kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
7,429,783
pd.set_option('display.max_columns', 100) pd.set_option('display.max_rows', 100) seed = 42 random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True if not os.path.exists("results"): os.mkdir("results") TRAINING = True read_path = '/kaggle/input/jane-street-market-prediction/train.csv' save_path = os.path.join("results", str(seed)) device = torch.device("cuda:0") if not os.path.exists(save_path): os.mkdir(save_path) <define_variables>
results=classifier.predict_classes(df_test) print(results) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("submission.csv",index=False,header=True )
Digit Recognizer
7,429,783
TRAINING = True<data_type_conversions>
( X_train,y_train),(X_test,y_test)=mnist.load_data() print(X_train.shape) print(X_test.shape) print(type(X_train)) img=X_train[0] plt.imshow(img,cmap='gray') print(type(img))
Digit Recognizer
7,429,783
train = pd.read_csv(read_path) features = [c for c in train.columns if 'feature' in c] f_mean = train[features].mean() train = train.loc[train.weight > 0].reset_index(drop = True) train[features] = train[features].fillna(f_mean) train = train.astype("float32") train['action'] =(train['resp'] > 0 ).astype('int') train['action1'] =(train['resp_1'] > 0 ).astype('int') train['action2'] =(train['resp_2'] > 0 ).astype('int') train['action3'] =(train['resp_3'] > 0 ).astype('int') train['action4'] =(train['resp_4'] > 0 ).astype('int') targets = ['resp'] targets = ['action', 'action1', 'action2', 'action3', 'action4'] def add_features(df, features): new_features = copy.deepcopy(features) df["cross_1_2"] = df["feature_1"] /(df["feature_2"] + 1e-5) df["cross_41_42_43"] = df["feature_41"] + df["feature_42"] + df["feature_43"] new_features.extend(["cross_1_2", "cross_41_42_43"]) return df, new_features train, train_features = add_features(train, features) <filter>
X_train=X_train.reshape(60000,28,28,1) X_test=X_test.reshape(10000,28,28,1) y_cat_train=to_categorical(y_train,10) y_cat_test=to_categorical(y_test,10 )
Digit Recognizer
7,429,783
test = train.loc[(train.date >= 450)&(train.date < 500)].reset_index(drop=True) <data_type_conversions>
classifier.fit(X_train,y_cat_train,epochs=25 )
Digit Recognizer
7,429,783
class MyDataset: def __init__(self, df, features, targets): self.features = df[features].values self.labels = df[targets].values self.weights = df['weight'].values def __len__(self): return len(self.labels) def __getitem__(self, idx): feat_ = torch.tensor(self.features[idx], dtype=torch.float) label_ = torch.tensor(self.labels[idx], dtype=torch.float) weight_ = torch.tensor(self.weights[idx], dtype=torch.float) return feat_, label_, weight_<choose_model_class>
results=classifier.predict_classes(df_test) print(results) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("submission1.csv",index=False,header=True )
Digit Recognizer
7,429,783
class Model(nn.Module): def __init__(self, all_feat_cols, target_cols): super(Model, self ).__init__() self.batch_norm0 = nn.BatchNorm1d(len(all_feat_cols)) self.dropout0 = nn.Dropout(0.1) dropout_rate = 0.1 hidden_size = 256 self.dense1 = nn.Linear(len(all_feat_cols), hidden_size) self.batch_norm1 = nn.BatchNorm1d(hidden_size) self.dropout1 = nn.Dropout(dropout_rate) self.dense2 = nn.Linear(hidden_size+len(all_feat_cols), hidden_size) self.batch_norm2 = nn.BatchNorm1d(hidden_size) self.dropout2 = nn.Dropout(dropout_rate) self.dense3 = nn.Linear(hidden_size+hidden_size, hidden_size) self.batch_norm3 = nn.BatchNorm1d(hidden_size) self.dropout3 = nn.Dropout(dropout_rate) self.dense4 = nn.Linear(hidden_size+hidden_size, hidden_size) self.batch_norm4 = nn.BatchNorm1d(hidden_size) self.dropout4 = nn.Dropout(dropout_rate) self.dense5 = nn.Linear(2 * hidden_size, 128) self.batch_norm5 = nn.BatchNorm1d(128) self.dropout5 = nn.Dropout(dropout_rate) self.dense6 = nn.Linear(128, 128) self.batch_norm6 = nn.BatchNorm1d(128) self.dropout6 = nn.Dropout(dropout_rate) self.dense7 = nn.Linear(128, len(target_cols)) self.Relu = nn.ReLU(inplace=True) self.PReLU = nn.PReLU() self.LeakyReLU = nn.LeakyReLU(negative_slope=0.01, inplace=True) self.RReLU = nn.RReLU() def forward(self, x): x = self.batch_norm0(x) x = self.dropout0(x) x1 = self.dense1(x) x1 = self.batch_norm1(x1) x1 = self.RReLU(x1) x1 = self.dropout1(x1) x = torch.cat([x, x1], 1) x2 = self.dense2(x) x2 = self.batch_norm2(x2) x2 = self.RReLU(x2) x2 = self.dropout2(x2) x = torch.cat([x1, x2], 1) x3 = self.dense3(x) x3 = self.batch_norm3(x3) x3 = self.RReLU(x3) x3 = self.dropout3(x3) x = torch.cat([x2, x3], 1) x4 = self.dense4(x) x4 = self.batch_norm4(x4) x4 = self.RReLU(x4) x4 = self.dropout4(x4) x = torch.cat([x3, x4], 1) x = self.dense5(x) x = self.batch_norm5(x) x = self.RReLU(x) x = self.dropout5(x) x = self.dense6(x) x = self.batch_norm6(x) x = self.RReLU(x) x = self.dropout6(x) x = self.dense7(x) return x class SmoothBCEwLogits(_WeightedLoss): def __init__(self, weight=None, reduction='mean', smoothing=0.0): super().__init__(weight=weight, reduction=reduction) self.smoothing = smoothing self.weight = weight self.reduction = reduction @staticmethod def _smooth(targets:torch.Tensor, n_labels:int, smoothing=0.0): assert 0 <= smoothing < 1 with torch.no_grad() : targets = targets *(1.0 - smoothing)+ 0.5 * smoothing return targets def forward(self, inputs, targets, weights=None): targets = SmoothBCEwLogits._smooth(targets, inputs.size(-1), self.smoothing) loss = F.binary_cross_entropy_with_logits(inputs, targets, weights) if self.reduction == 'sum': loss = loss.sum() elif self.reduction == 'mean': loss = loss.mean() return loss class EarlyStopping: def __init__(self, patience=7, mode="max", delta=0.) : self.patience = patience self.counter = 0 self.mode = mode self.best_score = None self.early_stop = False self.delta = delta if self.mode == "min": self.val_score = np.Inf else: self.val_score = -np.Inf def __call__(self, epoch_score, model, model_path): if self.mode == "min": score = -1.0 * epoch_score else: score = np.copy(epoch_score) if self.best_score is None: self.best_score = score self.save_checkpoint(epoch_score, model, model_path) elif score < self.best_score: self.counter += 1 print('EarlyStopping counter: {} out of {}'.format(self.counter, self.patience)) if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.save_checkpoint(epoch_score, model, model_path) self.counter = 0 def save_checkpoint(self, epoch_score, model, model_path): if epoch_score not in [-np.inf, np.inf, -np.nan, np.nan]: print('Validation score improved.Saving model!') torch.save(model.state_dict() , model_path) self.val_score = epoch_score<train_model>
classifier.fit(X_test,y_cat_test,epochs=25 )
Digit Recognizer
7,429,783
<split><EOS>
results=classifier.predict_classes(df_test) print(results) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("submission2.csv",index=False,header=True )
Digit Recognizer
4,208,051
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<find_best_params>
print('Working on "%s"' % Path('.' ).absolute() )
Digit Recognizer
4,208,051
if not TRAINING: models = [] for i in [0, 1, 2, 3, 4]: torch.cuda.empty_cache() device = torch.device("cuda:0") model = Model(train_features, targets) model.to(device) model.eval() ckp_path = f'/kaggle/input/skeleton-with-pytorch/JSModel_{i}.pth' model.load_state_dict(torch.load(ckp_path)) models.append(model )<find_best_params>
class NumpyImageList(ImageList): def open(self, fn): img = fn.reshape(28,28,1) return Image(pil2tensor(img, dtype=np.float32)) @classmethod def from_csv(cls, path:PathOrStr, csv:str, **kwargs)->'ItemList': df = pd.read_csv(Path(path)/csv, header='infer') res = super().from_df(df, path=path, cols=0, **kwargs) if 'label' in df.columns: df = df.drop('label', axis=1) df = np.array(df)/255. res.items =(df-df.mean())/df.std() return res
Digit Recognizer
4,208,051
if TRAINING: models = [] for i in [1, 3]: torch.cuda.empty_cache() device = torch.device("cuda:0") model = Model(train_features, targets) model.to(device) model.eval() ckp_path = f'./JSModel_{i}.pth' model.load_state_dict(torch.load(ckp_path)) models.append(model )<categorify>
test = NumpyImageList.from_csv('.. /input/', 'test.csv') test
Digit Recognizer
4,208,051
