation='sigmoid'), Dense(128, activation='sigmoid'), Dense(10, activation='softmax'), ]) model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid))
Digit Recognizer
13,020,289
f_score = f1_score(valid_generator.classes,y_pred,average='macro') print('F1 score:',f_score) <predict_on_test>
model.evaluate(X_test, y_test )
Digit Recognizer
13,020,289
pred=model.predict(test_generator )<load_from_csv>
model = tf.keras.Sequential([ Input(shape=X_train.shape[1:]), Dense(256, activation='relu'), Dense(128, activation='relu'), Dense(10, activation='softmax'), ]) model.compile(optimizer='RMSProp', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid))
Digit Recognizer
13,020,289
df_submission = pd.read_csv('/kaggle/input/dog-breed-identification/sample_submission.csv') df_submission.head()<define_variables>
print('Accuracy {}'.format(np.round(model.evaluate(X_test, y_test)[1], 4)) )
Digit Recognizer
13,020,289
file_list = test_generator.filenames id_list = [] for name in file_list: m = re.sub('test/', '', name) m = re.sub('.jpg', '', m) id_list.append(m )<prepare_output>
model = tf.keras.Sequential([ Input(shape=X_train.shape[1:]), Dense(256, activation='relu'), BatchNormalization() , Dropout(0.1), Dense(128, activation='relu'), BatchNormalization() , Dropout(0.45), Dense(10, activation='softmax'), ]) model.compile(optimizer='RMSProp', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid))
Digit Recognizer
13,020,289
df_submission['id'] = id_list df_submission.iloc[:,1:] = pred df_submission.head()<define_variables>
print('Accuracy {}'.format(np.round(model.evaluate(X_test, y_test)[1], 4)) )
Digit Recognizer
13,020,289
breeds=['id','beagle','chihuahua','doberman','french_bulldog', 'golden_retriever', 'malamute','pug','saint_bernard','scottish_deerhound','tibetan_mastiff']<filter>
X_train, X_valid, X_test = np.array(X_train ).reshape(-1, 28, 28, 1), np.array(X_valid ).reshape(-1, 28, 28, 1), np.array(X_test ).reshape(-1, 28, 28, 1 )
Digit Recognizer
13,020,289
selected_breeds = df_submission.loc[:,breeds]<save_to_csv>
model = tf.keras.models.Sequential([ Input(shape=X_train.shape[1:]), Conv2D(32, 7, activation='relu', padding='same'), Conv2D(32, 5, activation='relu', padding='same'), MaxPooling2D(pool_size=(2,2)) , BatchNormalization() , Dropout(0.3), Conv2D(64, 5, activation='relu', padding='same'), Conv2D(64, 5, activation='relu', padding='same'), MaxPooling2D(pool_size=(2,2)) , BatchNormalization() , Dropout(0.3), Flatten() , Dense(256, activation='relu'), BatchNormalization() , Dropout(0.5), Dense(10, activation='softmax') ]) model.compile(optimizer='RMSProp', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid))
Digit Recognizer
13,020,289
final_sub = df_submission.set_index('id') final_sub.to_csv('Submission.csv' )<set_options>
print('Accuracy {}'.format(np.round(model.evaluate(X_test, y_test)[1], 4)) )
Digit Recognizer
13,020,289
%%time %matplotlib inline<define_variables>
train_datagen = ImageDataGenerator( rotation_range=15, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, validation_split = 0.25 ) valid_datagen = ImageDataGenerator( rotation_range=15, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, validation_split = 0.25 ) train_datagen.fit(X_train) valid_datagen.fit(X_valid) train_generator = train_datagen.flow(X_train, y_train, batch_size=50, subset='training') valid_generator = valid_datagen.flow(X_valid, y_valid, batch_size=50, subset='validation' )
Digit Recognizer
13,020,289
%%time train_dir = '.. /input/dog-breed-identification/train' test_dir ='.. /input/dog-breed-identification/test'<load_from_csv>
history = model.fit_generator(generator=train_generator, validation_data=valid_generator, epochs = 20 )
Digit Recognizer
13,020,289
%%time def append_ext(fn): return fn+".jpg" traindf = pd.read_csv('.. /input/dog-breed-identification/labels.csv',dtype=str) testdf = pd.read_csv('.. /input/dog-breed-identification/sample_submission.csv',dtype=str) traindf["id"] = traindf["id"].apply(append_ext) testdf["id"] = testdf["id"].apply(append_ext) <define_variables>
print('Accuracy {}'.format(np.round(model.evaluate(X_test, y_test)[1], 4)) )
Digit Recognizer
13,020,289
%%time train_datagen=ImageDataGenerator(rescale=1./255., zoom_range = [0.7,1], horizontal_flip = True, validation_split=0.05 )<define_variables>
history = model.fit_generator(generator=train_generator, validation_data=valid_generator, epochs = 200, callbacks=[checkpoint, early_stopping] )
Digit Recognizer
13,020,289
BATCH_SIZE = 32<prepare_x_and_y>
model = tf.keras.models.load_model('model.h5') model.evaluate(X_test, y_test )
Digit Recognizer
13,020,289
train_generator=train_datagen.flow_from_dataframe( dataframe=traindf, directory=train_dir, x_col="id", y_col="breed", subset="training", batch_size=BATCH_SIZE, seed=42, shuffle=True, class_mode="categorical", target_size=(224,224), color_mode="rgb" )<prepare_x_and_y>
data_sub = np.array(data_sub ).reshape(-1, 28, 28 , 1 ).astype('float32')/ 255
Digit Recognizer
13,020,289
x,y = next(train_generator )<create_dataframe>
preds = model.predict(data_sub )
Digit Recognizer
13,020,289
valid_generator=train_datagen.flow_from_dataframe( dataframe=traindf, directory=train_dir, x_col="id", y_col="breed", subset="validation", batch_size=BATCH_SIZE, seed=42, shuffle=True, class_mode="categorical", target_size=(224,224), color_mode="rgb") <prepare_x_and_y>
np.argmax(preds[0] )
Digit Recognizer
13,020,289
test_datagen=ImageDataGenerator(rescale=1./255.) test_generator=test_datagen.flow_from_dataframe( dataframe=testdf, directory=test_dir, x_col="id", y_col=None, batch_size=BATCH_SIZE, seed=42, shuffle=False, class_mode=None, target_size=(224,224), color_mode="rgb" )<choose_model_class>
labels = [np.argmax(x)for x in preds] ids = [x+1 for x in range(len(preds)) ] sub = pd.DataFrame()
Digit Recognizer
13,020,289
pretrained_model = tf.keras.applications.ResNet50V2( weights='imagenet', include_top=False , input_shape=[224,224,3] ) pretrained_model.trainable = False model = tf.keras.Sequential([ pretrained_model, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(120, activation='softmax') ] )<choose_model_class>
sub['ImageId'] = ids sub['Label'] = labels sub.to_csv('mnist_submission.csv', index=False) pd.read_csv('mnist_submission.csv' )
Digit Recognizer
13,009,821
