kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
12,242,884
class BERTClass(torch.nn.Module): def __init__(self, drop_rate, otuput_size): super().__init__() model_config = BertConfig.from_pretrained('.. /input/bert-base-uncased', output_hidden_states=True) self.bert = BertModel.from_pretrained('.. /input/bert-base-uncased', config=model_config) self.drop = torch.nn.Dropout(drop_rate) self.fc = torch.nn.Linear(768, otuput_size) def forward(self, ids, mask): out = self.bert(ids, attention_mask=mask)[1] out = self.fc(self.drop(out)) return out<find_best_params>
from tensorflow.keras.preprocessing.image import ImageDataGenerator
Digit Recognizer
12,242,884
def calculate_loss_and_accuracy(model, criterion, loader, device): model.eval() loss = 0.0 total = 0 correct = 0 with torch.no_grad() : for data in loader: ids = data['ids'].to(device) mask = data['mask'].to(device) labels = data['labels'].to(device) outputs = model(ids, mask) loss += criterion(outputs, labels ).item() pred = torch.round(torch.sigmoid(outputs)).cpu().numpy() labels = labels.cpu().numpy() total += len(labels) correct +=(pred == labels ).sum().item() return loss / len(loader), correct / total def train_model(dataset_train, dataset_valid, batch_size, model, criterion, optimizer, num_epochs, device=None): model.to(device) dataloader_train = DataLoader(dataset_train, batch_size=batch_size, shuffle=True) dataloader_valid = DataLoader(dataset_valid, batch_size=len(dataset_valid), shuffle=False) log_train = [] log_valid = [] for epoch in range(num_epochs): s_time = time.time() model.train() for data in dataloader_train: ids = data['ids'].to(device) mask = data['mask'].to(device) labels = data['labels'].to(device) optimizer.zero_grad() outputs = model(ids,mask) loss = criterion(outputs, labels) loss.backward() optimizer.step() loss_train, acc_train = calculate_loss_and_accuracy(model, criterion, dataloader_train, device) loss_valid, acc_valid = calculate_loss_and_accuracy(model, criterion, dataloader_valid, device) log_train.append([loss_train, acc_train]) log_valid.append([loss_valid, acc_valid]) e_time = time.time() print(f'epoch: {epoch + 1}, loss_train: {loss_train:.4f}, accuracy_train: {acc_train:.4f}, loss_valid: {loss_valid:.4f}, accuracy_valid: {acc_valid:.4f}, {(e_time - s_time):.4f}sec') return {'train': log_train, 'valid': log_valid}<choose_model_class>
image_gen = ImageDataGenerator(rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.1, zoom_range=0.1, horizontal_flip=False, vertical_flip=False, )
Digit Recognizer
12,242,884
DROP_RATE = 0.4 OUTPUT_SIZE = 1 BATCH_SIZE = 32 NUM_EPOCHS = 2 LEARNING_RATE = 2e-5 model = BERTClass(DROP_RATE, OUTPUT_SIZE) criterion = torch.nn.BCEWithLogitsLoss() optimizer = torch.optim.AdamW(params=model.parameters() , lr=LEARNING_RATE) device = 'cuda' if cuda.is_available() else 'cpu' log = train_model(dataset_train, dataset_valid, BATCH_SIZE, model, criterion, optimizer, NUM_EPOCHS, device=device )<categorify>
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout, BatchNormalization
Digit Recognizer
12,242,884
test_csv["cleaned_text"] = test_csv["text"].map(clean) test_csv.head()<categorify>
model = Sequential() model.add(Conv2D(filters=32, kernel_size=(5,5), input_shape=(28, 28, 1), padding="same", activation="relu")) model.add(BatchNormalization()) model.add(Conv2D(filters=32, kernel_size=(5,5), input_shape=(28, 28, 1), padding="same", activation="relu")) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Conv2D(filters=64, kernel_size=(5,5), input_shape=(28, 28, 1), padding="same", activation="relu")) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(5,5), input_shape=(28, 28, 1), padding="same", activation="relu")) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Conv2D(filters=128, kernel_size=(5,5), input_shape=(28, 28, 1), padding="same", activation="relu")) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(512, activation="relu")) model.add(BatchNormalization()) model.add(Dense(10, activation="softmax")) model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=["accuracy"] )
Digit Recognizer
12,242,884
class TestDataset(Dataset): def __init__(self, X, tokenizer, max_len): self.X = X self.tokenizer = tokenizer self.max_len = max_len def __len__(self): return len(self.X) def __getitem__(self, index): text = self.X[index] inputs = self.tokenizer.encode_plus( text, add_special_tokens=True, max_length=self.max_len, truncation=True, pad_to_max_length=True ) ids = inputs['input_ids'] mask = inputs['attention_mask'] return { 'ids': torch.LongTensor(ids), 'mask': torch.LongTensor(mask) } <create_dataframe>
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
Digit Recognizer
12,242,884
max_len = 45 dataset_test = TestDataset(test_csv["cleaned_text"].values, tokenizer, max_len )<categorify>
check_point = ModelCheckpoint("best_model.h5", monitor="val_accuracy", verbose=1, save_best_only=True )
Digit Recognizer
12,242,884
loader = DataLoader(dataset_test, batch_size=len(dataset_test), shuffle=False) model.eval() with torch.no_grad() : for data in loader: ids = data['ids'].to(device) mask = data['mask'].to(device) outputs = model.forward(ids, mask) pred = torch.round(torch.sigmoid(outputs)).cpu().numpy()<load_from_csv>
reduce_lr = ReduceLROnPlateau(monitor="val_accuracy", patience=3, verbose=1, factor=0.5, min_lr=0.0001 )
Digit Recognizer
12,242,884
submit_csv =pd.read_csv(".. /input/nlp-getting-started/sample_submission.csv") submit_csv.head()<data_type_conversions>
Digit Recognizer
12,242,884
submit_csv['target'] = pred.astype('int64') submit_csv.head(10 )<save_to_csv>
