kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
9,988,485
params = { "C": [1e-3, 1e-2, 1e-1, 1], "max_iter": [30000] } classifier = LinearSVC classifier_df = trainClassifier(X_train, y_train, "LinearSVC", classifier, params, accuracy_score) results = results.append(classifier_df )<train_model>
sns.set(style = 'white' , context = 'notebook' , palette = 'deep') rcParams['figure.figsize'] = 10,6
Digit Recognizer
9,988,485
params = { "kernel" : ["rbf"], "C": [1e-4, 1e-3, 1e-2, 1e-1, 1, 10], "gamma": [1e-3, 1e-2, 1e-1, 1, 10] } classifier = SVC classifier_df = trainClassifier(X_train, y_train, "SVC", classifier, params, accuracy_score) results = results.append(classifier_df )<choose_model_class>
data_path = ".. /input/digit-recognizer/" train = pd.read_csv(join(data_path,"train.csv")) test = pd.read_csv(join(data_path,"test.csv"))
Digit Recognizer
9,988,485
params = { "C": [1e-3, 1e-2, 1e-1, 1, 10] } classifier = LogisticRegression classifier_df = trainClassifier(X_train, y_train, "LogisticRegression", classifier, params, accuracy_score) results = results.append(classifier_df )<choose_model_class>
def process_data(data): data = data/255.0 data = data.values.reshape(-1,28,28,1) return data X_train = process_data(X_train) Y_train = to_categorical(Y_train,num_classes = 10 )
Digit Recognizer
9,988,485
params = {"max_depth": [3, 5, 7, 10, None], "n_estimators":[3, 5,10, 25, 50], "max_features": [1, 2, "auto"]} classifier = RandomForestClassifier classifier_df = trainClassifier(X_train, y_train, "RandomForests", classifier, params, accuracy_score) results = results.append(classifier_df )<prepare_output>
num = 5 model = [0]*num for i in range(num): model[i] = Sequential() model[i].add(Conv2D(filters = 32, kernel_size =(5,5), padding = "same", activation = "relu", input_shape =(28,28,1))) model[i].add(BatchNormalization()) model[i].add(Conv2D(filters = 32, kernel_size =(5,5), padding = "same", activation = "relu")) model[i].add(BatchNormalization()) model[i].add(MaxPool2D(pool_size =(2,2))) model[i].add(Dropout(0.25)) model[i].add(Conv2D(filters = 64, kernel_size =(3,3), padding = "same", activation = "relu")) model[i].add(BatchNormalization()) model[i].add(Conv2D(filters = 64, kernel_size =(3,3), padding = "same", activation = "relu")) model[i].add(BatchNormalization()) model[i].add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model[i].add(Dropout(0.25)) model[i].add(Conv2D(filters = 64, kernel_size =(3,3), padding = "same", activation = "relu")) model[i].add(BatchNormalization()) model[i].add(Dropout(0.25)) model[i].add(Flatten()) model[i].add(Dense(1024, activation = "relu")) model[i].add(BatchNormalization()) model[i].add(Dropout(0.25)) model[i].add(Dense(10, activation = "softmax")) model[i].compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"]) model[0].summary()
Digit Recognizer
9,988,485
results = results.set_index("model_name") results<save_to_csv>
datagen = ImageDataGenerator(featurewise_center = False, samplewise_center = False, featurewise_std_normalization = False, samplewise_std_normalization = False, zca_whitening = False, rotation_range = 10, zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1, horizontal_flip = False, vertical_flip = False )
Digit Recognizer
9,988,485
classifier = RandomForestClassifier best_params = results.loc["RandomForests"]["parameters"] submission_model = classifier(**best_params) submission_model.fit(X_train, y_train) X_test = pd.get_dummies(test_data[features]) X_test = imputer.transform(X_test) X_test = scaler.transform(X_test) y_hat = submission_model.predict(X_test) output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': y_hat}) output.to_csv('submission.csv', index=False) print("Your submission was successfully saved!") <load_from_csv>
epochs = 32 batch_size = 256 history = [0]*num for i in range(num): random_seed = i X_train_, X_val_, Y_train_, Y_val_ = train_test_split(X_train, Y_train, test_size = 0.2, random_state=random_seed) learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience=3, verbose=1, factor=0.5, min_lr=0.00001) early_stopping = EarlyStopping(monitor='val_accuracy', min_delta=0, patience=10, verbose =1, mode='auto') history[i] = model[i].fit_generator(datagen.flow(X_train_, Y_train_, batch_size = batch_size), epochs = epochs, validation_data =(X_val_,Y_val_), verbose = 1, steps_per_epoch = X_train.shape[0]//batch_size, callbacks=[learning_rate_reduction,early_stopping]) print("CNN {0:d}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format(i+1,epochs,max(history[i].history['accuracy']),max(history[i].history['val_accuracy'])) )
Digit Recognizer
9,988,485
train_data = pd.read_csv("/kaggle/input/titanic/train.csv") train_data.head()<load_from_csv>
def predict(X_data): results = np.zeros(( X_data.shape[0],10)) for j in range(num): results = results + model[j].predict(X_data) return results
Digit Recognizer
9,988,485
test_data = pd.read_csv("/kaggle/input/titanic/test.csv") test_data.head()<create_dataframe>
test = process_data(test) results = predict(test) results = np.argmax(results,axis = 1 )
Digit Recognizer
9,988,485
<define_variables><EOS>
results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("keras_cnn_mnist_aug_ensemble2.csv",index=False )
Digit Recognizer
10,514,367
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class>
mnist_test = pd.read_csv(".. /input/mnist-in-csv/mnist_test.csv") mnist_train = pd.read_csv(".. /input/mnist-in-csv/mnist_train.csv" )
Digit Recognizer
10,514,367
num_pipeline = Pipeline([ ("imputer", SimpleImputer(strategy = "median")) , ("scaler", StandardScaler()), ] )<categorify>
sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv") train = pd.read_csv(".. /input/digit-recognizer/train.csv" )
Digit Recognizer
10,514,367
