kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
6,925,490
class Classifier(nn.Module): def __init__(self, predictor, lossfun=cross_entropy_with_logits): super().__init__() self.predictor = predictor self.lossfun = lossfun self.prefix = "" def forward(self, image, targets): outputs = self.predictor(image) loss = self.lossfun(outputs, targets) metrics = { f"{self.prefix}loss": loss.item() , f"{self.prefix}acc": accuracy_with_logits(outputs, targets ).item() } ppe.reporting.report(metrics, self) return loss, metrics def predict(self, data_loader): pred = self.predict_proba(data_loader) label = torch.argmax(pred, dim=1) return label def predict_proba(self, data_loader): device: torch.device = next(self.parameters() ).device y_list = [] self.eval() with torch.no_grad() : for batch in data_loader: if isinstance(batch,(tuple, list)) : batch = batch[0].to(device) else: batch = batch.to(device) y = self.predictor(batch) y = torch.softmax(y, dim=-1) y_list.append(y) pred = torch.cat(y_list) return pred <find_best_params>
mean_px = train_x_sol5.mean().astype(np.float32) std_px = train_x_sol5.std().astype(np.float32) def standardize(x): return(x-mean_px)/std_px
Digit Recognizer
6,925,490
supported_models = timm.list_models() print(f"{len(supported_models)} models are supported in timm.") print(supported_models )<import_modules>
s5_train_x, s5_test_x, s5_train_y, s5_test_y = train_test_split(train_x_sol5, train_y_sol5, test_size=0.2, random_state=81) ohe_s5_train_y = tf_utils.to_categorical(s5_train_y, 10) ohe_s5_test_y = tf_utils.to_categorical(s5_test_y, 10) train_batches_sol5 = image_augmentator.flow(s5_train_x, ohe_s5_train_y, batch_size=64) val_batches_sol5 = image_augmentator.flow(s5_test_x, ohe_s5_test_y, batch_size=64 )
Digit Recognizer
6,925,490
class EMA(object): def __init__( self, model: nn.Module, decay: float, strict: bool = True, use_dynamic_decay: bool = True, ): self.decay = decay self.model = model self.strict = strict self.use_dynamic_decay = use_dynamic_decay self.logger = getLogger(__name__) self.n_step = 0 self.shadow = {} self.original = {} self._assigned = False for name, param in model.named_parameters() : if param.requires_grad: self.shadow[name] = param.data.clone() def step(self): self.n_step += 1 if self.use_dynamic_decay: _n_step = float(self.n_step) decay = min(self.decay,(1.0 + _n_step)/(10.0 + _n_step)) else: decay = self.decay for name, param in self.model.named_parameters() : if param.requires_grad: assert name in self.shadow new_average =(1.0 - decay)* param.data + decay * self.shadow[name] self.shadow[name] = new_average.clone() __call__ = step def assign(self): if self._assigned: if self.strict: raise ValueError("[ERROR] `assign` is called again before `resume`.") else: self.logger.warning( "`assign` is called again before `resume`." "shadow parameter is already assigned, skip." ) return for name, param in self.model.named_parameters() : if param.requires_grad: assert name in self.shadow self.original[name] = param.data.clone() param.data = self.shadow[name] self._assigned = True def resume(self): if not self._assigned: if self.strict: raise ValueError("[ERROR] `resume` is called before `assign`.") else: self.logger.warning("`resume` is called before `assign`, skip.") return for name, param in self.model.named_parameters() : if param.requires_grad: assert name in self.shadow param.data = self.original[name] self._assigned = False <set_options>
model_sol_5 = Sequential() model_sol_5.add(Lambda(standardize, input_shape=(28,28,1))) model_sol_5.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', kernel_regularizer=regularizers.l2(0.1), )) model_sol_5.add(BatchNormalization()) model_sol_5.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu' )) model_sol_5.add(MaxPooling2D(pool_size=2)) model_sol_5.add(BatchNormalization()) model_sol_5.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu' )) model_sol_5.add(MaxPooling2D(pool_size=2)) model_sol_5.add(Flatten()) model_sol_5.add(BatchNormalization()) model_sol_5.add(Dense(64)) model_sol_5.add(Activation('relu')) model_sol_5.add(Dropout(0.2)) model_sol_5.add(BatchNormalization()) model_sol_5.add(Dense(10, activation='softmax'))
Digit Recognizer
6,925,490
class LRScheduler(Extension): trigger = 1, 'iteration' priority = PRIORITY_READER name = None def __init__(self, optimizer: optim.Optimizer, scheduler_type: str, scheduler_kwargs: Mapping[str, Any])-> None: super().__init__() self.scheduler = getattr(optim.lr_scheduler, scheduler_type )(optimizer, **scheduler_kwargs) def __call__(self, manager: ExtensionsManager)-> None: self.scheduler.step() def state_dict(self)-> None: return self.scheduler.state_dict() def load_state_dict(self, to_load)-> None: self.scheduler.load_state_dict(to_load) <train_model>
model_sol_5.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'] )
Digit Recognizer
6,925,490
def create_trainer(model, optimizer, device)-> Engine: model.to(device) def update_fn(engine, batch): model.train() optimizer.zero_grad() loss, metrics = model(*[elem.to(device)for elem in batch]) loss.backward() optimizer.step() return metrics trainer = Engine(update_fn) return trainer <import_modules>
checkpointer = ModelCheckpoint(filepath='mnist.model.best.hdf5', verbose=1, save_best_only=True) hist_sol_5 = model_sol_5.fit_generator(generator=train_batches_sol5, steps_per_epoch=s5_train_x.shape[0] // 64, epochs=32, callbacks=[checkpointer], validation_data=val_batches_sol5, validation_steps=s5_test_x.shape[0] // 64, verbose=2 )
Digit Recognizer
6,925,490
import dataclasses import os import sys from pathlib import Path import numpy as np import pandas as pd import pytorch_pfn_extras.training.extensions as E import torch from ignite.engine import Events from pytorch_pfn_extras.training import IgniteExtensionsManager from sklearn.model_selection import StratifiedKFold from torch import nn, optim from torch.utils.data.dataloader import DataLoader<split>
model_sol_5.load_weights('mnist.model.best.hdf5') score = model_sol_5.evaluate(s5_test_x, ohe_s5_test_y, verbose=0) accuracy = 100 * score[1] print('Test accuracy: %.4f%%' % accuracy )
Digit Recognizer
6,925,490
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=flags.seed) y = np.array([int(len(d["annotations"])> 0)for d in dataset_dicts]) split_inds = list(skf.split(dataset_dicts, y)) train_inds, valid_inds = split_inds[flags.target_fold] train_dataset = VinbigdataTwoClassDataset( [dataset_dicts[i] for i in train_inds], image_transform=Transform(flags.aug_kwargs), mixup_prob=flags.mixup_prob, label_smoothing=flags.label_smoothing, ) valid_dataset = VinbigdataTwoClassDataset([dataset_dicts[i] for i in valid_inds]) <choose_model_class>