models = [models[1], models[3], models[2]] batch_size = 4096 label_smoothing = 1e-2 loss_fn = SmoothBCEwLogits(smoothing=label_smoothing) test_pred = np.zeros(( len(test), len(targets))) test_set = MyDataset(test, train_features, targets) test_loader = DataLoader(test_set, batch_size=4096, shuffle=False, num_workers=4) for id_, model in enumerate(models): test_pred_, _, __ = inference_fn(model, test_loader, device) test_pred += test_pred_ / len(models) test_pred_ = np.median(test_pred_, axis=1) test_pred_ = np.where(test_pred_ >= 0.50, 1, 0 ).astype(int) auc_score = roc_auc_score(test['action'].values.reshape(-1, 1), test_pred_) u_score = utility_score(date=test.date.values.reshape(-1), weight=test.weight.values.reshape(-1), resp=test.resp.values.reshape(-1), action=test_pred_.reshape(-1)) print("model", id_, "auc:", auc_score, "u_score:", u_score) test_preds = np.median(test_pred, axis=1) test_preds = np.where(test_preds >= 0.50, 1, 0 ).astype(int) auc_score = roc_auc_score(test['action'].values.reshape(-1, 1), test_preds) u_score = utility_score(date=test.date.values.reshape(-1), weight=test.weight.values.reshape(-1), resp=test.resp.values.reshape(-1), action=test_preds.reshape(-1)) print(auc_score, u_score )<statistical_test>
tfms = get_transforms(do_flip=False) data =(NumpyImageList.from_csv('.. /input/', 'train.csv') .split_by_rand_pct (.1) .label_from_df(cols='label') .add_test(test, label=0) .transform(tfms) .databunch(bs=128, num_workers=0) .normalize(imagenet_stats)) data
Digit Recognizer
4,208,051
env = janestreet.make_env() env_iter = env.iter_test() th = 0.5 for(test_df, pred_df)in tqdm(env_iter): if test_df['weight'].item() > 0: x_tt = test_df.loc[:, features].values if np.isnan(x_tt.sum()): x_tt = np.nan_to_num(x_tt)+ np.isnan(x_tt)* f_mean.values.reshape(1, -1) feature_inp = pd.DataFrame(x_tt) feature_inp.columns = features feature_inp, _ = add_features(feature_inp,features) feature_inp = torch.tensor(feature_inp.values, dtype=torch.float ).to(device) pred = np.zeros(( 1, len(targets))) for model in models: pred += model(feature_inp ).detach().cpu().numpy() pred /= len(models) pred = pred.mean(axis=1 ).item() pred_df.action = int(pred >= 0) else: pred_df.action = 0 env.predict(pred_df )<import_modules>
data.show_batch(rows=5, figsize=(10,10))
Digit Recognizer
4,208,051
import os import time import pickle import random import numpy as np import pandas as pd from tqdm import tqdm from sklearn.metrics import log_loss, roc_auc_score import torch import torch.nn as nn from torch.autograd import Variable from torch.utils.data import DataLoader from torch.nn import CrossEntropyLoss, MSELoss from torch.nn.modules.loss import _WeightedLoss import torch.nn.functional as F <import_modules>
dropout = 0.25 model = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5), nn.ReLU() , nn.BatchNorm2d(32), nn.MaxPool2d(kernel_size=2, stride=2), nn.Dropout(dropout), nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3), nn.ReLU() , nn.BatchNorm2d(64), nn.MaxPool2d(kernel_size=2, stride=2), nn.Dropout(dropout), nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3), nn.ReLU() , Flatten() , nn.Linear(64*3*3, 256), nn.ReLU() , nn.Dropout(dropout*1.5), nn.BatchNorm1d(256), nn.Linear(256, 10), ) if torch.cuda.is_available() : model = model.cuda() learn = Learner(data, model, metrics=accuracy, model_dir='/kaggle/working/models') learn.summary()
Digit Recognizer
4,208,051
from tensorflow.keras.layers import Input, Dense, BatchNormalization, Dropout, Concatenate, Lambda, GaussianNoise, Activation from tensorflow.keras.models import Model, Sequential from tensorflow.keras.losses import BinaryCrossentropy from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.layers import Input, Dense, BatchNormalization, Dropout, Concatenate, Lambda, GaussianNoise, Activation import tensorflow as tf import numpy as np import pandas as pd import seaborn as sns from tqdm import tqdm import tensorflow_addons as tfa from random import choices from numba import njit import matplotlib.pyplot as plt import os,gc import random from random import choices from sklearn import datasets from tensorflow.python.framework import ops<prepare_x_and_y>
learn.fit_one_cycle(20, max_lr=slice(1e-1))
Digit Recognizer
4,208,051
SEED = 1111 tf.random.set_seed(SEED) np.random.seed(SEED) train = pd.read_csv('/kaggle/input/jane-street-market-prediction/train.csv') train = train.query('date > 85' ).reset_index(drop = True) train = train[train['weight'] != 0] features_mean = [] features = [c for c in train.columns if 'feature' in c] for i in features: x = train[i].mean() features_mean.append(x) train[i] = train[i].fillna(x) train['action'] =(( train['resp'].values)> 0 ).astype(int) resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4'] X_train = train.loc[:, train.columns.str.contains('feature')] y_train = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T<define_search_space>
learn.save('stage1' )
Digit Recognizer
4,208,051
epochs = 200 batch_size = 4096 hidden_units = [160, 160, 160] dropout_rates = [0.20, 0.20, 0.20, 0.20] label_smoothing = 1e-2 learning_rate = 1e-3<choose_model_class>
learn.fit_one_cycle(5, max_lr=slice(1e-2))
Digit Recognizer
4,208,051
def create_mlp( num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate ): inp = tf.keras.layers.Input(shape=(num_columns,)) x = tf.keras.layers.BatchNormalization()(inp) x = tf.keras.layers.Dropout(dropout_rates[0] )(x) for i in range(len(hidden_units)) : x = tf.keras.layers.Dense(hidden_units[i] )(x) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.Activation(tf.keras.activations.swish )(x) x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x) x = tf.keras.layers.Dense(num_labels )(x) out = tf.keras.layers.Activation("sigmoid" )(x) model = tf.keras.models.Model(inputs=inp, outputs=out) model.compile( optimizer = tfa.optimizers.RectifiedAdam(learning_rate=learning_rate), loss = tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing), metrics = tf.keras.metrics.AUC(name='AUC') ) return model<train_model>
learn.save('stage2' )
Digit Recognizer
4,208,051
tf.keras.backend.clear_session() tf.random.set_seed(SEED) clf = create_mlp( len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate ) clf.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, verbose=2 )<feature_engineering>
predictions, *_ = learn.get_preds(DatasetType.Test) labels = np.argmax(predictions, 1) submission_df = pd.DataFrame({'ImageId': list(range(1,len(labels)+1)) , 'Label': labels}) submission_df.to_csv(f'submission.csv', index=False )
Digit Recognizer
5,844,541
models = [] models.append(clf) th = 0.503 f = np.median f_mean = np.mean(train[features[1:]].values,axis=0) env = janestreet.make_env() for(test_df, pred_df)in tqdm(env.iter_test()): if test_df['weight'].item() > 0: x_tt = test_df.loc[:, features].values if np.isnan(x_tt[:, 1:].sum()): x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_mean pred = np.mean([model(x_tt, training = False ).numpy() for model in models],axis=0) pred = f(pred) pred_df.action = np.where(pred >= th, 1, 0 ).astype(int) else: pred_df.action = 0 env.predict(pred_df )<load_from_csv>
%matplotlib inline np.random.seed(2) sns.set(style='white', context='notebook', palette='deep' )
Digit Recognizer
5,844,541
df = dtable.fread('/kaggle/input/jane-street-market-prediction/train.csv' ).to_pandas() df = df.query('date > 85' ).reset_index(drop = True) df = df[df.weight > 0] df.reset_index(inplace=True, drop=True) df = df.astype({c: np.float32 for c in df.select_dtypes(include='float64' ).columns}) df_labels = df[['date', 'weight', 'resp_1', 'resp_2', 'resp_3', 'resp_4', 'resp']] features = [c for c in df.columns if 'feature' in c] df = df.drop(df_labels.columns, axis=1) df.fillna(df.mean() , inplace=True) resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp_4', 'resp'] X = df[features] y = np.stack([(df_labels[c] > 0 ).astype('int')for c in resp_cols] ).T f_mean = np.mean(df[features[1:]].values, axis=0) device = 'cuda' if t.cuda.is_available() else 'cpu'<choose_model_class>
train=pd.read_csv("/kaggle/input/digit-recognizer/train.csv") test=pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
Digit Recognizer
5,844,541
class Model(nn.Module): def __init__(self, input_size): super(Model, self ).__init__() hs = 256 self.batch_norm0 = nn.BatchNorm1d(input_size) self.layer1 = LinBnDrop(input_size, hs, bn=True, p=0, act=Mish() , lin_first=False) self.layer2 = LinBnDrop(hs + input_size, hs, bn=True, p=0.2289, act=Mish() , lin_first=False) self.layer3 = LinBnDrop(hs + hs, hs, bn=True, p=0.2289, act=Mish() , lin_first=False) self.layer4 = LinBnDrop(hs + hs, hs, bn=True, p=0.2, act=Mish() , lin_first=False) self.dense5 = nn.Linear(hs + hs, 5) def forward(self, x): x = self.batch_norm0(x) x1 = self.layer1(x) x = torch.cat([x, x1], 1) x2 = self.layer2(x) x = torch.cat([x1, x2], 1) x3 = self.layer3(x) x = torch.cat([x2, x3], 1) x4 = self.layer4(x) x = torch.cat([x3, x4], 1) x = self.dense5(x) return x<load_pretrained>
def load_data() : path='/kaggle/input/mnist-numpy/mnist.npz' f = np.load(path) x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] f.close() return(x_train, y_train),(x_test, y_test )
Digit Recognizer
5,844,541
model_nn = Model(len(features)) model_nn = model_nn.to(device) learn = Learner(None, model_nn, loss_func=1) learn.load('/kaggle/input/roclossjs3/dense_model') <categorify>
