kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
12,714,797
def generate_ngrams(text, n_gram=1): token = [token for token in text.lower().split(' ')if token != '' if token not in STOPWORDS] ngrams = zip(*[token[i:] for i in range(n_gram)]) return [' '.join(ngram)for ngram in ngrams] N = 100 disaster_unigrams = defaultdict(int) nondisaster_unigrams = defaultdict(int) for tweet in df_train[DISASTER_TWEETS]['text']: for word in generate_ngrams(tweet): disaster_unigrams[word] += 1 for tweet in df_train[~DISASTER_TWEETS]['text']: for word in generate_ngrams(tweet): nondisaster_unigrams[word] += 1 df_disaster_unigrams = pd.DataFrame(sorted(disaster_unigrams.items() , key=lambda x: x[1])[::-1]) df_nondisaster_unigrams = pd.DataFrame(sorted(nondisaster_unigrams.items() , key=lambda x: x[1])[::-1]) disaster_bigrams = defaultdict(int) nondisaster_bigrams = defaultdict(int) for tweet in df_train[DISASTER_TWEETS]['text']: for word in generate_ngrams(tweet, n_gram=2): disaster_bigrams[word] += 1 for tweet in df_train[~DISASTER_TWEETS]['text']: for word in generate_ngrams(tweet, n_gram=2): nondisaster_bigrams[word] += 1 df_disaster_bigrams = pd.DataFrame(sorted(disaster_bigrams.items() , key=lambda x: x[1])[::-1]) df_nondisaster_bigrams = pd.DataFrame(sorted(nondisaster_bigrams.items() , key=lambda x: x[1])[::-1]) disaster_trigrams = defaultdict(int) nondisaster_trigrams = defaultdict(int) for tweet in df_train[DISASTER_TWEETS]['text']: for word in generate_ngrams(tweet, n_gram=3): disaster_trigrams[word] += 1 for tweet in df_train[~DISASTER_TWEETS]['text']: for word in generate_ngrams(tweet, n_gram=3): nondisaster_trigrams[word] += 1 df_disaster_trigrams = pd.DataFrame(sorted(disaster_trigrams.items() , key=lambda x: x[1])[::-1]) df_nondisaster_trigrams = pd.DataFrame(sorted(nondisaster_trigrams.items() , key=lambda x: x[1])[::-1] )<choose_model_class>
model.compile(optimizer = "nadam" , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
12,714,797
sw = stopwords.words('english') stw = sw + ['lot','frog','ppl','tldr','time','nan','thing', 'subject', 're', 'edu', 'use','good','really','quite','nice','well','little','need','keep','make','important','take','get','very','course','instructor','example'] ps = PorterStemmer() lemmatizer = nltk.stem.WordNetLemmatizer()<feature_engineering>
epochs = 100 batch_size = 64
Digit Recognizer
12,714,797
def lower(df): df['com_token'] = df['text'].str.lower().str.split() df["com_"] = df["com_token"].apply(' '.join) return df<feature_engineering>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
12,714,797
df_train = lower(df_train) df_train["Orig_comment"] = df_train["text"] df_train["text"] = df_train["com_"]<categorify>
early_stopping_cb = keras.callbacks.EarlyStopping(patience=20, restore_best_weights=True) model_checkpoint_cb = keras.callbacks.ModelCheckpoint("best_mnist_model.h5", save_best_only=True) learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=5, verbose=1, factor=0.5, min_lr=0.00001) history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[early_stopping_cb, model_checkpoint_cb, learning_rate_reduction] )
Digit Recognizer
12,714,797
def decontracted(tweet): tweet = re.sub(r"won't", "will not", tweet) tweet = re.sub(r"can't", "can not", tweet) tweet = re.sub(r"he\ ’ s", "he is", tweet) tweet = re.sub(r"i\ ’ m", "he is", tweet) tweet=re.sub("(<.*?>)","",tweet) tweet=re.sub("(\\W|\\d)"," ",tweet) tweet = re.sub(r"n't", " not", tweet) tweet = re.sub(r"'re", " are", tweet) tweet = re.sub(r"'s", " is", tweet) tweet = re.sub(r"'d", " would", tweet) tweet = re.sub(r"'ll", " will", tweet) tweet = re.sub(r"'t", " not", tweet) tweet = re.sub(r"'ve", " have", tweet) tweet = re.sub(r"'m", " am", tweet) tweet = re.sub(r"'didnt", " did not", tweet) tweet = re.sub(r"\x89Û_", "", tweet) tweet = re.sub(r"\x89ÛÒ", "", tweet) tweet = re.sub(r"\x89ÛÓ", "", tweet) tweet = re.sub(r"\x89ÛÏWhen", "When", tweet) tweet = re.sub(r"\x89ÛÏ", "", tweet) tweet = re.sub(r"China\x89Ûªs", "China's", tweet) tweet = re.sub(r"let\x89Ûªs", "let's", tweet) tweet = re.sub(r"\x89Û÷", "", tweet) tweet = re.sub(r"\x89Ûª", "", tweet) tweet = re.sub(r"\x89Û\x9d", "", tweet) tweet = re.sub(r"å_", "", tweet) tweet = re.sub(r"\x89Û¢", "", tweet) tweet = re.sub(r"\x89Û¢åÊ", "", tweet) tweet = re.sub(r"fromåÊwounds", "from wounds", tweet) tweet = re.sub(r"åÊ", "", tweet) tweet = re.sub(r"åÈ", "", tweet) tweet = re.sub(r"JapÌ_n", "Japan", tweet) tweet = re.sub(r"Ì©", "e", tweet) tweet = re.sub(r"å¨", "", tweet) tweet = re.sub(r"Surṳ", "Suruc", tweet) tweet = re.sub(r"åÇ", "", tweet) tweet = re.sub(r"å£3million", "3 million", tweet) tweet = re.sub(r"åÀ", "", tweet) tweet = re.sub(r"he's", "he is", tweet) tweet = re.sub(r"there's", "there is", tweet) tweet = re.sub(r"We're", "We are", tweet) tweet = re.sub(r"That's", "That is", tweet) tweet = re.sub(r"won't", "will not", tweet) tweet = re.sub(r"they're", "they are", tweet) tweet = re.sub(r"Can't", "Cannot", tweet) tweet = re.sub(r"wasn't", "was not", tweet) tweet = re.sub(r"don\x89Ûªt", "do not", tweet) tweet = re.sub(r"aren't", "are not", tweet) tweet = re.sub(r"isn't", "is not", tweet) tweet = re.sub(r"What's", "What is", tweet) tweet = re.sub(r"haven't", "have not", tweet) tweet = re.sub(r"hasn't", "has not", tweet) tweet = re.sub(r"There's", "There is", tweet) tweet = re.sub(r"He's", "He is", tweet) tweet = re.sub(r"It's", "It is", tweet) tweet = re.sub(r"You're", "You are", tweet) tweet = re.sub(r"I'M", "I am", tweet) tweet = re.sub(r"shouldn't", "should not", tweet) tweet = re.sub(r"wouldn't", "would not", tweet) tweet = re.sub(r"i'm", "I am", tweet) tweet = re.sub(r"I\x89Ûªm", "I am", tweet) tweet = re.sub(r"I'm", "I am", tweet) tweet = re.sub(r"Isn't", "is not", tweet) tweet = re.sub(r"Here's", "Here is", tweet) tweet = re.sub(r"you've", "you have", tweet) tweet = re.sub(r"you\x89Ûªve", "you have", tweet) tweet = re.sub(r"we're", "we are", tweet) tweet = re.sub(r"what's", "what is", tweet) tweet = re.sub(r"couldn't", "could not", tweet) tweet = re.sub(r"we've", "we have", tweet) tweet = re.sub(r"it\x89Ûªs", "it is", tweet) tweet = re.sub(r"doesn\x89Ûªt", "does not", tweet) tweet = re.sub(r"It\x89Ûªs", "It is", tweet) tweet = re.sub(r"Here\x89Ûªs", "Here is", tweet) tweet = re.sub(r"who's", "who is", tweet) tweet = re.sub(r"I\x89Ûªve", "I have", tweet) tweet = re.sub(r"y'all", "you all", tweet) tweet = re.sub(r"can\x89Ûªt", "cannot", tweet) tweet = re.sub(r"would've", "would have", tweet) tweet = re.sub(r"it'll", "it will", tweet) tweet = re.sub(r"we'll", "we will", tweet) tweet = re.sub(r"wouldn\x89Ûªt", "would not", tweet) tweet = re.sub(r"We've", "We have", tweet) tweet = re.sub(r"he'll", "he will", tweet) tweet = re.sub(r"Y'all", "You all", tweet) tweet = re.sub(r"Weren't", "Were not", tweet) tweet = re.sub(r"Didn't", "Did not", tweet) tweet = re.sub(r"they'll", "they will", tweet) tweet = re.sub(r"they'd", "they would", tweet) tweet = re.sub(r"DON'T", "DO NOT", tweet) tweet = re.sub(r"That\x89Ûªs", "That is", tweet) tweet = re.sub(r"they've", "they have", tweet) tweet = re.sub(r"i'd", "I would", tweet) tweet = re.sub(r"should've", "should have", tweet) tweet = re.sub(r"You\x89Ûªre", "You are", tweet) tweet = re.sub(r"where's", "where is", tweet) tweet = re.sub(r"Don\x89Ûªt", "Do not", tweet) tweet = re.sub(r"we'd", "we would", tweet) tweet = re.sub(r"i'll", "I will", tweet) tweet = re.sub(r"weren't", "were not", tweet) tweet = re.sub(r"They're", "They are", tweet) tweet = re.sub(r"Can\x89Ûªt", "Cannot", tweet) tweet = re.sub(r"you\x89Ûªll", "you will", tweet) tweet = re.sub(r"I\x89Ûªd", "I would", tweet) tweet = re.sub(r"let's", "let us", tweet) tweet = re.sub(r"it's", "it is", tweet) tweet = re.sub(r"can't", "cannot", tweet) tweet = re.sub(r"don't", "do not", tweet) tweet = re.sub(r"you're", "you are", tweet) tweet = re.sub(r"i've", "I have", tweet) tweet = re.sub(r"that's", "that is", tweet) tweet = re.sub(r"i'll", "I will", tweet) tweet = re.sub(r"doesn't", "does not", tweet) tweet = re.sub(r"i'd", "I would", tweet) tweet = re.sub(r"didn't", "did not", tweet) tweet = re.sub(r"ain't", "am not", tweet) tweet = re.sub(r"you'll", "you will", tweet) tweet = re.sub(r"I've", "I have", tweet) tweet = re.sub(r"Don't", "do not", tweet) tweet = re.sub(r"I'll", "I will", tweet) tweet = re.sub(r"I'd", "I would", tweet) tweet = re.sub(r"Let's", "Let us", tweet) tweet = re.sub(r"you'd", "You would", tweet) tweet = re.sub(r"It's", "It is", tweet) tweet = re.sub(r"Ain't", "am not", tweet) tweet = re.sub(r"Haven't", "Have not", tweet) tweet = re.sub(r"Could've", "Could have", tweet) tweet = re.sub(r"youve", "you have", tweet) tweet = re.sub(r"donå«t", "do not", tweet) tweet = re.sub(r"&gt;", ">", tweet) tweet = re.sub(r"&lt;", "<", tweet) tweet = re.sub(r"&amp;", "&", tweet) tweet = re.sub(r"w/e", "whatever", tweet) tweet = re.sub(r"w/", "with", tweet) tweet = re.sub(r"USAgov", "USA government", tweet) tweet = re.sub(r"recentlu", "recently", tweet) tweet = re.sub(r"Ph0tos", "Photos", tweet) tweet = re.sub(r"amirite", "am I right", tweet) tweet = re.sub(r"exp0sed", "exposed", tweet) tweet = re.sub(r"<3", "love", tweet) tweet = re.sub(r"amageddon", "armageddon", tweet) tweet = re.sub(r"Trfc", "Traffic", tweet) tweet = re.sub(r"8/5/2015", "2015-08-05", tweet) tweet = re.sub(r"WindStorm", "Wind Storm", tweet) tweet = re.sub(r"8/6/2015", "2015-08-06", tweet) tweet = re.sub(r"10:38PM", "10:38 PM", tweet) tweet = re.sub(r"10:30pm", "10:30 PM", tweet) tweet = re.sub(r"16yr", "16 year", tweet) tweet = re.sub(r"lmao", "laughing my ass off", tweet) tweet = re.sub(r"TRAUMATISED", "traumatized", tweet) tweet = re.sub(r"IranDeal", "Iran Deal", tweet) tweet = re.sub(r"ArianaGrande", "Ariana Grande", tweet) tweet = re.sub(r"camilacabello97", "camila cabello", tweet) tweet = re.sub(r"RondaRousey", "Ronda Rousey", tweet) tweet = re.sub(r"MTVHottest", "MTV Hottest", tweet) tweet = re.sub(r"TrapMusic", "Trap Music", tweet) tweet = re.sub(r"ProphetMuhammad", "Prophet Muhammad", tweet) tweet = re.sub(r"PantherAttack", "Panther Attack", tweet) tweet = re.sub(r"StrategicPatience", "Strategic Patience", tweet) tweet = re.sub(r"socialnews", "social news", tweet) tweet = re.sub(r"NASAHurricane", "NASA Hurricane", tweet) tweet = re.sub(r"onlinecommunities", "online communities", tweet) tweet = re.sub(r"humanconsumption", "human consumption", tweet) tweet = re.sub(r"Typhoon-Devastated", "Typhoon Devastated", tweet) tweet = re.sub(r"Meat-Loving", "Meat Loving", tweet) tweet = re.sub(r"facialabuse", "facial abuse", tweet) tweet = re.sub(r"LakeCounty", "Lake County", tweet) tweet = re.sub(r"BeingAuthor", "Being Author", tweet) tweet = re.sub(r"withheavenly", "with heavenly", tweet) tweet = re.sub(r"thankU", "thank you", tweet) tweet = re.sub(r"iTunesMusic", "iTunes Music", tweet) tweet = re.sub(r"OffensiveContent", "Offensive Content", tweet) tweet = re.sub(r"WorstSummerJob", "Worst Summer Job", tweet) tweet = re.sub(r"HarryBeCareful", "Harry Be Careful", tweet) tweet = re.sub(r"NASASolarSystem", "NASA Solar System", tweet) tweet = re.sub(r"animalrescue", "animal rescue", tweet) tweet = re.sub(r"KurtSchlichter", "Kurt Schlichter", tweet) tweet = re.sub(r"aRmageddon", "armageddon", tweet) tweet = re.sub(r"Throwingknifes", "Throwing knives", tweet) tweet = re.sub(r"GodsLove", "God's Love", tweet) tweet = re.sub(r"bookboost", "book boost", tweet) tweet = re.sub(r"ibooklove", "I book love", tweet) tweet = re.sub(r"NestleIndia", "Nestle India", tweet) tweet = re.sub(r"realDonaldTrump", "Donald Trump", tweet) tweet = re.sub(r"DavidVonderhaar", "David Vonderhaar", tweet) tweet = re.sub(r"CecilTheLion", "Cecil The Lion", tweet) tweet = re.sub(r"weathernetwork", "weather network", tweet) tweet = re.sub(r"withBioterrorism&use", "with Bioterrorism & use", tweet) tweet = re.sub(r"Hostage&2", "Hostage & 2", tweet) tweet = re.sub(r"GOPDebate", "GOP Debate", tweet) tweet = re.sub(r"RickPerry", "Rick Perry", tweet) tweet = re.sub(r"frontpage", "front page", tweet) tweet = re.sub(r"NewsInTweets", "News In Tweets", tweet) tweet = re.sub(r"ViralSpell", "Viral Spell", tweet) tweet = re.sub(r"til_now", "until now", tweet) tweet = re.sub(r"volcanoinRussia", "volcano in Russia", tweet) tweet = re.sub(r"ZippedNews", "Zipped News", tweet) tweet = re.sub(r"MicheleBachman", "Michele Bachman", tweet) tweet = re.sub(r"53inch", "53 inch", tweet) tweet = re.sub(r"KerrickTrial", "Kerrick Trial", tweet) tweet = re.sub(r"abstorm", "Alberta Storm", tweet) tweet = re.sub(r"Beyhive", "Beyonce hive", tweet) tweet = re.sub(r"IDFire", "Idaho Fire", tweet) tweet = re.sub(r"DETECTADO", "Detected", tweet) tweet = re.sub(r"RockyFire", "Rocky Fire", tweet) tweet = re.sub(r"Listen/Buy", "Listen / Buy", tweet) tweet = re.sub(r"NickCannon", "Nick Cannon", tweet) tweet = re.sub(r"FaroeIslands", "Faroe Islands", tweet) tweet = re.sub(r"yycstorm", "Calgary Storm", tweet) tweet = re.sub(r"IDPs:", "Internally Displaced People :", tweet) tweet = re.sub(r"ArtistsUnited", "Artists United", tweet) tweet = re.sub(r"ClaytonBryant", "Clayton Bryant", tweet) tweet = re.sub(r"jimmyfallon", "jimmy fallon", tweet) tweet = re.sub(r"justinbieber", "justin bieber", tweet) tweet = re.sub(r"UTC2015", "UTC 2015", tweet) tweet = re.sub(r"Time2015", "Time 2015", tweet) tweet = re.sub(r"djicemoon", "dj icemoon", tweet) tweet = re.sub(r"LivingSafely", "Living Safely", tweet) tweet = re.sub(r"FIFA16", "Fifa 2016", tweet) tweet = re.sub(r"thisiswhywecanthavenicethings", "this is why we cannot have nice things", tweet) tweet = re.sub(r"bbcnews", "bbc news", tweet) tweet = re.sub(r"UndergroundRailraod", "Underground Railraod", tweet) tweet = re.sub(r"c4news", "c4 news", tweet) tweet = re.sub(r"OBLITERATION", "obliteration", tweet) tweet = re.sub(r"MUDSLIDE", "mudslide", tweet) tweet = re.sub(r"NoSurrender", "No Surrender", tweet) tweet = re.sub(r"NotExplained", "Not Explained", tweet) tweet = re.sub(r"greatbritishbakeoff", "great british bake off", tweet) tweet = re.sub(r"LondonFire", "London Fire", tweet) tweet = re.sub(r"KOTAWeather", "KOTA Weather", tweet) tweet = re.sub(r"LuchaUnderground", "Lucha Underground", tweet) tweet = re.sub(r"KOIN6News", "KOIN 6 News", tweet) tweet = re.sub(r"LiveOnK2", "Live On K2", tweet) tweet = re.sub(r"9NewsGoldCoast", "9 News Gold Coast", tweet) tweet = re.sub(r"nikeplus", "nike plus", tweet) tweet = re.sub(r"david_cameron", "David Cameron", tweet) tweet = re.sub(r"peterjukes", "Peter Jukes", tweet) tweet = re.sub(r"JamesMelville", "James Melville", tweet) tweet = re.sub(r"megynkelly", "Megyn Kelly", tweet) tweet = re.sub(r"cnewslive", "C News Live", tweet) tweet = re.sub(r"JamaicaObserver", "Jamaica Observer", tweet) tweet = re.sub(r"TweetLikeItsSeptember11th2001", "Tweet like it is september 11th 2001", tweet) tweet = re.sub(r"cbplawyers", "cbp lawyers", tweet) tweet = re.sub(r"fewmoretweets", "few more tweets", tweet) tweet = re.sub(r"BlackLivesMatter", "Black Lives Matter", tweet) tweet = re.sub(r"cjoyner", "Chris Joyner", tweet) tweet = re.sub(r"ENGvAUS", "England vs Australia", tweet) tweet = re.sub(r"ScottWalker", "Scott Walker", tweet) tweet = re.sub(r"MikeParrActor", "Michael Parr", tweet) tweet = re.sub(r"4PlayThursdays", "Foreplay Thursdays", tweet) tweet = re.sub(r"TGF2015", "Tontitown Grape Festival", tweet) tweet = re.sub(r"realmandyrain", "Mandy Rain", tweet) tweet = re.sub(r"GraysonDolan", "Grayson Dolan", tweet) tweet = re.sub(r"ApolloBrown", "Apollo Brown", tweet) tweet = re.sub(r"saddlebrooke", "Saddlebrooke", tweet) tweet = re.sub(r"TontitownGrape", "Tontitown Grape", tweet) tweet = re.sub(r"AbbsWinston", "Abbs Winston", tweet) tweet = re.sub(r"ShaunKing", "Shaun King", tweet) tweet = re.sub(r"MeekMill", "Meek Mill", tweet) tweet = re.sub(r"TornadoGiveaway", "Tornado Giveaway", tweet) tweet = re.sub(r"GRupdates", "GR updates", tweet) tweet = re.sub(r"SouthDowns", "South Downs", tweet) tweet = re.sub(r"braininjury", "brain injury", tweet) tweet = re.sub(r"auspol", "Australian politics", tweet) tweet = re.sub(r"PlannedParenthood", "Planned Parenthood", tweet) tweet = re.sub(r"calgaryweather", "Calgary Weather", tweet) tweet = re.sub(r"weallheartonedirection", "we all heart one direction", tweet) tweet = re.sub(r"edsheeran", "Ed Sheeran", tweet) tweet = re.sub(r"TrueHeroes", "True Heroes", tweet) tweet = re.sub(r"S3XLEAK", "sex leak", tweet) tweet = re.sub(r"ComplexMag", "Complex Magazine", tweet) tweet = re.sub(r"TheAdvocateMag", "The Advocate Magazine", tweet) tweet = re.sub(r"CityofCalgary", "City of Calgary", tweet) tweet = re.sub(r"EbolaOutbreak", "Ebola Outbreak", tweet) tweet = re.sub(r"SummerFate", "Summer Fate", tweet) tweet = re.sub(r"RAmag", "Royal Academy Magazine", tweet) tweet = re.sub(r"offers2go", "offers to go", tweet) tweet = re.sub(r"foodscare", "food scare", tweet) tweet = re.sub(r"MNPDNashville", "Metropolitan Nashville Police Department", tweet) tweet = re.sub(r"TfLBusAlerts", "TfL Bus Alerts", tweet) tweet = re.sub(r"GamerGate", "Gamer Gate", tweet) tweet = re.sub(r"IHHen", "Humanitarian Relief", tweet) tweet = re.sub(r"spinningbot", "spinning bot", tweet) tweet = re.sub(r"ModiMinistry", "Modi Ministry", tweet) tweet = re.sub(r"TAXIWAYS", "taxi ways", tweet) tweet = re.sub(r"Calum5SOS", "Calum Hood", tweet) tweet = re.sub(r"po_st", "po.st", tweet) tweet = re.sub(r"scoopit", "scoop.it", tweet) tweet = re.sub(r"UltimaLucha", "Ultima Lucha", tweet) tweet = re.sub(r"JonathanFerrell", "Jonathan Ferrell", tweet) tweet = re.sub(r"aria_ahrary", "Aria Ahrary", tweet) tweet = re.sub(r"rapidcity", "Rapid City", tweet) tweet = re.sub(r"OutBid", "outbid", tweet) tweet = re.sub(r"lavenderpoetrycafe", "lavender poetry cafe", tweet) tweet = re.sub(r"EudryLantiqua", "Eudry Lantiqua", tweet) tweet = re.sub(r"15PM", "15 PM", tweet) tweet = re.sub(r"OriginalFunko", "Funko", tweet) tweet = re.sub(r"rightwaystan", "Richard Tan", tweet) tweet = re.sub(r"CindyNoonan", "Cindy Noonan", tweet) tweet = re.sub(r"RT_America", "RT America", tweet) tweet = re.sub(r"narendramodi", "Narendra Modi", tweet) tweet = re.sub(r"BakeOffFriends", "Bake Off Friends", tweet) tweet = re.sub(r"TeamHendrick", "Hendrick Motorsports", tweet) tweet = re.sub(r"alexbelloli", "Alex Belloli", tweet) tweet = re.sub(r"itsjustinstuart", "Justin Stuart", tweet) tweet = re.sub(r"gunsense", "gun sense", tweet) tweet = re.sub(r"DebateQuestionsWeWantToHear", "debate questions we want to hear", tweet) tweet = re.sub(r"RoyalCarribean", "Royal Carribean", tweet) tweet = re.sub(r"samanthaturne19", "Samantha Turner", tweet) tweet = re.sub(r"JonVoyage", "Jon Stewart", tweet) tweet = re.sub(r"renew911health", "renew 911 health", tweet) tweet = re.sub(r"SuryaRay", "Surya Ray", tweet) tweet = re.sub(r"pattonoswalt", "Patton Oswalt", tweet) tweet = re.sub(r"minhazmerchant", "Minhaz Merchant", tweet) tweet = re.sub(r"TLVFaces", "Israel Diaspora Coalition", tweet) tweet = re.sub(r"pmarca", "Marc Andreessen", tweet) tweet = re.sub(r"pdx911", "Portland Police", tweet) tweet = re.sub(r"jamaicaplain", "Jamaica Plain", tweet) tweet = re.sub(r"Japton", "Arkansas", tweet) tweet = re.sub(r"RouteComplex", "Route Complex", tweet) tweet = re.sub(r"INSubcontinent", "Indian Subcontinent", tweet) tweet = re.sub(r"NJTurnpike", "New Jersey Turnpike", tweet) tweet = re.sub(r"Politifiact", "PolitiFact", tweet) tweet = re.sub(r"Hiroshima70", "Hiroshima", tweet) tweet = re.sub(r"GMMBC", "Greater Mt Moriah Baptist Church", tweet) tweet = re.sub(r"versethe", "verse the", tweet) tweet = re.sub(r"TubeStrike", "Tube Strike", tweet) tweet = re.sub(r"MissionHills", "Mission Hills", tweet) tweet = re.sub(r"ProtectDenaliWolves", "Protect Denali Wolves", tweet) tweet = re.sub(r"NANKANA", "Nankana", tweet) tweet = re.sub(r"SAHIB", "Sahib", tweet) tweet = re.sub(r"PAKPATTAN", "Pakpattan", tweet) tweet = re.sub(r"Newz_Sacramento", "News Sacramento", tweet) tweet = re.sub(r"gofundme", "go fund me", tweet) tweet = re.sub(r"pmharper", "Stephen Harper", tweet) tweet = re.sub(r"IvanBerroa", "Ivan Berroa", tweet) tweet = re.sub(r"LosDelSonido", "Los Del Sonido", tweet) tweet = re.sub(r"bancodeseries", "banco de series", tweet) tweet = re.sub(r"timkaine", "Tim Kaine", tweet) tweet = re.sub(r"IdentityTheft", "Identity Theft", tweet) tweet = re.sub(r"AllLivesMatter", "All Lives Matter", tweet) tweet = re.sub(r"mishacollins", "Misha Collins", tweet) tweet = re.sub(r"BillNeelyNBC", "Bill Neely", tweet) tweet = re.sub(r"BeClearOnCancer", "be clear on cancer", tweet) tweet = re.sub(r"Kowing", "Knowing", tweet) tweet = re.sub(r"ScreamQueens", "Scream Queens", tweet) tweet = re.sub(r"AskCharley", "Ask Charley", tweet) tweet = re.sub(r"BlizzHeroes", "Heroes of the Storm", tweet) tweet = re.sub(r"BradleyBrad47", "Bradley Brad", tweet) tweet = re.sub(r"HannaPH", "Typhoon Hanna", tweet) tweet = re.sub(r"meinlcymbals", "MEINL Cymbals", tweet) tweet = re.sub(r"Ptbo", "Peterborough", tweet) tweet = re.sub(r"cnnbrk", "CNN Breaking News", tweet) tweet = re.sub(r"IndianNews", "Indian News", tweet) tweet = re.sub(r"savebees", "save bees", tweet) tweet = re.sub(r"GreenHarvard", "Green Harvard", tweet) tweet = re.sub(r"StandwithPP", "Stand with planned parenthood", tweet) tweet = re.sub(r"hermancranston", "Herman Cranston", tweet) tweet = re.sub(r"WMUR9", "WMUR-TV", tweet) tweet = re.sub(r"RockBottomRadFM", "Rock Bottom Radio", tweet) tweet = re.sub(r"ameenshaikh3", "Ameen Shaikh", tweet) tweet = re.sub(r"ProSyn", "Project Syndicate", tweet) tweet = re.sub(r"Daesh", "ISIS", tweet) tweet = re.sub(r"s2g", "swear to god", tweet) tweet = re.sub(r"listenlive", "listen live", tweet) tweet = re.sub(r"CDCgov", "Centers for Disease Control and Prevention", tweet) tweet = re.sub(r"FoxNew", "Fox News", tweet) tweet = re.sub(r"CBSBigBrother", "Big Brother", tweet) tweet = re.sub(r"JulieDiCaro", "Julie DiCaro", tweet) tweet = re.sub(r"theadvocatemag", "The Advocate Magazine", tweet) tweet = re.sub(r"RohnertParkDPS", "Rohnert Park Police Department", tweet) tweet = re.sub(r"THISIZBWRIGHT", "Bonnie Wright", tweet) tweet = re.sub(r"Popularmmos", "Popular MMOs", tweet) tweet = re.sub(r"WildHorses", "Wild Horses", tweet) tweet = re.sub(r"FantasticFour", "Fantastic Four", tweet) tweet = re.sub(r"HORNDALE", "Horndale", tweet) tweet = re.sub(r"PINER", "Piner", tweet) tweet = re.sub(r"BathAndNorthEastSomerset", "Bath and North East Somerset", tweet) tweet = re.sub(r"thatswhatfriendsarefor", "that is what friends are for", tweet) tweet = re.sub(r"residualincome", "residual income", tweet) tweet = re.sub(r"YahooNewsDigest", "Yahoo News Digest", tweet) tweet = re.sub(r"MalaysiaAirlines", "Malaysia Airlines", tweet) tweet = re.sub(r"AmazonDeals", "Amazon Deals", tweet) tweet = re.sub(r"MissCharleyWebb", "Charley Webb", tweet) tweet = re.sub(r"shoalstraffic", "shoals traffic", tweet) tweet = re.sub(r"GeorgeFoster72", "George Foster", tweet) tweet = re.sub(r"pop2015", "pop 2015", tweet) tweet = re.sub(r"_PokemonCards_", "Pokemon Cards", tweet) tweet = re.sub(r"DianneG", "Dianne Gallagher", tweet) tweet = re.sub(r"KashmirConflict", "Kashmir Conflict", tweet) tweet = re.sub(r"BritishBakeOff", "British Bake Off", tweet) tweet = re.sub(r"FreeKashmir", "Free Kashmir", tweet) tweet = re.sub(r"mattmosley", "Matt Mosley", tweet) tweet = re.sub(r"BishopFred", "Bishop Fred", tweet) tweet = re.sub(r"EndConflict", "End Conflict", tweet) tweet = re.sub(r"EndOccupation", "End Occupation", tweet) tweet = re.sub(r"UNHEALED", "unhealed", tweet) tweet = re.sub(r"CharlesDagnall", "Charles Dagnall", tweet) tweet = re.sub(r"Latestnews", "Latest news", tweet) tweet = re.sub(r"KindleCountdown", "Kindle Countdown", tweet) tweet = re.sub(r"NoMoreHandouts", "No More Handouts", tweet) tweet = re.sub(r"datingtips", "dating tips", tweet) tweet = re.sub(r"charlesadler", "Charles Adler", tweet) tweet = re.sub(r"twia", "Texas Windstorm Insurance Association", tweet) tweet = re.sub(r"txlege", "Texas Legislature", tweet) tweet = re.sub(r"WindstormInsurer", "Windstorm Insurer", tweet) tweet = re.sub(r"Newss", "News", tweet) tweet = re.sub(r"hempoil", "hemp oil", tweet) tweet = re.sub(r"CommoditiesAre", "Commodities are", tweet) tweet = re.sub(r"tubestrike", "tube strike", tweet) tweet = re.sub(r"JoeNBC", "Joe Scarborough", tweet) tweet = re.sub(r"LiteraryCakes", "Literary Cakes", tweet) tweet = re.sub(r"TI5", "The International 5", tweet) tweet = re.sub(r"thehill", "the hill", tweet) tweet = re.sub(r"3others", "3 others", tweet) tweet = re.sub(r"stighefootball", "Sam Tighe", tweet) tweet = re.sub(r"whatstheimportantvideo", "what is the important video", tweet) tweet = re.sub(r"ClaudioMeloni", "Claudio Meloni", tweet) tweet = re.sub(r"DukeSkywalker", "Duke Skywalker", tweet) tweet = re.sub(r"carsonmwr", "Fort Carson", tweet) tweet = re.sub(r"offdishduty", "off dish duty", tweet) tweet = re.sub(r"andword", "and word", tweet) tweet = re.sub(r"rhodeisland", "Rhode Island", tweet) tweet = re.sub(r"easternoregon", "Eastern Oregon", tweet) tweet = re.sub(r"WAwildfire", "Washington Wildfire", tweet) tweet = re.sub(r"fingerrockfire", "Finger Rock Fire", tweet) tweet = re.sub(r"57am", "57 am", tweet) tweet = re.sub(r"fingerrockfire", "Finger Rock Fire", tweet) tweet = re.sub(r"JacobHoggard", "Jacob Hoggard", tweet) tweet = re.sub(r"newnewnew", "new new new", tweet) tweet = re.sub(r"under50", "under 50", tweet) tweet = re.sub(r"getitbeforeitsgone", "get it before it is gone", tweet) tweet = re.sub(r"freshoutofthebox", "fresh out of the box", tweet) tweet = re.sub(r"amwriting", "am writing", tweet) tweet = re.sub(r"Bokoharm", "Boko Haram", tweet) tweet = re.sub(r"Nowlike", "Now like", tweet) tweet = re.sub(r"seasonfrom", "season from", tweet) tweet = re.sub(r"epicente", "epicenter", tweet) tweet = re.sub(r"epicenterr", "epicenter", tweet) tweet = re.sub(r"sicklife", "sick life", tweet) tweet = re.sub(r"yycweather", "Calgary Weather", tweet) tweet = re.sub(r"calgarysun", "Calgary Sun", tweet) tweet = re.sub(r"approachng", "approaching", tweet) tweet = re.sub(r"evng", "evening", tweet) tweet = re.sub(r"Sumthng", "something", tweet) tweet = re.sub(r"EllenPompeo", "Ellen Pompeo", tweet) tweet = re.sub(r"shondarhimes", "Shonda Rhimes", tweet) tweet = re.sub(r"ABCNetwork", "ABC Network", tweet) tweet = re.sub(r"SushmaSwaraj", "Sushma Swaraj", tweet) tweet = re.sub(r"pray4japan", "Pray for Japan", tweet) tweet = re.sub(r"hope4japan", "Hope for Japan", tweet) tweet = re.sub(r"Illusionimagess", "Illusion images", tweet) tweet = re.sub(r"SummerUnderTheStars", "Summer Under The Stars", tweet) tweet = re.sub(r"ShallWeDance", "Shall We Dance", tweet) tweet = re.sub(r"TCMParty", "TCM Party", tweet) tweet = re.sub(r"marijuananews", "marijuana news", tweet) tweet = re.sub(r"onbeingwithKristaTippett", "on being with Krista Tippett", tweet) tweet = re.sub(r"Beingtweets", "Being tweets", tweet) tweet = re.sub(r"newauthors", "new authors", tweet) tweet = re.sub(r"remedyyyy", "remedy", tweet) tweet = re.sub(r"44PM", "44 PM", tweet) tweet = re.sub(r"HeadlinesApp", "Headlines App", tweet) tweet = re.sub(r"40PM", "40 PM", tweet) tweet = re.sub(r"myswc", "Severe Weather Center", tweet) tweet = re.sub(r"ithats", "that is", tweet) tweet = re.sub(r"icouldsitinthismomentforever", "I could sit in this moment forever", tweet) tweet = re.sub(r"FatLoss", "Fat Loss", tweet) tweet = re.sub(r"02PM", "02 PM", tweet) tweet = re.sub(r"MetroFmTalk", "Metro Fm Talk", tweet) tweet = re.sub(r"Bstrd", "bastard", tweet) tweet = re.sub(r"bldy", "bloody", tweet) tweet = re.sub(r"MetrofmTalk", "Metro Fm Talk", tweet) tweet = re.sub(r"terrorismturn", "terrorism turn", tweet) tweet = re.sub(r"BBCNewsAsia", "BBC News Asia", tweet) tweet = re.sub(r"BehindTheScenes", "Behind The Scenes", tweet) tweet = re.sub(r"GeorgeTakei", "George Takei", tweet) tweet = re.sub(r"WomensWeeklyMag", "Womens Weekly Magazine", tweet) tweet = re.sub(r"SurvivorsGuidetoEarth", "Survivors Guide to Earth", tweet) tweet = re.sub(r"incubusband", "incubus band", tweet) tweet = re.sub(r"Babypicturethis", "Baby picture this", tweet) tweet = re.sub(r"BombEffects", "Bomb Effects", tweet) tweet = re.sub(r"win10", "Windows 10", tweet) tweet = re.sub(r"idkidk", "I do not know I do not know", tweet) tweet = re.sub(r"TheWalkingDead", "The Walking Dead", tweet) tweet = re.sub(r"amyschumer", "Amy Schumer", tweet) tweet = re.sub(r"crewlist", "crew