opt=tf.keras.optimizers.SGD(lr=1e-4, momentum=0.9) model.compile(optimizer = opt , loss="categorical_crossentropy", metrics=["accuracy"]) model.summary()<choose_model_class>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
13,009,821
early = tf.keras.callbacks.EarlyStopping(patience=2, min_delta=0.001, restore_best_weights=True )<train_model>
X = train.drop("label",axis=1 ).values.reshape(-1,28,28,1) y = train["label"].values X_test = test.values.reshape(-1,28,28,1 )
Digit Recognizer
13,009,821
STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size STEP_SIZE_TEST = test_generator.n//test_generator.batch_size history = model.fit(train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=25, callbacks=[early], )<compute_test_metric>
X = X.astype('float32') X_test = X_test.astype('float32') X = X/255.0 X_test = X_test/255.0 y = tensorflow.keras.utils.to_categorical(y,10 )
Digit Recognizer
13,009,821
score = model.evaluate(valid_generator,batch_size=32) print("Accuracy: {:.2f}%".format(score[1] * 100)) print("Loss: ",score[0]) <import_modules>
X_train,X_val,y_train,y_val = train_test_split(X,y,test_size=0.2,random_state=1 )
Digit Recognizer
13,009,821
from sklearn.metrics import f1_score, confusion_matrix<define_variables>
Digit Recognizer
13,009,821
target_names = [] for key in train_generator.class_indices: target_names.append(key )<predict_on_test>
nn = 10 model = [0]*nn for j in range(nn): model[j] = Sequential() model[j].add(Conv2D(24,kernel_size=(3,3),padding='same',activation='relu',input_shape=(28,28,1))) model[j].add(BatchNormalization()) model[j].add(Conv2D(24,kernel_size=(3,3),padding='same',activation='relu')) model[j].add(BatchNormalization()) model[j].add(Conv2D(32,kernel_size=5,strides=2,padding='same',activation='relu')) model[j].add(BatchNormalization()) model[j].add(Dropout(0.4)) model[j].add(Conv2D(filters=64,kernel_size=(3,3),activation='relu')) model[j].add(BatchNormalization()) model[j].add(Conv2D(filters=64,kernel_size=(3,3),activation='relu')) model[j].add(BatchNormalization()) model[j].add(Conv2D(64,kernel_size=5,strides=2,padding='same',activation='relu')) model[j].add(BatchNormalization()) model[j].add(Dropout(0.4)) model[j].add(Conv2D(128,kernel_size=4,activation='relu')) model[j].add(BatchNormalization()) model[j].add(Flatten()) model[j].add(Dropout(0.4)) model[j].add(Dense(10,activation='softmax')) model[j].compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
Digit Recognizer
13,009,821
Y_pred = model.predict(valid_generator) y_pred = np.argmax(Y_pred, axis=1 )<compute_test_metric>
datagen = ImageDataGenerator( rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1 ) datagen.fit(X )
Digit Recognizer
13,009,821
cm = confusion_matrix(valid_generator.classes,y_pred) <compute_test_metric>
epochs = 50 history = [0]*nn for j in range(nn): X_train,X_val,y_train,y_val = train_test_split(X,y,test_size=0.1,random_state=7) history[j] = model[j].fit_generator(datagen.flow(X_train,y_train,batch_size=64), epochs=epochs,validation_data=(X_val,y_val), verbose=1)
Digit Recognizer
13,009,821
f_score = f1_score(valid_generator.classes,y_pred,average='macro') print('F1 score:',f_score) <predict_on_test>
results = np.zeros(( X_test.shape[0],10)) for j in range(nn): results = results+model[j].predict(X_test) results = np.argmax(results,axis=1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name='ImageId'),results],axis=1) submission.to_csv('ENSEMBLE.csv',index=False )
Digit Recognizer
13,009,821
pred=model.predict(test_generator )<load_from_csv>
model.fit(datagen.flow(X_train,y_train,batch_size=128),epochs=10,validation_data=(X_val,y_val))
Digit Recognizer
13,009,821
df_submission = pd.read_csv('/kaggle/input/dog-breed-identification/sample_submission.csv') df_submission.head()<define_variables>
model.fit(datagen.flow(X,y,batch_size=128),epochs=20,verbose=1 )
Digit Recognizer
13,009,821
file_list = test_generator.filenames id_list = [] for name in file_list: m = re.sub('test/', '', name) m = re.sub('.jpg', '', m) id_list.append(m )<prepare_output>
model_log = model.fit(X_train,y_train,batch_size=128,epochs=10,verbose=1,validation_data=(X_val,y_val))
Digit Recognizer
13,009,821
df_submission['id'] = id_list df_submission.iloc[:,1:] = pred df_submission.head()<define_variables>
model_log = model.fit(X,y,batch_size=128,epochs=20,verbose=1 )
Digit Recognizer
13,009,821
breeds=['id','beagle','chihuahua','doberman','french_bulldog', 'golden_retriever', 'malamute','pug','saint_bernard','scottish_deerhound','tibetan_mastiff']<filter>
X_train = X_train.reshape(X_train.shape[0],28,28,1) X_test = X_test.reshape(X_test.shape[0],28,28,1) X_train.astype('float32') X_test.astype('float32') X_train=X_train/255 X_val=X_val/255
Digit Recognizer
13,009,821
selected_breeds = df_submission.loc[:,breeds]<save_to_csv>
import numpy as np import pandas as pd
Digit Recognizer
13,009,821
final_sub = df_submission.set_index('id') final_sub.to_csv('Submission.csv' )<import_modules>
results = model.predict(X_test )
Digit Recognizer
13,009,821
from sklearn.preprocessing impbort LabelEncoder <load_from_csv>
np.argmax(results,axis=1 )
Digit Recognizer
13,009,821
comp_df = pd.read_csv('.. /input/dog-breed-identification/labels.csv') test_df = pd.read_csv('.. /input/dog-breed-identification/sample_submission.csv') print('Training set: {}, Test set: {}'.format(comp_df.shape[0],test_df.shape[0]))<count_values>
results = np.argmax(results,axis=1) results = pd.Series(results,name='Label') submission = pd.concat([pd.Series(range(1,28001),name='ImageId'),results],axis=1) submission.to_csv('submission8.csv',index=False )
Digit Recognizer
12,997,499
comp_df.breed.value_counts()<categorify>
%matplotlib inline np.random.seed(2 )
Digit Recognizer
12,997,499
comp_df['label'] = LabelEncoder().fit_transform(comp_df.breed) dict_df = comp_df[['label','breed']].copy() dict_df.drop_duplicates(inplace=True) dict_df.set_index('label',drop=True,inplace=True) index_to_breed = dict_df.to_dict() ['breed']<feature_engineering>
from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools
Digit Recognizer
12,997,499
train_dir = '.. /input/dog-breed-identification/train' comp_df.id = comp_df.id.apply(lambda x: x+'.jpg') comp_df.id = comp_df.id.apply(lambda x:train_dir+'/'+x) comp_df.pop('breed' )<prepare_x_and_y>
from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ReduceLROnPlateau
Digit Recognizer
12,997,499
