kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
4,361,589 |
!pip install --upgrade xgboost
xgb.__version__<init_hyperparams>
|
train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" )
|
Digit Recognizer
|
4,361,589 |
xgb_params= {
"objective": "reg:squarederror",
"max_depth": 6,
"learning_rate": 0.01,
"colsample_bytree": 0.4,
"subsample": 0.6,
"reg_alpha" : 6,
"min_child_weight": 100,
"n_jobs": 2,
"seed": 2001,
'tree_method': "gpu_hist",
"gpu_id": 0,
}<define_variables>
|
X_train = X_train / 255.0
test = test / 255.0
|
Digit Recognizer
|
4,361,589 |
train_oof = np.zeros(( 300000,))
test_preds = 0
train_oof.shape<prepare_x_and_y>
|
Y_train = to_categorical(Y_train, num_classes = 10 )
|
Digit Recognizer
|
4,361,589 |
Test = xgb.DMatrix(Test[columns] )<train_model>
|
random_seed = 2
|
Digit Recognizer
|
4,361,589 |
NUM_FOLDS = 10
kf = KFold(n_splits=NUM_FOLDS, shuffle=True, random_state=0)
for f,(train_ind, val_ind)in tqdm(enumerate(kf.split(train, target))):
train_df, val_df = train.iloc[train_ind][columns], train.iloc[val_ind][columns]
train_target, val_target = target[train_ind], target[val_ind]
train_df = xgb.DMatrix(train_df, label=train_target)
val_df = xgb.DMatrix(val_df, label=val_target)
model = xgb.train(xgb_params, train_df, 3600)
temp_oof = model.predict(val_df)
temp_test = model.predict(Test)
train_oof[val_ind] = temp_oof
test_preds += temp_test/NUM_FOLDS
print(mean_squared_error(temp_oof, val_target, squared=False))<compute_test_metric>
|
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed )
|
Digit Recognizer
|
4,361,589 |
mean_squared_error(train_oof, target, squared=False )<save_model>
|
model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))
|
Digit Recognizer
|
4,361,589 |
np.save('train_oof', train_oof)
np.save('test_preds', test_preds )<predict_on_test>
|
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 )
|
Digit Recognizer
|
4,361,589 |
%%time
shap_preds = model.predict(test, pred_contribs=True )<load_from_csv>
|
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] )
|
Digit Recognizer
|
4,361,589 |
train = pd.read_csv('.. /input/tabular-playground-series-feb-2021/train.csv')
test = pd.read_csv('.. /input/tabular-playground-series-feb-2021/test.csv')
for feature in cat_features:
le = LabelEncoder()
le.fit(train[feature])
train[feature] = le.transform(train[feature])
test[feature] = le.transform(test[feature] )<save_to_csv>
|
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 )
|
Digit Recognizer
|
4,361,589 |
sample_sub['target'] = test_preds
sample_sub.to_csv('submission.csv', index=False )<install_modules>
|
epochs = 30
batch_size = 86
|
Digit Recognizer
|
4,361,589 |
!pip install librosa<import_modules>
|
Digit Recognizer
|
|
4,361,589 |
import numpy as np
import pandas as pd
import os<load_pretrained>
|
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train )
|
Digit Recognizer
|
4,361,589 |
audio_data = '/kaggle/input/birdsong-recognition/train_audio/nutwoo/XC462016.mp3'
x , sr = librosa.load(audio_data)
print(type(x), type(sr))
print(x.shape, sr )<load_pretrained>
|
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] )
|
Digit Recognizer
|
4,361,589 |
librosa.load(audio_data, sr=44100 )<normalization>
|
results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" )
|
Digit Recognizer
|
4,361,589 |
<set_options><EOS>
|
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False )
|
Digit Recognizer
|
3,365,490 |
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options>
|
GlobalAveragePooling2D, Conv2D, BatchNormalization, Dropout
INPUT_DIR = '.. /input'
EMB_SIZE = 8
BATCH_SIZE = 1024
N_FOLDS = 2
N_ITER = 50
SEED = 32
|
Digit Recognizer
|
3,365,490 |
sr = 22050
T = 5.0
t = np.linspace(0, T, int(T*sr), endpoint=False)
x = 0.5*np.sin(2*np.pi*220*t)
ipd.Audio(x, rate=sr)
librosa.output.write_wav('tone_220.wav', x, sr )<normalization>
|
def _all_diffs(a, b):
return tf.expand_dims(a, axis=1)- tf.expand_dims(b, axis=0)
def _cdist(a, b, metric='euclidean'):
with tf.name_scope("_cdist"):
diffs = _all_diffs(a, b)
if metric == 'sqeuclidean':
return tf.reduce_sum(tf.square(diffs), axis=-1)
elif metric == 'euclidean':
return tf.sqrt(tf.reduce_sum(tf.square(diffs), axis=-1)+ 1e-12)
elif metric == 'cityblock':
return tf.reduce_sum(tf.abs(diffs), axis=-1)
else:
raise NotImplementedError(
'The following metric is not implemented by `_cdist` yet: {}'.format(metric))
_cdist.supported_metrics = [
'euclidean',
'sqeuclidean',
'cityblock',
]
def _get_at_indices(tensor, indices):
counter = tf.range(tf.shape(indices, out_type=indices.dtype)[0])
return tf.gather_nd(tensor, tf.stack(( counter, indices), -1))
def batch_hard_loss(features, pids, metric='euclidean', margin=0.1):
with tf.name_scope("batch_hard_loss"):
dists = _cdist(features, features, metric=metric)
pids = tf.argmax(pids, axis=1)
exp_dims0 = tf.expand_dims(pids, axis=0)
exp_dims1 = tf.expand_dims(pids, axis=1)
same_identity_mask = tf.equal(exp_dims1, exp_dims0)
negative_mask = tf.logical_not(same_identity_mask)
positive_mask = tf.logical_xor(same_identity_mask,
tf.eye(tf.shape(pids)[0], dtype=tf.bool))
furthest_positive = tf.reduce_max(dists*tf.cast(positive_mask, tf.float32), axis=1)
closest_negative = tf.reduce_min(dists + 1e5*tf.cast(same_identity_mask, tf.float32), axis=1)
diff = furthest_positive - closest_negative
if isinstance(margin, numbers.Real):
diff = tf.maximum(diff + margin, 0.0)
elif margin == 'soft':
diff = tf.nn.softplus(diff)
elif margin is None:
pass
else:
raise NotImplementedError('The margin {} is not implemented in batch_hard_loss'.format(margin))
return diff
def triplet_loss(labels, features):
return tf.reduce_mean(batch_hard_loss(features, labels, margin=0.2))
|
Digit Recognizer
|
3,365,490 |
zero_crossings = librosa.zero_crossings(x[n0:n1], pad=False)
print(sum(zero_crossings))<import_modules>
|
def f1(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
recall = true_positives /(possible_positives + K.epsilon())
precision = true_positives /(predicted_positives + K.epsilon())
return 2 *(( precision * recall)/(precision + recall + K.epsilon()))
|
Digit Recognizer
|
3,365,490 |
import cv2
import audioread
import logging
import os
import random
import time
import warnings
import librosa
import numpy as np
import pandas as pd
import soundfile as sf
import torch
import torch.nn as nn
import torch.cuda
import torch.nn.functional as F
import torch.utils.data as data
from contextlib import contextmanager
from pathlib import Path
from typing import Optional
from fastprogress import progress_bar
from sklearn.metrics import f1_score
from torchvision import models<set_options>
|
df_train = pd.read_csv(os.path.join(INPUT_DIR, 'train.csv'))
df_test = pd.read_csv(os.path.join(INPUT_DIR, 'test.csv'))
print(df_train.head() )
|
Digit Recognizer
|
3,365,490 |
def set_seed(seed: int = 42):
random.seed(seed)
np.random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def get_logger(out_file=None):
logger = logging.getLogger()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
logger.handlers = []
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
handler.setLevel(logging.INFO)
logger.addHandler(handler)
if out_file is not None:
fh = logging.FileHandler(out_file)
fh.setFormatter(formatter)
fh.setLevel(logging.INFO)
logger.addHandler(fh)
logger.info("logger set up")
return logger
@contextmanager
def timer(name: str, logger: Optional[logging.Logger] = None):
t0 = time.time()
msg = f"[{name}] start"
if logger is None:
print(msg)
else:
logger.info(msg)
yield
msg = f"[{name}] done in {time.time() - t0:.2f} s"
if logger is None:
print(msg)
else:
logger.info(msg )<set_options>
|
x_train = df_train.iloc[:,1:].values.astype('float32')/ 255.
x_test = df_test.values.astype('float32')/ 255.
