kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
4,566,279
high_corr_col = filter_correlation(train, 0.7) high_corr_col<drop_column>
results = pd.Series(Y_pred, name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_predictions.csv",index=False )
Digit Recognizer
3,437,991
train = train.drop(['1stFlrSF', 'GarageArea', 'TotRmsAbvGrd'], axis = 1) test = test.drop(['1stFlrSF', 'GarageArea', 'TotRmsAbvGrd'], axis = 1 )<drop_column>
df_train = pd.read_csv('.. /input/train.csv') df_test = pd.read_csv('.. /input/test.csv' )
Digit Recognizer
3,437,991
train.drop(['MiscVal', 'MoSold','YrSold'], axis = 1, inplace = True) test.drop(['MiscVal', 'MoSold','YrSold'], axis = 1, inplace = True )<prepare_x_and_y>
y_train = df_train['label'] x_train = df_train.drop(labels = ['label'] , axis=1) del df_train
Digit Recognizer
3,437,991
X = train.drop(['SalePrice'], axis = 1) col_to_use = list(X.columns) y = train['SalePrice'] print(X.shape) print(y.shape )<define_variables>
y_train.value_counts()
Digit Recognizer
3,437,991
num_cols = [col for col in col_to_use if train[col].dtype in ['int64', 'float64']] cat_cols = [col for col in col_to_use if train[col].dtype == 'object'] num_cols<choose_model_class>
x_train = x_train/255.0 df_test = df_test/255.0
Digit Recognizer
3,437,991
num_processor = Pipeline(steps = [ ('imputer', SimpleImputer(strategy='most_frequent')) , ('scaler', MinMaxScaler()) ] )<categorify>
y_train = to_categorical(y_train , num_classes = 10 )
Digit Recognizer
3,437,991
cat_processor = Pipeline(steps = [ ('imputer', SimpleImputer(strategy = 'most_frequent')) , ('ohe', OneHotEncoder(handle_unknown = 'ignore', sparse = False)) ] )<feature_engineering>
x_train , x_val , y_train , y_val = train_test_split(x_train , y_train , test_size =.1 , random_state = 0 )
Digit Recognizer
3,437,991
preprocessor = ColumnTransformer([ ('num', num_processor, num_cols), ('cat', cat_processor, cat_cols) ] )<split>
classifier = Sequential() classifier.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) classifier.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) classifier.add(MaxPool2D(pool_size=(2,2))) classifier.add(Dropout(0.25)) classifier.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) classifier.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) classifier.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) classifier.add(Dropout(0.25)) classifier.add(Flatten()) classifier.add(Dense(256, activation = "relu")) classifier.add(Dropout(0.5)) classifier.add(Dense(10, activation = "softmax"))
Digit Recognizer
3,437,991
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42 )<choose_model_class>
classifier.compile(optimizer = 'adam' , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
3,437,991
model = LinearRegression() model1 = Lasso() model2 = Ridge() model3 = DecisionTreeRegressor(max_leaf_nodes = 30, random_state = 42) model4 = RandomForestRegressor(n_estimators = 500, random_state = 42) model5 = XGBRegressor(n_estimators = 1000, learning_rate = 0.05, random_state = 42) model6 = GradientBoostingRegressor(learning_rate = 0.1, n_estimators = 165, random_state=42) model7 = CatBoostRegressor(random_state=0,verbose=False, depth = 5, early_stopping_rounds=300, learning_rate= 0.1 )<compute_train_metric>
epochs = 30 batch_size = 126
Digit Recognizer
3,437,991
def build_model(model): clf = Pipeline(steps = [ ('preprocessor', preprocessor), ('model', model) ]) clf.fit(X_train, y_train) print(model) print("Train set score:", clf.score(X_train, y_train)) print("Test set score:", clf.score(X_test, y_test)) print(" ") print("Train set rmse:", mean_squared_error(y_train, clf.predict(X_train),squared=False)) print("Test set rmse:", mean_squared_error(y_test, clf.predict(X_test),squared=False)) print(" ") predictions = clf.predict(test) return predictions<load_pretrained>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(x_train )
Digit Recognizer
3,437,991
predictions = build_model(model7 )<prepare_output>
history = classifier.fit_generator(datagen.flow(x_train,y_train, batch_size=batch_size), epochs = epochs, validation_data =(x_val,y_val), verbose = 2, steps_per_epoch=x_train.shape[0] // batch_size )
Digit Recognizer
3,437,991
predictions = np.exp(predictions )<save_to_csv>
results = classifier.predict(df_test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
3,437,991
output = pd.DataFrame({'Id': Id, 'SalePrice': predictions}) output.to_csv('submission.csv', index = False) sub = pd.read_csv('./submission.csv') sub<import_modules>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
1,172,238
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.model_selection import train_test_split from lightgbm import LGBMRegressor from xgboost import XGBRegressor import sklearn.metrics as metrics import math<load_from_csv>
train_df = pd.read_csv('.. /input/train.csv') test_df = pd.read_csv('.. /input/test.csv') train_df.head(5 )
Digit Recognizer
1,172,238
sample_submission = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/sample_submission.csv") test = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/test.csv") train = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/train.csv") c_test = test.copy() c_train = train.copy()<concatenate>
train = train_df.values test = test_df.values trainX = train[:, 1:].reshape(train.shape[0], 28, 28, 1) trainX = trainX.astype(float) trainX /= 255.0
Digit Recognizer
1,172,238
c_train['train'] = 1 c_test['train'] = 0 df = pd.concat([c_train, c_test], axis=0,sort=False )<create_dataframe>
trainY = kutils.to_categorical(train[:, 0]) class_num = trainY.shape[1] print(class_num )
Digit Recognizer
1,172,238
NAN = [(c, df[c].isna().mean() *100)for c in df] NAN = pd.DataFrame(NAN, columns=["column_name", "percentage"] )<sort_values>
from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
Digit Recognizer
1,172,238
NAN = NAN[NAN.percentage > 50] NAN.sort_values("percentage", ascending=False )<drop_column>
model = Sequential() model.add(Conv2D(16,(3, 3), padding='same', activation='relu', input_shape=(28, 28, 1))) model.add(Conv2D(32,(5, 5), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1))) model.add(Conv2D(32,(3, 3), padding='same', activation='relu')) model.add(Conv2D(64,(5, 5), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(3, 3), strides=(1, 1))) model.add(Conv2D(64,(3, 3), padding='same', activation='relu')) model.add(Conv2D(128,(5, 5), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(128,(3, 3), padding='same', activation='relu')) model.add(Conv2D(256,(5, 5), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Flatten()) model.add(Dense(128, activation='sigmoid')) model.add(Dense(class_num, activation='softmax')) model.compile(loss="categorical_crossentropy", optimizer="sgd", metrics=["accuracy"] )
Digit Recognizer
1,172,238
df = df.drop(['Alley','PoolQC','Fence','MiscFeature'],axis=1 )<count_missing_values>