class img_dataset(Dataset): def __init__(self,dataframe,transform=None,test=False): self.dataframe = dataframe self.transform = transform self.test = test def __getitem__(self,index): x = Image.open(self.dataframe.iloc[index,0]) if self.transform: x = self.transform(x) if self.test: return x else: y = self.dataframe.iloc[index,1] return x,y def __len__(self): return self.dataframe.shape[0]<define_search_model>
train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer
12,997,499
train_transformer = transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomRotation(15), transforms.RandomHorizontalFlip() , transforms.ToTensor() , transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) val_transformer = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor() , transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])] )<train_model>
X_train /= 255.0 test /= 255.0
Digit Recognizer
12,997,499
def print_epoch_result(train_loss,train_acc,val_loss,val_acc): print('loss: {:.3f}, acc: {:.3f}, val_loss: {:.3f}, val_acc: {:.3f}'.format(train_loss, train_acc, val_loss, val_acc)) def train_model(model, cost_function, optimizer,num_epochs=5): train_losses = [] val_losses = [] train_acc = [] val_acc = [] train_acc_object = metrics.Accuracy(compute_on_step=False) val_acc_object = metrics.Accuracy(compute_on_step=False) for epoch in range(num_epochs): print('-'*15) print('Start training {}/{}'.format(epoch+1, num_epochs)) print('-'*15) train_sub_losses = [] model.train() for x,y in train_loader: optimizer.zero_grad() x,y = x.to(device),y.to(device) y_hat = model(x) loss = cost_function(y_hat,y) loss.backward() optimizer.step() train_sub_losses.append(loss.item()) train_acc_object(y_hat.cpu() ,y.cpu()) val_sub_losses = [] model.eval() for x,y in val_loader: x,y = x.to(device),y.to(device) y_hat = model(x) loss = cost_function(y_hat,y) val_sub_losses.append(loss.item()) val_acc_object(y_hat.cpu() ,y.cpu()) train_losses.append(np.mean(train_sub_losses)) val_losses.append(np.mean(val_sub_losses)) train_epoch_acc = train_acc_object.compute() val_epoch_acc = val_acc_object.compute() train_acc.append(train_epoch_acc) val_acc.append(val_epoch_acc) train_acc_object.reset() val_acc_object.reset() print_epoch_result(np.mean(train_sub_losses),train_epoch_acc,np.mean(val_sub_losses),val_epoch_acc) print('Finish Training.') return train_losses, train_acc, val_losses, val_acc<set_options>
Y_train = to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
12,997,499
device = torch.device('cuda:0' if torch.cuda.is_available else 'cpu' )<split>
random_seed = 2 X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed )
Digit Recognizer
12,997,499
training_samples = comp_df.shape[0] test_size=0.05 batch_size = 64 sample_df = comp_df.sample(training_samples) x_train,x_val,_,_ = train_test_split(sample_df,sample_df,test_size=test_size) train_set = img_dataset(x_train, transform=train_transformer) val_set = img_dataset(x_val, transform=val_transformer) train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_set , batch_size=batch_size, shuffle=True) print('Training set: {}, Validation set: {}'.format(x_train.shape[0],x_val.shape[0]))<choose_model_class>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Valid', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(512, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax")) model.compile(loss='categorical_crossentropy', optimizer = Adam(lr=1e-3), metrics=["accuracy"]) annealer = ReduceLROnPlateau(monitor='val_acc', patience=2, verbose=1, factor=0.5, min_lr=0.00001) epochs = 50 batch_size = 64
Digit Recognizer
12,997,499
class net(torch.nn.Module): def __init__(self, base_model, base_out_features, num_classes): super(net,self ).__init__() self.base_model=base_model self.linear1 = torch.nn.Linear(base_out_features, 512) self.output = torch.nn.Linear(512,num_classes) def forward(self,x): x = F.relu(self.base_model(x)) x = F.relu(self.linear1(x)) x = self.output(x) return x res = torchvision.models.resnet50(pretrained=True) for param in res.parameters() : param.requires_grad=False model_final = net(base_model=res, base_out_features=res.fc.out_features, num_classes=120) model_final = model_final.to(device )<choose_model_class>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=2, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
12,997,499
cost_function = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam([param for param in model_final.parameters() if param.requires_grad], lr=0.0003) EPOCHS = 30<train_model>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False )
Digit Recognizer
12,997,499
train_losses, train_acc, val_losses, val_acc = train_model(model=model_final, cost_function=cost_function, optimizer=optimizer, num_epochs=EPOCHS )<load_from_csv>
datagen.fit(X_train )
Digit Recognizer
12,997,499
test_dir = '.. /input/dog-breed-identification/test' test_df = test_df[['id']] test_df.id = test_df.id.apply(lambda x: x+'.jpg') test_df.id = test_df.id.apply(lambda x : test_dir+'/'+x) test_set = img_dataset(test_df,transform=val_transformer, test=True) test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False )<predict_on_test>
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction] )
Digit Recognizer
12,997,499
model_final.eval() predictions = torch.tensor([]) print('Start predicting.... ') for x in test_loader: x = x.to(device) y_hat = model_final(x) predictions = torch.cat([predictions, y_hat.cpu() ]) print('Finish prediction.' )<predict_on_test>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
12,997,499
<save_to_csv><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("sub2.csv",index=False)
Digit Recognizer
12,983,127
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<install_modules>
%matplotlib inline
Digit Recognizer
12,983,127