history = model.fit_generator(image_gen.flow(X_train,y_train, batch_size=64), epochs = 50, validation_data =(X_val,y_val), verbose = 1, callbacks=[check_point, reduce_lr] )
Digit Recognizer
12,242,884
submit_csv.to_csv("submission2.csv",index = False )<install_modules>
losses = pd.DataFrame(model.history.history )
Digit Recognizer
12,242,884
!pip install transformers==3.5.1 !pip install pyspellchecker !pip install -U joblib textblob !python -m textblob.download_corpora|<import_modules>
print("Accuracy on validation data: {:.4f}".format(losses["val_accuracy"].max()))
Digit Recognizer
12,242,884
import pandas as pd import torchtext from transformers import BertTokenizer, BertForMaskedLM, BertConfig import transformers import torch from torch.utils.data import Dataset, DataLoader from torch import optim from torch import cuda from sklearn.model_selection import train_test_split import re import string from joblib import Parallel, delayed from textblob import TextBlob from textblob.translate import NotTranslated from time import sleep<load_from_csv>
from keras.models import load_model
Digit Recognizer
12,242,884
train_val_df = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test_df = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv" )<feature_engineering>
saved_model = load_model('best_model.h5' )
Digit Recognizer
12,242,884
train_val_df = train_val_df.loc[:,["text","target"]] test_df = test_df.loc[:,["text"]] test_df["target"] = [0]*len(test_df["text"] )<prepare_output>
predictions = saved_model.predict_classes(X_test )
Digit Recognizer
12,242,884
print(train_val_df) print(test_df.head()) original_df = train_val_df.copy()<define_variables>
submission = pd.concat([pd.Series(range(1,28001), name ="ImageId"), submission], axis = 1 )
Digit Recognizer
12,242,884
mispell_dict = {"aren't" : "are not", "can't" : "cannot", "couldn't" : "could not", "couldnt" : "could not", "didn't" : "did not", "doesn't" : "does not", "doesnt" : "does not", "don't" : "do not", "hadn't" : "had not", "hasn't" : "has not", "haven't" : "have not", "havent" : "have not", "he'd" : "he would", "he'll" : "he will", "he's" : "he is", "i'd" : "I would", "i'd" : "I had", "i'll" : "I will", "i'm" : "I am", "isn't" : "is not", "it's" : "it is", "it'll":"it will", "i've" : "I have", "let's" : "let us", "mightn't" : "might not", "mustn't" : "must not", "shan't" : "shall not", "she'd" : "she would", "she'll" : "she will", "she's" : "she is", "shouldn't" : "should not", "shouldnt" : "should not", "that's" : "that is", "thats" : "that is", "there's" : "there is", "theres" : "there is", "they'd" : "they would", "they'll" : "they will", "they're" : "they are", "theyre": "they are", "they've" : "they have", "we'd" : "we would", "we're" : "we are", "weren't" : "were not", "we've" : "we have", "what'll" : "what will", "what're" : "what are", "what's" : "what is", "what've" : "what have", "where's" : "where is", "who'd" : "who would", "who'll" : "who will", "who're" : "who are", "who's" : "who is", "who've" : "who have", "won't" : "will not", "wouldn't" : "would not", "you'd" : "you would", "you'll" : "you will", "you're" : "you are", "you've" : "you have", "'re": " are", "wasn't": "was not", "we'll":" will", "didn't": "did not"} def replace_typical_misspell(text): text = text.lower() mispellings_re = re.compile('(%s)' % '|'.join(mispell_dict.keys())) def replace(match): return mispell_dict[match.group(0)] return mispellings_re.sub(replace, text) train_val_df['text'] = train_val_df['text'].apply(lambda x : replace_typical_misspell(x)) test_df['text'] = test_df['text'].apply(lambda x : replace_typical_misspell(x)) def remove_space(string): string = BeautifulSoup(string ).text.strip().lower() string = re.sub(r'(( http)\S+)', 'http', string) string = re.sub(r'\s+', ' ', string) return string train_val_df['text'] = train_val_df['text'].apply(lambda x : remove_space(x)) test_df['text'] = test_df['text'].apply(lambda x : remove_space(x)) def remove_emoji(text): emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" u"\U0001F300-\U0001F5FF" u"\U0001F680-\U0001F6FF" u"\U0001F1E0-\U0001F1FF" u"\U00002702-\U000027B0" u"\U000024C2-\U0001F251" "]+", flags=re.UNICODE) return emoji_pattern.sub(r'', text) train_val_df['text'] = train_val_df['text'].apply(lambda x: remove_emoji(x)) test_df['text'] = test_df['text'].apply(lambda x: remove_emoji(x))<filter>
submission.to_csv("submission.csv", index=False )
Digit Recognizer
12,242,884
print(train_val_df.loc[31]) print(original_df.loc[31] )<save_to_csv>
submission.to_csv("submission.csv", index=False )
Digit Recognizer
12,233,077
test_df.to_csv("test.tsv", sep='\t', index=False, header=None) print(test_df.shape) train_val_df.to_csv("train_eval.tsv", sep='\t', index=False, header=None) print(train_val_df.shape )<categorify>
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt
Digit Recognizer
12,233,077
max_length = 50 def tokenizer_50(input_text): return tokenizer.encode(input_text, max_length=50, return_tensors='pt')[0] TEXT = torchtext.data.Field(sequential=True, tokenize=tokenizer_50, use_vocab=False, lower=False, include_lengths=True, batch_first=True, fix_length=max_length, pad_token=0) LABEL = torchtext.data.Field(sequential=False, use_vocab=False )<load_pretrained>
test_data=pd.read_csv('.. /input/digit-recognizer/test.csv') train_data=pd.read_csv('.. /input/digit-recognizer/train.csv' )
Digit Recognizer
12,233,077
tokenizer = BertTokenizer.from_pretrained('bert-base-cased' )<load_from_csv>
training=np.array(train_data,dtype='float32') testing=np.array(test_data,dtype='float32' )
Digit Recognizer
12,233,077