cat_pipeline = Pipeline([ ("imputer", SimpleImputer(strategy = "most_frequent")) , ("cat_encoder", OneHotEncoder(sparse = False)) , ] )<feature_engineering>
test['dataset'] = 'test'
Digit Recognizer
10,514,367
preprocess_pipeline = ColumnTransformer([ ("num", num_pipeline, num_attribs), ("cat", cat_pipeline, cat_attribs), ] )<normalization>
train['dataset'] = 'train'
Digit Recognizer
10,514,367
X_train = preprocess_pipeline.fit_transform(train_data[num_attribs + cat_attribs]) X_train<prepare_x_and_y>
dataset = pd.concat([train.drop('label', axis=1), test] ).reset_index()
Digit Recognizer
10,514,367
y_train = train_data["Survived"]<train_model>
mnist = pd.concat([mnist_train, mnist_test] ).reset_index(drop=True) labels = mnist['label'].values mnist.drop('label', axis=1, inplace=True) mnist.columns = cols
Digit Recognizer
10,514,367
forest_clf = RandomForestClassifier(n_estimators = 100, random_state = 42) forest_clf.fit(X_train, y_train )<predict_on_test>
idx_mnist = mnist.sort_values(by=list(mnist.columns)).index dataset_from = dataset.sort_values(by=list(mnist.columns)) ['dataset'].values original_idx = dataset.sort_values(by=list(mnist.columns)) ['index'].values
Digit Recognizer
10,514,367
X_test = preprocess_pipeline.fit_transform(test_data[num_attribs + cat_attribs]) y_pred = forest_clf.predict(X_test )<compute_train_metric>
for i in range(len(idx_mnist)) : if dataset_from[i] == 'test': sample_submission.loc[original_idx[i], 'Label'] = labels[idx_mnist[i]]
Digit Recognizer
10,514,367
forest_scores = cross_val_score(forest_clf, X_train, y_train, cv = 10) forest_scores.mean()<compute_train_metric>
sample_submission.to_csv('submission.csv', index=False )
Digit Recognizer
9,959,337
svm_clf = SVC(gamma = "auto") svm_scores = cross_val_score(svm_clf, X_train, y_train, cv = 10) svm_scores.mean()<predict_on_test>
%matplotlib inline
Digit Recognizer
9,959,337
svm_clf.fit(X_train, y_train) y_pred = svm_clf.predict(X_test )<save_to_csv>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
9,959,337
output = pd.DataFrame({'PassengerId': test_data.index, 'Survived': y_pred}) output.to_csv('submission.csv', index = False) print("Your submission was successfully saved!" )<install_modules>
X = train.drop('label', axis = 1) y = train['label'] del train
Digit Recognizer
9,959,337
!pip install tensorflow_hub !pip install bert-for-tf2 !pip install tensorflow !pip install sentencepiece !pip install transformers<feature_engineering>
X = X / 255.0 test = test / 255.0
Digit Recognizer
9,959,337
BertTokenizer = bert.bert_tokenization.FullTokenizer bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/1", trainable=False) vocabulary_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() to_lower_case = bert_layer.resolved_object.do_lower_case.numpy() tokenizer = BertTokenizer(vocabulary_file, to_lower_case )<string_transform>
labels = pd.get_dummies(y) labels = labels.values
Digit Recognizer
9,959,337
stopwrds = set(stopwords.words('english')) TAG_RE = re.compile(r'<[^>]+>') def remove_tags(text): return TAG_RE.sub('', text) def preprocess_text(sen): sentence = emoji.demojize(sen) sentence = re.sub(r"http:\S+",'',sentence) sentence = ' '.join([x for x in nltk.word_tokenize(sentence)if x not in stopwrds]) sentence = remove_tags(sentence) sentence = re.sub(r'['+string.punctuation+']','',sentence) sentence = re.sub(r"\s+[a-zA-Z]\s+", ' ', sentence) sentence = re.sub(r'\s+', ' ', sentence) return sentence.strip()<categorify>
X_train, X_val, y_train, y_val = train_test_split(X, labels, test_size = 0.1,random_state=42 )
Digit Recognizer
9,959,337
def tokenize_bert(data): tokenized = data.apply(( lambda x: tokenizer.convert_tokens_to_ids(['[CLS]'])+ tokenizer.convert_tokens_to_ids(tokenizer.tokenize(x)))) return tokenized def pad_mask(data_tokenized,max_len): padded = tf.keras.preprocessing.sequence.pad_sequences(data_tokenized, maxlen=max_len, dtype='int32', padding='post',value=0.0) masked = np.where(padded!=0,1,0) return padded, masked def get_max_len(data): max_len = 0 for val in data: tmp = len(tokenizer.tokenize(val)) if tmp > max_len: max_len = tmp return max_len<categorify>
from keras.preprocessing.image import ImageDataGenerator
Digit Recognizer
9,959,337
def encode(df): tweet = tf.ragged.constant([tokenizer.convert_tokens_to_ids(tokenizer.tokenize(s)) for s in df]) cls1 = [tokenizer.convert_tokens_to_ids(['[CLS]'])]*tweet.shape[0] input_word_ids = tf.concat([cls1, tweet], axis=-1) input_mask = tf.ones_like(input_word_ids ).to_tensor() type_cls = tf.zeros_like(cls1) type_tweets = tf.zeros_like(tweet) input_type_ids = tf.concat([type_cls, type_tweets], axis=-1 ).to_tensor() inputs = { 'input_ids': input_word_ids.to_tensor() , 'input_mask': input_mask, 'input_type_ids': input_type_ids} return inputs<load_from_csv>
datagen = ImageDataGenerator(shear_range= 0.2, zoom_range= 0.2) datagen.fit(X_train )
Digit Recognizer
9,959,337
finetune_train = pd.read_csv('/kaggle/input/twitter-sentiment-analysis-hatred-speech/train.csv',encoding="utf-8") finetune_test = pd.read_csv('/kaggle/input/twitter-sentiment-analysis-hatred-speech/test.csv',encoding="utf-8") finetune_train["hashtags"]=finetune_train["tweet"].apply(lambda x:re.findall(r" finetune_test["hashtags"]=finetune_test["tweet"].apply(lambda x:re.findall(r" finetune_train["hashtags"]=finetune_train["hashtags"].apply(lambda x: ' '.join(x)) finetune_test["hashtags"]=finetune_test["hashtags"].apply(lambda x: ' '.join(x)) finetune_train = finetune_train.rename(columns={'label':'target'}) finetune_test = finetune_test.rename(columns={'label':'target'}) finetune_train.info()<load_from_csv>
from keras.layers import Dropout, Conv2D, MaxPool2D, Dense, Flatten from keras.models import Sequential
Digit Recognizer
9,959,337