print(" ...INSTALLING AND IMPORTING CELL-PROFILER TOOL(HPACELLSEG )... ") try: except: !pip install -q "/kaggle/input/pycocotools/pycocotools-2.0-cp37-cp37m-linux_x86_64.whl" !pip install -q "/kaggle/input/hpapytorchzoozip/pytorch_zoo-master" !pip install -q "/kaggle/input/hpacellsegmentatormaster/HPA-Cell-Segmentation-master" print(" ...OTHER IMPORTS STARTING... ") print(" \tVERSION INFORMATION") LBL_NAMES = ["Nucleoplasm", "Nuclear Membrane", "Nucleoli", "Nucleoli Fibrillar Center", "Nuclear Speckles", "Nuclear Bodies", "Endoplasmic Reticulum", "Golgi Apparatus", "Intermediate Filaments", "Actin Filaments", "Microtubules", "Mitotic Spindle", "Centrosome", "Plasma Membrane", "Mitochondria", "Aggresome", "Cytosol", "Vesicles", "Negative"] INT_2_STR = {x:LBL_NAMES[x] for x in np.arange(19)} INT_2_STR_LOWER = {k:v.lower().replace(" ", "_")for k,v in INT_2_STR.items() } STR_2_INT_LOWER = {v:k for k,v in INT_2_STR_LOWER.items() } STR_2_INT = {v:k for k,v in INT_2_STR.items() } FIG_FONT = dict(family="Helvetica, Arial", size=14, color=" LABEL_COLORS = [px.colors.label_rgb(px.colors.convert_to_RGB_255(x)) for x in sns.color_palette("Spectral", len(LBL_NAMES)) ] LABEL_COL_MAP = {str(i):x for i,x in enumerate(LABEL_COLORS)} print(" ...IMPORTS COMPLETE... ") ONLY_PUBLIC = True if ONLY_PUBLIC: print(" ...ONLY INFERRING ON PUBLIC TEST DATA(USING PRE-PROCESSED DF )... ") else: gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "...Physical GPUs,", len(logical_gpus), "Logical GPUs... ") except RuntimeError as e: print(e )<define_variables>
with open("/kaggle/input/digit-recognizer/train.csv")as f: reader = csv.reader(f, delimiter=',') next(reader) dataset = [row for row in reader]
Digit Recognizer
12,983,127
NUC_MODEL = '/kaggle/input/hpacellsegmentatormodelweights/dpn_unet_nuclei_v1.pth' CELL_MODEL = '/kaggle/input/hpacellsegmentatormodelweights/dpn_unet_cell_3ch_v1.pth' B2_CELL_CLSFR_DIR = "/kaggle/input/hpa-cellwise-classification-training/ebnet_b2_wdensehead/ckpt-0007-0.0901.ckpt" DATA_DIR = "/kaggle/input/hpa-single-cell-image-classification" TEST_IMG_DIR = os.path.join(DATA_DIR, "test") TEST_IMG_PATHS = sorted([os.path.join(TEST_IMG_DIR, f_name)for f_name in os.listdir(TEST_IMG_DIR)]) print(f"...The number of testing images is {len(TEST_IMG_PATHS)}" \ f" \t--> i.e.{len(TEST_IMG_PATHS)//4} 4-channel images...") PUB_SS_CSV = "/kaggle/input/hpa-sample-submission-with-extra-metadata/updated_sample_submission.csv" SWAP_SS_CSV = os.path.join(DATA_DIR, "sample_submission.csv") ss_df = pd.read_csv(SWAP_SS_CSV) DO_TTA = True TTA_REPEATS = 8 IS_DEMO = len(ss_df)==559 if IS_DEMO: ss_df_1 = ss_df.drop_duplicates("ImageWidth", keep="first") ss_df_2 = ss_df.drop_duplicates("ImageWidth", keep="last") ss_df = pd.concat([ss_df_1, ss_df_2]) del ss_df_1; del ss_df_2; gc.collect() ; print(" SAMPLE SUBMISSION DATAFRAME ") display(ss_df) else: print(" SAMPLE SUBMISSION DATAFRAME ") display(ss_df) if ONLY_PUBLIC: pub_ss_df = pd.read_csv(PUB_SS_CSV) if IS_DEMO: pub_ss_df_1 = pub_ss_df.drop_duplicates("ImageWidth", keep="first") pub_ss_df_2 = pub_ss_df.drop_duplicates("ImageWidth", keep="last") pub_ss_df = pd.concat([pub_ss_df_1, pub_ss_df_2]) pub_ss_df.mask_rles = pub_ss_df.mask_rles.apply(lambda x: ast.literal_eval(x)) pub_ss_df.mask_bboxes = pub_ss_df.mask_bboxes.apply(lambda x: ast.literal_eval(x)) pub_ss_df.mask_sub_rles = pub_ss_df.mask_sub_rles.apply(lambda x: ast.literal_eval(x)) print(" TEST DATAFRAME W/ MASKS ") display(pub_ss_df )<categorify>
labels, images = np.array_split(np.array(dataset, dtype='float32'), [1,], axis=1) labels, images = labels.flatten() , images.reshape(( len(images), 28, 28)) [..., np.newaxis]
Digit Recognizer
12,983,127
def binary_mask_to_ascii(mask, mask_val=1): mask = np.where(mask==mask_val, 1, 0 ).astype(np.bool) if mask.dtype != np.bool: raise ValueError(f"encode_binary_mask expects a binary mask, received dtype == {mask.dtype}") mask = np.squeeze(mask) if len(mask.shape)!= 2: raise ValueError(f"encode_binary_mask expects a 2d mask, received shape == {mask.shape}") mask_to_encode = mask.reshape(mask.shape[0], mask.shape[1], 1) mask_to_encode = mask_to_encode.astype(np.uint8) mask_to_encode = np.asfortranarray(mask_to_encode) encoded_mask = coco_mask.encode(mask_to_encode)[0]["counts"] binary_str = zlib.compress(encoded_mask, zlib.Z_BEST_COMPRESSION) base64_str = base64.b64encode(binary_str) return base64_str.decode() def rle_encoding(img, mask_val=1): dots = np.where(img.T.flatten() == mask_val)[0] run_lengths = [] prev = -2 for b in dots: if(b>prev+1): run_lengths.extend(( b + 1, 0)) run_lengths[-1] += 1 prev = b return ' '.join([str(x)for x in run_lengths]) def rle_to_mask(rle_string, height, width): rows,cols = height,width rle_numbers = [int(num_string)for num_string in rle_string.split(' ')] rle_pairs = np.array(rle_numbers ).reshape(-1,2) img = np.zeros(rows*cols,dtype=np.uint8) for index,length in rle_pairs: index -= 1 img[index:index+length] = 255 img = img.reshape(cols,rows) img = img.T return img def decode_img(img, img_size=(224,224), testing=False): if not testing: img = tf.image.decode_png(img, channels=1) return tf.cast(tf.image.resize(img, img_size), tf.uint8) else: return tf.image.decode_png(img, channels=1) def preprocess_path_ds(rp, gp, bp, yp, lbl, n_classes=19, img_size=(224,224), combine=True, drop_yellow=True): ri = decode_img(tf.io.read_file(rp), img_size) gi = decode_img(tf.io.read_file(gp), img_size) bi = decode_img(tf.io.read_file(bp), img_size) yi = decode_img(tf.io.read_file(yp), img_size) if combine and drop_yellow: return tf.stack([ri[..., 0], gi[..., 0], bi[..., 0]], axis=-1), tf.one_hot(lbl, n_classes, dtype=tf.uint8) elif combine: return tf.stack([ri[..., 0], gi[..., 0], bi[..., 0], yi[..., 0]], axis=-1), tf.one_hot(lbl, n_classes, dtype=tf.uint8) elif drop_yellow: return ri, gi, bi, tf.one_hot(lbl, n_classes, dtype=tf.uint8) else: return ri, gi, bi, yi, tf.one_hot(lbl, n_classes, dtype=tf.uint8) def create_pred_col(row): if pd.isnull(row.PredictionString_y): return row.PredictionString_x else: return row.PredictionString_y def load_image(img_id, img_dir, testing=False, only_public=False): if only_public: return_axis = -1 clr_list = ["red", "green", "blue"] else: return_axis = 0 clr_list = ["red", "green", "blue", "yellow"] if not testing: rgby = [ np.asarray(Image.open(os.path.join(img_dir, img_id+f"_{c}.png")) , np.uint8)\ for c in ["red", "green", "blue", "yellow"] ] return np.stack(rgby, axis=-1) else: return np.stack( [np.asarray(decode_img(tf.io.read_file(os.path.join(img_dir, img_id+f"_{c}.png")) , testing=True), np.uint8)[..., 0] \ for c in clr_list], axis=return_axis, ) def plot_rgb(arr, figsize=(12,12)) : plt.figure(figsize=figsize) plt.title(f"RGB Composite Image", fontweight="bold") plt.imshow(arr) plt.axis(False) plt.show() def convert_rgby_to_rgb(arr): rgb_arr = np.zeros_like(arr[..., :-1]) rgb_arr[..., 0] = arr[..., 0] rgb_arr[..., 1] = arr[..., 1]+arr[..., 3]/2 