dataset_train_eval, dataset_test = torchtext.data.TabularDataset.splits(path='.', train='./train_eval.tsv', test='./test.tsv', format='tsv', fields=[('Text', TEXT),('Label', LABEL)] )<split>
x_train=training[:,1:]/255 y_train=training[:,0]
Digit Recognizer
12,233,077
dataset_train, dataset_eval = dataset_train_eval.split( split_ratio=1.0 - 1800/7613, random_state=random.seed(1234)) print(dataset_train.__len__()) print(dataset_eval.__len__()) print(dataset_test.__len__() )<data_type_conversions>
x_test=testing[:,0:]/255
Digit Recognizer
12,233,077
print(tokenizer.convert_ids_to_tokens(item.Text.tolist())) print(int(item.Label))<define_variables>
y_train_cat=to_categorical(y_train )
Digit Recognizer
12,233,077
batch_size = 32 dl_train = torchtext.data.Iterator( dataset_train, batch_size=batch_size, train=True) dl_eval = torchtext.data.Iterator( dataset_eval, batch_size=batch_size, train=False, sort=False) dl_test = torchtext.data.Iterator( dataset_test, batch_size=batch_size, train=False, sort=False) dataloaders_dict = {"train": dl_train, "val": dl_eval}<load_pretrained>
model =Sequential() model.add(Conv2D(64,kernel_size=(3, 3),activation='relu',input_shape=(28, 28, 1))) model.add(Conv2D(64,kernel_size=(3, 3),activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Dropout(0.25)) model.add(Conv2D(filters = 128, kernel_size =(3,3),activation ='relu')) model.add(Conv2D(filters = 128, kernel_size =(3,3),activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(BatchNormalization()) model.add(Conv2D(filters = 256, kernel_size =(3,3),activation ='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(BatchNormalization()) model.add(Dense(512, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
12,233,077
model = BertModel.from_pretrained('bert-base-cased' )<set_options>
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.RMSprop() , metrics=['accuracy']) learning_rate_reduction = ReduceLROnPlateau(monitor='accuracy', patience=3, verbose=1, factor=0.3, min_lr=0.0001 )
Digit Recognizer
12,233,077
class BertForTwitter(nn.Module): def __init__(self): super(BertForTwitter, self ).__init__() self.bert = model self.cls = nn.Linear(in_features=768, out_features=2) nn.init.normal_(self.cls.weight, std=0.02) nn.init.normal_(self.cls.bias, 0) def forward(self, input_ids): result = self.bert(input_ids) vec_0 = result[0] vec_0 = vec_0[:, 0, :] vec_0 = vec_0.view(-1, 768) output = self.cls(vec_0) return output<train_on_grid>
epochs_range = 60 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(X_train,y_train_cat,batch_size=256,epochs=epochs_range )
Digit Recognizer
12,233,077
net = BertForTwitter() net.train() print('ネットワーク設定完了' )<categorify>
y_pred=model.predict_classes(X_test )
Digit Recognizer
12,233,077
for param in net.parameters() : param.requires_grad = False for param in net.bert.encoder.layer[-1].parameters() : param.requires_grad = True for param in net.cls.parameters() : param.requires_grad = True<choose_model_class>
sample=pd.read_csv('.. /input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
12,233,077
optimizer = optim.Adam([ {'params': net.bert.encoder.layer[-1].parameters() , 'lr': 5e-5}, {'params': net.cls.parameters() , 'lr': 1e-4} ]) criterion = nn.CrossEntropyLoss() <train_model>
temp=pd.DataFrame({'ImageId':sample['ImageId'],'Label':y_pred} )
Digit Recognizer
12,233,077
def train_model(net, dataloaders_dict, criterion, optimizer, num_epochs): max_acc = 0 Stop_flag = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("使用デバイス:", device) print('-----start-------') net.to(device) torch.backends.cudnn.benchmark = True batch_size = dataloaders_dict["train"].batch_size for epoch in range(num_epochs): for phase in ['train', 'val']: if phase == 'train': net.train() else: net.eval() epoch_loss = 0.0 epoch_corrects = 0 iteration = 1 for batch in(dataloaders_dict[phase]): inputs = batch.Text[0].to(device) labels = batch.Label.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = net(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) if phase == 'train': loss.backward() optimizer.step() if(iteration % 50 == 0): acc =(torch.sum(preds == labels.data) ).double() /batch_size print('イテレーション {} || Loss: {:.4f} || 10iter.|| 本イテレーションの正解率:{}'.format( iteration, loss.item() , acc)) iteration += 1 epoch_loss += loss.item() * batch_size epoch_corrects += torch.sum(preds == labels.data) epoch_loss = epoch_loss / len(dataloaders_dict[phase].dataset) epoch_acc = epoch_corrects.double( )/ len(dataloaders_dict[phase].dataset) print('Epoch {}/{} | {:^5} | Loss: {:.4f} Acc: {:.4f}'.format(epoch+1, num_epochs, phase, epoch_loss, epoch_acc)) if phase == "val": if epoch_acc < max_acc: count += 1 if count >= 3: Stop_flag = True else: count = 0 max_acc = epoch_acc print(count) if Stop_flag: break return net<train_model>
csv_data=temp.to_csv('pred.csv',index=False )
Digit Recognizer
12,216,311
num_epochs = 50 net_trained = train_model(net, dataloaders_dict, criterion, optimizer, num_epochs=num_epochs )<load_from_csv>
%matplotlib inline
Digit Recognizer
12,216,311
sample_submission = pd.read_csv(".. /input/nlp-getting-started/sample_submission.csv") sample_submission["target"] = ans_list sample_submission<save_to_csv>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
12,216,311
sample_submission.to_csv("submission_plus.csv", index=False )<import_modules>
Y_train = train['label'] X_train = train.drop(labels=['label'], axis=1) del train
Digit Recognizer
12,216,311
import pandas as pd import numpy as np import spacy import re import string<load_from_csv>
X_train = X_train / 255 test = test / 255
Digit Recognizer
12,216,311
