repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
flask-restful/flask-restful
flask_restful/__init__.py
https://github.com/flask-restful/flask-restful/blob/25544d697c1f82bafbd1320960df459f58a58e03/flask_restful/__init__.py#L386-L404
def resource(self, *urls, **kwargs): """Wraps a :class:`~flask_restful.Resource` class, adding it to the api. Parameters are the same as :meth:`~flask_restful.Api.add_resource`. Example:: app = Flask(__name__) api = restful.Api(app) @api.resource('/foo') class Foo(Resource): def get(self): return 'Hello, World!' """ def decorator(cls): self.add_resource(cls, *urls, **kwargs) return cls return decorator
[ "def", "resource", "(", "self", ",", "*", "urls", ",", "*", "*", "kwargs", ")", ":", "def", "decorator", "(", "cls", ")", ":", "self", ".", "add_resource", "(", "cls", ",", "*", "urls", ",", "*", "*", "kwargs", ")", "return", "cls", "return", "decorator" ]
Wraps a :class:`~flask_restful.Resource` class, adding it to the api. Parameters are the same as :meth:`~flask_restful.Api.add_resource`. Example:: app = Flask(__name__) api = restful.Api(app) @api.resource('/foo') class Foo(Resource): def get(self): return 'Hello, World!'
[ "Wraps", "a", ":", "class", ":", "~flask_restful", ".", "Resource", "class", "adding", "it", "to", "the", "api", ".", "Parameters", "are", "the", "same", "as", ":", "meth", ":", "~flask_restful", ".", "Api", ".", "add_resource", "." ]
python
train
RusticiSoftware/TinCanPython
tincan/remote_lrs.py
https://github.com/RusticiSoftware/TinCanPython/blob/424eedaa6d19221efb1108edb915fc332abbb317/tincan/remote_lrs.py#L509-L551
def _delete_state(self, activity, agent, state_id=None, registration=None, etag=None): """Private method to delete a specified state from the LRS :param activity: Activity object of state to be deleted :type activity: :class:`tincan.activity.Activity` :param agent: Agent object of state to be deleted :type agent: :class:`tincan.agent.Agent` :param state_id: UUID of state to be deleted :type state_id: str | unicode :param registration: registration UUID of state to be deleted :type registration: str | unicode :param etag: etag of state to be deleted :type etag: str | unicode :return: LRS Response object with deleted state as content :rtype: :class:`tincan.lrs_response.LRSResponse` """ if not isinstance(activity, Activity): activity = Activity(activity) if not isinstance(agent, Agent): agent = Agent(agent) request = HTTPRequest( method="DELETE", resource="activities/state" ) if etag is not None: request.headers["If-Match"] = etag request.query_params = { "activityId": activity.id, "agent": agent.to_json(self.version) } if state_id is not None: request.query_params["stateId"] = state_id if registration is not None: request.query_params["registration"] = registration lrs_response = self._send_request(request) return lrs_response
[ "def", "_delete_state", "(", "self", ",", "activity", ",", "agent", ",", "state_id", "=", "None", ",", "registration", "=", "None", ",", "etag", "=", "None", ")", ":", "if", "not", "isinstance", "(", "activity", ",", "Activity", ")", ":", "activity", "=", "Activity", "(", "activity", ")", "if", "not", "isinstance", "(", "agent", ",", "Agent", ")", ":", "agent", "=", "Agent", "(", "agent", ")", "request", "=", "HTTPRequest", "(", "method", "=", "\"DELETE\"", ",", "resource", "=", "\"activities/state\"", ")", "if", "etag", "is", "not", "None", ":", "request", ".", "headers", "[", "\"If-Match\"", "]", "=", "etag", "request", ".", "query_params", "=", "{", "\"activityId\"", ":", "activity", ".", "id", ",", "\"agent\"", ":", "agent", ".", "to_json", "(", "self", ".", "version", ")", "}", "if", "state_id", "is", "not", "None", ":", "request", ".", "query_params", "[", "\"stateId\"", "]", "=", "state_id", "if", "registration", "is", "not", "None", ":", "request", ".", "query_params", "[", "\"registration\"", "]", "=", "registration", "lrs_response", "=", "self", ".", "_send_request", "(", "request", ")", "return", "lrs_response" ]
Private method to delete a specified state from the LRS :param activity: Activity object of state to be deleted :type activity: :class:`tincan.activity.Activity` :param agent: Agent object of state to be deleted :type agent: :class:`tincan.agent.Agent` :param state_id: UUID of state to be deleted :type state_id: str | unicode :param registration: registration UUID of state to be deleted :type registration: str | unicode :param etag: etag of state to be deleted :type etag: str | unicode :return: LRS Response object with deleted state as content :rtype: :class:`tincan.lrs_response.LRSResponse`
[ "Private", "method", "to", "delete", "a", "specified", "state", "from", "the", "LRS" ]
python
train
Robpol86/Flask-Celery-Helper
flask_celery.py
https://github.com/Robpol86/Flask-Celery-Helper/blob/92bd3b02954422665260116adda8eb899546c365/flask_celery.py#L228-L269
def single_instance(func=None, lock_timeout=None, include_args=False): """Celery task decorator. Forces the task to have only one running instance at a time. Use with binded tasks (@celery.task(bind=True)). Modeled after: http://loose-bits.com/2010/10/distributed-task-locking-in-celery.html http://blogs.it.ox.ac.uk/inapickle/2012/01/05/python-decorators-with-optional-arguments/ Written by @Robpol86. :raise OtherInstanceError: If another instance is already running. :param function func: The function to decorate, must be also decorated by @celery.task. :param int lock_timeout: Lock timeout in seconds plus five more seconds, in-case the task crashes and fails to release the lock. If not specified, the values of the task's soft/hard limits are used. If all else fails, timeout will be 5 minutes. :param bool include_args: Include the md5 checksum of the arguments passed to the task in the Redis key. This allows the same task to run with different arguments, only stopping a task from running if another instance of it is running with the same arguments. """ if func is None: return partial(single_instance, lock_timeout=lock_timeout, include_args=include_args) @wraps(func) def wrapped(celery_self, *args, **kwargs): """Wrapped Celery task, for single_instance().""" # Select the manager and get timeout. timeout = ( lock_timeout or celery_self.soft_time_limit or celery_self.time_limit or celery_self.app.conf.get('CELERYD_TASK_SOFT_TIME_LIMIT') or celery_self.app.conf.get('CELERYD_TASK_TIME_LIMIT') or (60 * 5) ) manager_class = _select_manager(celery_self.backend.__class__.__name__) lock_manager = manager_class(celery_self, timeout, include_args, args, kwargs) # Lock and execute. with lock_manager: ret_value = func(*args, **kwargs) return ret_value return wrapped
[ "def", "single_instance", "(", "func", "=", "None", ",", "lock_timeout", "=", "None", ",", "include_args", "=", "False", ")", ":", "if", "func", "is", "None", ":", "return", "partial", "(", "single_instance", ",", "lock_timeout", "=", "lock_timeout", ",", "include_args", "=", "include_args", ")", "@", "wraps", "(", "func", ")", "def", "wrapped", "(", "celery_self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "\"\"\"Wrapped Celery task, for single_instance().\"\"\"", "# Select the manager and get timeout.", "timeout", "=", "(", "lock_timeout", "or", "celery_self", ".", "soft_time_limit", "or", "celery_self", ".", "time_limit", "or", "celery_self", ".", "app", ".", "conf", ".", "get", "(", "'CELERYD_TASK_SOFT_TIME_LIMIT'", ")", "or", "celery_self", ".", "app", ".", "conf", ".", "get", "(", "'CELERYD_TASK_TIME_LIMIT'", ")", "or", "(", "60", "*", "5", ")", ")", "manager_class", "=", "_select_manager", "(", "celery_self", ".", "backend", ".", "__class__", ".", "__name__", ")", "lock_manager", "=", "manager_class", "(", "celery_self", ",", "timeout", ",", "include_args", ",", "args", ",", "kwargs", ")", "# Lock and execute.", "with", "lock_manager", ":", "ret_value", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "ret_value", "return", "wrapped" ]
Celery task decorator. Forces the task to have only one running instance at a time. Use with binded tasks (@celery.task(bind=True)). Modeled after: http://loose-bits.com/2010/10/distributed-task-locking-in-celery.html http://blogs.it.ox.ac.uk/inapickle/2012/01/05/python-decorators-with-optional-arguments/ Written by @Robpol86. :raise OtherInstanceError: If another instance is already running. :param function func: The function to decorate, must be also decorated by @celery.task. :param int lock_timeout: Lock timeout in seconds plus five more seconds, in-case the task crashes and fails to release the lock. If not specified, the values of the task's soft/hard limits are used. If all else fails, timeout will be 5 minutes. :param bool include_args: Include the md5 checksum of the arguments passed to the task in the Redis key. This allows the same task to run with different arguments, only stopping a task from running if another instance of it is running with the same arguments.
[ "Celery", "task", "decorator", ".", "Forces", "the", "task", "to", "have", "only", "one", "running", "instance", "at", "a", "time", "." ]
python
valid
genericclient/genericclient-base
genericclient_base/utils.py
https://github.com/genericclient/genericclient-base/blob/193f7c879c40decaf03504af633f593b88e4abc5/genericclient_base/utils.py#L60-L74
def parse_headers_link(headers): """Returns the parsed header links of the response, if any.""" header = CaseInsensitiveDict(headers).get('link') l = {} if header: links = parse_link(header) for link in links: key = link.get('rel') or link.get('url') l[key] = link return l
[ "def", "parse_headers_link", "(", "headers", ")", ":", "header", "=", "CaseInsensitiveDict", "(", "headers", ")", ".", "get", "(", "'link'", ")", "l", "=", "{", "}", "if", "header", ":", "links", "=", "parse_link", "(", "header", ")", "for", "link", "in", "links", ":", "key", "=", "link", ".", "get", "(", "'rel'", ")", "or", "link", ".", "get", "(", "'url'", ")", "l", "[", "key", "]", "=", "link", "return", "l" ]
Returns the parsed header links of the response, if any.
[ "Returns", "the", "parsed", "header", "links", "of", "the", "response", "if", "any", "." ]
python
train
iopipe/iopipe-python
iopipe/agent.py
https://github.com/iopipe/iopipe-python/blob/4eb653977341bc67f8b1b87aedb3aaaefc25af61/iopipe/agent.py#L246-L258
def submit_future(self, func, *args, **kwargs): """ Submit a function call to be run as a future in a thread pool. This should be an I/O bound operation. """ # This mode will run futures synchronously. This should only be used # for benchmarking purposes. if self.config["sync_http"] is True: return MockFuture(func, *args, **kwargs) future = self.pool.submit(func, *args, **kwargs) self.futures.append(future) return future
[ "def", "submit_future", "(", "self", ",", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# This mode will run futures synchronously. This should only be used", "# for benchmarking purposes.", "if", "self", ".", "config", "[", "\"sync_http\"", "]", "is", "True", ":", "return", "MockFuture", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", "future", "=", "self", ".", "pool", ".", "submit", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", "self", ".", "futures", ".", "append", "(", "future", ")", "return", "future" ]
Submit a function call to be run as a future in a thread pool. This should be an I/O bound operation.
[ "Submit", "a", "function", "call", "to", "be", "run", "as", "a", "future", "in", "a", "thread", "pool", ".", "This", "should", "be", "an", "I", "/", "O", "bound", "operation", "." ]
python
train
Robpol86/terminaltables
terminaltables/width_and_alignment.py
https://github.com/Robpol86/terminaltables/blob/ad8f46e50afdbaea377fc1f713bc0e7a31c4fccc/terminaltables/width_and_alignment.py#L84-L113
def max_dimensions(table_data, padding_left=0, padding_right=0, padding_top=0, padding_bottom=0): """Get maximum widths of each column and maximum height of each row. :param iter table_data: List of list of strings (unmodified table data). :param int padding_left: Number of space chars on left side of cell. :param int padding_right: Number of space chars on right side of cell. :param int padding_top: Number of empty lines on top side of cell. :param int padding_bottom: Number of empty lines on bottom side of cell. :return: 4-item tuple of n-item lists. Inner column widths and row heights, outer column widths and row heights. :rtype: tuple """ inner_widths = [0] * (max(len(r) for r in table_data) if table_data else 0) inner_heights = [0] * len(table_data) # Find max width and heights. for j, row in enumerate(table_data): for i, cell in enumerate(row): if not hasattr(cell, 'count') or not hasattr(cell, 'splitlines'): cell = str(cell) if not cell: continue inner_heights[j] = max(inner_heights[j], cell.count('\n') + 1) inner_widths[i] = max(inner_widths[i], *[visible_width(l) for l in cell.splitlines()]) # Calculate with padding. outer_widths = [padding_left + i + padding_right for i in inner_widths] outer_heights = [padding_top + i + padding_bottom for i in inner_heights] return inner_widths, inner_heights, outer_widths, outer_heights
[ "def", "max_dimensions", "(", "table_data", ",", "padding_left", "=", "0", ",", "padding_right", "=", "0", ",", "padding_top", "=", "0", ",", "padding_bottom", "=", "0", ")", ":", "inner_widths", "=", "[", "0", "]", "*", "(", "max", "(", "len", "(", "r", ")", "for", "r", "in", "table_data", ")", "if", "table_data", "else", "0", ")", "inner_heights", "=", "[", "0", "]", "*", "len", "(", "table_data", ")", "# Find max width and heights.", "for", "j", ",", "row", "in", "enumerate", "(", "table_data", ")", ":", "for", "i", ",", "cell", "in", "enumerate", "(", "row", ")", ":", "if", "not", "hasattr", "(", "cell", ",", "'count'", ")", "or", "not", "hasattr", "(", "cell", ",", "'splitlines'", ")", ":", "cell", "=", "str", "(", "cell", ")", "if", "not", "cell", ":", "continue", "inner_heights", "[", "j", "]", "=", "max", "(", "inner_heights", "[", "j", "]", ",", "cell", ".", "count", "(", "'\\n'", ")", "+", "1", ")", "inner_widths", "[", "i", "]", "=", "max", "(", "inner_widths", "[", "i", "]", ",", "*", "[", "visible_width", "(", "l", ")", "for", "l", "in", "cell", ".", "splitlines", "(", ")", "]", ")", "# Calculate with padding.", "outer_widths", "=", "[", "padding_left", "+", "i", "+", "padding_right", "for", "i", "in", "inner_widths", "]", "outer_heights", "=", "[", "padding_top", "+", "i", "+", "padding_bottom", "for", "i", "in", "inner_heights", "]", "return", "inner_widths", ",", "inner_heights", ",", "outer_widths", ",", "outer_heights" ]
Get maximum widths of each column and maximum height of each row. :param iter table_data: List of list of strings (unmodified table data). :param int padding_left: Number of space chars on left side of cell. :param int padding_right: Number of space chars on right side of cell. :param int padding_top: Number of empty lines on top side of cell. :param int padding_bottom: Number of empty lines on bottom side of cell. :return: 4-item tuple of n-item lists. Inner column widths and row heights, outer column widths and row heights. :rtype: tuple
[ "Get", "maximum", "widths", "of", "each", "column", "and", "maximum", "height", "of", "each", "row", "." ]
python
train
DEIB-GECO/PyGMQL
gmql/dataset/GMQLDataset.py
https://github.com/DEIB-GECO/PyGMQL/blob/e58b2f9402a86056dcda484a32e3de0bb06ed991/gmql/dataset/GMQLDataset.py#L1363-L1388
def materialize(self, output_path=None, output_name=None, all_load=True): """ *Wrapper of* ``MATERIALIZE`` Starts the execution of the operations for the GMQLDataset. PyGMQL implements lazy execution and no operation is performed until the materialization of the results is requestd. This operation can happen both locally or remotely. * Local mode: if the GMQLDataset is local (based on local data) the user can specify the :param output_path: (Optional) If specified, the user can say where to locally save the results of the computations. :param output_name: (Optional) Can be used only if the dataset is remote. It represents the name that the user wants to give to the resulting dataset on the server :param all_load: (Optional) It specifies if the result dataset should be directly converted to a GDataframe (True) or to a GMQLDataset (False) for future local queries. :return: A GDataframe or a GMQLDataset """ current_mode = get_mode() new_index = self.__modify_dag(current_mode) if current_mode == 'local': return Materializations.materialize_local(new_index, output_path, all_load) elif current_mode == 'remote': return Materializations.materialize_remote(new_index, output_name, output_path, all_load) else: raise ValueError("Current mode is not defined. {} given".format(current_mode))
[ "def", "materialize", "(", "self", ",", "output_path", "=", "None", ",", "output_name", "=", "None", ",", "all_load", "=", "True", ")", ":", "current_mode", "=", "get_mode", "(", ")", "new_index", "=", "self", ".", "__modify_dag", "(", "current_mode", ")", "if", "current_mode", "==", "'local'", ":", "return", "Materializations", ".", "materialize_local", "(", "new_index", ",", "output_path", ",", "all_load", ")", "elif", "current_mode", "==", "'remote'", ":", "return", "Materializations", ".", "materialize_remote", "(", "new_index", ",", "output_name", ",", "output_path", ",", "all_load", ")", "else", ":", "raise", "ValueError", "(", "\"Current mode is not defined. {} given\"", ".", "format", "(", "current_mode", ")", ")" ]
*Wrapper of* ``MATERIALIZE`` Starts the execution of the operations for the GMQLDataset. PyGMQL implements lazy execution and no operation is performed until the materialization of the results is requestd. This operation can happen both locally or remotely. * Local mode: if the GMQLDataset is local (based on local data) the user can specify the :param output_path: (Optional) If specified, the user can say where to locally save the results of the computations. :param output_name: (Optional) Can be used only if the dataset is remote. It represents the name that the user wants to give to the resulting dataset on the server :param all_load: (Optional) It specifies if the result dataset should be directly converted to a GDataframe (True) or to a GMQLDataset (False) for future local queries. :return: A GDataframe or a GMQLDataset
[ "*", "Wrapper", "of", "*", "MATERIALIZE" ]
python
train
iotile/coretools
iotilebuild/iotile/build/config/scons-local-3.0.1/SCons/Environment.py
https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilebuild/iotile/build/config/scons-local-3.0.1/SCons/Environment.py#L613-L637
def Override(self, overrides): """ Produce a modified environment whose variables are overridden by the overrides dictionaries. "overrides" is a dictionary that will override the variables of this environment. This function is much more efficient than Clone() or creating a new Environment because it doesn't copy the construction environment dictionary, it just wraps the underlying construction environment, and doesn't even create a wrapper object if there are no overrides. """ if not overrides: return self o = copy_non_reserved_keywords(overrides) if not o: return self overrides = {} merges = None for key, value in o.items(): if key == 'parse_flags': merges = value else: overrides[key] = SCons.Subst.scons_subst_once(value, self, key) env = OverrideEnvironment(self, overrides) if merges: env.MergeFlags(merges) return env
[ "def", "Override", "(", "self", ",", "overrides", ")", ":", "if", "not", "overrides", ":", "return", "self", "o", "=", "copy_non_reserved_keywords", "(", "overrides", ")", "if", "not", "o", ":", "return", "self", "overrides", "=", "{", "}", "merges", "=", "None", "for", "key", ",", "value", "in", "o", ".", "items", "(", ")", ":", "if", "key", "==", "'parse_flags'", ":", "merges", "=", "value", "else", ":", "overrides", "[", "key", "]", "=", "SCons", ".", "Subst", ".", "scons_subst_once", "(", "value", ",", "self", ",", "key", ")", "env", "=", "OverrideEnvironment", "(", "self", ",", "overrides", ")", "if", "merges", ":", "env", ".", "MergeFlags", "(", "merges", ")", "return", "env" ]
Produce a modified environment whose variables are overridden by the overrides dictionaries. "overrides" is a dictionary that will override the variables of this environment. This function is much more efficient than Clone() or creating a new Environment because it doesn't copy the construction environment dictionary, it just wraps the underlying construction environment, and doesn't even create a wrapper object if there are no overrides.
[ "Produce", "a", "modified", "environment", "whose", "variables", "are", "overridden", "by", "the", "overrides", "dictionaries", ".", "overrides", "is", "a", "dictionary", "that", "will", "override", "the", "variables", "of", "this", "environment", "." ]
python
train
20c/xbahn
xbahn/engineer.py
https://github.com/20c/xbahn/blob/afb27b0576841338a366d7cac0200a782bd84be6/xbahn/engineer.py#L130-L149
def engineer_info(self, action): """ Returns: dict: engineer command information - arguments (list<dict>): command arguments - args (list): args to pass through to click.argument - kwargs (dict): keyword arguments to pass through to click.argument - options (list<dict>): command options - args (list): args to pass through to click.option - kwargs (dict): keyword options to pass through to click.option """ fn = getattr(self, action, None) if not fn: raise AttributeError("Engineer action not found: %s" % action) if not hasattr(fn, "engineer"): raise AttributeError("Engineer action not exposed: %s" % action) return fn.engineer
[ "def", "engineer_info", "(", "self", ",", "action", ")", ":", "fn", "=", "getattr", "(", "self", ",", "action", ",", "None", ")", "if", "not", "fn", ":", "raise", "AttributeError", "(", "\"Engineer action not found: %s\"", "%", "action", ")", "if", "not", "hasattr", "(", "fn", ",", "\"engineer\"", ")", ":", "raise", "AttributeError", "(", "\"Engineer action not exposed: %s\"", "%", "action", ")", "return", "fn", ".", "engineer" ]
Returns: dict: engineer command information - arguments (list<dict>): command arguments - args (list): args to pass through to click.argument - kwargs (dict): keyword arguments to pass through to click.argument - options (list<dict>): command options - args (list): args to pass through to click.option - kwargs (dict): keyword options to pass through to click.option
[ "Returns", ":", "dict", ":", "engineer", "command", "information", "-", "arguments", "(", "list<dict", ">", ")", ":", "command", "arguments", "-", "args", "(", "list", ")", ":", "args", "to", "pass", "through", "to", "click", ".", "argument", "-", "kwargs", "(", "dict", ")", ":", "keyword", "arguments", "to", "pass", "through", "to", "click", ".", "argument", "-", "options", "(", "list<dict", ">", ")", ":", "command", "options", "-", "args", "(", "list", ")", ":", "args", "to", "pass", "through", "to", "click", ".", "option", "-", "kwargs", "(", "dict", ")", ":", "keyword", "options", "to", "pass", "through", "to", "click", ".", "option" ]
python
train
bjodah/pycompilation
pycompilation/compilation.py
https://github.com/bjodah/pycompilation/blob/43eac8d82f8258d30d4df77fd2ad3f3e4f4dca18/pycompilation/compilation.py#L311-L381
def simple_cythonize(src, destdir=None, cwd=None, logger=None, full_module_name=None, only_update=False, **cy_kwargs): """ Generates a C file from a Cython source file. Parameters ---------- src: path string path to Cython source destdir: path string (optional) Path to output directory (default: '.') cwd: path string (optional) Root of relative paths (default: '.') logger: logging.Logger info level used. full_module_name: string passed to cy_compile (default: None) only_update: bool Only cythonize if source is newer. default: False **cy_kwargs: second argument passed to cy_compile. Generates a .cpp file if cplus=True in cy_kwargs, else a .c file. """ from Cython.Compiler.Main import ( default_options, CompilationOptions ) from Cython.Compiler.Main import compile as cy_compile assert src.lower().endswith('.pyx') or src.lower().endswith('.py') cwd = cwd or '.' destdir = destdir or '.' ext = '.cpp' if cy_kwargs.get('cplus', False) else '.c' c_name = os.path.splitext(os.path.basename(src))[0] + ext dstfile = os.path.join(destdir, c_name) if only_update: if not missing_or_other_newer(dstfile, src, cwd=cwd): msg = '{0} newer than {1}, did not re-cythonize.'.format( dstfile, src) if logger: logger.info(msg) else: print(msg) return dstfile if cwd: ori_dir = os.getcwd() else: ori_dir = '.' os.chdir(cwd) try: cy_options = CompilationOptions(default_options) cy_options.__dict__.update(cy_kwargs) if logger: logger.info("Cythonizing {0} to {1}".format( src, dstfile)) cy_result = cy_compile([src], cy_options, full_module_name=full_module_name) if cy_result.num_errors > 0: raise ValueError("Cython compilation failed.") if os.path.abspath(os.path.dirname( src)) != os.path.abspath(destdir): if os.path.exists(dstfile): os.unlink(dstfile) shutil.move(os.path.join(os.path.dirname(src), c_name), destdir) finally: os.chdir(ori_dir) return dstfile
[ "def", "simple_cythonize", "(", "src", ",", "destdir", "=", "None", ",", "cwd", "=", "None", ",", "logger", "=", "None", ",", "full_module_name", "=", "None", ",", "only_update", "=", "False", ",", "*", "*", "cy_kwargs", ")", ":", "from", "Cython", ".", "Compiler", ".", "Main", "import", "(", "default_options", ",", "CompilationOptions", ")", "from", "Cython", ".", "Compiler", ".", "Main", "import", "compile", "as", "cy_compile", "assert", "src", ".", "lower", "(", ")", ".", "endswith", "(", "'.pyx'", ")", "or", "src", ".", "lower", "(", ")", ".", "endswith", "(", "'.py'", ")", "cwd", "=", "cwd", "or", "'.'", "destdir", "=", "destdir", "or", "'.'", "ext", "=", "'.cpp'", "if", "cy_kwargs", ".", "get", "(", "'cplus'", ",", "False", ")", "else", "'.c'", "c_name", "=", "os", ".", "path", ".", "splitext", "(", "os", ".", "path", ".", "basename", "(", "src", ")", ")", "[", "0", "]", "+", "ext", "dstfile", "=", "os", ".", "path", ".", "join", "(", "destdir", ",", "c_name", ")", "if", "only_update", ":", "if", "not", "missing_or_other_newer", "(", "dstfile", ",", "src", ",", "cwd", "=", "cwd", ")", ":", "msg", "=", "'{0} newer than {1}, did not re-cythonize.'", ".", "format", "(", "dstfile", ",", "src", ")", "if", "logger", ":", "logger", ".", "info", "(", "msg", ")", "else", ":", "print", "(", "msg", ")", "return", "dstfile", "if", "cwd", ":", "ori_dir", "=", "os", ".", "getcwd", "(", ")", "else", ":", "ori_dir", "=", "'.'", "os", ".", "chdir", "(", "cwd", ")", "try", ":", "cy_options", "=", "CompilationOptions", "(", "default_options", ")", "cy_options", ".", "__dict__", ".", "update", "(", "cy_kwargs", ")", "if", "logger", ":", "logger", ".", "info", "(", "\"Cythonizing {0} to {1}\"", ".", "format", "(", "src", ",", "dstfile", ")", ")", "cy_result", "=", "cy_compile", "(", "[", "src", "]", ",", "cy_options", ",", "full_module_name", "=", "full_module_name", ")", "if", "cy_result", ".", "num_errors", ">", "0", ":", "raise", "ValueError", "(", "\"Cython compilation failed.\"", ")", "if", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "dirname", "(", "src", ")", ")", "!=", "os", ".", "path", ".", "abspath", "(", "destdir", ")", ":", "if", "os", ".", "path", ".", "exists", "(", "dstfile", ")", ":", "os", ".", "unlink", "(", "dstfile", ")", "shutil", ".", "move", "(", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "src", ")", ",", "c_name", ")", ",", "destdir", ")", "finally", ":", "os", ".", "chdir", "(", "ori_dir", ")", "return", "dstfile" ]
Generates a C file from a Cython source file. Parameters ---------- src: path string path to Cython source destdir: path string (optional) Path to output directory (default: '.') cwd: path string (optional) Root of relative paths (default: '.') logger: logging.Logger info level used. full_module_name: string passed to cy_compile (default: None) only_update: bool Only cythonize if source is newer. default: False **cy_kwargs: second argument passed to cy_compile. Generates a .cpp file if cplus=True in cy_kwargs, else a .c file.
[ "Generates", "a", "C", "file", "from", "a", "Cython", "source", "file", "." ]
python
train
IBMStreams/pypi.streamsx
streamsx/topology/context.py
https://github.com/IBMStreams/pypi.streamsx/blob/abd67b4757120f6f805787fba390f53e9df9cdd8/streamsx/topology/context.py#L55-L89
def submit(ctxtype, graph, config=None, username=None, password=None): """ Submits a `Topology` (application) using the specified context type. Used to submit an application for compilation into a Streams application and execution within an Streaming Analytics service or IBM Streams instance. `ctxtype` defines how the application will be submitted, see :py:class:`ContextTypes`. The parameters `username` and `password` are only required when submitting to an IBM Streams instance and it is required to access the Streams REST API from the code performing the submit. Accessing data from views created by :py:meth:`~streamsx.topology.topology.Stream.view` requires access to the Streams REST API. Args: ctxtype(str): Type of context the application will be submitted to. A value from :py:class:`ContextTypes`. graph(Topology): The application topology to be submitted. config(dict): Configuration for the submission. username(str): Username for the Streams REST api. password(str): Password for `username`. Returns: SubmissionResult: Result of the submission. For details of what is contained see the :py:class:`ContextTypes` constant passed as `ctxtype`. """ streamsx._streams._version._mismatch_check(__name__) graph = graph.graph if not graph.operators: raise ValueError("Topology {0} does not contain any streams.".format(graph.topology.name)) context_submitter = _SubmitContextFactory(graph, config, username, password).get_submit_context(ctxtype) sr = SubmissionResult(context_submitter.submit()) sr._submitter = context_submitter return sr
[ "def", "submit", "(", "ctxtype", ",", "graph", ",", "config", "=", "None", ",", "username", "=", "None", ",", "password", "=", "None", ")", ":", "streamsx", ".", "_streams", ".", "_version", ".", "_mismatch_check", "(", "__name__", ")", "graph", "=", "graph", ".", "graph", "if", "not", "graph", ".", "operators", ":", "raise", "ValueError", "(", "\"Topology {0} does not contain any streams.\"", ".", "format", "(", "graph", ".", "topology", ".", "name", ")", ")", "context_submitter", "=", "_SubmitContextFactory", "(", "graph", ",", "config", ",", "username", ",", "password", ")", ".", "get_submit_context", "(", "ctxtype", ")", "sr", "=", "SubmissionResult", "(", "context_submitter", ".", "submit", "(", ")", ")", "sr", ".", "_submitter", "=", "context_submitter", "return", "sr" ]
Submits a `Topology` (application) using the specified context type. Used to submit an application for compilation into a Streams application and execution within an Streaming Analytics service or IBM Streams instance. `ctxtype` defines how the application will be submitted, see :py:class:`ContextTypes`. The parameters `username` and `password` are only required when submitting to an IBM Streams instance and it is required to access the Streams REST API from the code performing the submit. Accessing data from views created by :py:meth:`~streamsx.topology.topology.Stream.view` requires access to the Streams REST API. Args: ctxtype(str): Type of context the application will be submitted to. A value from :py:class:`ContextTypes`. graph(Topology): The application topology to be submitted. config(dict): Configuration for the submission. username(str): Username for the Streams REST api. password(str): Password for `username`. Returns: SubmissionResult: Result of the submission. For details of what is contained see the :py:class:`ContextTypes` constant passed as `ctxtype`.
[ "Submits", "a", "Topology", "(", "application", ")", "using", "the", "specified", "context", "type", "." ]
python
train
glue-viz/glue-vispy-viewers
glue_vispy_viewers/extern/vispy/app/backends/ipython/_widget.py
https://github.com/glue-viz/glue-vispy-viewers/blob/54a4351d98c1f90dfb1a557d1b447c1f57470eea/glue_vispy_viewers/extern/vispy/app/backends/ipython/_widget.py#L21-L31
def _stop_timers(canvas): """Stop all timers in a canvas.""" for attr in dir(canvas): try: attr_obj = getattr(canvas, attr) except NotImplementedError: # This try/except is needed because canvas.position raises # an error (it is not implemented in this backend). attr_obj = None if isinstance(attr_obj, Timer): attr_obj.stop()
[ "def", "_stop_timers", "(", "canvas", ")", ":", "for", "attr", "in", "dir", "(", "canvas", ")", ":", "try", ":", "attr_obj", "=", "getattr", "(", "canvas", ",", "attr", ")", "except", "NotImplementedError", ":", "# This try/except is needed because canvas.position raises", "# an error (it is not implemented in this backend).", "attr_obj", "=", "None", "if", "isinstance", "(", "attr_obj", ",", "Timer", ")", ":", "attr_obj", ".", "stop", "(", ")" ]
Stop all timers in a canvas.
[ "Stop", "all", "timers", "in", "a", "canvas", "." ]
python
train
common-workflow-language/workflow-service
wes_service/util.py
https://github.com/common-workflow-language/workflow-service/blob/e879604b65c55546e4f87be1c9df9903a3e0b896/wes_service/util.py#L38-L44
def getoptlist(self, p): """Returns all option values stored that match p as a list.""" optlist = [] for k, v in self.pairs: if k == p: optlist.append(v) return optlist
[ "def", "getoptlist", "(", "self", ",", "p", ")", ":", "optlist", "=", "[", "]", "for", "k", ",", "v", "in", "self", ".", "pairs", ":", "if", "k", "==", "p", ":", "optlist", ".", "append", "(", "v", ")", "return", "optlist" ]
Returns all option values stored that match p as a list.
[ "Returns", "all", "option", "values", "stored", "that", "match", "p", "as", "a", "list", "." ]
python
train
shoebot/shoebot
shoebot/grammar/livecode.py
https://github.com/shoebot/shoebot/blob/d554c1765c1899fa25727c9fc6805d221585562b/shoebot/grammar/livecode.py#L84-L103
def run_tenuous(self): """ Run edited source, if no exceptions occur then it graduates to known good. """ with LiveExecution.lock: ns_snapshot = copy.copy(self.ns) try: source = self.edited_source self.edited_source = None self.do_exec(source, ns_snapshot) self.known_good = source self.call_good_cb() return True, None except Exception as ex: tb = traceback.format_exc() self.call_bad_cb(tb) self.ns.clear() self.ns.update(ns_snapshot) return False, ex
[ "def", "run_tenuous", "(", "self", ")", ":", "with", "LiveExecution", ".", "lock", ":", "ns_snapshot", "=", "copy", ".", "copy", "(", "self", ".", "ns", ")", "try", ":", "source", "=", "self", ".", "edited_source", "self", ".", "edited_source", "=", "None", "self", ".", "do_exec", "(", "source", ",", "ns_snapshot", ")", "self", ".", "known_good", "=", "source", "self", ".", "call_good_cb", "(", ")", "return", "True", ",", "None", "except", "Exception", "as", "ex", ":", "tb", "=", "traceback", ".", "format_exc", "(", ")", "self", ".", "call_bad_cb", "(", "tb", ")", "self", ".", "ns", ".", "clear", "(", ")", "self", ".", "ns", ".", "update", "(", "ns_snapshot", ")", "return", "False", ",", "ex" ]
Run edited source, if no exceptions occur then it graduates to known good.
[ "Run", "edited", "source", "if", "no", "exceptions", "occur", "then", "it", "graduates", "to", "known", "good", "." ]
python
valid
RedHatInsights/insights-core
insights/client/config.py
https://github.com/RedHatInsights/insights-core/blob/b57cbf8ed7c089672426ede0441e0a4f789ef4a1/insights/client/config.py#L393-L417
def _update_dict(self, dict_): ''' Update without allowing undefined options or overwrite of class methods ''' dict_ = dict((k, v) for k, v in dict_.items() if ( k not in self._init_attrs)) # zzz if 'no_gpg' in dict_ and dict_['no_gpg']: dict_['gpg'] = False unknown_opts = set(dict_.keys()).difference(set(DEFAULT_OPTS.keys())) if unknown_opts and self._print_errors: # only print error once sys.stdout.write( 'WARNING: Unknown options: ' + ', '.join(list(unknown_opts)) + '\n') if 'no_schedule' in unknown_opts: sys.stdout.write('WARNING: Config option `no_schedule` has ' 'been deprecated. To disable automatic ' 'scheduling for Red Hat Insights, run ' '`insights-client --disable-schedule`\n') for u in unknown_opts: dict_.pop(u, None) self.__dict__.update(dict_)
[ "def", "_update_dict", "(", "self", ",", "dict_", ")", ":", "dict_", "=", "dict", "(", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "dict_", ".", "items", "(", ")", "if", "(", "k", "not", "in", "self", ".", "_init_attrs", ")", ")", "# zzz", "if", "'no_gpg'", "in", "dict_", "and", "dict_", "[", "'no_gpg'", "]", ":", "dict_", "[", "'gpg'", "]", "=", "False", "unknown_opts", "=", "set", "(", "dict_", ".", "keys", "(", ")", ")", ".", "difference", "(", "set", "(", "DEFAULT_OPTS", ".", "keys", "(", ")", ")", ")", "if", "unknown_opts", "and", "self", ".", "_print_errors", ":", "# only print error once", "sys", ".", "stdout", ".", "write", "(", "'WARNING: Unknown options: '", "+", "', '", ".", "join", "(", "list", "(", "unknown_opts", ")", ")", "+", "'\\n'", ")", "if", "'no_schedule'", "in", "unknown_opts", ":", "sys", ".", "stdout", ".", "write", "(", "'WARNING: Config option `no_schedule` has '", "'been deprecated. To disable automatic '", "'scheduling for Red Hat Insights, run '", "'`insights-client --disable-schedule`\\n'", ")", "for", "u", "in", "unknown_opts", ":", "dict_", ".", "pop", "(", "u", ",", "None", ")", "self", ".", "__dict__", ".", "update", "(", "dict_", ")" ]
Update without allowing undefined options or overwrite of class methods
[ "Update", "without", "allowing", "undefined", "options", "or", "overwrite", "of", "class", "methods" ]
python
train
oscarlazoarjona/fast
fast/symbolic.py
https://github.com/oscarlazoarjona/fast/blob/3e5400672af2a7b7cc616e7f4aa10d7672720222/fast/symbolic.py#L1431-L1462
def cross(a, b): r"""Cross product of two 3d vectors.""" if isinstance(a, Mul): a = a.expand() avect = 1 aivect = -1 for ai, fact in enumerate(a.args): if isinstance(fact, Vector3D): avect = fact aivect = ai break acoef = a.args[:aivect] + a.args[aivect+1:] acoef = Mul(*acoef) return acoef*cross(avect, b) if isinstance(b, Mul): b = b.expand() bvect = 1 bivect = -1 for bi, fact in enumerate(b.args): if isinstance(fact, Vector3D): bvect = fact bivect = bi break bcoef = b.args[:bivect] + b.args[bivect+1:] bcoef = Mul(*bcoef) return bcoef*cross(a, bvect) if isinstance(a, Vector3D) and isinstance(b, Vector3D): return CrossProduct(a, b)
[ "def", "cross", "(", "a", ",", "b", ")", ":", "if", "isinstance", "(", "a", ",", "Mul", ")", ":", "a", "=", "a", ".", "expand", "(", ")", "avect", "=", "1", "aivect", "=", "-", "1", "for", "ai", ",", "fact", "in", "enumerate", "(", "a", ".", "args", ")", ":", "if", "isinstance", "(", "fact", ",", "Vector3D", ")", ":", "avect", "=", "fact", "aivect", "=", "ai", "break", "acoef", "=", "a", ".", "args", "[", ":", "aivect", "]", "+", "a", ".", "args", "[", "aivect", "+", "1", ":", "]", "acoef", "=", "Mul", "(", "*", "acoef", ")", "return", "acoef", "*", "cross", "(", "avect", ",", "b", ")", "if", "isinstance", "(", "b", ",", "Mul", ")", ":", "b", "=", "b", ".", "expand", "(", ")", "bvect", "=", "1", "bivect", "=", "-", "1", "for", "bi", ",", "fact", "in", "enumerate", "(", "b", ".", "args", ")", ":", "if", "isinstance", "(", "fact", ",", "Vector3D", ")", ":", "bvect", "=", "fact", "bivect", "=", "bi", "break", "bcoef", "=", "b", ".", "args", "[", ":", "bivect", "]", "+", "b", ".", "args", "[", "bivect", "+", "1", ":", "]", "bcoef", "=", "Mul", "(", "*", "bcoef", ")", "return", "bcoef", "*", "cross", "(", "a", ",", "bvect", ")", "if", "isinstance", "(", "a", ",", "Vector3D", ")", "and", "isinstance", "(", "b", ",", "Vector3D", ")", ":", "return", "CrossProduct", "(", "a", ",", "b", ")" ]
r"""Cross product of two 3d vectors.
[ "r", "Cross", "product", "of", "two", "3d", "vectors", "." ]
python
train
saltstack/salt
salt/master.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/master.py#L2063-L2174
def publish(self, clear_load): ''' This method sends out publications to the minions, it can only be used by the LocalClient. ''' extra = clear_load.get('kwargs', {}) publisher_acl = salt.acl.PublisherACL(self.opts['publisher_acl_blacklist']) if publisher_acl.user_is_blacklisted(clear_load['user']) or \ publisher_acl.cmd_is_blacklisted(clear_load['fun']): log.error( '%s does not have permissions to run %s. Please contact ' 'your local administrator if you believe this is in ' 'error.\n', clear_load['user'], clear_load['fun'] ) return {'error': {'name': 'AuthorizationError', 'message': 'Authorization error occurred.'}} # Retrieve the minions list delimiter = clear_load.get('kwargs', {}).get('delimiter', DEFAULT_TARGET_DELIM) _res = self.ckminions.check_minions( clear_load['tgt'], clear_load.get('tgt_type', 'glob'), delimiter ) minions = _res.get('minions', list()) missing = _res.get('missing', list()) ssh_minions = _res.get('ssh_minions', False) # Check for external auth calls and authenticate auth_type, err_name, key, sensitive_load_keys = self._prep_auth_info(extra) if auth_type == 'user': auth_check = self.loadauth.check_authentication(clear_load, auth_type, key=key) else: auth_check = self.loadauth.check_authentication(extra, auth_type) # Setup authorization list variable and error information auth_list = auth_check.get('auth_list', []) err_msg = 'Authentication failure of type "{0}" occurred.'.format(auth_type) if auth_check.get('error'): # Authentication error occurred: do not continue. log.warning(err_msg) return {'error': {'name': 'AuthenticationError', 'message': 'Authentication error occurred.'}} # All Token, Eauth, and non-root users must pass the authorization check if auth_type != 'user' or (auth_type == 'user' and auth_list): # Authorize the request authorized = self.ckminions.auth_check( auth_list, clear_load['fun'], clear_load['arg'], clear_load['tgt'], clear_load.get('tgt_type', 'glob'), minions=minions, # always accept find_job whitelist=['saltutil.find_job'], ) if not authorized: # Authorization error occurred. Do not continue. if auth_type == 'eauth' and not auth_list and 'username' in extra and 'eauth' in extra: log.debug('Auth configuration for eauth "%s" and user "%s" is empty', extra['eauth'], extra['username']) log.warning(err_msg) return {'error': {'name': 'AuthorizationError', 'message': 'Authorization error occurred.'}} # Perform some specific auth_type tasks after the authorization check if auth_type == 'token': username = auth_check.get('username') clear_load['user'] = username log.debug('Minion tokenized user = "%s"', username) elif auth_type == 'eauth': # The username we are attempting to auth with clear_load['user'] = self.loadauth.load_name(extra) # If we order masters (via a syndic), don't short circuit if no minions # are found if not self.opts.get('order_masters'): # Check for no minions if not minions: return { 'enc': 'clear', 'load': { 'jid': None, 'minions': minions, 'error': 'Master could not resolve minions for target {0}'.format(clear_load['tgt']) } } if extra.get('batch', None): return self.publish_batch(clear_load, extra, minions, missing) jid = self._prep_jid(clear_load, extra) if jid is None: return {'enc': 'clear', 'load': {'error': 'Master failed to assign jid'}} payload = self._prep_pub(minions, jid, clear_load, extra, missing) # Send it! self._send_ssh_pub(payload, ssh_minions=ssh_minions) self._send_pub(payload) return { 'enc': 'clear', 'load': { 'jid': clear_load['jid'], 'minions': minions, 'missing': missing } }
[ "def", "publish", "(", "self", ",", "clear_load", ")", ":", "extra", "=", "clear_load", ".", "get", "(", "'kwargs'", ",", "{", "}", ")", "publisher_acl", "=", "salt", ".", "acl", ".", "PublisherACL", "(", "self", ".", "opts", "[", "'publisher_acl_blacklist'", "]", ")", "if", "publisher_acl", ".", "user_is_blacklisted", "(", "clear_load", "[", "'user'", "]", ")", "or", "publisher_acl", ".", "cmd_is_blacklisted", "(", "clear_load", "[", "'fun'", "]", ")", ":", "log", ".", "error", "(", "'%s does not have permissions to run %s. Please contact '", "'your local administrator if you believe this is in '", "'error.\\n'", ",", "clear_load", "[", "'user'", "]", ",", "clear_load", "[", "'fun'", "]", ")", "return", "{", "'error'", ":", "{", "'name'", ":", "'AuthorizationError'", ",", "'message'", ":", "'Authorization error occurred.'", "}", "}", "# Retrieve the minions list", "delimiter", "=", "clear_load", ".", "get", "(", "'kwargs'", ",", "{", "}", ")", ".", "get", "(", "'delimiter'", ",", "DEFAULT_TARGET_DELIM", ")", "_res", "=", "self", ".", "ckminions", ".", "check_minions", "(", "clear_load", "[", "'tgt'", "]", ",", "clear_load", ".", "get", "(", "'tgt_type'", ",", "'glob'", ")", ",", "delimiter", ")", "minions", "=", "_res", ".", "get", "(", "'minions'", ",", "list", "(", ")", ")", "missing", "=", "_res", ".", "get", "(", "'missing'", ",", "list", "(", ")", ")", "ssh_minions", "=", "_res", ".", "get", "(", "'ssh_minions'", ",", "False", ")", "# Check for external auth calls and authenticate", "auth_type", ",", "err_name", ",", "key", ",", "sensitive_load_keys", "=", "self", ".", "_prep_auth_info", "(", "extra", ")", "if", "auth_type", "==", "'user'", ":", "auth_check", "=", "self", ".", "loadauth", ".", "check_authentication", "(", "clear_load", ",", "auth_type", ",", "key", "=", "key", ")", "else", ":", "auth_check", "=", "self", ".", "loadauth", ".", "check_authentication", "(", "extra", ",", "auth_type", ")", "# Setup authorization list variable and error information", "auth_list", "=", "auth_check", ".", "get", "(", "'auth_list'", ",", "[", "]", ")", "err_msg", "=", "'Authentication failure of type \"{0}\" occurred.'", ".", "format", "(", "auth_type", ")", "if", "auth_check", ".", "get", "(", "'error'", ")", ":", "# Authentication error occurred: do not continue.", "log", ".", "warning", "(", "err_msg", ")", "return", "{", "'error'", ":", "{", "'name'", ":", "'AuthenticationError'", ",", "'message'", ":", "'Authentication error occurred.'", "}", "}", "# All Token, Eauth, and non-root users must pass the authorization check", "if", "auth_type", "!=", "'user'", "or", "(", "auth_type", "==", "'user'", "and", "auth_list", ")", ":", "# Authorize the request", "authorized", "=", "self", ".", "ckminions", ".", "auth_check", "(", "auth_list", ",", "clear_load", "[", "'fun'", "]", ",", "clear_load", "[", "'arg'", "]", ",", "clear_load", "[", "'tgt'", "]", ",", "clear_load", ".", "get", "(", "'tgt_type'", ",", "'glob'", ")", ",", "minions", "=", "minions", ",", "# always accept find_job", "whitelist", "=", "[", "'saltutil.find_job'", "]", ",", ")", "if", "not", "authorized", ":", "# Authorization error occurred. Do not continue.", "if", "auth_type", "==", "'eauth'", "and", "not", "auth_list", "and", "'username'", "in", "extra", "and", "'eauth'", "in", "extra", ":", "log", ".", "debug", "(", "'Auth configuration for eauth \"%s\" and user \"%s\" is empty'", ",", "extra", "[", "'eauth'", "]", ",", "extra", "[", "'username'", "]", ")", "log", ".", "warning", "(", "err_msg", ")", "return", "{", "'error'", ":", "{", "'name'", ":", "'AuthorizationError'", ",", "'message'", ":", "'Authorization error occurred.'", "}", "}", "# Perform some specific auth_type tasks after the authorization check", "if", "auth_type", "==", "'token'", ":", "username", "=", "auth_check", ".", "get", "(", "'username'", ")", "clear_load", "[", "'user'", "]", "=", "username", "log", ".", "debug", "(", "'Minion tokenized user = \"%s\"'", ",", "username", ")", "elif", "auth_type", "==", "'eauth'", ":", "# The username we are attempting to auth with", "clear_load", "[", "'user'", "]", "=", "self", ".", "loadauth", ".", "load_name", "(", "extra", ")", "# If we order masters (via a syndic), don't short circuit if no minions", "# are found", "if", "not", "self", ".", "opts", ".", "get", "(", "'order_masters'", ")", ":", "# Check for no minions", "if", "not", "minions", ":", "return", "{", "'enc'", ":", "'clear'", ",", "'load'", ":", "{", "'jid'", ":", "None", ",", "'minions'", ":", "minions", ",", "'error'", ":", "'Master could not resolve minions for target {0}'", ".", "format", "(", "clear_load", "[", "'tgt'", "]", ")", "}", "}", "if", "extra", ".", "get", "(", "'batch'", ",", "None", ")", ":", "return", "self", ".", "publish_batch", "(", "clear_load", ",", "extra", ",", "minions", ",", "missing", ")", "jid", "=", "self", ".", "_prep_jid", "(", "clear_load", ",", "extra", ")", "if", "jid", "is", "None", ":", "return", "{", "'enc'", ":", "'clear'", ",", "'load'", ":", "{", "'error'", ":", "'Master failed to assign jid'", "}", "}", "payload", "=", "self", ".", "_prep_pub", "(", "minions", ",", "jid", ",", "clear_load", ",", "extra", ",", "missing", ")", "# Send it!", "self", ".", "_send_ssh_pub", "(", "payload", ",", "ssh_minions", "=", "ssh_minions", ")", "self", ".", "_send_pub", "(", "payload", ")", "return", "{", "'enc'", ":", "'clear'", ",", "'load'", ":", "{", "'jid'", ":", "clear_load", "[", "'jid'", "]", ",", "'minions'", ":", "minions", ",", "'missing'", ":", "missing", "}", "}" ]
This method sends out publications to the minions, it can only be used by the LocalClient.
[ "This", "method", "sends", "out", "publications", "to", "the", "minions", "it", "can", "only", "be", "used", "by", "the", "LocalClient", "." ]
python
train
trendels/rhino
rhino/response.py
https://github.com/trendels/rhino/blob/f1f0ef21b6080a2bd130b38b5bef163074c94aed/rhino/response.py#L362-L404
def response(code, body='', etag=None, last_modified=None, expires=None, **kw): """Helper to build an HTTP response. Parameters: code : An integer status code. body : The response body. See `Response.__init__` for details. etag : A value for the ETag header. Double quotes will be added unless the string starts and ends with a double quote. last_modified : A value for the Last-Modified header as a datetime.datetime object or Unix timestamp. expires : A value for the Expires header as number of seconds, datetime.timedelta or datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp. **kw : All other keyword arguments are interpreted as response headers. The names will be converted to header names by replacing underscores with hyphens and converting to title case (e.g. `x_powered_by` => `X-Powered-By`). """ if etag is not None: if not (etag[0] == '"' and etag[-1] == '"'): etag = '"%s"' % etag kw['etag'] = etag if last_modified is not None: kw['last_modified'] = datetime_to_httpdate(last_modified) if expires is not None: if isinstance(expires, datetime): kw['expires'] = datetime_to_httpdate(expires) else: kw['expires'] = timedelta_to_httpdate(expires) headers = [(k.replace('_', '-').title(), v) for k, v in sorted(kw.items())] return Response(code, headers, body)
[ "def", "response", "(", "code", ",", "body", "=", "''", ",", "etag", "=", "None", ",", "last_modified", "=", "None", ",", "expires", "=", "None", ",", "*", "*", "kw", ")", ":", "if", "etag", "is", "not", "None", ":", "if", "not", "(", "etag", "[", "0", "]", "==", "'\"'", "and", "etag", "[", "-", "1", "]", "==", "'\"'", ")", ":", "etag", "=", "'\"%s\"'", "%", "etag", "kw", "[", "'etag'", "]", "=", "etag", "if", "last_modified", "is", "not", "None", ":", "kw", "[", "'last_modified'", "]", "=", "datetime_to_httpdate", "(", "last_modified", ")", "if", "expires", "is", "not", "None", ":", "if", "isinstance", "(", "expires", ",", "datetime", ")", ":", "kw", "[", "'expires'", "]", "=", "datetime_to_httpdate", "(", "expires", ")", "else", ":", "kw", "[", "'expires'", "]", "=", "timedelta_to_httpdate", "(", "expires", ")", "headers", "=", "[", "(", "k", ".", "replace", "(", "'_'", ",", "'-'", ")", ".", "title", "(", ")", ",", "v", ")", "for", "k", ",", "v", "in", "sorted", "(", "kw", ".", "items", "(", ")", ")", "]", "return", "Response", "(", "code", ",", "headers", ",", "body", ")" ]
Helper to build an HTTP response. Parameters: code : An integer status code. body : The response body. See `Response.__init__` for details. etag : A value for the ETag header. Double quotes will be added unless the string starts and ends with a double quote. last_modified : A value for the Last-Modified header as a datetime.datetime object or Unix timestamp. expires : A value for the Expires header as number of seconds, datetime.timedelta or datetime.datetime object. Note: a value of type int or float is interpreted as a number of seconds in the future, *not* as Unix timestamp. **kw : All other keyword arguments are interpreted as response headers. The names will be converted to header names by replacing underscores with hyphens and converting to title case (e.g. `x_powered_by` => `X-Powered-By`).
[ "Helper", "to", "build", "an", "HTTP", "response", "." ]
python
train
DataONEorg/d1_python
gmn/src/d1_gmn/app/management/commands/process_replication_queue.py
https://github.com/DataONEorg/d1_python/blob/3ac4d4f3ca052d3e8641a6a329cab526c8ddcb0d/gmn/src/d1_gmn/app/management/commands/process_replication_queue.py#L228-L246
def _create_replica(self, sysmeta_pyxb, sciobj_bytestream): """GMN handles replicas differently from native objects, with the main differences being related to handling of restrictions related to revision chains and SIDs. So this create sequence differs significantly from the regular one that is accessed through MNStorage.create(). """ pid = d1_common.xml.get_req_val(sysmeta_pyxb.identifier) self._assert_is_pid_of_local_unprocessed_replica(pid) self._check_and_create_replica_revision(sysmeta_pyxb, "obsoletes") self._check_and_create_replica_revision(sysmeta_pyxb, "obsoletedBy") sciobj_url = d1_gmn.app.sciobj_store.get_rel_sciobj_file_url_by_pid(pid) sciobj_model = d1_gmn.app.sysmeta.create_or_update(sysmeta_pyxb, sciobj_url) self._store_science_object_bytes(pid, sciobj_bytestream) d1_gmn.app.event_log.create_log_entry( sciobj_model, "create", "0.0.0.0", "[replica]", "[replica]" )
[ "def", "_create_replica", "(", "self", ",", "sysmeta_pyxb", ",", "sciobj_bytestream", ")", ":", "pid", "=", "d1_common", ".", "xml", ".", "get_req_val", "(", "sysmeta_pyxb", ".", "identifier", ")", "self", ".", "_assert_is_pid_of_local_unprocessed_replica", "(", "pid", ")", "self", ".", "_check_and_create_replica_revision", "(", "sysmeta_pyxb", ",", "\"obsoletes\"", ")", "self", ".", "_check_and_create_replica_revision", "(", "sysmeta_pyxb", ",", "\"obsoletedBy\"", ")", "sciobj_url", "=", "d1_gmn", ".", "app", ".", "sciobj_store", ".", "get_rel_sciobj_file_url_by_pid", "(", "pid", ")", "sciobj_model", "=", "d1_gmn", ".", "app", ".", "sysmeta", ".", "create_or_update", "(", "sysmeta_pyxb", ",", "sciobj_url", ")", "self", ".", "_store_science_object_bytes", "(", "pid", ",", "sciobj_bytestream", ")", "d1_gmn", ".", "app", ".", "event_log", ".", "create_log_entry", "(", "sciobj_model", ",", "\"create\"", ",", "\"0.0.0.0\"", ",", "\"[replica]\"", ",", "\"[replica]\"", ")" ]
GMN handles replicas differently from native objects, with the main differences being related to handling of restrictions related to revision chains and SIDs. So this create sequence differs significantly from the regular one that is accessed through MNStorage.create().
[ "GMN", "handles", "replicas", "differently", "from", "native", "objects", "with", "the", "main", "differences", "being", "related", "to", "handling", "of", "restrictions", "related", "to", "revision", "chains", "and", "SIDs", "." ]
python
train
arraylabs/pymyq
pymyq/api.py
https://github.com/arraylabs/pymyq/blob/413ae01ca23568f7b5f698a87e872f456072356b/pymyq/api.py#L255-L283
async def get_devices(self, covers_only: bool = True) -> list: """Get a list of all devices associated with the account.""" from .device import MyQDevice _LOGGER.debug('Retrieving list of devices') devices_resp = await self._request('get', DEVICE_LIST_ENDPOINT) # print(json.dumps(devices_resp, indent=4)) device_list = [] if devices_resp is None: return device_list for device in devices_resp['Devices']: if not covers_only or \ device['MyQDeviceTypeName'] in SUPPORTED_DEVICE_TYPE_NAMES: self._devices.append({ 'device_id': device['MyQDeviceId'], 'device_info': device }) myq_device = MyQDevice( self._devices[-1], self._brand, self) device_list.append(myq_device) # Store current device states. self._store_device_states(devices_resp.get('Devices', [])) _LOGGER.debug('List of devices retrieved') return device_list
[ "async", "def", "get_devices", "(", "self", ",", "covers_only", ":", "bool", "=", "True", ")", "->", "list", ":", "from", ".", "device", "import", "MyQDevice", "_LOGGER", ".", "debug", "(", "'Retrieving list of devices'", ")", "devices_resp", "=", "await", "self", ".", "_request", "(", "'get'", ",", "DEVICE_LIST_ENDPOINT", ")", "# print(json.dumps(devices_resp, indent=4))", "device_list", "=", "[", "]", "if", "devices_resp", "is", "None", ":", "return", "device_list", "for", "device", "in", "devices_resp", "[", "'Devices'", "]", ":", "if", "not", "covers_only", "or", "device", "[", "'MyQDeviceTypeName'", "]", "in", "SUPPORTED_DEVICE_TYPE_NAMES", ":", "self", ".", "_devices", ".", "append", "(", "{", "'device_id'", ":", "device", "[", "'MyQDeviceId'", "]", ",", "'device_info'", ":", "device", "}", ")", "myq_device", "=", "MyQDevice", "(", "self", ".", "_devices", "[", "-", "1", "]", ",", "self", ".", "_brand", ",", "self", ")", "device_list", ".", "append", "(", "myq_device", ")", "# Store current device states.", "self", ".", "_store_device_states", "(", "devices_resp", ".", "get", "(", "'Devices'", ",", "[", "]", ")", ")", "_LOGGER", ".", "debug", "(", "'List of devices retrieved'", ")", "return", "device_list" ]
Get a list of all devices associated with the account.
[ "Get", "a", "list", "of", "all", "devices", "associated", "with", "the", "account", "." ]
python
train
basho/riak-python-client
riak/transports/pool.py
https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/transports/pool.py#L209-L221
def delete_resource(self, resource): """ Deletes the resource from the pool and destroys the associated resource. Not usually needed by users of the pool, but called internally when BadResource is raised. :param resource: the resource to remove :type resource: Resource """ with self.lock: self.resources.remove(resource) self.destroy_resource(resource.object) del resource
[ "def", "delete_resource", "(", "self", ",", "resource", ")", ":", "with", "self", ".", "lock", ":", "self", ".", "resources", ".", "remove", "(", "resource", ")", "self", ".", "destroy_resource", "(", "resource", ".", "object", ")", "del", "resource" ]
Deletes the resource from the pool and destroys the associated resource. Not usually needed by users of the pool, but called internally when BadResource is raised. :param resource: the resource to remove :type resource: Resource
[ "Deletes", "the", "resource", "from", "the", "pool", "and", "destroys", "the", "associated", "resource", ".", "Not", "usually", "needed", "by", "users", "of", "the", "pool", "but", "called", "internally", "when", "BadResource", "is", "raised", "." ]
python
train
peepall/FancyLogger
FancyLogger/__init__.py
https://github.com/peepall/FancyLogger/blob/7f13f1397e76ed768fb6b6358194118831fafc6d/FancyLogger/__init__.py#L305-L336
def set_task(self, task_id, total, prefix, suffix='', decimals=0, bar_length=60, keep_alive=False, display_time=False): """ Defines a new progress bar with the given information. :param task_id: Unique identifier for this progress bar. Will erase if already existing. :param total: The total number of iteration for this progress bar. :param prefix: The text that should be displayed at the left side of the progress bar. Note that progress bars will always stay left-aligned at the shortest possible. :param suffix: [Optional] The text that should be displayed at the very right side of the progress bar. :param decimals: [Optional] The number of decimals to display for the percentage. :param bar_length: [Optional] The graphical bar size displayed on screen. Unit is character. :param keep_alive: [Optional] Specify whether the progress bar should stay displayed forever once completed or if it should vanish. :param display_time: [Optional] Specify whether the duration since the progress has begun should be displayed. Running time will be displayed between parenthesis, whereas it will be displayed between brackets when the progress has completed. """ self.queue.put(dill.dumps(NewTaskCommand(task_id=task_id, task=TaskProgress(total, prefix, suffix, decimals, bar_length, keep_alive, display_time))))
[ "def", "set_task", "(", "self", ",", "task_id", ",", "total", ",", "prefix", ",", "suffix", "=", "''", ",", "decimals", "=", "0", ",", "bar_length", "=", "60", ",", "keep_alive", "=", "False", ",", "display_time", "=", "False", ")", ":", "self", ".", "queue", ".", "put", "(", "dill", ".", "dumps", "(", "NewTaskCommand", "(", "task_id", "=", "task_id", ",", "task", "=", "TaskProgress", "(", "total", ",", "prefix", ",", "suffix", ",", "decimals", ",", "bar_length", ",", "keep_alive", ",", "display_time", ")", ")", ")", ")" ]
Defines a new progress bar with the given information. :param task_id: Unique identifier for this progress bar. Will erase if already existing. :param total: The total number of iteration for this progress bar. :param prefix: The text that should be displayed at the left side of the progress bar. Note that progress bars will always stay left-aligned at the shortest possible. :param suffix: [Optional] The text that should be displayed at the very right side of the progress bar. :param decimals: [Optional] The number of decimals to display for the percentage. :param bar_length: [Optional] The graphical bar size displayed on screen. Unit is character. :param keep_alive: [Optional] Specify whether the progress bar should stay displayed forever once completed or if it should vanish. :param display_time: [Optional] Specify whether the duration since the progress has begun should be displayed. Running time will be displayed between parenthesis, whereas it will be displayed between brackets when the progress has completed.
[ "Defines", "a", "new", "progress", "bar", "with", "the", "given", "information", ".", ":", "param", "task_id", ":", "Unique", "identifier", "for", "this", "progress", "bar", ".", "Will", "erase", "if", "already", "existing", ".", ":", "param", "total", ":", "The", "total", "number", "of", "iteration", "for", "this", "progress", "bar", ".", ":", "param", "prefix", ":", "The", "text", "that", "should", "be", "displayed", "at", "the", "left", "side", "of", "the", "progress", "bar", ".", "Note", "that", "progress", "bars", "will", "always", "stay", "left", "-", "aligned", "at", "the", "shortest", "possible", ".", ":", "param", "suffix", ":", "[", "Optional", "]", "The", "text", "that", "should", "be", "displayed", "at", "the", "very", "right", "side", "of", "the", "progress", "bar", ".", ":", "param", "decimals", ":", "[", "Optional", "]", "The", "number", "of", "decimals", "to", "display", "for", "the", "percentage", ".", ":", "param", "bar_length", ":", "[", "Optional", "]", "The", "graphical", "bar", "size", "displayed", "on", "screen", ".", "Unit", "is", "character", ".", ":", "param", "keep_alive", ":", "[", "Optional", "]", "Specify", "whether", "the", "progress", "bar", "should", "stay", "displayed", "forever", "once", "completed", "or", "if", "it", "should", "vanish", ".", ":", "param", "display_time", ":", "[", "Optional", "]", "Specify", "whether", "the", "duration", "since", "the", "progress", "has", "begun", "should", "be", "displayed", ".", "Running", "time", "will", "be", "displayed", "between", "parenthesis", "whereas", "it", "will", "be", "displayed", "between", "brackets", "when", "the", "progress", "has", "completed", "." ]
python
train
greenbone/ospd
ospd/ospd.py
https://github.com/greenbone/ospd/blob/cef773166b15a19c17764721d3fe404fa0e107bf/ospd/ospd.py#L759-L800
def handle_client_stream(self, stream, is_unix=False): """ Handles stream of data received from client. """ assert stream data = [] stream.settimeout(2) while True: try: if is_unix: buf = stream.recv(1024) else: buf = stream.read(1024) if not buf: break data.append(buf) except (AttributeError, ValueError) as message: logger.error(message) return except (ssl.SSLError) as exception: logger.debug('Error: %s', exception[0]) break except (socket.timeout) as exception: logger.debug('Error: %s', exception) break data = b''.join(data) if len(data) <= 0: logger.debug("Empty client stream") return try: response = self.handle_command(data) except OSPDError as exception: response = exception.as_xml() logger.debug('Command error: %s', exception.message) except Exception: logger.exception('While handling client command:') exception = OSPDError('Fatal error', 'error') response = exception.as_xml() if is_unix: send_method = stream.send else: send_method = stream.write self.write_to_stream(send_method, response)
[ "def", "handle_client_stream", "(", "self", ",", "stream", ",", "is_unix", "=", "False", ")", ":", "assert", "stream", "data", "=", "[", "]", "stream", ".", "settimeout", "(", "2", ")", "while", "True", ":", "try", ":", "if", "is_unix", ":", "buf", "=", "stream", ".", "recv", "(", "1024", ")", "else", ":", "buf", "=", "stream", ".", "read", "(", "1024", ")", "if", "not", "buf", ":", "break", "data", ".", "append", "(", "buf", ")", "except", "(", "AttributeError", ",", "ValueError", ")", "as", "message", ":", "logger", ".", "error", "(", "message", ")", "return", "except", "(", "ssl", ".", "SSLError", ")", "as", "exception", ":", "logger", ".", "debug", "(", "'Error: %s'", ",", "exception", "[", "0", "]", ")", "break", "except", "(", "socket", ".", "timeout", ")", "as", "exception", ":", "logger", ".", "debug", "(", "'Error: %s'", ",", "exception", ")", "break", "data", "=", "b''", ".", "join", "(", "data", ")", "if", "len", "(", "data", ")", "<=", "0", ":", "logger", ".", "debug", "(", "\"Empty client stream\"", ")", "return", "try", ":", "response", "=", "self", ".", "handle_command", "(", "data", ")", "except", "OSPDError", "as", "exception", ":", "response", "=", "exception", ".", "as_xml", "(", ")", "logger", ".", "debug", "(", "'Command error: %s'", ",", "exception", ".", "message", ")", "except", "Exception", ":", "logger", ".", "exception", "(", "'While handling client command:'", ")", "exception", "=", "OSPDError", "(", "'Fatal error'", ",", "'error'", ")", "response", "=", "exception", ".", "as_xml", "(", ")", "if", "is_unix", ":", "send_method", "=", "stream", ".", "send", "else", ":", "send_method", "=", "stream", ".", "write", "self", ".", "write_to_stream", "(", "send_method", ",", "response", ")" ]
Handles stream of data received from client.
[ "Handles", "stream", "of", "data", "received", "from", "client", "." ]
python
train
jbarlow83/OCRmyPDF
src/ocrmypdf/_pipeline.py
https://github.com/jbarlow83/OCRmyPDF/blob/79c84eefa353632a3d7ccddbd398c6678c1c1777/src/ocrmypdf/_pipeline.py#L241-L253
def get_page_square_dpi(pageinfo, options): "Get the DPI when we require xres == yres, scaled to physical units" xres = pageinfo.xres or 0 yres = pageinfo.yres or 0 userunit = pageinfo.userunit or 1 return float( max( (xres * userunit) or VECTOR_PAGE_DPI, (yres * userunit) or VECTOR_PAGE_DPI, VECTOR_PAGE_DPI if pageinfo.has_vector else 0, options.oversample or 0, ) )
[ "def", "get_page_square_dpi", "(", "pageinfo", ",", "options", ")", ":", "xres", "=", "pageinfo", ".", "xres", "or", "0", "yres", "=", "pageinfo", ".", "yres", "or", "0", "userunit", "=", "pageinfo", ".", "userunit", "or", "1", "return", "float", "(", "max", "(", "(", "xres", "*", "userunit", ")", "or", "VECTOR_PAGE_DPI", ",", "(", "yres", "*", "userunit", ")", "or", "VECTOR_PAGE_DPI", ",", "VECTOR_PAGE_DPI", "if", "pageinfo", ".", "has_vector", "else", "0", ",", "options", ".", "oversample", "or", "0", ",", ")", ")" ]
Get the DPI when we require xres == yres, scaled to physical units
[ "Get", "the", "DPI", "when", "we", "require", "xres", "==", "yres", "scaled", "to", "physical", "units" ]
python
train
deepmind/sonnet
sonnet/python/modules/relational_memory.py
https://github.com/deepmind/sonnet/blob/00612ca3178964d86b556e062694d808ff81fcca/sonnet/python/modules/relational_memory.py#L184-L210
def _create_gates(self, inputs, memory): """Create input and forget gates for this step using `inputs` and `memory`. Args: inputs: Tensor input. memory: The current state of memory. Returns: input_gate: A LSTM-like insert gate. forget_gate: A LSTM-like forget gate. """ # We'll create the input and forget gates at once. Hence, calculate double # the gate size. num_gates = 2 * self._calculate_gate_size() memory = tf.tanh(memory) inputs = basic.BatchFlatten()(inputs) gate_inputs = basic.BatchApply(basic.Linear(num_gates), n_dims=1)(inputs) gate_inputs = tf.expand_dims(gate_inputs, axis=1) gate_memory = basic.BatchApply(basic.Linear(num_gates))(memory) gates = tf.split(gate_memory + gate_inputs, num_or_size_splits=2, axis=2) input_gate, forget_gate = gates input_gate = tf.sigmoid(input_gate + self._input_bias) forget_gate = tf.sigmoid(forget_gate + self._forget_bias) return input_gate, forget_gate
[ "def", "_create_gates", "(", "self", ",", "inputs", ",", "memory", ")", ":", "# We'll create the input and forget gates at once. Hence, calculate double", "# the gate size.", "num_gates", "=", "2", "*", "self", ".", "_calculate_gate_size", "(", ")", "memory", "=", "tf", ".", "tanh", "(", "memory", ")", "inputs", "=", "basic", ".", "BatchFlatten", "(", ")", "(", "inputs", ")", "gate_inputs", "=", "basic", ".", "BatchApply", "(", "basic", ".", "Linear", "(", "num_gates", ")", ",", "n_dims", "=", "1", ")", "(", "inputs", ")", "gate_inputs", "=", "tf", ".", "expand_dims", "(", "gate_inputs", ",", "axis", "=", "1", ")", "gate_memory", "=", "basic", ".", "BatchApply", "(", "basic", ".", "Linear", "(", "num_gates", ")", ")", "(", "memory", ")", "gates", "=", "tf", ".", "split", "(", "gate_memory", "+", "gate_inputs", ",", "num_or_size_splits", "=", "2", ",", "axis", "=", "2", ")", "input_gate", ",", "forget_gate", "=", "gates", "input_gate", "=", "tf", ".", "sigmoid", "(", "input_gate", "+", "self", ".", "_input_bias", ")", "forget_gate", "=", "tf", ".", "sigmoid", "(", "forget_gate", "+", "self", ".", "_forget_bias", ")", "return", "input_gate", ",", "forget_gate" ]
Create input and forget gates for this step using `inputs` and `memory`. Args: inputs: Tensor input. memory: The current state of memory. Returns: input_gate: A LSTM-like insert gate. forget_gate: A LSTM-like forget gate.
[ "Create", "input", "and", "forget", "gates", "for", "this", "step", "using", "inputs", "and", "memory", "." ]
python
train
data-8/datascience
datascience/tables.py
https://github.com/data-8/datascience/blob/4cee38266903ca169cea4a53b8cc39502d85c464/datascience/tables.py#L2190-L2295
def scatter(self, column_for_x, select=None, overlay=True, fit_line=False, colors=None, labels=None, sizes=None, width=5, height=5, s=20, **vargs): """Creates scatterplots, optionally adding a line of best fit. Args: ``column_for_x`` (``str``): The column to use for the x-axis values and label of the scatter plots. Kwargs: ``overlay`` (``bool``): If true, creates a chart with one color per data column; if False, each plot will be displayed separately. ``fit_line`` (``bool``): draw a line of best fit for each set of points. ``vargs``: Additional arguments that get passed into `plt.scatter`. See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.scatter for additional arguments that can be passed into vargs. These include: `marker` and `norm`, to name a couple. ``colors``: A column of categories to be used for coloring dots. ``labels``: A column of text labels to annotate dots. ``sizes``: A column of values to set the relative areas of dots. ``s``: Size of dots. If sizes is also provided, then dots will be in the range 0 to 2 * s. Raises: ValueError -- Every column, ``column_for_x`` or ``select``, must be numerical Returns: Scatter plot of values of ``column_for_x`` plotted against values for all other columns in self. Each plot uses the values in `column_for_x` for horizontal positions. One plot is produced for all other columns in self as y (or for the columns designated by `select`). >>> table = Table().with_columns( ... 'x', make_array(9, 3, 3, 1), ... 'y', make_array(1, 2, 2, 10), ... 'z', make_array(3, 4, 5, 6)) >>> table x | y | z 9 | 1 | 3 3 | 2 | 4 3 | 2 | 5 1 | 10 | 6 >>> table.scatter('x') # doctest: +SKIP <scatterplot of values in y and z on x> >>> table.scatter('x', overlay=False) # doctest: +SKIP <scatterplot of values in y on x> <scatterplot of values in z on x> >>> table.scatter('x', fit_line=True) # doctest: +SKIP <scatterplot of values in y and z on x with lines of best fit> """ options = self.default_options.copy() options.update(vargs) x_data, y_labels = self._split_column_and_labels(column_for_x) if colors is not None: y_labels.remove(self._as_label(colors)) if sizes is not None: y_labels.remove(self._as_label(sizes)) if select is not None: y_labels = self._as_labels(select) if len(y_labels) > 1 and colors is not None and overlay: warnings.warn("Colors and overlay are incompatible in a scatter") overlay = False def draw(axis, label, color): if colors is not None: colored = sorted(np.unique(self.column(colors))) color_list = list(itertools.islice(itertools.cycle(self.chart_colors), len(colored))) color_map = collections.OrderedDict(zip(colored, color_list)) color = [color_map[x] for x in self.column(colors)] elif 'color' in options: color = options.pop('color') y_data = self[label] if sizes is not None: max_size = max(self[sizes]) ** 0.5 size = 2 * s * self[sizes] ** 0.5 / max_size else: size = s axis.scatter(x_data, y_data, color=color, s=size, **options) if fit_line: m, b = np.polyfit(x_data, self[label], 1) minx, maxx = np.min(x_data),np.max(x_data) axis.plot([minx,maxx],[m*minx+b,m*maxx+b], color=color) if labels is not None: for x, y, label in zip(x_data, y_data, self[labels]): axis.annotate(label, (x, y), xytext=(-20, 20), textcoords='offset points', ha='right', va='bottom', bbox=dict(boxstyle='round,pad=0.5', fc='white', alpha=0.7), arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0', color='black')) if colors is not None: import matplotlib.patches as mpatches patches = [mpatches.Patch(color=c, label=v) for (v, c) in color_map.items()] axis.legend(loc=2, bbox_to_anchor=(1.05, 1), handles=patches) x_label = self._as_label(column_for_x) self._visualize(x_label, y_labels, None, overlay, draw, _vertical_x, width=width, height=height)
[ "def", "scatter", "(", "self", ",", "column_for_x", ",", "select", "=", "None", ",", "overlay", "=", "True", ",", "fit_line", "=", "False", ",", "colors", "=", "None", ",", "labels", "=", "None", ",", "sizes", "=", "None", ",", "width", "=", "5", ",", "height", "=", "5", ",", "s", "=", "20", ",", "*", "*", "vargs", ")", ":", "options", "=", "self", ".", "default_options", ".", "copy", "(", ")", "options", ".", "update", "(", "vargs", ")", "x_data", ",", "y_labels", "=", "self", ".", "_split_column_and_labels", "(", "column_for_x", ")", "if", "colors", "is", "not", "None", ":", "y_labels", ".", "remove", "(", "self", ".", "_as_label", "(", "colors", ")", ")", "if", "sizes", "is", "not", "None", ":", "y_labels", ".", "remove", "(", "self", ".", "_as_label", "(", "sizes", ")", ")", "if", "select", "is", "not", "None", ":", "y_labels", "=", "self", ".", "_as_labels", "(", "select", ")", "if", "len", "(", "y_labels", ")", ">", "1", "and", "colors", "is", "not", "None", "and", "overlay", ":", "warnings", ".", "warn", "(", "\"Colors and overlay are incompatible in a scatter\"", ")", "overlay", "=", "False", "def", "draw", "(", "axis", ",", "label", ",", "color", ")", ":", "if", "colors", "is", "not", "None", ":", "colored", "=", "sorted", "(", "np", ".", "unique", "(", "self", ".", "column", "(", "colors", ")", ")", ")", "color_list", "=", "list", "(", "itertools", ".", "islice", "(", "itertools", ".", "cycle", "(", "self", ".", "chart_colors", ")", ",", "len", "(", "colored", ")", ")", ")", "color_map", "=", "collections", ".", "OrderedDict", "(", "zip", "(", "colored", ",", "color_list", ")", ")", "color", "=", "[", "color_map", "[", "x", "]", "for", "x", "in", "self", ".", "column", "(", "colors", ")", "]", "elif", "'color'", "in", "options", ":", "color", "=", "options", ".", "pop", "(", "'color'", ")", "y_data", "=", "self", "[", "label", "]", "if", "sizes", "is", "not", "None", ":", "max_size", "=", "max", "(", "self", "[", "sizes", "]", ")", "**", "0.5", "size", "=", "2", "*", "s", "*", "self", "[", "sizes", "]", "**", "0.5", "/", "max_size", "else", ":", "size", "=", "s", "axis", ".", "scatter", "(", "x_data", ",", "y_data", ",", "color", "=", "color", ",", "s", "=", "size", ",", "*", "*", "options", ")", "if", "fit_line", ":", "m", ",", "b", "=", "np", ".", "polyfit", "(", "x_data", ",", "self", "[", "label", "]", ",", "1", ")", "minx", ",", "maxx", "=", "np", ".", "min", "(", "x_data", ")", ",", "np", ".", "max", "(", "x_data", ")", "axis", ".", "plot", "(", "[", "minx", ",", "maxx", "]", ",", "[", "m", "*", "minx", "+", "b", ",", "m", "*", "maxx", "+", "b", "]", ",", "color", "=", "color", ")", "if", "labels", "is", "not", "None", ":", "for", "x", ",", "y", ",", "label", "in", "zip", "(", "x_data", ",", "y_data", ",", "self", "[", "labels", "]", ")", ":", "axis", ".", "annotate", "(", "label", ",", "(", "x", ",", "y", ")", ",", "xytext", "=", "(", "-", "20", ",", "20", ")", ",", "textcoords", "=", "'offset points'", ",", "ha", "=", "'right'", ",", "va", "=", "'bottom'", ",", "bbox", "=", "dict", "(", "boxstyle", "=", "'round,pad=0.5'", ",", "fc", "=", "'white'", ",", "alpha", "=", "0.7", ")", ",", "arrowprops", "=", "dict", "(", "arrowstyle", "=", "'->'", ",", "connectionstyle", "=", "'arc3,rad=0'", ",", "color", "=", "'black'", ")", ")", "if", "colors", "is", "not", "None", ":", "import", "matplotlib", ".", "patches", "as", "mpatches", "patches", "=", "[", "mpatches", ".", "Patch", "(", "color", "=", "c", ",", "label", "=", "v", ")", "for", "(", "v", ",", "c", ")", "in", "color_map", ".", "items", "(", ")", "]", "axis", ".", "legend", "(", "loc", "=", "2", ",", "bbox_to_anchor", "=", "(", "1.05", ",", "1", ")", ",", "handles", "=", "patches", ")", "x_label", "=", "self", ".", "_as_label", "(", "column_for_x", ")", "self", ".", "_visualize", "(", "x_label", ",", "y_labels", ",", "None", ",", "overlay", ",", "draw", ",", "_vertical_x", ",", "width", "=", "width", ",", "height", "=", "height", ")" ]
Creates scatterplots, optionally adding a line of best fit. Args: ``column_for_x`` (``str``): The column to use for the x-axis values and label of the scatter plots. Kwargs: ``overlay`` (``bool``): If true, creates a chart with one color per data column; if False, each plot will be displayed separately. ``fit_line`` (``bool``): draw a line of best fit for each set of points. ``vargs``: Additional arguments that get passed into `plt.scatter`. See http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.scatter for additional arguments that can be passed into vargs. These include: `marker` and `norm`, to name a couple. ``colors``: A column of categories to be used for coloring dots. ``labels``: A column of text labels to annotate dots. ``sizes``: A column of values to set the relative areas of dots. ``s``: Size of dots. If sizes is also provided, then dots will be in the range 0 to 2 * s. Raises: ValueError -- Every column, ``column_for_x`` or ``select``, must be numerical Returns: Scatter plot of values of ``column_for_x`` plotted against values for all other columns in self. Each plot uses the values in `column_for_x` for horizontal positions. One plot is produced for all other columns in self as y (or for the columns designated by `select`). >>> table = Table().with_columns( ... 'x', make_array(9, 3, 3, 1), ... 'y', make_array(1, 2, 2, 10), ... 'z', make_array(3, 4, 5, 6)) >>> table x | y | z 9 | 1 | 3 3 | 2 | 4 3 | 2 | 5 1 | 10 | 6 >>> table.scatter('x') # doctest: +SKIP <scatterplot of values in y and z on x> >>> table.scatter('x', overlay=False) # doctest: +SKIP <scatterplot of values in y on x> <scatterplot of values in z on x> >>> table.scatter('x', fit_line=True) # doctest: +SKIP <scatterplot of values in y and z on x with lines of best fit>
[ "Creates", "scatterplots", "optionally", "adding", "a", "line", "of", "best", "fit", "." ]
python
train
lappis-unb/salic-ml
src/salicml_api/analysis/api.py
https://github.com/lappis-unb/salic-ml/blob/1b3ebc4f8067740999897ccffd9892dc94482a93/src/salicml_api/analysis/api.py#L60-L79
def indicator_details(indicator): """ Return a dictionary with all metrics in FinancialIndicator, if there aren't values for that Indicator, it is filled with default values """ metrics = format_metrics_json(indicator) metrics_list = set(indicator.metrics .filter(name__in=metrics_name_map.keys()) .values_list('name', flat=True)) null_metrics = default_metrics for keys in metrics_list: null_metrics.pop(metrics_name_map[keys], None) metrics.update(null_metrics) return {type(indicator).__name__: { 'valor': indicator.value, 'metricas': metrics, }, }
[ "def", "indicator_details", "(", "indicator", ")", ":", "metrics", "=", "format_metrics_json", "(", "indicator", ")", "metrics_list", "=", "set", "(", "indicator", ".", "metrics", ".", "filter", "(", "name__in", "=", "metrics_name_map", ".", "keys", "(", ")", ")", ".", "values_list", "(", "'name'", ",", "flat", "=", "True", ")", ")", "null_metrics", "=", "default_metrics", "for", "keys", "in", "metrics_list", ":", "null_metrics", ".", "pop", "(", "metrics_name_map", "[", "keys", "]", ",", "None", ")", "metrics", ".", "update", "(", "null_metrics", ")", "return", "{", "type", "(", "indicator", ")", ".", "__name__", ":", "{", "'valor'", ":", "indicator", ".", "value", ",", "'metricas'", ":", "metrics", ",", "}", ",", "}" ]
Return a dictionary with all metrics in FinancialIndicator, if there aren't values for that Indicator, it is filled with default values
[ "Return", "a", "dictionary", "with", "all", "metrics", "in", "FinancialIndicator", "if", "there", "aren", "t", "values", "for", "that", "Indicator", "it", "is", "filled", "with", "default", "values" ]
python
train
f3at/feat
src/feat/database/couchdb/view.py
https://github.com/f3at/feat/blob/15da93fc9d6ec8154f52a9172824e25821195ef8/src/feat/database/couchdb/view.py#L262-L305
def main(): """Command-line entry point for running the view server.""" import getopt from . import __version__ as VERSION try: option_list, argument_list = getopt.gnu_getopt( sys.argv[1:], 'h', ['version', 'help', 'json-module=', 'debug', 'log-file=']) message = None for option, value in option_list: if option in ('--version'): message = _VERSION % dict(name=os.path.basename(sys.argv[0]), version=VERSION) elif option in ('-h', '--help'): message = _HELP % dict(name=os.path.basename(sys.argv[0])) elif option in ('--json-module'): json.use(module=value) elif option in ('--debug'): log.setLevel(logging.DEBUG) elif option in ('--log-file'): if value == '-': handler = logging.StreamHandler(sys.stderr) handler.setFormatter(logging.Formatter( ' -> [%(levelname)s] %(message)s')) else: handler = logging.FileHandler(value) handler.setFormatter(logging.Formatter( '[%(asctime)s] [%(levelname)s] %(message)s')) log.addHandler(handler) if message: sys.stdout.write(message) sys.stdout.flush() sys.exit(0) except getopt.GetoptError, error: message = '%s\n\nTry `%s --help` for more information.\n' % ( str(error), os.path.basename(sys.argv[0])) sys.stderr.write(message) sys.stderr.flush() sys.exit(1) sys.exit(run())
[ "def", "main", "(", ")", ":", "import", "getopt", "from", ".", "import", "__version__", "as", "VERSION", "try", ":", "option_list", ",", "argument_list", "=", "getopt", ".", "gnu_getopt", "(", "sys", ".", "argv", "[", "1", ":", "]", ",", "'h'", ",", "[", "'version'", ",", "'help'", ",", "'json-module='", ",", "'debug'", ",", "'log-file='", "]", ")", "message", "=", "None", "for", "option", ",", "value", "in", "option_list", ":", "if", "option", "in", "(", "'--version'", ")", ":", "message", "=", "_VERSION", "%", "dict", "(", "name", "=", "os", ".", "path", ".", "basename", "(", "sys", ".", "argv", "[", "0", "]", ")", ",", "version", "=", "VERSION", ")", "elif", "option", "in", "(", "'-h'", ",", "'--help'", ")", ":", "message", "=", "_HELP", "%", "dict", "(", "name", "=", "os", ".", "path", ".", "basename", "(", "sys", ".", "argv", "[", "0", "]", ")", ")", "elif", "option", "in", "(", "'--json-module'", ")", ":", "json", ".", "use", "(", "module", "=", "value", ")", "elif", "option", "in", "(", "'--debug'", ")", ":", "log", ".", "setLevel", "(", "logging", ".", "DEBUG", ")", "elif", "option", "in", "(", "'--log-file'", ")", ":", "if", "value", "==", "'-'", ":", "handler", "=", "logging", ".", "StreamHandler", "(", "sys", ".", "stderr", ")", "handler", ".", "setFormatter", "(", "logging", ".", "Formatter", "(", "' -> [%(levelname)s] %(message)s'", ")", ")", "else", ":", "handler", "=", "logging", ".", "FileHandler", "(", "value", ")", "handler", ".", "setFormatter", "(", "logging", ".", "Formatter", "(", "'[%(asctime)s] [%(levelname)s] %(message)s'", ")", ")", "log", ".", "addHandler", "(", "handler", ")", "if", "message", ":", "sys", ".", "stdout", ".", "write", "(", "message", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "sys", ".", "exit", "(", "0", ")", "except", "getopt", ".", "GetoptError", ",", "error", ":", "message", "=", "'%s\\n\\nTry `%s --help` for more information.\\n'", "%", "(", "str", "(", "error", ")", ",", "os", ".", "path", ".", "basename", "(", "sys", ".", "argv", "[", "0", "]", ")", ")", "sys", ".", "stderr", ".", "write", "(", "message", ")", "sys", ".", "stderr", ".", "flush", "(", ")", "sys", ".", "exit", "(", "1", ")", "sys", ".", "exit", "(", "run", "(", ")", ")" ]
Command-line entry point for running the view server.
[ "Command", "-", "line", "entry", "point", "for", "running", "the", "view", "server", "." ]
python
train
zhmcclient/python-zhmcclient
zhmcclient/_storage_volume.py
https://github.com/zhmcclient/python-zhmcclient/blob/9657563e5d9184c51d3c903442a58b9725fdf335/zhmcclient/_storage_volume.py#L411-L493
def update_properties(self, properties, email_to_addresses=None, email_cc_addresses=None, email_insert=None): """ Update writeable properties of this storage volume on the HMC, and optionally send emails to storage administrators requesting modification of the storage volume on the storage subsystem and of any resources related to the storage volume. This method performs the "Modify Storage Group Properties" operation, requesting modification of the volume. Authorization requirements: * Object-access permission to the storage group owning this storage volume. * Task permission to the "Configure Storage - System Programmer" task. Parameters: properties (dict): New property values for the volume. Allowable properties are the fields defined in the "storage-volume-request-info" nested object for the "modify" operation. That nested object is described in section "Request body contents" for operation "Modify Storage Group Properties" in the :term:`HMC API` book. The properties provided in this parameter will be copied and then amended with the `operation="modify"` and `element-uri` properties, and then used as a single array item for the `storage-volumes` field in the request body of the "Modify Storage Group Properties" operation. email_to_addresses (:term:`iterable` of :term:`string`): Email addresses of one or more storage administrator to be notified. If `None` or empty, no email will be sent. email_cc_addresses (:term:`iterable` of :term:`string`): Email addresses of one or more storage administrator to be copied on the notification email. If `None` or empty, nobody will be copied on the email. Must be `None` or empty if `email_to_addresses` is `None` or empty. email_insert (:term:`string`): Additional text to be inserted in the notification email. The text can include HTML formatting tags. If `None`, no additional text will be inserted. Must be `None` or empty if `email_to_addresses` is `None` or empty. Raises: :exc:`~zhmcclient.HTTPError` :exc:`~zhmcclient.ParseError` :exc:`~zhmcclient.AuthError` :exc:`~zhmcclient.ConnectionError` """ volreq_obj = copy.deepcopy(properties) volreq_obj['operation'] = 'modify' volreq_obj['element-uri'] = self.uri body = { 'storage-volumes': [volreq_obj], } if email_to_addresses: body['email-to-addresses'] = email_to_addresses if email_cc_addresses: body['email-cc-addresses'] = email_cc_addresses if email_insert: body['email-insert'] = email_insert else: if email_cc_addresses: raise ValueError("email_cc_addresses must not be specified if " "there is no email_to_addresses: %r" % email_cc_addresses) if email_insert: raise ValueError("email_insert must not be specified if " "there is no email_to_addresses: %r" % email_insert) self.manager.session.post( self.manager.storage_group.uri + '/operations/modify', body=body) self.properties.update(copy.deepcopy(properties))
[ "def", "update_properties", "(", "self", ",", "properties", ",", "email_to_addresses", "=", "None", ",", "email_cc_addresses", "=", "None", ",", "email_insert", "=", "None", ")", ":", "volreq_obj", "=", "copy", ".", "deepcopy", "(", "properties", ")", "volreq_obj", "[", "'operation'", "]", "=", "'modify'", "volreq_obj", "[", "'element-uri'", "]", "=", "self", ".", "uri", "body", "=", "{", "'storage-volumes'", ":", "[", "volreq_obj", "]", ",", "}", "if", "email_to_addresses", ":", "body", "[", "'email-to-addresses'", "]", "=", "email_to_addresses", "if", "email_cc_addresses", ":", "body", "[", "'email-cc-addresses'", "]", "=", "email_cc_addresses", "if", "email_insert", ":", "body", "[", "'email-insert'", "]", "=", "email_insert", "else", ":", "if", "email_cc_addresses", ":", "raise", "ValueError", "(", "\"email_cc_addresses must not be specified if \"", "\"there is no email_to_addresses: %r\"", "%", "email_cc_addresses", ")", "if", "email_insert", ":", "raise", "ValueError", "(", "\"email_insert must not be specified if \"", "\"there is no email_to_addresses: %r\"", "%", "email_insert", ")", "self", ".", "manager", ".", "session", ".", "post", "(", "self", ".", "manager", ".", "storage_group", ".", "uri", "+", "'/operations/modify'", ",", "body", "=", "body", ")", "self", ".", "properties", ".", "update", "(", "copy", ".", "deepcopy", "(", "properties", ")", ")" ]
Update writeable properties of this storage volume on the HMC, and optionally send emails to storage administrators requesting modification of the storage volume on the storage subsystem and of any resources related to the storage volume. This method performs the "Modify Storage Group Properties" operation, requesting modification of the volume. Authorization requirements: * Object-access permission to the storage group owning this storage volume. * Task permission to the "Configure Storage - System Programmer" task. Parameters: properties (dict): New property values for the volume. Allowable properties are the fields defined in the "storage-volume-request-info" nested object for the "modify" operation. That nested object is described in section "Request body contents" for operation "Modify Storage Group Properties" in the :term:`HMC API` book. The properties provided in this parameter will be copied and then amended with the `operation="modify"` and `element-uri` properties, and then used as a single array item for the `storage-volumes` field in the request body of the "Modify Storage Group Properties" operation. email_to_addresses (:term:`iterable` of :term:`string`): Email addresses of one or more storage administrator to be notified. If `None` or empty, no email will be sent. email_cc_addresses (:term:`iterable` of :term:`string`): Email addresses of one or more storage administrator to be copied on the notification email. If `None` or empty, nobody will be copied on the email. Must be `None` or empty if `email_to_addresses` is `None` or empty. email_insert (:term:`string`): Additional text to be inserted in the notification email. The text can include HTML formatting tags. If `None`, no additional text will be inserted. Must be `None` or empty if `email_to_addresses` is `None` or empty. Raises: :exc:`~zhmcclient.HTTPError` :exc:`~zhmcclient.ParseError` :exc:`~zhmcclient.AuthError` :exc:`~zhmcclient.ConnectionError`
[ "Update", "writeable", "properties", "of", "this", "storage", "volume", "on", "the", "HMC", "and", "optionally", "send", "emails", "to", "storage", "administrators", "requesting", "modification", "of", "the", "storage", "volume", "on", "the", "storage", "subsystem", "and", "of", "any", "resources", "related", "to", "the", "storage", "volume", "." ]
python
train
cloudera/cm_api
python/src/cm_api/endpoints/hosts.py
https://github.com/cloudera/cm_api/blob/5d2512375bd94684b4da36df9e0d9177865ffcbb/python/src/cm_api/endpoints/hosts.py#L25-L36
def create_host(resource_root, host_id, name, ipaddr, rack_id=None): """ Create a host @param resource_root: The root Resource object. @param host_id: Host id @param name: Host name @param ipaddr: IP address @param rack_id: Rack id. Default None @return: An ApiHost object """ apihost = ApiHost(resource_root, host_id, name, ipaddr, rack_id) return call(resource_root.post, HOSTS_PATH, ApiHost, True, data=[apihost])[0]
[ "def", "create_host", "(", "resource_root", ",", "host_id", ",", "name", ",", "ipaddr", ",", "rack_id", "=", "None", ")", ":", "apihost", "=", "ApiHost", "(", "resource_root", ",", "host_id", ",", "name", ",", "ipaddr", ",", "rack_id", ")", "return", "call", "(", "resource_root", ".", "post", ",", "HOSTS_PATH", ",", "ApiHost", ",", "True", ",", "data", "=", "[", "apihost", "]", ")", "[", "0", "]" ]
Create a host @param resource_root: The root Resource object. @param host_id: Host id @param name: Host name @param ipaddr: IP address @param rack_id: Rack id. Default None @return: An ApiHost object
[ "Create", "a", "host" ]
python
train
SoCo/SoCo
soco/core.py
https://github.com/SoCo/SoCo/blob/671937e07d7973b78c0cbee153d4f3ad68ec48c6/soco/core.py#L354-L364
def is_bridge(self): """bool: Is this zone a bridge?""" # Since this does not change over time (?) check whether we already # know the answer. If so, there is no need to go further if self._is_bridge is not None: return self._is_bridge # if not, we have to get it from the zone topology. This will set # self._is_bridge for us for next time, so we won't have to do this # again self._parse_zone_group_state() return self._is_bridge
[ "def", "is_bridge", "(", "self", ")", ":", "# Since this does not change over time (?) check whether we already", "# know the answer. If so, there is no need to go further", "if", "self", ".", "_is_bridge", "is", "not", "None", ":", "return", "self", ".", "_is_bridge", "# if not, we have to get it from the zone topology. This will set", "# self._is_bridge for us for next time, so we won't have to do this", "# again", "self", ".", "_parse_zone_group_state", "(", ")", "return", "self", ".", "_is_bridge" ]
bool: Is this zone a bridge?