predictions = model_sol_5.predict(test_x_sol5) predictions = [ np.argmax(x)for x in predictions ] submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') submission.drop('Label', axis=1, inplace=True) submission['Label'] = predictions submission.to_csv('submission5.csv', index=False )
Digit Recognizer
6,925,490
train_loader = DataLoader( train_dataset, batch_size=flags.batchsize, num_workers=flags.num_workers, shuffle=True, pin_memory=True, ) valid_loader = DataLoader( valid_dataset, batch_size=flags.valid_batchsize, num_workers=flags.num_workers, shuffle=False, pin_memory=True, ) device = torch.device(flags.device) predictor = build_predictor(model_name=flags.model_name, model_mode=flags.model_mode) classifier = Classifier(predictor) model = classifier optimizer = optim.Adam([param for param in model.parameters() if param.requires_grad], lr=1e-3) trainer = create_trainer(model, optimizer, device) ema = EMA(predictor, decay=flags.ema_decay) def eval_func(*batch): loss, metrics = model(*[elem.to(device)for elem in batch]) if flags.ema_decay > 0: classifier.prefix = "ema_" ema.assign() loss, metrics = model(*[elem.to(device)for elem in batch]) ema.resume() classifier.prefix = "" valid_evaluator = E.Evaluator( valid_loader, model, progress_bar=False, eval_func=eval_func, device=device ) log_trigger =(1, "epoch") log_report = E.LogReport(trigger=log_trigger) extensions = [ log_report, E.ProgressBarNotebook(update_interval=10 if debug else 100), E.PrintReportNotebook() , E.FailOnNonNumber() , ] epoch = flags.epoch models = {"main": model} optimizers = {"main": optimizer} manager = IgniteExtensionsManager( trainer, models, optimizers, epoch, extensions=extensions, out_dir=str(outdir), ) manager.extend(valid_evaluator) manager.extend( E.snapshot_object(predictor, "predictor.pt"), trigger=(flags.snapshot_freq, "epoch") ) if flags.scheduler_type != "": scheduler_type = flags.scheduler_type print(f"using {scheduler_type} scheduler with kwargs {flags.scheduler_kwargs}") manager.extend( LRScheduler(optimizer, scheduler_type, flags.scheduler_kwargs), trigger=flags.scheduler_trigger, ) manager.extend(E.observe_lr(optimizer=optimizer), trigger=log_trigger) if flags.ema_decay > 0: manager.extend(lambda manager: ema() , trigger=(1, "iteration")) def save_ema_model(manager): ema.assign() torch.save(predictor.state_dict() , outdir / "predictor_ema.pt") ema.resume() manager.extend(save_ema_model, trigger=(flags.snapshot_freq, "epoch")) _ = trainer.run(train_loader, max_epochs=epoch )<save_to_csv>
model_sol_6 = Sequential() model_sol_6.add(Lambda(standardize, input_shape=(28,28,1))) model_sol_6.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu')) model_sol_6.add(BatchNormalization()) model_sol_6.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu')) model_sol_6.add(MaxPooling2D(pool_size=2)) model_sol_6.add(Dropout(0.1)) model_sol_6.add(BatchNormalization()) model_sol_6.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu')) model_sol_6.add(MaxPooling2D(pool_size=2)) model_sol_6.add(Flatten()) model_sol_6.add(BatchNormalization()) model_sol_6.add(Dense(64)) model_sol_6.add(Activation('relu')) model_sol_6.add(Dropout(0.2)) model_sol_6.add(BatchNormalization()) model_sol_6.add(Dense(10, activation='softmax'))
Digit Recognizer
6,925,490
torch.save(predictor.state_dict() , outdir / "predictor_last.pt") df = log_report.to_dataframe() df.to_csv(outdir / "log.csv", index=False) df<save_to_csv>
model_sol_6.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'] )
Digit Recognizer
6,925,490
print("Training done! Start prediction...") valid_pred = classifier.predict_proba(valid_loader ).cpu().numpy() valid_pred_df = pd.DataFrame({ "image_id": [dataset_dicts[i]["image_id"] for i in valid_inds], "class0": valid_pred[:, 0], "class1": valid_pred[:, 1] }) valid_pred_df.to_csv(outdir/"valid_pred.csv", index=False) test_meta = pd.read_csv(inputdir / "vinbigdata-testmeta" / "test_meta.csv") dataset_dicts_test = get_vinbigdata_dicts_test(imgdir, test_meta, debug=debug) test_dataset = VinbigdataTwoClassDataset(dataset_dicts_test, train=False) test_loader = DataLoader( test_dataset, batch_size=flags.valid_batchsize, num_workers=flags.num_workers, shuffle=False, pin_memory=True, ) test_pred = classifier.predict_proba(test_loader ).cpu().numpy() test_pred_df = pd.DataFrame({ "image_id": [d["image_id"] for d in dataset_dicts_test], "class0": test_pred[:, 0], "class1": test_pred[:, 1] }) test_pred_df.to_csv(outdir/"test_pred.csv", index=False )<load_from_csv>
checkpointer = ModelCheckpoint(filepath='mnist.model.best.hdf5', verbose=1, save_best_only=True) hist_sol_6 = model_sol_6.fit_generator(generator=train_batches_sol5, steps_per_epoch=s5_train_x.shape[0] // 64, epochs=32, callbacks=[checkpointer], validation_data=val_batches_sol5, validation_steps=s5_test_x.shape[0] // 64, verbose=2 )
Digit Recognizer
6,925,490
pred_2class = pd.read_csv(inputdir/"vinbigdata2classpred/test_pred.csv") low_threshold = 0.0 high_threshold = 0.976 pred_2class<load_from_csv>
model_sol_6.load_weights('mnist.model.best.hdf5') score = model_sol_6.evaluate(s5_test_x, ohe_s5_test_y, verbose=0) accuracy = 100 * score[1] print('Test accuracy: %.4f%%' % accuracy )
Digit Recognizer
6,925,490
NORMAL = "14 1 0 0 1 1" pred_det_df = pd.read_csv(inputdir/"vinbigdata-detectron2-prediction/results/20210125_all_alb_aug_512_cos/submission.csv") n_normal_before = len(pred_det_df.query("PredictionString == @NORMAL")) merged_df = pd.merge(pred_det_df, pred_2class, on="image_id", how="left") if "target" in merged_df.columns: merged_df["class0"] = 1 - merged_df["target"] c0, c1, c2 = 0, 0, 0 for i in range(len(merged_df)) : p0 = merged_df.loc[i, "class0"] if p0 < low_threshold: c0 += 1 elif low_threshold <= p0 and p0 < high_threshold: merged_df.loc[i, "PredictionString"] += f" 14 {p0} 0 0 1 1" c1 += 1 else: merged_df.loc[i, "PredictionString"] = NORMAL c2 += 1 n_normal_after = len(merged_df.query("PredictionString == @NORMAL")) print( f"n_normal: {n_normal_before} -> {n_normal_after} with threshold {low_threshold} & {high_threshold}" ) print(f"Keep {c0} Add {c1} Replace {c2}") submission_filepath = str(outdir / "submission.csv") submission_df = merged_df[["image_id", "PredictionString"]] submission_df.to_csv(submission_filepath, index=False) print(f"Saved to {submission_filepath}" )<load_from_csv>