train = pd.read_csv(".. /input/nlp-getting-started/train.csv") test = pd.read_csv(".. /input/nlp-getting-started/test.csv") submission = pd.read_csv(".. /input/nlp-getting-started/sample_submission.csv" )<categorify>
X_train = X_train.values.reshape(-1, 28, 28, 1) test = test.values.reshape(-1, 28, 28, 1) Y_train = to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
12,216,311
def clean_text(text): text = str(text ).lower() text = re.sub('[%s]' % re.escape(string.punctuation), '', text) text = re.sub(' ', '', text) return text<feature_engineering>
model = Sequential() model.add(Conv2D(input_shape=(28,28,1), kernel_size=(5,5), filters=20, activation = "relu")) model.add(MaxPooling2D(pool_size=(2,2), strides=2, padding='same')) model.add(Conv2D(kernel_size=(5,5), filters=50, activation='relu')) model.add(MaxPooling2D(pool_size=(2,2), strides=2, padding='same')) model.add(Flatten()) model.add(Dense(500, activation='relu')) model.add(Dense(10, activation='softmax'))
Digit Recognizer
12,216,311
train["text"] = train["text"].apply(lambda x:clean_text(x)) test["text"] = test["text"].apply(lambda x:clean_text(x))<count_unique_values>
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
12,216,311
len(train["keyword"].unique() )<count_unique_values>
history = model.fit(X_train, Y_train, validation_split=0.1, epochs=100, batch_size=64 )
Digit Recognizer
12,216,311
len(train["location"].unique() )<load_pretrained>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
12,216,311
<define_variables><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"), results],axis = 1) submission.to_csv("cnn_mnist_datagen20210209.csv",index=False )
Digit Recognizer
12,099,647
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<concatenate>
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, Dropout, BatchNormalization from keras.callbacks import EarlyStopping, ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools
Digit Recognizer
12,099,647
def concat_keyword_text(row): return(str(row["text"])+ " " + str(row["keyword"]))<feature_engineering>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
12,099,647
train_samples = train.apply(concat_keyword_text, axis = 1) train_samples.head()<init_hyperparams>
X_train = train.iloc[:,1:] y_train = train.iloc[:,0]
Digit Recognizer
12,099,647
vectorizer = TextVectorization() text_ds = tf.data.Dataset.from_tensor_slices(train_samples ).batch(128) vectorizer.adapt(text_ds )<feature_engineering>
X_train = X_train.values.reshape(-1, 28, 28, 1)/255. test = test.values.reshape(-1, 28, 28, 1)/255. y_train = to_categorical(y_train, 10 )
Digit Recognizer
12,099,647
voc = vectorizer.get_vocabulary()<define_variables>
datagen = ImageDataGenerator( rotation_range=15, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, shear_range=0.2 )
Digit Recognizer
12,099,647
num_tokens = len(voc) embedding_dim = len(nlp('The' ).vector) embedding_matrix = np.zeros(( num_tokens, embedding_dim))<feature_engineering>
def create_model() : model = Sequential() model.add(Conv2D(32,(3,3), padding='same', input_shape=X_train.shape[1:], activation='relu')) model.add(Conv2D(32,(3,3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(2,2)) model.add(Dropout(0.2)) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(2,2)) model.add(Dropout(0.2)) model.add(Conv2D(128,(3,3), padding='same', activation='relu')) model.add(Conv2D(128,(3,3), padding='same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(2,2)) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model
Digit Recognizer
12,099,647
for i, word in enumerate(voc): embedding_matrix[i] = nlp(word ).vector<feature_engineering>
EPOCHS = 30 BATCH_SIZE = 50 ENSEMBLES = 5 result_list = [] histories = [] results = np.zeros(( test.shape[0],10)) callback_list = [ ReduceLROnPlateau(monitor='val_loss', factor=0.25, patience=2), EarlyStopping(monitor='val_loss', min_delta=0.0005, patience=4) ] for i in range(ENSEMBLES): X_train_tmp, X_val, y_train_tmp, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=i) model = create_model() print('training No.', i) history = model.fit(datagen.flow(X_train_tmp, y_train_tmp, batch_size=BATCH_SIZE), verbose=0, epochs=EPOCHS, callbacks=callback_list, validation_data=(X_val, y_val), steps_per_epoch=X_train_tmp.shape[0] // BATCH_SIZE) histories.append(history) result = model.predict(test) results += result result_list.append(result )
Digit Recognizer
12,099,647
<categorify><EOS>
results = np.argmax(results, axis=1) results = pd.Series(results, name='Label') submission = pd.concat([pd.Series(range(1,28001), name='ImageID'), results], axis=1) submission.to_csv('submission.csv', index=False )
Digit Recognizer
11,964,083
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<randomize_order>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, BatchNormalization, Dropout from keras.callbacks import EarlyStopping, ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import itertools
Digit Recognizer
11,964,083
df_train = train.sample(frac=0.7, random_state=0) df_valid = train.drop(df_train.index )<prepare_x_and_y>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
11,964,083
X_train = df_train.drop(['target'], axis=1) X_valid = df_valid.drop(['target'], axis=1) y_train = df_train['target'] y_valid = df_valid['target']<data_type_conversions>
X_train = train.iloc[:,1:] y_train = train.iloc[:,0]
Digit Recognizer
11,964,083
x_train = vectorizer(np.array([[s] for s in X_train["text"]])).numpy() x_valid = vectorizer(np.array([[s] for s in X_valid["text"]])).numpy()<categorify>
X_train = X_train.values.reshape(-1, 28, 28, 1)/255. test = test.values.reshape(-1, 28, 28, 1)/255. y_train = to_categorical(y_train, 10 )