train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv",encoding="utf-8") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv",encoding="utf-8") train["hashtags"]=train["text"].apply(lambda x:re.findall(r" test["hashtags"]=test["text"].apply(lambda x:re.findall(r" train["hashtags"]=train["hashtags"].apply(lambda x: ' '.join(x)) test["hashtags"]=test["hashtags"].apply(lambda x: ' '.join(x)) train.info()<feature_engineering>
model = Sequential() model.add(Conv2D(filters = 64, kernel_size = 5,activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 64, kernel_size = 5,activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(Conv2D(filters = 32, kernel_size = 3,activation ='relu')) model.add(Conv2D(filters = 32, kernel_size = 3,activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.2)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
9,959,337
finetune_train["clean"] = finetune_train["tweet"].apply(lambda x: preprocess_text(x.lower())) finetune_test["clean"] = finetune_test["tweet"].apply(lambda x: preprocess_text(x.lower())) print("length of finetune train set:",len(finetune_train)) print("length of finetune test set:",len(finetune_test))<data_type_conversions>
model.compile(optimizer= 'adam', loss= 'categorical_crossentropy', metrics= ['accuracy'] )
Digit Recognizer
9,959,337
train["clean"] = train["text"].apply(lambda x: preprocess_text(x.lower())) test["clean"] = test["text"].apply(lambda x: preprocess_text(x.lower())) print("length of train set:",len(train)) print("length of test set:",len(test))<string_transform>
performance = model.fit_generator(datagen.flow(X_train,y_train, batch_size=64), epochs = 30, validation_data =(X_val,y_val), verbose = 3 )
Digit Recognizer
9,959,337
def extract_features(df,test_df): txt=' '.join(df[df["target"]==1]["clean"]) disaster_unigram=nltk.FreqDist(nltk.word_tokenize(txt)) txt=' '.join(df[df["target"]==0]["clean"]) nondisaster_unigram=nltk.FreqDist(nltk.word_tokenize(txt)) txt=' '.join(df[df["target"]==1]["clean"]) disaster_bigram=nltk.FreqDist(nltk.bigrams(nltk.word_tokenize(txt))) txt=' '.join(df[df["target"]==0]["clean"]) nondisaster_bigram=nltk.FreqDist(nltk.bigrams(nltk.word_tokenize(txt))) txt=' '.join(df[df["target"]==1]["hashtags"]) disaster_unigram_hash=nltk.FreqDist(nltk.word_tokenize(txt)) txt=' '.join(df[df["target"]==0]["hashtags"]) nondisaster_unigram_hash=nltk.FreqDist(nltk.word_tokenize(txt)) df["unigram_disas"]=df["clean"].apply(lambda x: sum([disaster_unigram.get(wrd)for wrd in nltk.word_tokenize(x)if disaster_unigram.get(wrd)!=None])/len(disaster_unigram)) test_df["unigram_disas"]=test_df["clean"].apply(lambda x: sum([disaster_unigram.get(wrd)for wrd in nltk.word_tokenize(x)if disaster_unigram.get(wrd)!=None])/len(disaster_unigram)) df["unigram_nondisas"]=df["clean"].apply(lambda x: sum([nondisaster_unigram.get(wrd)for wrd in nltk.word_tokenize(x)if nondisaster_unigram.get(wrd)!=None])/len(nondisaster_unigram)) test_df["unigram_nondisas"]=test_df["clean"].apply(lambda x: sum([nondisaster_unigram.get(wrd)for wrd in nltk.word_tokenize(x)if nondisaster_unigram.get(wrd)!=None])/len(nondisaster_unigram)) df["unigram_disas_hash"]=df["hashtags"].apply(lambda x: sum([disaster_unigram_hash.get(wrd)for wrd in nltk.word_tokenize(x)if disaster_unigram_hash.get(wrd)!=None])/len(disaster_unigram_hash)) test_df["unigram_disas_hash"]=test_df["hashtags"].apply(lambda x: sum([disaster_unigram_hash.get(wrd)for wrd in nltk.word_tokenize(x)if disaster_unigram_hash.get(wrd)!=None])/len(disaster_unigram_hash)) df["unigram_nondisas_hash"]=df["hashtags"].apply(lambda x: sum([nondisaster_unigram_hash.get(wrd)for wrd in nltk.word_tokenize(x)if nondisaster_unigram_hash.get(wrd)!=None])/len(nondisaster_unigram_hash)) test_df["unigram_nondisas_hash"]=test_df["hashtags"].apply(lambda x: sum([nondisaster_unigram_hash.get(wrd)for wrd in nltk.word_tokenize(x)if nondisaster_unigram_hash.get(wrd)!=None])/len(nondisaster_unigram_hash)) df["bigram_disas"]=df["clean"].apply(lambda x: sum([disaster_bigram.get(wrd)for wrd in nltk.bigrams(nltk.word_tokenize(x)) if disaster_bigram.get(wrd)!=None])/len(disaster_bigram)if x.strip() !='' else 0) test_df["bigram_disas"]=test_df["clean"].apply(lambda x: sum([disaster_bigram.get(wrd)for wrd in nltk.bigrams(nltk.word_tokenize(x)) if disaster_bigram.get(wrd)!=None])/len(disaster_bigram)if x.strip() !='' else 0) df["bigram_nondisas"]=df["clean"].apply(lambda x: sum([nondisaster_bigram.get(wrd)for wrd in nltk.bigrams(nltk.word_tokenize(x)) if nondisaster_bigram.get(wrd)!=None])/len(nondisaster_bigram)if x.strip() !='' else 0) test_df["bigram_nondisas"]=test_df["clean"].apply(lambda x: sum([nondisaster_bigram.get(wrd)for wrd in nltk.bigrams(nltk.word_tokenize(x)) if nondisaster_bigram.get(wrd)!=None])/len(nondisaster_bigram)if x.strip() !='' else 0) return df,test_df<feature_engineering>
from sklearn.metrics import confusion_matrix, classification_report
Digit Recognizer
9,959,337
finetune_train,finetune_test = extract_features(finetune_train,finetune_test) finetune_train.head(2 )<feature_engineering>
pred = model.predict(X_val )
Digit Recognizer
9,959,337
train,test = extract_features(train,test) train.head(2 )<categorify>
pred_classes = np.argmax(pred,axis = 1) y_true = np.argmax(y_val,axis = 1 )
Digit Recognizer
9,959,337
def build_bert(max_len): input_ids = keras.layers.Input(shape=(max_len,), name="input_ids", dtype=tf.int32) input_typ = keras.layers.Input(shape=(max_len,), name="input_type_ids", dtype=tf.int32) input_mask = keras.layers.Input(shape=(max_len,), name="input_mask", dtype=tf.int32) input_features = keras.layers.Input(shape=(6,), name="input_features", dtype=tf.float32) bert_inputs = {"input_ids": input_ids, "input_mask": input_mask,'input_type_ids':input_typ} bert_model = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/1", trainable=True,name='keraslayer') pooled_output, _ = bert_model([input_ids, input_mask,input_typ]) merge_two = concatenate([pooled_output, input_features]) out = keras.layers.Dense(1, activation='sigmoid' )(merge_two) model = keras.Model(inputs=[bert_inputs,input_features],outputs=out) return model<categorify>