list", tweet) tweet = re.sub(r"Erdogans", "Erdogan", tweet) tweet = re.sub(r"BBCLive", "BBC Live", tweet) tweet = re.sub(r"TonyAbbottMHR", "Tony Abbott", tweet) tweet = re.sub(r"paulmyerscough", "Paul Myerscough", tweet) tweet = re.sub(r"georgegallagher", "George Gallagher", tweet) tweet = re.sub(r"JimmieJohnson", "Jimmie Johnson", tweet) tweet = re.sub(r"pctool", "pc tool", tweet) tweet = re.sub(r"DoingHashtagsRight", "Doing Hashtags Right", tweet) tweet = re.sub(r"ThrowbackThursday", "Throwback Thursday", tweet) tweet = re.sub(r"SnowBackSunday", "Snowback Sunday", tweet) tweet = re.sub(r"LakeEffect", "Lake Effect", tweet) tweet = re.sub(r"RTphotographyUK", "Richard Thomas Photography UK", tweet) tweet = re.sub(r"BigBang_CBS", "Big Bang CBS", tweet) tweet = re.sub(r"writerslife", "writers life", tweet) tweet = re.sub(r"NaturalBirth", "Natural Birth", tweet) tweet = re.sub(r"UnusualWords", "Unusual Words", tweet) tweet = re.sub(r"wizkhalifa", "Wiz Khalifa", tweet) tweet = re.sub(r"acreativedc", "a creative DC", tweet) tweet = re.sub(r"vscodc", "vsco DC", tweet) tweet = re.sub(r"VSCOcam", "vsco camera", tweet) tweet = re.sub(r"TheBEACHDC", "The beach DC", tweet) tweet = re.sub(r"buildingmuseum", "building museum", tweet) tweet = re.sub(r"WorldOil", "World Oil", tweet) tweet = re.sub(r"redwedding", "red wedding", tweet) tweet = re.sub(r"AmazingRaceCanada", "Amazing Race Canada", tweet) tweet = re.sub(r"WakeUpAmerica", "Wake Up America", tweet) tweet = re.sub(r"\\Allahuakbar\", "Allahu Akbar", tweet) tweet = re.sub(r"bleased", "blessed", tweet) tweet = re.sub(r"nigeriantribune", "Nigerian Tribune", tweet) tweet = re.sub(r"HIDEO_KOJIMA_EN", "Hideo Kojima", tweet) tweet = re.sub(r"FusionFestival", "Fusion Festival", tweet) tweet = re.sub(r"50Mixed", "50 Mixed", tweet) tweet = re.sub(r"NoAgenda", "No Agenda", tweet) tweet = re.sub(r"WhiteGenocide", "White Genocide", tweet) tweet = re.sub(r"dirtylying", "dirty lying", tweet) tweet = re.sub(r"SyrianRefugees", "Syrian Refugees", tweet) tweet = re.sub(r"changetheworld", "change the world", tweet) tweet = re.sub(r"Ebolacase", "Ebola case", tweet) tweet = re.sub(r"mcgtech", "mcg technologies", tweet) tweet = re.sub(r"withweapons", "with weapons", tweet) tweet = re.sub(r"advancedwarfare", "advanced warfare", tweet) tweet = re.sub(r"letsFootball", "let us Football", tweet) tweet = re.sub(r"LateNiteMix", "late night mix", tweet) tweet = re.sub(r"PhilCollinsFeed", "Phil Collins", tweet) tweet = re.sub(r"RudyHavenstein", "Rudy Havenstein", tweet) tweet = re.sub(r"22PM", "22 PM", tweet) tweet = re.sub(r"54am", "54 AM", tweet) tweet = re.sub(r"38am", "38 AM", tweet) tweet = re.sub(r"OldFolkExplainStuff", "Old Folk Explain Stuff", tweet) tweet = re.sub(r"BlacklivesMatter", "Black Lives Matter", tweet) tweet = re.sub(r"InsaneLimits", "Insane Limits", tweet) tweet = re.sub(r"youcantsitwithus", "you cannot sit with us", tweet) tweet = re.sub(r"2k15", "2015", tweet) tweet = re.sub(r"TheIran", "Iran", tweet) tweet = re.sub(r"JimmyFallon", "Jimmy Fallon", tweet) tweet = re.sub(r"AlbertBrooks", "Albert Brooks", tweet) tweet = re.sub(r"defense_news", "defense news", tweet) tweet = re.sub(r"nuclearrcSA", "Nuclear Risk Control Self Assessment", tweet) tweet = re.sub(r"Auspol", "Australia Politics", tweet) tweet = re.sub(r"NuclearPower", "Nuclear Power", tweet) tweet = re.sub(r"WhiteTerrorism", "White Terrorism", tweet) tweet = re.sub(r"truthfrequencyradio", "Truth Frequency Radio", tweet) tweet = re.sub(r"ErasureIsNotEquality", "Erasure is not equality", tweet) tweet = re.sub(r"ProBonoNews", "Pro Bono News", tweet) tweet = re.sub(r"JakartaPost", "Jakarta Post", tweet) tweet = re.sub(r"toopainful", "too painful", tweet) tweet = re.sub(r"melindahaunton", "Melinda Haunton", tweet) tweet = re.sub(r"NoNukes", "No Nukes", tweet) tweet = re.sub(r"curryspcworld", "Currys PC World", tweet) tweet = re.sub(r"ineedcake", "I need cake", tweet) tweet = re.sub(r"blackforestgateau", "black forest gateau", tweet) tweet = re.sub(r"BBCOne", "BBC One", tweet) tweet = re.sub(r"AlexxPage", "Alex Page", tweet) tweet = re.sub(r"jonathanserrie", "Jonathan Serrie", tweet) tweet = re.sub(r"SocialJerkBlog", "Social Jerk Blog", tweet) tweet = re.sub(r"ChelseaVPeretti", "Chelsea Peretti", tweet) tweet = re.sub(r"irongiant", "iron giant", tweet) tweet = re.sub(r"RonFunches", "Ron Funches", tweet) tweet = re.sub(r"TimCook", "Tim Cook", tweet) tweet = re.sub(r"sebastianstanisaliveandwell", "Sebastian Stan is alive and well", tweet) tweet = re.sub(r"Madsummer", "Mad summer", tweet) tweet = re.sub(r"NowYouKnow", "Now you know", tweet) tweet = re.sub(r"concertphotography", "concert photography", tweet) tweet = re.sub(r"TomLandry", "Tom Landry", tweet) tweet = re.sub(r"showgirldayoff", "show girl day off", tweet) tweet = re.sub(r"Yougslavia", "Yugoslavia", tweet) tweet = re.sub(r"QuantumDataInformatics", "Quantum Data Informatics", tweet) tweet = re.sub(r"FromTheDesk", "From The Desk", tweet) tweet = re.sub(r"TheaterTrial", "Theater Trial", tweet) tweet = re.sub(r"CatoInstitute", "Cato Institute", tweet) tweet = re.sub(r"EmekaGift", "Emeka Gift", tweet) tweet = re.sub(r"LetsBe_Rational", "Let us be rational", tweet) tweet = re.sub(r"Cynicalreality", "Cynical reality", tweet) tweet = re.sub(r"FredOlsenCruise", "Fred Olsen Cruise", tweet) tweet = re.sub(r"NotSorry", "not sorry", tweet) tweet = re.sub(r"UseYourWords", "use your words", tweet) tweet = re.sub(r"WordoftheDay", "word of the day", tweet) tweet = re.sub(r"Dictionarycom", "Dictionary.com", tweet) tweet = re.sub(r"TheBrooklynLife", "The Brooklyn Life", tweet) tweet = re.sub(r"jokethey", "joke they", tweet) tweet = re.sub(r"nflweek1picks", "NFL week 1 picks", tweet) tweet = re.sub(r"uiseful", "useful", tweet) tweet = re.sub(r"JusticeDotOrg", "The American Association for Justice", tweet) tweet = re.sub(r"autoaccidents", "auto accidents", tweet) tweet = re.sub(r"SteveGursten", "Steve Gursten", tweet) tweet = re.sub(r"MichiganAutoLaw", "Michigan Auto Law", tweet) tweet = re.sub(r"birdgang", "bird gang", tweet) tweet = re.sub(r"nflnetwork", "NFL Network", tweet) tweet = re.sub(r"NYDNSports", "NY Daily News Sports", tweet) tweet = re.sub(r"RVacchianoNYDN", "Ralph Vacchiano NY Daily News", tweet) tweet = re.sub(r"EdmontonEsks", "Edmonton Eskimos", tweet) tweet = re.sub(r"david_brelsford", "David Brelsford", tweet) tweet = re.sub(r"TOI_India", "The Times of India", tweet) tweet = re.sub(r"hegot", "he got", tweet) tweet = re.sub(r"SkinsOn9", "Skins on 9", tweet) tweet = re.sub(r"sothathappened", "so that happened", tweet) tweet = re.sub(r"LCOutOfDoors", "LC Out Of Doors", tweet) tweet = re.sub(r"NationFirst", "Nation First", tweet) tweet = re.sub(r"IndiaToday", "India Today", tweet) tweet = re.sub(r"HLPS", "helps", tweet) tweet = re.sub(r"HOSTAGESTHROSW", "hostages throw", tweet) tweet = re.sub(r"SNCTIONS", "sanctions", tweet) tweet = re.sub(r"BidTime", "Bid Time", tweet) tweet = re.sub(r"crunchysensible", "crunchy sensible", tweet) tweet = re.sub(r"RandomActsOfRomance", "Random acts of romance", tweet) tweet = re.sub(r"MomentsAtHill", "Moments at hill", tweet) tweet = re.sub(r"eatshit", "eat shit", tweet) tweet = re.sub(r"liveleakfun", "live leak fun", tweet) tweet = re.sub(r"SahelNews", "Sahel News", tweet) tweet = re.sub(r"abc7newsbayarea", "ABC 7 News Bay Area", tweet) tweet = re.sub(r"facilitiesmanagement", "facilities management", tweet) tweet = re.sub(r"facilitydude", "facility dude", tweet) tweet = re.sub(r"CampLogistics", "Camp logistics", tweet) tweet = re.sub(r"alaskapublic", "Alaska public", tweet) tweet = re.sub(r"MarketResearch", "Market Research", tweet) tweet = re.sub(r"AccuracyEsports", "Accuracy Esports", tweet) tweet = re.sub(r"TheBodyShopAust", "The Body Shop Australia", tweet) tweet = re.sub(r"yychail", "Calgary hail", tweet) tweet = re.sub(r"yyctraffic", "Calgary traffic", tweet) tweet = re.sub(r"eliotschool", "eliot school", tweet) tweet = re.sub(r"TheBrokenCity", "The Broken City", tweet) tweet = re.sub(r"OldsFireDept", "Olds Fire Department", tweet) tweet = re.sub(r"RiverComplex", "River Complex", tweet) tweet = re.sub(r"fieldworksmells", "field work smells", tweet) tweet = re.sub(r"IranElection", "Iran Election", tweet) tweet = re.sub(r"glowng", "glowing", tweet) tweet = re.sub(r"kindlng", "kindling", tweet) tweet = re.sub(r"riggd", "rigged", tweet) tweet = re.sub(r"slownewsday", "slow news day", tweet) tweet = re.sub(r"MyanmarFlood", "Myanmar Flood", tweet) tweet = re.sub(r"abc7chicago", "ABC 7 Chicago", tweet) tweet = re.sub(r"copolitics", "Colorado Politics", tweet) tweet = re.sub(r"AdilGhumro", "Adil Ghumro", tweet) tweet = re.sub(r"netbots", "net bots", tweet) tweet = re.sub(r"byebyeroad", "bye bye road", tweet) tweet = re.sub(r"massiveflooding", "massive flooding", tweet) tweet = re.sub(r"EndofUS", "End of United States", tweet) tweet = re.sub(r"35PM", "35 PM", tweet) tweet = re.sub(r"greektheatrela", "Greek Theatre Los Angeles", tweet) tweet = re.sub(r"76mins", "76 minutes", tweet) tweet = re.sub(r"publicsafetyfirst", "public safety first", tweet) tweet = re.sub(r"livesmatter", "lives matter", tweet) tweet = re.sub(r"myhometown", "my hometown", tweet) tweet = re.sub(r"tankerfire", "tanker fire", tweet) tweet = re.sub(r"MEMORIALDAY", "memorial day", tweet) tweet = re.sub(r"MEMORIAL_DAY", "memorial day", tweet) tweet = re.sub(r"instaxbooty", "instagram booty", tweet) tweet = re.sub(r"Jerusalem_Post", "Jerusalem Post", tweet) tweet = re.sub(r"WayneRooney_INA", "Wayne Rooney", tweet) tweet = re.sub(r"VirtualReality", "Virtual Reality", tweet) tweet = re.sub(r"OculusRift", "Oculus Rift", tweet) tweet = re.sub(r"OwenJones84", "Owen Jones", tweet) tweet = re.sub(r"jeremycorbyn", "Jeremy Corbyn", tweet) tweet = re.sub(r"paulrogers002", "Paul Rogers", tweet) tweet = re.sub(r"mortalkombatx", "Mortal Kombat X", tweet) tweet = re.sub(r"mortalkombat", "Mortal Kombat", tweet) tweet = re.sub(r"FilipeCoelho92", "Filipe Coelho", tweet) tweet = re.sub(r"OnlyQuakeNews", "Only Quake News", tweet) tweet = re.sub(r"kostumes", "costumes", tweet) tweet = re.sub(r"YEEESSSS", "yes", tweet) tweet = re.sub(r"ToshikazuKatayama", "Toshikazu Katayama", tweet) tweet = re.sub(r"IntlDevelopment", "Intl Development", tweet) tweet = re.sub(r"ExtremeWeather", "Extreme Weather", tweet) tweet = re.sub(r"WereNotGruberVoters", "We are not gruber voters", tweet) tweet = re.sub(r"NewsThousands", "News Thousands", tweet) tweet = re.sub(r"EdmundAdamus", "Edmund Adamus", tweet) tweet = re.sub(r"EyewitnessWV", "Eye witness WV", tweet) tweet = re.sub(r"PhiladelphiaMuseu", "Philadelphia Museum", tweet) tweet = re.sub(r"DublinComicCon", "Dublin Comic Con", tweet) tweet = re.sub(r"NicholasBrendon", "Nicholas Brendon", tweet) tweet = re.sub(r"Alltheway80s", "All the way 80s", tweet) tweet = re.sub(r"FromTheField", "From the field", tweet) tweet = re.sub(r"NorthIowa", "North Iowa", tweet) tweet = re.sub(r"WillowFire", "Willow Fire", tweet) tweet = re.sub(r"MadRiverComplex", "Mad River Complex", tweet) tweet = re.sub(r"feelingmanly", "feeling manly", tweet) tweet = re.sub(r"stillnotoverit", "still not over it", tweet) tweet = re.sub(r"FortitudeValley", "Fortitude Valley", tweet) tweet = re.sub(r"CoastpowerlineTramTr", "Coast powerline", tweet) tweet = re.sub(r"ServicesGold", "Services Gold", tweet) tweet = re.sub(r"NewsbrokenEmergency", "News broken emergency", tweet) tweet = re.sub(r"Evaucation", "evacuation", tweet) tweet = re.sub(r"leaveevacuateexitbe", "leave evacuate exit be", tweet) tweet = re.sub(r"P_EOPLE", "PEOPLE", tweet) tweet = re.sub(r"Tubestrike", "tube strike", tweet) tweet = re.sub(r"CLASS_SICK", "CLASS SICK", tweet) tweet = re.sub(r"localplumber", "local plumber", tweet) tweet = re.sub(r"awesomejobsiri", "awesome job siri", tweet) tweet = re.sub(r"PayForItHow", "Pay for it how", tweet) tweet = re.sub(r"ThisIsAfrica", "This is Africa", tweet) tweet = re.sub(r"crimeairnetwork", "crime air network", tweet) tweet = re.sub(r"KimAcheson", "Kim Acheson", tweet) tweet = re.sub(r"cityofcalgary", "City of Calgary", tweet) tweet = re.sub(r"prosyndicate", "pro syndicate", tweet) tweet = re.sub(r"660NEWS", "660 NEWS", tweet) tweet = re.sub(r"BusInsMagazine", "Business Insurance Magazine", tweet) tweet = re.sub(r"wfocus", "focus", tweet) tweet = re.sub(r"ShastaDam", "Shasta Dam", tweet) tweet = re.sub(r"go2MarkFranco", "Mark Franco", tweet) tweet = re.sub(r"StephGHinojosa", "Steph Hinojosa", tweet) tweet = re.sub(r"Nashgrier", "Nash Grier", tweet) tweet = re.sub(r"NashNewVideo", "Nash new video", tweet) tweet = re.sub(r"IWouldntGetElectedBecause", "I would not get elected because", tweet) tweet = re.sub(r"SHGames", "Sledgehammer Games", tweet) tweet = re.sub(r"bedhair", "bed hair", tweet) tweet = re.sub(r"JoelHeyman", "Joel Heyman", tweet) tweet = re.sub(r"viaYouTube", "via YouTube", tweet) tweet=tweet.strip() return tweet<categorify>
model = keras.models.load_model("best_mnist_model.h5") model.evaluate(X_train, Y_train)
Digit Recognizer
12,714,797
def remove_punct(text): table=str.maketrans('','',string.punctuation) return text.translate(table )<feature_engineering>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
12,714,797
df_train['text']=df_train['text'].apply(reduce_lengthening, 0) df_train['text']=df_train['text'].apply(decontracted, 0) df_train['text']=df_train['text'].apply(lambda x : remove_punct(x))<drop_column>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_with_aug.csv",index=False )
Digit Recognizer
11,966,240
def remove_URL(text): url = re.compile(r'https?://\S+|www\.\S+') return url.sub(r'',text )<feature_engineering>
%matplotlib inline np.random.seed(42)
Digit Recognizer
11,966,240
df_train['text']=df_train['text'].apply(lambda x : remove_URL(x))<choose_model_class>
train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') submission=pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
11,966,240
aug_w2v = naw.WordEmbsAug( model_type='glove', model_path='.. /input/glove-global-vectors-for-word-representation/glove.6B.100d.txt', action="substitute") <normalization>
train_data=".. /input/digit-recognizer/train.csv" test_data = ".. /input/digit-recognizer/test.csv"
Digit Recognizer
11,966,240
aug_w2v.aug_p=0.2 print("Augmented Text:") for ii in range(5): augmented_text = aug_w2v.augment(text) print(augmented_text )<split>
Xtrain,Xtest,ytrain,ytest=train_test_split(raw_data[:,1:], raw_data[:,0],test_size=0.2, stratify=raw_data[:,0], random_state=42)
Digit Recognizer
11,966,240
train,valid=train_test_split(df_train,test_size=0.15) print('Shape of train',train.shape) print("Shape of Validation ",valid.shape )<categorify>
Xtrain=Xtrain/255. Xtest=Xtest/255 .
Digit Recognizer
11,966,240
def augment_text(df,samples=300,pr=0.2): aug_w2v.aug_p=pr new_text=[] df_n=df[df.target==1].reset_index(drop=True) for i in tqdm(np.random.randint(0,len(df_n),samples)) : text = df_n.iloc[i]['text'] augmented_text = aug_w2v.augment(text) new_text.append(augmented_text) new=pd.DataFrame({'text':new_text,'target':1}) df=shuffle(df.append(new ).reset_index(drop=True)) return df <categorify>
ytrain= to_categorical(ytrain, num_classes = 10) ytest= to_categorical(ytest, num_classes = 10 )
Digit Recognizer
11,966,240
train = augment_text(train,samples=400) tweet = train.append(valid ).reset_index(drop=True )<concatenate>
Xtrain=Xtrain.astype("float32" ).reshape(-1,28,28,1) Xtest=Xtest.astype("float32" ).reshape(-1,28,28,1 )
Digit Recognizer
11,966,240
df=pd.concat([tweet,df_test] )<remove_duplicates>
train_gen=ImageDataGenerator(rotation_range=20, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, shear_range=0.2 )
Digit Recognizer
11,966,240
def create_corpus(df): corpus=[] for tweet in tqdm(df['text']): words=[word.lower() for word in word_tokenize(tweet)if(( word.isalpha() ==1)&(word not in stop)) ] corpus.append(words) return corpus <statistical_test>
def model() : model=tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(16,(3,3), activation="relu",padding="SAME",input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(tf.keras.layers.Conv2D(32,(3,3),activation="relu",padding="SAME")) model.add(BatchNormalization()) model.add(tf.keras.layers.MaxPool2D(strides=(2,2))) model.add(Dropout(0.25)) model.add(tf.keras.layers.Conv2D(32,(3,3),padding='SAME',activation='relu')) model.add(BatchNormalization()) model.add(tf.keras.layers.Conv2D(64,(3,3),padding='SAME',activation='relu')) model.add(BatchNormalization()) model.add(tf.keras.layers.MaxPool2D(strides=(2,2))) model.add(Dropout(0.25)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(512,activation="relu")) model.add(Dropout(0.25)) model.add(tf.keras.layers.Dense(256,activation="relu")) model.add(Dropout(0.5)) model.add(tf.keras.layers.Dense(10,activation="softmax")) return model
Digit Recognizer
11,966,240
corpus=create_corpus(df )<load_from_csv>
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x )
Digit Recognizer
11,966,240
embedding_dict={} with open('.. /input/glove-global-vectors-for-word-representation/glove.6B.100d.txt','r')as f: for line in f: values=line.split() word=values[0] vectors=np.asarray(values[1:],'float32') embedding_dict[word]=vectors f.close()<categorify>
model.compile(optimizer=Adam(lr=1e-4),loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
11,966,240
MAX_LEN=50 tokenizer_obj=Tokenizer() tokenizer_obj.fit_on_texts(corpus) sequences=tokenizer_obj.texts_to_sequences(corpus) tweet_pad=pad_sequences(sequences,maxlen=MAX_LEN,truncating='post',padding='post' )<count_unique_values>
class MyCallback(tf.keras.callbacks.Callback): def on_epoch_end(self,epochs,logs={}): if(logs.get('accuracy')>0.99): print() print("Stopping Training") self.model.stop_training=True
Digit Recognizer
11,966,240
word_index=tokenizer_obj.word_index print('Number of unique words:',len(word_index))<define_variables>
history=model.fit_generator(train_gen.flow(Xtrain,ytrain,batch_size=16), validation_data=(Xtest[:1000,:], ytest[:1000,:]), epochs=30,callbacks=[annealer], steps_per_epoch=500 )
Digit Recognizer
11,966,240
num_words=len(word_index)+1 embedding_matrix=np.zeros(( num_words,100)) for word,i in tqdm(word_index.items()): if i > num_words: continue emb_vec=embedding_dict.get(word) if emb_vec is not None: embedding_matrix[i]=emb_vec <choose_model_class>
model.evaluate(Xtest,ytest )
Digit Recognizer
11,966,240
model = Sequential() embedding=Embedding(num_words,100,embeddings_initializer=Constant(embedding_matrix), input_length=MAX_LEN,trainable=False) model.add(embedding) model.add(SimpleRNN(100)) model.add(Dense(1, activation='sigmoid')) optimzer=Adam(learning_rate=1e-5) model.compile(loss='binary_crossentropy',optimizer=optimzer,metrics=['accuracy']) model.summary() <split>
testing = np.loadtxt(test_data, skiprows=1, dtype='int', delimiter=',') test = testing.astype("float32") test = testing.reshape(-1, 28, 28, 1)/255 .