model_sol_6.optimizer.lerning_rate=0.01 gen = ImageDataGenerator() batches = gen.flow(train_x_sol5, tf_utils.to_categorical(train_y_sol5, 10), batch_size=64) hist_sol_6 = model_sol_6.fit_generator(generator=batches, steps_per_epoch=train_x_sol5.shape[0] // 64, epochs=50, verbose=2)
Digit Recognizer
6,925,490
train = pd.read_csv("/kaggle/input/titanic/train.csv") test = pd.read_csv("/kaggle/input/titanic/test.csv") train<load_from_csv>
predictions = model_sol_6.predict(test_x_sol5) predictions = [ np.argmax(x)for x in predictions ] submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') submission.drop('Label', axis=1, inplace=True) submission['Label'] = predictions submission.to_csv('submission6.csv', index=False )
Digit Recognizer
6,925,490
submission=pd.read_csv("/kaggle/input/titanic/gender_submission.csv") print(train.columns) print(test.shape) train.drop(['Name', 'Ticket', 'Fare', 'Embarked'], axis=1, inplace=True) test.drop(['Name', 'Ticket', 'Fare', 'Embarked'], axis=1, inplace=True) train['Sex'].replace({'male':0, 'female':1}, inplace=True) test['Sex'].replace({'male':0, 'female':1}, inplace=True) train.drop(['Cabin'], axis=1,inplace=True) test.drop(['Cabin'], axis=1,inplace=True )<prepare_x_and_y>
os.remove('submission1.csv') os.remove('submission2.csv') os.remove('submission3.csv') os.remove('submission4.csv') os.remove('submission5.csv') os.remove('submission6.csv' )
Digit Recognizer
6,925,490
X = train.drop(['Survived', 'PassengerId'], axis=1) y = train['Survived'] X_test = test.drop(['PassengerId'], axis=1) <train_model>
final_train_x = train_x[..., tf.newaxis] final_ohe_train_y = tf_utils.to_categorical(train_y, 10) final_train_batches = image_augmentator.flow(final_train_x, final_ohe_train_y, batch_size=64) final_model = Sequential() final_model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=extended_splitted_train_X.shape[1:])) final_model.add(BatchNormalization()) final_model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu')) final_model.add(MaxPooling2D(pool_size=2)) final_model.add(Dropout(0.1)) final_model.add(BatchNormalization()) final_model.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu')) final_model.add(MaxPooling2D(pool_size=2)) final_model.add(Flatten()) final_model.add(BatchNormalization()) final_model.add(Dense(64)) final_model.add(Activation('relu')) final_model.add(Dropout(0.2)) final_model.add(BatchNormalization()) final_model.add(Dense(10, activation='softmax')) final_model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) final_model.fit_generator(generator=final_train_batches, steps_per_epoch=final_train_batches.n, epochs=1, verbose=1 )
Digit Recognizer
6,925,490
<save_to_csv><EOS>
predictions = final_model.predict(test_x[..., tf.newaxis]) predictions = [ np.argmax(x)for x in predictions ] submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') submission.drop('Label', axis=1, inplace=True) submission['Label'] = predictions submission.to_csv('submission.csv', index=False )
Digit Recognizer
2,404,415
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options>
import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
Digit Recognizer
2,404,415
pd.set_option("display.precision", 4) sns.set(style="darkgrid") warnings.filterwarnings('ignore') TRAIN_LEN = 891 RNG_SEED = 343 COLS_TO_DROP = [] CHILD_AGE_END = 18 DECKS = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'N'] DEFAULT_SURVIVAL = 0.5 def get_deck_class_count(df, T_deck): deck_count = {'A': {}, 'B': {}, 'C': {}, 'D': {}, 'E': {}, 'F': {}, 'G': {}, 'N': {}, 'T': {}} if not T_deck: deck_count.pop('T', None) deck_percent = {} decks = df.transpose().columns.levels[0] for deck in decks: for pclass in range(1, 4): try: count = int(df.loc[deck, pclass]) deck_count[deck][pclass] = count except KeyError: deck_count[deck][pclass] = 0 deck_percent[deck] = [(count / sum(deck_count[deck].values())) * 100 for count in deck_count[deck].values() ] return deck_count, deck_percent def get_surv_prop(deck, pclass): return deck_class_surv_prop[deck][pclass] def get_corr(df): corr = df.corr().abs().unstack().sort_values(kind="quicksort", ascending=False ).reset_index() cols_map = {"level_0": "Feature 1", "level_1": "Feature 2", 0: 'Correlation Coefficient'} corr.drop(corr.iloc[1::2].index, inplace=True) corr.rename(columns=cols_map, inplace=True) return corr.drop(corr[corr['Correlation Coefficient'] == 1.0].index) def combine_df(df1, df2): return pd.concat([df1, df2], sort=True ).reset_index(drop=True) def divide_df(df, first_len): return df.loc[:first_len - 1], df.loc[first_len:].drop(['Survived'], axis=1) def drop_cols(cols): for col in cols: train.drop([col], inplace=True, axis=1) test.drop([col], inplace=True, axis=1) return def display_class_dist(percentages, y_label, title): df_percent = pd.DataFrame(percentages ).transpose() deck_names = percentages.keys() bar_count = np.arange(len(deck_names)) bar_width = 0.75 plt.figure(figsize=(16, 8)) plt.bar(bar_count, df_percent[0], color='red', edgecolor='black', width=bar_width, label='Passenger Class 1') plt.bar(bar_count, df_percent[1], bottom=df_percent[0], color='lime', edgecolor='black', width=bar_width, label='Passenger Class 2') plt.bar(bar_count, df_percent[2], bottom=df_percent[0] + df_percent[1], color='blue', edgecolor='black', width=bar_width, label='Passenger Class 3') plt.xlabel('Deck', size=25) plt.ylabel(y_label, size=25) plt.xticks(bar_count, deck_names) plt.tick_params(axis='x', labelsize=15) plt.tick_params(axis='y', labelsize=15) plt.legend(loc='upper right', prop={'size': 15}) plt.title(title, size=30, y=1) plt.show() return def group_survivors(df, group, new_feature_name): df[new_feature_name] = DEFAULT_SURVIVAL for _, group_df in df.groupby(group): if len(group_df)> 1: surv_max = group_df['Survived'].max() surv_min = group_df['Survived'].min() if isnan(surv_max)and isnan(surv_min): continue for _, row in group_df.iterrows() : passId = row['PassengerId'] if(surv_max == 1.0): df.loc[df['PassengerId'] == passId, new_feature_name] = 1.0 elif(surv_min==0.0): df.loc[df['PassengerId'] == passId, new_feature_name] = 0.0 return df<load_from_csv>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
2,404,415
train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') combined = combine_df(train, test )<sort_values>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
2,404,415
train[['Sex', 'Survived']].groupby(['Sex'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<filter>