rgb_arr[..., 2] = arr[..., 2] return rgb_arr def plot_ex(arr, figsize=(20,6), title=None, plot_merged=True, rgb_only=False): if plot_merged and not rgb_only: n_images=5 elif plot_merged and rgb_only: n_images=4 elif not plot_merged and rgb_only: n_images=4 else: n_images=3 plt.figure(figsize=figsize) if type(title)== str: plt.suptitle(title, fontsize=20, fontweight="bold") for i, c in enumerate(["Red Channel – Microtubles", "Green Channel – Protein of Interest", "Blue - Nucleus", "Yellow – Endoplasmic Reticulum"]): if not rgb_only: ch_arr = np.zeros_like(arr[..., :-1]) else: ch_arr = np.zeros_like(arr) if c in ["Red Channel – Microtubles", "Green Channel – Protein of Interest", "Blue - Nucleus"]: ch_arr[..., i] = arr[..., i] else: if rgb_only: continue ch_arr[..., 0] = arr[..., i] ch_arr[..., 1] = arr[..., i] plt.subplot(1,n_images,i+1) plt.title(f"{c.title() }", fontweight="bold") plt.imshow(ch_arr) plt.axis(False) if plot_merged: plt.subplot(1,n_images,n_images) if rgb_only: plt.title(f"Merged RGB", fontweight="bold") plt.imshow(arr) else: plt.title(f"Merged RGBY into RGB", fontweight="bold") plt.imshow(convert_rgby_to_rgb(arr)) plt.axis(False) plt.tight_layout(rect=[0, 0.2, 1, 0.97]) plt.show() def flatten_list_of_lists(l_o_l, to_string=False): if not to_string: return [item for sublist in l_o_l for item in sublist] else: return [str(item)for sublist in l_o_l for item in sublist] def create_segmentation_maps(list_of_image_lists, segmentator, batch_size=8): all_mask_rles = {} for i in tqdm(range(0, len(list_of_image_lists[0]), batch_size), total=len(list_of_image_lists[0])//batch_size): sub_images = [img_channel_list[i:i+batch_size] for img_channel_list in list_of_image_lists] cell_segmentations = segmentator.pred_cells(sub_images) nuc_segmentations = segmentator.pred_nuclei(sub_images[2]) for j, path in enumerate(sub_images[0]): img_id = path.replace("_red.png", "" ).rsplit("/", 1)[1] nuc_mask, cell_mask = label_cell(nuc_segmentations[j], cell_segmentations[j]) new_name = os.path.basename(path ).replace('red','mask') all_mask_rles[img_id] = [rle_encoding(cell_mask, mask_val=k)for k in range(1, np.max(cell_mask)+1)] return all_mask_rles def get_img_list(img_dir, return_ids=False, sub_n=None): if sub_n is None: sub_n=len(glob(img_dir + '/' + f'*_red.png')) if return_ids: images = [sorted(glob(img_dir + '/' + f'*_{c}.png')) [:sub_n] for c in ["red", "yellow", "blue"]] return [x.replace("_red.png", "" ).rsplit("/", 1)[1] for x in images[0]], images else: return [sorted(glob(img_dir + '/' + f'*_{c}.png')) [:sub_n] for c in ["red", "yellow", "blue"]] def get_contour_bbox_from_rle(rle, width, height, return_mask=True,): mask = rle_to_mask(rle, height, width ).copy() cnts = grab_contours( cv2.findContours( mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE )) x,y,w,h = cv2.boundingRect(cnts[0]) if return_mask: return(x,y,x+w,y+h), mask else: return(x,y,x+w,y+h) def get_contour_bbox_from_raw(raw_mask): cnts = grab_contours( cv2.findContours( raw_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE )) xywhs = [cv2.boundingRect(cnt)for cnt in cnts] xys = [(xywh[0], xywh[1], xywh[0]+xywh[2], xywh[1]+xywh[3])for xywh in xywhs] return sorted(xys, key=lambda x:(x[1], x[0])) def pad_to_square(a): if a.shape[1]>a.shape[0]: n_to_add = a.shape[1]-a.shape[0] top_pad = n_to_add//2 bottom_pad = n_to_add-top_pad a = np.pad(a, [(top_pad, bottom_pad),(0, 0),(0, 0)], mode='constant') elif a.shape[0]>a.shape[1]: n_to_add = a.shape[0]-a.shape[1] left_pad = n_to_add//2 right_pad = n_to_add-left_pad a = np.pad(a, [(0, 0),(left_pad, right_pad),(0, 0)], mode='constant') else: pass return a def cut_out_cells(rgby, rles, resize_to=(256,256), square_off=True, return_masks=False, from_raw=True): w,h = rgby.shape[:2] contour_bboxes = [get_contour_bbox(rle, w, h, return_mask=return_masks)for rle in rles] if return_masks: masks = [x[-1] for x in contour_bboxes] contour_bboxes = [x[:-1] for x in contour_bboxes] arrs = [rgby[bbox[1]:bbox[3], bbox[0]:bbox[2],...] for bbox in contour_bboxes] if square_off: arrs = [pad_to_square(arr)for arr in arrs] if resize_to is not None: arrs = [ cv2.resize(pad_to_square(arr ).astype(np.float32), resize_to, interpolation=cv2.INTER_CUBIC)\ for arr in arrs ] if return_masks: return arrs, masks else: return arrs def grab_contours(cnts): if len(cnts)== 2: cnts = cnts[0] elif len(cnts)== 3: cnts = cnts[1] else: raise Exception(( "Contours tuple must have length 2 or 3, " "otherwise OpenCV changed their cv2.findContours return " "signature yet again.Refer to OpenCV's documentation " "in that case")) return cnts def preprocess_row(img_id, img_w, img_h, combine=True, drop_yellow=True): rp = os.path.join(TEST_IMG_DIR, img_id+"_red.png") gp = os.path.join(TEST_IMG_DIR, img_id+"_green.png") bp = os.path.join(TEST_IMG_DIR, img_id+"_blue.png") yp = os.path.join(TEST_IMG_DIR, img_id+"_yellow.png") ri = decode_img(tf.io.read_file(rp),(img_w, img_h), testing=True) gi = decode_img(tf.io.read_file(gp),(img_w, img_h), testing=True) bi = decode_img(tf.io.read_file(bp),(img_w, img_h), testing=True) if not drop_yellow: yi = decode_img(tf.io.read_file(yp),(img_w, img_h), testing=True) if combine and drop_yellow: return tf.stack([ri[..., 0], gi[..., 0], bi[..., 0]], axis=-1) elif combine: return tf.stack([ri[..., 0], gi[..., 0], bi[..., 0], yi[..., 0]], axis=-1) elif drop_yellow: return ri, gi, bi else: return ri, gi, bi, yi def plot_predictions(img, masks, preds, confs=None, fill_alpha=0.3, lbl_as_str=True): FONT = cv2.FONT_HERSHEY_SIMPLEX; FONT_SCALE = 0.7; FONT_THICKNESS = 2; FONT_LINE_TYPE = cv2.LINE_AA; COLORS = [[round(y*255)for y in x] for x in sns.color_palette("Spectral", len(LBL_NAMES)) ] to_plot = img.copy() cntr_img = img.copy() if confs==None: confs = [None,]*len(masks) cnts = grab_contours( cv2.findContours( masks, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE )) cnts = sorted(cnts, key=lambda x:(cv2.boundingRect(x)[1], cv2.boundingRect(x)[0])) for c, pred, conf in zip(cnts, preds, confs): color = COLORS[pred[0]] if not lbl_as_str: classes = "CLS=["+",".join([str(p)for p in pred])+"]" else: classes = ", ".join([INT_2_STR[p] for p in pred]) M = cv2.moments(c) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) text_width, text_height = cv2.getTextSize(classes, FONT, FONT_SCALE, FONT_THICKNESS)[0] cv2.drawContours(to_plot, [c], contourIdx=-1, color=[max(0, x-40)for