Y_train=train["label"] X_train=train.drop("label",axis=1) (x_train1,y_train1),(x_test1,y_test1)=load_data() train1=np.concatenate([x_train1,x_test1],axis=0) y_train1=np.concatenate([y_train1,y_test1],axis=0) Y_train1=y_train1 X_train1=train1.reshape(-1,28*28 )
Digit Recognizer
5,844,541
@njit def fillna_npwhere_njit(array, values): if np.isnan(array.sum()): array = np.where(np.isnan(array), values, array) return array def for_loop(method, matrix, values): for i in range(matrix.shape[0]): matrix[i] = method(matrix[i], values) return matrix<find_best_params>
X_train=X_train/255.0 test=test/255.0 X_train1=X_train1/255.0
Digit Recognizer
5,844,541
%%time %%capture env = janestreet.make_env() learn.model.eval() preds = [] for(test_df, pred_df)in tqdm(env.iter_test()): if test_df['weight'].item() > 0: x_tt = test_df.loc[:, features].values x_tt[:, 1:] = for_loop(fillna_npwhere_njit, x_tt[:, 1:], f_mean) pred = 0. pred = learn.model(t.from_numpy(x_tt ).to(device, t.float)).sigmoid() [0][-1].item() preds.append(pred) action = 1 if pred >=.5 else 0 pred_df.action = action else: pred_df.action = 0 env.predict(pred_df )<compute_test_metric>
X_train = np.concatenate(( X_train.values, X_train1)) Y_train = np.concatenate(( Y_train, Y_train1)) X_train=X_train.reshape(-1,28,28,1) test=test.values.reshape(-1,28,28,1)
Digit Recognizer
5,844,541
preds = np.array(preds) preds.mean() , preds.std() , sum(preds >=.5), sum(preds < 5 )<import_modules>
Y_train = to_categorical(Y_train,num_classes=10)
Digit Recognizer
5,844,541
tf.__version__<define_variables>
random_seed=2
Digit Recognizer
5,844,541
SEED = 1111 tf.random.set_seed(SEED) np.random.seed(SEED) <load_from_csv>
X_train,X_val,Y_train,Y_val=train_test_split(X_train,Y_train,test_size=0.25,random_state=random_seed)
Digit Recognizer
5,844,541
%%time train=pd.read_parquet('.. /input/step01-csv-parquet/dtrain.parquet') train = train.query('date > 85' ).reset_index(drop = True) train = train[train['weight'] != 0] train['action'] =(( train['resp'].values)> 0 ).astype(int) train.fillna(train.mean() ,inplace=True) raw_features = [c for c in train.columns if "feature" in c] f_mean = np.mean(train[raw_features[1:]].values,axis=0) np.save("f_mean_online.npy",f_mean) train.shape<feature_engineering>
model=Sequential() model.add(Conv2D(filters=64,kernel_size=(5,5),padding='Same',activation='relu',input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(filters=64,kernel_size=(5,5),padding='Same',activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Conv2D(filters = 128, kernel_size =(3,3), padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 128, kernel_size =(3,3), padding = 'Same', activation ='relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
5,844,541
def stats_features(tmp_df): tmp_df['feature_cross_41_42_43']=tmp_df['feature_41']+tmp_df['feature_42']+tmp_df['feature_43'] tmp_df['feature_cross_1_2']=tmp_df['feature_1']/(tmp_df['feature_2']+1e-5) tmp_df.head() return tmp_df <feature_engineering>
plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True) Image("model.png" )
Digit Recognizer
5,844,541
train=stats_features(train) train.head()<define_variables>
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 )
Digit Recognizer
5,844,541
features = [c for c in train.columns if "feature" in c]<prepare_x_and_y>
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
5,844,541
valid = train.loc[(train.date >= 450)&(train.date < 500)].reset_index(drop=True) resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4'] X_train = train.loc[:, train.columns.str.contains('feature')] y_train = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T X_valid = valid.loc[:, valid.columns.str.contains('feature')] y_valid = np.stack([(valid[c] > 0 ).astype('int')for c in resp_cols] ).T del train<choose_model_class>
learning_rate_reduction=ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
5,844,541
def create_resnet( num_columns, num_labels, hidden_size, dropout_rate, label_smoothing, learning_rate ): inp = tf.keras.layers.Input(shape=(num_columns,)) x=tf.keras.layers.BatchNormalization()(inp) x=tf.keras.layers.Dropout(dropout_rate )(x) x1=tf.keras.layers.Dense(hidden_size )(x) x1=tf.keras.layers.BatchNormalization()(x1) x1=tf.keras.layers.LeakyReLU()(x1) x1=tf.keras.layers.Dropout(dropout_rate )(x1) x = tf.keras.layers.concatenate([x, x1], axis=1) x2=tf.keras.layers.Dense(hidden_size )(x) x2=tf.keras.layers.BatchNormalization(axis=1 )(x2) x2=tf.keras.layers.LeakyReLU()(x2) x2=tf.keras.layers.Dropout(dropout_rate )(x2) x = tf.keras.layers.concatenate([x1, x2], axis=1) x3=tf.keras.layers.Dense(hidden_size )(x) x3=tf.keras.layers.BatchNormalization(axis=1 )(x3) x3=tf.keras.layers.LeakyReLU()(x3) x3=tf.keras.layers.Dropout(dropout_rate )(x3) x = tf.keras.layers.concatenate([x2, x3], axis=1) x4=tf.keras.layers.Dense(hidden_size )(x) x4=tf.keras.layers.BatchNormalization(axis=1 )(x4) x4=tf.keras.layers.LeakyReLU()(x4) x4=tf.keras.layers.Dropout(dropout_rate )(x4) x = tf.keras.layers.concatenate([x3, x4], axis=1) x = tf.keras.layers.Dense(num_labels )(x) out = tf.keras.layers.Activation("sigmoid" )(x) model = tf.keras.models.Model(inputs=inp, outputs=out) model.compile( optimizer=tfa.optimizers.RectifiedAdam(lr=learning_rate,weight_decay=1e-5), loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing), metrics=tf.keras.metrics.AUC(name="AUC"), ) return model NUM_FOLDS=5 TRAINING=True if TRAINING: for i in range(NUM_FOLDS): tf.keras.backend.clear_session() SEED = 1111 tf.random.set_seed(SEED+i) np.random.seed(SEED+i) reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', verbose=1, factor=0.2, patience=8, mode='min') earlystop_callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=10) model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath='online_model_{}.weights'.format(i), save_weights_only=True, monitor='val_AUC', mode='max', verbose=1, save_best_only=True) dropout_rate=0.2 hidden_size=256 label_smoothing = 0.005 learning_rate = 1e-3 clf = create_resnet( len(features), 5, hidden_size, dropout_rate, label_smoothing, learning_rate ) clf.summary() clf.fit(X_train, y_train, epochs=200, batch_size=4096,validation_data=(X_valid,y_valid), callbacks=[reduce_lr, earlystop_callback, model_checkpoint_callback]) gc.collect() <feature_engineering>
epochs = 50 batch_size = 128
Digit Recognizer
5,844,541
<import_modules>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train) history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction])
Digit Recognizer
5,844,541
<load_from_csv><EOS>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label") submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
4,864,231
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv>
import pandas as pd import numpy as np import matplotlib.pyplot as plt from keras.utils.np_utils import to_categorical from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split
Digit Recognizer
4,864,231
df3 = pd.read_csv('.. /input/0-286-private-norm/df_rcnn286.csv' )<merge>
train = pd.read_csv(".. /input/train.csv" )
Digit Recognizer
4,864,231
df4 = pd.merge(df, df3, on = 'image_id', how = 'left' )<feature_engineering>
test = pd.read_csv(".. /input/test.csv") print(test.info()) test.head()
Digit Recognizer
4,864,231
list1 = [0,1,2,3,4,5, 6, 7, 8, 9, 10, 11, 12, 13, 14] for i in range(df4.shape[0]): if df4.loc[i,'PredictionString'] == '14 1 0 0 1 1': continue a = df4.loc[i,'PredictionString'] b = a.split() for j in range(int(len(a.split())/6)) : for k in list1: if int(b[0 + 6 * j])== k: c = b[0 + 6 * j + 1] b[0 + 6 * j + 1] = str(df4.loc[i,f'{k}'] * 0.05 + float(c)* 0.95) df4.loc[i,'PredictionString'] = ' '.join(b) <save_to_csv>
X_train = train.drop(['label'],axis=1 ).astype('float32') y_train = train['label'].astype('float32') X_test = test.values.astype('float32' )
Digit Recognizer
4,864,231
df_final = df4[['image_id', 'PredictionString']] df_final.to_csv('submission.csv',index = False) <import_modules>
def normalize(m): return m / 255 X_train = normalize(X_train) X_test = normalize(X_test )
Digit Recognizer
4,864,231
import numpy as np import pandas as pd <load_from_csv>
print('Labels') print(y_train[:5]) y_train = to_categorical(y_train, 10) print('Encoded labels') print(y_train[:5] )
Digit Recognizer
4,864,231
pred_2class = pd.read_csv(".. /input/vinbigdata-2class-prediction/2-cls test pred.csv") low_threshold = 0.0 high_threshold = 0.874 pred_2class<load_from_csv>
checkpoint = ModelCheckpoint(filepath='mnist.model.best.hdf5', verbose=1, save_best_only=True, monitor='val_acc') def build_model() : model = Sequential([ Convolution2D(16,(3,3), activation='relu', input_shape=(28, 28, 1)) , BatchNormalization() , Convolution2D(16,(3,3), activation='relu'), BatchNormalization() , MaxPooling2D() , Dropout(0.25), Convolution2D(32,(3,3), activation='relu'), Convolution2D(32,(3,3), activation='relu'), BatchNormalization() , MaxPooling2D() , Dropout(0.25), Flatten() , Dense(256, activation='relu'), BatchNormalization() , Dropout(0.25), Dense(10, activation='softmax') ]) model.compile(optimizer=Adam() , loss='categorical_crossentropy', metrics=['accuracy']) return model model = build_model()