Y_train = train['label']
Digit Recognizer
2,404,415
adults = train[train['Age'] >= CHILD_AGE_END] children = train[train['Age'] < CHILD_AGE_END] print('Proportion of passengers <{} who survived: {:.4f}'.format(CHILD_AGE_END, children['Survived'].mean())) print('Proportion of passengers >={} who survived: {:.4f}'.format(CHILD_AGE_END, adults['Survived'].mean()))<sort_values>
X_train = train.drop(labels=['label'], axis =1) del train
Digit Recognizer
2,404,415
train[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<filter>
X_train = X_train/255.0 test = test/255.0
Digit Recognizer
2,404,415
combined[combined['Fare'].isnull() ]<data_type_conversions>
Y_train = to_categorical(Y_train , num_classes = 10 )
Digit Recognizer
2,404,415
combined['Fare'] = combined['Fare'].fillna(med_fare[3][0][0] )<filter>
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state = 42 )
Digit Recognizer
2,404,415
combined[combined['Embarked'].isnull() ]<data_type_conversions>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5), padding = 'same', activation = 'relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5), padding = 'same', activation = 'relu')) model.add(MaxPool2D(pool_size =(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 32, kernel_size =(5,5), padding = 'same', activation = 'relu')) model.add(Conv2D(filters = 32, kernel_size =(5,5), padding = 'same', activation = 'relu')) model.add(MaxPool2D(pool_size =(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = 'relu')) model.add(Dropout(0.25)) model.add(Dense(10, activation = 'softmax'))
Digit Recognizer
2,404,415
combined['Embarked'] = combined['Embarked'].fillna('S' )<split>
model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'] )
Digit Recognizer
2,404,415
train, test = divide_df(combined, TRAIN_LEN) corr_train = get_corr(train) corr_train[(corr_train['Feature 1'] == 'Age')| (corr_train['Feature 2'] == 'Age')]<groupby>
epochs = 30 batch_size = 86
Digit Recognizer
2,404,415
age_pclass_sex = train.groupby(['Pclass', 'Sex'] ).median() ['Age'] print('Median ages for the following groups(training data):') for pclass in range(1, train['Pclass'].nunique() + 1): for sex in ['female', 'male']: print('Pclass {} {}s: {}'.format(pclass, sex, age_pclass_sex[pclass][sex])) print('All passengers: {}'.format(train['Age'].median()))<categorify>
datagen = ImageDataGenerator(rotation_range = 10, zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1 ) datagen.fit(X_train)
Digit Recognizer
2,404,415
combined['Age'] = combined.groupby(['Pclass', 'Sex'])['Age'].apply(lambda x: x.fillna(x.median()))<feature_engineering>
history = model.fit_generator(datagen.flow(X_train, Y_train, batch_size = batch_size), epochs = epochs, validation_data =(X_val, Y_val), steps_per_epoch=X_train.shape[0] // batch_size )
Digit Recognizer
2,404,415
combined['Deck'] = combined['Cabin'].apply(lambda s: s[0] if pd.notnull(s)else 'N') train, test = divide_df(combined, TRAIN_LEN) deck_class_count = train.groupby(['Deck', 'Pclass'] ).count().rename(columns={'Name': 'Count'}) deck_class_count = deck_class_count[['Count']] print('Passenger counts for each Deck, Pclass combination(training data)where N deck denotes null values:', deck_class_count, sep=' ' )<concatenate>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results, name = 'Label' )
Digit Recognizer
2,404,415
<split><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
1,877,522
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<groupby>
%matplotlib inline
Digit Recognizer
1,877,522
deck_class_surv_count = train[['Deck', 'Pclass', 'Survived']] deck_class_surv_count = deck_class_surv_count.groupby(['Deck', 'Pclass'] ).sum() deck_class_surv_count, _ = get_deck_class_count(deck_class_surv_count, False) deck_class_surv_prop = deck_class_surv_count.copy() for deck in DECKS: for pclass in deck_class_count[deck].keys() : try: deck_class_surv_prop[deck][pclass] = round(( deck_class_surv_count[deck][pclass] / deck_class_count[deck][pclass]), 2) except ZeroDivisionError: pass print('Decimal percent of passengers survived for each 'Deck', 'Pclass' combination(training set)':') display(deck_class_surv_prop )<feature_engineering>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv' )
Digit Recognizer
1,877,522
combined = combine_df(train, test) combined['DeckPclassSurvProp'] = combined.apply(lambda x: get_surv_prop(x['Deck'], x['Pclass']),axis=1 )<split>
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv' )
Digit Recognizer
1,877,522
combined['FamilySize'] = combined['SibSp'] + combined['Parch'] + 1 COLS_TO_DROP.extend(['SibSp', 'Parch']) train, test = divide_df(combined, TRAIN_LEN )<count_values>
y_train = train['label'] x_train = train.drop('label', axis=1) y_train.shape, x_train.shape
Digit Recognizer
1,877,522
combined = combine_df(train, test) combined['Title'] = combined['Name'].apply(lambda name: name.split(',')[1].split('.')[0].strip()) print('Count of passenger titles aboard the Titanic:') combined['Title'].value_counts()<define_variables>
y_train.value_counts()
Digit Recognizer
1,877,522
normalized_titles = { "Capt": "Officer", "Col": "Officer", "Don": "Royalty", "Dona": "Royalty", "Dr": "Officer", "Jonkheer": "Royalty", "Lady" : "Royalty", "Major": "Officer", "Master" : "Master", "Miss" : "Miss", "Mlle": "Miss", "Mme": "Mrs", "Mr" : "Mr", "Mrs" : "Mrs", "Ms": "Mrs", "Rev": "Officer", "Sir" : "Royalty", "the Countess": "Royalty"} combined['Title'] = combined['Title'].map(normalized_titles) print('Count of updated passenger titles aboard the Titanic:') combined['Title'].value_counts()<sort_values>
x_train = x_train/255.0 test = test/255.0
Digit Recognizer
1,877,522
print('Decimal percentages for survival based on passenger title:') combined[['Title', 'Survived']].groupby(['Title'], as_index=False ).mean() \ .sort_values(by='Survived', kind="quicksort", ascending=False )<feature_engineering>
y_train = pd.DataFrame(data=y_train) one_hot = OneHotEncoder(handle_unknown='ignore') one_hot.fit(y_train.values) y_train = one_hot.transform(y_train.values ).toarray()
Digit Recognizer
1,877,522
combined['Surname'] = combined['Name'].apply(lambda x: str.split(x, ",")[0] )<filter>
random_seed = 3 x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.1, random_state=random_seed) x_train.shape, x_val.shape, y_train.shape, y_val.shape
Digit Recognizer
1,877,522
display(combined.loc[combined['Surname'] == 'Davies'] )<filter>