x in color], thickness=10) cv2.drawContours(cntr_img, [c], contourIdx=-1, color=(color), thickness=-1) cv2.putText(to_plot, classes,(cx-text_width//2,cy-text_height//2), FONT, FONT_SCALE, [min(255, x+40)for x in color], FONT_THICKNESS, FONT_LINE_TYPE) cv2.addWeighted(cntr_img, fill_alpha, to_plot, 1-fill_alpha, 0, to_plot) plt.figure(figsize=(16,16)) plt.imshow(to_plot) plt.axis(False) plt.show() def tta(original_img_batch, repeats=4): tta_img_batches = [original_img_batch,] for i in range(repeats): img_batch = original_img_batch SEED = tf.random.uniform(( 2,), minval=0, maxval=100, dtype=tf.dtypes.int32) K = tf.random.uniform(( 1,), minval=0, maxval=4, dtype=tf.dtypes.int32)[0] img_batch = tf.image.stateless_random_flip_left_right(img_batch, SEED) img_batch = tf.image.stateless_random_flip_up_down(img_batch, SEED) img_batch = tf.image.rot90(img_batch, K) img_batch = tf.image.stateless_random_saturation(img_batch, 0.9, 1.1, SEED) img_batch = tf.image.stateless_random_brightness(img_batch, 0.075, SEED) img_batch = tf.image.stateless_random_contrast(img_batch, 0.9, 1.1, SEED) tta_img_batches.append(img_batch) return tta_img_batches<define_variables>
split_ratio = 0.1 data_set = tf.data.Dataset.from_tensor_slices(( images, labels)).shuffle(len(labels)) train_set = data_set.take(int(len(labels)*(1-split_ratio)) ).batch(32 ).cache().prefetch(1) val_set = data_set.skip(len(labels)-int(len(labels)*(1-split_ratio)) ).batch(32 ).cache().prefetch(1 )
Digit Recognizer
12,983,127
inference_model = tf.keras.models.load_model(B2_CELL_CLSFR_DIR) IMAGE_SIZES = [1728, 2048, 3072, 4096] BATCH_SIZE = 8 CONF_THRESH = 0.0 TILE_SIZE =(224,224) if ONLY_PUBLIC: predict_df_1728 = pub_ss_df[pub_ss_df.ImageWidth==IMAGE_SIZES[0]] predict_df_2048 = pub_ss_df[pub_ss_df.ImageWidth==IMAGE_SIZES[1]] predict_df_3072 = pub_ss_df[pub_ss_df.ImageWidth==IMAGE_SIZES[2]] predict_df_4096 = pub_ss_df[pub_ss_df.ImageWidth==IMAGE_SIZES[3]] else: segmentator = cellsegmentator.CellSegmentator(NUC_MODEL, CELL_MODEL, scale_factor=0.25, padding=True) predict_df_1728 = ss_df[ss_df.ImageWidth==IMAGE_SIZES[0]] predict_df_2048 = ss_df[ss_df.ImageWidth==IMAGE_SIZES[1]] predict_df_3072 = ss_df[ss_df.ImageWidth==IMAGE_SIZES[2]] predict_df_4096 = ss_df[ss_df.ImageWidth==IMAGE_SIZES[3]] predict_ids_1728 = predict_df_1728.ID.to_list() predict_ids_2048 = predict_df_2048.ID.to_list() predict_ids_3072 = predict_df_3072.ID.to_list() predict_ids_4096 = predict_df_4096.ID.to_list()<create_dataframe>
data_augmentation = keras.models.Sequential([ keras.layers.experimental.preprocessing.Rescaling(1./255, input_shape=(28, 28, 1)) , keras.layers.experimental.preprocessing.RandomRotation(0.1), keras.layers.experimental.preprocessing.RandomZoom(0.1), keras.layers.experimental.preprocessing.RandomTranslation(0.1, 0.1) ] )
Digit Recognizer
12,983,127
predictions = [] sub_df = pd.DataFrame(columns=["ID"], data=predict_ids_1728+predict_ids_2048+predict_ids_3072+predict_ids_4096) for size_idx, submission_ids in enumerate([predict_ids_1728, predict_ids_2048, predict_ids_3072, predict_ids_4096]): size = IMAGE_SIZES[size_idx] if submission_ids==[]: print(f" ...SKIPPING SIZE {size} AS THERE ARE NO IMAGE IDS... ") continue else: print(f" ...WORKING ON IMAGE IDS FOR SIZE {size}... ") for i in tqdm(range(0, len(submission_ids), BATCH_SIZE), total=int(np.ceil(len(submission_ids)/BATCH_SIZE))): batch_rgby_images = [ load_image(ID, TEST_IMG_DIR, testing=True, only_public=ONLY_PUBLIC)\ for ID in submission_ids[i:(i+BATCH_SIZE)] ] if ONLY_PUBLIC: batch_cell_bboxes = pub_ss_df[pub_ss_df.ID.isin(submission_ids[i:(i+BATCH_SIZE)])].mask_bboxes.values batch_rgb_images = batch_rgby_images submission_rles = pub_ss_df[pub_ss_df.ID.isin(submission_ids[i:(i+BATCH_SIZE)])].mask_sub_rles.values if IS_DEMO: batch_masks = [ sum([rle_to_mask(mask, size, size)for mask in batch])\ for batch in pub_ss_df[pub_ss_df.ID.isin(submission_ids[i:(i+BATCH_SIZE)])].mask_rles.values ] else: cell_segmentations = segmentator.pred_cells([[rgby_image[j] for rgby_image in batch_rgby_images] for j in [0, 3, 2]]) nuc_segmentations = segmentator.pred_nuclei([rgby_image[2] for rgby_image in batch_rgby_images]) batch_masks = [label_cell(nuc_seg, cell_seg)[1].astype(np.uint8)for nuc_seg, cell_seg in zip(nuc_segmentations, cell_segmentations)] batch_rgb_images = [rgby_image.transpose(1,2,0)[..., :-1] for rgby_image in batch_rgby_images] batch_cell_bboxes = [get_contour_bbox_from_raw(mask)for mask in batch_masks] submission_rles = [[binary_mask_to_ascii(mask, mask_val=cell_id)for cell_id in range(1, mask.max() +1)] for mask in batch_masks] batch_cell_tiles = [[ cv2.resize( pad_to_square( rgb_image[bbox[1]:bbox[3], bbox[0]:bbox[2],...]), TILE_SIZE, interpolation=cv2.INTER_CUBIC)for bbox in bboxes] for bboxes, rgb_image in zip(batch_cell_bboxes, batch_rgb_images) ] if DO_TTA: tta_batch_cell_tiles = [tta(tf.cast(ct, dtype=tf.float32), repeats=TTA_REPEATS)for ct in batch_cell_tiles] else: batch_cell_tiles = [tf.cast(ct, dtype=tf.float32)for ct in batch_cell_tiles] if DO_TTA: tta_batch_o_preds = [[inference_model.predict(ct)for ct in bct] for bct in tta_batch_cell_tiles] batch_o_preds = [tf.keras.layers.Average()(tta_o_preds ).numpy() for tta_o_preds in tta_batch_o_preds] else: batch_o_preds = [inference_model.predict(cell_tiles)for cell_tiles in batch_cell_tiles] batch_confs = [[pred[np.where(pred>CONF_THRESH)] for pred in o_preds] for o_preds in batch_o_preds] batch_preds = [[np.where(pred>CONF_THRESH)[0] for pred in o_preds] for o_preds in batch_o_preds] for j, preds in enumerate(batch_preds): for k in range(len(preds)) : if preds[k].size==0: batch_preds[j][k]=np.array([18,]) batch_confs[j][k]=np.array([1-np.max(batch_o_preds[j][k]),]) if IS_DEMO: print(" ...DEMO IMAGES... ") for rgb_images, masks, preds, confs in zip(batch_rgb_images, batch_masks, batch_preds, batch_confs): plot_predictions(rgb_images, masks, preds, confs=confs, fill_alpha=0.2, lbl_as_str=True) submission_rles = [flatten_list_of_lists([[m,]*len(p)for m, p in zip(masks, preds)])for masks, preds in zip(submission_rles, batch_preds)] batch_preds = [flatten_list_of_lists(preds, to_string=True)for preds in batch_preds] batch_confs = [[f"{conf:.4f}" for cell_confs in confs for conf in cell_confs] for confs in batch_confs] predictions.extend([" ".join(flatten_list_of_lists(zip(*[preds,confs,masks])))for preds, confs, masks in zip(batch_preds, batch_confs, submission_rles)]) sub_df["PredictionString"] = predictions print(" ...TEST DATAFRAME... ") display(sub_df.head(3))<save_to_csv>