model.fit(trainX, trainY, batch_size=64, epochs=100, verbose=2 )
Digit Recognizer
1,172,238
null_counts = object_columns_df.isnull().sum() print("Number of null values in each column: {}".format(null_counts))<data_type_conversions>
testX = test.reshape(test.shape[0], 28, 28, 1) testX = testX.astype(float) testX /= 255.0 yPred = model.predict_classes(testX) np.savetxt('mnist-cnn.csv', np.c_[range(1,len(yPred)+1),yPred], delimiter=',', header = 'ImageId,Label', comments = '', fmt='%d' )
Digit Recognizer
1,191,702
columns_None = ['BsmtQual','BsmtCond','BsmtExposure','BsmtFinType1','BsmtFinType2','GarageType','GarageFinish','GarageQual','FireplaceQu','GarageCond'] object_columns_df[columns_None]= object_columns_df[columns_None].fillna('None' )<categorify>
df = pd.read_csv('.. /input/train.csv') df.head()
Digit Recognizer
1,191,702
columns_with_lowNA = ['MSZoning','Utilities','Exterior1st','Exterior2nd','MasVnrType','Electrical','KitchenQual','Functional','SaleType'] object_columns_df[columns_with_lowNA] = object_columns_df[columns_with_lowNA].fillna(object_columns_df.mode().iloc[0] )<count_missing_values>
y = to_categorical(y ).astype("uint8") print(y.shape )
Digit Recognizer
1,191,702
null_counts = numerical_columns_df.isnull().sum() print("Number of null values in each column: {}".format(null_counts))<feature_engineering>
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) del df, X, y
Digit Recognizer
1,191,702
numerical_columns_df['GarageYrBlt'] = numerical_columns_df['GarageYrBlt'].fillna(numerical_columns_df['YrSold']-35) numerical_columns_df['LotFrontage'] = numerical_columns_df['LotFrontage'].fillna(68 )<drop_column>
def create_model() : model = Sequential() model.add(Conv2D(32, 5, activation="relu", input_shape=(28, 28, 1))) model.add(Conv2D(32, 5, activation="relu")) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(0.4)) model.add(Conv2D(64, 3, activation="relu", padding='same')) model.add(Conv2D(64, 3, activation="relu")) model.add(Dropout(0.4)) model.add(Conv2D(128, 3, activation="relu", padding='same')) model.add(Conv2D(128, 3, activation="relu")) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(256, activation="relu")) model.add(Dropout(0.5)) model.add(Dense(64, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(10, activation="softmax")) model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) return model
Digit Recognizer
1,191,702
object_columns_df = object_columns_df.drop(['Heating','RoofMatl','Condition2','Street','Utilities'],axis=1 )<filter>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=2, factor=0.4, min_lr=3e-6) early_stops = EarlyStopping(monitor='val_acc', min_delta=0, patience=6, verbose=2, mode='auto' )
Digit Recognizer
1,191,702
Negatif = numerical_columns_df[numerical_columns_df['Age_House'] < 0] Negatif<feature_engineering>
data_aug = ImageDataGenerator(rotation_range=20, width_shift_range=4, height_shift_range=4, zoom_range=0.1 )
Digit Recognizer
1,191,702
numerical_columns_df['TotalBsmtBath'] = numerical_columns_df['BsmtFullBath'] + numerical_columns_df['BsmtFullBath']*0.5 numerical_columns_df['TotalBath'] = numerical_columns_df['FullBath'] + numerical_columns_df['HalfBath']*0.5 numerical_columns_df['TotalSA']=numerical_columns_df['TotalBsmtSF'] + numerical_columns_df['1stFlrSF'] + numerical_columns_df['2ndFlrSF']<categorify>
history = model.fit_generator(data_aug.flow(X_train, y_train, batch_size=128), steps_per_epoch=len(X_train)//128, validation_data=(X_test, y_test), epochs=100, verbose=1, callbacks=[learning_rate_reduction] )
Digit Recognizer
1,191,702
bin_map = {'TA':2,'Gd':3, 'Fa':1,'Ex':4,'Po':1,'None':0,'Y':1,'N':0,'Reg':3,'IR1':2,'IR2':1,'IR3':0,"None" : 0, "No" : 2, "Mn" : 2, "Av": 3,"Gd" : 4,"Unf" : 1, "LwQ": 2, "Rec" : 3,"BLQ" : 4, "ALQ" : 5, "GLQ" : 6 } object_columns_df['ExterQual'] = object_columns_df['ExterQual'].map(bin_map) object_columns_df['ExterCond'] = object_columns_df['ExterCond'].map(bin_map) object_columns_df['BsmtCond'] = object_columns_df['BsmtCond'].map(bin_map) object_columns_df['BsmtQual'] = object_columns_df['BsmtQual'].map(bin_map) object_columns_df['HeatingQC'] = object_columns_df['HeatingQC'].map(bin_map) object_columns_df['KitchenQual'] = object_columns_df['KitchenQual'].map(bin_map) object_columns_df['FireplaceQu'] = object_columns_df['FireplaceQu'].map(bin_map) object_columns_df['GarageQual'] = object_columns_df['GarageQual'].map(bin_map) object_columns_df['GarageCond'] = object_columns_df['GarageCond'].map(bin_map) object_columns_df['CentralAir'] = object_columns_df['CentralAir'].map(bin_map) object_columns_df['LotShape'] = object_columns_df['LotShape'].map(bin_map) object_columns_df['BsmtExposure'] = object_columns_df['BsmtExposure'].map(bin_map) object_columns_df['BsmtFinType1'] = object_columns_df['BsmtFinType1'].map(bin_map) object_columns_df['BsmtFinType2'] = object_columns_df['BsmtFinType2'].map(bin_map) PavedDrive = {"N" : 0, "P" : 1, "Y" : 2} object_columns_df['PavedDrive'] = object_columns_df['PavedDrive'].map(PavedDrive )<categorify>
def make_submission(model, filename="submission.csv"): df = pd.read_csv(".. /input/test.csv") X = df.values / 255 X = X.reshape(X.shape[0], 28, 28, 1) preds = model.predict_classes(X) subm = pd.DataFrame(data=list(zip(range(1, len(preds)+ 1), preds)) , columns=["ImageId", "Label"]) subm.to_csv(filename, index=False)
Digit Recognizer
1,191,702
rest_object_columns = object_columns_df.select_dtypes(include=['object']) object_columns_df = pd.get_dummies(object_columns_df, columns=rest_object_columns.columns )<concatenate>
make_submission(model, "submission.csv" )
Digit Recognizer
1,191,702
<drop_column><EOS>
print(f"Finished in {int(time.time() - start_time)} seconds..." )
Digit Recognizer
52,414
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<prepare_x_and_y>
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Flatten, Conv2D, MaxPooling2D, Dropout from tensorflow.keras.preprocessing.image import ImageDataGenerator
Digit Recognizer
52,414
target= df_train['SalePrice'] df_train = df_train.drop(['SalePrice'],axis=1 )<split>
print(tf.__version__ )
Digit Recognizer
52,414
x_train,x_test,y_train,y_test = train_test_split(df_train,target,test_size=0.33,random_state=0 )<choose_model_class>
train_data = pd.read_csv('.. /input/train.csv') test_data = pd.read_csv('.. /input/test.csv' )
Digit Recognizer
52,414
xgb =XGBRegressor(booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.6, gamma=0, importance_type='gain', learning_rate=0.01, max_delta_step=0, max_depth=4, min_child_weight=1.5, n_estimators=2400, n_jobs=1, nthread=None, objective='reg:linear', reg_alpha=0.6, reg_lambda=0.6, scale_pos_weight=1, silent=None, subsample=0.8, verbosity=1) lgbm = LGBMRegressor(objective='regression', num_leaves=4, learning_rate=0.01, n_estimators=12000, max_bin=200, bagging_fraction=0.75, bagging_freq=5, bagging_seed=7, feature_fraction=0.4, )<train_model>
train_data = train_data.values test_data = test_data.values
Digit Recognizer
52,414
xgb.fit(x_train, y_train) lgbm.fit(x_train, y_train,eval_metric='rmse' )<predict_on_test>
np.random.shuffle(train_data )
Digit Recognizer
52,414
predict1 = xgb.predict(x_test) predict = lgbm.predict(x_test )<compute_test_metric>
train_digits = train_digits / 255.0 val_digits = val_digits / 255.0 test_digits = test_digits / 255.0
Digit Recognizer
52,414
print('Root Mean Square Error test = ' + str(math.sqrt(metrics.mean_squared_error(y_test, predict1)))) print('Root Mean Square Error test = ' + str(math.sqrt(metrics.mean_squared_error(y_test, predict))))<train_model>
X0 = Input(shape =(28,28,1)) X = Conv2D(filters = 32, kernel_size = 3, padding = 'Same', activation ='relu' )(X0) X = Conv2D(filters = 32, kernel_size = 3, padding = 'Same', activation ='relu' )(X) X = MaxPooling2D(pool_size = 2, strides = 2 )(X) X = Dropout(0.25 )(X) X = Conv2D(filters = 64, kernel_size = 3, padding = 'Same', activation ='relu' )(X) X = Conv2D(filters = 64, kernel_size = 3, padding = 'Same', activation ='relu' )(X) X = MaxPooling2D(pool_size = 2, strides = 2 )(X) X = Dropout(0.25 )(X) X = Flatten()(X) X = Dense(512, activation = "relu" )(X) X = Dropout(0.50 )(X) Out = Dense(10, activation = "softmax" )(X )
Digit Recognizer
52,414
xgb.fit(df_train, target) lgbm.fit(df_train, target,eval_metric='rmse' )<predict_on_test>
model = Model(inputs=X0, outputs=Out) model.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics=['accuracy']) initial_model_weights = model.get_weights()
Digit Recognizer
52,414
predict4 = lgbm.predict(df_test) predict3 = xgb.predict(df_test) predict_y =(predict3*0.45 + predict4 * 0.55 )<save_to_csv>
history = model.fit(train_digits, train_labels, epochs=10, verbose=2, validation_data=(val_digits,val_labels))
Digit Recognizer
52,414
submission = pd.DataFrame({ "Id": test["Id"], "SalePrice": predict_y }) submission.to_csv('submission.csv', index=False )<import_modules>
model.save("cnn1.h5" )
Digit Recognizer
52,414
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.model_selection import train_test_split from lightgbm import LGBMRegressor from xgboost import XGBRegressor import sklearn.metrics as metrics import math<load_from_csv>
predictions = model.predict(test_digits) predictions = np.argmax(predictions,axis = 1) predictions = pd.Series(predictions,name = 'Label') ids = pd.Series(range(1,28001),name = 'ImageId') predictions = pd.concat([predictions,ids],axis = 1) predictions.to_csv('pred1.csv',index = False) del(predictions) del(ids )
Digit Recognizer
52,414
sample_submission = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/sample_submission.csv") test = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/test.csv") train = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/train.csv") c_test = test.copy() c_train = train.copy()<concatenate>
model.set_weights(initial_model_weights )
Digit Recognizer
52,414
c_train['train'] = 1 c_test['train'] = 0 df = pd.concat([c_train, c_test], axis=0,sort=False )<create_dataframe>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.1, zoom_range=0.1, channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None, validation_split=0.0) datagen.fit(train_digits )
Digit Recognizer
52,414
NAN = [(c, df[c].isna().mean() *100)for c in df] NAN = pd.DataFrame(NAN, columns=["column_name", "percentage"] )<sort_values>
batch_size = 64 gen_history = model.fit_generator(datagen.flow(train_digits, train_labels, batch_size=batch_size), epochs=10, verbose=2, steps_per_epoch=train_digits.shape[0]/batch_size, validation_data=(val_digits,val_labels)) plot_history(gen_history.history )
Digit Recognizer
52,414
<drop_column><EOS>
predictions = model.predict(test_digits) predictions = np.argmax(predictions,axis = 1) predictions = pd.Series(predictions,name = 'Label') ids = pd.Series(range(1,28001),name = 'ImageId') predictions = pd.concat([predictions,ids],axis = 1) predictions.to_csv('pred2.csv',index = False) del(predictions) del(ids) model.save("cnn2.h5" )
Digit Recognizer
4,430,782
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<count_missing_values>
import tensorflow as tf import pandas as pd import numpy as np import matplotlib.pyplot as plt
Digit Recognizer
4,430,782
null_counts = object_columns_df.isnull().sum() print("Number of null values in each column: {}".format(null_counts))<data_type_conversions>
training_images = pd.read_csv('.. /input/train.csv') test_images = pd.read_csv('.. /input/test.csv') training_labels = training_images['label'] training_images = training_images.drop(labels = ['label'], axis = 1) training_images = training_images.values.reshape(42000, 28, 28, 1) test_images = test_images.values.reshape(28000, 28, 28, 1) training_images = training_images / 255.0 test_images = test_images / 255.0
Digit Recognizer
4,430,782
columns_None = ['BsmtQual','BsmtCond','BsmtExposure','BsmtFinType1','BsmtFinType2','GarageType','GarageFinish','GarageQual','FireplaceQu','GarageCond'] object_columns_df[columns_None]= object_columns_df[columns_None].fillna('None' )<categorify>
model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32,(3, 3), activation='relu', input_shape=(28, 28, 1)) , tf.keras.layers.Conv2D(32,(3, 3), activation='relu', input_shape=(28, 28, 1)) , tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Conv2D(64,(3, 3), activation='relu', input_shape=(28, 28, 1)) , tf.keras.layers.Conv2D(64,(3, 3), activation='relu', input_shape=(28, 28, 1)) , tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten() , tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() model.fit(training_images, training_labels, epochs=15 )
Digit Recognizer
4,430,782
columns_with_lowNA = ['MSZoning','Utilities','Exterior1st','Exterior2nd','MasVnrType','Electrical','KitchenQual','Functional','SaleType'] object_columns_df[columns_with_lowNA] = object_columns_df[columns_with_lowNA].fillna(object_columns_df.mode().iloc[0] )<count_missing_values>
predict = model.predict(test_images) predict_array = np.argmax(predict, axis=1) predict_array = predict_array.tolist()
Digit Recognizer
4,430,782
null_counts = numerical_columns_df.isnull().sum() print("Number of null values in each column: {}".format(null_counts))<feature_engineering>
image_set = pd.read_csv('.. /input/test.csv') for i in np.random.randint(28001, size=10): print("Predicted : " + str(predict_array[i])) image = image_set.iloc[i].values.reshape(28, 28) plt.imshow(image, cmap='gray') plt.show()
Digit Recognizer
4,430,782
numerical_columns_df['GarageYrBlt'] = numerical_columns_df['GarageYrBlt'].fillna(numerical_columns_df['YrSold']-35) numerical_columns_df['LotFrontage'] = numerical_columns_df['LotFrontage'].fillna(68 )<drop_column>
data_to_submit = pd.DataFrame({ 'ImageId': range(1, 28001), 'Label': predict_array }) data_to_submit.to_csv('csv_to_submit3.csv', index = False )
Digit Recognizer
4,845,532
object_columns_df = object_columns_df.drop(['Heating','RoofMatl','Condition2','Street','Utilities'],axis=1) <filter>
class Dataset(Dataset): def __init__(self, path, transform=None): self.data = pd.read_csv(path) self.transform = transform def __len__(self): return len(self.data) def __getitem__(self, index): item = self.data.iloc[index] image = item[1:].values.astype(np.uint8 ).reshape(( 28, 28)) label = item[0] if self.transform is not None: image = self.transform(image) return image, label
Digit Recognizer
4,845,532
Negatif = numerical_columns_df[numerical_columns_df['Age_House'] < 0] Negatif<feature_engineering>
path = '.. /input/train.csv' VALID_SIZE = 0.2 train_transform = transforms.Compose([ transforms.ToPILImage() , transforms.ToTensor() , transforms.Normalize(mean=(0.5,), std=(0.5,)) ]) valid_transform = transforms.Compose([ transforms.ToPILImage() , transforms.ToTensor() , transforms.Normalize(mean=(0.5,), std=(0.5,)) ]) train_data = Dataset(path, train_transform) valid_data = Dataset(path, valid_transform) trainloader = DataLoader(train_data, batch_size = 1500, shuffle = True) testloader = DataLoader(valid_data, batch_size = 1500, shuffle = False) len(trainloader )
Digit Recognizer
4,845,532
numerical_columns_df['TotalBsmtBath'] = numerical_columns_df['BsmtFullBath'] + numerical_columns_df['BsmtFullBath']*0.5 numerical_columns_df['TotalBath'] = numerical_columns_df['FullBath'] + numerical_columns_df['HalfBath']*0.5 numerical_columns_df['TotalSA']=numerical_columns_df['TotalBsmtSF'] + numerical_columns_df['1stFlrSF'] + numerical_columns_df['2ndFlrSF']<categorify>
class Net(nn.Module): def __init__(self): super(Net, self ).__init__() self.conv1 = nn.Sequential( nn.Conv2d(1, 32, 3, padding=1), mila() , nn.BatchNorm2d(32), nn.Conv2d(32, 32, 3, stride=2, padding=1), mila() , nn.BatchNorm2d(32), nn.MaxPool2d(2, 2), nn.Dropout(0.25) ) self.conv2 = nn.Sequential( nn.Conv2d(32, 64, 3, padding=1), mila() , nn.BatchNorm2d(64), nn.Conv2d(64, 64, 3, stride=2, padding=1), mila() , nn.BatchNorm2d(64), nn.Dropout(0.25) ) self.conv3 = nn.Sequential( nn.Conv2d(64, 128, 3, padding=1), mila() , nn.BatchNorm2d(128), nn.Conv2d(128, 128, 3, stride=2, padding=1), mila() , nn.BatchNorm2d(128), nn.Dropout(0.25) ) self.conv4 = nn.Sequential( nn.Conv2d(128, 256, 3, padding=1), mila() , nn.BatchNorm2d(256), nn.MaxPool2d(2, 2), nn.Dropout(0.25) ) self.fc = nn.Sequential( nn.Linear(256, 256), nn.Dropout(0.3), mila() , nn.Linear(256, 256), nn.Dropout(0.4), mila() , nn.Linear(256, 10), nn.Softmax(dim=1) ) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = x.view(x.size(0), -1) return self.fc(x )
Digit Recognizer
4,845,532
bin_map = {'TA':2,'Gd':3, 'Fa':1,'Ex':4,'Po':1,'None':0,'Y':1,'N':0,'Reg':3,'IR1':2,'IR2':1,'IR3':0,"None" : 0, "No" : 2, "Mn" : 2, "Av": 3,"Gd" : 4,"Unf" : 1, "LwQ": 2, "Rec" : 3,"BLQ" : 4, "ALQ" : 5, "GLQ" : 6 } object_columns_df['ExterQual'] = object_columns_df['ExterQual'].map(bin_map) object_columns_df['ExterCond'] = object_columns_df['ExterCond'].map(bin_map) object_columns_df['BsmtCond'] = object_columns_df['BsmtCond'].map(bin_map) object_columns_df['BsmtQual'] = object_columns_df['BsmtQual'].map(bin_map) object_columns_df['HeatingQC'] = object_columns_df['HeatingQC'].map(bin_map) object_columns_df['KitchenQual'] = object_columns_df['KitchenQual'].map(bin_map) object_columns_df['FireplaceQu'] = object_columns_df['FireplaceQu'].map(bin_map) object_columns_df['GarageQual'] = object_columns_df['GarageQual'].map(bin_map) object_columns_df['GarageCond'] = object_columns_df['GarageCond'].map(bin_map) object_columns_df['CentralAir'] = object_columns_df['CentralAir'].map(bin_map) object_columns_df['LotShape'] = object_columns_df['LotShape'].map(bin_map) object_columns_df['BsmtExposure'] = object_columns_df['BsmtExposure'].map(bin_map) object_columns_df['BsmtFinType1'] = object_columns_df['BsmtFinType1'].map(bin_map) object_columns_df['BsmtFinType2'] = object_columns_df['BsmtFinType2'].map(bin_map) PavedDrive = {"N" : 0, "P" : 1, "Y" : 2} object_columns_df['PavedDrive'] = object_columns_df['PavedDrive'].map(PavedDrive) <categorify>
!wget https://raw.githubusercontent.com/LiyuanLucasLiu/RAdam/master/cifar_imagenet/utils/radam.py
Digit Recognizer
4,845,532
rest_object_columns = object_columns_df.select_dtypes(include=['object']) object_columns_df = pd.get_dummies(object_columns_df, columns=rest_object_columns.columns )<concatenate>
model = Net() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) criterion = nn.CrossEntropyLoss() optimizer = radam.RAdam(model.parameters() , lr=0.00159 )
Digit Recognizer
4,845,532
df_final = pd.concat([object_columns_df, numerical_columns_df], axis=1,sort=False) df_final.head()<drop_column>
total_epoch = 50
Digit Recognizer
4,845,532
df_final = df_final.drop(['Id',],axis=1) df_train = df_final[df_final['train'] == 1] df_train = df_train.drop(['train',],axis=1) df_test = df_final[df_final['train'] == 0] df_test = df_test.drop(['SalePrice'],axis=1) df_test = df_test.drop(['train',],axis=1 )<prepare_x_and_y>
n_epochs = total_epoch train_loss_data,valid_loss_data = [],[] valid_loss_min = np.Inf class_correct = list(0.for i in range(10)) class_total = list(0.for i in range(10)) for epoch in range(n_epochs): train_loss = 0.0 valid_loss = 0.0 model.train() for data, target in trainloader: data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item() model.eval() for data, target in testloader: data, target = data.to(device), target.to(device) output = model(data) loss = criterion(output, target) valid_loss += loss.item() _, pred = torch.max(output, 1) correct = np.squeeze(pred.eq(target.data.view_as(pred))) for i in range(16): label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1 train_loss = train_loss/len(trainloader.dataset) valid_loss = valid_loss/len(testloader.dataset) train_loss_data.append(train_loss) valid_loss_data.append(valid_loss) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch+1, train_loss, valid_loss )) print('\t\tTest Accuracy: %4d%%(%2d/%2d)' %( 100.* np.sum(class_correct)/ np.sum(class_total), np.sum(class_correct), np.sum(class_total))) if valid_loss <= valid_loss_min: print('\t\tValidation loss decreased({:.6f} --> {:.6f} ).Saving model...'.format( valid_loss_min, valid_loss)) torch.save(model.state_dict() , 'model.pt') valid_loss_min = valid_loss
Digit Recognizer
4,845,532
target= df_train['SalePrice'] df_train = df_train.drop(['SalePrice'],axis=1 )<split>
model.load_state_dict(torch.load('model.pt'))
Digit Recognizer
4,845,532
x_train,x_test,y_train,y_test = train_test_split(df_train,target,test_size=0.33,random_state=0 )<choose_model_class>
classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] test_loss = 0.0 class_correct = list(0.for i in range(10)) class_total = list(0.for i in range(10)) with torch.no_grad() : model.eval() for data, target in testloader: data, target = data.to(device), target.to(device) output = model(data) loss = criterion(output, target) test_loss += loss.item() *data.size(0) _, pred = torch.max(output, 1) correct = np.squeeze(pred.eq(target.data.view_as(pred))) for i in range(16): label = target.data[i] class_correct[label] += correct[i].item() class_total[label] += 1 test_loss = test_loss/len(testloader.dataset) print('Test Loss: {:.6f} '.format(test_loss)) for i in range(10): if class_total[i] > 0: print('Test Accuracy of %5s: %2d%%(%2d/%2d)' %( classes[i], 100 * class_correct[i] / class_total[i], np.sum(class_correct[i]), np.sum(class_total[i]))) else: print('Test Accuracy of %5s: N/A(no training examples)' %(classes[i])) print(' Test Accuracy(Overall): %2d%%(%2d/%2d)' %( 100.* np.sum(class_correct)/ np.sum(class_total), np.sum(class_correct), np.sum(class_total)) )
Digit Recognizer
4,845,532
xgb =XGBRegressor(booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.6, gamma=0, importance_type='gain', learning_rate=0.01, max_delta_step=0, max_depth=4, min_child_weight=1.5, n_estimators=2400, n_jobs=1, nthread=None, objective='reg:linear', reg_alpha=0.6, reg_lambda=0.6, scale_pos_weight=1, silent=None, subsample=0.8, verbosity=1) lgbm = LGBMRegressor(objective='regression', num_leaves=4, learning_rate=0.01, n_estimators=12000, max_bin=200, bagging_fraction=0.75, bagging_freq=5, bagging_seed=7, feature_fraction=0.4, )<train_model>
class DatasetSubmissionMNIST(torch.utils.data.Dataset): def __init__(self, file_path, transform=None): self.data = pd.read_csv(file_path) self.transform = transform def __len__(self): return len(self.data) def __getitem__(self, index): image = self.data.iloc[index].values.astype(np.uint8 ).reshape(( 28, 28, 1)) if self.transform is not None: image = self.transform(image) return image
Digit Recognizer
4,845,532
xgb.fit(x_train, y_train) lgbm.fit(x_train, y_train,eval_metric='rmse') <predict_on_test>
transform = transforms.Compose([ transforms.ToPILImage() , transforms.ToTensor() , transforms.Normalize(mean=(0.5,), std=(0.5,)) ]) submissionset = DatasetSubmissionMNIST('.. /input/test.csv', transform=transform) submissionloader = torch.utils.data.DataLoader(submissionset, batch_size=128, shuffle=False )
Digit Recognizer
4,845,532
predict1 = xgb.predict(x_test) predict = lgbm.predict(x_test )<compute_test_metric>
submission = [['ImageId', 'Label']] with torch.no_grad() : model.eval() image_id = 1 for images in submissionloader: images = images.to(device) log_ps = model(images) ps = torch.exp(log_ps) top_p, top_class = ps.topk(1, dim=1) for prediction in top_class: submission.append([image_id, prediction.item() ]) image_id += 1 print(len(submission)- 1 )
Digit Recognizer
4,845,532
<train_model><EOS>
with open('submission.csv', 'w')as submissionFile: writer = csv.writer(submissionFile) writer.writerows(submission) print('Submission Complete!' )
Digit Recognizer
6,925,490
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<predict_on_test>
for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
Digit Recognizer
6,925,490
predict4 = lgbm.predict(df_test) predict3 = xgb.predict(df_test) predict_y =(predict3*0.45 + predict4 * 0.55 )<save_to_csv>
mnist_train_complete = pd.read_csv("/kaggle/input/digit-recognizer/train.csv") mnist_test_complete = pd.read_csv("/kaggle/input/digit-recognizer/test.csv") mnist_train_complete.head(5 )
Digit Recognizer
6,925,490
submission = pd.DataFrame({ "Id": test["Id"], "SalePrice": predict_y }) submission.to_csv('submission.csv', index=False )<import_modules>
train_y = mnist_train_complete.iloc[:, 0].values.astype('int32') train_x = mnist_train_complete.iloc[:, 1:].values.astype('float32') test_x = mnist_test_complete.values.astype('float32') train_x = train_x.reshape(train_x.shape[0], 28, 28) test_x = test_x.reshape(test_x.shape[0], 28, 28 )
Digit Recognizer
6,925,490
import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.layers import Dense, Input from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from tensorflow.keras.callbacks import ModelCheckpoint import tensorflow_hub as hub<load_from_url>
train_x = train_x.astype('float32')/np.max(train_x) test_x = test_x.astype('float32')/np.max(test_x) mean = np.std(train_x) train_x -= mean mean = np.std(test_x) test_x -= mean
Digit Recognizer
6,925,490
!wget --quiet https://raw.githubusercontent.com/tensorflow/models/master/official/nlp/bert/tokenization.py<import_modules>
splitted_train_X, splitted_test_X, splitted_train_y, splitted_test_y = train_test_split(train_x, train_y, test_size=0.2, random_state=81) ohe_splitted_train_y = tf_utils.to_categorical(splitted_train_y, 10) ohe_splitted_test_y = tf_utils.to_categorical(splitted_test_y, 10) print('One-hot labels:') print(splitted_train_y[:10] )
Digit Recognizer
6,925,490
import tokenization<categorify>
model_sol_1 = tf.keras.models.Sequential() model_sol_1.add(tf.keras.layers.Flatten(input_shape = splitted_train_X.shape[1:])) model_sol_1.add(tf.keras.layers.Dense(512, activation='relu')) model_sol_1.add(tf.keras.layers.Dropout(0.2)) model_sol_1.add(tf.keras.layers.Dense(512, activation='relu')) model_sol_1.add(tf.keras.layers.Dropout(0.2)) model_sol_1.add(tf.keras.layers.Dense(10, activation='softmax')) model_sol_1.summary()
Digit Recognizer
6,925,490
def bert_encode(texts, tokenizer, max_len=512): all_tokens = [] all_masks = [] all_segments = [] for text in texts: text = tokenizer.tokenize(text) text = text[:max_len-2] input_sequence = ["[CLS]"] + text + ["[SEP]"] pad_len = max_len - len(input_sequence) tokens = tokenizer.convert_tokens_to_ids(input_sequence) tokens += [0] * pad_len pad_masks = [1] * len(input_sequence)+ [0] * pad_len segment_ids = [0] * max_len all_tokens.append(tokens) all_masks.append(pad_masks) all_segments.append(segment_ids) return np.array(all_tokens), np.array(all_masks), np.array(all_segments )<choose_model_class>
model_sol_1.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'] )
Digit Recognizer
6,925,490
def build_model(bert_layer, max_len=512): input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") input_mask = Input(shape=(max_len,), dtype=tf.int32, name="input_mask") segment_ids = Input(shape=(max_len,), dtype=tf.int32, name="segment_ids") _, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) clf_output = sequence_output[:, 0, :] out = Dense(1, activation='sigmoid' )(clf_output) model = Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=out) model.compile(Adam(lr=2e-6), loss='binary_crossentropy', metrics=['accuracy']) return model<load_from_csv>
score = model_sol_1.evaluate(splitted_test_X, ohe_splitted_test_y, verbose=0) accuracy = 100 * score[1] print('Test accuracy: %4f%%' % accuracy )
Digit Recognizer
6,925,490
train = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv") submission = pd.read_csv("/kaggle/input/nlp-getting-started/sample_submission.csv" )<choose_model_class>
checkpointer = ModelCheckpoint(filepath='mnist.model.best.hdf5', verbose=1, save_best_only=True) hist_sol_1 = model_sol_1.fit(splitted_train_X, ohe_splitted_train_y, batch_size=128, epochs=10, validation_split=0.2, callbacks=[checkpointer], verbose=2, shuffle=True )
Digit Recognizer
6,925,490
%%time module_url = "https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1" bert_layer = hub.KerasLayer(module_url, trainable=True )<feature_engineering>
model_sol_1.load_weights('mnist.model.best.hdf5') score = model_sol_1.evaluate(splitted_test_X, ohe_splitted_test_y, verbose=0) accuracy = 100 * score[1] print('Test accuracy: %.4f%%' % accuracy )
Digit Recognizer
6,925,490
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() tokenizer = tokenization.FullTokenizer(vocab_file, do_lower_case )<categorify>
predictions = model_sol_1.predict(test_x) predictions = [ np.argmax(x)for x in predictions ]
Digit Recognizer
6,925,490
train_input = bert_encode(train.text.values, tokenizer, max_len=160) test_input = bert_encode(test.text.values, tokenizer, max_len=160) train_labels = train.target.values<train_model>
submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') submission.drop('Label', axis=1, inplace=True) submission['Label'] = predictions submission.to_csv('submission1.csv', index=False )
Digit Recognizer
6,925,490
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3) train_history = model.fit( train_input, train_labels, validation_split=0.2, epochs=20, batch_size=8, callbacks=[callback] ) model.save('model_bert.h5' )<predict_on_test>
extended_splitted_train_X = splitted_train_X[..., tf.newaxis] extended_splitted_test_X = splitted_test_X[..., tf.newaxis] extended_splitted_test_X.shape
Digit Recognizer
6,925,490
prediction= model.predict(test_input )<save_to_csv>
model_sol_2 = Sequential() model_sol_2.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=extended_splitted_train_X.shape[1:])) model_sol_2.add(MaxPooling2D(pool_size=2)) model_sol_2.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu')) model_sol_2.add(MaxPooling2D(pool_size=2)) model_sol_2.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu')) model_sol_2.add(MaxPooling2D(pool_size=2)) model_sol_2.add(Flatten()) model_sol_2.add(Dense(64)) model_sol_2.add(Activation('relu')) model_sol_2.add(Dropout(0.2)) model_sol_2.add(Dense(10, activation='softmax'))
Digit Recognizer
6,925,490
submission['target'] = prediction.round().astype(int) submission.to_csv('submission.csv', index=False )<train_model>
model_sol_2.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'] )
Digit Recognizer
6,925,490
train_history = model.fit( train_input, train_labels, validation_split=0.2, epochs=2, batch_size=8 ) model.save('model_bert.h5' )<set_options>
score = model_sol_2.evaluate(extended_splitted_test_X, ohe_splitted_test_y, verbose=0) accuracy = 100 * score[1] print('Test accuracy: %4f%%' % accuracy )
Digit Recognizer
6,925,490
py.init_notebook_mode(connected=True) pio.templates.default = "plotly_dark" pd.set_option('max_columns', 50) <install_modules>
checkpointer = ModelCheckpoint(filepath='mnist.model.best.hdf5', verbose=1, save_best_only=True) hist_sol_2 = model_sol_2.fit(extended_splitted_train_X, ohe_splitted_train_y, batch_size=128, epochs=10, callbacks=[checkpointer], verbose=2, validation_data=(extended_splitted_test_X, ohe_splitted_test_y), shuffle=True )
Digit Recognizer
6,925,490
!pip install detectron2 -f \ https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.7/index.html !pip install pytorch-pfn-extras timm<load_pretrained>
model_sol_2.load_weights('mnist.model.best.hdf5') score = model_sol_2.evaluate(extended_splitted_test_X, ohe_splitted_test_y, verbose=0) accuracy = 100 * score[1] print('Test accuracy: %.4f%%' % accuracy )
Digit Recognizer
6,925,490
def save_yaml(filepath: str, content: Any, width: int = 120): with open(filepath, "w")as f: yaml.dump(content, f, width=width )<init_hyperparams>
extended_test_x = test_x[..., tf.newaxis] predictions = model_sol_2.predict(extended_test_x) predictions = [ np.argmax(x)for x in predictions ] submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') submission.drop('Label', axis=1, inplace=True) submission['Label'] = predictions submission.to_csv('submission2.csv', index=False )
Digit Recognizer
6,925,490
@dataclass class Flags: debug: bool = True outdir: str = "results/det" device: str = "cuda:0" imgdir_name: str = "vinbigdata-chest-xray-resized-png-256x256" seed: int = 111 target_fold: int = 0 label_smoothing: float = 0.0 model_name: str = "resnet18" model_mode: str = "normal" epoch: int = 20 batchsize: int = 8 valid_batchsize: int = 16 num_workers: int = 4 snapshot_freq: int = 5 ema_decay: float = 0.999 scheduler_type: str = "" scheduler_kwargs: Dict[str, Any] = field(default_factory=lambda: {}) scheduler_trigger: List[Union[int, str]] = field(default_factory=lambda: [1, "iteration"]) aug_kwargs: Dict[str, Dict[str, Any]] = field(default_factory=lambda: {}) mixup_prob: float = -1.0 def update(self, param_dict: Dict)-> "Flags": for key, value in param_dict.items() : if not hasattr(self, key): raise ValueError(f"[ERROR] Unexpected key for flag = {key}") setattr(self, key, value) return self<init_hyperparams>
image_augmentator = ImageDataGenerator( rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.2, zoom_range=0.1, fill_mode='nearest') batch_size = 32 train_batches = image_augmentator.flow(extended_splitted_train_X, ohe_splitted_train_y, batch_size=batch_size) val_batches = image_augmentator.flow(extended_splitted_test_X, ohe_splitted_test_y, batch_size=batch_size )
Digit Recognizer
6,925,490
flags_dict = { "debug": False, "outdir": "results/tmp_debug", "imgdir_name": "vinbigdata-chest-xray-resized-png-256x256", "model_name": "resnet18", "num_workers": 4, "epoch": 15, "batchsize": 8, "scheduler_type": "CosineAnnealingWarmRestarts", "scheduler_kwargs": {"T_0": 28125}, "scheduler_trigger": [1, "iteration"], "aug_kwargs": { "HorizontalFlip": {"p": 0.5}, "ShiftScaleRotate": {"scale_limit": 0.15, "rotate_limit": 10, "p": 0.5}, "RandomBrightnessContrast": {"p": 0.5}, "CoarseDropout": {"max_holes": 8, "max_height": 25, "max_width": 25, "p": 0.5}, "Blur": {"blur_limit": [3, 7], "p": 0.5}, "Downscale": {"scale_min": 0.25, "scale_max": 0.9, "p": 0.3}, "RandomGamma": {"gamma_limit": [80, 120], "p": 0.6}, } }<load_from_csv>
model_sol_3 = Sequential() model_sol_3.add(Conv2D(filters=16, kernel_size=3, padding='same', activation='relu', input_shape=extended_splitted_train_X.shape[1:])) model_sol_3.add(Conv2D(filters=16, kernel_size=3, padding='same', activation='relu')) model_sol_3.add(MaxPooling2D(pool_size=2)) model_sol_3.add(Dropout(0.1)) model_sol_3.add(Conv2D(filters=16, kernel_size=3, padding='same', activation='relu')) model_sol_3.add(MaxPooling2D(pool_size=2)) model_sol_3.add(Flatten()) model_sol_3.add(Dense(64)) model_sol_3.add(Activation('relu')) model_sol_3.add(Dropout(0.2)) model_sol_3.add(Dense(10, activation='softmax'))