model = Sequential([ Conv2D(filters = 64, input_shape=(28,28,1), kernel_size=(3,3), strides=(1,1), padding='valid'), Activation('relu'), MaxPooling2D(pool_size=(2,2), strides=(1,1), padding='valid'), BatchNormalization() , Conv2D(filters=128, kernel_size=(3,3), strides=(1,1), padding='valid'), Activation('relu'), MaxPooling2D(pool_size=(2,2), strides=(1,1), padding='valid'), BatchNormalization() , Conv2D(filters=192, kernel_size=(1,1), strides=(1,1), padding='valid'), Activation('relu'), BatchNormalization() , Conv2D(filters=192, kernel_size=(3,3), strides=(1,1), padding='valid'), Activation('relu'), BatchNormalization() , Conv2D(filters=128, kernel_size=(3,3), strides=(1,1), padding='valid'), Activation('relu'), MaxPooling2D(pool_size=(2,2), strides=(1,1), padding='valid'), BatchNormalization() , Flatten() , Dense(2048), Activation('relu'), Dropout(0.4), BatchNormalization() , Dense(2048), Activation('relu'), Dropout(0.4), BatchNormalization() , Dense(800), Activation('relu'), Dropout(0.4), BatchNormalization() , Dense(10), Activation('softmax'), ] )
Digit Recognizer
1,877,522
combined.loc[combined['FamilySize'] == 11]<groupby>
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
1,877,522
combined = group_survivors(combined, ['Surname', 'Fare', 'FamilySize'], 'FamilySurvival') print('Count of passengers with family survival data: ', combined.loc[combined['FamilySurvival']!=0.5].shape[0] )<groupby>
model.fit(x_train, y_train, batch_size=200, validation_data=(x_val,y_val), epochs = 10 )
Digit Recognizer
1,877,522
combined = group_survivors(combined, ['Ticket'], 'GroupSurvival') print('Count of passenger with group survival data: ', combined[combined['GroupSurvival']!=0.5].shape[0] )<categorify>
results = model.predict(test )
Digit Recognizer
1,877,522
<categorify><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_submission1.csv",index=False )
Digit Recognizer
1,331,299
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<drop_column>
%matplotlib inline
Digit Recognizer
1,331,299
passengerid_test = test.PassengerId COLS_TO_DROP.extend(['PassengerId', 'Name', 'Ticket', 'Surname']) drop_cols(COLS_TO_DROP) display(train.head() )<split>
train=pd.read_csv('.. /input/train.csv') test=pd.read_csv('.. /input/test.csv' )
Digit Recognizer
1,331,299
y = train[['Survived']].copy() train.drop(columns='Survived', inplace=True) X_train, X_valid, y_train, y_valid = train_test_split(train, y, train_size=0.8, random_state=RNG_SEED) X_test = test.copy()<choose_model_class>
train_images=train.iloc[:,1:].values train_labels=train.iloc[:,0:1].values test_X=test.iloc[:,:].values
Digit Recognizer
1,331,299
WANT_HYPERPARAMETERS = False if WANT_HYPERPARAMETERS: params = dict(max_depth = [n for n in range(3, 9)], min_samples_split = [n for n in range(2, 4)], min_samples_leaf = [n for n in range(2, 4)], n_estimators = [20, 40, 60, 80],) model = GridSearchCV(RandomForestClassifier(random_state=RNG_SEED), params, cv=5, scoring='accuracy') model.fit(X_train, y_train) print(f'Best parameters {model_random_forest.best_params_}') print(f'Mean cross-validated accuracy of the best parameters: {model.best_score_:.4f}') else: model = RandomForestClassifier(n_estimators=50, max_depth=5, min_samples_leaf=2, min_samples_split=2, random_state=RNG_SEED) model.fit(X_train, y_train )<compute_train_metric>
train_images = train_images.reshape(( -1, 28, 28, 1)) train_images = train_images.astype('float32')/ 255 test = test.values.reshape(-1,28,28,1) test = test / 255.0
Digit Recognizer
1,331,299
predictions_valid = model.predict(X_valid) score = mean_absolute_error(y_valid, predictions_valid) print('MAE for validation set prediction:', round(score, 4)) folds = 5 scores = -1 * cross_val_score(model, X_valid, y_valid, cv=folds, scoring='neg_mean_absolute_error') print('Average MAE score(across experiments using {} folds):'.format(folds)) print(round(scores.mean() , 4))<save_to_csv>
train_labels = to_categorical(train_labels )
Digit Recognizer
1,331,299
predictions_test = model.predict(X_test) predictions_test = predictions_test.astype(int) output = pd.DataFrame({'PassengerId': passengerid_test, 'Survived': predictions_test}) output.to_csv('submission.csv', index=False )<feature_engineering>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(train_images )
Digit Recognizer
1,331,299
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' os.environ["KMP_SETTINGS"] = "false"<load_from_csv>
model = models.Sequential() model.add(layers.Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',activation ='relu', input_shape =(28,28,1))) model.add(layers.Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',activation ='relu')) model.add(layers.MaxPool2D(pool_size=(2,2))) model.add(layers.Dropout(0.25)) model.add(layers.Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(layers.Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(layers.MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(layers.Dropout(0.25)) model.add(layers.Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(layers.Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(layers.MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(layers.Dropout(0.25)) model.add(layers.Flatten()) model.add(layers.Dropout(0.25)) model.add(layers.Dense(256, activation='relu',kernel_regularizer=regularizers.l2(0.001))) model.add(layers.Dropout(0.35)) model.add(layers.Dense(10, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
1,331,299
train_file_path = ".. /input/titanic/train.csv" X = pd.read_csv(train_file_path) features = ["Pclass", "Sex", "Age", "Survived"] X = pd.get_dummies(X[features]) X = pd.concat([X.drop('Pclass', axis=1), pd.get_dummies(X['Pclass'], prefix="Pclass")], axis=1) imputer = SimpleImputer() imputed_X = pd.DataFrame(imputer.fit_transform(X)) imputed_X.columns = X.columns X = imputed_X learnoutput = X.Survived learninput = X.drop("Survived", axis=1) test_file_path = ".. /input/titanic/test.csv" test_data = pd.read_csv(test_file_path) features = ["Pclass", "Sex", "Age"] test = pd.get_dummies(test_data[features]) testinput = pd.concat([test.drop('Pclass', axis=1), pd.get_dummies(test['Pclass'], prefix="Pclass")], axis=1 )<split>
history = model.fit_generator(datagen.flow(train_images,train_labels, batch_size=64), epochs = 100, verbose = 2, steps_per_epoch=train_images.shape[0] // 64 )
Digit Recognizer
1,331,299
x_train_split, x_val_split, y_train_split, y_val_split = train_test_split(learninput, learnoutput, random_state=0 )<choose_model_class>
results = model.predict(test )
Digit Recognizer
1,331,299