Digit Recognizer
11,966,240
train_df=tweet_pad[:tweet.shape[0]] test_df=tweet_pad[tweet.shape[0]:]<prepare_x_and_y>
ypred=np.argmax(model.predict(test),axis=-1 )
Digit Recognizer
11,966,240
<train_model><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("MNIST_digit_recog.csv",index=False )
Digit Recognizer
12,482,444
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test>
%matplotlib inline np.random.seed(2) sns.set(style='white', context='notebook', palette='deep') for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
Digit Recognizer
12,482,444
y_pre=model.predict(X_test) y_pre=np.round(y_pre ).astype(int ).reshape(1142 )<compute_test_metric>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
12,482,444
print(roc_auc_score(y_pre,y_test))<define_variables>
y_train = train.label x_train = train.drop('label', 1 )
Digit Recognizer
12,482,444
scores_model = []<compute_test_metric>
train.isnull().values.any()
Digit Recognizer
12,482,444
scores_model.append({'Model': 'SimpleRNN','AUC_Score': roc_auc_score(y_pre,y_test)} )<choose_model_class>
x_train = x_train/255.0 test = test/255.0
Digit Recognizer
12,482,444
model=Sequential() embedding=Embedding(num_words,100,embeddings_initializer=Constant(embedding_matrix), input_length=MAX_LEN,trainable=False) model.add(embedding) model.add(SpatialDropout1D(0.2)) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(1, activation='sigmoid')) optimzer=Adam(learning_rate=1e-5) model.compile(loss='binary_crossentropy',optimizer=optimzer,metrics=['accuracy']) <train_model>
y_train = to_categorical(y_train, num_classes = 10 )
Digit Recognizer
12,482,444
history=model.fit(X_train,y_train,batch_size=4,epochs=10,validation_data=(X_test,y_test),verbose=2 )<predict_on_test>
x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size = 0.1, random_state=2)
Digit Recognizer
12,482,444
y_pre=model.predict(X_test) y_pre=np.round(y_pre ).astype(int ).reshape(1142 )<compute_test_metric>
model = Sequential() model.add(Conv2D(64,kernel_size=5,padding = 'Same',activation='relu',input_shape=(28,28,1))) model.add(Conv2D(64,kernel_size=5,padding = 'Same',activation='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.40)) model.add(Conv2D(64,kernel_size=3,padding = 'Same',activation='relu')) model.add(Conv2D(64,kernel_size=3,padding = 'Same',activation='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.40)) model.add(Flatten()) model.add(Dense(128, activation = "relu")) model.add(Dropout(0.40)) model.add(Dense(10, activation = "softmax")) model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
12,482,444
print(roc_auc_score(y_pre,y_test))<compute_test_metric>
epochs = 30 batch_size = 100
Digit Recognizer
12,482,444
scores_model.append({'Model': 'LSTM','AUC_Score': roc_auc_score(y_pre,y_test)} )<choose_model_class>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(x_train )
Digit Recognizer
12,482,444
model=Sequential() embedding=Embedding(num_words,100,embeddings_initializer=Constant(embedding_matrix), input_length=MAX_LEN,trainable=False) model.add(embedding) model.add(SpatialDropout1D(0.2)) model.add(GRU(300)) model.add(Dense(1, activation='sigmoid')) optimzer=Adam(learning_rate=1e-5) model.compile(loss='binary_crossentropy',optimizer=optimzer,metrics=['accuracy']) model.summary()<train_model>
LR_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience = 2, verbose = 1, factor = 0.5, min_lr = 0.00001 )
Digit Recognizer
12,482,444
history=model.fit(X_train,y_train,batch_size=8,epochs=10,validation_data=(X_test,y_test),verbose=2 )<predict_on_test>
model.fit_generator(datagen.flow(x_train, y_train, batch_size = batch_size), epochs = epochs, validation_data =(x_val,y_val), steps_per_epoch=x_train.shape[0] // batch_size, callbacks=[LR_reduction] )
Digit Recognizer
12,482,444
<choose_model_class><EOS>
results = model.predict(test) results = np.argmax(results, axis = 1) results = pd.Series(results, name="Label") submission = pd.concat([pd.Series(range(1,28001), name = "ImageId"), results], axis = 1) submission.to_csv("submission.csv", index=False )
Digit Recognizer
12,477,197
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_model>
import os import random import torch import torch.nn as nn import torch.nn.functional as F from torch.optim import Adam from torch.utils.data import DataLoader from torchvision import transforms import numpy as np import matplotlib.pyplot as plt from torch.nn import CrossEntropyLoss from tqdm import tqdm from collections import Counter
Digit Recognizer
12,477,197
history=model.fit(X_train,y_train,batch_size=4,epochs=5,validation_data=(X_test,y_test),verbose=2 )<compute_train_metric>
root = "/kaggle/input/digit-recognizer" train_data = np.loadtxt(os.path.join(root,"train.csv"),delimiter=",",skiprows=1) test_data = np.loadtxt(os.path.join(root,"test.csv"),delimiter=",",skiprows=1 )
Digit Recognizer
12,477,197
y_pre=model.predict(X_test) y_pre=np.round(y_pre ).astype(int ).reshape(1142) print(roc_auc_score(y_pre,y_test))<compute_test_metric>
!nvidia-smi
Digit Recognizer
12,477,197
scores_model.append({'Model': 'Bidirectional-LSTM','AUC_Score': roc_auc_score(y_pre,y_test)} )<load_from_url>
class Dataset: def __init__(self,data,targets,transform=None): self.data = data self.targets = targets self.transform = transform def __len__(self): return len(self.data) def __getitem__(self,idx): if self.transform == None: return self.data[idx],self.targets[idx] else: return self.transform(self.data[idx]),self.targets[idx]
Digit Recognizer
12,477,197
!wget --quiet https://raw.githubusercontent.com/tensorflow/models/master/official/nlp/bert/tokenization.py<import_modules>
transform = transforms.Compose([transforms.ToPILImage() , transforms.RandomResizedCrop(size=28,scale=(0.9,1.0),ratio=(0.9,1,15)) , transforms.RandomAffine(degrees=12,translate=(1/7,1/7),shear=12), transforms.RandomRotation(degrees=12), transforms.ToTensor() ]) x_train = train_data[:,1:].reshape(-1,28,28 ).astype(np.uint8) y_train = torch.LongTensor(train_data[:,0]) train_dataset = Dataset(x_train,y_train,transform )
Digit Recognizer
12,477,197
import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.layers import Dense, Input from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from tensorflow.keras.callbacks import ModelCheckpoint import tensorflow_hub as hub import tokenization<categorify>
class CNN(nn.Module): def __init__(self): super(CNN,self ).__init__() self.layer1 = self.get_conv_block(1,64) self.layer2 = self.get_conv_block(64,128,paddings=(0,1)) self.layer3 = self.get_conv_block(128,256) self.fc1 = nn.Linear(256*3*3,2048) self.fc2 = nn.Linear(2048,512) self.fc3 = nn.Linear(512,10) def forward(self,x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x ).flatten(start_dim=1) x = F.dropout(F.relu(self.fc1(x)) ,0.7,training=self.training) out = self.fc3(F.relu(self.fc2(x))) return out def get_conv_block(self,in_chan,out_chan,strides=(1,1),paddings=(1,1)) : return nn.Sequential( nn.Conv2d(in_chan,out_chan,3,strides[0],paddings[0]), nn.ReLU() , nn.BatchNorm2d(out_chan), nn.Conv2d(out_chan,out_chan,3,strides[0],paddings[1]), nn.ReLU() , nn.BatchNorm2d(out_chan), nn.MaxPool2d(2) )
Digit Recognizer
12,477,197
def bert_encode(texts, tokenizer, max_len=512): all_tokens = [] all_masks = [] all_segments = [] for text in texts: text = tokenizer.tokenize(text) text = text[:max_len-2] input_sequence = ["[CLS]"] + text + ["[SEP]"] pad_len = max_len - len(input_sequence) tokens = tokenizer.convert_tokens_to_ids(input_sequence) tokens += [0] * pad_len pad_masks = [1] * len(input_sequence)+ [0] * pad_len segment_ids = [0] * max_len all_tokens.append(tokens) all_masks.append(pad_masks) all_segments.append(segment_ids) return np.array(all_tokens), np.array(all_masks), np.array(all_segments )<choose_model_class>
device = torch.device("cuda")if torch.cuda.is_available() else torch.device("cpu") random.seed(1234) np.random.seed(1234) torch.random.manual_seed(1234) epochs = 80 batch_size = 512 trainloader = DataLoader(train_dataset,batch_size,shuffle=True,pin_memory=True) def train(dataloader,net,optimizer,loss_fn,epochs=50): for n in range(epochs): with tqdm(dataloader,desc=f"{n+1}/{epochs} epochs")as t: running_loss = 0.0 running_correct = 0 running_total = 0 for x,y in t: out = net(x.to(device)) pred = out.max(dim=1)[1] loss = loss_fn(out,y.to(device)) opt.zero_grad() loss.backward() opt.step() running_loss += loss.item() *x.size(0) running_correct +=(pred==y.to(device)).sum().item() running_total += x.size(0) t.set_postfix({"train_loss":running_loss/running_total,"train_acc":running_correct/running_total}) models = [] for i in range(5): print("Training {} model".format(str(i+1)+["st","nd","rd","th","th"][i])) cnn = CNN() cnn.to(device) opt = Adam(cnn.parameters() ,lr=1e-4) loss_fn = CrossEntropyLoss() train(trainloader,cnn,opt,loss_fn,epochs) models.append(cnn )
Digit Recognizer
12,477,197