Digit Recognizer
11,964,083
y_train_ = np_utils.to_categorical(y_train.values) y_valid_ = np_utils.to_categorical(y_valid.values )<choose_model_class>
random_seed = 0 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=random_seed )
Digit Recognizer
11,964,083
int_sequences_input = keras.Input(shape=(None,), dtype="int64") embedded_sequences = embedding_layer(int_sequences_input) x = layers.Conv1D(64, 5, activation="relu",padding='same' )(embedded_sequences) x = layers.MaxPooling1D(3 )(x) x = layers.Conv1D(32, 5, activation="relu",padding='same' )(x) x = layers.MaxPooling1D(3 )(x) x = layers.Conv1D(16, 5, activation="relu",padding='same' )(x) x = layers.GlobalMaxPooling1D()(x) x = layers.Dense(16, activation="relu" )(x) x = layers.Dropout(0.5 )(x) preds = layers.Dense(2, activation="softmax" )(x) model = keras.Model(int_sequences_input, preds) model.summary()<train_model>
datagen = ImageDataGenerator( rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1 )
Digit Recognizer
11,964,083
early_stopping = callbacks.EarlyStopping( min_delta=0.001, patience=20, restore_best_weights=True, ) model.compile( optimizer='adam', loss='categorical_crossentropy', metrics ='accuracy' ) history = model.fit( x_train, y_train_, validation_data=(x_valid, y_valid_), batch_size=128, epochs=500, callbacks=[early_stopping], verbose=1, )<data_type_conversions>
model = Sequential() model.add(Conv2D(32,(5,5), padding='same', input_shape=X_train.shape[1:], activation='relu')) model.add(Conv2D(32,(5,5), padding='same', activation='relu')) model.add(MaxPool2D(2,2)) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(Conv2D(64,(3,3), padding='same', activation='relu')) model.add(MaxPool2D(2,2)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.summary()
Digit Recognizer
11,964,083
x_test = vectorizer(np.array([[s] for s in test["text"]])).numpy()<predict_on_test>
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
11,964,083
predictions = model.predict(x_test )<load_from_csv>
EPOCHS = 30 BATCH_SIZE = 20 callback_list = [ ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=1), EarlyStopping(monitor='val_loss', min_delta=0.0005, patience=4) ] history = model.fit(datagen.flow(X_train, y_train, batch_size=BATCH_SIZE), epochs=EPOCHS, callbacks=callback_list, validation_data=(X_val, y_val), steps_per_epoch=X_train.shape[0] // BATCH_SIZE )
Digit Recognizer
11,964,083
sub = pd.read_csv('.. /input/nlp-getting-started/sample_submission.csv') sub.head()<save_to_csv>
results = model.predict(test) results = np.argmax(results, axis=1) results = pd.Series(results, name='Label') submission = pd.concat([pd.Series(range(1,28001), name='ImageID'), results], axis=1) submission.to_csv('submission.csv', index=False )
Digit Recognizer
8,042,252
submission = pd.DataFrame({"id": test.iloc[:,0].values,"target": np.argmax(predictions,axis=1)}) submission.to_csv("submission.csv", index=False) submission.head()<install_modules>
%%script false --no-raise-error print(device_lib.list_local_devices())
Digit Recognizer
8,042,252
!pip install transformers==3.5.1 !pip install pyspellchecker !pip install -U joblib textblob !python -m textblob.download_corpora<import_modules>
import numpy as np import pandas as pd import matplotlib.pyplot as plt import time from sklearn.model_selection import train_test_split, StratifiedKFold from keras import backend as K from keras.preprocessing.image import ImageDataGenerator from keras.utils import to_categorical from keras.models import Sequential, load_model from keras.layers import Conv2D, BatchNormalization, Dropout, Flatten, Dense from keras.callbacks import LearningRateScheduler import tensorflow as tf
Digit Recognizer
8,042,252
import pandas as pd import torchtext from transformers import BertTokenizer, BertForMaskedLM, BertConfig import transformers import torch from torch.utils.data import Dataset, DataLoader from torch import optim from torch import cuda from sklearn.model_selection import train_test_split import re import string from joblib import Parallel, delayed from textblob import TextBlob from textblob.translate import NotTranslated from time import sleep<load_from_csv>
gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_visible_devices(gpus[0], 'GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: print(e )
Digit Recognizer
8,042,252
train_val_df = pd.read_csv("/kaggle/input/nlp-getting-started/train.csv") test_df = pd.read_csv("/kaggle/input/nlp-getting-started/test.csv" )<feature_engineering>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer//test.csv' )
Digit Recognizer
8,042,252
train_val_df = train_val_df.loc[:,["text","target"]] test_df = test_df.loc[:,["text"]] test_df["target"] = [0]*len(test_df["text"] )<define_variables>
y = train.pop('label') train_y = to_categorical(y) train_X = train/255 test_X = test/255 train_X = train_X.to_numpy() test_X = test_X.to_numpy()
Digit Recognizer
8,042,252
check_df = train_val_df<define_variables>
sub_test_X, sub_train_X, sub_test_y, sub_train_y = train_test_split(train_X, train_y, train_size=0.2, stratify=train_y )
Digit Recognizer
8,042,252
languages = ["de"] parallel = Parallel(n_jobs=-1, backend="threading", verbose=5 )<categorify>
img_gen = ImageDataGenerator(rotation_range = 12, width_shift_range=.12, height_shift_range=.12, zoom_range=.12 )
Digit Recognizer
8,042,252
def translate_text(comment, language): if hasattr(comment, "decode"): comment = comment.decode("utf-8") text = TextBlob(comment) try: text = text.translate(to=language) sleep(2.0) text = text.translate(to="en") sleep(2.0) except NotTranslated: pass return str(text )<save_to_csv>