model = keras.Sequential([ layers.Dense( units=128, activation = "tanh", input_shape = [6] ), layers.Dropout(0.2), layers.Dense( units = 256, activation = "tanh", ), layers.Dropout(0.2), layers.Dense( units = 512, activation = "tanh", ), layers.Dropout(0.2), layers.Dense( units = 1024, activation = "tanh", ), layers.Dropout(0.2), layers.Dense( units = 1, activation = "sigmoid" ) ] )<train_model>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
1,331,299
<compute_test_metric><EOS>
model.save('digit_clfr.h5' )
Digit Recognizer
1,301,491
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<save_to_csv>
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler
Digit Recognizer
1,301,491
predictions = model.predict(testinput) predictions = predictions.ravel() predictions = predictions.round() predictions = np.nan_to_num(predictions) predictions = predictions.astype(int) output = pd.DataFrame({'PassengerId': test_data.PassengerId, "Survived": predictions}) output.to_csv("./file1.csv", index=False )<train_model>
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )
Digit Recognizer
1,301,491
print(f'Training path:{__training_path} Test path:{__test_path}' )<install_modules>
Y_train = train["label"] X_train = train.drop(labels = ["label"],axis = 1) X_train = X_train / 255.0 X_test = test / 255.0 X_train = X_train.values.reshape(-1,28,28,1) X_test = X_test.values.reshape(-1,28,28,1) Y_train = to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
1,301,491
!{sys.executable} -m pip install --upgrade scikit-learn=="0.24.2"<import_modules>
datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.10, width_shift_range=0.1, height_shift_range=0.1 )
Digit Recognizer
1,301,491
import sklearn; sklearn.show_versions()<load_from_csv>
nets = 15 model = [0] *nets for j in range(nets): model[j] = Sequential() model[j].add(Conv2D(32, kernel_size = 3, activation='relu', input_shape =(28, 28, 1))) model[j].add(BatchNormalization()) model[j].add(Conv2D(32, kernel_size = 3, activation='relu')) model[j].add(BatchNormalization()) model[j].add(Conv2D(32, kernel_size = 5, strides=2, padding='same', activation='relu')) model[j].add(BatchNormalization()) model[j].add(Dropout(0.4)) model[j].add(Conv2D(64, kernel_size = 3, activation='relu')) model[j].add(BatchNormalization()) model[j].add(Conv2D(64, kernel_size = 3, activation='relu')) model[j].add(BatchNormalization()) model[j].add(Conv2D(64, kernel_size = 5, strides=2, padding='same', activation='relu')) model[j].add(BatchNormalization()) model[j].add(Dropout(0.4)) model[j].add(Conv2D(128, kernel_size = 4, activation='relu')) model[j].add(BatchNormalization()) model[j].add(Flatten()) model[j].add(Dropout(0.4)) model[j].add(Dense(10, activation='softmax')) model[j].compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
1,301,491
def __load__data(__training_path, __test_path, concat=False): __train_dataset = pd.read_csv(__training_path, delimiter=',') __test_dataset = pd.read_csv(__test_path, delimiter=',') return __train_dataset, __test_dataset __train_dataset, __test_dataset = __load__data(__training_path, __test_path, concat=True) __train_dataset.head()<define_variables>
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x) history = [0] * nets epochs = 45 for j in range(nets): X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size = 0.1) history[j] = model[j].fit_generator(datagen.flow(X_train2,Y_train2, batch_size=64), epochs = epochs, steps_per_epoch = X_train2.shape[0]//64, validation_data =(X_val2,Y_val2), callbacks=[annealer], verbose=0) print("CNN {0:d}: Epochs={1:d}, Train accuracy={2:.5f}, Validation accuracy={3:.5f}".format( j+1,epochs,max(history[j].history['acc']),max(history[j].history['val_acc'])) )
Digit Recognizer
1,301,491
<drop_column><EOS>
results = np.zeros(( X_test.shape[0],10)) for j in range(nets): results = results + model[j].predict(X_test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("MNIST-CNN-ENSEMBLE.csv",index=False )
Digit Recognizer
202,132
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<data_type_conversions>
%matplotlib inline
Digit Recognizer
202,132
_NUMERIC_COLS_WITH_MISSING_VALUES = ['Age', 'Fare', 'Parch', 'Pclass', 'SibSp'] for _col in _NUMERIC_COLS_WITH_MISSING_VALUES: __simple_imputer = SimpleImputer(missing_values=np.nan, strategy='mean') __train_dataset[_col] = __simple_imputer.fit_transform(__train_dataset[_col].values.reshape(-1,1)) [:,0] if _col in __test_dataset: __test_dataset[_col] = __simple_imputer.transform(__test_dataset[_col].astype(__train_dataset[_col].dtypes ).values.reshape(-1,1)) [:,0]<data_type_conversions>
from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization from keras.optimizers import Adam from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import LearningRateScheduler
Digit Recognizer
202,132
_STRING_COLS_WITH_MISSING_VALUES = ['Cabin', 'Ticket', 'Sex', 'Name', 'Embarked'] for _col in _STRING_COLS_WITH_MISSING_VALUES: __simple_imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent') __train_dataset[_col] = __simple_imputer.fit_transform(__train_dataset[_col].values.reshape(-1,1)) [:,0] if _col in __test_dataset: __test_dataset[_col] = __simple_imputer.transform(__test_dataset[_col].astype(__train_dataset[_col].dtypes ).values.reshape(-1,1)) [:,0]<categorify>
train_file = ".. /input/train.csv" test_file = ".. /input/test.csv" output_file = "submission.csv"
Digit Recognizer
202,132
_CATEGORICAL_COLS = ['Sex', 'Embarked'] _ohe = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1) __train_dataset[_CATEGORICAL_COLS] = pd.DataFrame(_ohe.fit_transform(__train_dataset[_CATEGORICAL_COLS]), columns=_CATEGORICAL_COLS) __test_dataset[_CATEGORICAL_COLS] = pd.DataFrame(_ohe.transform(__test_dataset[_CATEGORICAL_COLS]), columns=_CATEGORICAL_COLS )<feature_engineering>
raw_data = np.loadtxt(train_file, skiprows=1, dtype='int', delimiter=',') x_train, x_val, y_train, y_val = train_test_split( raw_data[:,1:], raw_data[:,0], test_size=0.1 )
Digit Recognizer
202,132
_TEXT_COLUMNS = ['Name', 'Ticket', 'Cabin'] def process_text(__dataset): for _col in _TEXT_COLUMNS: process_text = [t.lower() for t in __dataset[_col]] table = str.maketrans('', '', string.punctuation) process_text = [t.translate(table)for t in process_text] process_text = [re.sub(r'\d+', 'num', t)for t in process_text] __dataset[_col] = process_text return __dataset __train_dataset = process_text(__train_dataset) __test_dataset = process_text(__test_dataset )<prepare_x_and_y>
x_train = x_train.astype("float32")/255. x_val = x_val.astype("float32")/255 .