Digit Recognizer
6,925,490
print("torch", torch.__version__) flags = Flags().update(flags_dict) print("flags", flags) debug = flags.debug outdir = Path(flags.outdir) os.makedirs(str(outdir), exist_ok=True) flags_dict = dataclasses.asdict(flags) save_yaml(str(outdir / "flags.yaml"), flags_dict) inputdir = Path("/kaggle/input") datadir = inputdir / "vinbigdata-chest-xray-abnormalities-detection" imgdir = inputdir / flags.imgdir_name train = pd.read_csv(datadir / "train.csv") <groupby>
model_sol_3.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'] )
Digit Recognizer
6,925,490
is_normal_df = train.groupby("image_id")["class_id"].agg(lambda s:(s == 14 ).sum() ).reset_index().rename({"class_id": "num_normal_annotations"}, axis=1) is_normal_df.head()<categorify>
checkpointer = ModelCheckpoint(filepath='mnist.model.best.hdf5', verbose=1, save_best_only=True) hist_sol_3 = model_sol_3.fit_generator(generator=train_batches, steps_per_epoch =extended_splitted_train_X.shape[0] // batch_size, epochs=32, callbacks=[checkpointer], validation_data=val_batches, validation_steps=extended_splitted_test_X.shape[0] // batch_size, verbose=2 )
Digit Recognizer
6,925,490
num_normal_anno_counts_df = num_normal_anno_counts.reset_index() num_normal_anno_counts_df["name"] = num_normal_anno_counts_df["index"].map({0: "Abnormal", 3: "Normal"}) num_normal_anno_counts_df<define_variables>
model_sol_3.load_weights('mnist.model.best.hdf5') score = model_sol_3.evaluate(extended_splitted_test_X, ohe_splitted_test_y, verbose=0) accuracy = 100 * score[1] print('Test accuracy: %.4f%%' % accuracy )
Digit Recognizer
6,925,490
def get_vinbigdata_dicts( imgdir: Path, train_df: pd.DataFrame, train_data_type: str = "original", use_cache: bool = True, debug: bool = True, target_indices: Optional[np.ndarray] = None, ): debug_str = f"_debug{int(debug)}" train_data_type_str = f"_{train_data_type}" cache_path = Path(".")/ f"dataset_dicts_cache{train_data_type_str}{debug_str}.pkl" if not use_cache or not cache_path.exists() : print("Creating data...") train_meta = pd.read_csv(imgdir / "train_meta.csv") if debug: train_meta = train_meta.iloc[:500] image_id = train_meta.loc[0, "image_id"] image_path = str(imgdir / "train" / f"{image_id}.png") image = cv2.imread(image_path) resized_height, resized_width, ch = image.shape print(f"image shape: {image.shape}") dataset_dicts = [] for index, train_meta_row in tqdm(train_meta.iterrows() , total=len(train_meta)) : record = {} image_id, height, width = train_meta_row.values filename = str(imgdir / "train" / f"{image_id}.png") record["file_name"] = filename record["image_id"] = image_id record["height"] = resized_height record["width"] = resized_width objs = [] for index2, row in train_df.query("image_id == @image_id" ).iterrows() : class_id = row["class_id"] if class_id == 14: pass else: h_ratio = resized_height / height w_ratio = resized_width / width bbox_resized = [ int(row["x_min"])* w_ratio, int(row["y_min"])* h_ratio, int(row["x_max"])* w_ratio, int(row["y_max"])* h_ratio, ] obj = { "bbox": bbox_resized, "bbox_mode": BoxMode.XYXY_ABS, "category_id": class_id, } objs.append(obj) record["annotations"] = objs dataset_dicts.append(record) with open(cache_path, mode="wb")as f: pickle.dump(dataset_dicts, f) print(f"Load from cache {cache_path}") with open(cache_path, mode="rb")as f: dataset_dicts = pickle.load(f) if target_indices is not None: dataset_dicts = [dataset_dicts[i] for i in target_indices] return dataset_dicts def get_vinbigdata_dicts_test( imgdir: Path, test_meta: pd.DataFrame, use_cache: bool = True, debug: bool = True, ): debug_str = f"_debug{int(debug)}" cache_path = Path(".")/ f"dataset_dicts_cache_test{debug_str}.pkl" if not use_cache or not cache_path.exists() : print("Creating data...") if debug: test_meta = test_meta.iloc[:500] image_id = test_meta.loc[0, "image_id"] image_path = str(imgdir / "test" / f"{image_id}.png") image = cv2.imread(image_path) resized_height, resized_width, ch = image.shape print(f"image shape: {image.shape}") dataset_dicts = [] for index, test_meta_row in tqdm(test_meta.iterrows() , total=len(test_meta)) : record = {} image_id, height, width = test_meta_row.values filename = str(imgdir / "test" / f"{image_id}.png") record["file_name"] = filename record["image_id"] = image_id record["height"] = resized_height record["width"] = resized_width dataset_dicts.append(record) with open(cache_path, mode="wb")as f: pickle.dump(dataset_dicts, f) print(f"Load from cache {cache_path}") with open(cache_path, mode="rb")as f: dataset_dicts = pickle.load(f) return dataset_dicts <categorify>
extended_test_x = test_x[..., tf.newaxis] predictions = model_sol_3.predict(extended_test_x) predictions = [ np.argmax(x)for x in predictions ] submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') submission.drop('Label', axis=1, inplace=True) submission['Label'] = predictions submission.to_csv('submission3.csv', index=False )
Digit Recognizer
6,925,490
class DatasetMixin(Dataset): def __init__(self, transform=None): self.transform = transform def __getitem__(self, index): if torch.is_tensor(index): index = index.tolist() if isinstance(index, slice): current, stop, step = index.indices(len(self)) return [self.get_example_wrapper(i)for i in six.moves.range(current, stop, step)] elif isinstance(index, list)or isinstance(index, numpy.ndarray): return [self.get_example_wrapper(i)for i in index] else: return self.get_example_wrapper(index) def __len__(self): raise NotImplementedError def get_example_wrapper(self, i): example = self.get_example(i) if self.transform: example = self.transform(example) return example def get_example(self, i): raise NotImplementedError <categorify>
model_sol_4_1 = Sequential() model_sol_4_1.add(Conv2D(filters=16, kernel_size=3, padding='same', activation='relu', input_shape=extended_splitted_train_X.shape[1:])) model_sol_4_1.add(BatchNormalization()) model_sol_4_1.add(Conv2D(filters=16, kernel_size=3, padding='same', activation='relu')) model_sol_4_1.add(MaxPooling2D(pool_size=2)) model_sol_4_1.add(Dropout(0.1)) model_sol_4_1.add(BatchNormalization()) model_sol_4_1.add(Conv2D(filters=16, kernel_size=3, padding='same', activation='relu')) model_sol_4_1.add(MaxPooling2D(pool_size=2)) model_sol_4_1.add(Flatten()) model_sol_4_1.add(BatchNormalization()) model_sol_4_1.add(Dense(64)) model_sol_4_1.add(Activation('relu')) model_sol_4_1.add(Dropout(0.2)) model_sol_4_1.add(BatchNormalization()) model_sol_4_1.add(Dense(10, activation='softmax'))
Digit Recognizer
6,925,490