def build_model(bert_layer, max_len=512): input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") input_mask = Input(shape=(max_len,), dtype=tf.int32, name="input_mask") segment_ids = Input(shape=(max_len,), dtype=tf.int32, name="segment_ids") _, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) clf_output = sequence_output[:, 0, :] out = Dense(1, activation='sigmoid' )(clf_output) model = Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=out) model.compile(Adam(lr=1e-5), loss='binary_crossentropy', metrics=['accuracy']) return model<choose_model_class>
cnn.eval() train_dataset.transform = transforms.ToTensor() trainloader = DataLoader(train_dataset,batch_size=512,shuffle=False,pin_memory=True) train_preds = [] for cnn in models: train_pred = [] with torch.no_grad() : for x,_ in trainloader: out = cnn(x.to(device)) pred = out.max(dim=1)[1] train_pred.append(pred.detach().cpu().numpy()) train_preds.append(np.concatenate(train_pred)) train_preds = list(zip(*train_preds)) train_pred = np.array(list(map(lambda x: Counter(x ).most_common(1)[0][0],train_preds))) train_acc =(train_pred == y_train.numpy() ).astype("float" ).mean() print("The training accurary is {}".format(train_acc))
Digit Recognizer
12,477,197
%%time module_url = "https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1" bert_layer = hub.KerasLayer(module_url, trainable=True )<load_from_csv>
x_test = test_data.reshape(-1,1,28,28) x_test = torch.Tensor(x_test)/255. test_preds = [] for cnn in models: test_pred = [] with torch.no_grad() : for i in range(0,len(x_test),batch_size): out = cnn(x_test[i:i+batch_size].to(device)) pred = out.max(dim=1)[1] test_pred.append(pred.detach().cpu().numpy()) test_preds.append(np.concatenate(test_pred)) test_preds = list(zip(*test_preds)) test_pred = list(map(lambda x: Counter(x ).most_common(1)[0][0],test_preds))
Digit Recognizer
12,477,197
train = pd.read_csv(".. /input/nlp-getting-started/train.csv") test = pd.read_csv(".. /input/nlp-getting-started/test.csv") submission = pd.read_csv(".. /input/nlp-getting-started/sample_submission.csv") <feature_engineering>
imageid = pd.Series(np.arange(len(test_pred)))+1 df = pd.DataFrame({"ImageId":imageid,"Label":test_pred}) df.set_index("ImageId") df.to_csv("/kaggle/working/test_pred.csv",index=False )
Digit Recognizer
12,506,433
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case )<categorify>
%matplotlib inline
Digit Recognizer
12,506,433
train_input = bert_encode(train.text.values, tokenizer, max_len=160) test_input = bert_encode(test.text.values, tokenizer, max_len=160) train_labels = train.target.values<train_model>
train_data = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") train_data.head()
Digit Recognizer
12,506,433
checkpoint = ModelCheckpoint('model.h5', monitor='val_loss', save_best_only=True) train_history = model.fit( train_input, train_labels, validation_split=0.2, epochs=3, callbacks=[checkpoint], batch_size=16 )<predict_on_test>
test_data = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") test_data.head()
Digit Recognizer
12,506,433
model.load_weights('model.h5') test_pred = model.predict(test_input )<save_to_csv>
from sklearn.model_selection import train_test_split
Digit Recognizer
12,506,433
submission['target'] = test_pred.round().astype(int) submission.to_csv('submission.csv', index=False )<load_from_csv>
from sklearn.model_selection import train_test_split
Digit Recognizer
12,506,433
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') print(train.shape, test.shape) train.sample(10, random_state=26 )<feature_engineering>
y = train_data['label']
Digit Recognizer
12,506,433
def preprocess(df): df_new = df.copy(deep=True) df_new['text'] = df.apply(lambda row: re.sub('@[A-z0-9]', '', row['text'] ).lower() , axis=1) df_new['text_w_kword'] = df_new.apply(lambda row: 'keyword: ' + str(row['keyword'])+ '.'+ str(row['text']), axis=1) return df_new train_prep = preprocess(train) test_prep = preprocess(test) train_prep[40:60]<split>
df_train = train_data.drop(['label'], axis=1 )
Digit Recognizer
12,506,433
X_train, X_valid, y_train, y_valid = train_test_split(train_prep['text_w_kword'], train_prep['target'], test_size=0.1, random_state=1 )<load_pretrained>
from sklearn import preprocessing from sklearn.model_selection import train_test_split import sklearn.metrics as metrics
Digit Recognizer
12,506,433
tokenizer = DistilBertTokenizerFast.from_pretrained('/kaggle/input/huggingface-bert-variants/distilbert-base-uncased/distilbert-base-uncased/') train_encodings = tokenizer(list(X_train), truncation=True, padding='max_length', max_length=100) valid_encodings = tokenizer(list(X_valid), truncation=True, padding='max_length', max_length=100 )<data_type_conversions>
df_train = df_train/255 df_train[0:5]
Digit Recognizer
12,506,433
train_dataset = tf.data.Dataset.from_tensor_slices(( dict(train_encodings), y_train.values.astype('float32' ).reshape(( -1,1)) )) valid_dataset = tf.data.Dataset.from_tensor_slices(( dict(valid_encodings), y_valid.values.astype('float32' ).reshape(( -1,1)) )) train_dataset<choose_model_class>
y = to_categorical(y, num_classes = 10) y.shape
Digit Recognizer
12,506,433
es = EarlyStopping(monitor='val_loss', verbose=1, patience=4, restore_best_weights=True )<choose_model_class>
X_train, X_test, y_train, y_test = train_test_split(df_train, y, test_size = 0.1, random_state=42, stratify=y )
Digit Recognizer
12,506,433
batch_size = 64 num_epochs = 15 num_train_steps =(X_train.shape[0] // batch_size)* num_epochs lr_scheduler = PolynomialDecay( initial_learning_rate=5e-5, end_learning_rate=1e-5, decay_steps=num_train_steps ) new_opt = Adam(learning_rate=lr_scheduler )<compute_test_metric>
input_shape =(28,28,1) X_input = Input(input_shape) x = Conv2D(64,(3,3),strides=(1,1),name='layer_conv1',padding='same' )(X_input) x = BatchNormalization()(x) x = Activation('relu' )(x) x = MaxPooling2D(( 2,2),name='maxPool1' )(x) x = Conv2D(32,(3,3),strides=(1,1),name='layer_conv2',padding='same' )(x) x = BatchNormalization()(x) x = Activation('relu' )(x) x = MaxPooling2D(( 2,2),name='maxPool2' )(x) x = Conv2D(32,(3,3),strides=(1,1),name='conv3',padding='same' )(x) x = BatchNormalization()(x) x = Activation('relu' )(x) x = MaxPooling2D(( 2,2), name='maxPool3' )(x) x = Flatten()(x) x = Dense(64,activation ='relu',name='fc0' )(x) x = Dropout(0.25 )(x) x = Dense(32,activation ='relu',name='fc1' )(x) x = Dropout(0.25 )(x) x = Dense(10,activation ='softmax',name='fc2' )(x) conv_model = Model(inputs=X_input, outputs=x, name='Predict') conv_model.summary()
Digit Recognizer
12,506,433
def f1_score(true, pred): ground_positives = K.sum(true, axis=0)+ K.epsilon() pred_positives = K.sum(pred, axis=0)+ K.epsilon() true_positives = K.sum(true * pred, axis=0)+ K.epsilon() precision = true_positives / pred_positives recall = true_positives / ground_positives f1 = 2 *(precision * recall)/(precision + recall + K.epsilon()) return f1<train_model>
conv_model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy']) conv_model.fit(X_train, y_train, epochs=10, batch_size=100, validation_data=(X_test,y_test))
Digit Recognizer
12,506,433
model = TFDistilBertForSequenceClassification.from_pretrained('/kaggle/input/huggingface-bert-variants/distilbert-base-uncased/distilbert-base-uncased/', num_labels=2) model.compile( optimizer=new_opt, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) ) history = model.fit(train_dataset.batch(batch_size), validation_data=valid_dataset.batch(batch_size), epochs=num_epochs, callbacks=[es] )<categorify>
sgd = SGD(lr=0.0005, momentum=0.5, decay=0.0, nesterov=False) conv_model.compile(optimizer=sgd,loss='categorical_crossentropy',metrics=['accuracy']) conv_model.fit(X_train, y_train, epochs=30, validation_data=(X_test, y_test))
Digit Recognizer
12,506,433
test_encodings = tokenizer(list(test_prep['text_w_kword']), truncation=True, padding='max_length', max_length=100) test_dataset = tf.data.Dataset.from_tensor_slices(( dict(test_encodings) ))<predict_on_test>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
12,506,433
test_preds = model.predict(test_dataset.batch(1))<prepare_output>
hist = conv_model.fit_generator(datagen.flow(X_train,y_train), epochs = 1, validation_data =(X_test,y_test), verbose = 2)
Digit Recognizer
12,506,433
class_preds = np.argmax(test_preds.logits, axis=1) class_preds<predict_on_test>
data_generator = ImageDataGenerator(rescale=1./255, rotation_range=1, zoom_range=0.1, width_shift_range=0.05, height_shift_range=0.05) data_generator.fit(X_train)
Digit Recognizer
12,506,433
valid_preds = model.predict(valid_dataset.batch(batch_size))<prepare_output>
df_test = test_data/255 df_test[0:5]
Digit Recognizer
12,506,433
valid_class_preds = np.argmax(valid_preds.logits, axis=1 )<compute_test_metric>
results = conv_model.predict(df_test) results = np.argmax(results,axis=1) my_submission = pd.DataFrame({'ImageId': list(range(1, len(results)+1)) , 'Label': results}) my_submission.to_csv('submission.csv', index=False )
Digit Recognizer
12,506,433
<create_dataframe><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False) print("Your submission was successfully saved!")