Digit Recognizer
202,132
__feature_train = __train_dataset.drop(['Survived'], axis=1) __target_train =__train_dataset['Survived'] __feature_test = __test_dataset<feature_engineering>
y_train = to_categorical(y_train) y_val = to_categorical(y_val) print(y_train[0] )
Digit Recognizer
202,132
_TEXT_COLUMNS = ['Cabin', 'Ticket', 'Name'] __temp_train_data = __feature_train[_TEXT_COLUMNS] __feature_train.drop(_TEXT_COLUMNS, axis=1, inplace=True) __feature_train_object_array = [] __temp_test_data = __feature_test[_TEXT_COLUMNS] __feature_test.drop(_TEXT_COLUMNS, axis=1, inplace=True) __feature_test_object_array = [] for _col in _TEXT_COLUMNS: __tfidfvectorizer = TfidfVectorizer(max_features=3000) vector_train = __tfidfvectorizer.fit_transform(__temp_train_data[_col]) __feature_train_object_array.append(vector_train) vector_test = __tfidfvectorizer.transform(__temp_test_data[_col]) __feature_test_object_array.append(vector_test) __feature_train = sparse.hstack([__feature_train] + __feature_train_object_array ).tocsr() __feature_test = sparse.hstack([__feature_test] + __feature_test_object_array ).tocsr()<predict_on_test>
model = Sequential() model.add(Conv2D(filters = 16, kernel_size =(3, 3), activation='relu', input_shape =(28, 28, 1))) model.add(BatchNormalization()) model.add(Conv2D(filters = 16, kernel_size =(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(strides=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 32, kernel_size =(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 32, kernel_size =(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax'))
Digit Recognizer
202,132
__model = RandomForestClassifier() __model.fit(__feature_train, __target_train) __y_pred = __model.predict(__feature_test )<prepare_output>
datagen = ImageDataGenerator(zoom_range = 0.1, height_shift_range = 0.1, width_shift_range = 0.1, rotation_range = 10 )
Digit Recognizer
202,132
submission = pd.DataFrame(columns=['PassengerId'], data=__test_dataset_submission_columns) submission = pd.concat([submission, pd.DataFrame(__y_pred, columns=['Survived'])], axis=1) submission.head()<save_to_csv>
model.compile(loss='categorical_crossentropy', optimizer = Adam(lr=1e-4), metrics=["accuracy"] )
Digit Recognizer
202,132
submission.to_csv("kaggle_submission.csv", index=False )<import_modules>
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x )
Digit Recognizer
202,132
import numpy as np import pandas as pd import matplotlib.pyplot as plt<load_from_csv>
hist = model.fit_generator(datagen.flow(x_train, y_train, batch_size=16), steps_per_epoch=500, epochs=20, verbose=2, validation_data=(x_val[:400,:], y_val[:400,:]), callbacks=[annealer] )
Digit Recognizer
202,132
train_dataset = pd.read_csv('.. /input/titanic/train.csv') train_dataset.head() <load_from_csv>
final_loss, final_acc = model.evaluate(x_val, y_val, verbose=0) print("Final loss: {0:.4f}, final accuracy: {1:.4f}".format(final_loss, final_acc))
Digit Recognizer
202,132
test_dataset = pd.read_csv('.. /input/titanic/test.csv') test_dataset.head()<prepare_x_and_y>
y_hat = model.predict(x_val) y_pred = np.argmax(y_hat, axis=1) y_true = np.argmax(y_val, axis=1) cm = confusion_matrix(y_true, y_pred) print(cm )
Digit Recognizer
202,132
X = train_dataset[['Pclass','Sex','Age','Fare','SibSp','Parch', 'Embarked', 'Name', 'Cabin']] print(X) y = train_dataset.iloc[:, 1].values print(y[0:10]) X_test = test_dataset[['Pclass','Sex','Age','Fare','SibSp','Parch', 'Embarked','Name','Cabin']] print(X_test) <feature_engineering>
mnist_testset = np.loadtxt(test_file, skiprows=1, dtype='int', delimiter=',') x_test = mnist_testset.astype("float32") x_test = x_test.reshape(-1, 28, 28, 1)/255 .
Digit Recognizer
202,132
X['Age'] = X['Age'].fillna(( X['Age'].mean())) X["Embarked"] = X["Embarked"].fillna("S") X.loc[X["Embarked"] == "S", "Embarked"] = 0 X.loc[X["Embarked"] == "C", "Embarked"] = 1 X.loc[X["Embarked"] == "Q", "Embarked"] = 2 X_test['Age'] = X_test['Age'].fillna(( X_test['Age'].mean())) X_test["Embarked"] = X_test["Embarked"].fillna("S") X_test.loc[X_test["Embarked"] == "S", "Embarked"] = 0 X_test.loc[X_test["Embarked"] == "C", "Embarked"] = 1 X_test.loc[X_test["Embarked"] == "Q", "Embarked"] = 2 data = [X, X_test] titles = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5} for dataset in data: dataset['Title'] = dataset.Name.str.extract('([A-Za-z]+)\.', expand=False) dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don', 'Dr','Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') dataset['Title'] = dataset['Title'].map(titles) dataset['Title'] = dataset['Title'].fillna(0) dataset['Sex'] = dataset['Sex'].map({'female': 1, 'male': 0} ).astype(int) dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0 dataset.loc[(dataset['Age'] > 16)&(dataset['Age'] <= 32), 'Age'] = 1 dataset.loc[(dataset['Age'] > 32)&(dataset['Age'] <= 48), 'Age'] = 2 dataset.loc[(dataset['Age'] > 48)&(dataset['Age'] <= 64), 'Age'] = 3 dataset.loc[ dataset['Age'] > 64, 'Age'] = 4 dataset['Age'] = dataset['Age'].astype(int) dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 dataset['Fare'] = dataset['Fare'].fillna(dataset['Fare'].median()) dataset['Cabin'] = dataset['Cabin'].str[:1] X = X.drop(['Name'], axis=1) X_test = X_test.drop(['Name'], axis=1) print(X) print(X_test) <categorify>
y_hat = model.predict(x_test, batch_size=64 )
Digit Recognizer
202,132
cabin_mapping = {"A": 0, "B": 0.4, "C": 0.8, "D": 1.2, "E": 1.6, "F": 2, "G": 2.4, "T": 2.8} data = [X, X_test] for dataset in data: dataset['Cabin'] = dataset['Cabin'].map(cabin_mapping) X["Cabin"].fillna(X.groupby("Pclass")["Cabin"].transform("median"), inplace=True) X_test["Cabin"].fillna(X_test.groupby("Pclass")["Cabin"].transform("median"), inplace=True )<feature_engineering>
y_pred = np.argmax(y_hat,axis=1 )
Digit Recognizer
202,132
<feature_engineering><EOS>
with open(output_file, 'w')as f : f.write('ImageId,Label ') for i in range(len(y_pred)) : f.write("".join([str(i+1),',',str(y_pred[i]),' ']))
Digit Recognizer
10,050,741
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<drop_column>
import numpy as np import pandas as pd
Digit Recognizer
10,050,741
features_drop = [ 'SibSp', 'Parch', 'FamilySize', 'FareBand'] X = X.drop(features_drop, axis=1) X_test = X_test.drop(features_drop, axis=1) print(X) print(X_test )<normalization>
train = pd.read_csv('.. /input/digit-recognizer/train.csv') test = pd.read_csv('.. /input/digit-recognizer/test.csv' )
Digit Recognizer
10,050,741
sc = StandardScaler() X = sc.fit_transform(X) print('X') print(X) X_test = sc.fit_transform(X_test) print('X_test') print(X_test )<compute_train_metric>
import matplotlib.pyplot as plt
Digit Recognizer
10,050,741
classifier = LogisticRegression(random_state = 0) classifier.fit(X, y) y_pred_l_reg = classifier.predict(X_test) acc_l_reg = round(classifier.score(X, y)* 100, 2) print(str(acc_l_reg)+ ' percent') <compute_train_metric>
tr_sample = train.drop('label', axis=1 ).values.reshape(-1,28,28)[0] ts_sample = test.values.reshape(-1,28,28)[0]
Digit Recognizer
10,050,741
clf = SVC() clf.fit(X, y) y_pred_svc = clf.predict(X_test) acc_svc = round(clf.score(X, y)* 100, 2) print(acc_svc )<predict_on_test>
test['pixel345'].value_counts()
Digit Recognizer
10,050,741