print(classification_report(y_true, pred_classes))
Digit Recognizer
9,959,337
all_df = pd.concat([finetune_train,finetune_test]) max_len = get_max_len(all_df["clean"])+ 1 encode_ds_all = encode(all_df["clean"] )<categorify>
test_preds = model.predict(test) test_preds = np.argmax(test_preds,axis = 1) test_preds = pd.Series(test_preds,name="Label" )
Digit Recognizer
9,959,337
encode_ds_tr = {'input_ids':encode_ds_all["input_ids"][0:31962,:], 'input_mask':encode_ds_all["input_mask"][0:31962,:], 'input_type_ids':encode_ds_all["input_type_ids"][0:31962,:]}<categorify>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),test_preds],axis = 1) submission.to_csv("cnn_mnist.csv",index=False )
Digit Recognizer
8,773,240
features = ['unigram_disas','unigram_nondisas','unigram_disas_hash','unigram_nondisas_hash','bigram_disas','bigram_nondisas'] encode_features_tr = all_df[features].iloc[0:31962,:]<train_on_grid>
from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler
Digit Recognizer
8,773,240
y_enc = finetune_train["target"] loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) optimizer = keras.optimizers.Adam(lr=1e-3,decay=1e-3/64) model.compile(optimizer=optimizer, loss=[loss, loss],metrics=["accuracy"]) checkpoint = tf.keras.callbacks.ModelCheckpoint('model.h5', monitor='val_accuracy', save_best_only=True) earlystopping = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy') fine_history = model.fit([encode_ds_tr,encode_features_tr], y_enc, validation_split=0.34,shuffle=True,epochs=2,batch_size=64,verbose=1 )<categorify>
train_file = ".. /input/digit-recognizer/train.csv" test_file = ".. /input/digit-recognizer/test.csv" sample_submission = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
8,773,240
all_df = pd.concat([train,test]) max_len = get_max_len(train["clean"])+ 1 encode_ds_all = encode(all_df["clean"] )<categorify>
raw_data = np.loadtxt(train_file, skiprows=1, dtype='int', delimiter=',') x_train, x_val, y_train, y_val = train_test_split( raw_data[:,1:], raw_data[:,0], test_size=0.1 )
Digit Recognizer
8,773,240
encode_ds_tr = {'input_ids':encode_ds_all["input_ids"][0:7613,:], 'input_mask':encode_ds_all["input_mask"][0:7613,:], 'input_type_ids':encode_ds_all["input_type_ids"][0:7613,:]} encode_ds_tr<categorify>
x_train = x_train.astype("float32")/255. x_val = x_val.astype("float32")/255 .
Digit Recognizer
8,773,240
encode_features_tr = all_df[features].iloc[0:7613,:]<train_on_grid>
y_train = to_categorical(y_train) y_val = to_categorical(y_val) print(y_train[0] )
Digit Recognizer
8,773,240
y_enc = train["target"] loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) optimizer = keras.optimizers.Adam(lr=1e-5,decay=1e-5/64) model.compile(optimizer=optimizer, loss=[loss, loss],metrics=["accuracy"]) checkpoint = tf.keras.callbacks.ModelCheckpoint('model.h5', monitor='val_accuracy', save_best_only=True) earlystopping = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy') fine_history = model.fit([encode_ds_tr,encode_features_tr], y_enc, validation_split=0.34,shuffle=True,epochs=3,batch_size=64,verbose=1 )<predict_on_test>
model = Sequential() model.add(Conv2D(filters = 16, kernel_size =(3, 3), activation='relu', input_shape =(28, 28, 1))) model.add(BatchNormalization()) model.add(Conv2D(filters = 16, kernel_size =(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(strides=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 32, kernel_size =(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 32, kernel_size =(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
8,773,240
y_pred=model.predict([encode_ds_tr,encode_features_tr]) y_pred = y_pred.round() print(classification_report(y_enc,y_pred))<categorify>
datagen = ImageDataGenerator(zoom_range = 0.1, height_shift_range = 0.1, width_shift_range = 0.1, rotation_range = 10 )
Digit Recognizer
8,773,240
encode_ds_ts = {'input_ids':encode_ds_all["input_ids"][7613:,:], 'input_mask':encode_ds_all["input_mask"][7613:,:], 'input_type_ids':encode_ds_all["input_type_ids"][7613:,:]} encode_ds_ts<define_variables>
model.compile(loss='categorical_crossentropy', optimizer = Adam(lr=1e-4), metrics=["accuracy"] )
Digit Recognizer
8,773,240
encode_features_ts = all_df[features].iloc[7613:,:]<load_from_csv>
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x )
Digit Recognizer
8,773,240
y_pred=model.predict([encode_ds_ts,encode_features_ts]) y_pred= y_pred.round() submission=pd.read_csv('/kaggle/input/nlp-getting-started/sample_submission.csv') submission['id']=test['id'] submission['target']=y_pred submission['target']=submission['target'].astype(int) submission.head(10) <save_to_csv>
hist = model.fit_generator(datagen.flow(x_train, y_train, batch_size=16), steps_per_epoch=500, epochs=20, verbose=2, validation_data=(x_val[:400,:], y_val[:400,:]), callbacks=[annealer] )
Digit Recognizer
8,773,240
submission.to_csv('sample_submission.csv',index=False )<set_options>
final_loss, final_acc = model.evaluate(x_val, y_val, verbose=0) print("Final loss: {0:.4f}, final accuracy: {1:.4f}".format(final_loss, final_acc))
Digit Recognizer
8,773,240
pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', 20) pd.set_option('display.max_colwidth', -1 )<load_from_csv>
y_hat = model.predict(x_val) y_pred = np.argmax(y_hat, axis=1) y_true = np.argmax(y_val, axis=1) cm = confusion_matrix(y_true, y_pred) print(cm )
Digit Recognizer
8,773,240
df = pd.read_csv('.. /input/nlp-getting-started/train.csv') print(len(df)) print(df.columns) df<categorify>
mnist_testset = np.loadtxt(test_file, skiprows=1, dtype='int', delimiter=',') x_test = mnist_testset.astype("float32") x_test = x_test.reshape(-1, 28, 28, 1)/255 .