Digit Recognizer
12,403,998
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<save_to_csv>
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Conv2D , MaxPool2D , Flatten , Dropout , BatchNormalization from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler
Digit Recognizer
12,403,998
df_submission.to_csv('submission.csv', index=False )<import_modules>
train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer
12,403,998
print(tf.__version__ )<import_modules>
train_Y = np.array(train["label"]) train_Y = np_utils.to_categorical(train_Y, num_classes = 10 )
Digit Recognizer
12,403,998
import numpy as np import pandas as pd import matplotlib.pyplot as plt from tensorflow import keras import cv2 import PIL import os import pathlib import shutil from IPython.display import Image, display import plotly.graph_objs as go import plotly.graph_objects as go from sklearn.metrics import cohen_kappa_score from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential, Model,load_model from tensorflow.keras.applications import vgg16 from tensorflow.keras.applications import resnet50 from tensorflow.keras.applications import xception from tensorflow.keras.applications import inception_v3 from tensorflow.keras.applications import inception_resnet_v2 from tensorflow.keras.applications import resnet_v2 from tensorflow.keras.applications import nasnet from tensorflow.keras.preprocessing.image import ImageDataGenerator,load_img, img_to_array from tensorflow.keras import Input from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten,BatchNormalization,Activation from tensorflow.keras.layers import GlobalAveragePooling2D, Concatenate from tensorflow.keras.optimizers import Adam, SGD, RMSprop from tensorflow.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, LearningRateScheduler from tensorflow.keras.utils import to_categorical from tensorflow.keras.preprocessing import image_dataset_from_directory from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.layers.experimental import preprocessing import gc import skimage.io <load_from_csv>
train_X = np.array(train.iloc[:, 1:]) test_X = np.array(test )
Digit Recognizer
12,403,998
train_dir = '.. /input/dog-breed-dataset-with-subdirectories-by-class/data/train' test_dir = '.. /input/dog-breed-dataset-with-subdirectories-by-class/data/test' train_labels = pd.read_csv('.. /input/dog-breed-identification/labels.csv', index_col = 'id') submission=pd.read_csv('.. /input/dog-breed-identification/sample_submission.csv' )<categorify>
train_X, valid_X, train_Y, valid_Y = train_test_split(train_X, train_Y, shuffle=True, test_size = 0.1, random_state=2, stratify=train_Y )
Digit Recognizer
12,403,998
target, dog_breeds = pd.factorize(train_labels['breed'], sort = True) train_labels['target'] = target print(dog_breeds )<count_values>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(train_X )
Digit Recognizer
12,403,998
train_labels['breed'].value_counts()<define_variables>
nets = 5 model = [0] *nets for i in range(nets): model[i] = Sequential() model[i].add(Conv2D(32, kernel_size = 3, activation='relu', input_shape =(28, 28, 1))) model[i].add(BatchNormalization()) model[i].add(Conv2D(32, kernel_size = 3, activation='relu')) model[i].add(BatchNormalization()) model[i].add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='relu')) model[i].add(BatchNormalization()) model[i].add(Dropout(0.4)) model[i].add(Conv2D(64, kernel_size = 3, activation='relu')) model[i].add(BatchNormalization()) model[i].add(Conv2D(64, kernel_size = 3, activation='relu')) model[i].add(BatchNormalization()) model[i].add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='relu')) model[i].add(BatchNormalization()) model[i].add(Dropout(0.4)) model[i].add(Conv2D(128, kernel_size = 4, activation='relu')) model[i].add(BatchNormalization()) model[i].add(Flatten()) model[i].add(Dropout(0.4)) model[i].add(Dense(10, activation='softmax')) model[i].compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"])
Digit Recognizer
12,403,998
N_EPOCHS = 50 BATCH_SIZE = 128 IMG_HEIGHT = 331 IMG_WIDTH = 331<create_dataframe>
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x) history = [0] * nets epochs = 45 for j in range(nets): print("CNN ",j+1) history[j] = model[j].fit_generator(datagen.flow(train_X, train_Y, batch_size=64), epochs = epochs, steps_per_epoch = train_X.shape[0]//64, validation_data =(valid_X, valid_Y), callbacks=[annealer], verbose=1) print("CNN {0:d} DONE".format(j+1))
Digit Recognizer
12,403,998
train_ds = image_dataset_from_directory( directory = train_dir, labels = 'inferred', label_mode='int', batch_size=BATCH_SIZE, image_size=(IMG_HEIGHT, IMG_WIDTH), shuffle = True, seed=1234, validation_split=0.1, subset="training", )<define_variables>
results = np.zeros(( test_X.shape[0],10)) for j in range(nets): results = results + model[j].predict(test_X) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("submission.csv",index=False )
Digit Recognizer
13,307,296
class_names = train_ds.class_names print(len(class_names)) print(class_names )<create_dataframe>
df_train=pd.read_csv(".. /input/digit-recognizer/train.csv") df_train.head()
Digit Recognizer
13,307,296
val_ds = image_dataset_from_directory( directory = train_dir, labels = 'inferred', label_mode='int', batch_size=BATCH_SIZE, image_size=(IMG_HEIGHT, IMG_WIDTH), shuffle = True, seed=1234, validation_split=0.1, subset="validation", )<create_dataframe>
df_train = shuffle(df_train )
Digit Recognizer
13,307,296
test_ds = image_dataset_from_directory( directory = test_dir, label_mode= None, batch_size=BATCH_SIZE, image_size=(IMG_HEIGHT, IMG_WIDTH), shuffle = False, seed=1234 )<drop_column>
X=df_train.drop(["label"],axis=1) y=df_train["label"]
Digit Recognizer
13,307,296
del class_names<data_type_conversions>
y.value_counts(normalize=True )
Digit Recognizer
13,307,296
plt.figure(figsize=(20, 20)) for images, labels in train_ds.take(1): for i in range(16): ax = plt.subplot(4, 4, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(dog_breeds[labels[i]]) plt.axis("off" )<data_type_conversions>
from tensorflow.keras.layers import Conv2D,Dense,Reshape,MaxPool2D,Dropout from tensorflow.keras.models import Sequential
Digit Recognizer
13,307,296
plt.figure(figsize=(20, 20)) for images, labels in val_ds.take(1): for i in range(16): ax = plt.subplot(4, 4, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(dog_breeds[labels[i]]) plt.axis("off" )<data_type_conversions>
from tensorflow.keras.layers import Flatten
Digit Recognizer
13,307,296
plt.figure(figsize=(20, 20)) for images in test_ds.take(1): for i in range(16): ax = plt.subplot(4, 4, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.axis("off" )<load_pretrained>
import tensorflow as tf
Digit Recognizer
13,307,296
AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.prefetch(buffer_size=AUTOTUNE) test_ds = test_ds.prefetch(buffer_size=AUTOTUNE) <choose_model_class>
model=Sequential() model.add(Reshape(( 28,28,1),input_shape=(784,))) model.add(Conv2D(64,(3,3),activation="relu",kernel_initializer="he_uniform")) model.add(Dropout(0.5)) model.add(MaxPool2D(pool_size=(2,2),strides=2)) model.add(Conv2D(64,(5,5),activation="relu",kernel_initializer="he_uniform")) model.add(Dropout(0.5)) model.add(MaxPool2D(pool_size=(2,2),strides=2)) model.add(Flatten()) model.add(Dense(64,activation="relu",kernel_initializer="he_uniform")) model.add(Dropout(0.3)) model.add(Dense(10,activation="softmax")) model.compile(optimizer="adam",loss="sparse_categorical_crossentropy",metrics=["accuracy"]) model.summary()
Digit Recognizer
13,307,296
data_augmentation = Sequential( [ preprocessing.RandomFlip("horizontal"), preprocessing.RandomRotation(0.1), preprocessing.RandomZoom(0.1), ] )<choose_model_class>
model.fit(tf.cast(X,tf.float32)/255.0,tf.cast(y,tf.float32),validation_split=0.3,batch_size=100,verbose=2,epochs=100)
Digit Recognizer
13,307,296
base_model_1 = xception.Xception(weights='imagenet', include_top=False, input_shape=(IMG_HEIGHT, IMG_WIDTH,3)) base_model_2 = inception_v3.InceptionV3(weights='imagenet', include_top=False, input_shape=(IMG_HEIGHT, IMG_WIDTH,3)) base_model_3 = inception_resnet_v2.InceptionResNetV2(weights='imagenet', include_top=False, input_shape=(IMG_HEIGHT, IMG_WIDTH,3)) base_model_5 = nasnet.NASNetLarge(weights='imagenet', include_top=False, input_shape=(IMG_HEIGHT, IMG_WIDTH,3)) base_model_1.trainable = False base_model_2.trainable = False base_model_3.trainable = False base_model_5.trainable = False inputs = Input(shape=(IMG_HEIGHT, IMG_WIDTH, 3)) aug_inputs = data_augmentation(inputs) x1 = xception.preprocess_input(aug_inputs) x1 = base_model_1(x1, training=False) x1 = GlobalAveragePooling2D()(x1) x2 = inception_v3.preprocess_input(aug_inputs) x2 = base_model_2(x2, training=False) x2 = GlobalAveragePooling2D()(x2) x3 = inception_resnet_v2.preprocess_input(aug_inputs) x3 = base_model_3(x3, training=False) x3 = GlobalAveragePooling2D()(x3) x5 = nasnet.preprocess_input(aug_inputs) x5 = base_model_5(x5, training=False) x5 = GlobalAveragePooling2D()(x5) x = Concatenate()([x1, x2, x3, x5]) x = Dropout (.7 )(x) outputs = Dense(120, activation='softmax' )(x) model = Model(inputs, outputs) display(model.summary() )<choose_model_class>
df_test=pd.read_csv(".. /input/digit-recognizer/test.csv") df_test.head()
Digit Recognizer
13,307,296
optimizer = Adam(learning_rate=0.001) model.compile(loss="sparse_categorical_crossentropy", metrics=['accuracy'], optimizer=optimizer )<choose_model_class>
submit=pd.DataFrame(columns=["ImageId","Label"] )
Digit Recognizer
13,307,296
EarlyStop_callback = EarlyStopping(min_delta=0.001, patience=10, restore_best_weights=True) <train_model>
submit["ImageId"]=df_test.index.values submit["ImageId"]=submit["ImageId"]+1 submit
Digit Recognizer
13,307,296
history = model.fit( train_ds, epochs=N_EPOCHS, validation_data=val_ds, callbacks=[EarlyStop_callback] )<predict_on_test>
import numpy as np
Digit Recognizer
13,307,296
wrong_pred_images = np.array([]) actual_labels = np.array([]) predicted_labels = np.array([]) batch = 1 for images, labels in val_ds: batch_predictions_probs = model.predict_on_batch(images) batch_predictions = np.argmax(batch_predictions_probs, axis=1) mask =(batch_predictions != labels.numpy()) print("No of wrong predictions on batch {}: {}".format(batch, mask.sum())) wrong_pred_indices = np.arange(len(batch_predictions)) [mask] print(wrong_pred_indices) if len(wrong_pred_images)== 0: wrong_pred_images = images.numpy() [wrong_pred_indices] actual_labels = labels.numpy() [wrong_pred_indices] predicted_labels = batch_predictions[wrong_pred_indices] else: wrong_pred_images = np.append(wrong_pred_images, images.numpy() [wrong_pred_indices], axis = 0) actual_labels = np.append(actual_labels, labels.numpy() [wrong_pred_indices], axis = 0) predicted_labels = np.append(predicted_labels, batch_predictions[wrong_pred_indices], axis = 0) batch = batch + 1 print(wrong_pred_images.shape) print(actual_labels.shape) print(predicted_labels.shape )<predict_on_test>
output=model.predict(tf.cast(df_test,tf.float32)/255.0) output
Digit Recognizer
13,307,296
predictions = model.predict( test_ds, batch_size = BATCH_SIZE, verbose=1 )<prepare_output>
prediction=np.argmax(output,axis=1) len(prediction )
Digit Recognizer
13,307,296
submission.loc[:, dog_breeds] = predictions submission.head()<save_to_csv>
submit["Label"]=prediction submit
Digit Recognizer
13,307,296
submission.to_csv('submission.csv', index=False) <import_modules>
submit.to_csv("digit_submission",index=False )
Digit Recognizer
13,330,495
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from tensorflow import keras from keras.preprocessing.image import ImageDataGenerator as Imgen from keras.models import Sequential,load_model from keras.layers import Conv2D,MaxPooling2D,Flatten,Dense,GlobalAveragePooling2D,Dropout from keras.preprocessing import image import cv2 import pickle<load_from_csv>
import os import numpy as np import glob import shutil import pandas as pd; import matplotlib.pyplot as plt
Digit Recognizer
13,330,495
labels = pd.read_csv(".. /input/dog-breed-identification/labels.csv") sample_sub = pd.read_csv(".. /input/dog-breed-identification/sample_submission.csv") labels.head()<feature_engineering>
import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras import regularizers from keras.layers.normalization import BatchNormalization
Digit Recognizer
13,330,495
def addjpg(id): return id+".jpg"<feature_engineering>
train_full = pd.read_csv(".. /input/digit-recognizer/train.csv") test= pd.read_csv(".. /input/digit-recognizer/test.csv") train_full.head()
Digit Recognizer
13,330,495
labels['id'] = labels['id'].apply(addjpg) sample_sub['id'] = sample_sub['id'].apply(addjpg )<choose_model_class>
train = train_full.sample(frac=0.8, random_state=0) val = train_full.drop(train.index )
Digit Recognizer
13,330,495
data = Imgen(preprocessing_function=keras.applications.nasnet.preprocess_input, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, validation_split=0.1 )<prepare_x_and_y>
X_full =(train_full.iloc[:,1:].values ).astype('float32') y_full = train_full.iloc[:,0].values.astype('int32') X_train =(train.iloc[:,1:].values ).astype('float32') y_train = train.iloc[:,0].values.astype('int32') X_val =(val.iloc[:,1:].values ).astype('float32') y_val = val.iloc[:,0].values.astype('int32') X_test = test.values.astype('float32' )
Digit Recognizer
13,330,495
train_ds = data.flow_from_dataframe( labels, directory = '.. /input/dog-breed-identification/train', x_col = 'id', y_col = 'breed', subset="training", color_mode="rgb", target_size =(331,331), class_mode="categorical", batch_size=32, shuffle=True, seed=123, ) val_ds = data.flow_from_dataframe( labels, directory = '.. /input/dog-breed-identification/train', x_col = 'id', y_col = 'breed', subset="validation", color_mode="rgb", target_size =(331,331), class_mode="categorical", batch_size=32, shuffle=True, seed=123, )<prepare_x_and_y>
BATCH_SIZE = 100
Digit Recognizer
13,330,495
x,y = next(train_ds) x.shape<import_modules>
image_gen_train = ImageDataGenerator( rescale=1./255, rotation_range=20, horizontal_flip=False, fill_mode='nearest') train_data_gen = image_gen_train.flow(X_train, y_train, batch_size=BATCH_SIZE, shuffle=True) full_data_gen = image_gen_train.flow(X_full, y_full, batch_size=BATCH_SIZE, shuffle=True )
Digit Recognizer