class VinbigdataTwoClassDataset(DatasetMixin): def __init__(self, dataset_dicts, image_transform=None, transform=None, train: bool = True, mixup_prob: float = -1.0, label_smoothing: float = 0.0): super(VinbigdataTwoClassDataset, self ).__init__(transform=transform) self.dataset_dicts = dataset_dicts self.image_transform = image_transform self.train = train self.mixup_prob = mixup_prob self.label_smoothing = label_smoothing def _get_single_example(self, i): d = self.dataset_dicts[i] filename = d["file_name"] img = cv2.imread(filename) if self.image_transform: img = self.image_transform(img) img = torch.tensor(np.transpose(img,(2, 0, 1)).astype(np.float32)) if self.train: label = int(len(d["annotations"])> 0) if self.label_smoothing > 0: if label == 0: return img, float(label)+ self.label_smoothing else: return img, float(label)- self.label_smoothing else: return img, float(label) else: return img, None def get_example(self, i): img, label = self._get_single_example(i) if self.mixup_prob > 0.and np.random.uniform() < self.mixup_prob: j = np.random.randint(0, len(self.dataset_dicts)) p = np.random.uniform() img2, label2 = self._get_single_example(j) img = img * p + img2 *(1 - p) if self.train: label = label * p + label2 *(1 - p) if self.train: label_logit = torch.tensor([1 - label, label], dtype=torch.float32) return img, label_logit else: return img def __len__(self): return len(self.dataset_dicts )<create_dataframe>
model_sol_4_1.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'] )
Digit Recognizer
6,925,490
dataset_dicts = get_vinbigdata_dicts(imgdir, train, debug=debug) dataset = VinbigdataTwoClassDataset(dataset_dicts )<normalization>
checkpointer = ModelCheckpoint(filepath='mnist.model.best.hdf5', verbose=1, save_best_only=True) hist_sol_4 = model_sol_4_1.fit_generator(generator=train_batches, steps_per_epoch =extended_splitted_train_X.shape[0] // batch_size, epochs=32, callbacks=[checkpointer], validation_data=val_batches, validation_steps=extended_splitted_test_X.shape[0] // batch_size, verbose=2 )
Digit Recognizer
6,925,490
class Transform: def __init__( self, hflip_prob: float = 0.5, ssr_prob: float = 0.5, random_bc_prob: float = 0.5 ): self.transform = A.Compose( [ A.HorizontalFlip(p=hflip_prob), A.ShiftScaleRotate( shift_limit=0.0625, scale_limit=0.1, rotate_limit=10, p=ssr_prob ), A.RandomBrightnessContrast(p=random_bc_prob), ] ) def __call__(self, image): image = self.transform(image=image)["image"] return image <create_dataframe>
model_sol_4_1.load_weights('mnist.model.best.hdf5') score = model_sol_4_1.evaluate(extended_splitted_test_X, ohe_splitted_test_y, verbose=0) accuracy = 100 * score[1] print('Test accuracy: %.4f%%' % accuracy )
Digit Recognizer
6,925,490
aug_dataset = VinbigdataTwoClassDataset(dataset_dicts, image_transform=Transform() )<categorify>
model_sol_4_2 = Sequential() model_sol_4_2.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=extended_splitted_train_X.shape[1:])) model_sol_4_2.add(BatchNormalization()) model_sol_4_2.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu')) model_sol_4_2.add(MaxPooling2D(pool_size=2)) model_sol_4_2.add(Dropout(0.1)) model_sol_4_2.add(BatchNormalization()) model_sol_4_2.add(Conv2D(filters=32, kernel_size=3, padding='same', activation='relu')) model_sol_4_2.add(MaxPooling2D(pool_size=2)) model_sol_4_2.add(Flatten()) model_sol_4_2.add(BatchNormalization()) model_sol_4_2.add(Dense(64)) model_sol_4_2.add(Activation('relu')) model_sol_4_2.add(Dropout(0.2)) model_sol_4_2.add(BatchNormalization()) model_sol_4_2.add(Dense(10, activation='softmax'))
Digit Recognizer
6,925,490
class Transform: def __init__(self, aug_kwargs: Dict): self.transform = A.Compose( [getattr(A, name )(**kwargs)for name, kwargs in aug_kwargs.items() ] ) def __call__(self, image): image = self.transform(image=image)["image"] return image<init_hyperparams>
model_sol_4_2.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'] )
Digit Recognizer
6,925,490
class CNNFixedPredictor(nn.Module): def __init__(self, cnn: nn.Module, num_classes: int = 2): super(CNNFixedPredictor, self ).__init__() self.cnn = cnn self.lin = Linear(cnn.num_features, num_classes) print("cnn.num_features", cnn.num_features) for param in self.cnn.parameters() : param.requires_grad = False def forward(self, x): feat = self.cnn(x) return self.lin(feat) <choose_model_class>
checkpointer = ModelCheckpoint(filepath='mnist.model.best.hdf5', verbose=1, save_best_only=True) hist_sol_4 = model_sol_4_2.fit_generator(generator=train_batches, steps_per_epoch=extended_splitted_train_X.shape[0] // batch_size, epochs=32, callbacks=[checkpointer], validation_data=val_batches, validation_steps=extended_splitted_test_X.shape[0] // batch_size, verbose=2 )
Digit Recognizer
6,925,490
def build_predictor(model_name: str, model_mode: str = "normal"): if model_mode == "normal": return timm.create_model(model_name, pretrained=True, num_classes=2, in_chans=3) elif model_mode == "cnn_fixed": timm_model = timm.create_model(model_name, pretrained=True, num_classes=0, in_chans=3) return CNNFixedPredictor(timm_model, num_classes=2) else: raise ValueError(f"[ERROR] Unexpected value model_mode={model_mode}") <compute_test_metric>
model_sol_4_2.load_weights('mnist.model.best.hdf5') score = model_sol_4_2.evaluate(extended_splitted_test_X, ohe_splitted_test_y, verbose=0) accuracy = 100 * score[1] print('Test accuracy: %.4f%%' % accuracy )
Digit Recognizer
6,925,490
def accuracy(y: torch.Tensor, t: torch.Tensor)-> torch.Tensor: assert y.shape[:-1] == t.shape, f"y {y.shape}, t {t.shape} is inconsistent." pred_label = torch.max(y.detach() , dim=-1)[1] count = t.nelement() correct =(pred_label == t ).sum().float() acc = correct / count return acc def accuracy_with_logits(y: torch.Tensor, t: torch.Tensor)-> torch.Tensor: assert y.shape == t.shape gt_label = torch.max(t.detach() , dim=-1)[1] return accuracy(y, gt_label )<compute_train_metric>
extended_test_x = test_x[..., tf.newaxis] predictions = model_sol_4_2.predict(extended_test_x) predictions = [ np.argmax(x)for x in predictions ] submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') submission.drop('Label', axis=1, inplace=True) submission['Label'] = predictions submission.to_csv('submission4.csv', index=False )
Digit Recognizer
6,925,490
def cross_entropy_with_logits(input, target, dim=-1): loss = torch.sum(- target * F.log_softmax(input, dim), dim) return loss.mean() <find_best_params>
train_y_sol5 = mnist_train_complete.iloc[:, 0].values.astype('int32') train_x_sol5 = mnist_train_complete.iloc[:, 1:].values.astype('float32') test_x_sol5 = mnist_test_complete.values.astype('float32') train_x_sol5 = train_x_sol5.reshape(train_x_sol5.shape[0], 28, 28) test_x_sol5 = test_x_sol5.reshape(test_x_sol5.shape[0], 28, 28) train_x_sol5 = train_x_sol5[..., tf.newaxis] test_x_sol5 = test_x_sol5[..., tf.newaxis]
Digit Recognizer