Digit Recognizer
8,773,240
def clean_text(text): text = re.sub(r'http\S+', '', text) text = re.sub(r"(?:\@)\w+", '', text) text = re.sub(r'[^a-zA-Z0-9'.,?$&\s]', '', text) text = text.lower() return text for i in range(10): index = np.random.randint(low=0, high=len(df)) print('Raw text:', df['text'][index]) print('Cleaned text:', clean_text(df['text'][index])) print('Label: ', df['target'][index], ' ' )<categorify>
y_hat = model.predict(x_test, batch_size=64 )
Digit Recognizer
8,773,240
def convert_to_features(data, tokenizer, max_len=None): data = data.replace(' ', '') if max_len is not None: tokenized = tokenizer.encode_plus( data, padding ='max_length', max_length=max_len, truncation=True, return_tensors='np', return_attention_mask=True, return_token_type_ids=True, ) else: tokenized = tokenizer.encode_plus( data, return_tensors='np', return_attention_mask=True, return_token_type_ids=True, ) return tokenized def create_inputs_with_targets(x, y, tokenizer, max_len=128): dataset_dict = { "input_ids": [], "attention_mask": [], 'labels': [] } for sentence, label in tqdm(zip(x,y)) : cleaned_sentence = clean_text(sentence) temp = convert_to_features(cleaned_sentence, tokenizer, max_len=max_len) dataset_dict["input_ids"].append(temp["input_ids"][0]) dataset_dict["attention_mask"].append(temp["attention_mask"][0]) dataset_dict["labels"].append(label) x = [ np.array(dataset_dict["input_ids"]), np.array(dataset_dict["attention_mask"]), ] y = np.array(dataset_dict['labels']) return x, y def create_inputs_without_targets(x, tokenizer, max_len=128): dataset_dict = { "input_ids": [], "attention_mask": [], } for sentence in tqdm(x): cleaned_sentence = clean_text(sentence) temp = convert_to_features(cleaned_sentence, tokenizer, max_len=max_len) dataset_dict["input_ids"].append(temp["input_ids"][0]) dataset_dict["attention_mask"].append(temp["attention_mask"][0]) x = [ np.array(dataset_dict["input_ids"]), np.array(dataset_dict["attention_mask"]), ] return x<load_pretrained>
y_pred = np.argmax(y_hat,axis=1 )
Digit Recognizer
8,773,240
base_model = 'bert-base-uncased' bert_tokenizer = transformers.BertTokenizer.from_pretrained(base_model) max_len = 80<prepare_x_and_y>
solution = pd.DataFrame({'ImageId': sample_submission['ImageId'], 'Label': y_pred}) solution[["ImageId","Label"]].to_csv("CNNPrediction.csv", index=False) solution.head()
Digit Recognizer
12,327,863
validation_data_indices = df.sample(frac=0.2 ).index validation_df = df.loc[validation_data_indices, :].reset_index(drop=True) train_df = df.drop(validation_data_indices, axis=0 ).reset_index(drop=True) test_df = pd.read_csv('.. /input/nlp-getting-started/test.csv') x_train, y_train = create_inputs_with_targets(list(train_df['text']), list(train_df['target']), tokenizer=bert_tokenizer, max_len=max_len) x_val, y_val = create_inputs_with_targets(list(validation_df['text']), list(validation_df['target']), tokenizer=bert_tokenizer, max_len=max_len) x_test = create_inputs_without_targets(list(test_df['text']), tokenizer=bert_tokenizer, max_len=max_len) print('Training dataframe size: ', len(train_df)) print('Validation dataframe size: ', len(validation_df)) print('Test dataframe size: ', len(test_df))<categorify>
%matplotlib inline
Digit Recognizer
12,327,863
def create_model(model_name, max_len=128): seed = 500 my_init = tf.keras.initializers.glorot_uniform(seed) max_len = max_len encoder = transformers.TFAutoModel.from_pretrained(model_name) encoder.trainable = True input_ids = keras.layers.Input(shape=(max_len,), dtype=tf.int32) attention_mask = keras.layers.Input(shape=(max_len,), dtype=tf.int32) sequence_output = encoder(input_ids, attention_mask=attention_mask)['last_hidden_state'] bi_lstm = tf.keras.layers.Bidirectional(keras.layers.LSTM(64, return_sequences=True))(sequence_output) avg_pool = tf.keras.layers.GlobalAveragePooling1D()(bi_lstm) max_pool = tf.keras.layers.GlobalMaxPooling1D()(bi_lstm) concat = tf.keras.layers.concatenate([avg_pool, max_pool]) dropout = tf.keras.layers.Dropout(0.3 )(concat) output = tf.keras.layers.Dense(1, activation="sigmoid" )(dropout) model = tf.keras.models.Model( inputs=[input_ids, attention_mask], outputs=[output] ) return model<choose_model_class>
train_df = pd.read_csv(".. /input/digit-recognizer/train.csv") test_df = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
12,327,863
epochs = 20 lr = 2e-4 use_tpu = True if use_tpu: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) with strategy.scope() : model = create_model(base_model, max_len=max_len) optimizer = keras.optimizers.Adam(learning_rate=lr) model.compile(optimizer=optimizer, loss = keras.losses.BinaryCrossentropy() , metrics= [keras.metrics.BinaryAccuracy() ]) else: model = create_model() model.summary()<train_model>
train_df['label'].value_counts(normalize=True)
Digit Recognizer
12,327,863
my_callbacks = [keras.callbacks.EarlyStopping(monitor='val_binary_accuracy', patience=2, mode='max', restore_best_weights=True)] hist = model.fit(x_train, y_train, validation_data =(x_val, y_val), epochs= epochs, batch_size= 128, callbacks = my_callbacks, verbose= 1 )<save_to_csv>
x_train = train_df.drop(labels = ["label"],axis = 1) y_train = train_df['label'] del train_df
Digit Recognizer
12,327,863
predictions = model.predict(x_test) ids = list(test_df['id']) target = [round(i[0])for i in predictions] sub = pd.DataFrame({'id':ids, 'target':target}, index=None) sub.to_csv('submission.csv', index=False) sub<load_from_csv>
y_train = to_categorical(y_train, num_classes=10) y_train[:2,:]
Digit Recognizer
12,327,863
<install_modules>
random_seed = 121 X_train, X_val, Y_train, Y_val = train_test_split(x_train, y_train, test_size = 0.15, random_state=random_seed)
Digit Recognizer
12,327,863
!pip install transformers==3.5.1 !pip install pyspellchecker<import_modules>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(3,3),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Conv2D(filters = 128, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 128, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(GlobalAveragePooling2D()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.2)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
12,327,863
import pandas as pd import torchtext from transformers import BertTokenizer, BertForMaskedLM, BertConfig import transformers import torch from torch.utils.data import Dataset, DataLoader from torch import optim from torch import cuda from sklearn.model_selection import train_test_split import re import string <load_from_csv>
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 )
Digit Recognizer
12,327,863
train_val_df = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test_df = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv" )<feature_engineering>
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