Digit Recognizer
4,864,231
NORMAL = "14 1 0 0 1 1" pred_det_df = pd.read_csv(".. /input/pp-old/submission_postprocessed(4 ).csv") n_normal_before = len(pred_det_df.query("PredictionString == @NORMAL")) merged_df = pd.merge(pred_det_df, pred_2class, on="image_id", how="left") if "target" in merged_df.columns: merged_df["class0"] = 1 - merged_df["target"] c0, c1, c2 = 0, 0, 0 for i in range(len(merged_df)) : p0 = merged_df.loc[i, "class0"] if p0 < low_threshold: c0 += 1 elif low_threshold <= p0 and p0 < high_threshold: merged_df.loc[i, "PredictionString"] += f" 14 {p0} 0 0 1 1" c1 += 1 else: merged_df.loc[i, "PredictionString"] = NORMAL c2 += 1 n_normal_after = len(merged_df.query("PredictionString == @NORMAL")) print( f"n_normal: {n_normal_before} -> {n_normal_after} with threshold {low_threshold} & {high_threshold}" ) print(f"Keep {c0} Add {c1} Replace {c2}") submission_filepath = str("submission.csv") submission_df = merged_df[["image_id", "PredictionString"]] submission_df.to_csv(submission_filepath, index=False) print(f"Saved to {submission_filepath}") <install_modules>
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42 )
Digit Recognizer
4,864,231
!pip install -U ensemble-boxes<import_modules>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
4,864,231
import pandas as pd import numpy as np from ensemble_boxes import * from glob import glob import copy from tqdm import tqdm import shutil<load_from_csv>
image_generator = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False)
Digit Recognizer
4,864,231
height_dict = pd.read_csv('.. /input/vinbigdata-original-image-dataset/vinbigdata/test.csv' ).to_dict('records') fnl_dict ={} for ix,i in enumerate(height_dict): fnl_dict[i['image_id']] = [i['width'],i['height'],i['width'],i['height']]<load_from_csv>
batch_size = 96 epochs = 60 steps_per_epoch = X_train.shape[0] / batch_size batches = image_generator.flow(X_train, y_train, batch_size=batch_size )
Digit Recognizer
4,864,231
subs = [ pd.read_csv('.. /input/yolo-vbd-lots-of-decimals/Fold_1.csv'), pd.read_csv('.. /input/yolo-vbd-lots-of-decimals/Fold_2.csv'), pd.read_csv('.. /input/yolo-vbd-lots-of-decimals/Fold_3.csv'), pd.read_csv('.. /input/yolo-vbd-lots-of-decimals/Fold_4.csv'), pd.read_csv('.. /input/yolo-vbd-lots-of-decimals/Fold_5.csv'), pd.read_csv('.. /input/vinbigdata-cxr-ad-yolov5-14-class-infer-184dd1/submission.csv') ] pred_2cls = pd.read_csv('.. /input/vinbigdata-2class-prediction/2-cls test pred.csv' )<categorify>
history = model.fit_generator(generator=batches, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_data=(X_val, y_val), callbacks=[checkpoint, learning_rate_reduction] )
Digit Recognizer
4,864,231
def submission_decoder(df:pd.DataFrame)-> np.ndarray: info = df.values df_lst = [] for i in info: pre_lst = i[1].split(' ') for j in range(0,len(pre_lst),6): df_lst.append([i[0],int(pre_lst[j]),float(pre_lst[j+1]),int(pre_lst[j+2]),int(pre_lst[j+3]),\ int(pre_lst[j+4]),int(pre_lst[j+5]),fnl_dict.get(i[0])[0],fnl_dict.get(i[0])[1]]) return pd.DataFrame(df_lst,columns = ['image_id','class_id','score','x_min','y_min','x_max','y_max','width','height'] )<categorify>
model.load_weights('mnist.model.best.hdf5' )
Digit Recognizer
4,864,231
subs = [submission_decoder(subs[i])for i in range(len(subs)) ]<count_unique_values>
_, train_acc = model.evaluate(X_train, y_train, verbose=0) _, test_acc = model.evaluate(X_val, y_val, verbose=0) print('Train accuracy: %.3f, Test accuracy: %.3f' %(train_acc, test_acc))
Digit Recognizer
4,864,231
boxes_dict = {} scores_dict = {} labels_dict = {} whwh_dict = {} for i in tqdm(subs[0].image_id.unique()): if not i in boxes_dict.keys() : boxes_dict[i] = [] scores_dict[i] = [] labels_dict[i] = [] whwh_dict[i] = [] size_ratio = fnl_dict.get(i) whwh_dict[i].append(size_ratio) tmp_df = [subs[x][subs[x]['image_id']==i] for x in range(len(subs)) ] for x in range(len(tmp_df)) : boxes_dict[i].append(((tmp_df[x][['x_min','y_min','x_max','y_max']].values)/size_ratio ).tolist()) scores_dict[i].append(tmp_df[x]['score'].values.tolist()) labels_dict[i].append(tmp_df[x]['class_id'].values.tolist() )<statistical_test>
errors =(Y_pred_classes - y_true != 0) Y_pred_classes_errors = Y_pred_classes[errors] Y_pred_errors = Y_pred[errors] Y_true_errors = y_true[errors]
Digit Recognizer
4,864,231
weights = [1]*5 weights += [3] weights1 = [3,2,4,5] iou_thr = 0.25 skip_box_thr = 0.0 sigma = 0.1 fnl = {} for i in tqdm(boxes_dict.keys()): boxes, scores, labels = weighted_boxes_fusion(boxes_dict[i], scores_dict[i], labels_dict[i],\ weights=weights, iou_thr=iou_thr, skip_box_thr=skip_box_thr) if not i in fnl.keys() : fnl[i] = {'boxes':[],'scores':[],'labels':[]} fnl[i]['boxes'] = boxes*whwh_dict[i] fnl[i]['scores'] = scores fnl[i]['labels'] = labels<remove_duplicates>
predictions = model.predict_classes(X_test, verbose=2 )
Digit Recognizer
4,864,231
pd_form = [] for i in fnl.keys() : b = fnl[i] for j in range(len(b['boxes'])) : pd_form.append([i,int(b['labels'][j]),round(b['scores'][j],2),\ int(b['boxes'][j][0]),int(b['boxes'][j][1]),\ int(b['boxes'][j][2]),int(b['boxes'][j][3])]) final_df = pd.DataFrame(pd_form,columns = ['image_id','class_id','score','x_min','y_min','x_max','y_max']) final_df = final_df.drop_duplicates(keep = 'first' )<categorify>
sub = pd.read_csv('.. /input/sample_submission.csv') sub['Label'] = predictions sub.to_csv('submission.csv',index=False )
Digit Recognizer
7,500,544
def submission_encoder(df:pd.DataFrame)-> np.ndarray: dct = {} for i in tqdm(df['image_id'].unique()): if not i in dct.keys() : dct[i] = [] tmp = df[df['image_id'] == i].values for j in tmp: dct[i].append(int(j[1])) dct[i].append(float(j[2])) dct[i].append(int(j[3])) dct[i].append(int(j[4])) dct[i].append(int(j[5])) dct[i].append(int(j[6])) dct[i] = map(str,dct[i]) dct[i] = ' '.join(dct[i]) dct = [[k, v] for k, v in dct.items() ] return pd.DataFrame(dct,columns = ['image_id','PredictionString'] ).reset_index(drop = True) df = submission_encoder(final_df) df.to_csv('Fold5Yolo.csv', index=False )<merge>
%matplotlib inline
Digit Recognizer
7,500,544
NORMAL = "14 1 0 0 1 1" low_threshold = 0.00 high_threshold = 0.99 pred_det_df = df n_normal_before = len(pred_det_df.query("PredictionString == @NORMAL")) merged_df = pd.merge(pred_det_df, pred_2cls, on="image_id", how="left") if "target" in merged_df.columns: merged_df["class0"] = 1 - merged_df["target"] c0, c1, c2 = 0, 0, 0 for i in range(len(merged_df)) : p0 = merged_df.loc[i, "class0"] if p0 < low_threshold: c0 += 1 elif low_threshold <= p0 and p0 < high_threshold: if ' 14 ' not in merged_df.loc[i, "PredictionString"]: merged_df.loc[i, "PredictionString"] += f" 14 {p0} 0 0 1 1" c1 += 1 else: merged_df.loc[i, "PredictionString"] = NORMAL c2 += 1 n_normal_after = len(merged_df.query("PredictionString == @NORMAL")) print( f"n_normal: {n_normal_before} -> {n_normal_after} with threshold {low_threshold} & {high_threshold}" ) print(f"Keep {c0} Add {c1} Replace {c2}") submission_filepath = str("submission.csv") submission_df = merged_df[["image_id", "PredictionString"]] submission_df.to_csv(submission_filepath, index=False) print(f"Saved to {submission_filepath}" )<import_modules>
train_df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test_df = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') submit_df = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
7,500,544
import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import RidgeCV<load_from_csv>
num_pixel = len(train_df.columns)- 1 num_pixel
Digit Recognizer
7,500,544
train = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/test.csv' )<count_missing_values>
transform_0 = transforms.Compose([ transforms.ToPILImage() , transforms.ToTensor() , transforms.Normalize([0.5], [0.5]) ]) transform_1 = transforms.Compose([ transforms.ToPILImage() , transforms.RandomRotation(30), transforms.ToTensor() , transforms.Normalize([0.5], [0.5]) ]) transform_2 = transforms.Compose([ transforms.ToPILImage() , transforms.RandomAffine(degrees=15, translate=(0.1,0.1), scale=(0.8,0.8)) , transforms.ToTensor() , transforms.Normalize([0.5], [0.5]) ]) transform_3 = transforms.Compose([ transforms.ToPILImage() , transforms.RandomAffine(degrees=30, scale=(1.1,1.1)) , transforms.ToTensor() , transforms.Normalize([0.5], [0.5]) ]) transform_4 = transforms.Compose([ transforms.ToPILImage() , transforms.RandomAffine(degrees=30, translate=(0.1,0.1)) , transforms.ToTensor() , transforms.Normalize([0.5], [0.5]) ]) transform_5 = transforms.Compose([ transforms.ToPILImage() , transforms.RandomAffine(degrees=10, shear=45), transforms.ToTensor() , transforms.Normalize([0.5], [0.5]) ] )