DefaultConv2D = partial(keras.layers.Conv2D, kernel_size=3, activation='relu', padding='same') model = keras.models.Sequential([ data_augmentation, DefaultConv2D(filters=32), DefaultConv2D(filters=32), keras.layers.MaxPool2D() , DefaultConv2D(filters=64), DefaultConv2D(filters=64), keras.layers.MaxPool2D() , DefaultConv2D(filters=128), DefaultConv2D(filters=128), keras.layers.MaxPool2D() , keras.layers.Dropout(0.2), keras.layers.Flatten() , keras.layers.Dense(128, activation='relu'), keras.layers.Dropout(0.5), keras.layers.Dense(256, activation='relu'), keras.layers.Dropout(0.5), keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer=keras.optimizers.Adam() , loss='sparse_categorical_crossentropy', metrics=['accuracy']) n_epochs=20 lr_schedule = keras.callbacks.LearningRateScheduler(lambda epoch: 1e-6 * 10 **(epoch / n_epochs * 5)) history = model.fit(train_set, epochs=n_epochs, callbacks=[lr_schedule] )
Digit Recognizer
12,983,127
ss_df = ss_df.merge(sub_df, how="left", on="ID") ss_df["PredictionString"] = ss_df.apply(create_pred_col, axis=1) ss_df = ss_df.drop(columns=["PredictionString_x", "PredictionString_y"]) ss_df.to_csv("/kaggle/working/submission.csv", index=False) display(ss_df )<install_modules>
DefaultConv2D = partial(keras.layers.Conv2D, kernel_size=3, activation='relu', padding='same') model = keras.models.Sequential([ data_augmentation, DefaultConv2D(filters=32), DefaultConv2D(filters=32), keras.layers.MaxPool2D() , DefaultConv2D(filters=64), DefaultConv2D(filters=64), keras.layers.MaxPool2D() , DefaultConv2D(filters=128), DefaultConv2D(filters=128), keras.layers.MaxPool2D() , keras.layers.Dropout(0.2), keras.layers.Flatten() , keras.layers.Dense(128, activation='relu'), keras.layers.Dropout(0.5), keras.layers.Dense(256, activation='relu'), keras.layers.Dropout(0.5), keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer=keras.optimizers.Adam(1e-3), loss='sparse_categorical_crossentropy', metrics=['accuracy']) n_epochs=200 history = model.fit(train_set,validation_data=val_set, epochs=n_epochs, callbacks=[keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True), keras.callbacks.ReduceLROnPlateau(patience=5, factor=0.5, min_lr=1e-4)] )
Digit Recognizer
12,983,127
!pip install.. /input/pycocotools/pycocotools-2.0-cp37-cp37m-linux_x86_64.whl !pip install.. /input/hpapytorchzoozip/pytorch_zoo-master !pip install.. /input/hpacellsegmentatormaster/HPA-Cell-Segmentation-master<set_options>
with open("/kaggle/input/digit-recognizer/test.csv")as f: reader = csv.reader(f, delimiter=',') next(reader) dataset = [row for row in reader] test_imgs = np.array(dataset, dtype='float32' ).reshape(( len(dataset), 28, 28)) [..., np.newaxis]
Digit Recognizer
12,983,127
random.seed(0) LOCAL = False COMPUTE_PUBLIC = False COMPUTE_PRIVATE = True EXP_NAME_1ST = ["exp049", "exp050"] MODEL_NAMES_1ST = [ "model_best_0.pth", "model_best_1.pth", "model_best_2.pth", "model_best_3.pth", ] TEST_LOCAL_COMPUTED_1ST = [ "pred_0.csv", "pred_1.csv", "pred_2.csv", "pred_3.csv" ] BACKBONE_NAME = "seresnet152d" EXP_NAME = ["exp068", "exp071", "exp072", "exp073"] MODEL_NAMES = [ [ "model_best_0.pth", "model_tmp_0.pth", "model_best_1.pth", "model_tmp_1.pth", "model_best_2.pth", "model_tmp_2.pth", "model_best_3.pth", "model_tmp_3.pth" ], [ "model_0_25.pth", "model_0_21.pth", "model_1_25.pth", "model_1_21.pth", ], [ "model_0_25.pth", "model_0_21.pth", ], [ "model_0_25.pth", "model_0_21.pth", ], ] TEST_LOCAL_COMPUTED = [ [ "pred_0.csv", "pred_1.csv", "pred_2.csv", "pred_3.csv" ], [ "pred_0.csv", "pred_1.csv", ], [ "pred_0.csv", ], [ "pred_0.csv", ], ] MODEL_NAMES_IMAGE = [ "model_best_0.pth", "model_tmp_0.pth", "model_best_1.pth", "model_tmp_1.pth", "model_best_2.pth", "model_tmp_2.pth", "model_best_3.pth", "model_tmp_3.pth", "model_best_4.pth", "model_tmp_4.pth", "model_best_5.pth", "model_tmp_5.pth", "model_best_6.pth", "model_tmp_6.pth", "model_best_7.pth", "model_tmp_7.pth", ] MODEL_PATHS_IMAGE = [f".. /input/hpa-image-level-weight/exp102/{p}" for p in MODEL_NAMES_IMAGE] TEST_LOCAL_COMPUTED_IMAGE = [ "pred_0.csv", "pred_1.csv", "pred_2.csv", "pred_3.csv", "pred_4.csv", "pred_5.csv", "pred_6.csv", "pred_7.csv", ] TEST_LOCAL_COMPUTED_PATHS_IMAGE = [f".. /input/hpa-image-level-weight/exp102/{p}" for p in TEST_LOCAL_COMPUTED_IMAGE] COLS_TARGET = [f"label_{i}" for i in range(19)] BATCH_SIZE = 32 IMAGE_SIZE = 512 MARGIN = 100 W_MASK = True IN_CHANS = 4 KEEP_CELL_AREA_MIN = 0.005 KEEP_NUC_AREA_MIN = 0.001 KEEP_EDGE_CELL_AREA_MIN = 0.01 NUC_AREA_MIN_0to5 = 0.12 WEIGHT_CELL_LEVEL_VS_IMAGE_MEAN_VS_IMAGE_PRED = [0.6, 0., 0.4] RATE_OF_WEIGHT_1ST_2ND = [0.2, 0.8] GPUS = torch.cuda.device_count() GPU = 0 ROOT = Path.cwd().parent if LOCAL: INPUT = ROOT / "input" MODEL_PATHS = [ROOT / "output" / EXP_NAME / p for p in MODEL_NAMES] TEST_LOCAL_COMPUTED_PATH = ROOT / "output" / EXP_NAME / TEST_LOCAL_COMPUTED TEST_IMG_DIR = ROOT / "data" / "test_rgby_images" MASK_DIR = ROOT / "data" / "mask" NUC_MODEL = MASK_DIR / "dpn_unet_nuclei_v1.pth" CELL_MODEL = MASK_DIR / "dpn_unet_cell_3ch_v1.pth" MAX_THRE = 40 else: INPUT = ROOT / "input" / "hpa-single-cell-image-classification" LIB_DIR = ROOT / "input" / "hpa2021-libs" MODEL_PATHS = [] TEST_LOCAL_COMPUTED_PATHS_1ST = [] for e_name in EXP_NAME_1ST: MODEL_PATHS += [LIB_DIR / e_name / p for p in MODEL_NAMES_1ST] TEST_LOCAL_COMPUTED_PATHS_1ST += [LIB_DIR / e_name / p for p in TEST_LOCAL_COMPUTED_1ST] LEN_1ST = len(MODEL_PATHS) TEST_LOCAL_COMPUTED_PATHS = [] for i, e_name in enumerate(EXP_NAME): MODEL_PATHS += [LIB_DIR / e_name / p for p in MODEL_NAMES[i]] TEST_LOCAL_COMPUTED_PATHS += [LIB_DIR / e_name / p for p in TEST_LOCAL_COMPUTED[i]] WEIGHT_1ST_2ND = np.ones(len(MODEL_PATHS)).reshape(-1 , 1, 1) WEIGHT_1ST_2ND[:LEN_1ST] = len(MODEL_PATHS)*(1 / LEN_1ST)* RATE_OF_WEIGHT_1ST_2ND[0] WEIGHT_1ST_2ND[LEN_1ST:] = len(MODEL_PATHS)*(1 /(len(MODEL_PATHS)- LEN_1ST)) * RATE_OF_WEIGHT_1ST_2ND[1] OUTPUT = ROOT / "temp" MASK_DIR = OUTPUT / "mask" MASK_DIR.mkdir(exist_ok=True, parents=True) NUCEIL_DIR = MASK_DIR / "test" / "nuclei" NUCEIL_DIR.mkdir(exist_ok=True, parents=True) CELL_DIR = MASK_DIR / "test" / "cell" CELL_DIR.mkdir(exist_ok=True, parents=True) NUC_MODEL =( ROOT / "input" / "hpacellsegmentatormodelweights" / "dpn_unet_nuclei_v1.pth" ) CELL_MODEL =( ROOT / "input" / "hpacellsegmentatormodelweights" / "dpn_unet_cell_3ch_v1.pth" ) MAX_THRE = 2 sys.path.append(str(ROOT / "input" / "hpa2021-libs")) sample_submission = pd.read_csv(INPUT / "sample_submission.csv") print("NUC_MODEL:", NUC_MODEL.exists()) print("CELL_MODEL:", CELL_MODEL.exists()) print("MODEL_PATHS:", [p.exists() for p in MODEL_PATHS]) print("TEST_LOCAL_COMPUTED_PATHS:", [p.exists() for p in TEST_LOCAL_COMPUTED_PATHS]) <categorify>