12,327,863
train_val_df = train_val_df.loc[:,["text","target"]] test_df = test_df.loc[:,["text"]] test_df["target"] = [0]*len(test_df["text"] )<prepare_output>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) epochs = 50 batch_size = 86
Digit Recognizer
12,327,863
print(train_val_df) print(test_df.head()) original_df = train_val_df.copy()<define_variables>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
12,327,863
mispell_dict = {"aren't" : "are not", "can't" : "cannot", "couldn't" : "could not", "couldnt" : "could not", "didn't" : "did not", "doesn't" : "does not", "doesnt" : "does not", "don't" : "do not", "hadn't" : "had not", "hasn't" : "has not", "haven't" : "have not", "havent" : "have not", "he'd" : "he would", "he'll" : "he will", "he's" : "he is", "i'd" : "I would", "i'd" : "I had", "i'll" : "I will", "i'm" : "I am", "isn't" : "is not", "it's" : "it is", "it'll":"it will", "i've" : "I have", "let's" : "let us", "mightn't" : "might not", "mustn't" : "must not", "shan't" : "shall not", "she'd" : "she would", "she'll" : "she will", "she's" : "she is", "shouldn't" : "should not", "shouldnt" : "should not", "that's" : "that is", "thats" : "that is", "there's" : "there is", "theres" : "there is", "they'd" : "they would", "they'll" : "they will", "they're" : "they are", "theyre": "they are", "they've" : "they have", "we'd" : "we would", "we're" : "we are", "weren't" : "were not", "we've" : "we have", "what'll" : "what will", "what're" : "what are", "what's" : "what is", "what've" : "what have", "where's" : "where is", "who'd" : "who would", "who'll" : "who will", "who're" : "who are", "who's" : "who is", "who've" : "who have", "won't" : "will not", "wouldn't" : "would not", "you'd" : "you would", "you'll" : "you will", "you're" : "you are", "you've" : "you have", "'re": " are", "wasn't": "was not", "we'll":" will", "didn't": "did not"} def replace_typical_misspell(text): text = text.lower() mispellings_re = re.compile('(%s)' % '|'.join(mispell_dict.keys())) def replace(match): return mispell_dict[match.group(0)] return mispellings_re.sub(replace, text) train_val_df['text'] = train_val_df['text'].apply(lambda x : replace_typical_misspell(x)) test_df['text'] = test_df['text'].apply(lambda x : replace_typical_misspell(x)) def remove_space(string): string = BeautifulSoup(string ).text.strip().lower() string = re.sub(r'(( http)\S+)', 'http', string) string = re.sub(r'@\w*', '', string) string = re.sub(r' string = re.sub(r'\s+', ' ', string) return string train_val_df['text'] = train_val_df['text'].apply(lambda x : remove_space(x)) test_df['text'] = test_df['text'].apply(lambda x : remove_space(x)) def remove_emoji(text): emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" u"\U0001F300-\U0001F5FF" u"\U0001F680-\U0001F6FF" u"\U0001F1E0-\U0001F1FF" u"\U00002702-\U000027B0" u"\U000024C2-\U0001F251" "]+", flags=re.UNICODE) return emoji_pattern.sub(r'', text) train_val_df['text'] = train_val_df['text'].apply(lambda x: remove_emoji(x)) test_df['text'] = test_df['text'].apply(lambda x: remove_emoji(x)) <save_to_csv>
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction] )
Digit Recognizer
12,327,863
test_df.to_csv("test.tsv", sep='\t', index=False, header=None) print(test_df.shape) train_val_df.to_csv("train_eval.tsv", sep='\t', index=False, header=None) print(train_val_df.shape )<categorify>
results = model.predict(test_df) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
12,327,863
<load_pretrained><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
12,305,349
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv>
sns.set()
Digit Recognizer
12,305,349
dataset_train_eval, dataset_test = torchtext.data.TabularDataset.splits(path='.', train='./train_eval.tsv', test='./test.tsv', format='tsv', fields=[('Text', TEXT),('Label', LABEL)] )<split>
digits_PATH = '/kaggle/input/digit-recognizer/' digits_train = pd.read_csv(digits_PATH+'train.csv' )
Digit Recognizer
12,305,349
dataset_train, dataset_eval = dataset_train_eval.split( split_ratio=1.0 - 1800/7613, random_state=random.seed(1234)) print(dataset_train.__len__()) print(dataset_eval.__len__()) print(dataset_test.__len__() )<data_type_conversions>
X, y = digits_train.iloc[:,1:].values/255, digits_train.iloc[:,0].values X = X.reshape(-1,28, 28, 1 )
Digit Recognizer
12,305,349
print(tokenizer.convert_ids_to_tokens(item.Text.tolist())) print(int(item.Label))<define_variables>
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.9, random_state=0 )
Digit Recognizer
12,305,349
batch_size = 32 dl_train = torchtext.data.Iterator( dataset_train, batch_size=batch_size, train=True) dl_eval = torchtext.data.Iterator( dataset_eval, batch_size=batch_size, train=False, sort=False) dl_test = torchtext.data.Iterator( dataset_test, batch_size=batch_size, train=False, sort=False) dataloaders_dict = {"train": dl_train, "val": dl_eval}<load_pretrained>
class MultiCNN() : def __init__(self, model_generator, num_models=1): self.models = [] self.create_models(model_generator, num_models) def create_models(self, model_generator, num_models=1): for i in range(0,num_models): m = keras.models.Sequential(model_generator()) m.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) self.models.append(m) def fit(self, train_inputs, train_targets, early_stop=True, verbose=2, batch_size=200, epochs=100): callback = [] if early_stop: callback.append(keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=1e-6, patience=5)) for m in self.models: X_train2, X_val2, y_train2, y_val2 = train_test_split(train_inputs, train_targets, test_size = 0.2) m.fit(X_train2, y_train2, batch_size= batch_size, epochs = epochs, callbacks=callback, validation_data =(X_val2, y_val2), verbose=verbose ) def fit_generator(self, generator, train_inputs, train_targets, early_stop=True, verbose=2, batch_size=32, epochs=100): callback = [] if early_stop: callback.append(keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=1e-6, patience=5)) for m in self.models: X_train2, X_val2, y_train2, y_val2 = train_test_split(train_inputs, train_targets, test_size = 0.2) m.fit_generator(generator.flow(X_train2,y_train2, batch_size=batch_size), epochs = epochs, callbacks=callback, validation_data =(X_val2, y_val2), verbose=verbose ) def predict(self, test_inputs): prediction = [model.predict(test_inputs)for model in self.models] return sum(prediction)/len(prediction) def acuracia(self, test_input, test_target): prediction = self.predict(test_input) prediction = np.argmax(prediction, axis=1) return accuracy_score(prediction, test_target) def confusion_matrix(self, test_input, test_target): y_pred = self.predict(test_input) y_pred = np.argmax(y_pred, axis=1) confusao = confusion_matrix(y_pred, test_target) fig, ax = plt.subplots(1, figsize=(10,10)) sns.heatmap(pd.DataFrame(confusao), ax=ax, cbar=False, annot=True) ax.set_title('Matriz de confusão', size=20) ax.set_yticklabels(ax.get_xticklabels() , rotation=0, size=15) ax.set_xticklabels(ax.get_yticklabels() , rotation=0, size=15) plt.show() def acuracia_individual(self, test_input, test_target): return [accuracy_score(np.argmax(m.predict(X_test), axis=1), y_test)for m in self.models]