clf = KNeighborsClassifier(n_neighbors = 3) clf.fit(X, y) y_pred_knn = clf.predict(X_test) acc_knn = round(clf.score(X, y)* 100, 2) print(acc_knn) <choose_model_class>
from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split
Digit Recognizer
10,050,741
clf = DecisionTreeClassifier() clf.fit(X, y) y_pred_decision_tree = clf.predict(X_test) acc_decision_tree = round(clf.score(X, y)* 100, 2) print(acc_decision_tree) <predict_on_test>
x_test = test.values.reshape(-1,28,28,1) x_test = x_test/255 x_train_full = train.drop('label', axis=1 ).values.reshape(-1,28,28,1) y_train_full = train['label'].values x_train, x_val, y_train, y_val = train_test_split(x_train_full, y_train_full, test_size=0.2, random_state=42 )
Digit Recognizer
10,050,741
clf = RandomForestClassifier(n_estimators=100) clf.fit(X, y) y_pred_random_forest = clf.predict(X_test) acc_random_forest = round(clf.score(X, y)* 100, 2) print(acc_random_forest )<compute_train_metric>
batch_size=64 img_gen = ImageDataGenerator(rescale=1/255, rotation_range=30, zoom_range=.1, shear_range=.1, width_shift_range=.25, height_shift_range=.25) train_gen = img_gen.flow(x_train, y_train, batch_size=batch_size) valid_gen = img_gen.flow(x_val, y_val, batch_size=batch_size, shuffle=False )
Digit Recognizer
10,050,741
sgd = SGDClassifier() sgd.fit(X, y) Y_pred = sgd.predict(X_test) acc_sgd = round(sgd.score(X, y)* 100, 2) print(acc_sgd )<save_to_csv>
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Activation, Dense, Conv2D, MaxPool2D, Dropout, BatchNormalization, AveragePooling2D, GlobalAveragePooling2D from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
Digit Recognizer
10,050,741
output = pd.DataFrame({'PassengerId': test_dataset.PassengerId, 'Survived': y_pred_l_reg}) output.to_csv('my_submission.csv', index=False) print("Your submission was successfully saved" )<import_modules>
early_stop = EarlyStopping(monitor='val_loss', patience=5, mode='min',restore_best_weights=True) check_point = ModelCheckpoint('digit_reg_mnist_z.h5', monitor='val_accuracy', save_best_only=True) lr_plateau = ReduceLROnPlateau(monitor='val_accuracy', patience=2, factor=.2, min_lr=1e-6 )
Digit Recognizer
10,050,741
import matplotlib.pyplot as plt import sklearn.model_selection from sklearn.preprocessing import MinMaxScaler from sklearn.impute import KNNImputer from sklearn.metrics import accuracy_score import seaborn as sns import numpy as np import pandas as pd<load_from_csv>
model = Sequential() model.add(Conv2D(32, kernel_size=(3,3), input_shape=(28,28,1), padding='same')) model.add(BatchNormalization(momentum=.9, epsilon=1e-5)) model.add(Activation('relu')) model.add(Conv2D(64, kernel_size=(3,3), padding='same')) model.add(BatchNormalization(momentum=.9, epsilon=1e-5)) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Conv2D(64, kernel_size=(3,3), padding='same')) model.add(BatchNormalization(momentum=.9, epsilon=1e-5)) model.add(Activation('relu')) model.add(Conv2D(128, kernel_size=(3,3), padding='same')) model.add(BatchNormalization(momentum=.9, epsilon=1e-5)) model.add(Activation('relu')) model.add(AveragePooling2D(pool_size=(2,2))) model.add(Conv2D(128, kernel_size=(3,3), padding='same')) model.add(BatchNormalization(momentum=.9, epsilon=1e-5)) model.add(Activation('relu')) model.add(Conv2D(128, kernel_size=(3,3), padding='same')) model.add(BatchNormalization(momentum=.9, epsilon=1e-5)) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Conv2D(256, kernel_size=(3,3), padding='same')) model.add(BatchNormalization(momentum=.9, epsilon=1e-5)) model.add(Activation('relu')) model.add(Conv2D(256, kernel_size=(3,3), padding='same')) model.add(BatchNormalization(momentum=.9, epsilon=1e-5)) model.add(Activation('relu')) model.add(GlobalAveragePooling2D()) model.add(Dense(10, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='adamax', metrics=['accuracy']) model.summary()
Digit Recognizer
10,050,741
train_data = pd.read_csv("/kaggle/input/titanic/train.csv") train_data.head()<load_from_csv>
model.fit(train_gen, epochs=100, steps_per_epoch=250, validation_data=valid_gen, callbacks=[lr_plateau, early_stop] )
Digit Recognizer
10,050,741
test_data = pd.read_csv("/kaggle/input/titanic/test.csv") test_data.head()<concatenate>
import seaborn as sns from sklearn.metrics import classification_report, confusion_matrix
Digit Recognizer
10,050,741
all_data = pd.concat([train_data, test_data]) all_data.head()<compute_test_metric>
eval_df = pd.DataFrame(model.history.history) length = len(eval_df )
Digit Recognizer
10,050,741
survival_rate = train_data["Survived"].mean() print(f"Survival rate: {survival_rate}") print(f"Death rate: {1-survival_rate}" )<define_variables>
pred = np.argmax(model.predict(valid_gen), axis=1) pred
Digit Recognizer
10,050,741
women = train_data.loc[train_data.Sex == 'female']["Survived"] rate_women = sum(women)/len(women) print("% of women who survived:", rate_women )<filter>
print(classification_report(y_val, pred))
Digit Recognizer
10,050,741
train_data.loc[train_data["Sex"] == "male"]["Embarked"]<normalization>
lr_plateau = ReduceLROnPlateau(monitor='accuracy', patience=2, factor=.2, min_lr=1e-6) full_train_gen = img_gen.flow(x_train_full, y_train_full, batch_size=batch_size )
Digit Recognizer
10,050,741
features = ["Pclass", "Sex", "SibSp", "Parch", "Age", "Embarked"] X_train = pd.get_dummies(train_data[features]) imputer = KNNImputer(n_neighbors=5, weights='uniform', metric='nan_euclidean') X_train = imputer.fit_transform(X_train) scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) y_train = np.array(train_data["Survived"]) print(f"Shape of the training set: {X_train.shape}" )<train_on_grid>
model.fit(full_train_gen, epochs=22, steps_per_epoch=250, callbacks=[lr_plateau] )
Digit Recognizer
10,050,741
def trainClassifier(X_train, y_train, model_name, classifier, params, score, verbose=False, num_folds=10): kf = sklearn.model_selection.StratifiedKFold(num_folds) train_scores = [] best_score = 0 for config in sklearn.model_selection.ParameterGrid(params): train_scores_run = [] counts = [] for train_indices, valid_indices in kf.split(X_train, y_train): counts.append(len(train_indices)) X_train_kf = X_train[train_indices] y_train_kf = y_train[train_indices] X_valid_kf = X_train[valid_indices] y_valid_kf = y_train[valid_indices] model = classifier(**config) model.fit(X_train_kf, y_train_kf) y_hat = model.predict(X_valid_kf) train_score = score(y_valid_kf, y_hat) train_scores_run.append(train_score) if np.average(train_scores_run, weights=counts)> best_score: best_score = np.average(train_scores_run, weights=counts) best_config = config if(verbose): print("New best score obtained") print(f"Training with: {config}") print(f"Total Score obtained with cross validation: {best_score} ") train_scores.append(np.average(train_scores_run, weights=counts)) output_df = pd.DataFrame(data = [[model_name, best_config ,best_score]], \ columns=["model_name", "parameters", "training_score"]) return output_df<create_dataframe>
real_pred = np.argmax(model.predict(x_test), axis=1 )
Digit Recognizer
10,050,741
<choose_model_class><EOS>
submit_df = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv') submit_df['Label'] = real_pred submit_df.to_csv('submission.csv', index=False )
Digit Recognizer
9,988,485
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class>
np.random.seed(0) %matplotlib inline
Digit Recognizer