Digit Recognizer
7,500,544
sum(train.isnull().sum() )<count_missing_values>
class DataFrame_to_Dataset(Dataset): def __init__(self, df, transform=transform_0): if len(df.columns)== num_pixel: self.features = df.values.reshape(( -1,28,28)).astype(np.uint8) self.labels = None else: self.features = df.iloc[:,1:].values.reshape(( -1,28,28)).astype(np.uint8) self.labels = torch.from_numpy(df.label.values) self.transform = transform def __len__(self): return len(self.features) def __getitem__(self, index): if self.labels is not None: return self.transform(self.features[index]), self.labels[index] else: return self.transform(self.features[index] )
Digit Recognizer
7,500,544
sum(test.isnull().sum() )<concatenate>
def create_dataloaders(seed, test_size=0.1, df=train_df, batch_size=32): train_data, valid_data = train_test_split(df, test_size=test_size, random_state=seed) train_dataset_0 = DataFrame_to_Dataset(train_data) train_dataset_1 = DataFrame_to_Dataset(train_data, transform_1) train_dataset_2 = DataFrame_to_Dataset(train_data, transform_2) train_dataset_3 = DataFrame_to_Dataset(train_data, transform_3) train_dataset_4 = DataFrame_to_Dataset(train_data, transform_4) train_dataset_5 = DataFrame_to_Dataset(train_data, transform_5) train_dataset = ConcatDataset([train_dataset_0, train_dataset_1, train_dataset_2, train_dataset_3, train_dataset_4, train_dataset_5]) valid_dataset = DataFrame_to_Dataset(valid_data) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size, shuffle=False) return train_loader, valid_loader
Digit Recognizer
7,500,544
house_data = pd.concat([train.iloc[:,:-1], test],axis=0) house_data = house_data.drop(columns=['Id'], axis=1) sep = len(train )<data_type_conversions>
class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Sequential( nn.Conv2d(1, 32, kernel_size=3), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=3), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=5, stride=2, padding=14), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Dropout2d(0.4) ) self.conv2 = nn.Sequential( nn.Conv2d(32, 64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=6), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.MaxPool2d(2, 2), nn.Dropout2d(0.3) ) self.conv3 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=4), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Dropout2d(0.2) ) self.fc = nn.Sequential( nn.Linear(128*1*1, 10) ) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = x.view(-1, 128*1*1) x = self.fc(x) return x
Digit Recognizer
7,500,544
n_columns = [name for name in house_data.columns if house_data[name].dtype in ['int64', 'float64']] w_columns = [name for name in house_data.columns if house_data[name].dtype == "object"] values = {} for a in w_columns: values[a] = 'UNKNOWN' for a in n_columns: values[a] = house_data[a].median() house_data.fillna(value=values,inplace=True) house_data.head()<drop_column>
use_cuda = torch.cuda.is_available() print(use_cuda )
Digit Recognizer
7,500,544
house_data = house_data.drop(['PoolQC'], axis=1 )<categorify>
def train(seed, num_epochs): print('Creating new dataloaders...') train_loader, valid_loader = create_dataloaders(seed=seed) print('Creating a new model...') net = Net() criterion = nn.CrossEntropyLoss() if use_cuda: net.cuda() criterion.cuda() optimizer = optim.Adam(net.parameters() , lr=0.003, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) print('Training the model...') for epoch in range(num_epochs): net.train() t0 = time.time() training_loss = 0.0 num_samples = 0 for features, labels in train_loader: if use_cuda: features = features.cuda() labels = labels.cuda() optimizer.zero_grad() outputs = net(features) loss = criterion(outputs, labels) loss.backward() optimizer.step() training_loss += loss.item() num_samples += len(features) net.eval() correct = 0 total = 0 with torch.no_grad() : for valid_features, valid_labels in valid_loader: if use_cuda: valid_features = valid_features.cuda() valid_labels = valid_labels.cuda() outputs = net(valid_features) _, predicted = torch.max(outputs, 1) total += valid_labels.size(0) correct +=(predicted == valid_labels ).sum().item() scheduler.step() print('[model %d, epoch %d, time: %.3f seconds] train_loss: %.5f, val_acc: %4f %%' % (seed + 1, epoch + 1, time.time() - t0, training_loss/num_samples, 100 * correct / total)) net.eval() test_pred = torch.LongTensor() if use_cuda: test_pred = test_pred.cuda() with torch.no_grad() : for features in test_loader: if use_cuda: features = features.cuda() outputs = net(features) _, predicted = torch.max(outputs, 1) test_pred = torch.cat(( test_pred, predicted), dim=0) model_name = 'model_' + str(seed + 1) ensemble_df[model_name] = test_pred.cpu().numpy() print('Prediction Saved! ' )
Digit Recognizer
7,500,544
house_data = pd.get_dummies(house_data )<prepare_x_and_y>
test_dataset = DataFrame_to_Dataset(test_df) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False) ensemble_df = submit_df.copy() num_models = 23 num_epochs = 6 for seed in range(num_models): train(seed, num_epochs )
Digit Recognizer
7,500,544
y_train = train.iloc[:,-1] X_train = house_data.iloc[:sep, :] X_test = house_data.iloc[sep:, :]<train_model>
final_pred = ensemble_df.iloc[:,2:].mode(axis=1 ).iloc[:,0] submit_df.Label = final_pred.astype(int) submit_df.head()
Digit Recognizer
7,500,544
search_rf = RandomForestRegressor(n_estimators = 100, random_state=0) search_rf.fit(X_train, y_train) y_test_rf = search_rf.predict(X_test) print('Random forest accuracy:', search_rf.score(X_train, y_train))<save_to_csv>
submit_df.to_csv('submission.csv', index=False )
Digit Recognizer
5,742,147
output1 = pd.DataFrame({'Id': test.Id.values, 'SalePrice': y_test_rf}) output1.to_csv('output1.csv', index=False )<find_best_params>
train_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test_data = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') submission = pd.read_csv('/kaggle/input/digit-recognizer/sample_submission.csv') train_labels = train_data["label"] train_data = train_data.drop(['label'], axis = 1) train_data = train_data /255. test_data = test_data / 255. train_data = train_data.values.reshape(train_data.shape[0],28,28,1) test_data = test_data.values.reshape(test_data.shape[0],28,28,1) labels = to_categorical(train_labels) X_train, X_test, y_train, y_test = train_test_split(train_data, labels, test_size = 0.2, random_state = 42 )
Digit Recognizer
5,742,147
search_cv = RidgeCV(alphas =(0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10)) search_cv.fit(X_train, y_train) y_test_cv = search_cv.predict(X_test) print('RidgeCV accuracy:', search_cv.score(X_train, y_train))<save_to_csv>
learning_rate_cb = ReduceLROnPlateau(monitor = 'val_acc', patience = 2, verbose = 1, factor = 0.5, min_lr = 1e-5 )
Digit Recognizer
5,742,147
output2 = pd.DataFrame({'Id': test.Id.values, 'SalePrice': y_test_cv}) output2.to_csv('output2.csv', index=False )<save_to_csv>
datagen = ImageDataGenerator( zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1, rotation_range = 10 ) datagen.fit(X_train )
Digit Recognizer
5,742,147
prediction =(y_test_rf + y_test_cv)/2 output = pd.DataFrame({'Id': test.Id.values, 'SalePrice': prediction}) output.to_csv('submission.csv', index=False )<import_modules>
batchsize = 512 num_epochs = 30 n_model_runs = 10 modellist = list() for i in range(n_model_runs): print("+++++++++ running model number", i+1) model = models.Sequential([ Conv2D(16, [5,5], activation = 'relu', padding = 'same', input_shape = [28,28,1]), MaxPooling2D([2,2]), Conv2D(32, [5,5], activation = 'relu', padding = 'same'), MaxPooling2D([2,2]), Conv2D(64, [3,3], activation = 'relu', padding = 'same'), MaxPooling2D([2,2]), Conv2D(64, [3,3], activation = 'relu', padding = 'same'), MaxPooling2D([2,2]), Flatten() , Dense(512, activation = 'relu'), Dropout(0.3), Dense(1024, activation = 'relu'), Dropout(0.5), Dense(10, activation = 'softmax') ]) model.compile(optimizer = Adam(lr=1e-3), loss='categorical_crossentropy', metrics = ['accuracy']) model.fit_generator(datagen.flow(X_train, y_train, batchsize), epochs = num_epochs, steps_per_epoch = X_train.shape[0]/batchsize, validation_data =(X_test, y_test), callbacks=[learning_rate_cb], verbose = 1) modellist.append(model )
Digit Recognizer
5,742,147
import os import warnings import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns from sklearn.feature_selection import mutual_info_regression from sklearn.decomposition import PCA from sklearn.preprocessing import LabelEncoder, OneHotEncoder, OrdinalEncoder, StandardScaler from sklearn.model_selection import train_test_split, KFold, StratifiedKFold from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet from sklearn.ensemble import RandomForestRegressor from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from xgboost import XGBRegressor from sklearn.metrics import mean_squared_error import optuna<set_options>