Digit Recognizer
12,305,349
model = BertModel.from_pretrained('bert-base-cased' )<set_options>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation="relu", input_shape=(28, 28, 1)) , keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.Flatten() , keras.layers.Dense(units=64, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_default = MultiCNN(make_CNN, num_models=15) multiCNN_default.fit(X_train, y_train, verbose = 0, early_stop=True) multiCNN_default.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
class BertForTwitter(nn.Module): def __init__(self): super(BertForTwitter, self ).__init__() self.bert = model self.cls = nn.Linear(in_features=768, out_features=2) nn.init.normal_(self.cls.weight, std=0.02) nn.init.normal_(self.cls.bias, 0) def forward(self, input_ids): result = self.bert(input_ids) vec_0 = result[0] vec_0 = vec_0[:, 0, :] vec_0 = vec_0.view(-1, 768) output = self.cls(vec_0) return output<train_on_grid>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation="relu", input_shape=(28, 28, 1)) , keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.Flatten() , keras.layers.Dense(units=64, activation="relu"), keras.layers.Dense(units=64, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_plus_layer = MultiCNN(make_CNN, num_models=15) multiCNN_plus_layer.fit(X_train, y_train, verbose = 0, early_stop=True) multiCNN_plus_layer.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
net = BertForTwitter() net.train() print('ネットワーク設定完了' )<categorify>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation="relu", input_shape=(28, 28, 1)) , keras.layers.AveragePooling2D(pool_size =(2,2), strides = 2), keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.AveragePooling2D(pool_size =(2,2), strides = 2), keras.layers.Flatten() , keras.layers.Dense(units=64, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_pooling = MultiCNN(make_CNN, num_models=15) multiCNN_pooling.fit(X_train, y_train, verbose = 0, early_stop=True) multiCNN_pooling.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
for param in net.parameters() : param.requires_grad = False for param in net.bert.encoder.layer[-1].parameters() : param.requires_grad = True for param in net.cls.parameters() : param.requires_grad = True<choose_model_class>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation="relu", input_shape=(28, 28, 1)) , keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Flatten() , keras.layers.Dense(units=64, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_batch_normalization = MultiCNN(make_CNN, num_models=15) multiCNN_batch_normalization.fit(X_train, y_train, verbose = 0, early_stop=True) multiCNN_batch_normalization.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
optimizer = optim.Adam([ {'params': net.bert.encoder.layer[-1].parameters() , 'lr': 5e-5}, {'params': net.cls.parameters() , 'lr': 1e-4} ]) criterion = nn.CrossEntropyLoss() <train_model>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation="relu", input_shape=(28, 28, 1)) , keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Flatten() , keras.layers.Dense(units=64, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_dropout = MultiCNN(make_CNN, num_models=15) multiCNN_dropout.fit(X_train, y_train, verbose = 0, early_stop=True) multiCNN_dropout.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
def train_model(net, dataloaders_dict, criterion, optimizer, num_epochs): max_acc = 0 Stop_flag = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("使用デバイス:", device) print('-----start-------') net.to(device) torch.backends.cudnn.benchmark = True batch_size = dataloaders_dict["train"].batch_size for epoch in range(num_epochs): for phase in ['train', 'val']: if phase == 'train': net.train() else: net.eval() epoch_loss = 0.0 epoch_corrects = 0 iteration = 1 for batch in(dataloaders_dict[phase]): inputs = batch.Text[0].to(device) labels = batch.Label.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = net(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) if phase == 'train': loss.backward() optimizer.step() if(iteration % 50 == 0): acc =(torch.sum(preds == labels.data) ).double() /batch_size print('イテレーション {} || Loss: {:.4f} || 10iter.|| 本イテレーションの正解率:{}'.format( iteration, loss.item() , acc)) iteration += 1 epoch_loss += loss.item() * batch_size epoch_corrects += torch.sum(preds == labels.data) epoch_loss = epoch_loss / len(dataloaders_dict[phase].dataset) epoch_acc = epoch_corrects.double( )/ len(dataloaders_dict[phase].dataset) print('Epoch {}/{} | {:^5} | Loss: {:.4f} Acc: {:.4f}'.format(epoch+1, num_epochs, phase, epoch_loss, epoch_acc)) if phase == "val": if epoch_acc < max_acc: count += 1 if count >= 3: Stop_flag = True else: count = 0 max_acc = epoch_acc print(count) if Stop_flag: break return net<train_model>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation="relu", input_shape=(28, 28, 1)) , keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Flatten() , keras.layers.Dense(units=200, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_200 = MultiCNN(make_CNN, num_models=15) multiCNN_200.fit(X_train, y_train, verbose = 0, early_stop=True) multiCNN_200.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
num_epochs = 50 net_trained = train_model(net, dataloaders_dict, criterion, optimizer, num_epochs=num_epochs )<load_from_csv>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(5,5), activation="relu", input_shape=(28, 28, 1)) , keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Flatten() , keras.layers.Dense(units=200, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_bigger_kernel = MultiCNN(make_CNN, num_models=15) multiCNN_bigger_kernel.fit(X_train, y_train, verbose = 0, early_stop=True) multiCNN_bigger_kernel.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
sample_submission = pd.read_csv(".. /input/nlp-getting-started/sample_submission.csv") sample_submission["target"] = ans_list sample_submission<save_to_csv>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(5,5), activation="relu", input_shape=(28, 28, 1)) , keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Flatten() , keras.layers.Dense(units=200, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_min_epochs = MultiCNN(make_CNN, num_models=15) multiCNN_min_epochs.fit(X_train, y_train, verbose = 0, early_stop=True, epochs=10) multiCNN_min_epochs.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