[ "bool", ":", "Is", "this", "zone", "a", "bridge?" ]
python
train
ioos/cc-plugin-ncei
cc_plugin_ncei/ncei_timeseries_profile.py
https://github.com/ioos/cc-plugin-ncei/blob/963fefd7fa43afd32657ac4c36aad4ddb4c25acf/cc_plugin_ncei/ncei_timeseries_profile.py#L21-L43
def check_dimensions(self, dataset): ''' Checks that the feature types of this dataset are consistent with a timeseries-profile-orthogonal dataset. :param netCDF4.Dataset dataset: An open netCDF dataset ''' results = [] required_ctx = TestCtx(BaseCheck.HIGH, 'All geophysical variables are timeseries-profile-orthogonal feature types') message = '{} must be a valid profile-orthogonal feature type. It must have dimensions of (station, time, z).' message += ' If it\'s a single station, it must have dimensions (time, z). x and y dimensions must be scalar or have' message += ' dimensions (station). time must be a coordinate variable with dimension (time) and z must be a' message += ' coordinate variabel with dimension (z).' for variable in util.get_geophysical_variables(dataset): is_valid = util.is_timeseries_profile_single_station(dataset, variable) is_valid = is_valid or util.is_timeseries_profile_multi_station(dataset, variable) required_ctx.assert_true( is_valid, message.format(variable) ) results.append(required_ctx.to_result()) return results
[ "def", "check_dimensions", "(", "self", ",", "dataset", ")", ":", "results", "=", "[", "]", "required_ctx", "=", "TestCtx", "(", "BaseCheck", ".", "HIGH", ",", "'All geophysical variables are timeseries-profile-orthogonal feature types'", ")", "message", "=", "'{} must be a valid profile-orthogonal feature type. It must have dimensions of (station, time, z).'", "message", "+=", "' If it\\'s a single station, it must have dimensions (time, z). x and y dimensions must be scalar or have'", "message", "+=", "' dimensions (station). time must be a coordinate variable with dimension (time) and z must be a'", "message", "+=", "' coordinate variabel with dimension (z).'", "for", "variable", "in", "util", ".", "get_geophysical_variables", "(", "dataset", ")", ":", "is_valid", "=", "util", ".", "is_timeseries_profile_single_station", "(", "dataset", ",", "variable", ")", "is_valid", "=", "is_valid", "or", "util", ".", "is_timeseries_profile_multi_station", "(", "dataset", ",", "variable", ")", "required_ctx", ".", "assert_true", "(", "is_valid", ",", "message", ".", "format", "(", "variable", ")", ")", "results", ".", "append", "(", "required_ctx", ".", "to_result", "(", ")", ")", "return", "results" ]
Checks that the feature types of this dataset are consistent with a timeseries-profile-orthogonal dataset. :param netCDF4.Dataset dataset: An open netCDF dataset
[ "Checks", "that", "the", "feature", "types", "of", "this", "dataset", "are", "consistent", "with", "a", "timeseries", "-", "profile", "-", "orthogonal", "dataset", "." ]
python
train
openid/python-openid
openid/yadis/etxrd.py
https://github.com/openid/python-openid/blob/f7e13536f0d1828d3cef5ae7a7b55cabadff37fc/openid/yadis/etxrd.py#L119-L133
def getYadisXRD(xrd_tree): """Return the XRD element that should contain the Yadis services""" xrd = None # for the side-effect of assigning the last one in the list to the # xrd variable for xrd in xrd_tree.findall(xrd_tag): pass # There were no elements found, or else xrd would be set to the # last one if xrd is None: raise XRDSError('No XRD present in tree') return xrd
[ "def", "getYadisXRD", "(", "xrd_tree", ")", ":", "xrd", "=", "None", "# for the side-effect of assigning the last one in the list to the", "# xrd variable", "for", "xrd", "in", "xrd_tree", ".", "findall", "(", "xrd_tag", ")", ":", "pass", "# There were no elements found, or else xrd would be set to the", "# last one", "if", "xrd", "is", "None", ":", "raise", "XRDSError", "(", "'No XRD present in tree'", ")", "return", "xrd" ]
Return the XRD element that should contain the Yadis services
[ "Return", "the", "XRD", "element", "that", "should", "contain", "the", "Yadis", "services" ]
python
train
numenta/nupic
src/nupic/frameworks/opf/htm_prediction_model.py
https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/frameworks/opf/htm_prediction_model.py#L712-L957
def _handleSDRClassifierMultiStep(self, patternNZ, inputTSRecordIdx, rawInput): """ Handle the CLA Classifier compute logic when implementing multi-step prediction. This is where the patternNZ is associated with one of the other fields from the dataset 0 to N steps in the future. This method is used by each type of network (encoder only, SP only, SP +TM) to handle the compute logic through the CLA Classifier. It fills in the inference dict with the results of the compute. Parameters: ------------------------------------------------------------------- patternNZ: The input to the CLA Classifier as a list of active input indices inputTSRecordIdx: The index of the record as computed from the timestamp and aggregation interval. This normally increments by 1 each time unless there are missing records. If there is no aggregation interval or timestamp in the data, this will be None. rawInput: The raw input to the sensor, as a dict. """ inferenceArgs = self.getInferenceArgs() predictedFieldName = inferenceArgs.get('predictedField', None) if predictedFieldName is None: raise ValueError( "No predicted field was enabled! Did you call enableInference()?" ) self._predictedFieldName = predictedFieldName classifier = self._getClassifierRegion() if not self._hasCL or classifier is None: # No classifier so return an empty dict for inferences. return {} sensor = self._getSensorRegion() minLikelihoodThreshold = self._minLikelihoodThreshold maxPredictionsPerStep = self._maxPredictionsPerStep needLearning = self.isLearningEnabled() inferences = {} # Get the classifier input encoder, if we don't have it already if self._classifierInputEncoder is None: if predictedFieldName is None: raise RuntimeError("This experiment description is missing " "the 'predictedField' in its config, which is required " "for multi-step prediction inference.") encoderList = sensor.getSelf().encoder.getEncoderList() self._numFields = len(encoderList) # This is getting index of predicted field if being fed to CLA. fieldNames = sensor.getSelf().encoder.getScalarNames() if predictedFieldName in fieldNames: self._predictedFieldIdx = fieldNames.index(predictedFieldName) else: # Predicted field was not fed into the network, only to the classifier self._predictedFieldIdx = None # In a multi-step model, the classifier input encoder is separate from # the other encoders and always disabled from going into the bottom of # the network. if sensor.getSelf().disabledEncoder is not None: encoderList = sensor.getSelf().disabledEncoder.getEncoderList() else: encoderList = [] if len(encoderList) >= 1: fieldNames = sensor.getSelf().disabledEncoder.getScalarNames() self._classifierInputEncoder = encoderList[fieldNames.index( predictedFieldName)] else: # Legacy multi-step networks don't have a separate encoder for the # classifier, so use the one that goes into the bottom of the network encoderList = sensor.getSelf().encoder.getEncoderList() self._classifierInputEncoder = encoderList[self._predictedFieldIdx] # Get the actual value and the bucket index for this sample. The # predicted field may not be enabled for input to the network, so we # explicitly encode it outside of the sensor # TODO: All this logic could be simpler if in the encoder itself if not predictedFieldName in rawInput: raise ValueError("Input row does not contain a value for the predicted " "field configured for this model. Missing value for '%s'" % predictedFieldName) absoluteValue = rawInput[predictedFieldName] bucketIdx = self._classifierInputEncoder.getBucketIndices(absoluteValue)[0] # Convert the absolute values to deltas if necessary # The bucket index should be handled correctly by the underlying delta encoder if isinstance(self._classifierInputEncoder, DeltaEncoder): # Make the delta before any values have been seen 0 so that we do not mess up the # range for the adaptive scalar encoder. if not hasattr(self,"_ms_prevVal"): self._ms_prevVal = absoluteValue prevValue = self._ms_prevVal self._ms_prevVal = absoluteValue actualValue = absoluteValue - prevValue else: actualValue = absoluteValue if isinstance(actualValue, float) and math.isnan(actualValue): actualValue = SENTINEL_VALUE_FOR_MISSING_DATA # Pass this information to the classifier's custom compute method # so that it can assign the current classification to possibly # multiple patterns from the past and current, and also provide # the expected classification for some time step(s) in the future. classifier.setParameter('inferenceMode', True) classifier.setParameter('learningMode', needLearning) classificationIn = {'bucketIdx': bucketIdx, 'actValue': actualValue} # Handle missing records if inputTSRecordIdx is not None: recordNum = inputTSRecordIdx else: recordNum = self.__numRunCalls clResults = classifier.getSelf().customCompute(recordNum=recordNum, patternNZ=patternNZ, classification=classificationIn) # --------------------------------------------------------------- # Get the prediction for every step ahead learned by the classifier predictionSteps = classifier.getParameter('steps') predictionSteps = [int(x) for x in predictionSteps.split(',')] # We will return the results in this dict. The top level keys # are the step number, the values are the relative likelihoods for # each classification value in that time step, represented as # another dict where the keys are the classification values and # the values are the relative likelihoods. inferences[InferenceElement.multiStepPredictions] = dict() inferences[InferenceElement.multiStepBestPredictions] = dict() inferences[InferenceElement.multiStepBucketLikelihoods] = dict() # ====================================================================== # Plug in the predictions for each requested time step. for steps in predictionSteps: # From the clResults, compute the predicted actual value. The # SDRClassifier classifies the bucket index and returns a list of # relative likelihoods for each bucket. Let's find the max one # and then look up the actual value from that bucket index likelihoodsVec = clResults[steps] bucketValues = clResults['actualValues'] # Create a dict of value:likelihood pairs. We can't simply use # dict(zip(bucketValues, likelihoodsVec)) because there might be # duplicate bucketValues (this happens early on in the model when # it doesn't have actual values for each bucket so it returns # multiple buckets with the same default actual value). likelihoodsDict = dict() bestActValue = None bestProb = None for (actValue, prob) in zip(bucketValues, likelihoodsVec): if actValue in likelihoodsDict: likelihoodsDict[actValue] += prob else: likelihoodsDict[actValue] = prob # Keep track of best if bestProb is None or likelihoodsDict[actValue] > bestProb: bestProb = likelihoodsDict[actValue] bestActValue = actValue # Remove entries with 0 likelihood or likelihood less than # minLikelihoodThreshold, but don't leave an empty dict. likelihoodsDict = HTMPredictionModel._removeUnlikelyPredictions( likelihoodsDict, minLikelihoodThreshold, maxPredictionsPerStep) # calculate likelihood for each bucket bucketLikelihood = {} for k in likelihoodsDict.keys(): bucketLikelihood[self._classifierInputEncoder.getBucketIndices(k)[0]] = ( likelihoodsDict[k]) # --------------------------------------------------------------------- # If we have a delta encoder, we have to shift our predicted output value # by the sum of the deltas if isinstance(self._classifierInputEncoder, DeltaEncoder): # Get the prediction history for this number of timesteps. # The prediction history is a store of the previous best predicted values. # This is used to get the final shift from the current absolute value. if not hasattr(self, '_ms_predHistories'): self._ms_predHistories = dict() predHistories = self._ms_predHistories if not steps in predHistories: predHistories[steps] = deque() predHistory = predHistories[steps] # Find the sum of the deltas for the steps and use this to generate # an offset from the current absolute value sumDelta = sum(predHistory) offsetDict = dict() for (k, v) in likelihoodsDict.iteritems(): if k is not None: # Reconstruct the absolute value based on the current actual value, # the best predicted values from the previous iterations, # and the current predicted delta offsetDict[absoluteValue+float(k)+sumDelta] = v # calculate likelihood for each bucket bucketLikelihoodOffset = {} for k in offsetDict.keys(): bucketLikelihoodOffset[self._classifierInputEncoder.getBucketIndices(k)[0]] = ( offsetDict[k]) # Push the current best delta to the history buffer for reconstructing the final delta if bestActValue is not None: predHistory.append(bestActValue) # If we don't need any more values in the predictionHistory, pop off # the earliest one. if len(predHistory) >= steps: predHistory.popleft() # Provide the offsetDict as the return value if len(offsetDict)>0: inferences[InferenceElement.multiStepPredictions][steps] = offsetDict inferences[InferenceElement.multiStepBucketLikelihoods][steps] = bucketLikelihoodOffset else: inferences[InferenceElement.multiStepPredictions][steps] = likelihoodsDict inferences[InferenceElement.multiStepBucketLikelihoods][steps] = bucketLikelihood if bestActValue is None: inferences[InferenceElement.multiStepBestPredictions][steps] = None else: inferences[InferenceElement.multiStepBestPredictions][steps] = ( absoluteValue + sumDelta + bestActValue) # --------------------------------------------------------------------- # Normal case, no delta encoder. Just plug in all our multi-step predictions # with likelihoods as well as our best prediction else: # The multiStepPredictions element holds the probabilities for each # bucket inferences[InferenceElement.multiStepPredictions][steps] = ( likelihoodsDict) inferences[InferenceElement.multiStepBestPredictions][steps] = ( bestActValue) inferences[InferenceElement.multiStepBucketLikelihoods][steps] = ( bucketLikelihood) return inferences
[ "def", "_handleSDRClassifierMultiStep", "(", "self", ",", "patternNZ", ",", "inputTSRecordIdx", ",", "rawInput", ")", ":", "inferenceArgs", "=", "self", ".", "getInferenceArgs", "(", ")", "predictedFieldName", "=", "inferenceArgs", ".", "get", "(", "'predictedField'", ",", "None", ")", "if", "predictedFieldName", "is", "None", ":", "raise", "ValueError", "(", "\"No predicted field was enabled! Did you call enableInference()?\"", ")", "self", ".", "_predictedFieldName", "=", "predictedFieldName", "classifier", "=", "self", ".", "_getClassifierRegion", "(", ")", "if", "not", "self", ".", "_hasCL", "or", "classifier", "is", "None", ":", "# No classifier so return an empty dict for inferences.", "return", "{", "}", "sensor", "=", "self", ".", "_getSensorRegion", "(", ")", "minLikelihoodThreshold", "=", "self", ".", "_minLikelihoodThreshold", "maxPredictionsPerStep", "=", "self", ".", "_maxPredictionsPerStep", "needLearning", "=", "self", ".", "isLearningEnabled", "(", ")", "inferences", "=", "{", "}", "# Get the classifier input encoder, if we don't have it already", "if", "self", ".", "_classifierInputEncoder", "is", "None", ":", "if", "predictedFieldName", "is", "None", ":", "raise", "RuntimeError", "(", "\"This experiment description is missing \"", "\"the 'predictedField' in its config, which is required \"", "\"for multi-step prediction inference.\"", ")", "encoderList", "=", "sensor", ".", "getSelf", "(", ")", ".", "encoder", ".", "getEncoderList", "(", ")", "self", ".", "_numFields", "=", "len", "(", "encoderList", ")", "# This is getting index of predicted field if being fed to CLA.", "fieldNames", "=", "sensor", ".", "getSelf", "(", ")", ".", "encoder", ".", "getScalarNames", "(", ")", "if", "predictedFieldName", "in", "fieldNames", ":", "self", ".", "_predictedFieldIdx", "=", "fieldNames", ".", "index", "(", "predictedFieldName", ")", "else", ":", "# Predicted field was not fed into the network, only to the classifier", "self", ".", "_predictedFieldIdx", "=", "None", "# In a multi-step model, the classifier input encoder is separate from", "# the other encoders and always disabled from going into the bottom of", "# the network.", "if", "sensor", ".", "getSelf", "(", ")", ".", "disabledEncoder", "is", "not", "None", ":", "encoderList", "=", "sensor", ".", "getSelf", "(", ")", ".", "disabledEncoder", ".", "getEncoderList", "(", ")", "else", ":", "encoderList", "=", "[", "]", "if", "len", "(", "encoderList", ")", ">=", "1", ":", "fieldNames", "=", "sensor", ".", "getSelf", "(", ")", ".", "disabledEncoder", ".", "getScalarNames", "(", ")", "self", ".", "_classifierInputEncoder", "=", "encoderList", "[", "fieldNames", ".", "index", "(", "predictedFieldName", ")", "]", "else", ":", "# Legacy multi-step networks don't have a separate encoder for the", "# classifier, so use the one that goes into the bottom of the network", "encoderList", "=", "sensor", ".", "getSelf", "(", ")", ".", "encoder", ".", "getEncoderList", "(", ")", "self", ".", "_classifierInputEncoder", "=", "encoderList", "[", "self", ".", "_predictedFieldIdx", "]", "# Get the actual value and the bucket index for this sample. The", "# predicted field may not be enabled for input to the network, so we", "# explicitly encode it outside of the sensor", "# TODO: All this logic could be simpler if in the encoder itself", "if", "not", "predictedFieldName", "in", "rawInput", ":", "raise", "ValueError", "(", "\"Input row does not contain a value for the predicted \"", "\"field configured for this model. Missing value for '%s'\"", "%", "predictedFieldName", ")", "absoluteValue", "=", "rawInput", "[", "predictedFieldName", "]", "bucketIdx", "=", "self", ".", "_classifierInputEncoder", ".", "getBucketIndices", "(", "absoluteValue", ")", "[", "0", "]", "# Convert the absolute values to deltas if necessary", "# The bucket index should be handled correctly by the underlying delta encoder", "if", "isinstance", "(", "self", ".", "_classifierInputEncoder", ",", "DeltaEncoder", ")", ":", "# Make the delta before any values have been seen 0 so that we do not mess up the", "# range for the adaptive scalar encoder.", "if", "not", "hasattr", "(", "self", ",", "\"_ms_prevVal\"", ")", ":", "self", ".", "_ms_prevVal", "=", "absoluteValue", "prevValue", "=", "self", ".", "_ms_prevVal", "self", ".", "_ms_prevVal", "=", "absoluteValue", "actualValue", "=", "absoluteValue", "-", "prevValue", "else", ":", "actualValue", "=", "absoluteValue", "if", "isinstance", "(", "actualValue", ",", "float", ")", "and", "math", ".", "isnan", "(", "actualValue", ")", ":", "actualValue", "=", "SENTINEL_VALUE_FOR_MISSING_DATA", "# Pass this information to the classifier's custom compute method", "# so that it can assign the current classification to possibly", "# multiple patterns from the past and current, and also provide", "# the expected classification for some time step(s) in the future.", "classifier", ".", "setParameter", "(", "'inferenceMode'", ",", "True", ")", "classifier", ".", "setParameter", "(", "'learningMode'", ",", "needLearning", ")", "classificationIn", "=", "{", "'bucketIdx'", ":", "bucketIdx", ",", "'actValue'", ":", "actualValue", "}", "# Handle missing records", "if", "inputTSRecordIdx", "is", "not", "None", ":", "recordNum", "=", "inputTSRecordIdx", "else", ":", "recordNum", "=", "self", ".", "__numRunCalls", "clResults", "=", "classifier", ".", "getSelf", "(", ")", ".", "customCompute", "(", "recordNum", "=", "recordNum", ",", "patternNZ", "=", "patternNZ", ",", "classification", "=", "classificationIn", ")", "# ---------------------------------------------------------------", "# Get the prediction for every step ahead learned by the classifier", "predictionSteps", "=", "classifier", ".", "getParameter", "(", "'steps'", ")", "predictionSteps", "=", "[", "int", "(", "x", ")", "for", "x", "in", "predictionSteps", ".", "split", "(", "','", ")", "]", "# We will return the results in this dict. The top level keys", "# are the step number, the values are the relative likelihoods for", "# each classification value in that time step, represented as", "# another dict where the keys are the classification values and", "# the values are the relative likelihoods.", "inferences", "[", "InferenceElement", ".", "multiStepPredictions", "]", "=", "dict", "(", ")", "inferences", "[", "InferenceElement", ".", "multiStepBestPredictions", "]", "=", "dict", "(", ")", "inferences", "[", "InferenceElement", ".", "multiStepBucketLikelihoods", "]", "=", "dict", "(", ")", "# ======================================================================", "# Plug in the predictions for each requested time step.", "for", "steps", "in", "predictionSteps", ":", "# From the clResults, compute the predicted actual value. The", "# SDRClassifier classifies the bucket index and returns a list of", "# relative likelihoods for each bucket. Let's find the max one", "# and then look up the actual value from that bucket index", "likelihoodsVec", "=", "clResults", "[", "steps", "]", "bucketValues", "=", "clResults", "[", "'actualValues'", "]", "# Create a dict of value:likelihood pairs. We can't simply use", "# dict(zip(bucketValues, likelihoodsVec)) because there might be", "# duplicate bucketValues (this happens early on in the model when", "# it doesn't have actual values for each bucket so it returns", "# multiple buckets with the same default actual value).", "likelihoodsDict", "=", "dict", "(", ")", "bestActValue", "=", "None", "bestProb", "=", "None", "for", "(", "actValue", ",", "prob", ")", "in", "zip", "(", "bucketValues", ",", "likelihoodsVec", ")", ":", "if", "actValue", "in", "likelihoodsDict", ":", "likelihoodsDict", "[", "actValue", "]", "+=", "prob", "else", ":", "likelihoodsDict", "[", "actValue", "]", "=", "prob", "# Keep track of best", "if", "bestProb", "is", "None", "or", "likelihoodsDict", "[", "actValue", "]", ">", "bestProb", ":", "bestProb", "=", "likelihoodsDict", "[", "actValue", "]", "bestActValue", "=", "actValue", "# Remove entries with 0 likelihood or likelihood less than", "# minLikelihoodThreshold, but don't leave an empty dict.", "likelihoodsDict", "=", "HTMPredictionModel", ".", "_removeUnlikelyPredictions", "(", "likelihoodsDict", ",", "minLikelihoodThreshold", ",", "maxPredictionsPerStep", ")", "# calculate likelihood for each bucket", "bucketLikelihood", "=", "{", "}", "for", "k", "in", "likelihoodsDict", ".", "keys", "(", ")", ":", "bucketLikelihood", "[", "self", ".", "_classifierInputEncoder", ".", "getBucketIndices", "(", "k", ")", "[", "0", "]", "]", "=", "(", "likelihoodsDict", "[", "k", "]", ")", "# ---------------------------------------------------------------------", "# If we have a delta encoder, we have to shift our predicted output value", "# by the sum of the deltas", "if", "isinstance", "(", "self", ".", "_classifierInputEncoder", ",", "DeltaEncoder", ")", ":", "# Get the prediction history for this number of timesteps.", "# The prediction history is a store of the previous best predicted values.", "# This is used to get the final shift from the current absolute value.", "if", "not", "hasattr", "(", "self", ",", "'_ms_predHistories'", ")", ":", "self", ".", "_ms_predHistories", "=", "dict", "(", ")", "predHistories", "=", "self", ".", "_ms_predHistories", "if", "not", "steps", "in", "predHistories", ":", "predHistories", "[", "steps", "]", "=", "deque", "(", ")", "predHistory", "=", "predHistories", "[", "steps", "]", "# Find the sum of the deltas for the steps and use this to generate", "# an offset from the current absolute value", "sumDelta", "=", "sum", "(", "predHistory", ")", "offsetDict", "=", "dict", "(", ")", "for", "(", "k", ",", "v", ")", "in", "likelihoodsDict", ".", "iteritems", "(", ")", ":", "if", "k", "is", "not", "None", ":", "# Reconstruct the absolute value based on the current actual value,", "# the best predicted values from the previous iterations,", "# and the current predicted delta", "offsetDict", "[", "absoluteValue", "+", "float", "(", "k", ")", "+", "sumDelta", "]", "=", "v", "# calculate likelihood for each bucket", "bucketLikelihoodOffset", "=", "{", "}", "for", "k", "in", "offsetDict", ".", "keys", "(", ")", ":", "bucketLikelihoodOffset", "[", "self", ".", "_classifierInputEncoder", ".", "getBucketIndices", "(", "k", ")", "[", "0", "]", "]", "=", "(", "offsetDict", "[", "k", "]", ")", "# Push the current best delta to the history buffer for reconstructing the final delta", "if", "bestActValue", "is", "not", "None", ":", "predHistory", ".", "append", "(", "bestActValue", ")", "# If we don't need any more values in the predictionHistory, pop off", "# the earliest one.", "if", "len", "(", "predHistory", ")", ">=", "steps", ":", "predHistory", ".", "popleft", "(", ")", "# Provide the offsetDict as the return value", "if", "len", "(", "offsetDict", ")", ">", "0", ":", "inferences", "[", "InferenceElement", ".", "multiStepPredictions", "]", "[", "steps", "]", "=", "offsetDict", "inferences", "[", "InferenceElement", ".", "multiStepBucketLikelihoods", "]", "[", "steps", "]", "=", "bucketLikelihoodOffset", "else", ":", "inferences", "[", "InferenceElement", ".", "multiStepPredictions", "]", "[", "steps", "]", "=", "likelihoodsDict", "inferences", "[", "InferenceElement", ".", "multiStepBucketLikelihoods", "]", "[", "steps", "]", "=", "bucketLikelihood", "if", "bestActValue", "is", "None", ":", "inferences", "[", "InferenceElement", ".", "multiStepBestPredictions", "]", "[", "steps", "]", "=", "None", "else", ":", "inferences", "[", "InferenceElement", ".", "multiStepBestPredictions", "]", "[", "steps", "]", "=", "(", "absoluteValue", "+", "sumDelta", "+", "bestActValue", ")", "# ---------------------------------------------------------------------", "# Normal case, no delta encoder. Just plug in all our multi-step predictions", "# with likelihoods as well as our best prediction", "else", ":", "# The multiStepPredictions element holds the probabilities for each", "# bucket", "inferences", "[", "InferenceElement", ".", "multiStepPredictions", "]", "[", "steps", "]", "=", "(", "likelihoodsDict", ")", "inferences", "[", "InferenceElement", ".", "multiStepBestPredictions", "]", "[", "steps", "]", "=", "(", "bestActValue", ")", "inferences", "[", "InferenceElement", ".", "multiStepBucketLikelihoods", "]", "[", "steps", "]", "=", "(", "bucketLikelihood", ")", "return", "inferences" ]
Handle the CLA Classifier compute logic when implementing multi-step prediction. This is where the patternNZ is associated with one of the other fields from the dataset 0 to N steps in the future. This method is used by each type of network (encoder only, SP only, SP +TM) to handle the compute logic through the CLA Classifier. It fills in the inference dict with the results of the compute. Parameters: ------------------------------------------------------------------- patternNZ: The input to the CLA Classifier as a list of active input indices inputTSRecordIdx: The index of the record as computed from the timestamp and aggregation interval. This normally increments by 1 each time unless there are missing records. If there is no aggregation interval or timestamp in the data, this will be None. rawInput: The raw input to the sensor, as a dict.
[ "Handle", "the", "CLA", "Classifier", "compute", "logic", "when", "implementing", "multi", "-", "step", "prediction", ".", "This", "is", "where", "the", "patternNZ", "is", "associated", "with", "one", "of", "the", "other", "fields", "from", "the", "dataset", "0", "to", "N", "steps", "in", "the", "future", ".", "This", "method", "is", "used", "by", "each", "type", "of", "network", "(", "encoder", "only", "SP", "only", "SP", "+", "TM", ")", "to", "handle", "the", "compute", "logic", "through", "the", "CLA", "Classifier", ".", "It", "fills", "in", "the", "inference", "dict", "with", "the", "results", "of", "the", "compute", "." ]
python
valid
pandas-dev/pandas
pandas/core/indexes/range.py
https://github.com/pandas-dev/pandas/blob/9feb3ad92cc0397a04b665803a49299ee7aa1037/pandas/core/indexes/range.py#L355-L369
def equals(self, other): """ Determines if two Index objects contain the same elements. """ if isinstance(other, RangeIndex): ls = len(self) lo = len(other) return (ls == lo == 0 or ls == lo == 1 and self._start == other._start or ls == lo and self._start == other._start and self._step == other._step) return super().equals(other)
[ "def", "equals", "(", "self", ",", "other", ")", ":", "if", "isinstance", "(", "other", ",", "RangeIndex", ")", ":", "ls", "=", "len", "(", "self", ")", "lo", "=", "len", "(", "other", ")", "return", "(", "ls", "==", "lo", "==", "0", "or", "ls", "==", "lo", "==", "1", "and", "self", ".", "_start", "==", "other", ".", "_start", "or", "ls", "==", "lo", "and", "self", ".", "_start", "==", "other", ".", "_start", "and", "self", ".", "_step", "==", "other", ".", "_step", ")", "return", "super", "(", ")", ".", "equals", "(", "other", ")" ]
Determines if two Index objects contain the same elements.
[ "Determines", "if", "two", "Index", "objects", "contain", "the", "same", "elements", "." ]
python
train
CitrineInformatics/python-citrination-client
citrination_client/models/client.py
https://github.com/CitrineInformatics/python-citrination-client/blob/409984fc65ce101a620f069263f155303492465c/citrination_client/models/client.py#L144-L168
def submit_predict_request(self, data_view_id, candidates, prediction_source='scalar', use_prior=True): """ Submits an async prediction request. :param data_view_id: The id returned from create :param candidates: Array of candidates :param prediction_source: 'scalar' or 'scalar_from_distribution' :param use_prior: True to use prior prediction, otherwise False :return: Predict request Id (used to check status) """ data = { "prediction_source": prediction_source, "use_prior": use_prior, "candidates": candidates } failure_message = "Configuration creation failed" post_url = 'v1/data_views/' + str(data_view_id) + '/predict/submit' return self._get_success_json( self._post_json(post_url, data, failure_message=failure_message) )['data']['uid']
[ "def", "submit_predict_request", "(", "self", ",", "data_view_id", ",", "candidates", ",", "prediction_source", "=", "'scalar'", ",", "use_prior", "=", "True", ")", ":", "data", "=", "{", "\"prediction_source\"", ":", "prediction_source", ",", "\"use_prior\"", ":", "use_prior", ",", "\"candidates\"", ":", "candidates", "}", "failure_message", "=", "\"Configuration creation failed\"", "post_url", "=", "'v1/data_views/'", "+", "str", "(", "data_view_id", ")", "+", "'/predict/submit'", "return", "self", ".", "_get_success_json", "(", "self", ".", "_post_json", "(", "post_url", ",", "data", ",", "failure_message", "=", "failure_message", ")", ")", "[", "'data'", "]", "[", "'uid'", "]" ]
Submits an async prediction request. :param data_view_id: The id returned from create :param candidates: Array of candidates :param prediction_source: 'scalar' or 'scalar_from_distribution' :param use_prior: True to use prior prediction, otherwise False :return: Predict request Id (used to check status)
[ "Submits", "an", "async", "prediction", "request", "." ]
python
valid
linkedin/Zopkio
zopkio/deployer.py
https://github.com/linkedin/Zopkio/blob/a06e35a884cd26eedca0aac8ba6b9b40c417a01c/zopkio/deployer.py#L224-L230
def hangup(self, unique_id, configs=None): """ Issue a signal to hangup the specified process :Parameter unique_id: the name of the process """ self._send_signal(unique_id, signal.SIGHUP, configs)
[ "def", "hangup", "(", "self", ",", "unique_id", ",", "configs", "=", "None", ")", ":", "self", ".", "_send_signal", "(", "unique_id", ",", "signal", ".", "SIGHUP", ",", "configs", ")" ]
Issue a signal to hangup the specified process :Parameter unique_id: the name of the process
[ "Issue", "a", "signal", "to", "hangup", "the", "specified", "process" ]
python
train
aliyun/aliyun-odps-python-sdk
odps/df/expr/merge.py
https://github.com/aliyun/aliyun-odps-python-sdk/blob/4b0de18f5864386df6068f26f026e62f932c41e4/odps/df/expr/merge.py#L990-L1045
def setdiff(left, *rights, **kwargs): """ Exclude data from a collection, like `except` clause in SQL. All collections involved should have same schema. :param left: collection to drop data from :param rights: collection or list of collections :param distinct: whether to preserve duplicate entries :return: collection :Examples: >>> import pandas as pd >>> df1 = DataFrame(pd.DataFrame({'a': [1, 2, 3, 3, 3], 'b': [1, 2, 3, 3, 3]})) >>> df2 = DataFrame(pd.DataFrame({'a': [1, 3], 'b': [1, 3]})) >>> df1.setdiff(df2) a b 0 2 2 1 3 3 2 3 3 >>> df1.setdiff(df2, distinct=True) a b 0 2 2 """ import time from ..utils import output distinct = kwargs.get('distinct', False) if isinstance(rights[0], list): rights = rights[0] cols = [n for n in left.schema.names] types = [n for n in left.schema.types] counter_col_name = 'exc_counter_%d' % int(time.time()) left = left[left, Scalar(1).rename(counter_col_name)] rights = [r[r, Scalar(-1).rename(counter_col_name)] for r in rights] unioned = left for r in rights: unioned = unioned.union(r) if distinct: aggregated = unioned.groupby(*cols).agg(**{counter_col_name: unioned[counter_col_name].min()}) return aggregated.filter(aggregated[counter_col_name] == 1).select(*cols) else: aggregated = unioned.groupby(*cols).agg(**{counter_col_name: unioned[counter_col_name].sum()}) @output(cols, types) def exploder(row): import sys irange = xrange if sys.version_info[0] < 3 else range for _ in irange(getattr(row, counter_col_name)): yield row[:-1] return aggregated.map_reduce(mapper=exploder).select(*cols)
[ "def", "setdiff", "(", "left", ",", "*", "rights", ",", "*", "*", "kwargs", ")", ":", "import", "time", "from", ".", ".", "utils", "import", "output", "distinct", "=", "kwargs", ".", "get", "(", "'distinct'", ",", "False", ")", "if", "isinstance", "(", "rights", "[", "0", "]", ",", "list", ")", ":", "rights", "=", "rights", "[", "0", "]", "cols", "=", "[", "n", "for", "n", "in", "left", ".", "schema", ".", "names", "]", "types", "=", "[", "n", "for", "n", "in", "left", ".", "schema", ".", "types", "]", "counter_col_name", "=", "'exc_counter_%d'", "%", "int", "(", "time", ".", "time", "(", ")", ")", "left", "=", "left", "[", "left", ",", "Scalar", "(", "1", ")", ".", "rename", "(", "counter_col_name", ")", "]", "rights", "=", "[", "r", "[", "r", ",", "Scalar", "(", "-", "1", ")", ".", "rename", "(", "counter_col_name", ")", "]", "for", "r", "in", "rights", "]", "unioned", "=", "left", "for", "r", "in", "rights", ":", "unioned", "=", "unioned", ".", "union", "(", "r", ")", "if", "distinct", ":", "aggregated", "=", "unioned", ".", "groupby", "(", "*", "cols", ")", ".", "agg", "(", "*", "*", "{", "counter_col_name", ":", "unioned", "[", "counter_col_name", "]", ".", "min", "(", ")", "}", ")", "return", "aggregated", ".", "filter", "(", "aggregated", "[", "counter_col_name", "]", "==", "1", ")", ".", "select", "(", "*", "cols", ")", "else", ":", "aggregated", "=", "unioned", ".", "groupby", "(", "*", "cols", ")", ".", "agg", "(", "*", "*", "{", "counter_col_name", ":", "unioned", "[", "counter_col_name", "]", ".", "sum", "(", ")", "}", ")", "@", "output", "(", "cols", ",", "types", ")", "def", "exploder", "(", "row", ")", ":", "import", "sys", "irange", "=", "xrange", "if", "sys", ".", "version_info", "[", "0", "]", "<", "3", "else", "range", "for", "_", "in", "irange", "(", "getattr", "(", "row", ",", "counter_col_name", ")", ")", ":", "yield", "row", "[", ":", "-", "1", "]", "return", "aggregated", ".", "map_reduce", "(", "mapper", "=", "exploder", ")", ".", "select", "(", "*", "cols", ")" ]
Exclude data from a collection, like `except` clause in SQL. All collections involved should have same schema. :param left: collection to drop data from :param rights: collection or list of collections :param distinct: whether to preserve duplicate entries :return: collection :Examples: >>> import pandas as pd >>> df1 = DataFrame(pd.DataFrame({'a': [1, 2, 3, 3, 3], 'b': [1, 2, 3, 3, 3]})) >>> df2 = DataFrame(pd.DataFrame({'a': [1, 3], 'b': [1, 3]})) >>> df1.setdiff(df2) a b 0 2 2 1 3 3 2 3 3 >>> df1.setdiff(df2, distinct=True) a b 0 2 2
[ "Exclude", "data", "from", "a", "collection", "like", "except", "clause", "in", "SQL", ".", "All", "collections", "involved", "should", "have", "same", "schema", "." ]
python
train
viniciuschiele/flask-io
flask_io/mimetypes.py
https://github.com/viniciuschiele/flask-io/blob/4e559419b3d8e6859f83fa16557b00542d5f3aa7/flask_io/mimetypes.py#L81-L98
def replace(self, main_type=None, sub_type=None, params=None): """ Return a new MimeType with new values for the specified fields. :param str main_type: The new main type. :param str sub_type: The new sub type. :param dict params: The new parameters. :return: A new instance of MimeType """ if main_type is None: main_type = self.main_type if sub_type is None: sub_type = self.sub_type if params is None: params = self.params return MimeType(main_type, sub_type, params)
[ "def", "replace", "(", "self", ",", "main_type", "=", "None", ",", "sub_type", "=", "None", ",", "params", "=", "None", ")", ":", "if", "main_type", "is", "None", ":", "main_type", "=", "self", ".", "main_type", "if", "sub_type", "is", "None", ":", "sub_type", "=", "self", ".", "sub_type", "if", "params", "is", "None", ":", "params", "=", "self", ".", "params", "return", "MimeType", "(", "main_type", ",", "sub_type", ",", "params", ")" ]
Return a new MimeType with new values for the specified fields. :param str main_type: The new main type. :param str sub_type: The new sub type. :param dict params: The new parameters. :return: A new instance of MimeType
[ "Return", "a", "new", "MimeType", "with", "new", "values", "for", "the", "specified", "fields", ".", ":", "param", "str", "main_type", ":", "The", "new", "main", "type", ".", ":", "param", "str", "sub_type", ":", "The", "new", "sub", "type", ".", ":", "param", "dict", "params", ":", "The", "new", "parameters", ".", ":", "return", ":", "A", "new", "instance", "of", "MimeType" ]
python
train
jldantas/libmft
libmft/attribute.py
https://github.com/jldantas/libmft/blob/65a988605fe7663b788bd81dcb52c0a4eaad1549/libmft/attribute.py#L695-L715
def _astimezone_ts(self, timezone): """Changes the time zones of all timestamps. Receives a new timezone and applies to all timestamps, if necessary. Args: timezone (:obj:`tzinfo`): Time zone to be applied Returns: A new ``Timestamps`` object if the time zone changes, otherwise returns ``self``. """ if self.created.tzinfo is timezone: return self else: nw_obj = Timestamps((None,)*4) nw_obj.created = self.created.astimezone(timezone) nw_obj.changed = self.changed.astimezone(timezone) nw_obj.mft_changed = self.mft_changed.astimezone(timezone) nw_obj.accessed = self.accessed.astimezone(timezone) return nw_obj
[ "def", "_astimezone_ts", "(", "self", ",", "timezone", ")", ":", "if", "self", ".", "created", ".", "tzinfo", "is", "timezone", ":", "return", "self", "else", ":", "nw_obj", "=", "Timestamps", "(", "(", "None", ",", ")", "*", "4", ")", "nw_obj", ".", "created", "=", "self", ".", "created", ".", "astimezone", "(", "timezone", ")", "nw_obj", ".", "changed", "=", "self", ".", "changed", ".", "astimezone", "(", "timezone", ")", "nw_obj", ".", "mft_changed", "=", "self", ".", "mft_changed", ".", "astimezone", "(", "timezone", ")", "nw_obj", ".", "accessed", "=", "self", ".", "accessed", ".", "astimezone", "(", "timezone", ")", "return", "nw_obj" ]
Changes the time zones of all timestamps. Receives a new timezone and applies to all timestamps, if necessary. Args: timezone (:obj:`tzinfo`): Time zone to be applied Returns: A new ``Timestamps`` object if the time zone changes, otherwise returns ``self``.
[ "Changes", "the", "time", "zones", "of", "all", "timestamps", "." ]
python
train
OpenKMIP/PyKMIP
kmip/pie/sqltypes.py
https://github.com/OpenKMIP/PyKMIP/blob/b51c5b044bd05f8c85a1d65d13a583a4d8fc1b0e/kmip/pie/sqltypes.py#L61-L76
def process_result_value(self, value, dialect): """ Returns a new list of enums.CryptographicUsageMask Enums. This converts the integer value into the list of enums. Args: value(int): The integer value stored in the database that is used to create the list of enums.CryptographicUsageMask Enums. dialect(string): SQL dialect """ masks = list() if value: for e in enums.CryptographicUsageMask: if e.value & value: masks.append(e) return masks
[ "def", "process_result_value", "(", "self", ",", "value", ",", "dialect", ")", ":", "masks", "=", "list", "(", ")", "if", "value", ":", "for", "e", "in", "enums", ".", "CryptographicUsageMask", ":", "if", "e", ".", "value", "&", "value", ":", "masks", ".", "append", "(", "e", ")", "return", "masks" ]
Returns a new list of enums.CryptographicUsageMask Enums. This converts the integer value into the list of enums. Args: value(int): The integer value stored in the database that is used to create the list of enums.CryptographicUsageMask Enums. dialect(string): SQL dialect
[ "Returns", "a", "new", "list", "of", "enums", ".", "CryptographicUsageMask", "Enums", ".", "This", "converts", "the", "integer", "value", "into", "the", "list", "of", "enums", "." ]
python
test
Blueqat/Blueqat
blueqat/pauli.py
https://github.com/Blueqat/Blueqat/blob/2ac8592c79e7acf4f385d982af82fbd68dafa5cc/blueqat/pauli.py#L555-L557
def from_terms_dict(terms_dict): """For internal use.""" return Expr(tuple(Term(k, v) for k, v in terms_dict.items() if v))
[ "def", "from_terms_dict", "(", "terms_dict", ")", ":", "return", "Expr", "(", "tuple", "(", "Term", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "terms_dict", ".", "items", "(", ")", "if", "v", ")", ")" ]
For internal use.
[ "For", "internal", "use", "." ]
python
train
ArchiveTeam/wpull
wpull/network/connection.py
https://github.com/ArchiveTeam/wpull/blob/ddf051aa3322479325ba20aa778cb2cb97606bf5/wpull/network/connection.py#L476-L500
def _verify_cert(self, sock: ssl.SSLSocket): '''Check if certificate matches hostname.''' # Based on tornado.iostream.SSLIOStream # Needed for older OpenSSL (<0.9.8f) versions verify_mode = self._ssl_context.verify_mode assert verify_mode in (ssl.CERT_NONE, ssl.CERT_REQUIRED, ssl.CERT_OPTIONAL), \ 'Unknown verify mode {}'.format(verify_mode) if verify_mode == ssl.CERT_NONE: return cert = sock.getpeercert() if not cert and verify_mode == ssl.CERT_OPTIONAL: return if not cert: raise SSLVerificationError('No SSL certificate given') try: ssl.match_hostname(cert, self._hostname) except ssl.CertificateError as error: raise SSLVerificationError('Invalid SSL certificate') from error
[ "def", "_verify_cert", "(", "self", ",", "sock", ":", "ssl", ".", "SSLSocket", ")", ":", "# Based on tornado.iostream.SSLIOStream", "# Needed for older OpenSSL (<0.9.8f) versions", "verify_mode", "=", "self", ".", "_ssl_context", ".", "verify_mode", "assert", "verify_mode", "in", "(", "ssl", ".", "CERT_NONE", ",", "ssl", ".", "CERT_REQUIRED", ",", "ssl", ".", "CERT_OPTIONAL", ")", ",", "'Unknown verify mode {}'", ".", "format", "(", "verify_mode", ")", "if", "verify_mode", "==", "ssl", ".", "CERT_NONE", ":", "return", "cert", "=", "sock", ".", "getpeercert", "(", ")", "if", "not", "cert", "and", "verify_mode", "==", "ssl", ".", "CERT_OPTIONAL", ":", "return", "if", "not", "cert", ":", "raise", "SSLVerificationError", "(", "'No SSL certificate given'", ")", "try", ":", "ssl", ".", "match_hostname", "(", "cert", ",", "self", ".", "_hostname", ")", "except", "ssl", ".", "CertificateError", "as", "error", ":", "raise", "SSLVerificationError", "(", "'Invalid SSL certificate'", ")", "from", "error" ]
Check if certificate matches hostname.
[ "Check", "if", "certificate", "matches", "hostname", "." ]
python
train
tasdikrahman/vocabulary
vocabulary/responselib.py
https://github.com/tasdikrahman/vocabulary/blob/54403c5981af25dc3457796b57048ae27f09e9be/vocabulary/responselib.py#L88-L105
def respond(self, data, format='json'): """ Converts a json object to a python datastructure based on specified format :param data: the json object :param format: python datastructure type. Defaults to: "json" :returns: a python specified object """ dispatchers = { "dict": self.__respond_with_dict, "list": self.__respond_with_list } if not dispatchers.get(format, False): return json.dumps(data) return dispatchers[format](data)
[ "def", "respond", "(", "self", ",", "data", ",", "format", "=", "'json'", ")", ":", "dispatchers", "=", "{", "\"dict\"", ":", "self", ".", "__respond_with_dict", ",", "\"list\"", ":", "self", ".", "__respond_with_list", "}", "if", "not", "dispatchers", ".", "get", "(", "format", ",", "False", ")", ":", "return", "json", ".", "dumps", "(", "data", ")", "return", "dispatchers", "[", "format", "]", "(", "data", ")" ]
Converts a json object to a python datastructure based on specified format :param data: the json object :param format: python datastructure type. Defaults to: "json" :returns: a python specified object
[ "Converts", "a", "json", "object", "to", "a", "python", "datastructure", "based", "on", "specified", "format" ]
python
train
secdev/scapy
scapy/packet.py
https://github.com/secdev/scapy/blob/3ffe757c184017dd46464593a8f80f85abc1e79a/scapy/packet.py#L496-L521
def self_build(self, field_pos_list=None): """ Create the default layer regarding fields_desc dict :param field_pos_list: """ if self.raw_packet_cache is not None: for fname, fval in six.iteritems(self.raw_packet_cache_fields): if self.getfieldval(fname) != fval: self.raw_packet_cache = None self.raw_packet_cache_fields = None self.wirelen = None break if self.raw_packet_cache is not None: return self.raw_packet_cache p = b"" for f in self.fields_desc: val = self.getfieldval(f.name) if isinstance(val, RawVal): sval = raw(val) p += sval if field_pos_list is not None: field_pos_list.append((f.name, sval.encode("string_escape"), len(p), len(sval))) # noqa: E501 else: p = f.addfield(self, p, val) return p
[ "def", "self_build", "(", "self", ",", "field_pos_list", "=", "None", ")", ":", "if", "self", ".", "raw_packet_cache", "is", "not", "None", ":", "for", "fname", ",", "fval", "in", "six", ".", "iteritems", "(", "self", ".", "raw_packet_cache_fields", ")", ":", "if", "self", ".", "getfieldval", "(", "fname", ")", "!=", "fval", ":", "self", ".", "raw_packet_cache", "=", "None", "self", ".", "raw_packet_cache_fields", "=", "None", "self", ".", "wirelen", "=", "None", "break", "if", "self", ".", "raw_packet_cache", "is", "not", "None", ":", "return", "self", ".", "raw_packet_cache", "p", "=", "b\"\"", "for", "f", "in", "self", ".", "fields_desc", ":", "val", "=", "self", ".", "getfieldval", "(", "f", ".", "name", ")", "if", "isinstance", "(", "val", ",", "RawVal", ")", ":", "sval", "=", "raw", "(", "val", ")", "p", "+=", "sval", "if", "field_pos_list", "is", "not", "None", ":", "field_pos_list", ".", "append", "(", "(", "f", ".", "name", ",", "sval", ".", "encode", "(", "\"string_escape\"", ")", ",", "len", "(", "p", ")", ",", "len", "(", "sval", ")", ")", ")", "# noqa: E501", "else", ":", "p", "=", "f", ".", "addfield", "(", "self", ",", "p", ",", "val", ")", "return", "p" ]
Create the default layer regarding fields_desc dict :param field_pos_list:
[ "Create", "the", "default", "layer", "regarding", "fields_desc", "dict" ]
python
train
nkgilley/python-ecobee-api
pyecobee/__init__.py
https://github.com/nkgilley/python-ecobee-api/blob/cc8d90d20abcb9ef5b66ec9cb035bae2f06ba174/pyecobee/__init__.py#L12-L32
def config_from_file(filename, config=None): ''' Small configuration file management function''' if config: # We're writing configuration try: with open(filename, 'w') as fdesc: fdesc.write(json.dumps(config)) except IOError as error: logger.exception(error) return False return True else: # We're reading config if os.path.isfile(filename): try: with open(filename, 'r') as fdesc: return json.loads(fdesc.read()) except IOError as error: return False else: return {}
[ "def", "config_from_file", "(", "filename", ",", "config", "=", "None", ")", ":", "if", "config", ":", "# We're writing configuration", "try", ":", "with", "open", "(", "filename", ",", "'w'", ")", "as", "fdesc", ":", "fdesc", ".", "write", "(", "json", ".", "dumps", "(", "config", ")", ")", "except", "IOError", "as", "error", ":", "logger", ".", "exception", "(", "error", ")", "return", "False", "return", "True", "else", ":", "# We're reading config", "if", "os", ".", "path", ".", "isfile", "(", "filename", ")", ":", "try", ":", "with", "open", "(", "filename", ",", "'r'", ")", "as", "fdesc", ":", "return", "json", ".", "loads", "(", "fdesc", ".", "read", "(", ")", ")", "except", "IOError", "as", "error", ":", "return", "False", "else", ":", "return", "{", "}" ]
Small configuration file management function
[ "Small", "configuration", "file", "management", "function" ]
python
test
saltstack/salt
salt/modules/zpool.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/zpool.py#L1438-L1467
def labelclear(device, force=False): ''' .. versionadded:: 2018.3.0 Removes ZFS label information from the specified device device : string Device name; must not be part of an active pool configuration. force : boolean Treat exported or foreign devices as inactive CLI Example: .. code-block:: bash salt '*' zpool.labelclear /path/to/dev ''' ## clear label for all specified device res = __salt__['cmd.run_all']( __utils__['zfs.zpool_command']( command='labelclear', flags=['-f'] if force else None, target=device, ), python_shell=False, ) return __utils__['zfs.parse_command_result'](res, 'labelcleared')
[ "def", "labelclear", "(", "device", ",", "force", "=", "False", ")", ":", "## clear label for all specified device", "res", "=", "__salt__", "[", "'cmd.run_all'", "]", "(", "__utils__", "[", "'zfs.zpool_command'", "]", "(", "command", "=", "'labelclear'", ",", "flags", "=", "[", "'-f'", "]", "if", "force", "else", "None", ",", "target", "=", "device", ",", ")", ",", "python_shell", "=", "False", ",", ")", "return", "__utils__", "[", "'zfs.parse_command_result'", "]", "(", "res", ",", "'labelcleared'", ")" ]
.. versionadded:: 2018.3.0 Removes ZFS label information from the specified device device : string Device name; must not be part of an active pool configuration. force : boolean Treat exported or foreign devices as inactive CLI Example: .. code-block:: bash salt '*' zpool.labelclear /path/to/dev
[ "..", "versionadded", "::", "2018", ".", "3", ".", "0" ]
python
train
scanny/python-pptx
pptx/chart/data.py
https://github.com/scanny/python-pptx/blob/d6ab8234f8b03953d2f831ff9394b1852db34130/pptx/chart/data.py#L187-L197
def number_format(self): """ The formatting template string that determines how a number in this series is formatted, both in the chart and in the Excel spreadsheet; for example '#,##0.0'. If not specified for this series, it is inherited from the parent chart data object. """ number_format = self._number_format if number_format is None: return self._chart_data.number_format return number_format
[ "def", "number_format", "(", "self", ")", ":", "number_format", "=", "self", ".", "_number_format", "if", "number_format", "is", "None", ":", "return", "self", ".", "_chart_data", ".", "number_format", "return", "number_format" ]
The formatting template string that determines how a number in this series is formatted, both in the chart and in the Excel spreadsheet; for example '#,##0.0'. If not specified for this series, it is inherited from the parent chart data object.
[ "The", "formatting", "template", "string", "that", "determines", "how", "a", "number", "in", "this", "series", "is", "formatted", "both", "in", "the", "chart", "and", "in", "the", "Excel", "spreadsheet", ";", "for", "example", "#", "##0", ".", "0", ".", "If", "not", "specified", "for", "this", "series", "it", "is", "inherited", "from", "the", "parent", "chart", "data", "object", "." ]
python
train
ewels/MultiQC
multiqc/modules/mirtrace/mirtrace.py
https://github.com/ewels/MultiQC/blob/2037d6322b2554146a74efbf869156ad20d4c4ec/multiqc/modules/mirtrace/mirtrace.py#L218-L237
def mirtrace_qc_plot(self): """ Generate the miRTrace QC Plot""" # Specify the order of the different possible categories keys = OrderedDict() keys['adapter_removed_length_ok'] = { 'color': '#006837', 'name': 'Reads ≥ 18 nt after adapter removal' } keys['adapter_not_detected'] = { 'color': '#66bd63', 'name': 'Reads without adapter' } keys['length_shorter_than_18'] = { 'color': '#fdae61', 'name': 'Reads < 18 nt after adapter removal' } keys['low_complexity'] = { 'color': '#d73027', 'name': 'Reads with low complexity' } keys['low_phred'] = { 'color': '#a50026', 'name': 'Reads with low PHRED score' } # Config for the plot config = { 'id': 'mirtrace_qc_plot', 'title': 'miRTrace: QC Plot', 'ylab': '# Reads', 'cpswitch_counts_label': 'Number of Reads' } return bargraph.plot(self.summary_data, keys, config)
[ "def", "mirtrace_qc_plot", "(", "self", ")", ":", "# Specify the order of the different possible categories", "keys", "=", "OrderedDict", "(", ")", "keys", "[", "'adapter_removed_length_ok'", "]", "=", "{", "'color'", ":", "'#006837'", ",", "'name'", ":", "'Reads ≥ 18 nt after adapter removal' }", "", "keys", "[", "'adapter_not_detected'", "]", "=", "{", "'color'", ":", "'#66bd63'", ",", "'name'", ":", "'Reads without adapter'", "}", "keys", "[", "'length_shorter_than_18'", "]", "=", "{", "'color'", ":", "'#fdae61'", ",", "'name'", ":", "'Reads < 18 nt after adapter removal'", "}", "keys", "[", "'low_complexity'", "]", "=", "{", "'color'", ":", "'#d73027'", ",", "'name'", ":", "'Reads with low complexity'", "}", "keys", "[", "'low_phred'", "]", "=", "{", "'color'", ":", "'#a50026'", ",", "'name'", ":", "'Reads with low PHRED score'", "}", "# Config for the plot", "config", "=", "{", "'id'", ":", "'mirtrace_qc_plot'", ",", "'title'", ":", "'miRTrace: QC Plot'", ",", "'ylab'", ":", "'# Reads'", ",", "'cpswitch_counts_label'", ":", "'Number of Reads'", "}", "return", "bargraph", ".", "plot", "(", "self", ".", "summary_data", ",", "keys", ",", "config", ")" ]
Generate the miRTrace QC Plot
[ "Generate", "the", "miRTrace", "QC", "Plot" ]
python
train
manolomartinez/greg
greg/classes.py
https://github.com/manolomartinez/greg/blob/63bb24197c13087a01963ac439cd8380007d9467/greg/classes.py#L276-L345
def download_entry(self, entry): """ Find entry link and download entry """ downloadlinks = {} downloaded = False ignoreenclosures = self.retrieve_config('ignoreenclosures', 'no') notype = self.retrieve_config('notype', 'no') if ignoreenclosures == 'no': for enclosure in entry.enclosures: if notype == 'yes': downloadlinks[urlparse(enclosure["href"]).path.split( "/")[-1]] = enclosure["href"] # preserve original name else: try: # We will download all enclosures of the desired # mime-type if any([mimetype in enclosure["type"] for mimetype in self.mime]): downloadlinks[urlparse( enclosure["href"]).path.split( "/")[-1]] = enclosure["href"] # preserve original name except KeyError: print("This podcast carries no information about " "enclosure types. Try using the notype " "option in your greg.conf", file=sys.stderr, flush=True) else: downloadlinks[urlparse(entry.link).query.split( "/")[-1]] = entry.link for podname in downloadlinks: if (podname, entry.linkdate) not in zip(self.entrylinks, self.linkdates): try: title = entry.title except: title = podname try: sanitizedsummary = aux.html_to_text(entry.summary) if sanitizedsummary == "": sanitizedsummary = "No summary available" except: sanitizedsummary = "No summary available" try: placeholders = Placeholders( self, entry, downloadlinks[podname], podname, title, sanitizedsummary) placeholders = aux.check_directory(placeholders) condition = aux.filtercond(placeholders) if condition: print("Downloading {} -- {}".format(title, podname)) aux.download_handler(self, placeholders) if self.willtag: aux.tag(placeholders) downloaded = True else: print("Skipping {} -- {}".format(title, podname)) downloaded = False if self.info: with open(self.info, 'a') as current: # We write to file this often to ensure that # downloaded entries count as downloaded. current.write(''.join([podname, ' ', str(entry.linkdate), '\n'])) except URLError: sys.exit(("... something went wrong. " "Are you connected to the internet?")) return downloaded
[ "def", "download_entry", "(", "self", ",", "entry", ")", ":", "downloadlinks", "=", "{", "}", "downloaded", "=", "False", "ignoreenclosures", "=", "self", ".", "retrieve_config", "(", "'ignoreenclosures'", ",", "'no'", ")", "notype", "=", "self", ".", "retrieve_config", "(", "'notype'", ",", "'no'", ")", "if", "ignoreenclosures", "==", "'no'", ":", "for", "enclosure", "in", "entry", ".", "enclosures", ":", "if", "notype", "==", "'yes'", ":", "downloadlinks", "[", "urlparse", "(", "enclosure", "[", "\"href\"", "]", ")", ".", "path", ".", "split", "(", "\"/\"", ")", "[", "-", "1", "]", "]", "=", "enclosure", "[", "\"href\"", "]", "# preserve original name", "else", ":", "try", ":", "# We will download all enclosures of the desired", "# mime-type", "if", "any", "(", "[", "mimetype", "in", "enclosure", "[", "\"type\"", "]", "for", "mimetype", "in", "self", ".", "mime", "]", ")", ":", "downloadlinks", "[", "urlparse", "(", "enclosure", "[", "\"href\"", "]", ")", ".", "path", ".", "split", "(", "\"/\"", ")", "[", "-", "1", "]", "]", "=", "enclosure", "[", "\"href\"", "]", "# preserve original name", "except", "KeyError", ":", "print", "(", "\"This podcast carries no information about \"", "\"enclosure types. Try using the notype \"", "\"option in your greg.conf\"", ",", "file", "=", "sys", ".", "stderr", ",", "flush", "=", "True", ")", "else", ":", "downloadlinks", "[", "urlparse", "(", "entry", ".", "link", ")", ".", "query", ".", "split", "(", "\"/\"", ")", "[", "-", "1", "]", "]", "=", "entry", ".", "link", "for", "podname", "in", "downloadlinks", ":", "if", "(", "podname", ",", "entry", ".", "linkdate", ")", "not", "in", "zip", "(", "self", ".", "entrylinks", ",", "self", ".", "linkdates", ")", ":", "try", ":", "title", "=", "entry", ".", "title", "except", ":", "title", "=", "podname", "try", ":", "sanitizedsummary", "=", "aux", ".", "html_to_text", "(", "entry", ".", "summary", ")", "if", "sanitizedsummary", "==", "\"\"", ":", "sanitizedsummary", "=", "\"No summary available\"", "except", ":", "sanitizedsummary", "=", "\"No summary available\"", "try", ":", "placeholders", "=", "Placeholders", "(", "self", ",", "entry", ",", "downloadlinks", "[", "podname", "]", ",", "podname", ",", "title", ",", "sanitizedsummary", ")", "placeholders", "=", "aux", ".", "check_directory", "(", "placeholders", ")", "condition", "=", "aux", ".", "filtercond", "(", "placeholders", ")", "if", "condition", ":", "print", "(", "\"Downloading {} -- {}\"", ".", "format", "(", "title", ",", "podname", ")", ")", "aux", ".", "download_handler", "(", "self", ",", "placeholders", ")", "if", "self", ".", "willtag", ":", "aux", ".", "tag", "(", "placeholders", ")", "downloaded", "=", "True", "else", ":", "print", "(", "\"Skipping {} -- {}\"", ".", "format", "(", "title", ",", "podname", ")", ")", "downloaded", "=", "False", "if", "self", ".", "info", ":", "with", "open", "(", "self", ".", "info", ",", "'a'", ")", "as", "current", ":", "# We write to file this often to ensure that", "# downloaded entries count as downloaded.", "current", ".", "write", "(", "''", ".", "join", "(", "[", "podname", ",", "' '", ",", "str", "(", "entry", ".", "linkdate", ")", ",", "'\\n'", "]", ")", ")", "except", "URLError", ":", "sys", ".", "exit", "(", "(", "\"... something went wrong. \"", "\"Are you connected to the internet?\"", ")", ")", "return", "downloaded" ]
Find entry link and download entry
[ "Find", "entry", "link", "and", "download", "entry" ]
python
train
btr1975/persistentdatatools
persistentdatatools/persistentdatatools.py
https://github.com/btr1975/persistentdatatools/blob/39e1294ce34a0a34363c65d94cdd592be5ad791b/persistentdatatools/persistentdatatools.py#L392-L405
def list_files_in_directory(full_directory_path): """ List the files in a specified directory Args: full_directory_path: The full directory path to check, derive from the os module Returns: returns a list of files """ files = list() for file_name in __os.listdir(full_directory_path): if __os.path.isfile(__os.path.join(full_directory_path, file_name)): files.append(file_name) return files
[ "def", "list_files_in_directory", "(", "full_directory_path", ")", ":", "files", "=", "list", "(", ")", "for", "file_name", "in", "__os", ".", "listdir", "(", "full_directory_path", ")", ":", "if", "__os", ".", "path", ".", "isfile", "(", "__os", ".", "path", ".", "join", "(", "full_directory_path", ",", "file_name", ")", ")", ":", "files", ".", "append", "(", "file_name", ")", "return", "files" ]
List the files in a specified directory Args: full_directory_path: The full directory path to check, derive from the os module Returns: returns a list of files
[ "List", "the", "files", "in", "a", "specified", "directory", "Args", ":", "full_directory_path", ":", "The", "full", "directory", "path", "to", "check", "derive", "from", "the", "os", "module" ]
python
train
SeattleTestbed/seash
pyreadline/lineeditor/lineobj.py
https://github.com/SeattleTestbed/seash/blob/40f9d2285662ff8b61e0468b4196acee089b273b/pyreadline/lineeditor/lineobj.py#L726-L736
def copy_selection_to_clipboard(self): # () u'''Copy the text in the region to the windows clipboard.''' if self.enable_win32_clipboard and self.enable_selection and self.selection_mark >= 0: selection_mark = min(self.selection_mark,len(self.line_buffer)) cursor = min(self.point,len(self.line_buffer)) if self.selection_mark == -1: return begin = min(cursor, selection_mark) end = max(cursor, selection_mark) toclipboard = u"".join(self.line_buffer[begin:end]) clipboard.SetClipboardText(toclipboard)
[ "def", "copy_selection_to_clipboard", "(", "self", ")", ":", "# ()\r", "if", "self", ".", "enable_win32_clipboard", "and", "self", ".", "enable_selection", "and", "self", ".", "selection_mark", ">=", "0", ":", "selection_mark", "=", "min", "(", "self", ".", "selection_mark", ",", "len", "(", "self", ".", "line_buffer", ")", ")", "cursor", "=", "min", "(", "self", ".", "point", ",", "len", "(", "self", ".", "line_buffer", ")", ")", "if", "self", ".", "selection_mark", "==", "-", "1", ":", "return", "begin", "=", "min", "(", "cursor", ",", "selection_mark", ")", "end", "=", "max", "(", "cursor", ",", "selection_mark", ")", "toclipboard", "=", "u\"\"", ".", "join", "(", "self", ".", "line_buffer", "[", "begin", ":", "end", "]", ")", "clipboard", ".", "SetClipboardText", "(", "toclipboard", ")" ]
u'''Copy the text in the region to the windows clipboard.
[ "u", "Copy", "the", "text", "in", "the", "region", "to", "the", "windows", "clipboard", "." ]
python
train
Duke-GCB/DukeDSClient
ddsc/core/parallel.py
https://github.com/Duke-GCB/DukeDSClient/blob/117f68fb9bae82e4c81ea487ad5d61ac350f3726/ddsc/core/parallel.py#L247-L263
def get_finished_results(self): """ Go through pending results and retrieve the results if they are done. Then start child tasks for the task that finished. """ task_and_results = [] for pending_result in self.pending_results: if pending_result.ready(): ret = pending_result.get() task_id, result = ret task = self.task_id_to_task[task_id] # process any pending messages for this task (will also process other tasks messages) self.process_all_messages_in_queue() task.after_run(result) task_and_results.append((task, result)) self.pending_results.remove(pending_result) return task_and_results
[ "def", "get_finished_results", "(", "self", ")", ":", "task_and_results", "=", "[", "]", "for", "pending_result", "in", "self", ".", "pending_results", ":", "if", "pending_result", ".", "ready", "(", ")", ":", "ret", "=", "pending_result", ".", "get", "(", ")", "task_id", ",", "result", "=", "ret", "task", "=", "self", ".", "task_id_to_task", "[", "task_id", "]", "# process any pending messages for this task (will also process other tasks messages)", "self", ".", "process_all_messages_in_queue", "(", ")", "task", ".", "after_run", "(", "result", ")", "task_and_results", ".", "append", "(", "(", "task", ",", "result", ")", ")", "self", ".", "pending_results", ".", "remove", "(", "pending_result", ")", "return", "task_and_results" ]
Go through pending results and retrieve the results if they are done. Then start child tasks for the task that finished.
[ "Go", "through", "pending", "results", "and", "retrieve", "the", "results", "if", "they", "are", "done", ".", "Then", "start", "child", "tasks", "for", "the", "task", "that", "finished", "." ]
python
train
benoitkugler/abstractDataLibrary
pyDLib/Core/data_model.py
https://github.com/benoitkugler/abstractDataLibrary/blob/16be28e99837e40287a63803bbfdf67ac1806b7b/pyDLib/Core/data_model.py#L57-L62
def modifie(self, key: str, value: Any) -> None: """Store the modification. `value` should be dumped in DB compatible format.""" if key in self.FIELDS_OPTIONS: self.modifie_options(key, value) else: self.modifications[key] = value
[ "def", "modifie", "(", "self", ",", "key", ":", "str", ",", "value", ":", "Any", ")", "->", "None", ":", "if", "key", "in", "self", ".", "FIELDS_OPTIONS", ":", "self", ".", "modifie_options", "(", "key", ",", "value", ")", "else", ":", "self", ".", "modifications", "[", "key", "]", "=", "value" ]
Store the modification. `value` should be dumped in DB compatible format.
[ "Store", "the", "modification", ".", "value", "should", "be", "dumped", "in", "DB", "compatible", "format", "." ]
python
train
mabuchilab/QNET
src/qnet/utils/indices.py
https://github.com/mabuchilab/QNET/blob/cc20d26dad78691d34c67173e5cd67dcac94208a/src/qnet/utils/indices.py#L152-L156
def incr_primed(self, incr=1): """Return a copy of the index with an incremented :attr:`primed`""" return self.__class__( self.name, primed=self._primed + incr, **self._assumptions.generator)
[ "def", "incr_primed", "(", "self", ",", "incr", "=", "1", ")", ":", "return", "self", ".", "__class__", "(", "self", ".", "name", ",", "primed", "=", "self", ".", "_primed", "+", "incr", ",", "*", "*", "self", ".", "_assumptions", ".", "generator", ")" ]
Return a copy of the index with an incremented :attr:`primed`
[ "Return", "a", "copy", "of", "the", "index", "with", "an", "incremented", ":", "attr", ":", "primed" ]
python
train
aio-libs/aioredis
aioredis/commands/list.py
https://github.com/aio-libs/aioredis/blob/e8c33e39558d4cc91cf70dde490d8b330c97dc2e/aioredis/commands/list.py#L38-L50
def brpoplpush(self, sourcekey, destkey, timeout=0, encoding=_NOTSET): """Remove and get the last element in a list, or block until one is available. :raises TypeError: if timeout is not int :raises ValueError: if timeout is less than 0 """ if not isinstance(timeout, int): raise TypeError("timeout argument must be int") if timeout < 0: raise ValueError("timeout must be greater equal 0") return self.execute(b'BRPOPLPUSH', sourcekey, destkey, timeout, encoding=encoding)
[ "def", "brpoplpush", "(", "self", ",", "sourcekey", ",", "destkey", ",", "timeout", "=", "0", ",", "encoding", "=", "_NOTSET", ")", ":", "if", "not", "isinstance", "(", "timeout", ",", "int", ")", ":", "raise", "TypeError", "(", "\"timeout argument must be int\"", ")", "if", "timeout", "<", "0", ":", "raise", "ValueError", "(", "\"timeout must be greater equal 0\"", ")", "return", "self", ".", "execute", "(", "b'BRPOPLPUSH'", ",", "sourcekey", ",", "destkey", ",", "timeout", ",", "encoding", "=", "encoding", ")" ]
Remove and get the last element in a list, or block until one is available. :raises TypeError: if timeout is not int :raises ValueError: if timeout is less than 0
[ "Remove", "and", "get", "the", "last", "element", "in", "a", "list", "or", "block", "until", "one", "is", "available", "." ]
python
train
quantmind/pulsar
pulsar/utils/pylib/redisparser.py
https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/pulsar/utils/pylib/redisparser.py#L86-L91
def get(self): '''Called by the protocol consumer''' if self._current: return self._resume(self._current, False) else: return self._get(None)
[ "def", "get", "(", "self", ")", ":", "if", "self", ".", "_current", ":", "return", "self", ".", "_resume", "(", "self", ".", "_current", ",", "False", ")", "else", ":", "return", "self", ".", "_get", "(", "None", ")" ]
Called by the protocol consumer
[ "Called", "by", "the", "protocol", "consumer" ]
python
train
spyder-ide/spyder
spyder/app/mainwindow.py
https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/app/mainwindow.py#L2301-L2309
def change_last_focused_widget(self, old, now): """To keep track of to the last focused widget""" if (now is None and QApplication.activeWindow() is not None): QApplication.activeWindow().setFocus() self.last_focused_widget = QApplication.focusWidget() elif now is not None: self.last_focused_widget = now self.previous_focused_widget = old
[ "def", "change_last_focused_widget", "(", "self", ",", "old", ",", "now", ")", ":", "if", "(", "now", "is", "None", "and", "QApplication", ".", "activeWindow", "(", ")", "is", "not", "None", ")", ":", "QApplication", ".", "activeWindow", "(", ")", ".", "setFocus", "(", ")", "self", ".", "last_focused_widget", "=", "QApplication", ".", "focusWidget", "(", ")", "elif", "now", "is", "not", "None", ":", "self", ".", "last_focused_widget", "=", "now", "self", ".", "previous_focused_widget", "=", "old" ]
To keep track of to the last focused widget
[ "To", "keep", "track", "of", "to", "the", "last", "focused", "widget" ]
python
train
troeger/opensubmit
executor/opensubmitexec/job.py
https://github.com/troeger/opensubmit/blob/384a95b7c6fa41e3f949a129d25dafd9a1c54859/executor/opensubmitexec/job.py#L176-L196
def run_program(self, name, arguments=[], timeout=30, exclusive=False): """Runs a program in the working directory to completion. Args: name (str): The name of the program to be executed. arguments (tuple): Command-line arguments for the program. timeout (int): The timeout for execution. exclusive (bool): Prevent parallel validation runs on the test machines, e.g. when doing performance measurements for submitted code. Returns: tuple: A tuple of the exit code, as reported by the operating system, and the output produced during the execution. """ logger.debug("Running program ...") if exclusive: kill_longrunning(self.config) prog = RunningProgram(self, name, arguments, timeout) return prog.expect_end()
[ "def", "run_program", "(", "self", ",", "name", ",", "arguments", "=", "[", "]", ",", "timeout", "=", "30", ",", "exclusive", "=", "False", ")", ":", "logger", ".", "debug", "(", "\"Running program ...\"", ")", "if", "exclusive", ":", "kill_longrunning", "(", "self", ".", "config", ")", "prog", "=", "RunningProgram", "(", "self", ",", "name", ",", "arguments", ",", "timeout", ")", "return", "prog", ".", "expect_end", "(", ")" ]
Runs a program in the working directory to completion. Args: name (str): The name of the program to be executed. arguments (tuple): Command-line arguments for the program. timeout (int): The timeout for execution. exclusive (bool): Prevent parallel validation runs on the test machines, e.g. when doing performance measurements for submitted code. Returns: tuple: A tuple of the exit code, as reported by the operating system, and the output produced during the execution.
[ "Runs", "a", "program", "in", "the", "working", "directory", "to", "completion", "." ]
python
train
tijme/not-your-average-web-crawler
nyawc/Crawler.py
https://github.com/tijme/not-your-average-web-crawler/blob/d77c14e1616c541bb3980f649a7e6f8ed02761fb/nyawc/Crawler.py#L122-L143
def __spawn_new_request(self): """Spawn the first queued request if there is one available. Returns: bool: True if a new request was spawned, false otherwise. """ first_in_line = self.queue.get_first(QueueItem.STATUS_QUEUED) if first_in_line is None: return False while self.routing.is_treshold_reached(first_in_line.request): self.queue.move(first_in_line, QueueItem.STATUS_CANCELLED) first_in_line = self.queue.get_first(QueueItem.STATUS_QUEUED) if first_in_line is None: return False self.__request_start(first_in_line) return True
[ "def", "__spawn_new_request", "(", "self", ")", ":", "first_in_line", "=", "self", ".", "queue", ".", "get_first", "(", "QueueItem", ".", "STATUS_QUEUED", ")", "if", "first_in_line", "is", "None", ":", "return", "False", "while", "self", ".", "routing", ".", "is_treshold_reached", "(", "first_in_line", ".", "request", ")", ":", "self", ".", "queue", ".", "move", "(", "first_in_line", ",", "QueueItem", ".", "STATUS_CANCELLED", ")", "first_in_line", "=", "self", ".", "queue", ".", "get_first", "(", "QueueItem", ".", "STATUS_QUEUED", ")", "if", "first_in_line", "is", "None", ":", "return", "False", "self", ".", "__request_start", "(", "first_in_line", ")", "return", "True" ]
Spawn the first queued request if there is one available. Returns: bool: True if a new request was spawned, false otherwise.
[ "Spawn", "the", "first", "queued", "request", "if", "there", "is", "one", "available", "." ]
python
train
Jaymon/captain
captain/__init__.py
https://github.com/Jaymon/captain/blob/4297f32961d423a10d0f053bc252e29fbe939a47/captain/__init__.py#L79-L116
def exit(mod_name=""): """A stand-in for the normal sys.exit() all the magic happens here, when this is called at the end of a script it will figure out all the available commands and arguments that can be passed in, then handle exiting the script and returning the status code. :Example: from captain import exit exit(__name__) This also acts as a guard against the script being traditionally imported, so even if you have this at the end of the script, it won't actually exit if the script is traditionally imported """ if mod_name and mod_name == "__main__": calling_mod = sys.modules.get("__main__", None) else: calling_mod = discover_if_calling_mod() if calling_mod: s = Script(inspect.getfile(calling_mod), module=calling_mod) raw_args = sys.argv[1:] try: ret_code = s.run(raw_args) except Stop as e: ret_code = e.code msg = str(e) if msg: if ret_code != 0: echo.err(msg) else: echo.out(msg) sys.exit(ret_code)
[ "def", "exit", "(", "mod_name", "=", "\"\"", ")", ":", "if", "mod_name", "and", "mod_name", "==", "\"__main__\"", ":", "calling_mod", "=", "sys", ".", "modules", ".", "get", "(", "\"__main__\"", ",", "None", ")", "else", ":", "calling_mod", "=", "discover_if_calling_mod", "(", ")", "if", "calling_mod", ":", "s", "=", "Script", "(", "inspect", ".", "getfile", "(", "calling_mod", ")", ",", "module", "=", "calling_mod", ")", "raw_args", "=", "sys", ".", "argv", "[", "1", ":", "]", "try", ":", "ret_code", "=", "s", ".", "run", "(", "raw_args", ")", "except", "Stop", "as", "e", ":", "ret_code", "=", "e", ".", "code", "msg", "=", "str", "(", "e", ")", "if", "msg", ":", "if", "ret_code", "!=", "0", ":", "echo", ".", "err", "(", "msg", ")", "else", ":", "echo", ".", "out", "(", "msg", ")", "sys", ".", "exit", "(", "ret_code", ")" ]
A stand-in for the normal sys.exit() all the magic happens here, when this is called at the end of a script it will figure out all the available commands and arguments that can be passed in, then handle exiting the script and returning the status code. :Example: from captain import exit exit(__name__) This also acts as a guard against the script being traditionally imported, so even if you have this at the end of the script, it won't actually exit if the script is traditionally imported
[ "A", "stand", "-", "in", "for", "the", "normal", "sys", ".", "exit", "()" ]
python
valid
DataDog/integrations-core
tokumx/datadog_checks/tokumx/vendor/bson/__init__.py
https://github.com/DataDog/integrations-core/blob/ebd41c873cf9f97a8c51bf9459bc6a7536af8acd/tokumx/datadog_checks/tokumx/vendor/bson/__init__.py#L352-L360
def _elements_to_dict(data, position, obj_end, opts): """Decode a BSON document.""" result = opts.document_class() pos = position for key, value, pos in _iterate_elements(data, position, obj_end, opts): result[key] = value if pos != obj_end: raise InvalidBSON('bad object or element length') return result
[ "def", "_elements_to_dict", "(", "data", ",", "position", ",", "obj_end", ",", "opts", ")", ":", "result", "=", "opts", ".", "document_class", "(", ")", "pos", "=", "position", "for", "key", ",", "value", ",", "pos", "in", "_iterate_elements", "(", "data", ",", "position", ",", "obj_end", ",", "opts", ")", ":", "result", "[", "key", "]", "=", "value", "if", "pos", "!=", "obj_end", ":", "raise", "InvalidBSON", "(", "'bad object or element length'", ")", "return", "result" ]
Decode a BSON document.
[ "Decode", "a", "BSON", "document", "." ]
python
train
aleontiev/dj
dj/generator.py
https://github.com/aleontiev/dj/blob/0612d442fdd8d472aea56466568b9857556ecb51/dj/generator.py#L44-L66
def render(self): """Render the blueprint into a temp directory using the context.""" context = self.context if 'app' not in context: context['app'] = self.application.name temp_dir = self.temp_dir templates_root = self.blueprint.templates_directory for root, dirs, files in os.walk(templates_root): for directory in dirs: directory = os.path.join(root, directory) directory = render_from_string(directory, context) directory = directory.replace(templates_root, temp_dir, 1) os.mkdir(directory) for file in files: full_file = os.path.join(root, file) stat = os.stat(full_file) content = render_from_file(full_file, context) full_file = strip_extension( render_from_string(full_file, context)) full_file = full_file.replace(templates_root, temp_dir, 1) with open(full_file, 'w') as f: f.write(content) os.chmod(full_file, stat.st_mode)
[ "def", "render", "(", "self", ")", ":", "context", "=", "self", ".", "context", "if", "'app'", "not", "in", "context", ":", "context", "[", "'app'", "]", "=", "self", ".", "application", ".", "name", "temp_dir", "=", "self", ".", "temp_dir", "templates_root", "=", "self", ".", "blueprint", ".", "templates_directory", "for", "root", ",", "dirs", ",", "files", "in", "os", ".", "walk", "(", "templates_root", ")", ":", "for", "directory", "in", "dirs", ":", "directory", "=", "os", ".", "path", ".", "join", "(", "root", ",", "directory", ")", "directory", "=", "render_from_string", "(", "directory", ",", "context", ")", "directory", "=", "directory", ".", "replace", "(", "templates_root", ",", "temp_dir", ",", "1", ")", "os", ".", "mkdir", "(", "directory", ")", "for", "file", "in", "files", ":", "full_file", "=", "os", ".", "path", ".", "join", "(", "root", ",", "file", ")", "stat", "=", "os", ".", "stat", "(", "full_file", ")", "content", "=", "render_from_file", "(", "full_file", ",", "context", ")", "full_file", "=", "strip_extension", "(", "render_from_string", "(", "full_file", ",", "context", ")", ")", "full_file", "=", "full_file", ".", "replace", "(", "templates_root", ",", "temp_dir", ",", "1", ")", "with", "open", "(", "full_file", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "content", ")", "os", ".", "chmod", "(", "full_file", ",", "stat", ".", "st_mode", ")" ]
Render the blueprint into a temp directory using the context.
[ "Render", "the", "blueprint", "into", "a", "temp", "directory", "using", "the", "context", "." ]
python
train
openai/universe
universe/remotes/allocator_remote.py
https://github.com/openai/universe/blob/cc9ce6ec241821bfb0f3b85dd455bd36e4ee7a8c/universe/remotes/allocator_remote.py#L166-L169
def allocate(self, handles, initial=False, params={}): """Call from main thread. Initiate a request for more environments""" assert all(re.search('^\d+$', h) for h in handles), "All handles must be numbers: {}".format(handles) self.requests.put(('allocate', (handles, initial, params)))
[ "def", "allocate", "(", "self", ",", "handles", ",", "initial", "=", "False", ",", "params", "=", "{", "}", ")", ":", "assert", "all", "(", "re", ".", "search", "(", "'^\\d+$'", ",", "h", ")", "for", "h", "in", "handles", ")", ",", "\"All handles must be numbers: {}\"", ".", "format", "(", "handles", ")", "self", ".", "requests", ".", "put", "(", "(", "'allocate'", ",", "(", "handles", ",", "initial", ",", "params", ")", ")", ")" ]
Call from main thread. Initiate a request for more environments
[ "Call", "from", "main", "thread", ".", "Initiate", "a", "request", "for", "more", "environments" ]
python
train
nvbn/thefuck
thefuck/types.py
https://github.com/nvbn/thefuck/blob/40ab4eb62db57627bff10cf029d29c94704086a2/thefuck/types.py#L69-L83
def from_raw_script(cls, raw_script): """Creates instance of `Command` from a list of script parts. :type raw_script: [basestring] :rtype: Command :raises: EmptyCommand """ script = format_raw_script(raw_script) if not script: raise EmptyCommand expanded = shell.from_shell(script) output = get_output(script, expanded) return cls(expanded, output)
[ "def", "from_raw_script", "(", "cls", ",", "raw_script", ")", ":", "script", "=", "format_raw_script", "(", "raw_script", ")", "if", "not", "script", ":", "raise", "EmptyCommand", "expanded", "=", "shell", ".", "from_shell", "(", "script", ")", "output", "=", "get_output", "(", "script", ",", "expanded", ")", "return", "cls", "(", "expanded", ",", "output", ")" ]
Creates instance of `Command` from a list of script parts. :type raw_script: [basestring] :rtype: Command :raises: EmptyCommand
[ "Creates", "instance", "of", "Command", "from", "a", "list", "of", "script", "parts", "." ]
python
train
PyThaiNLP/pythainlp
pythainlp/util/date.py
https://github.com/PyThaiNLP/pythainlp/blob/e9a300b8a99dfd1a67a955e7c06f62e4afe0fbca/pythainlp/util/date.py#L281-L293
def reign_year_to_ad(reign_year: int, reign: int) -> int: """ Reign year of Chakri dynasty, Thailand """ if int(reign) == 10: ad = int(reign_year) + 2015 elif int(reign) == 9: ad = int(reign_year) + 1945 elif int(reign) == 8: ad = int(reign_year) + 1928 elif int(reign) == 7: ad = int(reign_year) + 1924 return ad
[ "def", "reign_year_to_ad", "(", "reign_year", ":", "int", ",", "reign", ":", "int", ")", "->", "int", ":", "if", "int", "(", "reign", ")", "==", "10", ":", "ad", "=", "int", "(", "reign_year", ")", "+", "2015", "elif", "int", "(", "reign", ")", "==", "9", ":", "ad", "=", "int", "(", "reign_year", ")", "+", "1945", "elif", "int", "(", "reign", ")", "==", "8", ":", "ad", "=", "int", "(", "reign_year", ")", "+", "1928", "elif", "int", "(", "reign", ")", "==", "7", ":", "ad", "=", "int", "(", "reign_year", ")", "+", "1924", "return", "ad" ]
Reign year of Chakri dynasty, Thailand
[ "Reign", "year", "of", "Chakri", "dynasty", "Thailand" ]
python
train
PolicyStat/jobtastic
jobtastic/task.py
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L405-L411
def _get_cache(self): """ Return the cache to use for thundering herd protection, etc. """ if not self._cache: self._cache = get_cache(self.app) return self._cache
[ "def", "_get_cache", "(", "self", ")", ":", "if", "not", "self", ".", "_cache", ":", "self", ".", "_cache", "=", "get_cache", "(", "self", ".", "app", ")", "return", "self", ".", "_cache" ]
Return the cache to use for thundering herd protection, etc.
[ "Return", "the", "cache", "to", "use", "for", "thundering", "herd", "protection", "etc", "." ]
python
train
python-bugzilla/python-bugzilla
bugzilla/base.py
https://github.com/python-bugzilla/python-bugzilla/blob/7de8b225104f24a1eee3e837bf1e02d60aefe69f/bugzilla/base.py#L565-L573
def _login(self, user, password, restrict_login=None): """ Backend login method for Bugzilla3 """ payload = {'login': user, 'password': password} if restrict_login: payload['restrict_login'] = True return self._proxy.User.login(payload)
[ "def", "_login", "(", "self", ",", "user", ",", "password", ",", "restrict_login", "=", "None", ")", ":", "payload", "=", "{", "'login'", ":", "user", ",", "'password'", ":", "password", "}", "if", "restrict_login", ":", "payload", "[", "'restrict_login'", "]", "=", "True", "return", "self", ".", "_proxy", ".", "User", ".", "login", "(", "payload", ")" ]
Backend login method for Bugzilla3
[ "Backend", "login", "method", "for", "Bugzilla3" ]
python
train
nuSTORM/gnomon
gnomon/processors/Fitter.py
https://github.com/nuSTORM/gnomon/blob/7616486ecd6e26b76f677c380e62db1c0ade558a/gnomon/processors/Fitter.py#L175-L188
def sort_points(self, points): """Take points (z,x,q) and sort by increasing z""" new_points = [] z_lookup = {} for z, x, Q in points: z_lookup[z] = (z, x, Q) z_keys = z_lookup.keys() z_keys.sort() for key in z_keys: new_points.append(z_lookup[key]) return new_points
[ "def", "sort_points", "(", "self", ",", "points", ")", ":", "new_points", "=", "[", "]", "z_lookup", "=", "{", "}", "for", "z", ",", "x", ",", "Q", "in", "points", ":", "z_lookup", "[", "z", "]", "=", "(", "z", ",", "x", ",", "Q", ")", "z_keys", "=", "z_lookup", ".", "keys", "(", ")", "z_keys", ".", "sort", "(", ")", "for", "key", "in", "z_keys", ":", "new_points", ".", "append", "(", "z_lookup", "[", "key", "]", ")", "return", "new_points" ]
Take points (z,x,q) and sort by increasing z
[ "Take", "points", "(", "z", "x", "q", ")", "and", "sort", "by", "increasing", "z" ]
python
train
linkedin/asciietch
asciietch/graph.py
https://github.com/linkedin/asciietch/blob/33499e9b1c5226c04078d08a210ef657c630291c/asciietch/graph.py#L133-L192
def asciigraph(self, values=None, max_height=None, max_width=None, label=False): ''' Accepts a list of y values and returns an ascii graph Optionally values can also be a dictionary with a key of timestamp, and a value of value. InGraphs returns data in this format for example. ''' result = '' border_fill_char = '*' start_ctime = None end_ctime = None if not max_width: max_width = 180 # If this is a dict of timestamp -> value, sort the data, store the start/end time, and convert values to a list of values if isinstance(values, dict): time_series_sorted = sorted(list(values.items()), key=lambda x: x[0]) # Sort timestamp/value dict by the timestamps start_timestamp = time_series_sorted[0][0] end_timestamp = time_series_sorted[-1][0] start_ctime = datetime.fromtimestamp(float(start_timestamp)).ctime() end_ctime = datetime.fromtimestamp(float(end_timestamp)).ctime() values = self._scale_x_values_timestamps(values=time_series_sorted, max_width=max_width) values = [value for value in values if value is not None] if not max_height: max_height = min(20, max(values)) stdev = statistics.stdev(values) mean = statistics.mean(values) # Do value adjustments adjusted_values = list(values) adjusted_values = self._scale_x_values(values=values, max_width=max_width) upper_value = max(adjusted_values) # Getting upper/lower after scaling x values so we don't label a spike we can't see lower_value = min(adjusted_values) adjusted_values = self._scale_y_values(values=adjusted_values, new_min=0, new_max=max_height, scale_old_from_zero=False) adjusted_values = self._round_floats_to_ints(values=adjusted_values) # Obtain Ascii Graph String field = self._get_ascii_field(adjusted_values) graph_string = self._draw_ascii_graph(field=field) # Label the graph if label: top_label = 'Upper value: {upper_value:.2f} '.format(upper_value=upper_value).ljust(max_width, border_fill_char) result += top_label + '\n' result += '{graph_string}\n'.format(graph_string=graph_string) if label: lower = f'Lower value: {lower_value:.2f} ' stats = f' Mean: {mean:.2f} *** Std Dev: {stdev:.2f} ******' fill_length = max_width - len(lower) - len(stats) stat_label = f'{lower}{"*" * fill_length}{stats}\n' result += stat_label if start_ctime and end_ctime: fill_length = max_width - len(start_ctime) - len(end_ctime) result += f'{start_ctime}{" " * fill_length}{end_ctime}\n' return result
[ "def", "asciigraph", "(", "self", ",", "values", "=", "None", ",", "max_height", "=", "None", ",", "max_width", "=", "None", ",", "label", "=", "False", ")", ":", "result", "=", "''", "border_fill_char", "=", "'*'", "start_ctime", "=", "None", "end_ctime", "=", "None", "if", "not", "max_width", ":", "max_width", "=", "180", "# If this is a dict of timestamp -> value, sort the data, store the start/end time, and convert values to a list of values", "if", "isinstance", "(", "values", ",", "dict", ")", ":", "time_series_sorted", "=", "sorted", "(", "list", "(", "values", ".", "items", "(", ")", ")", ",", "key", "=", "lambda", "x", ":", "x", "[", "0", "]", ")", "# Sort timestamp/value dict by the timestamps", "start_timestamp", "=", "time_series_sorted", "[", "0", "]", "[", "0", "]", "end_timestamp", "=", "time_series_sorted", "[", "-", "1", "]", "[", "0", "]", "start_ctime", "=", "datetime", ".", "fromtimestamp", "(", "float", "(", "start_timestamp", ")", ")", ".", "ctime", "(", ")", "end_ctime", "=", "datetime", ".", "fromtimestamp", "(", "float", "(", "end_timestamp", ")", ")", ".", "ctime", "(", ")", "values", "=", "self", ".", "_scale_x_values_timestamps", "(", "values", "=", "time_series_sorted", ",", "max_width", "=", "max_width", ")", "values", "=", "[", "value", "for", "value", "in", "values", "if", "value", "is", "not", "None", "]", "if", "not", "max_height", ":", "max_height", "=", "min", "(", "20", ",", "max", "(", "values", ")", ")", "stdev", "=", "statistics", ".", "stdev", "(", "values", ")", "mean", "=", "statistics", ".", "mean", "(", "values", ")", "# Do value adjustments", "adjusted_values", "=", "list", "(", "values", ")", "adjusted_values", "=", "self", ".", "_scale_x_values", "(", "values", "=", "values", ",", "max_width", "=", "max_width", ")", "upper_value", "=", "max", "(", "adjusted_values", ")", "# Getting upper/lower after scaling x values so we don't label a spike we can't see", "lower_value", "=", "min", "(", "adjusted_values", ")", "adjusted_values", "=", "self", ".", "_scale_y_values", "(", "values", "=", "adjusted_values", ",", "new_min", "=", "0", ",", "new_max", "=", "max_height", ",", "scale_old_from_zero", "=", "False", ")", "adjusted_values", "=", "self", ".", "_round_floats_to_ints", "(", "values", "=", "adjusted_values", ")", "# Obtain Ascii Graph String", "field", "=", "self", ".", "_get_ascii_field", "(", "adjusted_values", ")", "graph_string", "=", "self", ".", "_draw_ascii_graph", "(", "field", "=", "field", ")", "# Label the graph", "if", "label", ":", "top_label", "=", "'Upper value: {upper_value:.2f} '", ".", "format", "(", "upper_value", "=", "upper_value", ")", ".", "ljust", "(", "max_width", ",", "border_fill_char", ")", "result", "+=", "top_label", "+", "'\\n'", "result", "+=", "'{graph_string}\\n'", ".", "format", "(", "graph_string", "=", "graph_string", ")", "if", "label", ":", "lower", "=", "f'Lower value: {lower_value:.2f} '", "stats", "=", "f' Mean: {mean:.2f} *** Std Dev: {stdev:.2f} ******'", "fill_length", "=", "max_width", "-", "len", "(", "lower", ")", "-", "len", "(", "stats", ")", "stat_label", "=", "f'{lower}{\"*\" * fill_length}{stats}\\n'", "result", "+=", "stat_label", "if", "start_ctime", "and", "end_ctime", ":", "fill_length", "=", "max_width", "-", "len", "(", "start_ctime", ")", "-", "len", "(", "end_ctime", ")", "result", "+=", "f'{start_ctime}{\" \" * fill_length}{end_ctime}\\n'", "return", "result" ]
Accepts a list of y values and returns an ascii graph Optionally values can also be a dictionary with a key of timestamp, and a value of value. InGraphs returns data in this format for example.
[ "Accepts", "a", "list", "of", "y", "values", "and", "returns", "an", "ascii", "graph", "Optionally", "values", "can", "also", "be", "a", "dictionary", "with", "a", "key", "of", "timestamp", "and", "a", "value", "of", "value", ".", "InGraphs", "returns", "data", "in", "this", "format", "for", "example", "." ]
python
train
metapensiero/metapensiero.signal
src/metapensiero/signal/user.py
https://github.com/metapensiero/metapensiero.signal/blob/1cbbb2e4bff00bf4887163b08b70d278e472bfe3/src/metapensiero/signal/user.py#L145-L157
def _check_local_handlers(cls, signals, handlers, namespace, configs): """For every marked handler, see if there is a suitable signal. If not, raise an error.""" for aname, sig_name in handlers.items(): # WARN: this code doesn't take in account the case where a new # method with the same name of an handler in a base class is # present in this class but it isn't an handler (so the handler # with the same name should be removed from the handlers) if sig_name not in signals: disable_check = configs[aname].get('disable_check', False) if not disable_check: raise SignalError("Cannot find a signal named '%s'" % sig_name)
[ "def", "_check_local_handlers", "(", "cls", ",", "signals", ",", "handlers", ",", "namespace", ",", "configs", ")", ":", "for", "aname", ",", "sig_name", "in", "handlers", ".", "items", "(", ")", ":", "# WARN: this code doesn't take in account the case where a new", "# method with the same name of an handler in a base class is", "# present in this class but it isn't an handler (so the handler", "# with the same name should be removed from the handlers)", "if", "sig_name", "not", "in", "signals", ":", "disable_check", "=", "configs", "[", "aname", "]", ".", "get", "(", "'disable_check'", ",", "False", ")", "if", "not", "disable_check", ":", "raise", "SignalError", "(", "\"Cannot find a signal named '%s'\"", "%", "sig_name", ")" ]
For every marked handler, see if there is a suitable signal. If not, raise an error.
[ "For", "every", "marked", "handler", "see", "if", "there", "is", "a", "suitable", "signal", ".", "If", "not", "raise", "an", "error", "." ]
python
train
facelessuser/backrefs
backrefs/_bre_parse.py
https://github.com/facelessuser/backrefs/blob/3b3d60f5d57b02044f880aa29c9c5add0e31a34f/backrefs/_bre_parse.py#L1078-L1092
def get_group(self, t, i): """Get group number.""" try: value = [] if t in _DIGIT and t != '0': value.append(t) t = next(i) if t in _DIGIT: value.append(t) else: i.rewind(1) except StopIteration: pass return ''.join(value) if value else None
[ "def", "get_group", "(", "self", ",", "t", ",", "i", ")", ":", "try", ":", "value", "=", "[", "]", "if", "t", "in", "_DIGIT", "and", "t", "!=", "'0'", ":", "value", ".", "append", "(", "t", ")", "t", "=", "next", "(", "i", ")", "if", "t", "in", "_DIGIT", ":", "value", ".", "append", "(", "t", ")", "else", ":", "i", ".", "rewind", "(", "1", ")", "except", "StopIteration", ":", "pass", "return", "''", ".", "join", "(", "value", ")", "if", "value", "else", "None" ]
Get group number.
[ "Get", "group", "number", "." ]
python
train
spulec/moto
scripts/scaffold.py
https://github.com/spulec/moto/blob/4a286c4bc288933bb023396e2784a6fdbb966bc9/scripts/scaffold.py#L167-L216
def initialize_service(service, operation, api_protocol): """create lib and test dirs if not exist """ lib_dir = get_lib_dir(service) test_dir = get_test_dir(service) print_progress('Initializing service', service, 'green') client = boto3.client(service) service_class = client.__class__.__name__ endpoint_prefix = client._service_model.endpoint_prefix tmpl_context = { 'service': service, 'service_class': service_class, 'endpoint_prefix': endpoint_prefix, 'api_protocol': api_protocol, 'escaped_service': get_escaped_service(service) } # initialize service directory if os.path.exists(lib_dir): print_progress('skip creating', lib_dir, 'yellow') else: print_progress('creating', lib_dir, 'green') os.makedirs(lib_dir) tmpl_dir = os.path.join(TEMPLATE_DIR, 'lib') for tmpl_filename in os.listdir(tmpl_dir): render_template( tmpl_dir, tmpl_filename, tmpl_context, service ) # initialize test directory if os.path.exists(test_dir): print_progress('skip creating', test_dir, 'yellow') else: print_progress('creating', test_dir, 'green') os.makedirs(test_dir) tmpl_dir = os.path.join(TEMPLATE_DIR, 'test') for tmpl_filename in os.listdir(tmpl_dir): alt_filename = 'test_{}.py'.format(get_escaped_service(service)) if tmpl_filename == 'test_service.py.j2' else None render_template( tmpl_dir, tmpl_filename, tmpl_context, service, alt_filename ) # append mock to init files append_mock_to_init_py(service) append_mock_import_to_backends_py(service) append_mock_dict_to_backends_py(service)
[ "def", "initialize_service", "(", "service", ",", "operation", ",", "api_protocol", ")", ":", "lib_dir", "=", "get_lib_dir", "(", "service", ")", "test_dir", "=", "get_test_dir", "(", "service", ")", "print_progress", "(", "'Initializing service'", ",", "service", ",", "'green'", ")", "client", "=", "boto3", ".", "client", "(", "service", ")", "service_class", "=", "client", ".", "__class__", ".", "__name__", "endpoint_prefix", "=", "client", ".", "_service_model", ".", "endpoint_prefix", "tmpl_context", "=", "{", "'service'", ":", "service", ",", "'service_class'", ":", "service_class", ",", "'endpoint_prefix'", ":", "endpoint_prefix", ",", "'api_protocol'", ":", "api_protocol", ",", "'escaped_service'", ":", "get_escaped_service", "(", "service", ")", "}", "# initialize service directory", "if", "os", ".", "path", ".", "exists", "(", "lib_dir", ")", ":", "print_progress", "(", "'skip creating'", ",", "lib_dir", ",", "'yellow'", ")", "else", ":", "print_progress", "(", "'creating'", ",", "lib_dir", ",", "'green'", ")", "os", ".", "makedirs", "(", "lib_dir", ")", "tmpl_dir", "=", "os", ".", "path", ".", "join", "(", "TEMPLATE_DIR", ",", "'lib'", ")", "for", "tmpl_filename", "in", "os", ".", "listdir", "(", "tmpl_dir", ")", ":", "render_template", "(", "tmpl_dir", ",", "tmpl_filename", ",", "tmpl_context", ",", "service", ")", "# initialize test directory", "if", "os", ".", "path", ".", "exists", "(", "test_dir", ")", ":", "print_progress", "(", "'skip creating'", ",", "test_dir", ",", "'yellow'", ")", "else", ":", "print_progress", "(", "'creating'", ",", "test_dir", ",", "'green'", ")", "os", ".", "makedirs", "(", "test_dir", ")", "tmpl_dir", "=", "os", ".", "path", ".", "join", "(", "TEMPLATE_DIR", ",", "'test'", ")", "for", "tmpl_filename", "in", "os", ".", "listdir", "(", "tmpl_dir", ")", ":", "alt_filename", "=", "'test_{}.py'", ".", "format", "(", "get_escaped_service", "(", "service", ")", ")", "if", "tmpl_filename", "==", "'test_service.py.j2'", "else", "None", "render_template", "(", "tmpl_dir", ",", "tmpl_filename", ",", "tmpl_context", ",", "service", ",", "alt_filename", ")", "# append mock to init files", "append_mock_to_init_py", "(", "service", ")", "append_mock_import_to_backends_py", "(", "service", ")", "append_mock_dict_to_backends_py", "(", "service", ")" ]
create lib and test dirs if not exist
[ "create", "lib", "and", "test", "dirs", "if", "not", "exist" ]
python
train
nabla-c0d3/sslyze
sslyze/utils/http_response_parser.py
https://github.com/nabla-c0d3/sslyze/blob/0fb3ae668453d7ecf616d0755f237ca7be9f62fa/sslyze/utils/http_response_parser.py#L26-L37
def _parse(read_method: Callable) -> HTTPResponse: """Trick to standardize the API between sockets and SSLConnection objects. """ response = read_method(4096) while b'HTTP/' not in response or b'\r\n\r\n' not in response: # Parse until the end of the headers response += read_method(4096) fake_sock = _FakeSocket(response) response = HTTPResponse(fake_sock) # type: ignore response.begin() return response
[ "def", "_parse", "(", "read_method", ":", "Callable", ")", "->", "HTTPResponse", ":", "response", "=", "read_method", "(", "4096", ")", "while", "b'HTTP/'", "not", "in", "response", "or", "b'\\r\\n\\r\\n'", "not", "in", "response", ":", "# Parse until the end of the headers", "response", "+=", "read_method", "(", "4096", ")", "fake_sock", "=", "_FakeSocket", "(", "response", ")", "response", "=", "HTTPResponse", "(", "fake_sock", ")", "# type: ignore", "response", ".", "begin", "(", ")", "return", "response" ]
Trick to standardize the API between sockets and SSLConnection objects.
[ "Trick", "to", "standardize", "the", "API", "between", "sockets", "and", "SSLConnection", "objects", "." ]
python
train
iotile/coretools
iotilesensorgraph/iotile/sg/sensor_log.py
https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilesensorgraph/iotile/sg/sensor_log.py#L382-L419
def inspect_last(self, stream, only_allocated=False): """Return the last value pushed into a stream. This function works even if the stream is virtual and no virtual walker has been created for it. It is primarily useful to aid in debugging sensor graphs. Args: stream (DataStream): The stream to inspect. only_allocated (bool): Optional parameter to only allow inspection of allocated virtual streams. This is useful for mimicking the behavior of an embedded device that does not have a _last_values array. Returns: IOTileReading: The data in the stream Raises: StreamEmptyError: if there has never been data written to the stream. UnresolvedIdentifierError: if only_allocated is True and there has not been a virtual stream walker allocated to listen to this stream. """ if only_allocated: found = False for walker in self._virtual_walkers: if walker.matches(stream): found = True break if not found: raise UnresolvedIdentifierError("inspect_last could not find an allocated virtual streamer for the desired stream", stream=stream) if stream in self._last_values: return self._last_values[stream] raise StreamEmptyError(u"inspect_last called on stream that has never been written to", stream=stream)
[ "def", "inspect_last", "(", "self", ",", "stream", ",", "only_allocated", "=", "False", ")", ":", "if", "only_allocated", ":", "found", "=", "False", "for", "walker", "in", "self", ".", "_virtual_walkers", ":", "if", "walker", ".", "matches", "(", "stream", ")", ":", "found", "=", "True", "break", "if", "not", "found", ":", "raise", "UnresolvedIdentifierError", "(", "\"inspect_last could not find an allocated virtual streamer for the desired stream\"", ",", "stream", "=", "stream", ")", "if", "stream", "in", "self", ".", "_last_values", ":", "return", "self", ".", "_last_values", "[", "stream", "]", "raise", "StreamEmptyError", "(", "u\"inspect_last called on stream that has never been written to\"", ",", "stream", "=", "stream", ")" ]
Return the last value pushed into a stream. This function works even if the stream is virtual and no virtual walker has been created for it. It is primarily useful to aid in debugging sensor graphs. Args: stream (DataStream): The stream to inspect. only_allocated (bool): Optional parameter to only allow inspection of allocated virtual streams. This is useful for mimicking the behavior of an embedded device that does not have a _last_values array. Returns: IOTileReading: The data in the stream Raises: StreamEmptyError: if there has never been data written to the stream. UnresolvedIdentifierError: if only_allocated is True and there has not been a virtual stream walker allocated to listen to this stream.
[ "Return", "the", "last", "value", "pushed", "into", "a", "stream", "." ]
python
train
dossier/dossier.models
dossier/models/features/sip.py
https://github.com/dossier/dossier.models/blob/c9e282f690eab72963926329efe1600709e48b13/dossier/models/features/sip.py#L27-L87
def noun_phrases_as_tokens(text): '''Generate a bag of lists of unnormalized tokens representing noun phrases from ``text``. This is built around python's nltk library for getting Noun Phrases (NPs). This is all documented in the NLTK Book http://www.nltk.org/book/ch03.html and blog posts that cite the book. :rtype: list of lists of strings ''' ## from NLTK Book: sentence_re = r'''(?x) # set flag to allow verbose regexps ([A-Z])(\.[A-Z])+\.? # abbreviations, e.g. U.S.A. | \w+(-\w+)* # words with optional internal hyphens | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82% | \.\.\. # ellipsis | [][.,;"'?():-_`] # these are separate tokens ''' ## From Su Nam Kim paper: ## http://www.comp.nus.edu.sg/~kanmy/papers/10.1007_s10579-012-9210-3.pdf grammar = r''' NBAR: {<NN.*|JJ>*<NN.*>} # Nouns and Adjectives, terminated with Nouns NP: {<NBAR>} {<NBAR><IN><NBAR>} # Above, connected with in/of/etc... ''' if len(text.strip()) == 0: return [] chunker = nltk.RegexpParser(grammar) toks = nltk.regexp_tokenize(text, sentence_re) postoks = nltk.tag.pos_tag(toks) #print postoks tree = chunker.parse(postoks) stops = stopwords.words('english') stops += dossier_stopwords() ## These next four functions are standard uses of NLTK illustrated by ## http://alexbowe.com/au-naturale/ ## https://gist.github.com/alexbowe/879414 def leaves(tree): '''Finds NP (nounphrase) leaf nodes of a chunk tree.''' for subtree in tree.subtrees(filter = lambda t: t.label()=='NP'): yield subtree.leaves() def acceptable_word(word): '''Checks conditions for acceptable word: length, stopword.''' return 2 <= len(word) <= 40 and word.lower() not in stops def get_terms(tree): for leaf in leaves(tree): yield [w for w,t in leaf if acceptable_word(w)] return list(get_terms(tree))
[ "def", "noun_phrases_as_tokens", "(", "text", ")", ":", "## from NLTK Book:", "sentence_re", "=", "r'''(?x) # set flag to allow verbose regexps\n ([A-Z])(\\.[A-Z])+\\.? # abbreviations, e.g. U.S.A.\n | \\w+(-\\w+)* # words with optional internal hyphens\n | \\$?\\d+(\\.\\d+)?%? # currency and percentages, e.g. $12.40, 82%\n | \\.\\.\\. # ellipsis\n | [][.,;\"'?():-_`] # these are separate tokens\n '''", "## From Su Nam Kim paper:", "## http://www.comp.nus.edu.sg/~kanmy/papers/10.1007_s10579-012-9210-3.pdf", "grammar", "=", "r'''\n NBAR:\n {<NN.*|JJ>*<NN.*>} # Nouns and Adjectives, terminated with Nouns\n\n NP:\n {<NBAR>}\n {<NBAR><IN><NBAR>} # Above, connected with in/of/etc...\n '''", "if", "len", "(", "text", ".", "strip", "(", ")", ")", "==", "0", ":", "return", "[", "]", "chunker", "=", "nltk", ".", "RegexpParser", "(", "grammar", ")", "toks", "=", "nltk", ".", "regexp_tokenize", "(", "text", ",", "sentence_re", ")", "postoks", "=", "nltk", ".", "tag", ".", "pos_tag", "(", "toks", ")", "#print postoks", "tree", "=", "chunker", ".", "parse", "(", "postoks", ")", "stops", "=", "stopwords", ".", "words", "(", "'english'", ")", "stops", "+=", "dossier_stopwords", "(", ")", "## These next four functions are standard uses of NLTK illustrated by", "## http://alexbowe.com/au-naturale/", "## https://gist.github.com/alexbowe/879414", "def", "leaves", "(", "tree", ")", ":", "'''Finds NP (nounphrase) leaf nodes of a chunk tree.'''", "for", "subtree", "in", "tree", ".", "subtrees", "(", "filter", "=", "lambda", "t", ":", "t", ".", "label", "(", ")", "==", "'NP'", ")", ":", "yield", "subtree", ".", "leaves", "(", ")", "def", "acceptable_word", "(", "word", ")", ":", "'''Checks conditions for acceptable word: length, stopword.'''", "return", "2", "<=", "len", "(", "word", ")", "<=", "40", "and", "word", ".", "lower", "(", ")", "not", "in", "stops", "def", "get_terms", "(", "tree", ")", ":", "for", "leaf", "in", "leaves", "(", "tree", ")", ":", "yield", "[", "w", "for", "w", ",", "t", "in", "leaf", "if", "acceptable_word", "(", "w", ")", "]", "return", "list", "(", "get_terms", "(", "tree", ")", ")" ]
Generate a bag of lists of unnormalized tokens representing noun phrases from ``text``. This is built around python's nltk library for getting Noun Phrases (NPs). This is all documented in the NLTK Book http://www.nltk.org/book/ch03.html and blog posts that cite the book. :rtype: list of lists of strings
[ "Generate", "a", "bag", "of", "lists", "of", "unnormalized", "tokens", "representing", "noun", "phrases", "from", "text", "." ]
python
train
andreikop/qutepart
qutepart/vim.py
https://github.com/andreikop/qutepart/blob/109d76b239751318bcef06f39b2fbbf18687a40b/qutepart/vim.py#L116-L130
def keyPressEvent(self, ev): """Check the event. Return True if processed and False otherwise """ if ev.key() in (Qt.Key_Shift, Qt.Key_Control, Qt.Key_Meta, Qt.Key_Alt, Qt.Key_AltGr, Qt.Key_CapsLock, Qt.Key_NumLock, Qt.Key_ScrollLock): return False # ignore modifier pressing. Will process key pressing later self._processingKeyPress = True try: ret = self._mode.keyPressEvent(ev) finally: self._processingKeyPress = False return ret
[ "def", "keyPressEvent", "(", "self", ",", "ev", ")", ":", "if", "ev", ".", "key", "(", ")", "in", "(", "Qt", ".", "Key_Shift", ",", "Qt", ".", "Key_Control", ",", "Qt", ".", "Key_Meta", ",", "Qt", ".", "Key_Alt", ",", "Qt", ".", "Key_AltGr", ",", "Qt", ".", "Key_CapsLock", ",", "Qt", ".", "Key_NumLock", ",", "Qt", ".", "Key_ScrollLock", ")", ":", "return", "False", "# ignore modifier pressing. Will process key pressing later", "self", ".", "_processingKeyPress", "=", "True", "try", ":", "ret", "=", "self", ".", "_mode", ".", "keyPressEvent", "(", "ev", ")", "finally", ":", "self", ".", "_processingKeyPress", "=", "False", "return", "ret" ]
Check the event. Return True if processed and False otherwise
[ "Check", "the", "event", ".", "Return", "True", "if", "processed", "and", "False", "otherwise" ]
python
train
KelSolaar/Manager
manager/components_manager.py
https://github.com/KelSolaar/Manager/blob/39c8153fc021fc8a76e345a6e336ec2644f089d1/manager/components_manager.py#L1322-L1342
def get_interface(self, component): """ Gets given Component interface. Usage:: >>> manager = Manager() >>> manager.register_component("tests_component_a.rc") True >>> manager.get_interface("core.tests_component_a") <tests_component_a.TestsComponentA object at 0x17b0d70> :param component: Component to get the interface. :type component: unicode :return: Component interface. :rtype: object """ profile = self.get_profile(component) if profile: return profile.interface
[ "def", "get_interface", "(", "self", ",", "component", ")", ":", "profile", "=", "self", ".", "get_profile", "(", "component", ")", "if", "profile", ":", "return", "profile", ".", "interface" ]
Gets given Component interface. Usage:: >>> manager = Manager() >>> manager.register_component("tests_component_a.rc") True >>> manager.get_interface("core.tests_component_a") <tests_component_a.TestsComponentA object at 0x17b0d70> :param component: Component to get the interface. :type component: unicode :return: Component interface. :rtype: object
[ "Gets", "given", "Component", "interface", "." ]
python
train
llazzaro/analyzerstrategies
analyzerstrategies/zscorePortfolioStrategy.py
https://github.com/llazzaro/analyzerstrategies/blob/3c647802f582bf2f06c6793f282bee0d26514cd6/analyzerstrategies/zscorePortfolioStrategy.py#L74-L81
def __getCashToBuyStock(self): ''' calculate the amount of money to buy stock ''' account=self.__strategy.getAccountCopy() if (account.buyingPower >= account.getTotalValue() / self.__buyingRatio): return account.getTotalValue() / self.__buyingRatio else: return 0
[ "def", "__getCashToBuyStock", "(", "self", ")", ":", "account", "=", "self", ".", "__strategy", ".", "getAccountCopy", "(", ")", "if", "(", "account", ".", "buyingPower", ">=", "account", ".", "getTotalValue", "(", ")", "/", "self", ".", "__buyingRatio", ")", ":", "return", "account", ".", "getTotalValue", "(", ")", "/", "self", ".", "__buyingRatio", "else", ":", "return", "0" ]
calculate the amount of money to buy stock
[ "calculate", "the", "amount", "of", "money", "to", "buy", "stock" ]
python
train
ilevkivskyi/typing_inspect
typing_inspect.py
https://github.com/ilevkivskyi/typing_inspect/blob/fd81278cc440b6003f8298bcb22d5bc0f82ee3cd/typing_inspect.py#L140-L151
def is_union_type(tp): """Test if the type is a union type. Examples:: is_union_type(int) == False is_union_type(Union) == True is_union_type(Union[int, int]) == False is_union_type(Union[T, int]) == True """ if NEW_TYPING: return (tp is Union or isinstance(tp, _GenericAlias) and tp.__origin__ is Union) return type(tp) is _Union
[ "def", "is_union_type", "(", "tp", ")", ":", "if", "NEW_TYPING", ":", "return", "(", "tp", "is", "Union", "or", "isinstance", "(", "tp", ",", "_GenericAlias", ")", "and", "tp", ".", "__origin__", "is", "Union", ")", "return", "type", "(", "tp", ")", "is", "_Union" ]
Test if the type is a union type. Examples:: is_union_type(int) == False is_union_type(Union) == True is_union_type(Union[int, int]) == False is_union_type(Union[T, int]) == True
[ "Test", "if", "the", "type", "is", "a", "union", "type", ".", "Examples", "::" ]
python
train
hugapi/hug
hug/routing.py
https://github.com/hugapi/hug/blob/080901c81576657f82e2432fd4a82f1d0d2f370c/hug/routing.py#L256-L277
def allow_origins(self, *origins, methods=None, max_age=None, credentials=None, headers=None, **overrides): """Convenience method for quickly allowing other resources to access this one""" response_headers = {} if origins: @hug.response_middleware() def process_data(request, response, resource): if 'ORIGIN' in request.headers: origin = request.headers['ORIGIN'] if origin in origins: response.set_header('Access-Control-Allow-Origin', origin) else: response_headers['Access-Control-Allow-Origin'] = '*' if methods: response_headers['Access-Control-Allow-Methods'] = ', '.join(methods) if max_age: response_headers['Access-Control-Max-Age'] = max_age if credentials: response_headers['Access-Control-Allow-Credentials'] = str(credentials).lower() if headers: response_headers['Access-Control-Allow-Headers'] = headers return self.add_response_headers(response_headers, **overrides)
[ "def", "allow_origins", "(", "self", ",", "*", "origins", ",", "methods", "=", "None", ",", "max_age", "=", "None", ",", "credentials", "=", "None", ",", "headers", "=", "None", ",", "*", "*", "overrides", ")", ":", "response_headers", "=", "{", "}", "if", "origins", ":", "@", "hug", ".", "response_middleware", "(", ")", "def", "process_data", "(", "request", ",", "response", ",", "resource", ")", ":", "if", "'ORIGIN'", "in", "request", ".", "headers", ":", "origin", "=", "request", ".", "headers", "[", "'ORIGIN'", "]", "if", "origin", "in", "origins", ":", "response", ".", "set_header", "(", "'Access-Control-Allow-Origin'", ",", "origin", ")", "else", ":", "response_headers", "[", "'Access-Control-Allow-Origin'", "]", "=", "'*'", "if", "methods", ":", "response_headers", "[", "'Access-Control-Allow-Methods'", "]", "=", "', '", ".", "join", "(", "methods", ")", "if", "max_age", ":", "response_headers", "[", "'Access-Control-Max-Age'", "]", "=", "max_age", "if", "credentials", ":", "response_headers", "[", "'Access-Control-Allow-Credentials'", "]", "=", "str", "(", "credentials", ")", ".", "lower", "(", ")", "if", "headers", ":", "response_headers", "[", "'Access-Control-Allow-Headers'", "]", "=", "headers", "return", "self", ".", "add_response_headers", "(", "response_headers", ",", "*", "*", "overrides", ")" ]
Convenience method for quickly allowing other resources to access this one
[ "Convenience", "method", "for", "quickly", "allowing", "other", "resources", "to", "access", "this", "one" ]
python
train
pyQode/pyqode.core
pyqode/core/panels/marker.py
https://github.com/pyQode/pyqode.core/blob/a99ec6cd22d519394f613309412f8329dc4e90cb/pyqode/core/panels/marker.py#L36-L50
def icon(self): """ Gets the icon file name. Read-only. """ if isinstance(self._icon, str): if QtGui.QIcon.hasThemeIcon(self._icon): return QtGui.QIcon.fromTheme(self._icon) else: return QtGui.QIcon(self._icon) elif isinstance(self._icon, tuple): return QtGui.QIcon.fromTheme(self._icon[0], QtGui.QIcon(self._icon[1])) elif isinstance(self._icon, QtGui.QIcon): return self._icon return QtGui.QIcon()
[ "def", "icon", "(", "self", ")", ":", "if", "isinstance", "(", "self", ".", "_icon", ",", "str", ")", ":", "if", "QtGui", ".", "QIcon", ".", "hasThemeIcon", "(", "self", ".", "_icon", ")", ":", "return", "QtGui", ".", "QIcon", ".", "fromTheme", "(", "self", ".", "_icon", ")", "else", ":", "return", "QtGui", ".", "QIcon", "(", "self", ".", "_icon", ")", "elif", "isinstance", "(", "self", ".", "_icon", ",", "tuple", ")", ":", "return", "QtGui", ".", "QIcon", ".", "fromTheme", "(", "self", ".", "_icon", "[", "0", "]", ",", "QtGui", ".", "QIcon", "(", "self", ".", "_icon", "[", "1", "]", ")", ")", "elif", "isinstance", "(", "self", ".", "_icon", ",", "QtGui", ".", "QIcon", ")", ":", "return", "self", ".", "_icon", "return", "QtGui", ".", "QIcon", "(", ")" ]
Gets the icon file name. Read-only.
[ "Gets", "the", "icon", "file", "name", ".", "Read", "-", "only", "." ]
python
train
shin-/dockerpy-creds
dockerpycreds/utils.py
https://github.com/shin-/dockerpy-creds/blob/9c0b66d2e445a838e1518f2c3273df7ddc7ec0d4/dockerpycreds/utils.py#L6-L29
def find_executable(executable, path=None): """ As distutils.spawn.find_executable, but on Windows, look up every extension declared in PATHEXT instead of just `.exe` """ if sys.platform != 'win32': return distutils.spawn.find_executable(executable, path) if path is None: path = os.environ['PATH'] paths = path.split(os.pathsep) extensions = os.environ.get('PATHEXT', '.exe').split(os.pathsep) base, ext = os.path.splitext(executable) if not os.path.isfile(executable): for p in paths: for ext in extensions: f = os.path.join(p, base + ext) if os.path.isfile(f): return f return None else: return executable
[ "def", "find_executable", "(", "executable", ",", "path", "=", "None", ")", ":", "if", "sys", ".", "platform", "!=", "'win32'", ":", "return", "distutils", ".", "spawn", ".", "find_executable", "(", "executable", ",", "path", ")", "if", "path", "is", "None", ":", "path", "=", "os", ".", "environ", "[", "'PATH'", "]", "paths", "=", "path", ".", "split", "(", "os", ".", "pathsep", ")", "extensions", "=", "os", ".", "environ", ".", "get", "(", "'PATHEXT'", ",", "'.exe'", ")", ".", "split", "(", "os", ".", "pathsep", ")", "base", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "executable", ")", "if", "not", "os", ".", "path", ".", "isfile", "(", "executable", ")", ":", "for", "p", "in", "paths", ":", "for", "ext", "in", "extensions", ":", "f", "=", "os", ".", "path", ".", "join", "(", "p", ",", "base", "+", "ext", ")", "if", "os", ".", "path", ".", "isfile", "(", "f", ")", ":", "return", "f", "return", "None", "else", ":", "return", "executable" ]
As distutils.spawn.find_executable, but on Windows, look up every extension declared in PATHEXT instead of just `.exe`
[ "As", "distutils", ".", "spawn", ".", "find_executable", "but", "on", "Windows", "look", "up", "every", "extension", "declared", "in", "PATHEXT", "instead", "of", "just", ".", "exe" ]
python
train
mozilla/mozdownload
mozdownload/scraper.py
https://github.com/mozilla/mozdownload/blob/97796a028455bb5200434562d23b66d5a5eb537b/mozdownload/scraper.py#L528-L541
def build_filename(self, binary): """Return the proposed filename with extension for the binary.""" try: # Get exact timestamp of the build to build the local file name folder = self.builds[self.build_index] timestamp = re.search(r'([\d\-]+)-\D.*', folder).group(1) except Exception: # If it's not available use the build's date timestamp = self.date.strftime('%Y-%m-%d') return '%(TIMESTAMP)s-%(BRANCH)s-%(NAME)s' % { 'TIMESTAMP': timestamp, 'BRANCH': self.branch, 'NAME': binary}
[ "def", "build_filename", "(", "self", ",", "binary", ")", ":", "try", ":", "# Get exact timestamp of the build to build the local file name", "folder", "=", "self", ".", "builds", "[", "self", ".", "build_index", "]", "timestamp", "=", "re", ".", "search", "(", "r'([\\d\\-]+)-\\D.*'", ",", "folder", ")", ".", "group", "(", "1", ")", "except", "Exception", ":", "# If it's not available use the build's date", "timestamp", "=", "self", ".", "date", ".", "strftime", "(", "'%Y-%m-%d'", ")", "return", "'%(TIMESTAMP)s-%(BRANCH)s-%(NAME)s'", "%", "{", "'TIMESTAMP'", ":", "timestamp", ",", "'BRANCH'", ":", "self", ".", "branch", ",", "'NAME'", ":", "binary", "}" ]
Return the proposed filename with extension for the binary.
[ "Return", "the", "proposed", "filename", "with", "extension", "for", "the", "binary", "." ]
python
train
chimera0/accel-brain-code
Reinforcement-Learning/pyqlearning/annealing_model.py
https://github.com/chimera0/accel-brain-code/blob/03661f6f544bed656269fcd4b3c23c9061629daa/Reinforcement-Learning/pyqlearning/annealing_model.py#L140-L145
def set_computed_cost_arr(self, value): ''' setter ''' if isinstance(value, np.ndarray): self.__computed_cost_arr = value else: raise TypeError()
[ "def", "set_computed_cost_arr", "(", "self", ",", "value", ")", ":", "if", "isinstance", "(", "value", ",", "np", ".", "ndarray", ")", ":", "self", ".", "__computed_cost_arr", "=", "value", "else", ":", "raise", "TypeError", "(", ")" ]
setter
[ "setter" ]
python
train
LogicalDash/LiSE
ELiDE/ELiDE/card.py
https://github.com/LogicalDash/LiSE/blob/fe6fd4f0a7c1780e065f4c9babb9bc443af6bb84/ELiDE/ELiDE/card.py#L241-L247
def on_art_image(self, *args): """When I get a new ``art_image``, store its texture in ``art_texture``. """ if self.art_image is not None: self.art_texture = self.art_image.texture
[ "def", "on_art_image", "(", "self", ",", "*", "args", ")", ":", "if", "self", ".", "art_image", "is", "not", "None", ":", "self", ".", "art_texture", "=", "self", ".", "art_image", ".", "texture" ]
When I get a new ``art_image``, store its texture in ``art_texture``.
[ "When", "I", "get", "a", "new", "art_image", "store", "its", "texture", "in", "art_texture", "." ]
python
train
miguelgrinberg/python-engineio
engineio/async_drivers/aiohttp.py
https://github.com/miguelgrinberg/python-engineio/blob/261fd67103cb5d9a44369415748e66fdf62de6fb/engineio/async_drivers/aiohttp.py#L22-L72
def translate_request(request): """This function takes the arguments passed to the request handler and uses them to generate a WSGI compatible environ dictionary. """ message = request._message payload = request._payload uri_parts = urlsplit(message.path) environ = { 'wsgi.input': payload, 'wsgi.errors': sys.stderr, 'wsgi.version': (1, 0), 'wsgi.async': True, 'wsgi.multithread': False, 'wsgi.multiprocess': False, 'wsgi.run_once': False, 'SERVER_SOFTWARE': 'aiohttp', 'REQUEST_METHOD': message.method, 'QUERY_STRING': uri_parts.query or '', 'RAW_URI': message.path, 'SERVER_PROTOCOL': 'HTTP/%s.%s' % message.version, 'REMOTE_ADDR': '127.0.0.1', 'REMOTE_PORT': '0', 'SERVER_NAME': 'aiohttp', 'SERVER_PORT': '0', 'aiohttp.request': request } for hdr_name, hdr_value in message.headers.items(): hdr_name = hdr_name.upper() if hdr_name == 'CONTENT-TYPE': environ['CONTENT_TYPE'] = hdr_value continue elif hdr_name == 'CONTENT-LENGTH': environ['CONTENT_LENGTH'] = hdr_value continue key = 'HTTP_%s' % hdr_name.replace('-', '_') if key in environ: hdr_value = '%s,%s' % (environ[key], hdr_value) environ[key] = hdr_value environ['wsgi.url_scheme'] = environ.get('HTTP_X_FORWARDED_PROTO', 'http') path_info = uri_parts.path environ['PATH_INFO'] = path_info environ['SCRIPT_NAME'] = '' return environ
[ "def", "translate_request", "(", "request", ")", ":", "message", "=", "request", ".", "_message", "payload", "=", "request", ".", "_payload", "uri_parts", "=", "urlsplit", "(", "message", ".", "path", ")", "environ", "=", "{", "'wsgi.input'", ":", "payload", ",", "'wsgi.errors'", ":", "sys", ".", "stderr", ",", "'wsgi.version'", ":", "(", "1", ",", "0", ")", ",", "'wsgi.async'", ":", "True", ",", "'wsgi.multithread'", ":", "False", ",", "'wsgi.multiprocess'", ":", "False", ",", "'wsgi.run_once'", ":", "False", ",", "'SERVER_SOFTWARE'", ":", "'aiohttp'", ",", "'REQUEST_METHOD'", ":", "message", ".", "method", ",", "'QUERY_STRING'", ":", "uri_parts", ".", "query", "or", "''", ",", "'RAW_URI'", ":", "message", ".", "path", ",", "'SERVER_PROTOCOL'", ":", "'HTTP/%s.%s'", "%", "message", ".", "version", ",", "'REMOTE_ADDR'", ":", "'127.0.0.1'", ",", "'REMOTE_PORT'", ":", "'0'", ",", "'SERVER_NAME'", ":", "'aiohttp'", ",", "'SERVER_PORT'", ":", "'0'", ",", "'aiohttp.request'", ":", "request", "}", "for", "hdr_name", ",", "hdr_value", "in", "message", ".", "headers", ".", "items", "(", ")", ":", "hdr_name", "=", "hdr_name", ".", "upper", "(", ")", "if", "hdr_name", "==", "'CONTENT-TYPE'", ":", "environ", "[", "'CONTENT_TYPE'", "]", "=", "hdr_value", "continue", "elif", "hdr_name", "==", "'CONTENT-LENGTH'", ":", "environ", "[", "'CONTENT_LENGTH'", "]", "=", "hdr_value", "continue", "key", "=", "'HTTP_%s'", "%", "hdr_name", ".", "replace", "(", "'-'", ",", "'_'", ")", "if", "key", "in", "environ", ":", "hdr_value", "=", "'%s,%s'", "%", "(", "environ", "[", "key", "]", ",", "hdr_value", ")", "environ", "[", "key", "]", "=", "hdr_value", "environ", "[", "'wsgi.url_scheme'", "]", "=", "environ", ".", "get", "(", "'HTTP_X_FORWARDED_PROTO'", ",", "'http'", ")", "path_info", "=", "uri_parts", ".", "path", "environ", "[", "'PATH_INFO'", "]", "=", "path_info", "environ", "[", "'SCRIPT_NAME'", "]", "=", "''", "return", "environ" ]
This function takes the arguments passed to the request handler and uses them to generate a WSGI compatible environ dictionary.
[ "This", "function", "takes", "the", "arguments", "passed", "to", "the", "request", "handler", "and", "uses", "them", "to", "generate", "a", "WSGI", "compatible", "environ", "dictionary", "." ]
python
train
trevorstephens/gplearn
gplearn/genetic.py
https://github.com/trevorstephens/gplearn/blob/5c0465f2ecdcd5abcdf3fe520688d24cd59e4a52/gplearn/genetic.py#L36-L152
def _parallel_evolve(n_programs, parents, X, y, sample_weight, seeds, params): """Private function used to build a batch of programs within a job.""" n_samples, n_features = X.shape # Unpack parameters tournament_size = params['tournament_size'] function_set = params['function_set'] arities = params['arities'] init_depth = params['init_depth'] init_method = params['init_method'] const_range = params['const_range'] metric = params['_metric'] transformer = params['_transformer'] parsimony_coefficient = params['parsimony_coefficient'] method_probs = params['method_probs'] p_point_replace = params['p_point_replace'] max_samples = params['max_samples'] feature_names = params['feature_names'] max_samples = int(max_samples * n_samples) def _tournament(): """Find the fittest individual from a sub-population.""" contenders = random_state.randint(0, len(parents), tournament_size) fitness = [parents[p].fitness_ for p in contenders] if metric.greater_is_better: parent_index = contenders[np.argmax(fitness)] else: parent_index = contenders[np.argmin(fitness)] return parents[parent_index], parent_index # Build programs programs = [] for i in range(n_programs): random_state = check_random_state(seeds[i]) if parents is None: program = None genome = None else: method = random_state.uniform() parent, parent_index = _tournament() if method < method_probs[0]: # crossover donor, donor_index = _tournament() program, removed, remains = parent.crossover(donor.program, random_state) genome = {'method': 'Crossover', 'parent_idx': parent_index, 'parent_nodes': removed, 'donor_idx': donor_index, 'donor_nodes': remains} elif method < method_probs[1]: # subtree_mutation program, removed, _ = parent.subtree_mutation(random_state) genome = {'method': 'Subtree Mutation', 'parent_idx': parent_index, 'parent_nodes': removed} elif method < method_probs[2]: # hoist_mutation program, removed = parent.hoist_mutation(random_state) genome = {'method': 'Hoist Mutation', 'parent_idx': parent_index, 'parent_nodes': removed} elif method < method_probs[3]: # point_mutation program, mutated = parent.point_mutation(random_state) genome = {'method': 'Point Mutation', 'parent_idx': parent_index, 'parent_nodes': mutated} else: # reproduction program = parent.reproduce() genome = {'method': 'Reproduction', 'parent_idx': parent_index, 'parent_nodes': []} program = _Program(function_set=function_set, arities=arities, init_depth=init_depth, init_method=init_method, n_features=n_features, metric=metric, transformer=transformer, const_range=const_range, p_point_replace=p_point_replace, parsimony_coefficient=parsimony_coefficient, feature_names=feature_names, random_state=random_state, program=program) program.parents = genome # Draw samples, using sample weights, and then fit if sample_weight is None: curr_sample_weight = np.ones((n_samples,)) else: curr_sample_weight = sample_weight.copy() oob_sample_weight = curr_sample_weight.copy() indices, not_indices = program.get_all_indices(n_samples, max_samples, random_state) curr_sample_weight[not_indices] = 0 oob_sample_weight[indices] = 0 program.raw_fitness_ = program.raw_fitness(X, y, curr_sample_weight) if max_samples < n_samples: # Calculate OOB fitness program.oob_fitness_ = program.raw_fitness(X, y, oob_sample_weight) programs.append(program) return programs
[ "def", "_parallel_evolve", "(", "n_programs", ",", "parents", ",", "X", ",", "y", ",", "sample_weight", ",", "seeds", ",", "params", ")", ":", "n_samples", ",", "n_features", "=", "X", ".", "shape", "# Unpack parameters", "tournament_size", "=", "params", "[", "'tournament_size'", "]", "function_set", "=", "params", "[", "'function_set'", "]", "arities", "=", "params", "[", "'arities'", "]", "init_depth", "=", "params", "[", "'init_depth'", "]", "init_method", "=", "params", "[", "'init_method'", "]", "const_range", "=", "params", "[", "'const_range'", "]", "metric", "=", "params", "[", "'_metric'", "]", "transformer", "=", "params", "[", "'_transformer'", "]", "parsimony_coefficient", "=", "params", "[", "'parsimony_coefficient'", "]", "method_probs", "=", "params", "[", "'method_probs'", "]", "p_point_replace", "=", "params", "[", "'p_point_replace'", "]", "max_samples", "=", "params", "[", "'max_samples'", "]", "feature_names", "=", "params", "[", "'feature_names'", "]", "max_samples", "=", "int", "(", "max_samples", "*", "n_samples", ")", "def", "_tournament", "(", ")", ":", "\"\"\"Find the fittest individual from a sub-population.\"\"\"", "contenders", "=", "random_state", ".", "randint", "(", "0", ",", "len", "(", "parents", ")", ",", "tournament_size", ")", "fitness", "=", "[", "parents", "[", "p", "]", ".", "fitness_", "for", "p", "in", "contenders", "]", "if", "metric", ".", "greater_is_better", ":", "parent_index", "=", "contenders", "[", "np", ".", "argmax", "(", "fitness", ")", "]", "else", ":", "parent_index", "=", "contenders", "[", "np", ".", "argmin", "(", "fitness", ")", "]", "return", "parents", "[", "parent_index", "]", ",", "parent_index", "# Build programs", "programs", "=", "[", "]", "for", "i", "in", "range", "(", "n_programs", ")", ":", "random_state", "=", "check_random_state", "(", "seeds", "[", "i", "]", ")", "if", "parents", "is", "None", ":", "program", "=", "None", "genome", "=", "None", "else", ":", "method", "=", "random_state", ".", "uniform", "(", ")", "parent", ",", "parent_index", "=", "_tournament", "(", ")", "if", "method", "<", "method_probs", "[", "0", "]", ":", "# crossover", "donor", ",", "donor_index", "=", "_tournament", "(", ")", "program", ",", "removed", ",", "remains", "=", "parent", ".", "crossover", "(", "donor", ".", "program", ",", "random_state", ")", "genome", "=", "{", "'method'", ":", "'Crossover'", ",", "'parent_idx'", ":", "parent_index", ",", "'parent_nodes'", ":", "removed", ",", "'donor_idx'", ":", "donor_index", ",", "'donor_nodes'", ":", "remains", "}", "elif", "method", "<", "method_probs", "[", "1", "]", ":", "# subtree_mutation", "program", ",", "removed", ",", "_", "=", "parent", ".", "subtree_mutation", "(", "random_state", ")", "genome", "=", "{", "'method'", ":", "'Subtree Mutation'", ",", "'parent_idx'", ":", "parent_index", ",", "'parent_nodes'", ":", "removed", "}", "elif", "method", "<", "method_probs", "[", "2", "]", ":", "# hoist_mutation", "program", ",", "removed", "=", "parent", ".", "hoist_mutation", "(", "random_state", ")", "genome", "=", "{", "'method'", ":", "'Hoist Mutation'", ",", "'parent_idx'", ":", "parent_index", ",", "'parent_nodes'", ":", "removed", "}", "elif", "method", "<", "method_probs", "[", "3", "]", ":", "# point_mutation", "program", ",", "mutated", "=", "parent", ".", "point_mutation", "(", "random_state", ")", "genome", "=", "{", "'method'", ":", "'Point Mutation'", ",", "'parent_idx'", ":", "parent_index", ",", "'parent_nodes'", ":", "mutated", "}", "else", ":", "# reproduction", "program", "=", "parent", ".", "reproduce", "(", ")", "genome", "=", "{", "'method'", ":", "'Reproduction'", ",", "'parent_idx'", ":", "parent_index", ",", "'parent_nodes'", ":", "[", "]", "}", "program", "=", "_Program", "(", "function_set", "=", "function_set", ",", "arities", "=", "arities", ",", "init_depth", "=", "init_depth", ",", "init_method", "=", "init_method", ",", "n_features", "=", "n_features", ",", "metric", "=", "metric", ",", "transformer", "=", "transformer", ",", "const_range", "=", "const_range", ",", "p_point_replace", "=", "p_point_replace", ",", "parsimony_coefficient", "=", "parsimony_coefficient", ",", "feature_names", "=", "feature_names", ",", "random_state", "=", "random_state", ",", "program", "=", "program", ")", "program", ".", "parents", "=", "genome", "# Draw samples, using sample weights, and then fit", "if", "sample_weight", "is", "None", ":", "curr_sample_weight", "=", "np", ".", "ones", "(", "(", "n_samples", ",", ")", ")", "else", ":", "curr_sample_weight", "=", "sample_weight", ".", "copy", "(", ")", "oob_sample_weight", "=", "curr_sample_weight", ".", "copy", "(", ")", "indices", ",", "not_indices", "=", "program", ".", "get_all_indices", "(", "n_samples", ",", "max_samples", ",", "random_state", ")", "curr_sample_weight", "[", "not_indices", "]", "=", "0", "oob_sample_weight", "[", "indices", "]", "=", "0", "program", ".", "raw_fitness_", "=", "program", ".", "raw_fitness", "(", "X", ",", "y", ",", "curr_sample_weight", ")", "if", "max_samples", "<", "n_samples", ":", "# Calculate OOB fitness", "program", ".", "oob_fitness_", "=", "program", ".", "raw_fitness", "(", "X", ",", "y", ",", "oob_sample_weight", ")", "programs", ".", "append", "(", "program", ")", "return", "programs" ]
Private function used to build a batch of programs within a job.
[ "Private", "function", "used", "to", "build", "a", "batch", "of", "programs", "within", "a", "job", "." ]
python
train
CenturyLinkCloud/clc-python-sdk
src/clc/APIv1/user.py
https://github.com/CenturyLinkCloud/clc-python-sdk/blob/f4dba40c627cb08dd4b7d0d277e8d67578010b05/src/clc/APIv1/user.py#L44-L54
def GetUsers(alias=None): """Gets all of users assigned to a given account. https://t3n.zendesk.com/entries/22427662-GetUsers :param alias: short code for a particular account. If none will use account's default alias """ if alias is None: alias = clc.v1.Account.GetAlias() r = clc.v1.API.Call('post','User/GetUsers',{'AccountAlias': alias}) if int(r['StatusCode']) == 0: return(r['Users'])
[ "def", "GetUsers", "(", "alias", "=", "None", ")", ":", "if", "alias", "is", "None", ":", "alias", "=", "clc", ".", "v1", ".", "Account", ".", "GetAlias", "(", ")", "r", "=", "clc", ".", "v1", ".", "API", ".", "Call", "(", "'post'", ",", "'User/GetUsers'", ",", "{", "'AccountAlias'", ":", "alias", "}", ")", "if", "int", "(", "r", "[", "'StatusCode'", "]", ")", "==", "0", ":", "return", "(", "r", "[", "'Users'", "]", ")" ]
Gets all of users assigned to a given account. https://t3n.zendesk.com/entries/22427662-GetUsers :param alias: short code for a particular account. If none will use account's default alias
[ "Gets", "all", "of", "users", "assigned", "to", "a", "given", "account", ".", "https", ":", "//", "t3n", ".", "zendesk", ".", "com", "/", "entries", "/", "22427662", "-", "GetUsers" ]
python
train
projectatomic/osbs-client
osbs/build/build_request.py
https://github.com/projectatomic/osbs-client/blob/571fe035dab3a7c02e1dccd5d65ffd75be750458/osbs/build/build_request.py#L488-L500
def remove_tag_and_push_registries(tag_and_push_registries, version): """ Remove matching entries from tag_and_push_registries (in-place) :param tag_and_push_registries: dict, uri -> dict :param version: str, 'version' to match against """ registries = [uri for uri, regdict in tag_and_push_registries.items() if regdict['version'] == version] for registry in registries: logger.info("removing %s registry: %s", version, registry) del tag_and_push_registries[registry]
[ "def", "remove_tag_and_push_registries", "(", "tag_and_push_registries", ",", "version", ")", ":", "registries", "=", "[", "uri", "for", "uri", ",", "regdict", "in", "tag_and_push_registries", ".", "items", "(", ")", "if", "regdict", "[", "'version'", "]", "==", "version", "]", "for", "registry", "in", "registries", ":", "logger", ".", "info", "(", "\"removing %s registry: %s\"", ",", "version", ",", "registry", ")", "del", "tag_and_push_registries", "[", "registry", "]" ]
Remove matching entries from tag_and_push_registries (in-place) :param tag_and_push_registries: dict, uri -> dict :param version: str, 'version' to match against
[ "Remove", "matching", "entries", "from", "tag_and_push_registries", "(", "in", "-", "place", ")" ]
python
train
ssato/python-anytemplate
anytemplate/engines/cheetah.py
https://github.com/ssato/python-anytemplate/blob/3e56baa914bd47f044083b20e33100f836443596/anytemplate/engines/cheetah.py#L68-L76
def supports(cls, template_file=None): """ :return: Whether the engine can process given template file or not. """ if anytemplate.compat.IS_PYTHON_3: cls._priority = 99 return False # Always as it's not ported to python 3. return super(Engine, cls).supports(template_file=template_file)
[ "def", "supports", "(", "cls", ",", "template_file", "=", "None", ")", ":", "if", "anytemplate", ".", "compat", ".", "IS_PYTHON_3", ":", "cls", ".", "_priority", "=", "99", "return", "False", "# Always as it's not ported to python 3.", "return", "super", "(", "Engine", ",", "cls", ")", ".", "supports", "(", "template_file", "=", "template_file", ")" ]
:return: Whether the engine can process given template file or not.
[ ":", "return", ":", "Whether", "the", "engine", "can", "process", "given", "template", "file", "or", "not", "." ]
python
train
SALib/SALib
src/SALib/analyze/sobol.py
https://github.com/SALib/SALib/blob/9744d73bb17cfcffc8282c7dc4a727efdc4bea3f/src/SALib/analyze/sobol.py#L253-L302
def Si_to_pandas_dict(S_dict): """Convert Si information into Pandas DataFrame compatible dict. Parameters ---------- S_dict : ResultDict Sobol sensitivity indices See Also ---------- Si_list_to_dict Returns ---------- tuple : of total, first, and second order sensitivities. Total and first order are dicts. Second order sensitivities contain a tuple of parameter name combinations for use as the DataFrame index and second order sensitivities. If no second order indices found, then returns tuple of (None, None) Examples -------- >>> X = saltelli.sample(problem, 1000) >>> Y = Ishigami.evaluate(X) >>> Si = sobol.analyze(problem, Y, print_to_console=True) >>> T_Si, first_Si, (idx, second_Si) = sobol.Si_to_pandas_dict(Si, problem) """ problem = S_dict.problem total_order = { 'ST': S_dict['ST'], 'ST_conf': S_dict['ST_conf'] } first_order = { 'S1': S_dict['S1'], 'S1_conf': S_dict['S1_conf'] } idx = None second_order = None if 'S2' in S_dict: names = problem['names'] idx = list(combinations(names, 2)) second_order = { 'S2': [S_dict['S2'][names.index(i[0]), names.index(i[1])] for i in idx], 'S2_conf': [S_dict['S2_conf'][names.index(i[0]), names.index(i[1])] for i in idx] } return total_order, first_order, (idx, second_order)
[ "def", "Si_to_pandas_dict", "(", "S_dict", ")", ":", "problem", "=", "S_dict", ".", "problem", "total_order", "=", "{", "'ST'", ":", "S_dict", "[", "'ST'", "]", ",", "'ST_conf'", ":", "S_dict", "[", "'ST_conf'", "]", "}", "first_order", "=", "{", "'S1'", ":", "S_dict", "[", "'S1'", "]", ",", "'S1_conf'", ":", "S_dict", "[", "'S1_conf'", "]", "}", "idx", "=", "None", "second_order", "=", "None", "if", "'S2'", "in", "S_dict", ":", "names", "=", "problem", "[", "'names'", "]", "idx", "=", "list", "(", "combinations", "(", "names", ",", "2", ")", ")", "second_order", "=", "{", "'S2'", ":", "[", "S_dict", "[", "'S2'", "]", "[", "names", ".", "index", "(", "i", "[", "0", "]", ")", ",", "names", ".", "index", "(", "i", "[", "1", "]", ")", "]", "for", "i", "in", "idx", "]", ",", "'S2_conf'", ":", "[", "S_dict", "[", "'S2_conf'", "]", "[", "names", ".", "index", "(", "i", "[", "0", "]", ")", ",", "names", ".", "index", "(", "i", "[", "1", "]", ")", "]", "for", "i", "in", "idx", "]", "}", "return", "total_order", ",", "first_order", ",", "(", "idx", ",", "second_order", ")" ]
Convert Si information into Pandas DataFrame compatible dict. Parameters ---------- S_dict : ResultDict Sobol sensitivity indices See Also ---------- Si_list_to_dict Returns ---------- tuple : of total, first, and second order sensitivities. Total and first order are dicts. Second order sensitivities contain a tuple of parameter name combinations for use as the DataFrame index and second order sensitivities. If no second order indices found, then returns tuple of (None, None) Examples -------- >>> X = saltelli.sample(problem, 1000) >>> Y = Ishigami.evaluate(X) >>> Si = sobol.analyze(problem, Y, print_to_console=True) >>> T_Si, first_Si, (idx, second_Si) = sobol.Si_to_pandas_dict(Si, problem)
[ "Convert", "Si", "information", "into", "Pandas", "DataFrame", "compatible", "dict", ".", "Parameters", "----------", "S_dict", ":", "ResultDict", "Sobol", "sensitivity", "indices", "See", "Also", "----------", "Si_list_to_dict", "Returns", "----------", "tuple", ":", "of", "total", "first", "and", "second", "order", "sensitivities", ".", "Total", "and", "first", "order", "are", "dicts", ".", "Second", "order", "sensitivities", "contain", "a", "tuple", "of", "parameter", "name", "combinations", "for", "use", "as", "the", "DataFrame", "index", "and", "second", "order", "sensitivities", ".", "If", "no", "second", "order", "indices", "found", "then", "returns", "tuple", "of", "(", "None", "None", ")", "Examples", "--------", ">>>", "X", "=", "saltelli", ".", "sample", "(", "problem", "1000", ")", ">>>", "Y", "=", "Ishigami", ".", "evaluate", "(", "X", ")", ">>>", "Si", "=", "sobol", ".", "analyze", "(", "problem", "Y", "print_to_console", "=", "True", ")", ">>>", "T_Si", "first_Si", "(", "idx", "second_Si", ")", "=", "sobol", ".", "Si_to_pandas_dict", "(", "Si", "problem", ")" ]
python
train
neherlab/treetime
treetime/treeanc.py
https://github.com/neherlab/treetime/blob/f6cdb58d19243a18ffdaa2b2ec71872fa00e65c0/treetime/treeanc.py#L1991-L2053
def get_tree_dict(self, keep_var_ambigs=False): """ For VCF-based objects, returns a nested dict with all the information required to reconstruct sequences for all nodes (terminal and internal). Parameters ---------- keep_var_ambigs : boolean If true, generates dict sequences based on the *original* compressed sequences, which may include ambiguities. Note sites that only have 1 unambiguous base and ambiguous bases ("AAAAANN") are stripped of ambiguous bases *before* compression, so ambiguous bases at this sites will *not* be preserved. Returns ------- tree_dict : dict Format: :: { 'reference':'AGCTCGA...A', 'sequences': { 'seq1':{4:'A', 7:'-'}, 'seq2':{100:'C'} }, 'positions': [1,4,7,10,100...], 'inferred_const_sites': [7,100....] } reference: str The reference sequence to which the variable sites are mapped sequences: nested dict A dict for each sequence with the position and alternative call for each variant positions: list All variable positions in the alignment inferred_cost_sites: list *(optional)* Positions that were constant except ambiguous bases, which were converted into constant sites by TreeAnc (ex: 'AAAN' -> 'AAAA') Raises ------ TypeError Description """ if self.is_vcf: tree_dict = {} tree_dict['reference'] = self.ref tree_dict['positions'] = self.nonref_positions tree_aln = {} for n in self.tree.find_clades(): if hasattr(n, 'sequence'): if keep_var_ambigs: #regenerate dict to include ambig bases tree_aln[n.name] = self.dict_sequence(n, keep_var_ambigs) else: tree_aln[n.name] = n.sequence tree_dict['sequences'] = tree_aln if len(self.inferred_const_sites) != 0: tree_dict['inferred_const_sites'] = self.inferred_const_sites return tree_dict else: raise TypeError("A dict can only be returned for trees created with VCF-input!")
[ "def", "get_tree_dict", "(", "self", ",", "keep_var_ambigs", "=", "False", ")", ":", "if", "self", ".", "is_vcf", ":", "tree_dict", "=", "{", "}", "tree_dict", "[", "'reference'", "]", "=", "self", ".", "ref", "tree_dict", "[", "'positions'", "]", "=", "self", ".", "nonref_positions", "tree_aln", "=", "{", "}", "for", "n", "in", "self", ".", "tree", ".", "find_clades", "(", ")", ":", "if", "hasattr", "(", "n", ",", "'sequence'", ")", ":", "if", "keep_var_ambigs", ":", "#regenerate dict to include ambig bases", "tree_aln", "[", "n", ".", "name", "]", "=", "self", ".", "dict_sequence", "(", "n", ",", "keep_var_ambigs", ")", "else", ":", "tree_aln", "[", "n", ".", "name", "]", "=", "n", ".", "sequence", "tree_dict", "[", "'sequences'", "]", "=", "tree_aln", "if", "len", "(", "self", ".", "inferred_const_sites", ")", "!=", "0", ":", "tree_dict", "[", "'inferred_const_sites'", "]", "=", "self", ".", "inferred_const_sites", "return", "tree_dict", "else", ":", "raise", "TypeError", "(", "\"A dict can only be returned for trees created with VCF-input!\"", ")" ]
For VCF-based objects, returns a nested dict with all the information required to reconstruct sequences for all nodes (terminal and internal). Parameters ---------- keep_var_ambigs : boolean If true, generates dict sequences based on the *original* compressed sequences, which may include ambiguities. Note sites that only have 1 unambiguous base and ambiguous bases ("AAAAANN") are stripped of ambiguous bases *before* compression, so ambiguous bases at this sites will *not* be preserved. Returns ------- tree_dict : dict Format: :: { 'reference':'AGCTCGA...A', 'sequences': { 'seq1':{4:'A', 7:'-'}, 'seq2':{100:'C'} }, 'positions': [1,4,7,10,100...], 'inferred_const_sites': [7,100....] } reference: str The reference sequence to which the variable sites are mapped sequences: nested dict A dict for each sequence with the position and alternative call for each variant positions: list All variable positions in the alignment inferred_cost_sites: list *(optional)* Positions that were constant except ambiguous bases, which were converted into constant sites by TreeAnc (ex: 'AAAN' -> 'AAAA') Raises ------ TypeError Description
[ "For", "VCF", "-", "based", "objects", "returns", "a", "nested", "dict", "with", "all", "the", "information", "required", "to", "reconstruct", "sequences", "for", "all", "nodes", "(", "terminal", "and", "internal", ")", "." ]
python
test
Erotemic/utool
utool/util_regex.py
https://github.com/Erotemic/utool/blob/3b27e1f4e6e6fb23cd8744af7b7195b57d99e03a/utool/util_regex.py#L443-L469
def regex_parse(regex, text, fromstart=True): r""" regex_parse Args: regex (str): text (str): fromstart (bool): Returns: dict or None: Example: >>> # DISABLE_DOCTEST >>> from utool.util_regex import * # NOQA >>> regex = r'(?P<string>\'[^\']*\')' >>> text = " 'just' 'a' sentance with 'strings' in it " >>> fromstart = False >>> result = regex_parse(regex, text, fromstart)['string'] >>> print(result) """ match = regex_get_match(regex, text, fromstart=fromstart) if match is not None: parse_dict = match.groupdict() return parse_dict return None
[ "def", "regex_parse", "(", "regex", ",", "text", ",", "fromstart", "=", "True", ")", ":", "match", "=", "regex_get_match", "(", "regex", ",", "text", ",", "fromstart", "=", "fromstart", ")", "if", "match", "is", "not", "None", ":", "parse_dict", "=", "match", ".", "groupdict", "(", ")", "return", "parse_dict", "return", "None" ]
r""" regex_parse Args: regex (str): text (str): fromstart (bool): Returns: dict or None: Example: >>> # DISABLE_DOCTEST >>> from utool.util_regex import * # NOQA >>> regex = r'(?P<string>\'[^\']*\')' >>> text = " 'just' 'a' sentance with 'strings' in it " >>> fromstart = False >>> result = regex_parse(regex, text, fromstart)['string'] >>> print(result)
[ "r", "regex_parse" ]
python
train
cloud9ers/gurumate
environment/lib/python2.7/site-packages/IPython/frontend/qt/console/rich_ipython_widget.py
https://github.com/cloud9ers/gurumate/blob/075dc74d1ee62a8c6b7a8bf2b271364f01629d1e/environment/lib/python2.7/site-packages/IPython/frontend/qt/console/rich_ipython_widget.py#L136-L161
def _handle_display_data(self, msg): """ Overridden to handle rich data types, like SVG. """ if not self._hidden and self._is_from_this_session(msg): source = msg['content']['source'] data = msg['content']['data'] metadata = msg['content']['metadata'] # Try to use the svg or html representations. # FIXME: Is this the right ordering of things to try? if data.has_key('image/svg+xml'): self.log.debug("display: %s", msg.get('content', '')) svg = data['image/svg+xml'] self._append_svg(svg, True) elif data.has_key('image/png'): self.log.debug("display: %s", msg.get('content', '')) # PNG data is base64 encoded as it passes over the network # in a JSON structure so we decode it. png = decodestring(data['image/png'].encode('ascii')) self._append_png(png, True) elif data.has_key('image/jpeg') and self._jpg_supported: self.log.debug("display: %s", msg.get('content', '')) jpg = decodestring(data['image/jpeg'].encode('ascii')) self._append_jpg(jpg, True) else: # Default back to the plain text representation. return super(RichIPythonWidget, self)._handle_display_data(msg)
[ "def", "_handle_display_data", "(", "self", ",", "msg", ")", ":", "if", "not", "self", ".", "_hidden", "and", "self", ".", "_is_from_this_session", "(", "msg", ")", ":", "source", "=", "msg", "[", "'content'", "]", "[", "'source'", "]", "data", "=", "msg", "[", "'content'", "]", "[", "'data'", "]", "metadata", "=", "msg", "[", "'content'", "]", "[", "'metadata'", "]", "# Try to use the svg or html representations.", "# FIXME: Is this the right ordering of things to try?", "if", "data", ".", "has_key", "(", "'image/svg+xml'", ")", ":", "self", ".", "log", ".", "debug", "(", "\"display: %s\"", ",", "msg", ".", "get", "(", "'content'", ",", "''", ")", ")", "svg", "=", "data", "[", "'image/svg+xml'", "]", "self", ".", "_append_svg", "(", "svg", ",", "True", ")", "elif", "data", ".", "has_key", "(", "'image/png'", ")", ":", "self", ".", "log", ".", "debug", "(", "\"display: %s\"", ",", "msg", ".", "get", "(", "'content'", ",", "''", ")", ")", "# PNG data is base64 encoded as it passes over the network", "# in a JSON structure so we decode it.", "png", "=", "decodestring", "(", "data", "[", "'image/png'", "]", ".", "encode", "(", "'ascii'", ")", ")", "self", ".", "_append_png", "(", "png", ",", "True", ")", "elif", "data", ".", "has_key", "(", "'image/jpeg'", ")", "and", "self", ".", "_jpg_supported", ":", "self", ".", "log", ".", "debug", "(", "\"display: %s\"", ",", "msg", ".", "get", "(", "'content'", ",", "''", ")", ")", "jpg", "=", "decodestring", "(", "data", "[", "'image/jpeg'", "]", ".", "encode", "(", "'ascii'", ")", ")", "self", ".", "_append_jpg", "(", "jpg", ",", "True", ")", "else", ":", "# Default back to the plain text representation.", "return", "super", "(", "RichIPythonWidget", ",", "self", ")", ".", "_handle_display_data", "(", "msg", ")" ]
Overridden to handle rich data types, like SVG.
[ "Overridden", "to", "handle", "rich", "data", "types", "like", "SVG", "." ]
python
test
scizzorz/bumpy
bumpy.py
https://github.com/scizzorz/bumpy/blob/99ed5c5ccaa61842cafe9faf8b082de44bdf01f9/bumpy.py#L317-L328
def age(*paths): '''Return the minimum age of a set of files. Returns 0 if no paths are given. Returns time.time() if a path does not exist.''' if not paths: return 0 for path in paths: if not os.path.exists(path): return time.time() return min([(time.time() - os.path.getmtime(path)) for path in paths])
[ "def", "age", "(", "*", "paths", ")", ":", "if", "not", "paths", ":", "return", "0", "for", "path", "in", "paths", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "return", "time", ".", "time", "(", ")", "return", "min", "(", "[", "(", "time", ".", "time", "(", ")", "-", "os", ".", "path", ".", "getmtime", "(", "path", ")", ")", "for", "path", "in", "paths", "]", ")" ]
Return the minimum age of a set of files. Returns 0 if no paths are given. Returns time.time() if a path does not exist.
[ "Return", "the", "minimum", "age", "of", "a", "set", "of", "files", ".", "Returns", "0", "if", "no", "paths", "are", "given", ".", "Returns", "time", ".", "time", "()", "if", "a", "path", "does", "not", "exist", "." ]
python
train
pantsbuild/pex
pex/interpreter.py
https://github.com/pantsbuild/pex/blob/87b2129d860250d3b9edce75b9cb62f9789ee521/pex/interpreter.py#L349-L364
def find(cls, paths): """ Given a list of files or directories, try to detect python interpreters amongst them. Returns a list of PythonInterpreter objects. """ pythons = [] for path in paths: for fn in cls.expand_path(path): basefile = os.path.basename(fn) if cls._matches_binary_name(basefile): try: pythons.append(cls.from_binary(fn)) except Exception as e: TRACER.log('Could not identify %s: %s' % (fn, e)) continue return pythons
[ "def", "find", "(", "cls", ",", "paths", ")", ":", "pythons", "=", "[", "]", "for", "path", "in", "paths", ":", "for", "fn", "in", "cls", ".", "expand_path", "(", "path", ")", ":", "basefile", "=", "os", ".", "path", ".", "basename", "(", "fn", ")", "if", "cls", ".", "_matches_binary_name", "(", "basefile", ")", ":", "try", ":", "pythons", ".", "append", "(", "cls", ".", "from_binary", "(", "fn", ")", ")", "except", "Exception", "as", "e", ":", "TRACER", ".", "log", "(", "'Could not identify %s: %s'", "%", "(", "fn", ",", "e", ")", ")", "continue", "return", "pythons" ]
Given a list of files or directories, try to detect python interpreters amongst them. Returns a list of PythonInterpreter objects.
[ "Given", "a", "list", "of", "files", "or", "directories", "try", "to", "detect", "python", "interpreters", "amongst", "them", ".", "Returns", "a", "list", "of", "PythonInterpreter", "objects", "." ]
python
train
gmr/rejected
rejected/process.py
https://github.com/gmr/rejected/blob/610a3e1401122ecb98d891b6795cca0255e5b044/rejected/process.py#L523-L536
def report_stats(self): """Create the dict of stats data for the MCP stats queue""" if not self.previous: self.previous = dict() for key in self.counters: self.previous[key] = 0 values = { 'name': self.name, 'consumer_name': self.consumer_name, 'counts': dict(self.counters), 'previous': dict(self.previous) } self.previous = dict(self.counters) return values
[ "def", "report_stats", "(", "self", ")", ":", "if", "not", "self", ".", "previous", ":", "self", ".", "previous", "=", "dict", "(", ")", "for", "key", "in", "self", ".", "counters", ":", "self", ".", "previous", "[", "key", "]", "=", "0", "values", "=", "{", "'name'", ":", "self", ".", "name", ",", "'consumer_name'", ":", "self", ".", "consumer_name", ",", "'counts'", ":", "dict", "(", "self", ".", "counters", ")", ",", "'previous'", ":", "dict", "(", "self", ".", "previous", ")", "}", "self", ".", "previous", "=", "dict", "(", "self", ".", "counters", ")", "return", "values" ]
Create the dict of stats data for the MCP stats queue
[ "Create", "the", "dict", "of", "stats", "data", "for", "the", "MCP", "stats", "queue" ]
python
train
grahame/dividebatur
dividebatur/counter.py
https://github.com/grahame/dividebatur/blob/adc1f6e8013943471f1679e3c94f9448a1e4a472/dividebatur/counter.py#L568-L653
def determine_bulk_exclusions(self, candidate_aggregates): "determine candidates who may be bulk excluded, under 273(13)" # adjustment as under (13C) - seems to only apply if more than one candidate was elected in a round continuing = self.get_continuing_candidates(candidate_aggregates) candidate_votes = candidate_aggregates.get_candidate_votes() by_votes = self.get_votes_to_candidates(continuing, candidate_aggregates) adjustment = sum(excess_votes for _, _, excess_votes in self.election_distributions_pending) candidate_notional_votes = self.get_candidate_notional_votes(candidate_aggregates, adjustment) leading_shortfall, vacancy_shortfall = self.get_leading_and_vacancy_shortfall(candidate_aggregates) def determine_candidate_A(): # notional votes >= vacancy shortfall eligible = [candidate_id for candidate_id, notional in candidate_notional_votes.items() if notional >= vacancy_shortfall] if len(eligible) == 0: return None # lowest in the poll: tie is irrelevant eligible.sort(key=lambda candidate_id: candidate_votes[candidate_id]) return eligible[0] sorted_votes = list(sorted(by_votes.keys())) def notional_lower_than_higher(candidate_id): "check notional votes of candidate is lower than the number of votes of the candidate standing immediately higher" votes = candidate_votes[candidate_id] votes_idx = sorted_votes.index(votes) # no higher candidate if votes_idx == len(sorted_votes) - 1: return False # legislation ambiguous, but if there's a tie above us let's check all the candidates on that count notional = candidate_notional_votes[candidate_id] higher_votes = sorted_votes[votes_idx + 1] acceptable = all(notional < candidate_votes[t] for t in by_votes[higher_votes]) return acceptable def highest(eligible): "return the highest ranked candidate in candidates, by vote. if a tie, or list empty, return None" if not eligible: return binned = self.get_votes_to_candidates(eligible, candidate_aggregates) possible = binned[max(binned)] if len(possible) == 1: return possible[0] def determine_candidate_B(candidate_A): if candidate_A is not None: A_votes = candidate_votes[candidate_A] eligible = [candidate_id for candidate_id in continuing if candidate_votes[candidate_id] < A_votes] else: eligible = [candidate_id for candidate_id in continuing if candidate_notional_votes[candidate_id] < vacancy_shortfall] eligible = [candidate_id for candidate_id in eligible if notional_lower_than_higher(candidate_id)] return highest(eligible) def determine_candidate_C(): eligible = [candidate_id for candidate_id in continuing if candidate_notional_votes[candidate_id] < leading_shortfall] # the candidate of those eligible which stands highest in the poll eligible.sort(key=lambda candidate_id: candidate_votes[candidate_id]) return highest(eligible) def candidates_lte(candidate_id): votes = candidate_votes[candidate_id] lower_votes = [t for t in by_votes.keys() if t < votes] to_exclude = [candidate_id] for vote in lower_votes: to_exclude += [candidate_id for candidate_id in by_votes[vote] if candidate_id in continuing] return to_exclude # candidate A, B, C as under (13A)(a) to_exclude = None candidate_A = determine_candidate_A() candidate_B = determine_candidate_B(candidate_A) candidate_C = None if candidate_B: candidate_B_votes = candidate_votes[candidate_B] if candidate_B_votes < leading_shortfall: to_exclude = candidates_lte(candidate_B) else: candidate_C = determine_candidate_C() if candidate_C: to_exclude = candidates_lte(candidate_C) if to_exclude and len(to_exclude) == 1: to_exclude = None return to_exclude, ExclusionReason("bulk", { "candidate_A": candidate_A, "candidate_B": candidate_B, "candidate_C": candidate_C })
[ "def", "determine_bulk_exclusions", "(", "self", ",", "candidate_aggregates", ")", ":", "# adjustment as under (13C) - seems to only apply if more than one candidate was elected in a round", "continuing", "=", "self", ".", "get_continuing_candidates", "(", "candidate_aggregates", ")", "candidate_votes", "=", "candidate_aggregates", ".", "get_candidate_votes", "(", ")", "by_votes", "=", "self", ".", "get_votes_to_candidates", "(", "continuing", ",", "candidate_aggregates", ")", "adjustment", "=", "sum", "(", "excess_votes", "for", "_", ",", "_", ",", "excess_votes", "in", "self", ".", "election_distributions_pending", ")", "candidate_notional_votes", "=", "self", ".", "get_candidate_notional_votes", "(", "candidate_aggregates", ",", "adjustment", ")", "leading_shortfall", ",", "vacancy_shortfall", "=", "self", ".", "get_leading_and_vacancy_shortfall", "(", "candidate_aggregates", ")", "def", "determine_candidate_A", "(", ")", ":", "# notional votes >= vacancy shortfall", "eligible", "=", "[", "candidate_id", "for", "candidate_id", ",", "notional", "in", "candidate_notional_votes", ".", "items", "(", ")", "if", "notional", ">=", "vacancy_shortfall", "]", "if", "len", "(", "eligible", ")", "==", "0", ":", "return", "None", "# lowest in the poll: tie is irrelevant", "eligible", ".", "sort", "(", "key", "=", "lambda", "candidate_id", ":", "candidate_votes", "[", "candidate_id", "]", ")", "return", "eligible", "[", "0", "]", "sorted_votes", "=", "list", "(", "sorted", "(", "by_votes", ".", "keys", "(", ")", ")", ")", "def", "notional_lower_than_higher", "(", "candidate_id", ")", ":", "\"check notional votes of candidate is lower than the number of votes of the candidate standing immediately higher\"", "votes", "=", "candidate_votes", "[", "candidate_id", "]", "votes_idx", "=", "sorted_votes", ".", "index", "(", "votes", ")", "# no higher candidate", "if", "votes_idx", "==", "len", "(", "sorted_votes", ")", "-", "1", ":", "return", "False", "# legislation ambiguous, but if there's a tie above us let's check all the candidates on that count", "notional", "=", "candidate_notional_votes", "[", "candidate_id", "]", "higher_votes", "=", "sorted_votes", "[", "votes_idx", "+", "1", "]", "acceptable", "=", "all", "(", "notional", "<", "candidate_votes", "[", "t", "]", "for", "t", "in", "by_votes", "[", "higher_votes", "]", ")", "return", "acceptable", "def", "highest", "(", "eligible", ")", ":", "\"return the highest ranked candidate in candidates, by vote. if a tie, or list empty, return None\"", "if", "not", "eligible", ":", "return", "binned", "=", "self", ".", "get_votes_to_candidates", "(", "eligible", ",", "candidate_aggregates", ")", "possible", "=", "binned", "[", "max", "(", "binned", ")", "]", "if", "len", "(", "possible", ")", "==", "1", ":", "return", "possible", "[", "0", "]", "def", "determine_candidate_B", "(", "candidate_A", ")", ":", "if", "candidate_A", "is", "not", "None", ":", "A_votes", "=", "candidate_votes", "[", "candidate_A", "]", "eligible", "=", "[", "candidate_id", "for", "candidate_id", "in", "continuing", "if", "candidate_votes", "[", "candidate_id", "]", "<", "A_votes", "]", "else", ":", "eligible", "=", "[", "candidate_id", "for", "candidate_id", "in", "continuing", "if", "candidate_notional_votes", "[", "candidate_id", "]", "<", "vacancy_shortfall", "]", "eligible", "=", "[", "candidate_id", "for", "candidate_id", "in", "eligible", "if", "notional_lower_than_higher", "(", "candidate_id", ")", "]", "return", "highest", "(", "eligible", ")", "def", "determine_candidate_C", "(", ")", ":", "eligible", "=", "[", "candidate_id", "for", "candidate_id", "in", "continuing", "if", "candidate_notional_votes", "[", "candidate_id", "]", "<", "leading_shortfall", "]", "# the candidate of those eligible which stands highest in the poll", "eligible", ".", "sort", "(", "key", "=", "lambda", "candidate_id", ":", "candidate_votes", "[", "candidate_id", "]", ")", "return", "highest", "(", "eligible", ")", "def", "candidates_lte", "(", "candidate_id", ")", ":", "votes", "=", "candidate_votes", "[", "candidate_id", "]", "lower_votes", "=", "[", "t", "for", "t", "in", "by_votes", ".", "keys", "(", ")", "if", "t", "<", "votes", "]", "to_exclude", "=", "[", "candidate_id", "]", "for", "vote", "in", "lower_votes", ":", "to_exclude", "+=", "[", "candidate_id", "for", "candidate_id", "in", "by_votes", "[", "vote", "]", "if", "candidate_id", "in", "continuing", "]", "return", "to_exclude", "# candidate A, B, C as under (13A)(a)", "to_exclude", "=", "None", "candidate_A", "=", "determine_candidate_A", "(", ")", "candidate_B", "=", "determine_candidate_B", "(", "candidate_A", ")", "candidate_C", "=", "None", "if", "candidate_B", ":", "candidate_B_votes", "=", "candidate_votes", "[", "candidate_B", "]", "if", "candidate_B_votes", "<", "leading_shortfall", ":", "to_exclude", "=", "candidates_lte", "(", "candidate_B", ")", "else", ":", "candidate_C", "=", "determine_candidate_C", "(", ")", "if", "candidate_C", ":", "to_exclude", "=", "candidates_lte", "(", "candidate_C", ")", "if", "to_exclude", "and", "len", "(", "to_exclude", ")", "==", "1", ":", "to_exclude", "=", "None", "return", "to_exclude", ",", "ExclusionReason", "(", "\"bulk\"", ",", "{", "\"candidate_A\"", ":", "candidate_A", ",", "\"candidate_B\"", ":", "candidate_B", ",", "\"candidate_C\"", ":", "candidate_C", "}", ")" ]
determine candidates who may be bulk excluded, under 273(13)
[ "determine", "candidates", "who", "may", "be", "bulk", "excluded", "under", "273", "(", "13", ")" ]
python
train
vaexio/vaex
packages/vaex-core/vaex/delayed.py
https://github.com/vaexio/vaex/blob/a45b672f8287afca2ada8e36b74b604b9b28dd85/packages/vaex-core/vaex/delayed.py#L28-L73
def delayed(f): '''Decorator to transparantly accept delayed computation. Example: >>> delayed_sum = ds.sum(ds.E, binby=ds.x, limits=limits, >>> shape=4, delay=True) >>> @vaex.delayed >>> def total_sum(sums): >>> return sums.sum() >>> sum_of_sums = total_sum(delayed_sum) >>> ds.execute() >>> sum_of_sums.get() See the tutorial for a more complete example https://docs.vaex.io/en/latest/tutorial.html#Parallel-computations ''' def wrapped(*args, **kwargs): # print "calling", f, "with", kwargs # key_values = kwargs.items() key_promise = list([(key, promisify(value)) for key, value in kwargs.items()]) # key_promise = [(key, promisify(value)) for key, value in key_values] arg_promises = list([promisify(value) for value in args]) kwarg_promises = list([promise for key, promise in key_promise]) promises = arg_promises + kwarg_promises for promise in promises: def echo_error(exc, promise=promise): print("error with ", promise, "exception is", exc) # raise exc def echo(value, promise=promise): print("done with ", repr(promise), "value is", value) # promise.then(echo, echo_error) # print promises allarguments = aplus.listPromise(*promises) def call(_): kwargs_real = {key: promise.get() for key, promise in key_promise} args_real = list([promise.get() for promise in arg_promises]) return f(*args_real, **kwargs_real) def error(exc): print("error", exc) raise exc return allarguments.then(call, error) return wrapped
[ "def", "delayed", "(", "f", ")", ":", "def", "wrapped", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# print \"calling\", f, \"with\", kwargs", "# key_values = kwargs.items()", "key_promise", "=", "list", "(", "[", "(", "key", ",", "promisify", "(", "value", ")", ")", "for", "key", ",", "value", "in", "kwargs", ".", "items", "(", ")", "]", ")", "# key_promise = [(key, promisify(value)) for key, value in key_values]", "arg_promises", "=", "list", "(", "[", "promisify", "(", "value", ")", "for", "value", "in", "args", "]", ")", "kwarg_promises", "=", "list", "(", "[", "promise", "for", "key", ",", "promise", "in", "key_promise", "]", ")", "promises", "=", "arg_promises", "+", "kwarg_promises", "for", "promise", "in", "promises", ":", "def", "echo_error", "(", "exc", ",", "promise", "=", "promise", ")", ":", "print", "(", "\"error with \"", ",", "promise", ",", "\"exception is\"", ",", "exc", ")", "# raise exc", "def", "echo", "(", "value", ",", "promise", "=", "promise", ")", ":", "print", "(", "\"done with \"", ",", "repr", "(", "promise", ")", ",", "\"value is\"", ",", "value", ")", "# promise.then(echo, echo_error)", "# print promises", "allarguments", "=", "aplus", ".", "listPromise", "(", "*", "promises", ")", "def", "call", "(", "_", ")", ":", "kwargs_real", "=", "{", "key", ":", "promise", ".", "get", "(", ")", "for", "key", ",", "promise", "in", "key_promise", "}", "args_real", "=", "list", "(", "[", "promise", ".", "get", "(", ")", "for", "promise", "in", "arg_promises", "]", ")", "return", "f", "(", "*", "args_real", ",", "*", "*", "kwargs_real", ")", "def", "error", "(", "exc", ")", ":", "print", "(", "\"error\"", ",", "exc", ")", "raise", "exc", "return", "allarguments", ".", "then", "(", "call", ",", "error", ")", "return", "wrapped" ]
Decorator to transparantly accept delayed computation. Example: >>> delayed_sum = ds.sum(ds.E, binby=ds.x, limits=limits, >>> shape=4, delay=True) >>> @vaex.delayed >>> def total_sum(sums): >>> return sums.sum() >>> sum_of_sums = total_sum(delayed_sum) >>> ds.execute() >>> sum_of_sums.get() See the tutorial for a more complete example https://docs.vaex.io/en/latest/tutorial.html#Parallel-computations
[ "Decorator", "to", "transparantly", "accept", "delayed", "computation", "." ]
python
test