prediction = [model.predict(test_data)for model in modellist] prediction = np.sum(prediction, axis=0) prediction = np.argmax(prediction,axis=1 )
Digit Recognizer
5,742,147
<drop_column><EOS>
submission = pd.DataFrame({"ImageId": list(range(1, len(prediction)+1)) , "Label": prediction}) submission.to_csv('submission.csv', index = False, header = True )
Digit Recognizer
1,186,370
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_from_csv>
config = tf.ConfigProto(device_count = {'GPU': 1 , 'CPU': 4}) sess = tf.Session(config=config) keras.backend.set_session(sess) K.set_image_dim_ordering('tf' )
Digit Recognizer
1,186,370
def load_data() : train = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/train.csv') X_train = train.copy() y_train = X_train['SalePrice'] test = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/test.csv') X_test = test.copy() X_train = clean(X_train) X_test = clean(X_test) all_features = ['MSSubClass','MSZoning','LotFrontage','LotArea','Street','Alley','LotShape','LandContour','Utilities','LotConfig','LandSlope','Neighborhood','Condition1','Condition2','BldgType','HouseStyle','OverallQual','OverallCond','YearBuilt','YearRemodAdd','RoofStyle','RoofMatl','Exterior1st','Exterior2nd','MasVnrType','MasVnrArea','ExterQual','ExterCond','Foundation','BsmtQual','BsmtCond','BsmtExposure','BsmtFinType1','BsmtFinSF1','BsmtFinType2','BsmtFinSF2','BsmtUnfSF','TotalBsmtSF','Heating','HeatingQC','CentralAir','Electrical','1stFlrSF','2ndFlrSF','LowQualFinSF','GrLivArea','BsmtFullBath','BsmtHalfBath','FullBath','HalfBath','BedroomAbvGr','KitchenAbvGr','KitchenQual','TotRmsAbvGrd','Functional','Fireplaces','FireplaceQu','GarageType','GarageYrBlt','GarageFinish','GarageCars','GarageArea','GarageQual','GarageCond','PavedDrive','WoodDeckSF','OpenPorchSF','EnclosedPorch','3SsnPorch','ScreenPorch','PoolArea','PoolQC','Fence','MoSold','YrSold','SaleType','SaleCondition','SalePrice','MiscFeatureShed','MiscFeatureGar2','MiscFeatureOthr'] num_features = ['BsmtFullBath','BsmtHalfBath','FullBath','HalfBath','BedroomAbvGr','KitchenAbvGr','TotRmsAbvGrd','Fireplaces','GarageCars','LotFrontage','LotArea','MasVnrArea','BsmtFinSF1','BsmtFinSF2','BsmtUnfSF','TotalBsmtSF','1stFlrSF','2ndFlrSF','LowQualFinSF','GrLivArea','GarageArea','WoodDeckSF','OpenPorchSF','EnclosedPorch','3SsnPorch','ScreenPorch','PoolArea','MiscFeatureGar2','MiscFeatureOthr','MiscFeatureShed','MoSold','YearBuilt','YearRemodAdd','YrSold','GarageYrBlt'] num_continuous_features = ['LotFrontage','LotArea','MasVnrArea','BsmtFinSF1','BsmtFinSF2','BsmtUnfSF','TotalBsmtSF','1stFlrSF','2ndFlrSF','LowQualFinSF','GrLivArea', 'GarageArea','WoodDeckSF','OpenPorchSF','EnclosedPorch','3SsnPorch','ScreenPorch','PoolArea','MiscFeatureGar2','MiscFeatureOthr','MiscFeatureShed','MoSold','YearBuilt','YearRemodAdd','YrSold','GarageYrBlt'] num_discrete_features=['BsmtFullBath','BsmtHalfBath','FullBath','HalfBath','BedroomAbvGr','KitchenAbvGr','TotRmsAbvGrd','Fireplaces','GarageCars'] cat_features = ['LotShape','LandContour','OverallQual','OverallCond','Utilities','LandSlope','ExterQual','ExterCond','BsmtQual','BsmtCond','BsmtExposure','HeatingQC','KitchenQual','FireplaceQu','GarageFinish','GarageQual','GarageCond','PoolQC','Fence','MSSubClass','MSZoning','Street','Alley','LotConfig','Neighborhood','Condition1','Condition2','BldgType','HouseStyle','RoofStyle','RoofMatl','Exterior1st','Exterior2nd','MasVnrType','Foundation','BsmtFinType1','BsmtFinType2','Heating','CentralAir','Electrical','Functional','GarageType','PavedDrive','SaleType','SaleCondition'] cat_features_to_encode = cat_features.copy() cat_features_to_encode.remove('OverallQual') cat_features_to_encode.remove('OverallCond') return train, test, X_train, y_train, X_test, all_features, num_features, num_continuous_features, num_discrete_features, cat_features, cat_features_to_encode<train_on_grid>
train_data = np.genfromtxt('.. /input/train.csv', delimiter=',')[1:] train_X = train_data[:, 1:] train_y_orig = train_data[:, :1] train_y = np.zeros([train_y_orig.shape[0], 10]) for ind in range(train_y_orig.shape[0]): train_y[ind][int(train_y_orig[ind][0])] = 1
Digit Recognizer
1,186,370
def cv_loop( X_train, y_train, X_test, model, useful_features, num_features, cat_features, cat_features_to_encode, encoding = 'ohe', new_features=[], scaling=False, clip=False, clipmin=np.log(34900), clipmax=np.log(755000), tuning=True, early_stopping=True ): y_train = np.log(y_train) num_features = np.intersect1d(num_features, useful_features) cat_features = np.intersect1d(cat_features, useful_features) cat_features_to_encode = np.intersect1d(cat_features_to_encode, useful_features) cum_rmse_val = 0 iteration = 1 N_SPLITS = 5 kf = KFold(n_splits=N_SPLITS, shuffle=True, random_state=42) for train_index, val_index in kf.split(X_train, y_train): X_train_, X_val_ = X_train.iloc[train_index], X_train.iloc[val_index] y_train_, y_val_ = y_train[train_index], y_train[val_index] X_train__ = X_train_.reset_index(drop=True) X_val__ = X_val_.reset_index(drop=True) X_train__ = X_train__.loc[:, useful_features] X_val__ = X_val__.loc[:, useful_features] if(tuning==False): useful_features_ = useful_features.copy() useful_features_.remove('SalePrice') X_test__ = X_test.loc[:, useful_features_] if(new_features.count('NbNAs')==1): X_train__['NbNAs'] = X_train__.isnull().sum(axis=1) X_val__['NbNAs'] = X_val__.isnull().sum(axis=1) if(tuning==False): X_test__['NbNAs'] = X_test__.isnull().sum(axis=1) for col in num_features: X_train__[col] = X_train__[col].fillna(0) X_val__[col] = X_val__[col].fillna(0) if(tuning==False): X_test__[col] = X_test__[col].fillna(0) for col in cat_features: X_train__[col] = X_train__[col].fillna("None") X_val__[col] = X_val__[col].fillna("None") if(tuning==False): X_test__[col] = X_test__[col].fillna("None") if(new_features.count('LivLotRatio')==1): X_train__['LivLotRatio'] = X_train__['GrLivArea'] / X_train__['LotArea'] X_val__['LivLotRatio'] = X_val__['GrLivArea'] / X_val__['LotArea'] if(tuning==False): X_test__['LivLotRatio'] = X_test__['GrLivArea'] / X_test__['LotArea'] if(new_features.count('Spaciousness')==1): X_train__['Spaciousness'] = X_train__['GrLivArea'] / X_train__['TotRmsAbvGrd'] X_val__['Spaciousness'] = X_val__['GrLivArea'] / X_val__['TotRmsAbvGrd'] if(tuning==False): X_test__['Spaciousness'] = X_test__['GrLivArea'] / X_test__['TotRmsAbvGrd'] if(new_features.count('MedNhbdArea')==1): feat = X_train__.groupby('Neighborhood')['GrLivArea'].median() feat = feat.to_dict() X_train__.loc[:,'MedNhbdArea'] = X_train__['Neighborhood'].map(feat) X_val__.loc[:,'MedNhbdArea'] = X_val__['Neighborhood'].map(feat) if(tuning==False): X_test__.loc[:,'MedNhbdArea'] = X_test__['Neighborhood'].map(feat) if(new_features.count('GrLivAreaInNbhd')==1): feat = X_train__.groupby('Neighborhood')['GrLivArea'].median() feat = feat.to_dict() X_train__.loc[:,'GrLivAreaInNbhd'] = X_train__['Neighborhood'].map(feat) X_train__['GrLivAreaInNbhd'] = X_train__['GrLivArea'] - X_train__['GrLivAreaInNbhd'] X_val__.loc[:,'GrLivAreaInNbhd'] = X_val__['Neighborhood'].map(feat) X_val__['GrLivAreaInNbhd'] = X_val__['GrLivArea'] - X_val__['GrLivAreaInNbhd'] if(tuning==False): X_test__.loc[:,'GrLivAreaInNbhd'] = X_test__['Neighborhood'].map(feat) X_test__['GrLivAreaInNbhd'] = X_test__['GrLivArea'] - X_test__['GrLivAreaInNbhd'] if(new_features.count('MedNhbdArea_Ext')==1): feat = X_train__.groupby('Neighborhood')['LotArea'].median() feat = feat.to_dict() X_train__.loc[:,'MedNhbdArea_Ext'] = X_train__['Neighborhood'].map(feat) X_val__.loc[:,'MedNhbdArea_Ext'] = X_val__['Neighborhood'].map(feat) if(tuning==False): X_test__.loc[:,'MedNhbdArea_Ext'] = X_test__['Neighborhood'].map(feat) if(new_features.count('LotAreaInNbhd')==1): feat = X_train__.groupby('Neighborhood')['LotArea'].median() feat = feat.to_dict() X_train__.loc[:,'LotAreaInNbhd'] = X_train__['Neighborhood'].map(feat) X_train__['LotAreaInNbhd'] = X_train__['LotArea'] - X_train__['LotAreaInNbhd'] X_val__.loc[:,'LotAreaInNbhd'] = X_val__['Neighborhood'].map(feat) X_val__['LotAreaInNbhd'] = X_val__['LotArea'] - X_val__['LotAreaInNbhd'] if(tuning==False): X_test__.loc[:,'LotAreaInNbhd'] = X_test__['Neighborhood'].map(feat) X_test__['LotAreaInNbhd'] = X_test__['LotArea'] - X_test__['LotAreaInNbhd'] if(new_features.count('OverallQualCondProduct')==1): X_train__['OverallQualCondProduct'] = X_train__['OverallQual'] * X_train__['OverallCond'] X_val__['OverallQualCondProduct'] = X_val__['OverallQual'] * X_val__['OverallCond'] if(tuning==False): X_test__['OverallQualCondProduct'] = X_test__['OverallQual'] * X_test__['OverallCond'] if(new_features.count('LowQualFinRatio')==1): X_train__['LowQualFinRatio'] = X_train__['LowQualFinSF'] / X_train__['GrLivArea'] X_val__['LowQualFinRatio'] = X_val__['LowQualFinSF'] / X_val__['GrLivArea'] if(tuning==False): X_test__['LowQualFinRatio'] = X_test__['LowQualFinSF'] / X_test__['GrLivArea'] if(encoding=='ohe'): enc = OneHotEncoder(handle_unknown = 'ignore') X_train__enc = pd.DataFrame(enc.fit_transform(X_train__[cat_features_to_encode] ).toarray()) X_val__enc = pd.DataFrame(enc.transform(X_val__[cat_features_to_encode] ).toarray()) X_train__enc.columns = enc.get_feature_names(cat_features_to_encode) X_val__enc.columns = enc.get_feature_names(cat_features_to_encode) X_train__ = X_train__.join(X_train__enc) X_val__ = X_val__.join(X_val__enc) if(tuning==False): X_test__enc = pd.DataFrame(enc.transform(X_test__[cat_features_to_encode] ).toarray()) X_test__enc.columns = enc.get_feature_names(cat_features_to_encode) X_test__ = X_test__.join(X_test__enc) elif(encoding=='ord'): enc = OrdinalEncoder() X_train__enc = pd.DataFrame(enc.fit_transform(X_train__[cat_features_to_encode])) X_val__enc = pd.DataFrame(enc.transform(X_val__[cat_features_to_encode])) X_train__enc.columns = [cat_features_to_encode] X_val__enc.columns = [cat_features_to_encode] X_train__ = X_train__.join(X_train__enc, rsuffix='_ord_enc') X_val__ = X_val__.join(X_val__enc, rsuffix='_ord_enc') if(tuning==False): X_test__enc = pd.DataFrame(enc.transform(X_test__[cat_features_to_encode])) X_test__enc.columns = [cat_features_to_encode] X_test__ = X_test__.join(X_test__enc, rsuffix='_ord_enc') elif(encoding=='tar_enc'): for f in cat_features_to_encode: feat = X_train__.groupby(f)['SalePrice'].mean() feat = feat.to_dict() X_train__.loc[:,f"tar_enc_{f}"] = X_train__[f].map(feat) X_val__.loc[:,f"tar_enc_{f}"] = X_val__[f].map(feat) if(tuning==False): X_test__.loc[:,f"tar_enc_{f}"] = X_test__[f].map(feat) X_train__.drop(columns='SalePrice', inplace=True) X_train__.drop(columns=cat_features_to_encode, inplace=True) X_val__.drop(columns='SalePrice', inplace=True) X_val__.drop(columns=cat_features_to_encode, inplace=True) if(tuning==False): X_test__.drop(columns=cat_features_to_encode, inplace=True) X_train__.to_csv(f'X_train__{iteration}.csv', index = False) X_val__.to_csv(f'X_val__{iteration}.csv', index = False) if(tuning==False): X_test__.to_csv(f'X_test__{iteration}.csv', index = False) if scaling: scaler = StandardScaler() X_train__ = pd.DataFrame(scaler.fit_transform(X_train__), columns=X_train__.columns) X_val__ = pd.DataFrame(scaler.transform(X_val__), columns=X_val__.columns) if(tuning==False): X_test__ = pd.DataFrame(scaler.transform(X_test__), columns=X_test__.columns) X_train__.to_csv(f'X_train__{iteration}__scaled.csv', index = False) X_val__.to_csv(f'X_val__{iteration}__scaled.csv', index = False) if(tuning==False): X_test__.to_csv(f'X_test__{iteration}__scaled.csv', index = False) if early_stopping: model.fit(X_train__, y_train_, eval_set=[(X_val__, y_val_)], early_stopping_rounds=100, verbose=False) else: model.fit(X_train__, y_train_) y_val_preds = model.predict(X_val__) if(clip): y_val_preds = np.clip(y_val_preds,clipmin,clipmax) if(tuning==False): if iteration==1: oof_preds = pd.Series(data=y_val_preds,index=val_index) else: oof_preds = pd.concat([oof_preds, pd.Series(data=y_val_preds,index=val_index)]) rmse_val = mean_squared_error(y_val_, y_val_preds, squared=False) print(str(iteration)+ '/' + str(N_SPLITS)+ ' KFold RMSLE: ' + str(rmse_val)) cum_rmse_val = cum_rmse_val + rmse_val if(tuning==False): new_preds = model.predict(X_test__) if(clip): new_preds = np.clip(new_preds,clipmin,clipmax) if iteration==1: preds = new_preds else: preds = preds + new_preds iteration = iteration + 1 if(tuning==False): preds = preds/N_SPLITS avg_rmse = cum_rmse_val/N_SPLITS print('Average RMSLE: ' + str(avg_rmse)) if tuning: return avg_rmse, None, None else: return avg_rmse, np.exp(oof_preds.sort_index()), np.exp(preds )<split>
model = Sequential() input_shape =(28, 28, 1) model.add(Conv2D(32, kernel_size=(7, 7), padding='same', activation='relu', input_shape=input_shape)) model.add(Conv2D(32, kernel_size=(7, 7), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(64, kernel_size=(5, 5), strides=(2,2), padding='same', activation='relu')) model.add(Conv2D(64, kernel_size=(5, 5), strides=(2,2), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(128, kernel_size=(3, 3), strides=(3,3), padding='same', activation='relu')) model.add(Conv2D(128, kernel_size=(3, 3), strides=(3,3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.6)) model.add(Dense(10, activation='softmax')) opt = RMSprop() model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'] )
Digit Recognizer
1,186,370
_, _, X_train, y_train, X_test, all_features, num_features, num_continuous_features, num_discrete_features, cat_features, cat_features_to_encode = load_data() X_train.head(2 )<create_dataframe>
batch_size=2**8 epochs = 100 n = train_X.shape[0] train_X = train_X.reshape(( n, 28, 28, 1)).astype('float32')/ 255 history = model.fit(train_X, train_y, epochs=epochs, batch_size=batch_size )
Digit Recognizer
1,186,370
feature_types = pd.DataFrame(data=[num_features, cat_features]) feature_types.index=['Numerical','Categorical'] feature_types.style.set_table_styles([ {'selector': 'thead', 'props': [('display', 'none')]} ] )<concatenate>
print(model.evaluate(train_X, train_y))
Digit Recognizer
1,186,370
f_with_na_train = X_train.isna().sum(axis=0) f_with_na_train = f_with_na_train[f_with_na_train>0] f_with_na_train.name='Nb of NaNs in train' f_with_na_test = X_test.isna().sum(axis=0) f_with_na_test = f_with_na_test[f_with_na_test>0] f_with_na_test.name='Nb of NaNs in test' f_with_na = pd.concat([f_with_na_train, f_with_na_test], axis=1) f_with_na.fillna(0, inplace=True) f_with_na = f_with_na[['Nb of NaNs in train','Nb of NaNs in test']] f_with_na.sort_values(['Nb of NaNs in train', 'Nb of NaNs in test'], ascending=False)[['Nb of NaNs in train', 'Nb of NaNs in test']].plot(kind='bar', figsize=(20,4)) plt.show()<define_variables>
test_data = np.genfromtxt('.. /input/test.csv', delimiter=',')[1:]
Digit Recognizer
1,186,370
_, _, X_train, y_train, X_test, all_features, num_features, _, _, cat_features, cat_features_to_encode = load_data() useful_features = [e for e in all_features if e not in('PoolArea','3SsnPorch','MoSold','YrSold','RoofMatl','Utilities','MiscFeatureGar2','PoolQC')] new_features = ['NbNAs','LivLotRatio','Spaciousness','MedNhbdArea','GrLivAreaInNbhd','MedNhbdArea_Ext','LotAreaInNbhd','OverallQualCondProduct','LowQualFinRatio'] encoding = 'tar_enc' scaling = True clip = False early_stopping = True<define_search_space>
predictions = model.predict(test_data.reshape(( test_data.shape[0], 28, 28, 1)).astype('float32')/ 255) predictions = predictions.argmax(1 )
Digit Recognizer
1,186,370
<find_best_params><EOS>
sub_data = np.zeros([predictions.shape[0], 2]) count = 0 for val in predictions: sub_data[count] = [count + 1, val] count += 1 sub_data = sub_data.astype(int) np.savetxt(fname="submission.csv", X=sub_data, fmt='%i', delimiter=',', comments='', header='ImageId,Label' )
Digit Recognizer
4,566,279
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class>
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from keras.datasets import mnist from keras.models import Model, Sequential from keras.models import load_model from keras.layers import Input, Conv2D, MaxPooling2D, BatchNormalization from keras.layers import UpSampling2D, Dropout, Dense, Flatten from keras.callbacks import TensorBoard
Digit Recognizer
4,566,279
if TUNING_XGB: model = XGBRegressor( tree_method='gpu_hist', predictor='gpu_predictor', n_jobs=4, **trial.params) else: params = { 'max_depth': 5, 'n_estimators': 7779, 'eta': 0.0044144556312306175, 'subsample': 0.30000000000000004, 'colsample_bytree': 0.2, 'colsample_bylevel': 0.4, 'min_child_weight': 0.21792841014662054, 'reg_lambda': 5.06808562586094, 'reg_alpha': 0.036826697275635915, 'gamma': 0.002452743312016066, } model = XGBRegressor( tree_method='gpu_hist', predictor='gpu_predictor', n_jobs=4, **params) avg_rmse, oof_preds, preds = cv_loop( X_train=X_train, y_train=y_train, X_test=X_test, model=model, useful_features=all_features, num_features=num_features, cat_features=cat_features, cat_features_to_encode=cat_features_to_encode, encoding = encoding, new_features=new_features, scaling = scaling, clip = clip, clipmin=np.log(34900), clipmax=np.log(755000), tuning=False, early_stopping = early_stopping )<save_to_csv>
train_dir = ".. /input/train.csv" test_dir = ".. /input/test.csv"
Digit Recognizer
4,566,279
submission = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/sample_submission.csv') submission['SalePrice'] = preds submission.to_csv('xgb_preds.csv', index = False) oof_preds.to_csv('xgb_oof_preds.csv', header=False )<categorify>
df_train = pd.read_csv(train_dir) df_train.info()
Digit Recognizer
4,566,279
_, _, X_train, y_train, X_test, all_features, num_features, _, _, cat_features, cat_features_to_encode = load_data() useful_features = [e for e in all_features if e not in('PoolArea','3SsnPorch','MoSold','YrSold','RoofMatl','Utilities','MiscFeatureGar2','PoolQC')] new_features = ['NbNAs','LivLotRatio','Spaciousness','MedNhbdArea','GrLivAreaInNbhd','MedNhbdArea_Ext','LotAreaInNbhd','OverallQualCondProduct','LowQualFinRatio'] encoding = 'ohe' scaling = True clip = True early_stopping = False<compute_train_metric>
y_train = df_train['label'] X_train = df_train.drop(columns=['label'] )
Digit Recognizer
4,566,279
def objective(trial): param_grid = { 'alpha': trial.suggest_loguniform('alpha', 0.0001, 10000), 'max_iter': trial.suggest_loguniform('max_iter', 1000, 900000), 'random_state' : 42 } model = Lasso( **param_grid ) avg_rmse, _, _ = cv_loop( X_train = X_train, y_train = y_train, X_test = X_test, model = model, useful_features = useful_features, num_features = num_features, cat_features = cat_features, cat_features_to_encode = cat_features_to_encode, encoding = encoding, new_features = new_features, scaling = scaling, clip = clip, clipmin=np.log(34900), clipmax=np.log(755000), tuning = True, early_stopping = early_stopping ) return avg_rmse<find_best_params>
display_image(X_train, y_train, n=10, label=True )
Digit Recognizer
4,566,279
if TUNING_LASSO: study = optuna.create_study(direction='minimize', study_name=STUDY_NAME) study.optimize(objective, n_trials=50) print('Number of finished trials: ', len(study.trials)) print('Best trial:') trial = study.best_trial print('\tValue: {}'.format(trial.value)) print('\tParams: ') for key, value in trial.params.items() : print('\t\t{}: {}'.format(key, value))<train_on_grid>
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, shuffle=False )
Digit Recognizer
4,566,279
if TUNING_LASSO: model = Lasso(**trial.params, random_state=42) else: params = { 'alpha': 0.0018185000964940012, 'max_iter': 21098, 'random_state' : 42 } model = Lasso(**params) avg_rmse, oof_preds, preds = cv_loop( X_train = X_train, y_train = y_train, X_test = X_test, model = model, useful_features = useful_features, num_features = num_features, cat_features = cat_features, cat_features_to_encode = cat_features_to_encode, encoding = encoding, new_features = new_features, scaling = scaling, clip = clip, clipmin = np.log(34900), clipmax = np.log(755000), tuning = False, early_stopping = early_stopping )<save_to_csv>
X_train = X_train.values.reshape(-1, 28,28,1) X_val = X_val.values.reshape(-1, 28,28,1 )
Digit Recognizer
4,566,279
submission = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/sample_submission.csv') submission['SalePrice'] = preds submission.to_csv('lasso_preds.csv', index = False) oof_preds.to_csv('lasso_oof_preds.csv', header=False )<load_from_csv>
X_train = X_train / 255.0 X_val = X_val / 255.0
Digit Recognizer
4,566,279
X_train, y_train = oof_preds[['xgb_oof_preds','lasso_oof_preds']], oof_preds['y_train'] xgb_preds = pd.read_csv('xgb_preds.csv' ).iloc[:,1] lasso_preds = pd.read_csv('lasso_preds.csv' ).iloc[:,1] X_test = pd.concat([np.log(xgb_preds), np.log(lasso_preds)], axis=1 )<find_best_model_class>
Y_train = pd.get_dummies(y_train ).values Y_val = pd.get_dummies(y_val ).values
Digit Recognizer
4,566,279
metamodel = LinearRegression() cum_rmse_val = 0 iteration = 1 kf = KFold(n_splits=5, shuffle=True, random_state=42) for train_index, val_index in kf.split(X_train, y_train): X_train_, X_val_ = X_train.iloc[train_index], X_train.iloc[val_index] y_train_, y_val_ = y_train[train_index], y_train[val_index] metamodel.fit(X_train_, y_train_) y_val_preds = metamodel.predict(X_val_) rmse_val = mean_squared_error(y_val_, y_val_preds, squared=False) print(rmse_val) cum_rmse_val = cum_rmse_val + rmse_val new_preds=metamodel.predict(X_test) if(iteration==1): preds = new_preds else: preds = preds + new_preds iteration = iteration+1 print(cum_rmse_val/5) preds = preds / 5<save_to_csv>
print("La valeur {} est encodée vers le vecteur {}".format(y_train[0], Y_train[0])) print("valeur {} transformée en vecteur: {}".format(y_train[20], Y_train[20]))
Digit Recognizer
4,566,279
submission = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/sample_submission.csv') submission['SalePrice'] = np.exp(preds) submission.to_csv('stacking_preds.csv', index = False )<import_modules>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=20, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False )
Digit Recognizer
4,566,279
for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))<load_from_csv>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5, 5), activation='relu', padding='Same', input_shape =(28, 28, 1))) model.add(BatchNormalization()) model.add(Conv2D(filters = 32, kernel_size =(5, 5), activation='relu', padding='Same')) model.add(BatchNormalization()) model.add(MaxPooling2D(strides=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters = 64, kernel_size =(3, 3), activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(strides=(2,2))) model.add(Dropout(0.25))
Digit Recognizer
4,566,279
train = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/train.csv') test = pd.read_csv('.. /input/house-prices-advanced-regression-techniques/test.csv' )<count_missing_values>
model.add(Flatten()) model.add(Dense(units=1024, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(units=1024, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(units=10, activation='softmax'))
Digit Recognizer
4,566,279
Null_train = train.isnull().sum() Null_train[Null_train > 0]<drop_column>
model.compile(loss='categorical_crossentropy', optimizer = Adam(lr=0.0001), metrics=["accuracy"] )
Digit Recognizer
4,566,279
train.drop(['Alley', 'PoolQC', 'Fence', 'MiscFeature', 'Id'], axis = 1, inplace = True )<define_variables>
hist = model.fit_generator(datagen.flow(X_train, Y_train, batch_size=32), steps_per_epoch=1000, epochs=25, verbose=1, validation_data=(X_val, Y_val))
Digit Recognizer
4,566,279
Null_train_data = train[['LotFrontage','MasVnrType', 'MasVnrArea', 'FireplaceQu', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Electrical', 'GarageType', 'GarageYrBlt', 'GarageFinish', 'GarageQual', 'GarageCond']]<count_unique_values>
final_loss, final_acc = model.evaluate(X_val, Y_val, verbose=0) print("Final loss: {0:.4f}, final accuracy: {1:.4f}".format(final_loss, final_acc))
Digit Recognizer
4,566,279
def view_null_data(data): return pd.DataFrame({"Data Type":data.dtypes, "Unique Count":data.apply(lambda x: x.nunique() ,axis=0), "Null Count": data.isnull().sum() } )<feature_engineering>
Y_hat = model.predict(X_val) Y_hat[0]
Digit Recognizer
4,566,279
train['LotFrontage'] = train['LotFrontage'].fillna(train.LotFrontage.mean()) train['GarageYrBlt'] = train['GarageYrBlt'].fillna(train.GarageYrBlt.mean()) train['MasVnrArea'] = train['MasVnrArea'].fillna(train.MasVnrArea.mode() [0] )<count_missing_values>
Y_pred = np.argmax(Y_hat, axis=1) Y_true = np.argmax(Y_val, axis=1 )
Digit Recognizer
4,566,279
Null_test = test.isnull().sum() Null_test[Null_test > 0]<drop_column>
cm = confusion_matrix(Y_true, Y_pred) print(cm )
Digit Recognizer
4,566,279
Id = test['Id'] test.drop(['Alley', 'PoolQC', 'Fence', 'MiscFeature', 'Id'], axis = 1, inplace = True )<drop_column>
X_test = pd.read_csv(test_dir) X_test = X_test.values.reshape(-1, 28,28,1) X_test = X_test / 255.0
Digit Recognizer
4,566,279
Null_test_data = test[['MSZoning', 'LotFrontage', 'Utilities', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'MasVnrArea', 'BsmtQual','FireplaceQu', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1', 'BsmtFinType2', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'KitchenQual', 'Functional', 'GarageType', 'GarageYrBlt', 'GarageFinish', 'GarageQual', 'GarageCars','GarageArea','GarageQual', 'GarageCond', 'SaleType']]<feature_engineering>
Y_hat = model.predict(X_test, verbose=1) Y_pred = np.argmax(Y_hat, axis=1 )
Digit Recognizer
4,566,279
test['LotFrontage'] = test['LotFrontage'].fillna(test['LotFrontage'].mean()) test['BsmtFinSF1'] = test['BsmtFinSF1'].fillna(test['BsmtFinSF1'].mean()) test['BsmtUnfSF'] = test['BsmtUnfSF'].fillna(test['BsmtUnfSF'].mean()) test['TotalBsmtSF'] = test['TotalBsmtSF'].fillna(test['TotalBsmtSF'].mean()) test['GarageYrBlt'] = test['GarageYrBlt'].fillna(test['GarageYrBlt'].mean()) test['GarageArea'] = test['GarageArea'].fillna(test['GarageArea'].mean()) test['MasVnrArea'] = test['MasVnrArea'].fillna(test['MasVnrArea'].mode() [0]) test['BsmtFullBath'] = test['BsmtFullBath'].fillna(test['BsmtFullBath'].mode() [0]) test['BsmtFinSF2'] = test['BsmtFinSF2'].fillna(test['BsmtFinSF2'].mode() [0]) test['BsmtHalfBath'] = test['BsmtHalfBath'].fillna(test['BsmtHalfBath'].mode() [0]) test['LotFrontage'] = test['LotFrontage'].fillna(test['LotFrontage'].mode() [0] )<compute_test_metric>
display_image(pd.DataFrame(X_test.reshape(-1, 784)) , Y_pred, n=10, label=True )
Digit Recognizer