predictions = [np.argmax(p)for p in model.predict(test_imgs)] ids = np.arange(len(dataset)) + 1 submission_df = pd.DataFrame({'ImageId':ids, 'label':predictions}) submission_df.head()
Digit Recognizer
12,983,127
<load_from_csv><EOS>
submission_df.to_csv("submission.csv", index=False )
Digit Recognizer
14,556,937
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<categorify>
%matplotlib inline np.random.seed(2) sns.set(style='white', context='notebook', palette='deep') for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
Digit Recognizer
14,556,937
test = post_process1(test) test<predict_on_test>
train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
14,556,937
test_image = test.groupby("image_id" ).first().reset_index() if LOCAL: pass else: test_loader = DataLoader( ImageDataset(test_image), batch_size=BATCH_SIZE, num_workers=MAX_THRE, pin_memory=True, ) models = [] for p in MODEL_PATHS_IMAGE: model = get_model(p) model.eval() models.append(model) preds = predict(models, test_loader, GPU) display(pd.crosstab(test_image["image_id"], preds.argmax(1))) test_image[COLS_TARGET] = preds del models, model, test_loader torch.cuda.empty_cache() gc.collect() display(test_image )<predict_on_test>
X = train_data.drop('label', axis=1) y = train_data['label']
Digit Recognizer
14,556,937
if LOCAL: pass else: test_loader = DataLoader( MyDataset(test, mode="test", w_mask=W_MASK), batch_size=BATCH_SIZE, num_workers=MAX_THRE, pin_memory=True, ) models = [] for p in MODEL_PATHS: model = get_model(p) model.eval() models.append(model) preds = predict_weighted(models, test_loader, GPU, WEIGHT_1ST_2ND) display(pd.crosstab(test["image_id"], preds.argmax(1))) test[COLS_TARGET] = preds test = post_process2(test) test = post_process3(test, test_image) del models, model torch.cuda.empty_cache() gc.collect() display(test) <load_from_csv>
sns.countplot(x=y) print(y.value_counts().sort_index(ascending=True))
Digit Recognizer
14,556,937
cols = sample_submission.columns if COMPUTE_PUBLIC is False and COMPUTE_PRIVATE is False: print("dryrun, replace with local computed file") test_2nd = pd.read_csv(TEST_LOCAL_COMPUTED_PATHS[0]) for p in TEST_LOCAL_COMPUTED_PATHS[1:]: test_2nd.loc[:, COLS_TARGET] += pd.read_csv(p ).loc[:, COLS_TARGET] test_2nd.loc[:, COLS_TARGET] /= len(TEST_LOCAL_COMPUTED_PATHS) test_1st = pd.read_csv(TEST_LOCAL_COMPUTED_PATHS_1ST[0]) for p in TEST_LOCAL_COMPUTED_PATHS_1ST[1:]: test_1st.loc[:, COLS_TARGET] += pd.read_csv(p ).loc[:, COLS_TARGET] test_1st.loc[:, COLS_TARGET] /= len(TEST_LOCAL_COMPUTED_PATHS_1ST) test = test_2nd.copy() test_1st.iloc[:, 11] = 0 test.loc[:, COLS_TARGET] = test_1st.loc[:, COLS_TARGET] * RATE_OF_WEIGHT_1ST_2ND[0] + test_2nd.loc[:, COLS_TARGET] * RATE_OF_WEIGHT_1ST_2ND[1] test_image = pd.read_csv(TEST_LOCAL_COMPUTED_PATHS_IMAGE[0]) for p in TEST_LOCAL_COMPUTED_PATHS_IMAGE[1:]: test_image.loc[:, COLS_TARGET] += pd.read_csv(p ).loc[:, COLS_TARGET] test_image.loc[:, COLS_TARGET] /= len(TEST_LOCAL_COMPUTED_PATHS_IMAGE) test = post_process1(test) test = post_process2(test) test = post_process3(test, test_image) write_submission(test, fill_shortage=True) elif COMPUTE_PUBLIC is False and COMPUTE_PRIVATE is True: print("only private") test_2nd = pd.read_csv(TEST_LOCAL_COMPUTED_PATHS[0]) for p in TEST_LOCAL_COMPUTED_PATHS[1:]: test_2nd.loc[:, COLS_TARGET] += pd.read_csv(p ).loc[:, COLS_TARGET] test_2nd.loc[:, COLS_TARGET] /= len(TEST_LOCAL_COMPUTED_PATHS) test_1st = pd.read_csv(TEST_LOCAL_COMPUTED_PATHS_1ST[0]) for p in TEST_LOCAL_COMPUTED_PATHS_1ST[1:]: test_1st.loc[:, COLS_TARGET] += pd.read_csv(p ).loc[:, COLS_TARGET] test_1st.loc[:, COLS_TARGET] /= len(TEST_LOCAL_COMPUTED_PATHS_1ST) test_local = test_2nd.copy() test_1st.iloc[:, 11] = 0 test_local.loc[:, COLS_TARGET] = test_1st.loc[:, COLS_TARGET] * RATE_OF_WEIGHT_1ST_2ND[0] + test_2nd.loc[:, COLS_TARGET] * RATE_OF_WEIGHT_1ST_2ND[1] test_image_local = pd.read_csv(TEST_LOCAL_COMPUTED_PATHS_IMAGE[0]) for p in TEST_LOCAL_COMPUTED_PATHS_IMAGE[1:]: test_image_local.loc[:, COLS_TARGET] += pd.read_csv(p ).loc[:, COLS_TARGET] test_image_local.loc[:, COLS_TARGET] /= len(TEST_LOCAL_COMPUTED_PATHS_IMAGE) test_local = post_process1(test_local) test_local = post_process2(test_local) test_local = post_process3(test_local, test_image_local) if len(sample_submission)== 559: write_submission(test_local, fill_shortage=False) else: test2 = pd.concat([test_local, test[test_local.columns]], ignore_index=True) write_submission(test2, fill_shortage=False) elif COMPUTE_PUBLIC is True and COMPUTE_PRIVATE is True: print("full compute") write_submission(test, fill_shortage=False) elif COMPUTE_PUBLIC is True and COMPUTE_PRIVATE is False: print("only public") write_submission(test, fill_shortage=True) <load_from_csv>
X.isna().sum().value_counts()
Digit Recognizer
14,556,937
if len(sample_submission)== 559: sub = pd.read_csv("submission.csv") display(sub )<load_from_csv>
y.isna().sum()
Digit Recognizer
14,556,937
if len(sample_submission)== 559: sub = pd.read_csv("submission.csv") for index, row in sub.head(3 ).iterrows() : image_id = row["ID"] w = row["ImageWidth"] h = row["ImageHeight"] pred_strs = row["PredictionString"].split() pred_strs = list(split_list(pred_strs, 3)) for i, pred in enumerate(pred_strs): class_id, cnf, encoded_mask = pred class_id = int(class_id) cnf = float(cnf) print(f"class_id:{class_id}, image_id:{image_id}, confidence:{cnf}") mask = decode_binary_mask(encoded_mask, w, h) print_masked_img(image_id, mask) if i == 9: break <install_modules>
X = X / 255.0 X = X.values.reshape(-1, 28, 28, 1) y = to_categorical(y, num_classes = 10 )
Digit Recognizer
14,556,937
!pip install -q.. /input/pycocotools/pycocotools-2.0-cp37-cp37m-linux_x86_64.whl<define_variables>
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42 )
Digit Recognizer