def build_model(save = False): model = Sequential() model.add(Conv2D(32, kernel_size = 3, activation = 'relu', input_shape =(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 3, activation = 'relu')) model.add(BatchNormalization()) model.add(Conv2D(32, kernel_size = 3, activation = 'relu', padding = 'same')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(64, kernel_size = 3, activation = 'relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 3, activation = 'relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size = 3, activation = 'relu', padding = 'same')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(128, kernel_size = 3, activation = 'relu')) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dropout(0.4)) model.add(Dense(10, activation ='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) return model def train_model(model, train_X, train_y, save = False): sub_test_X, sub_train_X, sub_test_y, sub_train_y = train_test_split(train_X, train_y, train_size=0.2, stratify=train_y) annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x) start = time.clock() model.fit_generator(img_gen.flow(sub_train_X, sub_train_y), epochs=10, steps_per_epoch=sub_train_X.shape[0]//64, validation_data =(sub_test_X,sub_test_y), callbacks=[annealer]) print(f'Overall it takes {time.clock() -start} sec') if save ==True: model.save('/kaggle/input/trained-model/model.h5') def load_my_model() : re_model = load_model('/kaggle/input/trained-model/first_model.h5') return re_model
Digit Recognizer
8,042,252
comments_list = check_df["text"] for language in languages: print('Translate comments using "{0}" language'.format(language)) translated_data = parallel(delayed(translate_text )(comment, language)for comment in comments_list) check_df['text'] = translated_data result_path = os.path.join("train_val_" + language + ".csv") check_df.to_csv(result_path, index=False )<load_from_csv>
num_models = 3 models = [0]*num_models for i in range(num_models): models[i] = build_model() train_model(models[i],train_X, train_y)
Digit Recognizer
8,042,252
train_val_de_df = pd.read_csv("./train_val_de.csv") train_concat_df = train_val_de_df<concatenate>
prediction = np.zeros(( test_X.shape[0],10)) for i in range(len(models)) : prediction += models[i].predict(test_X )
Digit Recognizer
8,042,252
print(train_concat_df )<concatenate>
predict = np.argmax(prediction, axis =1) predict = np.vstack(( np.arange(predict.shape[0])+1, predict)).T
Digit Recognizer
8,042,252
train_val_df = pd.concat([train_val_df,train_concat_df] )<load_pretrained>
submission = pd.DataFrame(data=predict, columns=['imageid', 'label'] )
Digit Recognizer
8,042,252
tokenizer = BertTokenizer.from_pretrained('bert-base-cased' )<import_modules>
submission.to_csv('submit.csv',index=False )
Digit Recognizer
11,813,917
print(torch.__version__ )<feature_engineering>
%matplotlib inline
Digit Recognizer
11,813,917
def remove_URL(text): url = re.compile(r'https?://\S+|www\.\S+') return url.sub(r'', text) train_val_df['text'] = train_val_df['text'].apply(lambda x : remove_URL(x)) test_df['text'] = test_df['text'].apply(lambda x : remove_URL(x)) def remove_html(text): html = re.compile(r'<.*?>') return html.sub(r'',text) train_val_df['text'] = train_val_df['text'].apply(lambda x : remove_html(x)) test_df['text'] = test_df['text'].apply(lambda x : remove_html(x)) def remove_emoji(text): emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" u"\U0001F300-\U0001F5FF" u"\U0001F680-\U0001F6FF" u"\U0001F1E0-\U0001F1FF" u"\U00002702-\U000027B0" u"\U000024C2-\U0001F251" "]+", flags=re.UNICODE) return emoji_pattern.sub(r'', text) train_val_df['text'] = train_val_df['text'].apply(lambda x: remove_emoji(x)) test_df['text'] = test_df['text'].apply(lambda x: remove_emoji(x)) def remove_punct(text): table = str.maketrans('','', string.punctuation) return text.translate(table) train_val_df['text'] = train_val_df['text'].apply(lambda x : remove_punct(x)) test_df['text'] = test_df['text'].apply(lambda x : remove_punct(x)) spell = SpellChecker() def correct_spellings(text): corrected_text = [] misspelled_words = spell.unknown(text.split()) for word in text.split() : if word in misspelled_words: corrected_text.append(spell.correction(word)) else: corrected_text.append(word) return " ".join(corrected_text) train_val_df['text'] = train_val_df['text'].apply(lambda x : correct_spellings(x)) test_df['text'] = test_df['text'].apply(lambda x : correct_spellings(x))<save_to_csv>
print("Tensorflow version " + tf.__version__) np.random.seed(42 )
Digit Recognizer
11,813,917
test_df.to_csv("test.tsv", sep='\t', index=False, header=None) print(test_df.shape) train_val_df.to_csv("train_eval.tsv", sep='\t', index=False, header=None) print(train_val_df.shape) <categorify>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Digit Recognizer
11,813,917
max_length = 100 def tokenizer_100(input_text): return tokenizer.encode(input_text, max_length=100, return_tensors='pt')[0] TEXT = torchtext.data.Field(sequential=True, tokenize=tokenizer_100, use_vocab=False, lower=False, include_lengths=True, batch_first=True, fix_length=max_length, pad_token=0) LABEL = torchtext.data.Field(sequential=False, use_vocab=False )<train_model>
train_data=pd.read_csv(".. /input/digit-recognizer/train.csv") test_data=pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
11,813,917
dataset_train_eval, dataset_test = torchtext.data.TabularDataset.splits( path='.', train='./train_eval.tsv', test='./test.tsv', format='tsv', fields=[('Text', TEXT),('Label', LABEL)] )<data_type_conversions>
Y_train=train_data['label'] X_train=train_data.drop('label', axis=1 )