sample_submission.to_csv("submission_plus.csv", index=False )<import_modules>
datagen = keras.preprocessing.image.ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, brightness_range=None, zoom_range=0.1, fill_mode="nearest", cval=0.0, horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None, validation_split=0.0, dtype=None, ) datagen.fit(X_train )
Digit Recognizer
12,305,349
import torch import pandas as pd import numpy as np from transformers import AutoModelForSequenceClassification, AutoTokenizer<string_transform>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(5,5), activation="relu", input_shape=(28, 28, 1)) , keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Flatten() , keras.layers.Dense(units=200, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_data_augmentation = MultiCNN(make_CNN, num_models=15) multiCNN_data_augmentation.fit_generator(datagen, X_train, y_train, verbose = 0, early_stop=True) multiCNN_data_augmentation.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
class Dataset: def __init__(self, text, tokenizer, max_len): self.text = text self.tokenizer = tokenizer self.max_len = max_len def __len__(self): return len(self.text) def __getitem__(self, item): text = str(self.text[item]) inputs = self.tokenizer( text, max_length=self.max_len, padding="max_length", truncation=True ) ids = inputs["input_ids"] mask = inputs["attention_mask"] return { "input_ids": torch.tensor(ids, dtype=torch.long), "attention_mask": torch.tensor(mask, dtype=torch.long), }<load_from_csv>
def make_CNN() : return [ keras.layers.Conv2D(filters=32, kernel_size=(5,5), activation="relu", input_shape=(28, 28, 1)) , keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Conv2D(filters=64, kernel_size=(3,3), activation="relu"), keras.layers.MaxPooling2D(pool_size =(2,2), strides = 2), keras.layers.BatchNormalization() , keras.layers.Dropout(0.2), keras.layers.Flatten() , keras.layers.Dense(units=200, activation="relu"), keras.layers.Dropout(0.2), keras.layers.Dense(units=10, activation="softmax") ] multiCNN_final = MultiCNN(make_CNN, num_models=15) multiCNN_final.fit_generator(datagen, X_train, y_train, verbose = 0, early_stop=True )
Digit Recognizer
12,305,349
def generate_predictions(model_path, max_len): model = AutoModelForSequenceClassification.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) model.to("cuda") model.eval() df = pd.read_csv(".. /input/nlp-getting-started/test.csv") dataset = Dataset(text=df.text.values, tokenizer=tokenizer, max_len=max_len) data_loader = torch.utils.data.DataLoader( dataset, batch_size=32, num_workers=4, pin_memory=True, shuffle=False ) final_output = [] for b_idx, data in enumerate(data_loader): with torch.no_grad() : for key, value in data.items() : data[key] = value.to("cuda") output = model(**data) output = torch.nn.functional.softmax(output.logits, dim=1) output = output.detach().cpu().numpy() [:, 1] output =(output >= 0.6 ).astype(int ).tolist() final_output.extend(output) torch.cuda.empty_cache() return np.array(final_output )<predict_on_test>
multiCNN_final.acuracia(X_test, y_test )
Digit Recognizer
12,305,349
preds = generate_predictions("abhishek/autonlp-fred2-2682064", max_len=64 )<save_to_csv>
submission = pd.read_csv(digits_PATH+'sample_submission.csv', index_col=0) test = pd.read_csv(digits_PATH+'test.csv')/255 test = test.values.reshape(-1,28, 28, 1 )
Digit Recognizer
12,305,349
sample = pd.read_csv(".. /input/nlp-getting-started/sample_submission.csv") sample.target = preds sample.to_csv("submission.csv", index=False )<count_values>
submission['Label'] = np.argmax(multiCNN_final.predict(test), axis=1 )
Digit Recognizer
12,305,349
sample.target.value_counts()<import_modules>
submission.Label.value_counts()
Digit Recognizer
12,305,349
<load_from_csv><EOS>
submission.to_csv('submission.csv' )
Digit Recognizer
12,242,884
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv>
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt
Digit Recognizer
12,242,884
test_csv = pd.read_csv(".. /input/nlp-getting-started/test.csv") test_csv.head()<count_values>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
12,242,884
training_csv['target'].value_counts()<count_values>
train.isnull().sum().any()
Digit Recognizer
12,242,884
training_csv['keyword'].value_counts()<count_missing_values>
labels = list(range(10))
Digit Recognizer
12,242,884
training_csv['keyword'].isnull().sum()<count_values>
X = train.drop("label", axis=1 ).values y = train["label"].values
Digit Recognizer
12,242,884
training_csv['location'].value_counts()<count_missing_values>
from sklearn.model_selection import train_test_split
Digit Recognizer
12,242,884
training_csv['location'].isnull().sum()<categorify>
from sklearn.model_selection import train_test_split
Digit Recognizer
12,242,884
def clean(title): title = re.sub(r"\-"," ",title) title = re.sub(r"\+"," ",title) title = re.sub(r"&","and",title) title = re.sub(r"\|"," ",title) title = re.sub(r"\"," ",title) title = re.sub(r"\W"," ",title) title = title.lower() for p in string.punctuation : title = re.sub(r"f{p}"," ",title) title = re.sub(r"\s+"," ",title) return title<categorify>
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.1, random_state=10 )
Digit Recognizer
12,242,884
training_csv["cleaned_text"] = training_csv["text"].map(clean) training_csv.head()<load_pretrained>
X_test = test.values
Digit Recognizer
12,242,884
tokenizer = BertTokenizer.from_pretrained('.. /input/bert-base-uncased') <split>
from keras.utils import to_categorical
Digit Recognizer
12,242,884
X_train,X_test,y_train,y_test = train_test_split(training_csv["cleaned_text"].values,training_csv["target"].values, random_state=0,test_size=0.1,shuffle=True )<categorify>
y_train = to_categorical(y_train) y_val_true = y_val.copy() y_val = to_categorical(y_val )
Digit Recognizer
12,242,884
class CreateDataset(Dataset): def __init__(self, X, y, tokenizer, max_len): self.X = X self.y = y self.tokenizer = tokenizer self.max_len = max_len def __len__(self): return len(self.y) def __getitem__(self, index): text = self.X[index] inputs = self.tokenizer.encode_plus( text, add_special_tokens=True, max_length=self.max_len, truncation=True, pad_to_max_length=True ) ids = inputs['input_ids'] mask = inputs['attention_mask'] return { 'ids': torch.LongTensor(ids), 'mask': torch.LongTensor(mask), 'labels': torch.Tensor(self.y[index]) } <create_dataframe>
X_train = X_train/255 X_val = X_val/255 X_test = X_test/255
Digit Recognizer
12,242,884
max_len = 45 dataset_train = CreateDataset(X_train, y_train, tokenizer, max_len) dataset_valid = CreateDataset(X_test, y_test, tokenizer, max_len) <load_pretrained>
X_train = X_train.reshape(-1, 28, 28, 1) X_val = X_val.reshape(-1, 28, 28, 1) X_test = X_test.reshape(-1, 28, 28, 1 )
Digit Recognizer