xc_train = np.reshape(x_train,(len(x_train), 28, 28, 1))
xc_test = np.reshape(x_test,(len(x_test), 28, 28, 1))
y_train = df_train.label.values
yc_train = to_categorical(y_train)
input_size = output_size = x_train.shape[1]
input_csize = output_csize = xc_train.shape[1]
print(xc_train[:5], xc_test[:5])
|
Digit Recognizer
|
3,365,490 |
logger = get_logger("main.log")
set_seed(1213 )<define_variables>
|
def base_network(model_type='triplet', input_shape=input_csize):
if model_type == 'autoencoder':
pass
elif model_type == 'triplet':
model = Sequential([
Conv2D(filters=64, kernel_size=(3, 3), padding='same', input_shape=(input_csize, input_csize, 1,), activation='relu'),
Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu'),
BatchNormalization() ,
MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
Dropout(0.25),
Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu'),
Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation='relu'),
BatchNormalization() ,
MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
Dropout(0.25),
Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation='relu'),
Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation='relu'),
BatchNormalization() ,
MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same'),
Dropout(0.25),
Flatten() ,
Dense(512, activation='relu'),
Dense(256, activation='relu'),
BatchNormalization() ,
Dropout(0.25),
Dense(10, name='embeddings', activation='softmax'),
])
return model
|
Digit Recognizer
|
3,365,490 |
TARGET_SR = 32000
TEST = Path(".. /input/birdsong-recognition/test_audio" ).exists()<load_from_csv>
|
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(xc_train )
|
Digit Recognizer
|
3,365,490 |
if TEST:
DATA_DIR = Path(".. /input/birdsong-recognition/")
else:
DATA_DIR = Path(".. /input/birdcall-check/")
test = pd.read_csv(DATA_DIR / "test.csv")
test_audio = DATA_DIR / "test_audio"
test.head()<save_to_csv>
|
yfull_test = []
skf = StratifiedKFold(n_splits=N_FOLDS, random_state=SEED, shuffle=True)
print(len(xc_train), len(y_train))
for i,(train_index, val_index)in enumerate(skf.split(xc_train, y_train)) :
triplet_model = base_network()
triplet_model.compile(optimizer=RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0),
loss=['categorical_crossentropy'], metrics=[f1])
weights_path = os.path.join('.', f'w{i}.h5')
callbacks=[
ReduceLROnPlateau(monitor='val_f1', patience=3, verbose=1, factor=0.5, min_lr=0.00001),
ModelCheckpoint(weights_path, monitor='val_f1', mode='max', save_best_only=True, verbose=0)
]
xb_train = xc_train[train_index]
yb_train = yc_train[train_index]
xb_val = xc_train[val_index]
yb_val = yc_train[val_index]
history = triplet_model.fit_generator(
datagen.flow(xb_train, yb_train, batch_size=BATCH_SIZE),
validation_data=datagen.flow(xb_val, yb_val, batch_size=BATCH_SIZE),
validation_steps=xb_val.shape[0] // BATCH_SIZE,
verbose=2,
epochs=N_ITER,
steps_per_epoch=xb_train.shape[0] // BATCH_SIZE,
shuffle=True,
callbacks=callbacks)
if os.path.isfile(weights_path):
triplet_model.load_weights(weights_path)
print(fbeta_score(yb_val, np.array(triplet_model.predict(xb_val, batch_size=128, verbose=2)) > 0.2, beta=2, average='samples'))
yfull_test.append(triplet_model.predict(xc_test, batch_size=128, verbose=2))
|
Digit Recognizer
|
3,365,490 |
sub = pd.read_csv(".. /input/birdsong-recognition/sample_submission.csv")
sub.to_csv("submission.csv", index=False )<choose_model_class>
|
pred = np.array(yfull_test)
pred = np.argmax(pred, axis=2)
values, counts = np.unique(pred, axis=0, return_counts=True)
pred = values[np.argmax(counts)]
print(pred.shape )
|
Digit Recognizer
|
3,365,490 |
class ResNet(nn.Module):
def __init__(self, base_model_name: str, pretrained=False,
num_classes=264):
super().__init__()
base_model = models.__getattribute__(base_model_name )(
pretrained=pretrained)
layers = list(base_model.children())[:-2]
layers.append(nn.AdaptiveMaxPool2d(1))
self.encoder = nn.Sequential(*layers)
in_features = base_model.fc.in_features
self.classifier = nn.Sequential(
nn.Linear(in_features, 1024), nn.ReLU() , nn.Dropout(p=0.2),
nn.Linear(1024, 1024), nn.ReLU() , nn.Dropout(p=0.2),
nn.Linear(1024, num_classes))
def forward(self, x):
batch_size = x.size(0)
x = self.encoder(x ).view(batch_size, -1)
x = self.classifier(x)
multiclass_proba = F.softmax(x, dim=1)
multilabel_proba = F.sigmoid(x)
return {
"logits": x,
"multiclass_proba": multiclass_proba,
"multilabel_proba": multilabel_proba
}<define_variables>
|
Digit Recognizer
|
|
3,365,490 |
model_config = {
"base_model_name": "resnet50",
"pretrained": False,
"num_classes": 264
}
melspectrogram_parameters = {
"n_mels": 128,
"fmin": 20,
"fmax": 16000
}
weights_path = ".. /input/birdcall-resnet50-init-weights/best.pth"<define_variables>
|
submission = pd.DataFrame({'ImageId': range(1, pred.shape[0]+1), 'Label': pred})
submission.to_csv('submission.csv', index=False )
|
Digit Recognizer
|
4,861,518 |
BIRD_CODE = {
'aldfly': 0, 'ameavo': 1, 'amebit': 2, 'amecro': 3, 'amegfi': 4,
'amekes': 5, 'amepip': 6, 'amered': 7, 'amerob': 8, 'amewig': 9,
'amewoo': 10, 'amtspa': 11, 'annhum': 12, 'astfly': 13, 'baisan': 14,
'baleag': 15, 'balori': 16, 'banswa': 17, 'barswa': 18, 'bawwar': 19,
'belkin1': 20, 'belspa2': 21, 'bewwre': 22, 'bkbcuc': 23, 'bkbmag1': 24,
'bkbwar': 25, 'bkcchi': 26, 'bkchum': 27, 'bkhgro': 28, 'bkpwar': 29,
'bktspa': 30, 'blkpho': 31, 'blugrb1': 32, 'blujay': 33, 'bnhcow': 34,
'boboli': 35, 'bongul': 36, 'brdowl': 37, 'brebla': 38, 'brespa': 39,
'brncre': 40, 'brnthr': 41, 'brthum': 42, 'brwhaw': 43, 'btbwar': 44,
'btnwar': 45, 'btywar': 46, 'buffle': 47, 'buggna': 48, 'buhvir': 49,
'bulori': 50, 'bushti': 51, 'buwtea': 52, 'buwwar': 53, 'cacwre': 54,
'calgul': 55, 'calqua': 56, 'camwar': 57, 'cangoo': 58, 'canwar': 59,
'canwre': 60, 'carwre': 61, 'casfin': 62, 'caster1': 63, 'casvir': 64,
'cedwax': 65, 'chispa': 66, 'chiswi': 67, 'chswar': 68, 'chukar': 69,
'clanut': 70, 'cliswa': 71, 'comgol': 72, 'comgra': 73, 'comloo': 74,
'commer': 75, 'comnig': 76, 'comrav': 77, 'comred': 78, 'comter': 79,
'comyel': 80, 'coohaw': 81, 'coshum': 82, 'cowscj1': 83, 'daejun': 84,
'doccor': 85, 'dowwoo': 86, 'dusfly': 87, 'eargre': 88, 'easblu': 89,
'easkin': 90, 'easmea': 91, 'easpho': 92, 'eastow': 93, 'eawpew': 94,
'eucdov': 95, 'eursta': 96, 'evegro': 97, 'fiespa': 98, 'fiscro': 99,
'foxspa': 100, 'gadwal': 101, 'gcrfin': 102, 'gnttow': 103, 'gnwtea': 104,
'gockin': 105, 'gocspa': 106, 'goleag': 107, 'grbher3': 108, 'grcfly': 109,
'greegr': 110, 'greroa': 111, 'greyel': 112, 'grhowl': 113, 'grnher': 114,
'grtgra': 115, 'grycat': 116, 'gryfly': 117, 'haiwoo': 118, 'hamfly': 119,
'hergul': 120, 'herthr': 121, 'hoomer': 122, 'hoowar': 123, 'horgre': 124,
'horlar': 125, 'houfin': 126, 'houspa': 127, 'houwre': 128, 'indbun': 129,
'juntit1': 130, 'killde': 131, 'labwoo': 132, 'larspa': 133, 'lazbun': 134,
'leabit': 135, 'leafly': 136, 'leasan': 137, 'lecthr': 138, 'lesgol': 139,
'lesnig': 140, 'lesyel': 141, 'lewwoo': 142, 'linspa': 143, 'lobcur': 144,
'lobdow': 145, 'logshr': 146, 'lotduc': 147, 'louwat': 148, 'macwar': 149,
'magwar': 150, 'mallar3': 151, 'marwre': 152, 'merlin': 153, 'moublu': 154,
'mouchi': 155, 'moudov': 156, 'norcar': 157, 'norfli': 158, 'norhar2': 159,
'normoc': 160, 'norpar': 161, 'norpin': 162, 'norsho': 163, 'norwat': 164,
'nrwswa': 165, 'nutwoo': 166, 'olsfly': 167, 'orcwar': 168, 'osprey': 169,
'ovenbi1': 170, 'palwar': 171, 'pasfly': 172, 'pecsan': 173, 'perfal': 174,
'phaino': 175, 'pibgre': 176, 'pilwoo': 177, 'pingro': 178, 'pinjay': 179,
'pinsis': 180, 'pinwar': 181, 'plsvir': 182, 'prawar': 183, 'purfin': 184,
'pygnut': 185, 'rebmer': 186, 'rebnut': 187, 'rebsap': 188, 'rebwoo': 189,
'redcro': 190, 'redhea': 191, 'reevir1': 192, 'renpha': 193, 'reshaw': 194,
'rethaw': 195, 'rewbla': 196, 'ribgul': 197, 'rinduc': 198, 'robgro': 199,
'rocpig': 200, 'rocwre': 201, 'rthhum': 202, 'ruckin': 203, 'rudduc': 204,
'rufgro': 205, 'rufhum': 206, 'rusbla': 207, 'sagspa1': 208, 'sagthr': 209,
'savspa': 210, 'saypho': 211, 'scatan': 212, 'scoori': 213, 'semplo': 214,
'semsan': 215, 'sheowl': 216, 'shshaw': 217, 'snobun': 218, 'snogoo': 219,
'solsan': 220, 'sonspa': 221, 'sora': 222, 'sposan': 223, 'spotow': 224,
'stejay': 225, 'swahaw': 226, 'swaspa': 227, 'swathr': 228, 'treswa': 229,
'truswa': 230, 'tuftit': 231, 'tunswa': 232, 'veery': 233, 'vesspa': 234,
'vigswa': 235, 'warvir': 236, 'wesblu': 237, 'wesgre': 238, 'weskin': 239,
'wesmea': 240, 'wessan': 241, 'westan': 242, 'wewpew': 243, 'whbnut': 244,
'whcspa': 245, 'whfibi': 246, 'whtspa': 247, 'whtswi': 248, 'wilfly': 249,
'wilsni1': 250, 'wiltur': 251, 'winwre3': 252, 'wlswar': 253, 'wooduc': 254,
'wooscj2': 255, 'woothr': 256, 'y00475': 257, 'yebfly': 258, 'yebsap': 259,
'yehbla': 260, 'yelwar': 261, 'yerwar': 262, 'yetvir': 263
}
INV_BIRD_CODE = {v: k for k, v in BIRD_CODE.items() }<choose_model_class>
|
train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" )
|
Digit Recognizer
|
4,861,518 |
def get_model(config: dict, weights_path: str):
model = ResNet(**config)
checkpoint = torch.load(weights_path)
model.load_state_dict(checkpoint["model_state_dict"])
device = torch.device("cuda")
model.to(device)
model.eval()
return model<create_dataframe>
|
train_y = train["label"]
train_x = train.drop("label",axis = 1 )
|
Digit Recognizer
|
4,861,518 |
def prediction_for_clip(test_df: pd.DataFrame,
clip: np.ndarray,
model: ResNet,
mel_params: dict,
threshold=0.55):
dataset = TestDataset(df=test_df,
clip=clip,
img_size=224,
melspectrogram_parameters=mel_params)
loader = data.DataLoader(dataset, batch_size=1, shuffle=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
prediction_dict = {}
for image, row_id, site in progress_bar(loader):
site = site[0]
row_id = row_id[0]
if site in {"site_1", "site_2"}:
image = image.to(device)
with torch.no_grad() :
prediction = model(image)
proba = prediction["multilabel_proba"].detach().cpu().numpy().reshape(-1)
events = proba >= threshold
labels = np.argwhere(events ).reshape(-1 ).tolist()
else:
image = image.squeeze(0)
batch_size = 16
whole_size = image.size(0)
if whole_size % batch_size == 0:
n_iter = whole_size // batch_size
else:
n_iter = whole_size // batch_size + 1
all_events = set()
for batch_i in range(n_iter):
batch = image[batch_i * batch_size:(batch_i + 1)* batch_size]
if batch.ndim == 3:
batch = batch.unsqueeze(0)
batch = batch.to(device)
with torch.no_grad() :
prediction = model(batch)
proba = prediction["multilabel_proba"].detach().cpu().numpy()
events = proba >= threshold
for i in range(len(events)) :
event = events[i, :]
labels = np.argwhere(event ).reshape(-1 ).tolist()
for label in labels:
all_events.add(label)
labels = list(all_events)
if len(labels)== 0:
prediction_dict[row_id] = "nocall"
else:
labels_str_list = list(map(lambda x: INV_BIRD_CODE[x], labels))
label_string = " ".join(labels_str_list)
prediction_dict[row_id] = label_string
return prediction_dict<load_pretrained>
|
train_y = to_categorical(train_y )
|
Digit Recognizer
|
4,861,518 |
def prediction(test_df: pd.DataFrame,
test_audio: Path,
model_config: dict,
mel_params: dict,
weights_path: str,
threshold=0.5):
model = get_model(model_config, weights_path)
unique_audio_id = test_df.audio_id.unique()
warnings.filterwarnings("ignore")
prediction_dfs = []
for audio_id in unique_audio_id:
with timer(f"Loading {audio_id}", logger):
clip, _ = librosa.load(test_audio /(audio_id + ".mp3"),
sr=TARGET_SR,
mono=True,
res_type="kaiser_fast")
test_df_for_audio_id = test_df.query(
f"audio_id == '{audio_id}'" ).reset_index(drop=True)
with timer(f"Prediction on {audio_id}", logger):
prediction_dict = prediction_for_clip(test_df_for_audio_id,
clip=clip,
model=model,
mel_params=mel_params,
threshold=threshold)
row_id = list(prediction_dict.keys())
birds = list(prediction_dict.values())
prediction_df = pd.DataFrame({
"row_id": row_id,
"birds": birds
})
prediction_dfs.append(prediction_df)
prediction_df = pd.concat(prediction_dfs, axis=0, sort=False ).reset_index(drop=True)
return prediction_df<save_to_csv>
|
model = Sequential()
|
Digit Recognizer
|
4,861,518 |
submission = prediction(test_df=test,
test_audio=test_audio,
model_config=model_config,
mel_params=melspectrogram_parameters,
weights_path=weights_path,
threshold=0.85)
submission.to_csv("submission.csv", index=False )<install_modules>
|
model.add(Conv2D(32,(3,3), strides=(1, 1), padding='same', activation="relu",input_shape =(28,28,1),data_format = "channels_last", use_bias = True))
model.add(Conv2D(32,(3,3), strides=(1, 1), padding='same', activation="relu", use_bias = True))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2), padding='same'))
model.add(Dropout(0.2))
model.add(Conv2D(64,(3,3), strides=(1, 1), padding='same', activation="relu", use_bias = True))
model.add(Conv2D(64,(3,3), strides=(1, 1), padding='same', activation="relu", use_bias = True))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2), padding='same'))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(256,activation = "relu", use_bias = True))
model.add(Dropout(0.5))
model.add(Dense(10,activation = "softmax",use_bias = True))
|
Digit Recognizer
|
4,861,518 |
!pip install mlforecast<import_modules>
|
optimizer = optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 )
|
Digit Recognizer
|
4,861,518 |
from copy import copy
from functools import partial
from pathlib import Path
import lightgbm as lgb
import numpy as np
import pandas as pd
from mlforecast.core import TimeSeries
from mlforecast.forecast import Forecast
from window_ops.rolling import rolling_mean<load_from_csv>
|
model.compile(optimizer = optimizer,loss = "categorical_crossentropy",metrics = ['accuracy'] )
|
Digit Recognizer
|
4,861,518 |
input_path = Path('.. /input/m5-preprocess/processed/')
data = pd.read_parquet(input_path/'sales.parquet')
data<load_from_csv>
|
learning_rate_reduction = callbacks.ReduceLROnPlateau(monitor='loss',patience=3, verbose=1,factor=0.2,min_lr=0.00001 )
|
Digit Recognizer
|
4,861,518 |
prices = pd.read_parquet(input_path/'prices.parquet')
prices<load_from_csv>
|
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(train_x )
|
Digit Recognizer
|
4,861,518 |
cal = pd.read_parquet(input_path/'calendar.parquet')
cal = cal.rename(columns={'date': 'ds'})
cal.head()<choose_model_class>
|
model.fit_generator(datagen.flow(train_x,train_y,batch_size = 100),epochs = 30,steps_per_epoch=train_x.shape[0] // 100, callbacks=[learning_rate_reduction] )
|
Digit Recognizer
|
4,861,518 |
lgb_params = {
'objective': 'poisson',
'metric': 'rmse',
'force_row_wise': True,
'learning_rate': 0.075,
'bagging_freq': 1,
'bagging_fraction': 0.75,
'lambda_l2': 0.1,
'n_estimators': 1200,
'num_leaves': 128,
'min_data_in_leaf': 100,
}
model = lgb.LGBMRegressor(**lgb_params)
model<define_variables>
|
y_pred = model.predict(test )
|
Digit Recognizer
|
4,861,518 |
ts = TimeSeries(
freq='D',
lags=[7, 28],
lag_transforms = {
7: [(rolling_mean, 7),(rolling_mean, 28)],
28: [(rolling_mean, 7),(rolling_mean, 28)],
},
date_features=['year', 'month', 'day', 'dayofweek', 'quarter', 'week'],
)
ts<prepare_output>
|
y_pred = np.array(y_pred )
|
Digit Recognizer
|
4,861,518 |
fcst = Forecast(model, ts )<define_variables>
|
y_pred_final = []
for i in y_pred:
y_pred_final.append(np.argmax(i))
|
Digit Recognizer
|
4,861,518 |
<prepare_x_and_y><EOS>
|
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("digit_mnist.csv",index=False )
|
Digit Recognizer
|
5,146,253 |
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_model>
|
warnings.filterwarnings(category=FutureWarning, action="ignore")
%matplotlib inline
backend.set_image_data_format('channels_last')
DATA_PATH = '.. /input/'
SERIES = 'A'
VERSION = 1
print('{:s}{:d}'.format(SERIES, VERSION))
|
Digit Recognizer
|
5,146,253 |
%time fcst.model.fit(X_train, y_train, eval_set=[(X_train, y_train),(X_valid, y_valid)], verbose=20 )<predict_on_test>
|
train_data = pd.read_csv(DATA_PATH+'train.csv')
train_data.head()
|
Digit Recognizer
|
5,146,253 |
def my_predict_fn(model, new_x, features_order, alpha):
new_x = new_x.reset_index()
new_x = new_x.merge(cal)
new_x = new_x.merge(prices)
new_x = new_x.sort_values('unique_id')
new_x = new_x[features_order]
predictions = model.predict(new_x)
return alpha * predictions<define_variables>
|
test_data = pd.read_csv(DATA_PATH+'test.csv')
test_data.index =([x+1 for x in range(test_data.shape[0])])
print(test_data.shape)
test_data.head()
|
Digit Recognizer
|
5,146,253 |
fcst.ts.num_threads<predict_on_test>
|
def get_model_params(layers)-> str:
res = {}
for layer in layers:
lres = {}
config = layer.get_config()
for key in ['filters', 'kernel_size', 'activation', 'pool_size',
'padding', 'strides', 'rate', 'units', 'kernel_regularizer',
'batch_input_shape']:
if key in config.keys() :
lres[key] = config[key]
res[layer.get_config() ['name']] = lres
rep = ''
for elem in res:
rep += elem+': '
rep += str(res[elem])+'
'
return rep
|
Digit Recognizer
|
5,146,253 |
%%time
alphas = [1.028, 1.023, 1.018]
preds = None
for alpha in alphas:
alpha_preds = fcst.predict(28, my_predict_fn, alpha=alpha)
alpha_preds = alpha_preds.set_index('ds', append=True)
if preds is None:
preds = 1 / 3 * alpha_preds
else:
preds += 1 / 3 * alpha_preds
preds<rename_columns>
|
x_train = train_data.iloc[:, 1:].values.reshape(
(train_data.shape[0], 28, 28, 1)).astype('float32')
x_train = x_train / 255.0
x_test = test_data.values.reshape(
(test_data.shape[0], 28, 28, 1)).astype('float32')
x_test = x_test / 255.0
lb = LabelBinarizer()
y_train_ = lb.fit_transform(train_data.iloc[:, 0])
|
Digit Recognizer
|
5,146,253 |
wide = preds.reset_index().pivot_table(index='unique_id', columns='ds')
wide.columns = [f'F{i+1}' for i in range(28)]
wide.columns.name = None
wide.index.name = 'id'
wide<save_to_csv>
|
train_gen = ImageDataGenerator(
rotation_range=9,
zoom_range=0.09,
width_shift_range=0.09,
height_shift_range=0.11,
validation_split=0.05
)
train_gen.fit(x_train)
train_iterator = train_gen.flow(
x=x_train, y=y_train_, batch_size=256, subset='training')
val_iterator = train_gen.flow(
x=x_train, y=y_train_, batch_size=256, subset='validation')
train_x, train_y = train_iterator.next()
|
Digit Recognizer
|
5,146,253 |
sample_sub = pd.read_csv(
'.. /input/m5-forecasting-accuracy/sample_submission.csv', index_col='id'
)
sample_sub.update(wide)
np.testing.assert_allclose(sample_sub.sum().sum() , preds['y_pred'].sum())
sample_sub.to_csv('submission.csv' )<set_options>
|
model = Sequential([
Conv2D(filters=128, kernel_size=(3, 3),
activation='relu', input_shape=(28, 28, 1)) ,
MaxPooling2D(pool_size=(2, 2)) ,
Conv2D(filters=256, kernel_size=(3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2)) ,
Conv2D(filters=512, kernel_size=(4, 4), activation='relu'),
MaxPooling2D(pool_size=(2, 2)) ,
Flatten() ,
Dense(units=256, activation='relu'),
Dropout(rate=0.35),
Dense(units=128, activation='relu'),
Dense(units=64, activation='relu'),
Dense(10, activation='softmax')
])
print(model.summary())
plot_model(model, show_shapes=True, show_layer_names=True,)
|
Digit Recognizer
|
5,146,253 |
warnings.filterwarnings("ignore")
pd.set_option('display.max_columns', 100)
pd.set_option('display.max_rows', 100)
DATA_PATH = '.. /input/jane-street-market-prediction/'
NFOLDS = 5
TRAIN = False
CACHE_PATH = '.. /input/mlp012003weights'
def save_pickle(dic, save_path):
with open(save_path, 'wb')as f:
pickle.dump(dic, f)
def load_pickle(load_path):
with open(load_path, 'rb')as f:
message_dict = pickle.load(f)
return message_dict
feat_cols = [f'feature_{i}' for i in range(130)]
target_cols = ['action', 'action_1', 'action_2', 'action_3', 'action_4']
f_mean = np.load(f'{CACHE_PATH}/f_mean_online.npy')
all_feat_cols = [col for col in feat_cols]
all_feat_cols.extend(['cross_41_42_43', 'cross_1_2'])
class Model(nn.Module):
def __init__(self):
super(Model, self ).__init__()
self.batch_norm0 = nn.BatchNorm1d(len(all_feat_cols))
self.dropout0 = nn.Dropout(0.2)
dropout_rate = 0.2
hidden_size = 256
self.dense1 = nn.Linear(len(all_feat_cols), hidden_size)
self.batch_norm1 = nn.BatchNorm1d(hidden_size)
self.dropout1 = nn.Dropout(dropout_rate)
self.dense2 = nn.Linear(hidden_size+len(all_feat_cols), hidden_size)
self.batch_norm2 = nn.BatchNorm1d(hidden_size)
self.dropout2 = nn.Dropout(dropout_rate)
self.dense3 = nn.Linear(hidden_size+hidden_size, hidden_size)
self.batch_norm3 = nn.BatchNorm1d(hidden_size)
self.dropout3 = nn.Dropout(dropout_rate)
self.dense4 = nn.Linear(hidden_size+hidden_size, hidden_size)
self.batch_norm4 = nn.BatchNorm1d(hidden_size)
self.dropout4 = nn.Dropout(dropout_rate)
self.dense5 = nn.Linear(hidden_size+hidden_size, len(target_cols))
self.Relu = nn.ReLU(inplace=True)
self.PReLU = nn.PReLU()
self.LeakyReLU = nn.LeakyReLU(negative_slope=0.01, inplace=True)
self.RReLU = nn.RReLU()
def forward(self, x):
x = self.batch_norm0(x)
x = self.dropout0(x)
x1 = self.dense1(x)
x1 = self.batch_norm1(x1)
x1 = self.LeakyReLU(x1)
x1 = self.dropout1(x1)
x = torch.cat([x, x1], 1)
x2 = self.dense2(x)
x2 = self.batch_norm2(x2)
x2 = self.LeakyReLU(x2)
x2 = self.dropout2(x2)
x = torch.cat([x1, x2], 1)
x3 = self.dense3(x)
x3 = self.batch_norm3(x3)
x3 = self.LeakyReLU(x3)
x3 = self.dropout3(x3)
x = torch.cat([x2, x3], 1)
x4 = self.dense4(x)
x4 = self.batch_norm4(x4)
x4 = self.LeakyReLU(x4)
x4 = self.dropout4(x4)
x = torch.cat([x3, x4], 1)
x = self.dense5(x)
return x
if True:
device = torch.device("cpu")
model_list = []
tmp = np.zeros(len(feat_cols))
for _fold in range(NFOLDS):
torch.cuda.empty_cache()
model = Model()
model.to(device)
model_weights = f"{CACHE_PATH}/online_model{_fold}.pth"
model.load_state_dict(torch.load(model_weights, map_location=torch.device('cpu')))
model.eval()
model_list.append(model )<choose_model_class>
|
NEPOCHS = 300
early_stopping_cb = EarlyStopping(monitor='val_acc', min_delta=1e-5,
patience=15, restore_best_weights=True)
rl_reduce = ReduceLROnPlateau(monitor='val_loss', patience=10,factor=0.25,verbose=1,min_delta=1e-5)
opt_rms = RMSprop(learning_rate=1e-3, centered=False)
model.compile(loss='categorical_crossentropy', optimizer=opt_rms,
metrics=['accuracy'])
start = dt.datetime.now()
history = model.fit_generator(
generator=train_iterator,
verbose=1,
epochs=NEPOCHS,
max_queue_size=10,
validation_data=val_iterator,
callbacks=[
early_stopping_cb,
rl_reduce
]
)
print('
Evaluation :')
model.evaluate_generator(generator=val_iterator,
verbose=1,
)
print('Finished in: ', dt.datetime.now() -start)
|
Digit Recognizer
|
5,146,253 |
<choose_model_class><EOS>
|
test_gen = ImageDataGenerator(
rotation_range=9,
zoom_range=0.09,
width_shift_range=0.09,
height_shift_range=0.11,
)
test_gen.fit(x_test)
test_iterator = test_gen.flow(x=x_test, batch_size=len(x_test), shuffle=False)
test_x = test_iterator.next()
test_x
res = model.predict(test_x)
y_pred = pd.DataFrame([test_data.index, [x.argmax() for x in res]] ).T
y_pred.columns = ['ImageId', 'Label']
y_pred.to_csv('digit_submission_2.csv', index=False)
|
Digit Recognizer
|
4,082,669 |
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_pretrained>
|
%matplotlib inline
|
Digit Recognizer
|
4,082,669 |
embNN_model = Emb_NN_Model()
try:
embNN_model.load_state_dict(torch.load(".. /input/jane-embnn5-auc-400-400-400/Jane_EmbNN5_auc_400_400_400.pth"))
except:
embNN_model.load_state_dict(torch.load(".. /input/jane-embnn5-auc-400-400-400/Jane_EmbNN5_auc_400_400_400.pth", map_location='cpu'))
embNN_model = embNN_model.eval()<split>
|
path = Path('.. /input/')
!ls.. /input
|
Digit Recognizer
|
4,082,669 |
env = janestreet.make_env()
env_iter = env.iter_test()<concatenate>
|
class CustomImageItemList(ImageList):
def open(self, fn):
img = fn.reshape(28, 28)
img = np.stack(( img,)*3, axis=-1)
return Image(pil2tensor(img, dtype=np.float32))
@classmethod
def from_csv_custom(cls, path:PathOrStr, csv_name:str, imgIdx:int=1, header:str='infer', **kwargs)-> 'ItemList':
df = pd.read_csv(Path(path)/csv_name, header=header)
res = super().from_df(df, path=path, cols=0, **kwargs)
res.items = df.iloc[:,imgIdx:].apply(lambda x: x.values / 783.0, axis=1 ).values
return res
|
Digit Recognizer
|
4,082,669 |
if True:
for(test_df, pred_df)in tqdm(env_iter):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, feat_cols].values
if np.isnan(x_tt.sum()):
x_tt = np.nan_to_num(x_tt)+ np.isnan(x_tt)* f_mean
cross_41_42_43 = x_tt[:, 41] + x_tt[:, 42] + x_tt[:, 43]
cross_1_2 = x_tt[:, 1] /(x_tt[:, 2] + 1e-5)
feature_inp = np.concatenate((
x_tt,
np.array(cross_41_42_43 ).reshape(x_tt.shape[0], 1),
np.array(cross_1_2 ).reshape(x_tt.shape[0], 1),
), axis=1)
torch_pred = np.zeros(( 1, len(target_cols)))
for model in model_list:
torch_pred += model(torch.tensor(feature_inp, dtype=torch.float ).to(device)).sigmoid().detach().cpu().numpy() / NFOLDS
torch_pred = np.median(torch_pred)
tf_pred = np.median(np.mean([model(x_tt, training = False ).numpy() for model in tf_models],axis=0))
x_tt = torch.tensor(x_tt ).float().view(-1, 130)
embnn_p = np.median(torch.sigmoid(embNN_model(None, x_tt)).detach().cpu().numpy().reshape(( -1, 5)) , axis=1)
pred_pr = torch_pred*0.4 + tf_pred*0.4 + embnn_p*0.2
pred_df.action = np.where(pred_pr >= 0.5, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<load_pretrained>
|
test = CustomImageItemList.from_csv_custom(path=path, csv_name='test.csv', imgIdx=0)
data =(CustomImageItemList.from_csv_custom(path=path, csv_name='train.csv')
.random_split_by_pct (.2)
.label_from_df(cols='label')
.add_test(test, label=0)
.databunch(bs=64, num_workers=0)
.normalize(imagenet_stats))
|
Digit Recognizer
|
4,082,669 |
pd.set_option('display.max_columns', 100)
pd.set_option('display.max_rows', 100)
DATA_PATH = '.. /input/jane-street-market-prediction/'
NFOLDS = 5
TRAIN = False
CACHE_PATH = '.. /input/mlp012003weights'
def save_pickle(dic, save_path):
with open(save_path, 'wb')as f:
pickle.dump(dic, f)
def load_pickle(load_path):
with open(load_path, 'rb')as f:
message_dict = pickle.load(f)
return message_dict
feat_cols = [f'feature_{i}' for i in range(130)]
target_cols = ['action', 'action_1', 'action_2', 'action_3', 'action_4']
f_mean = np.load(f'{CACHE_PATH}/f_mean_online.npy')
all_feat_cols = [col for col in feat_cols]
all_feat_cols.extend(['cross_41_42_43', 'cross_1_2'])
class Model(nn.Module):
def __init__(self):
super(Model, self ).__init__()
self.batch_norm0 = nn.BatchNorm1d(len(all_feat_cols))
self.dropout0 = nn.Dropout(0.2)
dropout_rate = 0.2
hidden_size = 256
self.dense1 = nn.Linear(len(all_feat_cols), hidden_size)
self.batch_norm1 = nn.BatchNorm1d(hidden_size)
self.dropout1 = nn.Dropout(dropout_rate)
self.dense2 = nn.Linear(hidden_size+len(all_feat_cols), hidden_size)
self.batch_norm2 = nn.BatchNorm1d(hidden_size)
self.dropout2 = nn.Dropout(dropout_rate)
self.dense3 = nn.Linear(hidden_size+hidden_size, hidden_size)
self.batch_norm3 = nn.BatchNorm1d(hidden_size)
self.dropout3 = nn.Dropout(dropout_rate)
self.dense4 = nn.Linear(hidden_size+hidden_size, hidden_size)
self.batch_norm4 = nn.BatchNorm1d(hidden_size)
self.dropout4 = nn.Dropout(dropout_rate)
self.dense5 = nn.Linear(hidden_size+hidden_size, len(target_cols))
self.Relu = nn.ReLU(inplace=True)
self.PReLU = nn.PReLU()
self.LeakyReLU = nn.LeakyReLU(negative_slope=0.01, inplace=True)
self.RReLU = nn.RReLU()
def forward(self, x):
x = self.batch_norm0(x)
x = self.dropout0(x)
x1 = self.dense1(x)
x1 = self.batch_norm1(x1)
x1 = self.LeakyReLU(x1)
x1 = self.dropout1(x1)
x = torch.cat([x, x1], 1)
x2 = self.dense2(x)
x2 = self.batch_norm2(x2)
x2 = self.LeakyReLU(x2)
x2 = self.dropout2(x2)
x = torch.cat([x1, x2], 1)
x3 = self.dense3(x)
x3 = self.batch_norm3(x3)
x3 = self.LeakyReLU(x3)
x3 = self.dropout3(x3)
x = torch.cat([x2, x3], 1)
x4 = self.dense4(x)
x4 = self.batch_norm4(x4)
x4 = self.LeakyReLU(x4)
x4 = self.dropout4(x4)
x = torch.cat([x3, x4], 1)
x = self.dense5(x)
return x
if True:
device = torch.device("cuda:0")
model_list = []
tmp = np.zeros(len(feat_cols))
for _fold in range(NFOLDS):
torch.cuda.empty_cache()
model = Model()
model.to(device)
model_weights = f"{CACHE_PATH}/online_model{_fold}.pth"
model.load_state_dict(torch.load(model_weights))
model.eval()
model_list.append(model )<choose_model_class>
|
data.show_batch(rows=3, figsize=(6,6))
|
Digit Recognizer
|
4,082,669 |
SEED = 1111
np.random.seed(SEED)
def create_mlp(
num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate
):
inp = tf.keras.layers.Input(shape=(num_columns,))
x = tf.keras.layers.BatchNormalization()(inp)
x = tf.keras.layers.Dropout(dropout_rates[0] )(x)
for i in range(len(hidden_units)) :
x = tf.keras.layers.Dense(hidden_units[i] )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.keras.activations.swish )(x)
x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x)
x = tf.keras.layers.Dense(num_labels )(x)
out = tf.keras.layers.Activation("sigmoid" )(x)
model = tf.keras.models.Model(inputs=inp, outputs=out)
model.compile(
optimizer=tfa.optimizers.RectifiedAdam(learning_rate=learning_rate),
loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing),
metrics=tf.keras.metrics.AUC(name="AUC"),
)
return model
epochs = 200
batch_size = 4096
hidden_units = [160, 160, 160]
dropout_rates = [0.2, 0.2, 0.2, 0.2]
label_smoothing = 1e-2
learning_rate = 1e-3
tf.keras.backend.clear_session()
tf.random.set_seed(SEED)
clf = create_mlp(
len(feat_cols), 5, hidden_units, dropout_rates, label_smoothing, learning_rate
)
clf.load_weights('.. /input/jane-street-with-keras-nn-overfit/model.h5')
tf_models = [clf]<statistical_test>
|
learn = cnn_learner(data, models.resnet50, metrics=accuracy, model_dir='/tmp/models')
learn.lr_find()
|
Digit Recognizer
|
4,082,669 |
if True:
env = janestreet.make_env()
env_iter = env.iter_test()
for(test_df, pred_df)in tqdm(env_iter):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, feat_cols].values
if np.isnan(x_tt.sum()):
x_tt = np.nan_to_num(x_tt)+ np.isnan(x_tt)* f_mean
cross_41_42_43 = x_tt[:, 41] + x_tt[:, 42] + x_tt[:, 43]
cross_1_2 = x_tt[:, 1] /(x_tt[:, 2] + 1e-5)
feature_inp = np.concatenate((
x_tt,
np.array(cross_41_42_43 ).reshape(x_tt.shape[0], 1),
np.array(cross_1_2 ).reshape(x_tt.shape[0], 1),
), axis=1)
torch_pred = np.zeros(( 1, len(target_cols)))
for model in model_list:
torch_pred += model(torch.tensor(feature_inp, dtype=torch.float ).to(device)).sigmoid().detach().cpu().numpy() / NFOLDS
torch_pred = np.median(torch_pred)
tf_pred = np.median(np.mean([model(x_tt, training = False ).numpy() for model in tf_models],axis=0))
pred = torch_pred * 0.5 + tf_pred * 0.5
pred_df.action = np.where(pred >= 0.4914, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<load_from_csv>
|
%time learn.fit(2,slice(1e-2))
|
Digit Recognizer
|
4,082,669 |
train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv' )<prepare_x_and_y>
|
learn.precompute=False
learn.unfreeze()
|
Digit Recognizer
|
4,082,669 |
train = train.query('date > 85' ).reset_index(drop = True)
train = train[train['weight'] != 0]
features_mean = []
features = [c for c in train.columns if 'feature' in c]
for i in features:
x = train[i].mean()
features_mean.append(x)
train[i] = train[i].fillna(x)
train['action'] =(( train['resp'].values)> 0 ).astype(int)
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4']
X_train = train.loc[:, train.columns.str.contains('feature')]
y_train = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T<feature_engineering>
|
lr = np.array([0.001, 0.0075, 0.01] )
|
Digit Recognizer
|
4,082,669 |
f = np.median
f_mean = np.mean(train[features[1:]].values,axis=0 )<drop_column>
|
learn.fit_one_cycle(9,slice(2e-3,2e-5), wd=.1 )
|
Digit Recognizer
|
4,082,669 |
del train<define_search_space>
|
test_pred, test_y, test_loss = learn.get_preds(ds_type=DatasetType.Test, with_loss=True )
|
Digit Recognizer
|
4,082,669 |
epochs = 200
batch_size = 4096
hidden_units = [160, 160]
dropout_rates = [0.20, 0.20, 0.20]
label_smoothing = 1e-2
learning_rate = 1e-3<choose_model_class>
|
submission_df = pd.DataFrame({'ImageId': range(1, len(test_y)+ 1), 'Label': result}, columns=['ImageId', 'Label'])
submission_df.head()
|
Digit Recognizer
|
4,082,669 |
def create_mlp(num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate):
inp = tf.keras.layers.Input(shape=(num_columns,))
x = tf.keras.layers.BatchNormalization()(inp)
x = tf.keras.layers.Dropout(dropout_rates[0] )(x)
for i in range(len(hidden_units)) :
x = tf.keras.layers.Dense(hidden_units[i] )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.keras.activations.swish )(x)
x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x)
x = tf.keras.layers.Dense(num_labels )(x)
out = tf.keras.layers.Activation("sigmoid" )(x)
model = tf.keras.models.Model(inputs=inp, outputs=out)
model.compile(
optimizer = tfa.optimizers.RectifiedAdam(learning_rate=learning_rate),
loss = tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing),
metrics = tf.keras.metrics.AUC(name='AUC'))
return model<train_model>
|
submission_df.to_csv("submission.csv",index=None )
|
Digit Recognizer
|
6,393,530 |
clf.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, verbose=2 )<drop_column>
|
import keras
import numpy as np
import pandas as pd
|
Digit Recognizer
|
6,393,530 |
del X_train
del y_train<find_best_params>
|
train_df=pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
test_df=pd.read_csv("/kaggle/input/digit-recognizer/test.csv" )
|
Digit Recognizer
|
6,393,530 |
models = []
models.append(clf)
th = 0.503<categorify>
|
target=train_df["label"]
train_df.drop("label",axis=1,inplace=True )
|
Digit Recognizer
|
6,393,530 |
env = janestreet.make_env()
for(test_df, pred_df)in tqdm(env.iter_test()):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, features].values
if np.isnan(x_tt[:, 1:].sum()):
x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_mean
pred = np.mean([model(x_tt, training = False ).numpy() for model in models],axis=0)
pred = f(pred)
pred_df.action = np.where(pred >= th, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<set_options>
|
train_df=train_df/255
test_df=test_df/255
|
Digit Recognizer
|
6,393,530 |
warnings.filterwarnings("ignore")
<load_from_csv>
|
X_train=train_df.values.reshape(-1,28,28,1)
test=test_df.values.reshape(-1,28,28,1 )
|
Digit Recognizer
|
6,393,530 |
%%time
train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv')
train = train.astype({c: np.float32 for c in train.select_dtypes(include='float64' ).columns} )<data_type_conversions>
|
y_train=to_categorical(target,num_classes=10 )
|
Digit Recognizer
|
6,393,530 |
train.fillna(train.mean() ,inplace=True )<data_type_conversions>
|
X_train,X_test,y_train,y_test=train_test_split(X_train,y_train,test_size=0.10,random_state=42 )
|
Digit Recognizer
|
6,393,530 |
train['action'] =(train['resp'] > 0 ).astype('int' )<define_variables>
|
batch_size=128
num_classes=10
epochs=20
inputshape=(28,28,1 )
|
Digit Recognizer
|
6,393,530 |
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp_4', 'resp']<split>
|
model=Sequential()
model.add(Conv2D(32,kernel_size=(5,5),activation="relu",input_shape=inputshape))
model.add(Conv2D(64,(3,3),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(128,kernel_size=(5,5),activation="relu"))
model.add(Conv2D(128,(3,3),activation="relu"))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256,activation="relu"))
model.add(Dense(128,activation="relu"))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
|
Digit Recognizer
|
6,393,530 |
features_train_data = train.iloc[:,7:137]<define_variables>
|
reduce_learning_rate = ReduceLROnPlateau(monitor = 'val_accuracy', patience = 3, verbose = 1, factor = 0.3, min_lr = 0.00001)
checkpoint = ModelCheckpoint('save_weights.h5', monitor = 'val_accuracy', verbose = 1, save_best_only = True, mode = 'max')
early_stopping = EarlyStopping(monitor = 'val_loss', min_delta = 1e-10, patience = 10, verbose = 1, restore_best_weights = True)
callbacks = [reduce_learning_rate, checkpoint, early_stopping]
|
Digit Recognizer
|
6,393,530 |
all_drop_cols = set(high_correlations.index.get_level_values(0))<compute_train_metric>
|
model.fit(X_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(X_test,y_test),callbacks=callbacks)
accuracy=model.evaluate(X_test,y_test )
|
Digit Recognizer
|
6,393,530 |
<prepare_x_and_y><EOS>
|
pred = model.predict_classes(test)
res = pd.DataFrame({"ImageId":list(range(1,28001)) ,"Label":pred})
res.to_csv("output.csv", index = False )
|
Digit Recognizer
|
6,732,418 |
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class>
|
%matplotlib inline
np.random.seed(17)
sns.set(style='white', context='notebook', palette='deep')
for dirname, _, filenames in os.walk('/kaggle/input/digit-recognizer'):
for filename in filenames:
print(os.path.join(dirname, filename))
|
Digit Recognizer
|
6,732,418 |
HIDDEN_LAYER_1 = [256, 256]
HIDDEN_LAYER_2 = [160, 160, 160]
HIDDEN_LAYER_3 = [128, 128, 128, 128]
TARGET_NUM = 5
input = tf.keras.layers.Input(shape=(X_train.shape[1],))
x1 = tf.keras.layers.BatchNormalization()(input)
x1 = tf.keras.layers.Dropout(0.25 )(x1)
for units in HIDDEN_LAYER_1:
x1 = tf.keras.layers.Dense(units )(x1)
x1 = tf.keras.layers.BatchNormalization()(x1)
x1 = tf.keras.layers.Activation(tf.keras.activations.swish )(x1)
x1 = tf.keras.layers.Dropout(0.25 )(x1)
x2 = tf.keras.layers.BatchNormalization()(input)
x2 = tf.keras.layers.Dropout(0.25 )(x2)
for units in HIDDEN_LAYER_2:
x2 = tf.keras.layers.Dense(units )(x2)
x2 = tf.keras.layers.BatchNormalization()(x2)
x2 = tf.keras.layers.Activation(tf.keras.activations.swish )(x2)
x2 = tf.keras.layers.Dropout(0.25 )(x2)
x3 = tf.keras.layers.BatchNormalization()(input)
x3 = tf.keras.layers.Dropout(0.25 )(x3)
for units in HIDDEN_LAYER_3:
x3 = tf.keras.layers.Dense(units )(x3)
x3 = tf.keras.layers.BatchNormalization()(x3)
x3 = tf.keras.layers.Activation(tf.keras.activations.swish )(x3)
x3 = tf.keras.layers.Dropout(0.25 )(x3)
x = tf.keras.layers.concatenate([x1, x2, x3])
x = tf.keras.layers.Dense(TARGET_NUM )(x)
output = tf.keras.layers.Activation("sigmoid" )(x)
model = tf.keras.models.Model(inputs=input, outputs=output)
model.compile(
optimizer = tfa.optimizers.RectifiedAdam(learning_rate=1e-3),
metrics = tf.keras.metrics.AUC(name="AUC"),
loss = tf.keras.losses.BinaryCrossentropy(label_smoothing=1e-2),
)<train_model>
|
train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" )
|
Digit Recognizer
|
6,732,418 |
history = model.fit(
x = X_train,
y = y_train,
epochs=25,
batch_size=4096,
validation_data=(X_valid, y_valid),
)
models = []
models.append(model )<find_best_model_class>
|
Y_train = train["label"]
X_train = train.drop(labels = ["label"],axis = 1)
sns.countplot(Y_train)
plt.show()
|
Digit Recognizer
|
6,732,418 |
THRESHOLD = 0.502
janestreet.make_env.__called__ = False
env = janestreet.make_env()
print('predicting...')
for(test_df, pred_df)in tqdm(env.iter_test()):
if test_df['weight'].item() > 0:
X_test = test_df.loc[:, features].values
if np.isnan(X_test.sum()):
X_test = np.nan_to_num(X_test)+ np.isnan(X_test)* f_mean.values
pred = model(X_test, training = False ).numpy()
pred = np.mean(pred)
pred_df.action = np.where(pred >= THRESHOLD, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<load_from_csv>
|
X_train = X_train / 255.0
test = test / 255.0
|
Digit Recognizer
|
6,732,418 |
SEED = 1111
np.random.seed(SEED)
train = pd.read_csv('.. /input/jane-street-market-prediction/train.csv')
cols_to_remove = ['feature_26', 'feature_36', 'feature_24', 'feature_34', 'feature_12', 'feature_22', 'feature_32', 'feature_8', 'feature_18', 'feature_28', 'feature_108', 'feature_114', 'feature_101', 'feature_113', 'feature_107', 'feature_119', 'feature_4', 'feature_6', 'feature_15', 'feature_23', 'feature_25', 'feature_35', 'feature_33', 'feature_38', 'feature_40', 'feature_61', 'feature_66', 'feature_63', 'feature_68', 'feature_76', 'feature_88', 'feature_100', 'feature_112', 'feature_125', 'feature_129', 'feature_82', 'feature_106', 'feature_48', 'feature_57', 'feature_122', 'feature_126', 'feature_128', 'feature_124']
for col in cols_to_remove:
del train[col]
print(train)
<prepare_x_and_y>
|
X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1 )
|
Digit Recognizer
|
6,732,418 |
train = train.query('date > 85' ).reset_index(drop = True)
train = train[train['weight'] != 0]
train.fillna(train.mean() ,inplace=True)
train['action'] =(( train['resp'].values)> 0 ).astype(int)
features = [c for c in train.columns if "feature" in c]
f_mean = np.mean(train[features[1:]].values,axis=0)
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4']
X_train = train.loc[:, train.columns.str.contains('feature')]
y_train = np.stack([(train[c] > 0 ).astype('int')for c in resp_cols] ).T
def create_mlp(
num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate
):
inp = tf.keras.layers.Input(shape=(num_columns,))
x = tf.keras.layers.BatchNormalization()(inp)
x = tf.keras.layers.Dropout(dropout_rates[0] )(x)
for i in range(len(hidden_units)) :
x = tf.keras.layers.Dense(hidden_units[i] )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.keras.activations.swish )(x)
x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x)
x = tf.keras.layers.Dense(num_labels )(x)
out = tf.keras.layers.Activation("sigmoid" )(x)
model = tf.keras.models.Model(inputs=inp, outputs=out)
model.compile(
optimizer=tfa.optimizers.RectifiedAdam(learning_rate=learning_rate),
loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing),
metrics=tf.keras.metrics.AUC(name="AUC"),
)
return model
epochs = 200
batch_size = 4096
hidden_units = [160, 160, 160]
dropout_rates = [0.2, 0.2, 0.2, 0.2]
label_smoothing = 1e-2
learning_rate = 1e-3
tf.keras.backend.clear_session()
tf.random.set_seed(SEED)
clf = create_mlp(
len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate
)
clf.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, verbose=2)
clf.save(f'model.h5')
th = 0.502
models = [clf]
f = np.median
env = janestreet.make_env()
for(test_df, pred_df)in tqdm(env.iter_test()):
if test_df['weight'].item() > 0:
x_tt = test_df.loc[:, features].values
if np.isnan(x_tt[:, 1:].sum()):
x_tt[:, 1:] = np.nan_to_num(x_tt[:, 1:])+ np.isnan(x_tt[:, 1:])* f_mean
pred = np.mean([model(x_tt, training = False ).numpy() for model in models],axis=0)
pred = f(pred)
pred_df.action = np.where(pred >= th, 1, 0 ).astype(int)
else:
pred_df.action = 0
env.predict(pred_df )<train_model>
|
Y_train = to_categorical(Y_train, num_classes = 10 )
|
Digit Recognizer
|
6,732,418 |
Image(".. /input/tf-model-garden-official-models/TF.png" )<import_modules>
|
random_seed = 2
|
Digit Recognizer
|
6,732,418 |
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, BatchNormalization, Dropout, Concatenate, Lambda, GaussianNoise, Activation
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.losses import BinaryCrossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from tensorflow.keras.layers.experimental.preprocessing import Normalization
import tensorflow_addons as tfa
from sklearn.model_selection import StratifiedKFold
import numpy as np
import pandas as pd
from tqdm import tqdm
import seaborn as sns
import matplotlib.pyplot as plt<load_from_csv>
|
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed )
|
Digit Recognizer
|
6,732,418 |
NFOLDS = 5
train_all = pd.read_csv('.. /input/jane-street-market-prediction/train.csv')
train_all = train_all[train_all.date > 85].reset_index(drop = True)
train_all = train_all[train_all['weight'] != 0]
train_all.fillna(train_all.mean() ,inplace=True )<prepare_x_and_y>
|
model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 128, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(Conv2D(filters = 128, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))
model.summary()
|
Digit Recognizer
|
6,732,418 |
train_all['date_bin'] =(pd.qcut(train_all['date'], q=4, labels=False)+1)*train_all['feature_0']
features = [c for c in train_all.columns if "feature" in c]
f_mean = np.mean(train_all[features[1:]].values,axis=0)
resp_cols = ['resp_1', 'resp_2', 'resp_3', 'resp', 'resp_4']
X_train = train_all.loc[:, train_all.columns.str.contains('feature|date_bin')]
y_train = pd.DataFrame(np.stack([(train_all[c] > 0 ).astype('int')for c in resp_cols] ).T, columns = resp_cols )<split>
|
plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True)
Image("model.png" )
|
Digit Recognizer
|
6,732,418 |
skf = StratifiedKFold(n_splits=NFOLDS, shuffle = True, random_state = 42)
result = next(skf.split(X_train, X_train.date_bin), None)
train = train_all.iloc[result[0]].reset_index(drop=True)
valid = train_all.iloc[result[1]].reset_index(drop=True )<drop_column>
|
model.compile(optimizer = 'nadam' , loss = "categorical_crossentropy", metrics=["accuracy"] )
|
Digit Recognizer
|
6,732,418 |
del train, valid, train_all, result<choose_model_class>
|
callbacks_list = [
ReduceLROnPlateau(
monitor='val_accuracy',
patience=3,
verbose=1,
factor=0.5,
min_lr=1e-05),
ModelCheckpoint(
filepath='MNIST_CNN_model.h5',
monitor='val_accuracy',
save_best_only=True
)]
|
Digit Recognizer
|
6,732,418 |
MNAME = 'model'
def get_callbacks(idx):
mc = ModelCheckpoint(MNAME+"-{}.h5".format(idx), save_best_only=True)
rp = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.00001)
es = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=False)
return [mc, rp, es]
def create_dnn(num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate):
inp = tf.keras.layers.Input(shape=(num_columns,))
x = tf.keras.layers.BatchNormalization()(inp)
x = tf.keras.layers.Dropout(dropout_rates[0] )(x)
for i in range(len(hidden_units)) :
x = tf.keras.layers.Dense(hidden_units[i] )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.keras.activations.swish )(x)
x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x)
x = tf.keras.layers.Dense(num_labels )(x)
out = tf.keras.layers.Activation("sigmoid" )(x)
model = tf.keras.models.Model(inputs=inp, outputs=out)
return model<prepare_x_and_y>
|
epochs = 50
batch_size = 512
|
Digit Recognizer
|
6,732,418 |
skf = StratifiedKFold(n_splits=NFOLDS, shuffle = True, random_state = 42)
history = []
for i in range(NFOLDS):
print('fold {}'.format(i))
result = next(skf.split(X_train, X_train.date_bin), None)
X_tr = X_train.iloc[result[0]].reset_index(drop=True)
X_tr.drop(labels='date_bin', axis = 1, inplace=True)
y_tr = y_train.iloc[result[0]].reset_index(drop=True)
X_val = X_train.iloc[result[1]].reset_index(drop=True)
X_val.drop(labels='date_bin', axis=1, inplace=True)
y_val = y_train.iloc[result[1]].reset_index(drop=True)
np.random.seed(42*i)
tf.keras.backend.clear_session()
tf.random.set_seed(42*i)
batch_size = 8192
hidden_units = [160, 160, 160]
dropout_rates = [0.2, 0.2, 0.2, 0.2]
label_smoothing = 1e-2
learning_rate = 1e-3
clf = create_dnn(len(features), y_train.shape[1], hidden_units, dropout_rates, label_smoothing, learning_rate)
clf.compile(
optimizer=tfa.optimizers.RectifiedAdam(learning_rate=learning_rate),
loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing),
metrics=tf.keras.metrics.AUC(name="AUC"),
)
callbacks = get_callbacks(i)
epochs = 200
history.append(clf.fit(X_tr, y_tr, epochs=epochs, batch_size=batch_size, validation_data=(X_val,y_val), callbacks=callbacks, verbose=0))
del clf, X_tr, y_tr, X_val, y_val, result<set_options>
|
datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train )
|
Digit Recognizer
|
6,732,418 |
env = janestreet.make_env()<correct_missing_values>
|
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size,
callbacks=callbacks_list )
|
Digit Recognizer
|
6,732,418 |
@njit
def fillna_npwhere_njit(array, values):
if np.isnan(array.sum()):
array = np.where(np.isnan(array), values, array)
return array<load_pretrained>
|
model = load_model('MNIST_CNN_model.h5' )
|
Digit Recognizer
|
6,732,418 |
th = 0.501
clf0 = tf.keras.models.load_model("model-0.h5")
clf2 = tf.keras.models.load_model("model-2.h5")
clf4 = tf.keras.models.load_model("model-4.h5")
models = [clf0, clf2, clf4]
test_df_columns = ['weight'] + [f'feature_{i}' for i in range(130)] + ['date']
index_features = [n for n,col in enumerate(test_df_columns)if col in features]
for(test_df, pred_df)in tqdm(env.iter_test()):
if test_df['weight'].values[0] > 0:
x_tt = test_df.values[0][index_features].reshape(1,-1)
x_tt[:, 1:] = fillna_npwhere_njit(x_tt[:, 1:][0], f_mean)
pred = np.median(np.mean([model(x_tt, training = False ).numpy() for model in models],axis=0))
pred_df.action = int(pred >= th)
else:
pred_df.action = 0
env.predict(pred_df )<set_options>
|
results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" )
|
Digit Recognizer
|
6,732,418 |
<load_from_csv><EOS>
|
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_datagen.csv",index=False )
|
Digit Recognizer
|
7,429,783 |
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class>
|
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import keras
import tensorflow
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,accuracy_score
from keras.models import Sequential
from keras.layers import Convolution2D,MaxPooling2D,Flatten,Dense,Dropout
from keras.utils.np_utils import to_categorical
from keras.datasets import mnist
|
Digit Recognizer
|
7,429,783 |
class UtilityScoreCallback(tf.keras.callbacks.Callback):
def __init__(self, X, date, weight, resp, batch_size = 1024,
early_stopping_patience = 30, plateau_patience = 10, min_lr = 1e-6,
reduction_rate = 0.3, stage = 'train', fold_n = 0, verbose = 1):
super(Callback, self ).__init__()
self.X = X
self.date = date
self.weight = weight
self.resp = resp
self.history = []
self.batch_size = batch_size
self.early_stopping_patience = early_stopping_patience
self.plateau_patience = plateau_patience
self.min_lr = min_lr
self.reduction_rate = reduction_rate
self.fold_n = fold_n
self.stage = stage
self.verbose = verbose
self.best_uscore = - float('inf')
self.checkpoints_path = f'models_1.0/'
if not os.path.exists(self.checkpoints_path):
os.makedirs(self.checkpoints_path)
def utility_score(self, d, w, r, a):
Pi = np.bincount(d, w * r * a)
t = np.sum(Pi)/ np.sqrt(np.sum(Pi ** 2)) * np.sqrt(250 / len(Pi))
u = min(max(t, 0), 6)* np.sum(Pi)
return u
def is_patience_lost(self, patience):
if len(self.history)> patience:
best_performance = max(self.history[-(patience + 1):-1])
return best_performance == self.history[-(patience + 1)] and best_performance >= self.history[-1]
def early_stopping_check(self, uscore):
if self.is_patience_lost(self.early_stopping_patience):
self.model.stop_training = True
def model_checkpoint(self, uscore, epoch):
if uscore > self.best_uscore:
for checkpoint in glob.glob(os.path.join(self.checkpoints_path, f'JSModel_{self.fold_n}*')) :
os.remove(checkpoint)
self.best_uscore = uscore
self.model.save(os.path.join(self.checkpoints_path, f'ResnetModel_{self.fold_n}.hdf5'))
if self.verbose:
print(f"
{'
Saved new checkpoint with Score {self.best_uscore}
{'
")
def reduce_lr_on_plateau(self):
if self.is_patience_lost(self.plateau_patience):
new_lr = max(float(K.get_value(self.model.optimizer.lr)) * self.reduction_rate, self.min_lr)
K.set_value(self.model.optimizer.lr, new_lr)
if self.verbose:
print(f"
{'
Reduced learning rate to {new_lr}.
{'
")
def on_epoch_end(self, epoch, logs={}):
y_preds = self.model.predict(self.X, batch_size=self.batch_size)
action_proba = np.median(y_preds, axis=1)
action = np.where(action_proba >= 0.5, 1, 0)
uscore = self.utility_score(self.date, self.weight, self.resp, action)
self.history.append(uscore)
if self.stage == 'val':
self.early_stopping_check(uscore)
self.model_checkpoint(uscore, epoch)
if self.plateau_patience >= 0:
self.reduce_lr_on_plateau()
def get_uscore_history(self):
return self.history<choose_model_class>
|
df_train=pd.read_csv('.. /input/digit-recognizer/train.csv')
df_test=pd.read_csv('.. /input/digit-recognizer/test.csv' )
|
Digit Recognizer
|
7,429,783 |
def create_resnet(num_columns, num_labels, hidden_units, dropout_rates, label_smoothing, learning_rate):
inp = tf.keras.layers.Input(shape=(num_columns,))
x = tf.keras.layers.BatchNormalization()(inp)
x = tf.keras.layers.Dropout(dropout_rates[0] )(x)
for i in range(len(hidden_units)) :
x = tf.keras.layers.Dense(hidden_units[i] )(x)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.Activation(tf.keras.activations.swish )(x)
x = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x)
x_1 = tf.keras.layers.Concatenate(axis=-1 )([x, inp])
for i in range(len(hidden_units)) :
x_1 = tf.keras.layers.Dense(hidden_units[i] )(x_1)
x_1 = tf.keras.layers.BatchNormalization()(x_1)
x_1 = tf.keras.layers.Activation(tf.keras.activations.swish )(x_1)
x_1 = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x_1)
x_2 = tf.keras.layers.Concatenate(axis=-1 )([x_1, x])
for i in range(len(hidden_units)) :
x_2 = tf.keras.layers.Dense(hidden_units[i] )(x_2)
x_2 = tf.keras.layers.BatchNormalization()(x_2)
x_2 = tf.keras.layers.Activation(tf.keras.activations.swish )(x_2)
x_2 = tf.keras.layers.Dropout(dropout_rates[i + 1] )(x_2)
x_3 = tf.keras.layers.Concatenate(axis=-1 )([x_1, x_2])
x_3 = tf.keras.layers.Dense(256 )(x_3)
x_3 = tf.keras.layers.BatchNormalization()(x_3)
x_3 = tf.keras.layers.Activation(tf.keras.activations.swish )(x_3)
x_3 = tf.keras.layers.Dropout(0.2 )(x_3)
x_3 = tf.keras.layers.Dense(num_labels )(x_3)
out = tf.keras.layers.Activation("sigmoid" )(x_3)
model = tf.keras.models.Model(inputs=inp, outputs=out)
model.compile(
optimizer=tfa.optimizers.RectifiedAdam(learning_rate=learning_rate),
loss=tf.keras.losses.BinaryCrossentropy(label_smoothing=label_smoothing),
metrics=tf.keras.metrics.AUC(name="AUC"),
)
return model<define_search_space>
|
print(type(df_test))
print(type(df_train))
df_test.isnull().sum()
df_train.isnull().sum()
df_test.isnull().sum().sum()
df_train.isnull().sum().sum()
|
Digit Recognizer
|
7,429,783 |
batch_size = 2048
hidden_units = [150, 150, 150]
dropout_rates = [0.25, 0.25, 0.25, 0.25]
label_smoothing = 1e-3
learning_rate = 1e-3
folds = 5
train_mode = True
opt_th_cross = 0.5<train_model>
|
classifier = Sequential()
classifier.add(Convolution2D(filters = 128, kernel_size =(5,5),padding = 'Same',
activation ='relu', input_shape =(28,28,1)))
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(BatchNormalization())
classifier.add(Convolution2D(filters = 128, kernel_size =(5,5),padding = 'Same',
activation ='relu'))
classifier.add(BatchNormalization())
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Dropout(0.25))
|
Digit Recognizer
|
7,429,783 |
if train_mode:
clf = create_resnet(len(features), 5, hidden_units, dropout_rates, label_smoothing, learning_rate)
clf.fit(train.loc[:, features].values,(train.loc[:,resp_cols] > 0 ).astype(int), epochs=150, batch_size=batch_size, shuffle=True)
<categorify>
|
classifier.add(Convolution2D(filters =256, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
classifier.add(BatchNormalization())
classifier.add(MaxPooling2D(pool_size=(2,2)))
classifier.add(Convolution2D(filters = 256, kernel_size =(3,3),padding = 'Same',
activation ='relu'))
classifier.add(BatchNormalization())
classifier.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
classifier.add(Dropout(0.25))
|
Digit Recognizer
|
7,429,783 |
models = []
clf.call = tf.function(clf.call, experimental_relax_shapes=True)
models.append(clf )<split>
|
classifier.add(Flatten())
classifier.add(Dense(256, activation = "relu"))
classifier.add(Dropout(0.3))
classifier.add(Dense(10, activation = "softmax"))
|
Digit Recognizer
|
7,429,783 |
env = janestreet.make_env()
env_iter = env.iter_test()<feature_engineering>
|
classifier.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'] )
|
Digit Recognizer
|
7,429,783 |
for(test_df, pred_df)in tqdm(env_iter):
if test_df['weight'].values[0] > 0:
test_df = test_df.loc[:, features].values
if np.isnan(test_df[:, 1:].sum()):
test_df[:, 1:] = np.nan_to_num(test_df[:, 1:])+ np.isnan(test_df[:, 1:])* f_mean
pred = np.mean([model(test_df, training = False ).numpy() for model in models],axis=0)
pred_df.action = int(0.6*pred[:,3] + 0.2*pred[:,2] + 0.2*pred[:,4]> opt_th_cross)
else:
pred_df["action"].values[0] = 0
env.predict(pred_df )<set_options>
|
classifier.fit(target,label_cat,epochs=50 )
|
Digit Recognizer
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.