Digit Recognizer
11,813,917
print(tokenizer.convert_ids_to_tokens(item.Text.tolist())) print(int(item.Label))<define_variables>
( x_train0, y_train0),(x_test0, y_test0)= mnist.load_data() x_train1 = np.concatenate([x_train0, x_test0], axis=0) y_train1 = np.concatenate([y_train0, y_test0], axis=0) X_train_keras = x_train1.reshape(-1, 28*28) Y_train_keras = y_train1
Digit Recognizer
11,813,917
batch_size = 32 dl_train = torchtext.data.Iterator( dataset_train, batch_size=batch_size, train=True) dl_eval = torchtext.data.Iterator( dataset_eval, batch_size=batch_size, train=False, sort=False) dl_test = torchtext.data.Iterator( dataset_test, batch_size=batch_size, train=False, sort=False) dataloaders_dict = {"train": dl_train, "val": dl_eval}<import_modules>
X_train = np.concatenate(( X_train.values, X_train_keras)) Y_train = np.concatenate(( Y_train, Y_train_keras))
Digit Recognizer
11,813,917
print(transformers.__version__ )<load_pretrained>
unique, counts = np.unique(Y_train, return_counts=True) dict(zip(unique, counts))
Digit Recognizer
11,813,917
model = BertModel.from_pretrained('bert-base-cased' )<set_options>
X_train = X_train.astype('float32') Y_train = Y_train.astype('float32') test_data=test_data.astype('float32') X_train = X_train / 255.0 test_data = test_data / 255.0
Digit Recognizer
11,813,917
class BertForTwitter(nn.Module): def __init__(self): super(BertForTwitter, self ).__init__() self.bert = model self.cls = nn.Linear(in_features=768, out_features=9) nn.init.normal_(self.cls.weight, std=0.02) nn.init.normal_(self.cls.bias, 0) def forward(self, input_ids): result = self.bert(input_ids) vec_0 = result[0] vec_0 = vec_0[:, 0, :] vec_0 = vec_0.view(-1, 768) output = self.cls(vec_0) return output<train_on_grid>
Y_train=to_categorical(Y_train, num_classes=10) print(f"Label size {Y_train.shape}" )
Digit Recognizer
11,813,917
net = BertForTwitter() net.train() print('ネットワーク設定完了' )<categorify>
X_train, X_val, Y_train, Y_val=train_test_split(X_train, Y_train, test_size=0.3, random_state=42)
Digit Recognizer
11,813,917
for param in net.parameters() : param.requires_grad = False for param in net.bert.encoder.layer[-1].parameters() : param.requires_grad = True for param in net.cls.parameters() : param.requires_grad = True<choose_model_class>
model= Sequential() model.add(Conv2D(input_shape=(28,28,1), filters=32, kernel_size=(5,5), padding='Same', activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.10)) model.add(Conv2D(filters=32, kernel_size=(5,5), padding='Same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.10)) model.add(Conv2D(filters=64, kernel_size=(3,3), padding='Same', activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(filters=128, kernel_size =(3,3), activation="relu")) model.add(BatchNormalization()) model.add(Dropout(0.2)) model.add(Conv2D(filters=128, kernel_size=(3,3), padding='Same', activation='relu')) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.2)) model.add(Conv2D(filters=256, kernel_size =(3,3), activation="relu")) model.add(BatchNormalization()) model.add(Conv2D(filters=512, kernel_size =(3,3), activation="relu")) model.add(BatchNormalization()) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.3)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(10, activation='softmax')) model.summary()
Digit Recognizer
11,813,917
optimizer = optim.Adam([ {'params': net.bert.encoder.layer[-1].parameters() , 'lr': 5e-5}, {'params': net.cls.parameters() , 'lr': 1e-4} ]) criterion = nn.CrossEntropyLoss() <train_model>
optimizer=Adam(lr=0.001,decay=0.0 )
Digit Recognizer
11,813,917
def train_model(net, dataloaders_dict, criterion, optimizer, num_epochs): max_acc = 0 Stop_flag = False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("使用デバイス:", device) print('-----start-------') net.to(device) torch.backends.cudnn.benchmark = True batch_size = dataloaders_dict["train"].batch_size for epoch in range(num_epochs): for phase in ['train', 'val']: if phase == 'train': net.train() else: net.eval() epoch_loss = 0.0 epoch_corrects = 0 iteration = 1 for batch in(dataloaders_dict[phase]): inputs = batch.Text[0].to(device) labels = batch.Label.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = net(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) if phase == 'train': loss.backward() optimizer.step() if(iteration % 50 == 0): acc =(torch.sum(preds == labels.data) ).double() /batch_size print('イテレーション {} || Loss: {:.4f} || 10iter.|| 本イテレーションの正解率:{}'.format( iteration, loss.item() , acc)) iteration += 1 epoch_loss += loss.item() * batch_size epoch_corrects += torch.sum(preds == labels.data) epoch_loss = epoch_loss / len(dataloaders_dict[phase].dataset) epoch_acc = epoch_corrects.double( )/ len(dataloaders_dict[phase].dataset) print('Epoch {}/{} | {:^5} | Loss: {:.4f} Acc: {:.4f}'.format(epoch+1, num_epochs, phase, epoch_loss, epoch_acc)) if phase == "val": if epoch_acc < max_acc: count += 1 if count >= 3: Stop_flag = True else: count = 0 max_acc = epoch_acc print(count) if Stop_flag: break return net<train_model>
model.compile(optimizer= optimizer, loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
11,813,917
num_epochs = 100 net_trained = train_model(net, dataloaders_dict, criterion, optimizer, num_epochs=num_epochs )<load_from_csv>
learning_rate_redcuing=ReduceLROnPlateau(monitor='val_accuracy', patience=5, verbose=1, factor=0.5, min_lr=0.0001 )
Digit Recognizer
11,813,917
sample_submission = pd.read_csv(".. /input/nlp-getting-started/sample_submission.csv") sample_submission["target"] = ans_list sample_submission<save_to_csv>
epochs = 30 batch_size = 32
Digit Recognizer
11,813,917
sample_submission.to_csv("submission_plus.csv", index=False )<install_modules>
imagegen=ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) imagegen.fit(X_train )
Digit Recognizer
11,813,917
!pip install nlpaug<load_pretrained>
history=model.fit_generator(imagegen.flow(X_train, Y_train,batch_size=batch_size), epochs=epochs, validation_data=(X_val, Y_val), verbose=1, steps_per_epoch=X_train.shape[0] // batch_size, callbacks=[learning_rate_redcuing] )
Digit Recognizer
11,813,917
!kaggle datasets download -d rtatman/glove-global-vectors-for-word-representation<install_modules>
model.save("MNIST_CNN_Model.h5") model.save_weights("MNIST_CNN_Model_weights.h5" )
Digit Recognizer
11,813,917
!pip install nltk !pip install gensim<load_pretrained>
results = model.predict(test_data) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
11,813,917
<load_from_url><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("sample_submission.csv",index=False) submission.head()
Digit Recognizer
12,714,797
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options>
np.random.seed(2) sns.set(style='white', context='notebook', palette='deep' )
Digit Recognizer
12,714,797
plt.style.use('ggplot') stop=set(stopwords.words('english')) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) plt.style.use('ggplot') stop=set(stopwords.words('english')) warnings.filterwarnings("ignore") nltk.download('brown', quiet=True) nltk.download('universal_tagset', quiet=True) SEED = 1337<load_from_csv>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
12,714,797
df_train = pd.read_csv('.. /input/nlp-getting-started/train.csv', dtype={'id': np.int16, 'target': np.int8}) df_test = pd.read_csv('.. /input/nlp-getting-started/test.csv', dtype={'id': np.int16}) print('Training Set Shape = {}'.format(df_train.shape)) print('Training Set Memory Usage = {:.2f} MB'.format(df_train.memory_usage().sum() / 1024**2)) print('Test Set Shape = {}'.format(df_test.shape)) print('Test Set Memory Usage = {:.2f} MB'.format(df_test.memory_usage().sum() / 1024**2))<count_unique_values>
Y_train = train["label"] X_train = train.drop(labels = ["label"],axis = 1 )
Digit Recognizer
12,714,797
print(f'Number of unique values in keyword = {df_train["keyword"].nunique() }(Training)- {df_test["keyword"].nunique() }(Test)') print(f'Number of unique values in location = {df_train["location"].nunique() }(Training)- {df_test["location"].nunique() }(Test)' )<string_transform>
X_train = X_train / 255.0 test = test / 255.0
Digit Recognizer
12,714,797
def create_corpus(target): corpus=[] for x in df_train[df_train['target']==target]['text'].str.split() : for i in x: corpus.append(i) return corpus<count_values>
Y_train = to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
12,714,797
counter=Counter(corpus) most=counter.most_common() x=[] y=[] for word,count in most[:40]: if(word not in stop): x.append(word) y.append(count )<feature_engineering>
random_seed = 2
Digit Recognizer
12,714,797
def get_top_tweet_bigrams(corpus, n=None): vec = CountVectorizer(ngram_range=(2, 2)).fit(corpus) bag_of_words = vec.transform(corpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx])for word, idx in vec.vocabulary_.items() ] words_freq =sorted(words_freq, key = lambda x: x[1], reverse=True) return words_freq[:n]<feature_engineering>
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.15, random_state=random_seed )
Digit Recognizer
12,714,797
df_train['word_count'] = df_train['text'].apply(lambda x: len(str(x ).split())) df_test['word_count'] = df_test['text'].apply(lambda x: len(str(x ).split())) df_train['unique_word_count'] = df_train['text'].apply(lambda x: len(set(str(x ).split()))) df_test['unique_word_count'] = df_test['text'].apply(lambda x: len(set(str(x ).split()))) df_train['stop_word_count'] = df_train['text'].apply(lambda x: len([w for w in str(x ).lower().split() if w in STOPWORDS])) df_test['stop_word_count'] = df_test['text'].apply(lambda x: len([w for w in str(x ).lower().split() if w in STOPWORDS])) df_train['url_count'] = df_train['text'].apply(lambda x: len([w for w in str(x ).lower().split() if 'http' in w or 'https' in w])) df_test['url_count'] = df_test['text'].apply(lambda x: len([w for w in str(x ).lower().split() if 'http' in w or 'https' in w])) df_train['mean_word_length'] = df_train['text'].apply(lambda x: np.mean([len(w)for w in str(x ).split() ])) df_test['mean_word_length'] = df_test['text'].apply(lambda x: np.mean([len(w)for w in str(x ).split() ])) df_train['char_count'] = df_train['text'].apply(lambda x: len(str(x))) df_test['char_count'] = df_test['text'].apply(lambda x: len(str(x))) df_train['punctuation_count'] = df_train['text'].apply(lambda x: len([c for c in str(x)if c in string.punctuation])) df_test['punctuation_count'] = df_test['text'].apply(lambda x: len([c for c in str(x)if c in string.punctuation])) df_train['hashtag_count'] = df_train['text'].apply(lambda x: len([c for c in str(x)if c == ' df_test['hashtag_count'] = df_test['text'].apply(lambda x: len([c for c in str(x)if c == ' df_train['mention_count'] = df_train['text'].apply(lambda x: len([c for c in str(x)if c == '@'])) df_test['mention_count'] = df_test['text'].apply(lambda x: len([c for c in str(x)if c == '@']))<categorify>
model = Sequential() DefaultConv2D = partial(keras.layers.Conv2D, kernel_size =(3,3),padding = 'Same', activation ='relu') model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(DefaultConv2D(filters = 64)) model.add(DefaultConv2D(filters = 64)) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(128, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer