repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
list | docstring
stringlengths 1
46.9k
| docstring_tokens
list | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
geophysics-ubonn/reda | lib/reda/containers/ERT.py | https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/containers/ERT.py#L371-L388 | def delete_measurements(self, row_or_rows):
"""Delete one or more measurements by index of the DataFrame.
Resets the DataFrame index.
Parameters
----------
row_or_rows : int or list of ints
Row numbers (starting with zero) of the data DataFrame (ert.data)
to delete
Returns
-------
None
"""
self.data.drop(self.data.index[row_or_rows], inplace=True)
self.data = self.data.reset_index() | [
"def",
"delete_measurements",
"(",
"self",
",",
"row_or_rows",
")",
":",
"self",
".",
"data",
".",
"drop",
"(",
"self",
".",
"data",
".",
"index",
"[",
"row_or_rows",
"]",
",",
"inplace",
"=",
"True",
")",
"self",
".",
"data",
"=",
"self",
".",
"data",
".",
"reset_index",
"(",
")"
]
| Delete one or more measurements by index of the DataFrame.
Resets the DataFrame index.
Parameters
----------
row_or_rows : int or list of ints
Row numbers (starting with zero) of the data DataFrame (ert.data)
to delete
Returns
-------
None | [
"Delete",
"one",
"or",
"more",
"measurements",
"by",
"index",
"of",
"the",
"DataFrame",
"."
]
| python | train |
wearpants/fakesleep | fakesleep.py | https://github.com/wearpants/fakesleep/blob/b2b8f422a0838fff50143ec00c1bbb7974e92a83/fakesleep.py#L53-L59 | def monkey_restore():
"""restore real versions. Inverse of `monkey_patch`"""
for k, v in originals.items():
setattr(time_mod, k, v)
global epoch
epoch = None | [
"def",
"monkey_restore",
"(",
")",
":",
"for",
"k",
",",
"v",
"in",
"originals",
".",
"items",
"(",
")",
":",
"setattr",
"(",
"time_mod",
",",
"k",
",",
"v",
")",
"global",
"epoch",
"epoch",
"=",
"None"
]
| restore real versions. Inverse of `monkey_patch` | [
"restore",
"real",
"versions",
".",
"Inverse",
"of",
"monkey_patch"
]
| python | train |
iotile/coretools | scripts/release.py | https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/scripts/release.py#L76-L87 | def check_version(component, expected_version):
"""Make sure the package version in setuptools matches what we expect it to be"""
comp = comp_names[component]
compath = os.path.realpath(os.path.abspath(comp.path))
sys.path.insert(0, compath)
import version
if version.version != expected_version:
raise EnvironmentError("Version mismatch during release, expected={}, found={}".format(expected_version, version.version)) | [
"def",
"check_version",
"(",
"component",
",",
"expected_version",
")",
":",
"comp",
"=",
"comp_names",
"[",
"component",
"]",
"compath",
"=",
"os",
".",
"path",
".",
"realpath",
"(",
"os",
".",
"path",
".",
"abspath",
"(",
"comp",
".",
"path",
")",
")",
"sys",
".",
"path",
".",
"insert",
"(",
"0",
",",
"compath",
")",
"import",
"version",
"if",
"version",
".",
"version",
"!=",
"expected_version",
":",
"raise",
"EnvironmentError",
"(",
"\"Version mismatch during release, expected={}, found={}\"",
".",
"format",
"(",
"expected_version",
",",
"version",
".",
"version",
")",
")"
]
| Make sure the package version in setuptools matches what we expect it to be | [
"Make",
"sure",
"the",
"package",
"version",
"in",
"setuptools",
"matches",
"what",
"we",
"expect",
"it",
"to",
"be"
]
| python | train |
guaix-ucm/pyemir | emirdrp/processing/wavecal/median_slitlets_rectified.py | https://github.com/guaix-ucm/pyemir/blob/fef6bbabcb13f80123cafd1800a0f508a3c21702/emirdrp/processing/wavecal/median_slitlets_rectified.py#L42-L167 | def median_slitlets_rectified(
input_image,
mode=0,
minimum_slitlet_width_mm=EMIR_MINIMUM_SLITLET_WIDTH_MM,
maximum_slitlet_width_mm=EMIR_MAXIMUM_SLITLET_WIDTH_MM,
debugplot=0
):
"""Compute median spectrum for each slitlet.
Parameters
----------
input_image : HDUList object
Input 2D image.
mode : int
Indicate desired result:
0 : image with the same size as the input image, with the
median spectrum of each slitlet spanning all the spectra
of the corresponding slitlet
1 : image with 55 spectra, containing the median spectra of
each slitlet
2 : single collapsed median spectrum, using exclusively the
useful slitlets from the input image
minimum_slitlet_width_mm : float
Minimum slitlet width (mm) for a valid slitlet.
maximum_slitlet_width_mm : float
Maximum slitlet width (mm) for a valid slitlet.
debugplot : int
Determines whether intermediate computations and/or plots
are displayed. The valid codes are defined in
numina.array.display.pause_debugplot.
Returns
-------
image_median : HDUList object
Output image.
"""
image_header = input_image[0].header
image2d = input_image[0].data
# check image dimensions
naxis2_expected = EMIR_NBARS * EMIR_NPIXPERSLIT_RECTIFIED
naxis2, naxis1 = image2d.shape
if naxis2 != naxis2_expected:
raise ValueError("NAXIS2={0} should be {1}".format(
naxis2, naxis2_expected
))
# check that the FITS file has been obtained with EMIR
instrument = image_header['instrume']
if instrument != 'EMIR':
raise ValueError("INSTRUME keyword is not 'EMIR'!")
# initialize output image
if mode == 0:
image2d_median = np.zeros((naxis2, naxis1))
else:
image2d_median = np.zeros((EMIR_NBARS, naxis1))
# main loop
for i in range(EMIR_NBARS):
ns1 = i * EMIR_NPIXPERSLIT_RECTIFIED + 1
ns2 = ns1 + EMIR_NPIXPERSLIT_RECTIFIED - 1
sp_median = np.median(image2d[(ns1-1):ns2, :], axis=0)
if mode == 0:
image2d_median[(ns1-1):ns2, :] = np.tile(
sp_median, (EMIR_NPIXPERSLIT_RECTIFIED, 1)
)
else:
image2d_median[i] = np.copy(sp_median)
if mode == 2:
# get CSU configuration from FITS header
csu_config = CsuConfiguration.define_from_header(image_header)
# define wavelength calibration parameters
crpix1 = image_header['crpix1']
crval1 = image_header['crval1']
cdelt1 = image_header['cdelt1']
# segregate slitlets
list_useful_slitlets = csu_config.widths_in_range_mm(
minwidth=minimum_slitlet_width_mm,
maxwidth=maximum_slitlet_width_mm
)
list_not_useful_slitlets = [i for i in list(range(1, EMIR_NBARS + 1))
if i not in list_useful_slitlets]
if abs(debugplot) != 0:
print('>>> list_useful_slitlets....:', list_useful_slitlets)
print('>>> list_not_useful_slitlets:', list_not_useful_slitlets)
# define mask from array data
mask2d, borders = define_mask_borders(image2d_median, sought_value=0)
if abs(debugplot) % 10 != 0:
ximshow(mask2d.astype(int), z1z2=(-.2, 1.2), crpix1=crpix1,
crval1=crval1, cdelt1=cdelt1, debugplot=debugplot)
# update mask with unused slitlets
for islitlet in list_not_useful_slitlets:
mask2d[islitlet - 1, :] = np.array([True] * naxis1)
if abs(debugplot) % 10 != 0:
ximshow(mask2d.astype(int), z1z2=(-.2, 1.2), crpix1=crpix1,
crval1=crval1, cdelt1=cdelt1, debugplot=debugplot)
# useful image pixels
image2d_masked = image2d_median * (1 - mask2d.astype(int))
if abs(debugplot) % 10 != 0:
ximshow(image2d_masked, crpix1=crpix1, crval1=crval1,
cdelt1=cdelt1, debugplot=debugplot)
# masked image
image2d_masked = np.ma.masked_array(image2d_median, mask=mask2d)
# median spectrum
image1d_median = np.ma.median(image2d_masked, axis=0).data
image_median = fits.PrimaryHDU(data=image1d_median,
header=image_header)
else:
image_median = fits.PrimaryHDU(data=image2d_median,
header=image_header)
return fits.HDUList([image_median]) | [
"def",
"median_slitlets_rectified",
"(",
"input_image",
",",
"mode",
"=",
"0",
",",
"minimum_slitlet_width_mm",
"=",
"EMIR_MINIMUM_SLITLET_WIDTH_MM",
",",
"maximum_slitlet_width_mm",
"=",
"EMIR_MAXIMUM_SLITLET_WIDTH_MM",
",",
"debugplot",
"=",
"0",
")",
":",
"image_header",
"=",
"input_image",
"[",
"0",
"]",
".",
"header",
"image2d",
"=",
"input_image",
"[",
"0",
"]",
".",
"data",
"# check image dimensions",
"naxis2_expected",
"=",
"EMIR_NBARS",
"*",
"EMIR_NPIXPERSLIT_RECTIFIED",
"naxis2",
",",
"naxis1",
"=",
"image2d",
".",
"shape",
"if",
"naxis2",
"!=",
"naxis2_expected",
":",
"raise",
"ValueError",
"(",
"\"NAXIS2={0} should be {1}\"",
".",
"format",
"(",
"naxis2",
",",
"naxis2_expected",
")",
")",
"# check that the FITS file has been obtained with EMIR",
"instrument",
"=",
"image_header",
"[",
"'instrume'",
"]",
"if",
"instrument",
"!=",
"'EMIR'",
":",
"raise",
"ValueError",
"(",
"\"INSTRUME keyword is not 'EMIR'!\"",
")",
"# initialize output image",
"if",
"mode",
"==",
"0",
":",
"image2d_median",
"=",
"np",
".",
"zeros",
"(",
"(",
"naxis2",
",",
"naxis1",
")",
")",
"else",
":",
"image2d_median",
"=",
"np",
".",
"zeros",
"(",
"(",
"EMIR_NBARS",
",",
"naxis1",
")",
")",
"# main loop",
"for",
"i",
"in",
"range",
"(",
"EMIR_NBARS",
")",
":",
"ns1",
"=",
"i",
"*",
"EMIR_NPIXPERSLIT_RECTIFIED",
"+",
"1",
"ns2",
"=",
"ns1",
"+",
"EMIR_NPIXPERSLIT_RECTIFIED",
"-",
"1",
"sp_median",
"=",
"np",
".",
"median",
"(",
"image2d",
"[",
"(",
"ns1",
"-",
"1",
")",
":",
"ns2",
",",
":",
"]",
",",
"axis",
"=",
"0",
")",
"if",
"mode",
"==",
"0",
":",
"image2d_median",
"[",
"(",
"ns1",
"-",
"1",
")",
":",
"ns2",
",",
":",
"]",
"=",
"np",
".",
"tile",
"(",
"sp_median",
",",
"(",
"EMIR_NPIXPERSLIT_RECTIFIED",
",",
"1",
")",
")",
"else",
":",
"image2d_median",
"[",
"i",
"]",
"=",
"np",
".",
"copy",
"(",
"sp_median",
")",
"if",
"mode",
"==",
"2",
":",
"# get CSU configuration from FITS header",
"csu_config",
"=",
"CsuConfiguration",
".",
"define_from_header",
"(",
"image_header",
")",
"# define wavelength calibration parameters",
"crpix1",
"=",
"image_header",
"[",
"'crpix1'",
"]",
"crval1",
"=",
"image_header",
"[",
"'crval1'",
"]",
"cdelt1",
"=",
"image_header",
"[",
"'cdelt1'",
"]",
"# segregate slitlets",
"list_useful_slitlets",
"=",
"csu_config",
".",
"widths_in_range_mm",
"(",
"minwidth",
"=",
"minimum_slitlet_width_mm",
",",
"maxwidth",
"=",
"maximum_slitlet_width_mm",
")",
"list_not_useful_slitlets",
"=",
"[",
"i",
"for",
"i",
"in",
"list",
"(",
"range",
"(",
"1",
",",
"EMIR_NBARS",
"+",
"1",
")",
")",
"if",
"i",
"not",
"in",
"list_useful_slitlets",
"]",
"if",
"abs",
"(",
"debugplot",
")",
"!=",
"0",
":",
"print",
"(",
"'>>> list_useful_slitlets....:'",
",",
"list_useful_slitlets",
")",
"print",
"(",
"'>>> list_not_useful_slitlets:'",
",",
"list_not_useful_slitlets",
")",
"# define mask from array data",
"mask2d",
",",
"borders",
"=",
"define_mask_borders",
"(",
"image2d_median",
",",
"sought_value",
"=",
"0",
")",
"if",
"abs",
"(",
"debugplot",
")",
"%",
"10",
"!=",
"0",
":",
"ximshow",
"(",
"mask2d",
".",
"astype",
"(",
"int",
")",
",",
"z1z2",
"=",
"(",
"-",
".2",
",",
"1.2",
")",
",",
"crpix1",
"=",
"crpix1",
",",
"crval1",
"=",
"crval1",
",",
"cdelt1",
"=",
"cdelt1",
",",
"debugplot",
"=",
"debugplot",
")",
"# update mask with unused slitlets",
"for",
"islitlet",
"in",
"list_not_useful_slitlets",
":",
"mask2d",
"[",
"islitlet",
"-",
"1",
",",
":",
"]",
"=",
"np",
".",
"array",
"(",
"[",
"True",
"]",
"*",
"naxis1",
")",
"if",
"abs",
"(",
"debugplot",
")",
"%",
"10",
"!=",
"0",
":",
"ximshow",
"(",
"mask2d",
".",
"astype",
"(",
"int",
")",
",",
"z1z2",
"=",
"(",
"-",
".2",
",",
"1.2",
")",
",",
"crpix1",
"=",
"crpix1",
",",
"crval1",
"=",
"crval1",
",",
"cdelt1",
"=",
"cdelt1",
",",
"debugplot",
"=",
"debugplot",
")",
"# useful image pixels",
"image2d_masked",
"=",
"image2d_median",
"*",
"(",
"1",
"-",
"mask2d",
".",
"astype",
"(",
"int",
")",
")",
"if",
"abs",
"(",
"debugplot",
")",
"%",
"10",
"!=",
"0",
":",
"ximshow",
"(",
"image2d_masked",
",",
"crpix1",
"=",
"crpix1",
",",
"crval1",
"=",
"crval1",
",",
"cdelt1",
"=",
"cdelt1",
",",
"debugplot",
"=",
"debugplot",
")",
"# masked image",
"image2d_masked",
"=",
"np",
".",
"ma",
".",
"masked_array",
"(",
"image2d_median",
",",
"mask",
"=",
"mask2d",
")",
"# median spectrum",
"image1d_median",
"=",
"np",
".",
"ma",
".",
"median",
"(",
"image2d_masked",
",",
"axis",
"=",
"0",
")",
".",
"data",
"image_median",
"=",
"fits",
".",
"PrimaryHDU",
"(",
"data",
"=",
"image1d_median",
",",
"header",
"=",
"image_header",
")",
"else",
":",
"image_median",
"=",
"fits",
".",
"PrimaryHDU",
"(",
"data",
"=",
"image2d_median",
",",
"header",
"=",
"image_header",
")",
"return",
"fits",
".",
"HDUList",
"(",
"[",
"image_median",
"]",
")"
]
| Compute median spectrum for each slitlet.
Parameters
----------
input_image : HDUList object
Input 2D image.
mode : int
Indicate desired result:
0 : image with the same size as the input image, with the
median spectrum of each slitlet spanning all the spectra
of the corresponding slitlet
1 : image with 55 spectra, containing the median spectra of
each slitlet
2 : single collapsed median spectrum, using exclusively the
useful slitlets from the input image
minimum_slitlet_width_mm : float
Minimum slitlet width (mm) for a valid slitlet.
maximum_slitlet_width_mm : float
Maximum slitlet width (mm) for a valid slitlet.
debugplot : int
Determines whether intermediate computations and/or plots
are displayed. The valid codes are defined in
numina.array.display.pause_debugplot.
Returns
-------
image_median : HDUList object
Output image. | [
"Compute",
"median",
"spectrum",
"for",
"each",
"slitlet",
"."
]
| python | train |
ethereum/py-evm | eth/db/header.py | https://github.com/ethereum/py-evm/blob/58346848f076116381d3274bbcea96b9e2cfcbdf/eth/db/header.py#L120-L127 | def get_canonical_block_header_by_number(self, block_number: BlockNumber) -> BlockHeader:
"""
Returns the block header with the given number in the canonical chain.
Raises BlockNotFound if there's no block header with the given number in the
canonical chain.
"""
return self._get_canonical_block_header_by_number(self.db, block_number) | [
"def",
"get_canonical_block_header_by_number",
"(",
"self",
",",
"block_number",
":",
"BlockNumber",
")",
"->",
"BlockHeader",
":",
"return",
"self",
".",
"_get_canonical_block_header_by_number",
"(",
"self",
".",
"db",
",",
"block_number",
")"
]
| Returns the block header with the given number in the canonical chain.
Raises BlockNotFound if there's no block header with the given number in the
canonical chain. | [
"Returns",
"the",
"block",
"header",
"with",
"the",
"given",
"number",
"in",
"the",
"canonical",
"chain",
"."
]
| python | train |
biolink/ontobio | ontobio/sparql/skos.py | https://github.com/biolink/ontobio/blob/4e512a7831cfe6bc1b32f2c3be2ba41bc5cf7345/ontobio/sparql/skos.py#L51-L105 | def process_rdfgraph(self, rg, ont=None):
"""
Transform a skos terminology expressed in an rdf graph into an Ontology object
Arguments
---------
rg: rdflib.Graph
graph object
Returns
-------
Ontology
"""
# TODO: ontology metadata
if ont is None:
ont = Ontology()
subjs = list(rg.subjects(RDF.type, SKOS.ConceptScheme))
if len(subjs) == 0:
logging.warning("No ConceptScheme")
else:
ont.id = self._uri2id(subjs[0])
subset_map = {}
for concept in rg.subjects(RDF.type, SKOS.Concept):
for s in self._get_schemes(rg, concept):
subset_map[self._uri2id(s)] = s
for concept in sorted(list(rg.subjects(RDF.type, SKOS.Concept))):
concept_uri = str(concept)
id=self._uri2id(concept)
logging.info("ADDING: {}".format(id))
ont.add_node(id, self._get_label(rg,concept))
for defn in rg.objects(concept, SKOS.definition):
if (defn.language == self.lang):
td = TextDefinition(id, escape_value(defn.value))
ont.add_text_definition(td)
for s in rg.objects(concept, SKOS.broader):
ont.add_parent(id, self._uri2id(s))
for s in rg.objects(concept, SKOS.related):
ont.add_parent(id, self._uri2id(s), self._uri2id(SKOS.related))
for m in rg.objects(concept, SKOS.exactMatch):
ont.add_xref(id, self._uri2id(m))
for m in rg.objects(concept, SKOS.altLabel):
syn = Synonym(id, val=self._uri2id(m))
ont.add_synonym(syn)
for s in self._get_schemes(rg,concept):
ont.add_to_subset(id, self._uri2id(s))
return ont | [
"def",
"process_rdfgraph",
"(",
"self",
",",
"rg",
",",
"ont",
"=",
"None",
")",
":",
"# TODO: ontology metadata",
"if",
"ont",
"is",
"None",
":",
"ont",
"=",
"Ontology",
"(",
")",
"subjs",
"=",
"list",
"(",
"rg",
".",
"subjects",
"(",
"RDF",
".",
"type",
",",
"SKOS",
".",
"ConceptScheme",
")",
")",
"if",
"len",
"(",
"subjs",
")",
"==",
"0",
":",
"logging",
".",
"warning",
"(",
"\"No ConceptScheme\"",
")",
"else",
":",
"ont",
".",
"id",
"=",
"self",
".",
"_uri2id",
"(",
"subjs",
"[",
"0",
"]",
")",
"subset_map",
"=",
"{",
"}",
"for",
"concept",
"in",
"rg",
".",
"subjects",
"(",
"RDF",
".",
"type",
",",
"SKOS",
".",
"Concept",
")",
":",
"for",
"s",
"in",
"self",
".",
"_get_schemes",
"(",
"rg",
",",
"concept",
")",
":",
"subset_map",
"[",
"self",
".",
"_uri2id",
"(",
"s",
")",
"]",
"=",
"s",
"for",
"concept",
"in",
"sorted",
"(",
"list",
"(",
"rg",
".",
"subjects",
"(",
"RDF",
".",
"type",
",",
"SKOS",
".",
"Concept",
")",
")",
")",
":",
"concept_uri",
"=",
"str",
"(",
"concept",
")",
"id",
"=",
"self",
".",
"_uri2id",
"(",
"concept",
")",
"logging",
".",
"info",
"(",
"\"ADDING: {}\"",
".",
"format",
"(",
"id",
")",
")",
"ont",
".",
"add_node",
"(",
"id",
",",
"self",
".",
"_get_label",
"(",
"rg",
",",
"concept",
")",
")",
"for",
"defn",
"in",
"rg",
".",
"objects",
"(",
"concept",
",",
"SKOS",
".",
"definition",
")",
":",
"if",
"(",
"defn",
".",
"language",
"==",
"self",
".",
"lang",
")",
":",
"td",
"=",
"TextDefinition",
"(",
"id",
",",
"escape_value",
"(",
"defn",
".",
"value",
")",
")",
"ont",
".",
"add_text_definition",
"(",
"td",
")",
"for",
"s",
"in",
"rg",
".",
"objects",
"(",
"concept",
",",
"SKOS",
".",
"broader",
")",
":",
"ont",
".",
"add_parent",
"(",
"id",
",",
"self",
".",
"_uri2id",
"(",
"s",
")",
")",
"for",
"s",
"in",
"rg",
".",
"objects",
"(",
"concept",
",",
"SKOS",
".",
"related",
")",
":",
"ont",
".",
"add_parent",
"(",
"id",
",",
"self",
".",
"_uri2id",
"(",
"s",
")",
",",
"self",
".",
"_uri2id",
"(",
"SKOS",
".",
"related",
")",
")",
"for",
"m",
"in",
"rg",
".",
"objects",
"(",
"concept",
",",
"SKOS",
".",
"exactMatch",
")",
":",
"ont",
".",
"add_xref",
"(",
"id",
",",
"self",
".",
"_uri2id",
"(",
"m",
")",
")",
"for",
"m",
"in",
"rg",
".",
"objects",
"(",
"concept",
",",
"SKOS",
".",
"altLabel",
")",
":",
"syn",
"=",
"Synonym",
"(",
"id",
",",
"val",
"=",
"self",
".",
"_uri2id",
"(",
"m",
")",
")",
"ont",
".",
"add_synonym",
"(",
"syn",
")",
"for",
"s",
"in",
"self",
".",
"_get_schemes",
"(",
"rg",
",",
"concept",
")",
":",
"ont",
".",
"add_to_subset",
"(",
"id",
",",
"self",
".",
"_uri2id",
"(",
"s",
")",
")",
"return",
"ont"
]
| Transform a skos terminology expressed in an rdf graph into an Ontology object
Arguments
---------
rg: rdflib.Graph
graph object
Returns
-------
Ontology | [
"Transform",
"a",
"skos",
"terminology",
"expressed",
"in",
"an",
"rdf",
"graph",
"into",
"an",
"Ontology",
"object"
]
| python | train |
agile-geoscience/striplog | striplog/striplog.py | https://github.com/agile-geoscience/striplog/blob/8033b673a151f96c29802b43763e863519a3124c/striplog/striplog.py#L1902-L1939 | def merge_neighbours(self, strict=True):
"""
Makes a new striplog in which matching neighbours (for which the
components are the same) are unioned. That is, they are replaced by
a new Interval with the same top as the uppermost and the same bottom
as the lowermost.
Args
strict (bool): If True, then all of the components must match.
If False, then only the primary must match.
Returns:
Striplog. A new striplog.
TODO:
Might need to be tweaked to deal with 'binary striplogs' if those
aren't implemented with components.
"""
new_strip = [self[0].copy()]
for lower in self[1:]:
# Determine if touching.
touching = new_strip[-1].touches(lower)
# Decide if match.
if strict:
similar = new_strip[-1].components == lower.components
else:
similar = new_strip[-1].primary == lower.primary
# Union if both criteria met.
if touching and similar:
new_strip[-1] = new_strip[-1].union(lower)
else:
new_strip.append(lower.copy())
return Striplog(new_strip) | [
"def",
"merge_neighbours",
"(",
"self",
",",
"strict",
"=",
"True",
")",
":",
"new_strip",
"=",
"[",
"self",
"[",
"0",
"]",
".",
"copy",
"(",
")",
"]",
"for",
"lower",
"in",
"self",
"[",
"1",
":",
"]",
":",
"# Determine if touching.",
"touching",
"=",
"new_strip",
"[",
"-",
"1",
"]",
".",
"touches",
"(",
"lower",
")",
"# Decide if match.",
"if",
"strict",
":",
"similar",
"=",
"new_strip",
"[",
"-",
"1",
"]",
".",
"components",
"==",
"lower",
".",
"components",
"else",
":",
"similar",
"=",
"new_strip",
"[",
"-",
"1",
"]",
".",
"primary",
"==",
"lower",
".",
"primary",
"# Union if both criteria met.",
"if",
"touching",
"and",
"similar",
":",
"new_strip",
"[",
"-",
"1",
"]",
"=",
"new_strip",
"[",
"-",
"1",
"]",
".",
"union",
"(",
"lower",
")",
"else",
":",
"new_strip",
".",
"append",
"(",
"lower",
".",
"copy",
"(",
")",
")",
"return",
"Striplog",
"(",
"new_strip",
")"
]
| Makes a new striplog in which matching neighbours (for which the
components are the same) are unioned. That is, they are replaced by
a new Interval with the same top as the uppermost and the same bottom
as the lowermost.
Args
strict (bool): If True, then all of the components must match.
If False, then only the primary must match.
Returns:
Striplog. A new striplog.
TODO:
Might need to be tweaked to deal with 'binary striplogs' if those
aren't implemented with components. | [
"Makes",
"a",
"new",
"striplog",
"in",
"which",
"matching",
"neighbours",
"(",
"for",
"which",
"the",
"components",
"are",
"the",
"same",
")",
"are",
"unioned",
".",
"That",
"is",
"they",
"are",
"replaced",
"by",
"a",
"new",
"Interval",
"with",
"the",
"same",
"top",
"as",
"the",
"uppermost",
"and",
"the",
"same",
"bottom",
"as",
"the",
"lowermost",
"."
]
| python | test |
tensorflow/tensorboard | tensorboard/plugins/hparams/hparams_plugin_loader.py | https://github.com/tensorflow/tensorboard/blob/8e5f497b48e40f2a774f85416b8a35ac0693c35e/tensorboard/plugins/hparams/hparams_plugin_loader.py#L30-L46 | def load(self, context):
"""Returns the plugin, if possible.
Args:
context: The TBContext flags.
Returns:
A HParamsPlugin instance or None if it couldn't be loaded.
"""
try:
# pylint: disable=g-import-not-at-top,unused-import
import tensorflow
except ImportError:
return
# pylint: disable=g-import-not-at-top
from tensorboard.plugins.hparams.hparams_plugin import HParamsPlugin
return HParamsPlugin(context) | [
"def",
"load",
"(",
"self",
",",
"context",
")",
":",
"try",
":",
"# pylint: disable=g-import-not-at-top,unused-import",
"import",
"tensorflow",
"except",
"ImportError",
":",
"return",
"# pylint: disable=g-import-not-at-top",
"from",
"tensorboard",
".",
"plugins",
".",
"hparams",
".",
"hparams_plugin",
"import",
"HParamsPlugin",
"return",
"HParamsPlugin",
"(",
"context",
")"
]
| Returns the plugin, if possible.
Args:
context: The TBContext flags.
Returns:
A HParamsPlugin instance or None if it couldn't be loaded. | [
"Returns",
"the",
"plugin",
"if",
"possible",
"."
]
| python | train |
JasonKessler/scattertext | scattertext/TermDocMatrixWithoutCategories.py | https://github.com/JasonKessler/scattertext/blob/cacf1f687d218ee8cae3fc05cc901db824bb1b81/scattertext/TermDocMatrixWithoutCategories.py#L423-L431 | def term_doc_lists(self):
'''
Returns
-------
dict
'''
doc_ids = self._X.transpose().tolil().rows
terms = self._term_idx_store.values()
return dict(zip(terms, doc_ids)) | [
"def",
"term_doc_lists",
"(",
"self",
")",
":",
"doc_ids",
"=",
"self",
".",
"_X",
".",
"transpose",
"(",
")",
".",
"tolil",
"(",
")",
".",
"rows",
"terms",
"=",
"self",
".",
"_term_idx_store",
".",
"values",
"(",
")",
"return",
"dict",
"(",
"zip",
"(",
"terms",
",",
"doc_ids",
")",
")"
]
| Returns
-------
dict | [
"Returns",
"-------",
"dict"
]
| python | train |
klen/zeta-library | zetalibrary/scss/__init__.py | https://github.com/klen/zeta-library/blob/b76f89000f467e10ddcc94aded3f6c6bf4a0e5bd/zetalibrary/scss/__init__.py#L1352-L1371 | def _do_each(self, rule, p_selectors, p_parents, p_children, scope, media, c_lineno, c_property, c_codestr, code, name):
"""
Implements @each
"""
var, _, name = name.partition('in')
name = self.calculate(name, rule[CONTEXT], rule[OPTIONS], rule)
if name:
name = ListValue(name)
var = var.strip()
var = self.do_glob_math(
var, rule[CONTEXT], rule[OPTIONS], rule, True)
for n, v in name.items():
v = to_str(v)
rule[CODESTR] = c_codestr
rule[CONTEXT][var] = v
if not isinstance(n, int):
rule[CONTEXT][n] = v
self.manage_children(
rule, p_selectors, p_parents, p_children, scope, media) | [
"def",
"_do_each",
"(",
"self",
",",
"rule",
",",
"p_selectors",
",",
"p_parents",
",",
"p_children",
",",
"scope",
",",
"media",
",",
"c_lineno",
",",
"c_property",
",",
"c_codestr",
",",
"code",
",",
"name",
")",
":",
"var",
",",
"_",
",",
"name",
"=",
"name",
".",
"partition",
"(",
"'in'",
")",
"name",
"=",
"self",
".",
"calculate",
"(",
"name",
",",
"rule",
"[",
"CONTEXT",
"]",
",",
"rule",
"[",
"OPTIONS",
"]",
",",
"rule",
")",
"if",
"name",
":",
"name",
"=",
"ListValue",
"(",
"name",
")",
"var",
"=",
"var",
".",
"strip",
"(",
")",
"var",
"=",
"self",
".",
"do_glob_math",
"(",
"var",
",",
"rule",
"[",
"CONTEXT",
"]",
",",
"rule",
"[",
"OPTIONS",
"]",
",",
"rule",
",",
"True",
")",
"for",
"n",
",",
"v",
"in",
"name",
".",
"items",
"(",
")",
":",
"v",
"=",
"to_str",
"(",
"v",
")",
"rule",
"[",
"CODESTR",
"]",
"=",
"c_codestr",
"rule",
"[",
"CONTEXT",
"]",
"[",
"var",
"]",
"=",
"v",
"if",
"not",
"isinstance",
"(",
"n",
",",
"int",
")",
":",
"rule",
"[",
"CONTEXT",
"]",
"[",
"n",
"]",
"=",
"v",
"self",
".",
"manage_children",
"(",
"rule",
",",
"p_selectors",
",",
"p_parents",
",",
"p_children",
",",
"scope",
",",
"media",
")"
]
| Implements @each | [
"Implements"
]
| python | train |
spyder-ide/spyder | spyder/app/mainwindow.py | https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/app/mainwindow.py#L2600-L2654 | def render_issue(self, description='', traceback=''):
"""Render issue before sending it to Github"""
# Get component versions
versions = get_versions()
# Get git revision for development version
revision = ''
if versions['revision']:
revision = versions['revision']
# Make a description header in case no description is supplied
if not description:
description = "### What steps reproduce the problem?"
# Make error section from traceback and add appropriate reminder header
if traceback:
error_section = ("### Traceback\n"
"```python-traceback\n"
"{}\n"
"```".format(traceback))
else:
error_section = ''
issue_template = """\
## Description
{description}
{error_section}
## Versions
* Spyder version: {spyder_version} {commit}
* Python version: {python_version}
* Qt version: {qt_version}
* {qt_api_name} version: {qt_api_version}
* Operating System: {os_name} {os_version}
### Dependencies
```
{dependencies}
```
""".format(description=description,
error_section=error_section,
spyder_version=versions['spyder'],
commit=revision,
python_version=versions['python'],
qt_version=versions['qt'],
qt_api_name=versions['qt_api'],
qt_api_version=versions['qt_api_ver'],
os_name=versions['system'],
os_version=versions['release'],
dependencies=dependencies.status())
return issue_template | [
"def",
"render_issue",
"(",
"self",
",",
"description",
"=",
"''",
",",
"traceback",
"=",
"''",
")",
":",
"# Get component versions\r",
"versions",
"=",
"get_versions",
"(",
")",
"# Get git revision for development version\r",
"revision",
"=",
"''",
"if",
"versions",
"[",
"'revision'",
"]",
":",
"revision",
"=",
"versions",
"[",
"'revision'",
"]",
"# Make a description header in case no description is supplied\r",
"if",
"not",
"description",
":",
"description",
"=",
"\"### What steps reproduce the problem?\"",
"# Make error section from traceback and add appropriate reminder header\r",
"if",
"traceback",
":",
"error_section",
"=",
"(",
"\"### Traceback\\n\"",
"\"```python-traceback\\n\"",
"\"{}\\n\"",
"\"```\"",
".",
"format",
"(",
"traceback",
")",
")",
"else",
":",
"error_section",
"=",
"''",
"issue_template",
"=",
"\"\"\"\\\r\n## Description\r\n\r\n{description}\r\n\r\n{error_section}\r\n\r\n## Versions\r\n\r\n* Spyder version: {spyder_version} {commit}\r\n* Python version: {python_version}\r\n* Qt version: {qt_version}\r\n* {qt_api_name} version: {qt_api_version}\r\n* Operating System: {os_name} {os_version}\r\n\r\n### Dependencies\r\n\r\n```\r\n{dependencies}\r\n```\r\n\"\"\"",
".",
"format",
"(",
"description",
"=",
"description",
",",
"error_section",
"=",
"error_section",
",",
"spyder_version",
"=",
"versions",
"[",
"'spyder'",
"]",
",",
"commit",
"=",
"revision",
",",
"python_version",
"=",
"versions",
"[",
"'python'",
"]",
",",
"qt_version",
"=",
"versions",
"[",
"'qt'",
"]",
",",
"qt_api_name",
"=",
"versions",
"[",
"'qt_api'",
"]",
",",
"qt_api_version",
"=",
"versions",
"[",
"'qt_api_ver'",
"]",
",",
"os_name",
"=",
"versions",
"[",
"'system'",
"]",
",",
"os_version",
"=",
"versions",
"[",
"'release'",
"]",
",",
"dependencies",
"=",
"dependencies",
".",
"status",
"(",
")",
")",
"return",
"issue_template"
]
| Render issue before sending it to Github | [
"Render",
"issue",
"before",
"sending",
"it",
"to",
"Github"
]
| python | train |
mrcagney/gtfstk | gtfstk/stops.py | https://github.com/mrcagney/gtfstk/blob/c91494e6fefc02523889655a0dc92d1c0eee8d03/gtfstk/stops.py#L905-L961 | def map_stops(
feed: "Feed", stop_ids: List[str], stop_style: Dict = STOP_STYLE
):
"""
Return a Folium map showing the given stops.
Parameters
----------
feed : Feed
stop_ids : list
IDs of trips in ``feed.stops``
stop_style: dictionary
Folium CircleMarker parameters to use for styling stops.
Returns
-------
dictionary
A Folium Map depicting the stops as CircleMarkers.
Notes
------
- Requires Folium
"""
import folium as fl
# Initialize map
my_map = fl.Map(tiles="cartodbpositron")
# Create a feature group for the stops and add it to the map
group = fl.FeatureGroup(name="Stops")
# Add stops to feature group
stops = feed.stops.loc[lambda x: x.stop_id.isin(stop_ids)].fillna("n/a")
for prop in stops.to_dict(orient="records"):
# Add stop
lon = prop["stop_lon"]
lat = prop["stop_lat"]
fl.CircleMarker(
location=[lat, lon],
popup=fl.Popup(hp.make_html(prop)),
**stop_style,
).add_to(group)
group.add_to(my_map)
# Add layer control
fl.LayerControl().add_to(my_map)
# Fit map to stop bounds
bounds = [
(stops.stop_lat.min(), stops.stop_lon.min()),
(stops.stop_lat.max(), stops.stop_lon.max()),
]
my_map.fit_bounds(bounds, padding=[1, 1])
return my_map | [
"def",
"map_stops",
"(",
"feed",
":",
"\"Feed\"",
",",
"stop_ids",
":",
"List",
"[",
"str",
"]",
",",
"stop_style",
":",
"Dict",
"=",
"STOP_STYLE",
")",
":",
"import",
"folium",
"as",
"fl",
"# Initialize map",
"my_map",
"=",
"fl",
".",
"Map",
"(",
"tiles",
"=",
"\"cartodbpositron\"",
")",
"# Create a feature group for the stops and add it to the map",
"group",
"=",
"fl",
".",
"FeatureGroup",
"(",
"name",
"=",
"\"Stops\"",
")",
"# Add stops to feature group",
"stops",
"=",
"feed",
".",
"stops",
".",
"loc",
"[",
"lambda",
"x",
":",
"x",
".",
"stop_id",
".",
"isin",
"(",
"stop_ids",
")",
"]",
".",
"fillna",
"(",
"\"n/a\"",
")",
"for",
"prop",
"in",
"stops",
".",
"to_dict",
"(",
"orient",
"=",
"\"records\"",
")",
":",
"# Add stop",
"lon",
"=",
"prop",
"[",
"\"stop_lon\"",
"]",
"lat",
"=",
"prop",
"[",
"\"stop_lat\"",
"]",
"fl",
".",
"CircleMarker",
"(",
"location",
"=",
"[",
"lat",
",",
"lon",
"]",
",",
"popup",
"=",
"fl",
".",
"Popup",
"(",
"hp",
".",
"make_html",
"(",
"prop",
")",
")",
",",
"*",
"*",
"stop_style",
",",
")",
".",
"add_to",
"(",
"group",
")",
"group",
".",
"add_to",
"(",
"my_map",
")",
"# Add layer control",
"fl",
".",
"LayerControl",
"(",
")",
".",
"add_to",
"(",
"my_map",
")",
"# Fit map to stop bounds",
"bounds",
"=",
"[",
"(",
"stops",
".",
"stop_lat",
".",
"min",
"(",
")",
",",
"stops",
".",
"stop_lon",
".",
"min",
"(",
")",
")",
",",
"(",
"stops",
".",
"stop_lat",
".",
"max",
"(",
")",
",",
"stops",
".",
"stop_lon",
".",
"max",
"(",
")",
")",
",",
"]",
"my_map",
".",
"fit_bounds",
"(",
"bounds",
",",
"padding",
"=",
"[",
"1",
",",
"1",
"]",
")",
"return",
"my_map"
]
| Return a Folium map showing the given stops.
Parameters
----------
feed : Feed
stop_ids : list
IDs of trips in ``feed.stops``
stop_style: dictionary
Folium CircleMarker parameters to use for styling stops.
Returns
-------
dictionary
A Folium Map depicting the stops as CircleMarkers.
Notes
------
- Requires Folium | [
"Return",
"a",
"Folium",
"map",
"showing",
"the",
"given",
"stops",
"."
]
| python | train |
krukas/Trionyx | trionyx/trionyx/apps.py | https://github.com/krukas/Trionyx/blob/edac132cc0797190153f2e60bc7e88cb50e80da6/trionyx/trionyx/apps.py#L47-L54 | def auto_load_app_modules(self, modules):
"""Auto load app modules"""
for app in apps.get_app_configs():
for module in modules:
try:
import_module('{}.{}'.format(app.module.__package__, module))
except ImportError:
pass | [
"def",
"auto_load_app_modules",
"(",
"self",
",",
"modules",
")",
":",
"for",
"app",
"in",
"apps",
".",
"get_app_configs",
"(",
")",
":",
"for",
"module",
"in",
"modules",
":",
"try",
":",
"import_module",
"(",
"'{}.{}'",
".",
"format",
"(",
"app",
".",
"module",
".",
"__package__",
",",
"module",
")",
")",
"except",
"ImportError",
":",
"pass"
]
| Auto load app modules | [
"Auto",
"load",
"app",
"modules"
]
| python | train |
AlecAivazis/graphql-over-kafka | nautilus/conventions/api.py | https://github.com/AlecAivazis/graphql-over-kafka/blob/70e2acef27a2f87355590be1a6ca60ce3ab4d09c/nautilus/conventions/api.py#L15-L25 | def crud_mutation_name(action, model):
"""
This function returns the name of a mutation that performs the specified
crud action on the given model service
"""
model_string = get_model_string(model)
# make sure the mutation name is correctly camelcases
model_string = model_string[0].upper() + model_string[1:]
# return the mutation name
return "{}{}".format(action, model_string) | [
"def",
"crud_mutation_name",
"(",
"action",
",",
"model",
")",
":",
"model_string",
"=",
"get_model_string",
"(",
"model",
")",
"# make sure the mutation name is correctly camelcases",
"model_string",
"=",
"model_string",
"[",
"0",
"]",
".",
"upper",
"(",
")",
"+",
"model_string",
"[",
"1",
":",
"]",
"# return the mutation name",
"return",
"\"{}{}\"",
".",
"format",
"(",
"action",
",",
"model_string",
")"
]
| This function returns the name of a mutation that performs the specified
crud action on the given model service | [
"This",
"function",
"returns",
"the",
"name",
"of",
"a",
"mutation",
"that",
"performs",
"the",
"specified",
"crud",
"action",
"on",
"the",
"given",
"model",
"service"
]
| python | train |
CartoDB/carto-python | carto/auth.py | https://github.com/CartoDB/carto-python/blob/f6ac3d17ed08e5bc3f99edd2bde4fb7dba3eee16/carto/auth.py#L128-L154 | def send(self, relative_path, http_method, **requests_args):
"""
Makes an API-key-authorized request
:param relative_path: URL path relative to self.base_url
:param http_method: HTTP method
:param requests_args: kwargs to be sent to requests
:type relative_path: str
:type http_method: str
:type requests_args: kwargs
:return:
A request response object
:raise:
CartoException
"""
try:
http_method, requests_args = self.prepare_send(http_method, **requests_args)
response = super(APIKeyAuthClient, self).send(relative_path, http_method, **requests_args)
except Exception as e:
raise CartoException(e)
if CartoRateLimitException.is_rate_limited(response):
raise CartoRateLimitException(response)
return response | [
"def",
"send",
"(",
"self",
",",
"relative_path",
",",
"http_method",
",",
"*",
"*",
"requests_args",
")",
":",
"try",
":",
"http_method",
",",
"requests_args",
"=",
"self",
".",
"prepare_send",
"(",
"http_method",
",",
"*",
"*",
"requests_args",
")",
"response",
"=",
"super",
"(",
"APIKeyAuthClient",
",",
"self",
")",
".",
"send",
"(",
"relative_path",
",",
"http_method",
",",
"*",
"*",
"requests_args",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"CartoException",
"(",
"e",
")",
"if",
"CartoRateLimitException",
".",
"is_rate_limited",
"(",
"response",
")",
":",
"raise",
"CartoRateLimitException",
"(",
"response",
")",
"return",
"response"
]
| Makes an API-key-authorized request
:param relative_path: URL path relative to self.base_url
:param http_method: HTTP method
:param requests_args: kwargs to be sent to requests
:type relative_path: str
:type http_method: str
:type requests_args: kwargs
:return:
A request response object
:raise:
CartoException | [
"Makes",
"an",
"API",
"-",
"key",
"-",
"authorized",
"request"
]
| python | train |
wadda/gps3 | examples/human.py | https://github.com/wadda/gps3/blob/91adcd7073b891b135b2a46d039ce2125cf09a09/examples/human.py#L39-L57 | def add_args():
"""Adds commandline arguments and formatted Help"""
parser = argparse.ArgumentParser()
parser.add_argument('-host', action='store', dest='host', default='127.0.0.1', help='DEFAULT "127.0.0.1"')
parser.add_argument('-port', action='store', dest='port', default='2947', help='DEFAULT 2947', type=int)
parser.add_argument('-json', dest='gpsd_protocol', const='json', action='store_const', default='json', help='DEFAULT JSON objects */')
parser.add_argument('-device', dest='devicepath', action='store', help='alternate devicepath e.g.,"-device /dev/ttyUSB4"')
# Infrequently used options
parser.add_argument('-nmea', dest='gpsd_protocol', const='nmea', action='store_const', help='*/ output in NMEA */')
# parser.add_argument('-rare', dest='gpsd_protocol', const='rare', action='store_const', help='*/ output of packets in hex */')
# parser.add_argument('-raw', dest='gpsd_protocol', const='raw', action='store_const', help='*/ output of raw packets */')
# parser.add_argument('-scaled', dest='gpsd_protocol', const='scaled', action='store_const', help='*/ scale output to floats */')
# parser.add_argument('-timing', dest='gpsd_protocol', const='timing', action='store_const', help='*/ timing information */')
# parser.add_argument('-split24', dest='gpsd_protocol', const='split24', action='store_const', help='*/ split AIS Type 24s */')
# parser.add_argument('-pps', dest='gpsd_protocol', const='pps', action='store_const', help='*/ enable PPS JSON */')
parser.add_argument('-v', '--version', action='version', version='Version: {}'.format(__version__))
cli_args = parser.parse_args()
return cli_args | [
"def",
"add_args",
"(",
")",
":",
"parser",
"=",
"argparse",
".",
"ArgumentParser",
"(",
")",
"parser",
".",
"add_argument",
"(",
"'-host'",
",",
"action",
"=",
"'store'",
",",
"dest",
"=",
"'host'",
",",
"default",
"=",
"'127.0.0.1'",
",",
"help",
"=",
"'DEFAULT \"127.0.0.1\"'",
")",
"parser",
".",
"add_argument",
"(",
"'-port'",
",",
"action",
"=",
"'store'",
",",
"dest",
"=",
"'port'",
",",
"default",
"=",
"'2947'",
",",
"help",
"=",
"'DEFAULT 2947'",
",",
"type",
"=",
"int",
")",
"parser",
".",
"add_argument",
"(",
"'-json'",
",",
"dest",
"=",
"'gpsd_protocol'",
",",
"const",
"=",
"'json'",
",",
"action",
"=",
"'store_const'",
",",
"default",
"=",
"'json'",
",",
"help",
"=",
"'DEFAULT JSON objects */'",
")",
"parser",
".",
"add_argument",
"(",
"'-device'",
",",
"dest",
"=",
"'devicepath'",
",",
"action",
"=",
"'store'",
",",
"help",
"=",
"'alternate devicepath e.g.,\"-device /dev/ttyUSB4\"'",
")",
"# Infrequently used options",
"parser",
".",
"add_argument",
"(",
"'-nmea'",
",",
"dest",
"=",
"'gpsd_protocol'",
",",
"const",
"=",
"'nmea'",
",",
"action",
"=",
"'store_const'",
",",
"help",
"=",
"'*/ output in NMEA */'",
")",
"# parser.add_argument('-rare', dest='gpsd_protocol', const='rare', action='store_const', help='*/ output of packets in hex */')",
"# parser.add_argument('-raw', dest='gpsd_protocol', const='raw', action='store_const', help='*/ output of raw packets */')",
"# parser.add_argument('-scaled', dest='gpsd_protocol', const='scaled', action='store_const', help='*/ scale output to floats */')",
"# parser.add_argument('-timing', dest='gpsd_protocol', const='timing', action='store_const', help='*/ timing information */')",
"# parser.add_argument('-split24', dest='gpsd_protocol', const='split24', action='store_const', help='*/ split AIS Type 24s */')",
"# parser.add_argument('-pps', dest='gpsd_protocol', const='pps', action='store_const', help='*/ enable PPS JSON */')",
"parser",
".",
"add_argument",
"(",
"'-v'",
",",
"'--version'",
",",
"action",
"=",
"'version'",
",",
"version",
"=",
"'Version: {}'",
".",
"format",
"(",
"__version__",
")",
")",
"cli_args",
"=",
"parser",
".",
"parse_args",
"(",
")",
"return",
"cli_args"
]
| Adds commandline arguments and formatted Help | [
"Adds",
"commandline",
"arguments",
"and",
"formatted",
"Help"
]
| python | train |
greenbender/pynntp | nntp/nntp.py | https://github.com/greenbender/pynntp/blob/991a76331cdf5d8f9dbf5b18f6e29adc80749a2f/nntp/nntp.py#L692-L708 | def newnews(self, pattern, timestamp):
"""NEWNEWS command.
Retrieves a list of message-ids for articles created since the specified
timestamp for newsgroups with names that match the given pattern. See
newnews_gen() for more details.
See <http://tools.ietf.org/html/rfc3977#section-7.4>
Args:
pattern: Glob matching newsgroups of intrest.
timestamp: Datetime object giving 'created since' datetime.
Returns:
A list of message-ids as given by newnews_gen()
"""
return [x for x in self.newnews_gen(pattern, timestamp)] | [
"def",
"newnews",
"(",
"self",
",",
"pattern",
",",
"timestamp",
")",
":",
"return",
"[",
"x",
"for",
"x",
"in",
"self",
".",
"newnews_gen",
"(",
"pattern",
",",
"timestamp",
")",
"]"
]
| NEWNEWS command.
Retrieves a list of message-ids for articles created since the specified
timestamp for newsgroups with names that match the given pattern. See
newnews_gen() for more details.
See <http://tools.ietf.org/html/rfc3977#section-7.4>
Args:
pattern: Glob matching newsgroups of intrest.
timestamp: Datetime object giving 'created since' datetime.
Returns:
A list of message-ids as given by newnews_gen() | [
"NEWNEWS",
"command",
"."
]
| python | test |
HazyResearch/fonduer | src/fonduer/utils/utils_udf.py | https://github.com/HazyResearch/fonduer/blob/4520f86a716f03dcca458a9f4bddac75b4e7068f/src/fonduer/utils/utils_udf.py#L224-L280 | def drop_all_keys(session, key_table, candidate_classes):
"""Bulk drop annotation keys for all the candidate_classes in the table.
Rather than directly dropping the keys, this removes the candidate_classes
specified for the given keys only. If all candidate_classes are removed for
a key, the key is dropped.
:param key_table: The sqlalchemy class to insert into.
:param candidate_classes: A list of candidate classes to drop.
"""
if not candidate_classes:
return
candidate_classes = set([c.__tablename__ for c in candidate_classes])
# Select all rows that contain ANY of the candidate_classes
all_rows = (
session.query(key_table)
.filter(
key_table.candidate_classes.overlap(cast(candidate_classes, ARRAY(String)))
)
.all()
)
to_delete = set()
to_update = []
# All candidate classes will be the same for all keys, so just look at one
for row in all_rows:
# Remove the selected candidate_classes. If empty, mark for deletion.
row.candidate_classes = list(
set(row.candidate_classes) - set(candidate_classes)
)
if len(row.candidate_classes) == 0:
to_delete.add(row.name)
else:
to_update.append(
{"name": row.name, "candidate_classes": row.candidate_classes}
)
# Perform all deletes
if to_delete:
query = session.query(key_table).filter(key_table.name.in_(to_delete))
query.delete(synchronize_session="fetch")
# Perform all updates
if to_update:
for batch in _batch_postgres_query(key_table, to_update):
stmt = insert(key_table.__table__)
stmt = stmt.on_conflict_do_update(
constraint=key_table.__table__.primary_key,
set_={
"name": stmt.excluded.get("name"),
"candidate_classes": stmt.excluded.get("candidate_classes"),
},
)
session.execute(stmt, batch)
session.commit() | [
"def",
"drop_all_keys",
"(",
"session",
",",
"key_table",
",",
"candidate_classes",
")",
":",
"if",
"not",
"candidate_classes",
":",
"return",
"candidate_classes",
"=",
"set",
"(",
"[",
"c",
".",
"__tablename__",
"for",
"c",
"in",
"candidate_classes",
"]",
")",
"# Select all rows that contain ANY of the candidate_classes",
"all_rows",
"=",
"(",
"session",
".",
"query",
"(",
"key_table",
")",
".",
"filter",
"(",
"key_table",
".",
"candidate_classes",
".",
"overlap",
"(",
"cast",
"(",
"candidate_classes",
",",
"ARRAY",
"(",
"String",
")",
")",
")",
")",
".",
"all",
"(",
")",
")",
"to_delete",
"=",
"set",
"(",
")",
"to_update",
"=",
"[",
"]",
"# All candidate classes will be the same for all keys, so just look at one",
"for",
"row",
"in",
"all_rows",
":",
"# Remove the selected candidate_classes. If empty, mark for deletion.",
"row",
".",
"candidate_classes",
"=",
"list",
"(",
"set",
"(",
"row",
".",
"candidate_classes",
")",
"-",
"set",
"(",
"candidate_classes",
")",
")",
"if",
"len",
"(",
"row",
".",
"candidate_classes",
")",
"==",
"0",
":",
"to_delete",
".",
"add",
"(",
"row",
".",
"name",
")",
"else",
":",
"to_update",
".",
"append",
"(",
"{",
"\"name\"",
":",
"row",
".",
"name",
",",
"\"candidate_classes\"",
":",
"row",
".",
"candidate_classes",
"}",
")",
"# Perform all deletes",
"if",
"to_delete",
":",
"query",
"=",
"session",
".",
"query",
"(",
"key_table",
")",
".",
"filter",
"(",
"key_table",
".",
"name",
".",
"in_",
"(",
"to_delete",
")",
")",
"query",
".",
"delete",
"(",
"synchronize_session",
"=",
"\"fetch\"",
")",
"# Perform all updates",
"if",
"to_update",
":",
"for",
"batch",
"in",
"_batch_postgres_query",
"(",
"key_table",
",",
"to_update",
")",
":",
"stmt",
"=",
"insert",
"(",
"key_table",
".",
"__table__",
")",
"stmt",
"=",
"stmt",
".",
"on_conflict_do_update",
"(",
"constraint",
"=",
"key_table",
".",
"__table__",
".",
"primary_key",
",",
"set_",
"=",
"{",
"\"name\"",
":",
"stmt",
".",
"excluded",
".",
"get",
"(",
"\"name\"",
")",
",",
"\"candidate_classes\"",
":",
"stmt",
".",
"excluded",
".",
"get",
"(",
"\"candidate_classes\"",
")",
",",
"}",
",",
")",
"session",
".",
"execute",
"(",
"stmt",
",",
"batch",
")",
"session",
".",
"commit",
"(",
")"
]
| Bulk drop annotation keys for all the candidate_classes in the table.
Rather than directly dropping the keys, this removes the candidate_classes
specified for the given keys only. If all candidate_classes are removed for
a key, the key is dropped.
:param key_table: The sqlalchemy class to insert into.
:param candidate_classes: A list of candidate classes to drop. | [
"Bulk",
"drop",
"annotation",
"keys",
"for",
"all",
"the",
"candidate_classes",
"in",
"the",
"table",
"."
]
| python | train |
pyroscope/pyrocore | src/pyrocore/scripts/base.py | https://github.com/pyroscope/pyrocore/blob/89ad01346a570943d20311a0b488440975876612/src/pyrocore/scripts/base.py#L353-L371 | def get_options(self):
""" Get program options.
"""
super(ScriptBaseWithConfig, self).get_options()
self.config_dir = os.path.abspath(os.path.expanduser(self.options.config_dir
or os.environ.get('PYRO_CONFIG_DIR', None)
or self.CONFIG_DIR_DEFAULT))
load_config.ConfigLoader(self.config_dir).load(self.OPTIONAL_CFG_FILES + self.options.config_file)
if self.options.debug:
config.debug = True
for key_val in self.options.defines:
try:
key, val = key_val.split('=', 1)
except ValueError, exc:
raise error.UserError("Bad config override %r (%s)" % (key_val, exc))
else:
setattr(config, key, load_config.validate(key, val)) | [
"def",
"get_options",
"(",
"self",
")",
":",
"super",
"(",
"ScriptBaseWithConfig",
",",
"self",
")",
".",
"get_options",
"(",
")",
"self",
".",
"config_dir",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"path",
".",
"expanduser",
"(",
"self",
".",
"options",
".",
"config_dir",
"or",
"os",
".",
"environ",
".",
"get",
"(",
"'PYRO_CONFIG_DIR'",
",",
"None",
")",
"or",
"self",
".",
"CONFIG_DIR_DEFAULT",
")",
")",
"load_config",
".",
"ConfigLoader",
"(",
"self",
".",
"config_dir",
")",
".",
"load",
"(",
"self",
".",
"OPTIONAL_CFG_FILES",
"+",
"self",
".",
"options",
".",
"config_file",
")",
"if",
"self",
".",
"options",
".",
"debug",
":",
"config",
".",
"debug",
"=",
"True",
"for",
"key_val",
"in",
"self",
".",
"options",
".",
"defines",
":",
"try",
":",
"key",
",",
"val",
"=",
"key_val",
".",
"split",
"(",
"'='",
",",
"1",
")",
"except",
"ValueError",
",",
"exc",
":",
"raise",
"error",
".",
"UserError",
"(",
"\"Bad config override %r (%s)\"",
"%",
"(",
"key_val",
",",
"exc",
")",
")",
"else",
":",
"setattr",
"(",
"config",
",",
"key",
",",
"load_config",
".",
"validate",
"(",
"key",
",",
"val",
")",
")"
]
| Get program options. | [
"Get",
"program",
"options",
"."
]
| python | train |
OSSOS/MOP | src/jjk/preproc/MOPplot.py | https://github.com/OSSOS/MOP/blob/94f91d32ad5ec081d5a1ebd67604a838003465af/src/jjk/preproc/MOPplot.py#L43-L133 | def load_abgfiles(dir=None):
"""Load the targets from a file"""
import ephem,string
if dir is None:
import tkFileDialog
try:
dir=tkFileDialog.askdirectory()
except:
return
if dir is None:
return None
from glob import glob
files=glob(dir+"/*.abg")
import os
for f in files:
(name,ext)=os.path.splitext(os.path.basename(f))
NAME=name.strip().upper()
kbos[name]=f
#print name
aei=file(dir+"/"+name+".aei")
lines=aei.readlines()
aei.close()
objInfoDict[name]="%6s %6s %6s\n" % ( string.center("a",6),
string.center("e",6),
string.center("i",6) )
try:
(a,e,i,N,w,T) = lines[4].split()
except:
print lines[4]
(a,e,i,N,w,T) = (0,0,0,0,0,0)
objInfoDict[name]+="%6.2f %6.3f %6.2f\n" % (float(a),float(e),float(i))
s=lines[5][0:2]
(a,e,i,N,w,T) = lines[5][2:-1].split()
objInfoDict[name]+=" %6.3f %6.3f %6.3f\n" % (float(a),float(e),float(i))
abg = file(dir+"/"+name+".abg")
lines = abg.readlines()
abg.close()
for line in lines:
if not line[0:5] == "# Bar":
continue
objInfoDict[name]+=line[2:-1]+"\n"
break
res=file(dir+"/"+name+".res")
lines=res.readlines()
res.close()
line=lines.pop()
values=line.split()
s = "[nobs: "+values[0]+" dt: "+values[1]+"]\n"
objInfoDict[name]+=s
mpc = file(dir+"/../mpc/"+name+".mpc")
lines=mpc.readlines()
mpc.close()
last_date=0
for line in lines:
if len(line)==0:
continue
if line[0]=="#":
continue
this_year=int(line[15:19])
this_month=int(line[20:22])
this_day = int(line[23:25])
this_date = this_year+this_month/12.0 +this_day/365.25
if last_date < this_date:
last_date=this_date
year=this_year
day = this_day
month=this_month
mag={}
for line in lines:
try:
mags=line[65:69].strip()
if len(mags)==0:
continue
filter=line[70]
if filter not in mag:
mag[filter]=[]
mag[filter].append(float(mags))
except:
continue
mags=''
for filter in mag:
magv=0
for m in mag[filter]:
magv = magv+m/len(mag[filter])
mags = mags+ "%4.1f-%s " % ( magv , filter)
if len(mags)==0:
mags= "N/A"
objInfoDict[name]+="MAG: "+mags+"\n"
objInfoDict[name]+="Last obs: %s %s %s \n" % (year,month, day)
doplot(kbos) | [
"def",
"load_abgfiles",
"(",
"dir",
"=",
"None",
")",
":",
"import",
"ephem",
",",
"string",
"if",
"dir",
"is",
"None",
":",
"import",
"tkFileDialog",
"try",
":",
"dir",
"=",
"tkFileDialog",
".",
"askdirectory",
"(",
")",
"except",
":",
"return",
"if",
"dir",
"is",
"None",
":",
"return",
"None",
"from",
"glob",
"import",
"glob",
"files",
"=",
"glob",
"(",
"dir",
"+",
"\"/*.abg\"",
")",
"import",
"os",
"for",
"f",
"in",
"files",
":",
"(",
"name",
",",
"ext",
")",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"os",
".",
"path",
".",
"basename",
"(",
"f",
")",
")",
"NAME",
"=",
"name",
".",
"strip",
"(",
")",
".",
"upper",
"(",
")",
"kbos",
"[",
"name",
"]",
"=",
"f",
"#print name",
"aei",
"=",
"file",
"(",
"dir",
"+",
"\"/\"",
"+",
"name",
"+",
"\".aei\"",
")",
"lines",
"=",
"aei",
".",
"readlines",
"(",
")",
"aei",
".",
"close",
"(",
")",
"objInfoDict",
"[",
"name",
"]",
"=",
"\"%6s %6s %6s\\n\"",
"%",
"(",
"string",
".",
"center",
"(",
"\"a\"",
",",
"6",
")",
",",
"string",
".",
"center",
"(",
"\"e\"",
",",
"6",
")",
",",
"string",
".",
"center",
"(",
"\"i\"",
",",
"6",
")",
")",
"try",
":",
"(",
"a",
",",
"e",
",",
"i",
",",
"N",
",",
"w",
",",
"T",
")",
"=",
"lines",
"[",
"4",
"]",
".",
"split",
"(",
")",
"except",
":",
"print",
"lines",
"[",
"4",
"]",
"(",
"a",
",",
"e",
",",
"i",
",",
"N",
",",
"w",
",",
"T",
")",
"=",
"(",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
",",
"0",
")",
"objInfoDict",
"[",
"name",
"]",
"+=",
"\"%6.2f %6.3f %6.2f\\n\"",
"%",
"(",
"float",
"(",
"a",
")",
",",
"float",
"(",
"e",
")",
",",
"float",
"(",
"i",
")",
")",
"s",
"=",
"lines",
"[",
"5",
"]",
"[",
"0",
":",
"2",
"]",
"(",
"a",
",",
"e",
",",
"i",
",",
"N",
",",
"w",
",",
"T",
")",
"=",
"lines",
"[",
"5",
"]",
"[",
"2",
":",
"-",
"1",
"]",
".",
"split",
"(",
")",
"objInfoDict",
"[",
"name",
"]",
"+=",
"\" %6.3f %6.3f %6.3f\\n\"",
"%",
"(",
"float",
"(",
"a",
")",
",",
"float",
"(",
"e",
")",
",",
"float",
"(",
"i",
")",
")",
"abg",
"=",
"file",
"(",
"dir",
"+",
"\"/\"",
"+",
"name",
"+",
"\".abg\"",
")",
"lines",
"=",
"abg",
".",
"readlines",
"(",
")",
"abg",
".",
"close",
"(",
")",
"for",
"line",
"in",
"lines",
":",
"if",
"not",
"line",
"[",
"0",
":",
"5",
"]",
"==",
"\"# Bar\"",
":",
"continue",
"objInfoDict",
"[",
"name",
"]",
"+=",
"line",
"[",
"2",
":",
"-",
"1",
"]",
"+",
"\"\\n\"",
"break",
"res",
"=",
"file",
"(",
"dir",
"+",
"\"/\"",
"+",
"name",
"+",
"\".res\"",
")",
"lines",
"=",
"res",
".",
"readlines",
"(",
")",
"res",
".",
"close",
"(",
")",
"line",
"=",
"lines",
".",
"pop",
"(",
")",
"values",
"=",
"line",
".",
"split",
"(",
")",
"s",
"=",
"\"[nobs: \"",
"+",
"values",
"[",
"0",
"]",
"+",
"\" dt: \"",
"+",
"values",
"[",
"1",
"]",
"+",
"\"]\\n\"",
"objInfoDict",
"[",
"name",
"]",
"+=",
"s",
"mpc",
"=",
"file",
"(",
"dir",
"+",
"\"/../mpc/\"",
"+",
"name",
"+",
"\".mpc\"",
")",
"lines",
"=",
"mpc",
".",
"readlines",
"(",
")",
"mpc",
".",
"close",
"(",
")",
"last_date",
"=",
"0",
"for",
"line",
"in",
"lines",
":",
"if",
"len",
"(",
"line",
")",
"==",
"0",
":",
"continue",
"if",
"line",
"[",
"0",
"]",
"==",
"\"#\"",
":",
"continue",
"this_year",
"=",
"int",
"(",
"line",
"[",
"15",
":",
"19",
"]",
")",
"this_month",
"=",
"int",
"(",
"line",
"[",
"20",
":",
"22",
"]",
")",
"this_day",
"=",
"int",
"(",
"line",
"[",
"23",
":",
"25",
"]",
")",
"this_date",
"=",
"this_year",
"+",
"this_month",
"/",
"12.0",
"+",
"this_day",
"/",
"365.25",
"if",
"last_date",
"<",
"this_date",
":",
"last_date",
"=",
"this_date",
"year",
"=",
"this_year",
"day",
"=",
"this_day",
"month",
"=",
"this_month",
"mag",
"=",
"{",
"}",
"for",
"line",
"in",
"lines",
":",
"try",
":",
"mags",
"=",
"line",
"[",
"65",
":",
"69",
"]",
".",
"strip",
"(",
")",
"if",
"len",
"(",
"mags",
")",
"==",
"0",
":",
"continue",
"filter",
"=",
"line",
"[",
"70",
"]",
"if",
"filter",
"not",
"in",
"mag",
":",
"mag",
"[",
"filter",
"]",
"=",
"[",
"]",
"mag",
"[",
"filter",
"]",
".",
"append",
"(",
"float",
"(",
"mags",
")",
")",
"except",
":",
"continue",
"mags",
"=",
"''",
"for",
"filter",
"in",
"mag",
":",
"magv",
"=",
"0",
"for",
"m",
"in",
"mag",
"[",
"filter",
"]",
":",
"magv",
"=",
"magv",
"+",
"m",
"/",
"len",
"(",
"mag",
"[",
"filter",
"]",
")",
"mags",
"=",
"mags",
"+",
"\"%4.1f-%s \"",
"%",
"(",
"magv",
",",
"filter",
")",
"if",
"len",
"(",
"mags",
")",
"==",
"0",
":",
"mags",
"=",
"\"N/A\"",
"objInfoDict",
"[",
"name",
"]",
"+=",
"\"MAG: \"",
"+",
"mags",
"+",
"\"\\n\"",
"objInfoDict",
"[",
"name",
"]",
"+=",
"\"Last obs: %s %s %s \\n\"",
"%",
"(",
"year",
",",
"month",
",",
"day",
")",
"doplot",
"(",
"kbos",
")"
]
| Load the targets from a file | [
"Load",
"the",
"targets",
"from",
"a",
"file"
]
| python | train |
devassistant/devassistant | devassistant/gui/run_window.py | https://github.com/devassistant/devassistant/blob/2dbfeaa666a64127263664d18969c55d19ecc83e/devassistant/gui/run_window.py#L192-L212 | def delete_event(self, widget, event, data=None):
"""
Event cancels the project creation
"""
if not self.close_win:
if self.thread.isAlive():
dlg = self.gui_helper.create_message_dialog("Do you want to cancel project creation?",
buttons=Gtk.ButtonsType.YES_NO)
response = dlg.run()
if response == Gtk.ResponseType.YES:
if self.thread.isAlive():
self.info_label.set_label('<span color="#FFA500">Cancelling...</span>')
self.dev_assistant_runner.stop()
self.project_canceled = True
else:
self.info_label.set_label('<span color="#008000">Done</span>')
self.allow_close_window()
dlg.destroy()
return True
else:
return False | [
"def",
"delete_event",
"(",
"self",
",",
"widget",
",",
"event",
",",
"data",
"=",
"None",
")",
":",
"if",
"not",
"self",
".",
"close_win",
":",
"if",
"self",
".",
"thread",
".",
"isAlive",
"(",
")",
":",
"dlg",
"=",
"self",
".",
"gui_helper",
".",
"create_message_dialog",
"(",
"\"Do you want to cancel project creation?\"",
",",
"buttons",
"=",
"Gtk",
".",
"ButtonsType",
".",
"YES_NO",
")",
"response",
"=",
"dlg",
".",
"run",
"(",
")",
"if",
"response",
"==",
"Gtk",
".",
"ResponseType",
".",
"YES",
":",
"if",
"self",
".",
"thread",
".",
"isAlive",
"(",
")",
":",
"self",
".",
"info_label",
".",
"set_label",
"(",
"'<span color=\"#FFA500\">Cancelling...</span>'",
")",
"self",
".",
"dev_assistant_runner",
".",
"stop",
"(",
")",
"self",
".",
"project_canceled",
"=",
"True",
"else",
":",
"self",
".",
"info_label",
".",
"set_label",
"(",
"'<span color=\"#008000\">Done</span>'",
")",
"self",
".",
"allow_close_window",
"(",
")",
"dlg",
".",
"destroy",
"(",
")",
"return",
"True",
"else",
":",
"return",
"False"
]
| Event cancels the project creation | [
"Event",
"cancels",
"the",
"project",
"creation"
]
| python | train |
mapnik/Cascadenik | cascadenik/compile.py | https://github.com/mapnik/Cascadenik/blob/82f66859340a31dfcb24af127274f262d4f3ad85/cascadenik/compile.py#L146-L169 | def output_path(self, path_name):
""" Modify a path so it fits expectations.
Avoid returning relative paths that start with '../' and possibly
return relative paths when output and cache directories match.
"""
# make sure it is a valid posix format
path = to_posix(path_name)
assert (path == path_name), "path_name passed to output_path must be in posix format"
if posixpath.isabs(path):
if self.output == self.cache:
# worth seeing if an absolute path can be avoided
path = posixpath.relpath(path, self.output)
else:
return posixpath.realpath(path)
if path.startswith('../'):
joined = posixpath.join(self.output, path)
return posixpath.realpath(joined)
return path | [
"def",
"output_path",
"(",
"self",
",",
"path_name",
")",
":",
"# make sure it is a valid posix format",
"path",
"=",
"to_posix",
"(",
"path_name",
")",
"assert",
"(",
"path",
"==",
"path_name",
")",
",",
"\"path_name passed to output_path must be in posix format\"",
"if",
"posixpath",
".",
"isabs",
"(",
"path",
")",
":",
"if",
"self",
".",
"output",
"==",
"self",
".",
"cache",
":",
"# worth seeing if an absolute path can be avoided",
"path",
"=",
"posixpath",
".",
"relpath",
"(",
"path",
",",
"self",
".",
"output",
")",
"else",
":",
"return",
"posixpath",
".",
"realpath",
"(",
"path",
")",
"if",
"path",
".",
"startswith",
"(",
"'../'",
")",
":",
"joined",
"=",
"posixpath",
".",
"join",
"(",
"self",
".",
"output",
",",
"path",
")",
"return",
"posixpath",
".",
"realpath",
"(",
"joined",
")",
"return",
"path"
]
| Modify a path so it fits expectations.
Avoid returning relative paths that start with '../' and possibly
return relative paths when output and cache directories match. | [
"Modify",
"a",
"path",
"so",
"it",
"fits",
"expectations",
".",
"Avoid",
"returning",
"relative",
"paths",
"that",
"start",
"with",
"..",
"/",
"and",
"possibly",
"return",
"relative",
"paths",
"when",
"output",
"and",
"cache",
"directories",
"match",
"."
]
| python | train |
dhermes/bezier | src/bezier/_helpers.py | https://github.com/dhermes/bezier/blob/4f941f82637a8e70a5b159a9203132192e23406b/src/bezier/_helpers.py#L294-L384 | def _simple_convex_hull(points):
r"""Compute the convex hull for a set of points.
.. _wikibooks: https://en.wikibooks.org/wiki/Algorithm_Implementation/\
Geometry/Convex_hull/Monotone_chain
This uses Andrew's monotone chain convex hull algorithm and this code
used a `wikibooks`_ implementation as motivation. tion. The code there
is licensed CC BY-SA 3.0.
.. note::
There is also a Fortran implementation of this function, which
will be used if it can be built. Note that ``scipy.spatial.ConvexHull``
can do this as well (via Qhull), but that would require a hard
dependency on ``scipy`` and that helper computes much more than we need.
.. note::
This computes the convex hull in a "naive" way. It's expected that
internal callers of this function will have a small number of points
so ``n log n`` vs. ``n^2`` vs. ``n`` aren't that relevant.
Args:
points (numpy.ndarray): A ``2 x N`` array (``float64``) of points.
Returns:
numpy.ndarray: The ``2 x N`` array (``float64``) of ordered points in
the polygonal convex hull.
"""
# NOTE: There is no corresponding "enable", but the disable only applies
# in this lexical scope.
# pylint: disable=too-many-branches
if points.size == 0:
return points
# First, drop duplicates.
unique_points = np.unique(points, axis=1)
_, num_points = unique_points.shape
if num_points < 2:
return unique_points
# Then sort the data in left-to-right order (and break ties by y-value).
points = np.empty((2, num_points), order="F")
for index, xy_val in enumerate(
sorted(tuple(column) for column in unique_points.T)
):
points[:, index] = xy_val
# After sorting, if there are only 2 points, return.
if num_points < 3:
return points
# Build lower hull
lower = [0, 1]
for index in six.moves.xrange(2, num_points):
point2 = points[:, index]
while len(lower) >= 2:
point0 = points[:, lower[-2]]
point1 = points[:, lower[-1]]
if cross_product_compare(point0, point1, point2) > 0:
break
else:
lower.pop()
lower.append(index)
# Build upper hull
upper = [num_points - 1]
for index in six.moves.xrange(num_points - 2, -1, -1):
# Don't consider indices from the lower hull (other than the ends).
if index > 0 and in_sorted(lower, index):
continue
point2 = points[:, index]
while len(upper) >= 2:
point0 = points[:, upper[-2]]
point1 = points[:, upper[-1]]
if cross_product_compare(point0, point1, point2) > 0:
break
else:
upper.pop()
upper.append(index)
# **Both** corners are double counted.
size_polygon = len(lower) + len(upper) - 2
polygon = np.empty((2, size_polygon), order="F")
for index, column in enumerate(lower[:-1]):
polygon[:, index] = points[:, column]
index_start = len(lower) - 1
for index, column in enumerate(upper[:-1]):
polygon[:, index + index_start] = points[:, column]
return polygon | [
"def",
"_simple_convex_hull",
"(",
"points",
")",
":",
"# NOTE: There is no corresponding \"enable\", but the disable only applies",
"# in this lexical scope.",
"# pylint: disable=too-many-branches",
"if",
"points",
".",
"size",
"==",
"0",
":",
"return",
"points",
"# First, drop duplicates.",
"unique_points",
"=",
"np",
".",
"unique",
"(",
"points",
",",
"axis",
"=",
"1",
")",
"_",
",",
"num_points",
"=",
"unique_points",
".",
"shape",
"if",
"num_points",
"<",
"2",
":",
"return",
"unique_points",
"# Then sort the data in left-to-right order (and break ties by y-value).",
"points",
"=",
"np",
".",
"empty",
"(",
"(",
"2",
",",
"num_points",
")",
",",
"order",
"=",
"\"F\"",
")",
"for",
"index",
",",
"xy_val",
"in",
"enumerate",
"(",
"sorted",
"(",
"tuple",
"(",
"column",
")",
"for",
"column",
"in",
"unique_points",
".",
"T",
")",
")",
":",
"points",
"[",
":",
",",
"index",
"]",
"=",
"xy_val",
"# After sorting, if there are only 2 points, return.",
"if",
"num_points",
"<",
"3",
":",
"return",
"points",
"# Build lower hull",
"lower",
"=",
"[",
"0",
",",
"1",
"]",
"for",
"index",
"in",
"six",
".",
"moves",
".",
"xrange",
"(",
"2",
",",
"num_points",
")",
":",
"point2",
"=",
"points",
"[",
":",
",",
"index",
"]",
"while",
"len",
"(",
"lower",
")",
">=",
"2",
":",
"point0",
"=",
"points",
"[",
":",
",",
"lower",
"[",
"-",
"2",
"]",
"]",
"point1",
"=",
"points",
"[",
":",
",",
"lower",
"[",
"-",
"1",
"]",
"]",
"if",
"cross_product_compare",
"(",
"point0",
",",
"point1",
",",
"point2",
")",
">",
"0",
":",
"break",
"else",
":",
"lower",
".",
"pop",
"(",
")",
"lower",
".",
"append",
"(",
"index",
")",
"# Build upper hull",
"upper",
"=",
"[",
"num_points",
"-",
"1",
"]",
"for",
"index",
"in",
"six",
".",
"moves",
".",
"xrange",
"(",
"num_points",
"-",
"2",
",",
"-",
"1",
",",
"-",
"1",
")",
":",
"# Don't consider indices from the lower hull (other than the ends).",
"if",
"index",
">",
"0",
"and",
"in_sorted",
"(",
"lower",
",",
"index",
")",
":",
"continue",
"point2",
"=",
"points",
"[",
":",
",",
"index",
"]",
"while",
"len",
"(",
"upper",
")",
">=",
"2",
":",
"point0",
"=",
"points",
"[",
":",
",",
"upper",
"[",
"-",
"2",
"]",
"]",
"point1",
"=",
"points",
"[",
":",
",",
"upper",
"[",
"-",
"1",
"]",
"]",
"if",
"cross_product_compare",
"(",
"point0",
",",
"point1",
",",
"point2",
")",
">",
"0",
":",
"break",
"else",
":",
"upper",
".",
"pop",
"(",
")",
"upper",
".",
"append",
"(",
"index",
")",
"# **Both** corners are double counted.",
"size_polygon",
"=",
"len",
"(",
"lower",
")",
"+",
"len",
"(",
"upper",
")",
"-",
"2",
"polygon",
"=",
"np",
".",
"empty",
"(",
"(",
"2",
",",
"size_polygon",
")",
",",
"order",
"=",
"\"F\"",
")",
"for",
"index",
",",
"column",
"in",
"enumerate",
"(",
"lower",
"[",
":",
"-",
"1",
"]",
")",
":",
"polygon",
"[",
":",
",",
"index",
"]",
"=",
"points",
"[",
":",
",",
"column",
"]",
"index_start",
"=",
"len",
"(",
"lower",
")",
"-",
"1",
"for",
"index",
",",
"column",
"in",
"enumerate",
"(",
"upper",
"[",
":",
"-",
"1",
"]",
")",
":",
"polygon",
"[",
":",
",",
"index",
"+",
"index_start",
"]",
"=",
"points",
"[",
":",
",",
"column",
"]",
"return",
"polygon"
]
| r"""Compute the convex hull for a set of points.
.. _wikibooks: https://en.wikibooks.org/wiki/Algorithm_Implementation/\
Geometry/Convex_hull/Monotone_chain
This uses Andrew's monotone chain convex hull algorithm and this code
used a `wikibooks`_ implementation as motivation. tion. The code there
is licensed CC BY-SA 3.0.
.. note::
There is also a Fortran implementation of this function, which
will be used if it can be built. Note that ``scipy.spatial.ConvexHull``
can do this as well (via Qhull), but that would require a hard
dependency on ``scipy`` and that helper computes much more than we need.
.. note::
This computes the convex hull in a "naive" way. It's expected that
internal callers of this function will have a small number of points
so ``n log n`` vs. ``n^2`` vs. ``n`` aren't that relevant.
Args:
points (numpy.ndarray): A ``2 x N`` array (``float64``) of points.
Returns:
numpy.ndarray: The ``2 x N`` array (``float64``) of ordered points in
the polygonal convex hull. | [
"r",
"Compute",
"the",
"convex",
"hull",
"for",
"a",
"set",
"of",
"points",
"."
]
| python | train |
dcramer/django-ratings | djangoratings/fields.py | https://github.com/dcramer/django-ratings/blob/4d00dedc920a4e32d650dc12d5f480c51fc6216c/djangoratings/fields.py#L82-L88 | def get_real_rating(self):
"""get_rating()
Returns the unmodified average rating."""
if not (self.votes and self.score):
return 0
return float(self.score)/self.votes | [
"def",
"get_real_rating",
"(",
"self",
")",
":",
"if",
"not",
"(",
"self",
".",
"votes",
"and",
"self",
".",
"score",
")",
":",
"return",
"0",
"return",
"float",
"(",
"self",
".",
"score",
")",
"/",
"self",
".",
"votes"
]
| get_rating()
Returns the unmodified average rating. | [
"get_rating",
"()",
"Returns",
"the",
"unmodified",
"average",
"rating",
"."
]
| python | train |
SiLab-Bonn/pyBAR | pybar/fei4/register.py | https://github.com/SiLab-Bonn/pyBAR/blob/5ad95bbcd41cd358825823fb78f396cfce23593e/pybar/fei4/register.py#L467-L493 | def get_global_register_attributes(self, register_attribute, do_sort=True, **kwargs):
"""Calculating register numbers from register names.
Usage: get_global_register_attributes("attribute_name", name = [regname_1, regname_2, ...], addresses = 2)
Receives: attribute name to be returned, dictionaries (kwargs) of register attributes and values for making cuts
Returns: list of attribute values that matches dictionaries of attributes
"""
# speed up of the most often used keyword name
try:
names = iterable(kwargs.pop('name'))
except KeyError:
register_attribute_list = []
else:
register_attribute_list = [self.global_registers[reg][register_attribute] for reg in names]
for keyword in kwargs.keys():
allowed_values = iterable(kwargs[keyword])
try:
register_attribute_list.extend(map(itemgetter(register_attribute), filter(lambda global_register: set(iterable(global_register[keyword])).intersection(allowed_values), self.global_registers.itervalues())))
except AttributeError:
pass
if not register_attribute_list and filter(None, kwargs.itervalues()):
raise ValueError('Global register attribute %s empty' % register_attribute)
if do_sort:
return sorted(set(flatten_iterable(register_attribute_list)))
else:
return flatten_iterable(register_attribute_list) | [
"def",
"get_global_register_attributes",
"(",
"self",
",",
"register_attribute",
",",
"do_sort",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"# speed up of the most often used keyword name\r",
"try",
":",
"names",
"=",
"iterable",
"(",
"kwargs",
".",
"pop",
"(",
"'name'",
")",
")",
"except",
"KeyError",
":",
"register_attribute_list",
"=",
"[",
"]",
"else",
":",
"register_attribute_list",
"=",
"[",
"self",
".",
"global_registers",
"[",
"reg",
"]",
"[",
"register_attribute",
"]",
"for",
"reg",
"in",
"names",
"]",
"for",
"keyword",
"in",
"kwargs",
".",
"keys",
"(",
")",
":",
"allowed_values",
"=",
"iterable",
"(",
"kwargs",
"[",
"keyword",
"]",
")",
"try",
":",
"register_attribute_list",
".",
"extend",
"(",
"map",
"(",
"itemgetter",
"(",
"register_attribute",
")",
",",
"filter",
"(",
"lambda",
"global_register",
":",
"set",
"(",
"iterable",
"(",
"global_register",
"[",
"keyword",
"]",
")",
")",
".",
"intersection",
"(",
"allowed_values",
")",
",",
"self",
".",
"global_registers",
".",
"itervalues",
"(",
")",
")",
")",
")",
"except",
"AttributeError",
":",
"pass",
"if",
"not",
"register_attribute_list",
"and",
"filter",
"(",
"None",
",",
"kwargs",
".",
"itervalues",
"(",
")",
")",
":",
"raise",
"ValueError",
"(",
"'Global register attribute %s empty'",
"%",
"register_attribute",
")",
"if",
"do_sort",
":",
"return",
"sorted",
"(",
"set",
"(",
"flatten_iterable",
"(",
"register_attribute_list",
")",
")",
")",
"else",
":",
"return",
"flatten_iterable",
"(",
"register_attribute_list",
")"
]
| Calculating register numbers from register names.
Usage: get_global_register_attributes("attribute_name", name = [regname_1, regname_2, ...], addresses = 2)
Receives: attribute name to be returned, dictionaries (kwargs) of register attributes and values for making cuts
Returns: list of attribute values that matches dictionaries of attributes | [
"Calculating",
"register",
"numbers",
"from",
"register",
"names",
".",
"Usage",
":",
"get_global_register_attributes",
"(",
"attribute_name",
"name",
"=",
"[",
"regname_1",
"regname_2",
"...",
"]",
"addresses",
"=",
"2",
")",
"Receives",
":",
"attribute",
"name",
"to",
"be",
"returned",
"dictionaries",
"(",
"kwargs",
")",
"of",
"register",
"attributes",
"and",
"values",
"for",
"making",
"cuts",
"Returns",
":",
"list",
"of",
"attribute",
"values",
"that",
"matches",
"dictionaries",
"of",
"attributes"
]
| python | train |
IBM/ibm-cos-sdk-python-s3transfer | ibm_s3transfer/aspera/futures.py | https://github.com/IBM/ibm-cos-sdk-python-s3transfer/blob/24ba53137213e26e6b8fc2c3ec1e8198d507d22b/ibm_s3transfer/aspera/futures.py#L634-L640 | def _run_queued_callbacks(self):
''' run the init/quued calback when the trasnfer is initiated on apsera '''
for callback in self._queued_callbacks:
try:
callback()
except Exception as ex:
logger.error("Exception: %s" % str(ex)) | [
"def",
"_run_queued_callbacks",
"(",
"self",
")",
":",
"for",
"callback",
"in",
"self",
".",
"_queued_callbacks",
":",
"try",
":",
"callback",
"(",
")",
"except",
"Exception",
"as",
"ex",
":",
"logger",
".",
"error",
"(",
"\"Exception: %s\"",
"%",
"str",
"(",
"ex",
")",
")"
]
| run the init/quued calback when the trasnfer is initiated on apsera | [
"run",
"the",
"init",
"/",
"quued",
"calback",
"when",
"the",
"trasnfer",
"is",
"initiated",
"on",
"apsera"
]
| python | train |
CivicSpleen/ambry | ambry/etl/pipeline.py | https://github.com/CivicSpleen/ambry/blob/d7f2be4bf1f7ffd086f3fadd4fcae60c32473e42/ambry/etl/pipeline.py#L486-L496 | def report_progress(self):
"""
This function can be called from a higher level to report progress. It is usually called from an alarm
signal handler which is installed just before starting an operation:
:return: Tuple: (process description, #records, #total records, #rate)
"""
from time import time
# rows, rate = pl.sink.report_progress()
return (self.i, round(float(self.i) / float(time() - self._start_time), 2)) | [
"def",
"report_progress",
"(",
"self",
")",
":",
"from",
"time",
"import",
"time",
"# rows, rate = pl.sink.report_progress()",
"return",
"(",
"self",
".",
"i",
",",
"round",
"(",
"float",
"(",
"self",
".",
"i",
")",
"/",
"float",
"(",
"time",
"(",
")",
"-",
"self",
".",
"_start_time",
")",
",",
"2",
")",
")"
]
| This function can be called from a higher level to report progress. It is usually called from an alarm
signal handler which is installed just before starting an operation:
:return: Tuple: (process description, #records, #total records, #rate) | [
"This",
"function",
"can",
"be",
"called",
"from",
"a",
"higher",
"level",
"to",
"report",
"progress",
".",
"It",
"is",
"usually",
"called",
"from",
"an",
"alarm",
"signal",
"handler",
"which",
"is",
"installed",
"just",
"before",
"starting",
"an",
"operation",
":"
]
| python | train |
Esri/ArcREST | src/arcrest/ags/_gpobjects.py | https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/ags/_gpobjects.py#L513-L525 | def fromJSON(value):
"""loads the GP object from a JSON string """
j = json.loads(value)
v = GPBoolean()
if "defaultValue" in j:
v.value = j['defaultValue']
else:
v.value = j['value']
if 'paramName' in j:
v.paramName = j['paramName']
elif 'name' in j:
v.paramName = j['name']
return v | [
"def",
"fromJSON",
"(",
"value",
")",
":",
"j",
"=",
"json",
".",
"loads",
"(",
"value",
")",
"v",
"=",
"GPBoolean",
"(",
")",
"if",
"\"defaultValue\"",
"in",
"j",
":",
"v",
".",
"value",
"=",
"j",
"[",
"'defaultValue'",
"]",
"else",
":",
"v",
".",
"value",
"=",
"j",
"[",
"'value'",
"]",
"if",
"'paramName'",
"in",
"j",
":",
"v",
".",
"paramName",
"=",
"j",
"[",
"'paramName'",
"]",
"elif",
"'name'",
"in",
"j",
":",
"v",
".",
"paramName",
"=",
"j",
"[",
"'name'",
"]",
"return",
"v"
]
| loads the GP object from a JSON string | [
"loads",
"the",
"GP",
"object",
"from",
"a",
"JSON",
"string"
]
| python | train |
hobson/pug-dj | pug/dj/crawler/views.py | https://github.com/hobson/pug-dj/blob/55678b08755a55366ce18e7d3b8ea8fa4491ab04/pug/dj/crawler/views.py#L16-L24 | def stop(self, spider_name=None):
"""Stop the named running spider, or the first spider found, if spider_name is None"""
if spider_name is None:
spider_name = self.spider_name
else:
self.spider_name = spider_name
if self.spider_name is None:
self.spider_name = self.list_running()[0].split(':')[-1]
self.jsonrpc_call('crawler/engine', 'close_spider', self.spider_name) | [
"def",
"stop",
"(",
"self",
",",
"spider_name",
"=",
"None",
")",
":",
"if",
"spider_name",
"is",
"None",
":",
"spider_name",
"=",
"self",
".",
"spider_name",
"else",
":",
"self",
".",
"spider_name",
"=",
"spider_name",
"if",
"self",
".",
"spider_name",
"is",
"None",
":",
"self",
".",
"spider_name",
"=",
"self",
".",
"list_running",
"(",
")",
"[",
"0",
"]",
".",
"split",
"(",
"':'",
")",
"[",
"-",
"1",
"]",
"self",
".",
"jsonrpc_call",
"(",
"'crawler/engine'",
",",
"'close_spider'",
",",
"self",
".",
"spider_name",
")"
]
| Stop the named running spider, or the first spider found, if spider_name is None | [
"Stop",
"the",
"named",
"running",
"spider",
"or",
"the",
"first",
"spider",
"found",
"if",
"spider_name",
"is",
"None"
]
| python | train |
ahtn/python-easyhid | easyhid/easyhid.py | https://github.com/ahtn/python-easyhid/blob/b89a60e5b378495b34c51ef11c5260bb43885780/easyhid/easyhid.py#L329-L350 | def description(self):
"""
Get a string describing the HID descriptor.
"""
return \
"""HIDDevice:
{} | {:x}:{:x} | {} | {} | {}
release_number: {}
usage_page: {}
usage: {}
interface_number: {}\
""".format(self.path,
self.vendor_id,
self.product_id,
self.manufacturer_string,
self.product_string,
self.serial_number,
self.release_number,
self.usage_page,
self.usage,
self.interface_number
) | [
"def",
"description",
"(",
"self",
")",
":",
"return",
"\"\"\"HIDDevice:\n {} | {:x}:{:x} | {} | {} | {}\n release_number: {}\n usage_page: {}\n usage: {}\n interface_number: {}\\\n\"\"\"",
".",
"format",
"(",
"self",
".",
"path",
",",
"self",
".",
"vendor_id",
",",
"self",
".",
"product_id",
",",
"self",
".",
"manufacturer_string",
",",
"self",
".",
"product_string",
",",
"self",
".",
"serial_number",
",",
"self",
".",
"release_number",
",",
"self",
".",
"usage_page",
",",
"self",
".",
"usage",
",",
"self",
".",
"interface_number",
")"
]
| Get a string describing the HID descriptor. | [
"Get",
"a",
"string",
"describing",
"the",
"HID",
"descriptor",
"."
]
| python | train |
dixudx/rtcclient | rtcclient/template.py | https://github.com/dixudx/rtcclient/blob/1721dd0b047478f5bdd6359b07a2c503cfafd86f/rtcclient/template.py#L196-L344 | def getTemplate(self, copied_from, template_name=None,
template_folder=None, keep=False, encoding="UTF-8"):
"""Get template from some to-be-copied
:class:`rtcclient.workitem.Workitem`
The resulting XML document is returned as a :class:`string`, but if
`template_name` (a string value) is specified,
it is written there instead.
:param copied_from: the to-be-copied
:class:`rtcclient.workitem.Workitem` id (integer or
equivalent string)
:param template_name: the template file name
:param template_folder: the folder to store template file
:param keep: (default is False) If `True`, some of below parameters
(which may not be included in some customized
:class:`rtcclient.workitem.Workitem` type ) will remain
unchangeable with the to-be-copied
:class:`rtcclient.workitem.Workitem`.
Otherwise for `False`.
* teamArea (Team Area)
* ownedBy (Owned By)
* plannedFor(Planned For)
* severity(Severity)
* priority(Priority)
* filedAgainst(Filed Against)
:param encoding: (default is "UTF-8") coding format
:return:
* a :class:`string` object: if `template_name` is not specified
* write the template to file `template_name`: if `template_name` is
specified
"""
try:
if isinstance(copied_from, bool) or isinstance(copied_from, float):
raise ValueError()
if isinstance(copied_from, six.string_types):
copied_from = int(copied_from)
if not isinstance(copied_from, int):
raise ValueError()
except ValueError:
err_msg = "Please input a valid workitem id you want to copy from"
self.log.error(err_msg)
raise exception.BadValue(err_msg)
self.log.info("Fetch the template from <Workitem %s> with [keep]=%s",
copied_from, keep)
if template_folder is None:
template_folder = self.searchpath
# identify whether output to a file
if template_name is not None:
template_file_path = os.path.join(template_folder,
template_name)
output = open(template_file_path, "w")
else:
template_file_path = None
output = None
workitem_url = "/".join([self.url,
"oslc/workitems/%s" % copied_from])
resp = self.get(workitem_url,
verify=False,
proxies=self.rtc_obj.proxies,
headers=self.rtc_obj.headers)
raw_data = xmltodict.parse(resp.content)
# pre-adjust the template:
# remove some attribute to avoid being overwritten, which will only be
# generated when the workitem is created
wk_raw_data = raw_data.get("oslc_cm:ChangeRequest")
self._remove_long_fields(wk_raw_data)
# Be cautious when you want to modify these fields
# These fields have been tested as must-removed one
remove_fields = ["@rdf:about",
"dc:created",
"dc:creator",
"dc:identifier",
"rtc_cm:contextId",
"rtc_cm:comments",
"rtc_cm:state",
"dc:type",
"rtc_cm:subscribers",
"dc:modified",
"rtc_cm:modifiedBy",
"rtc_cm:resolved",
"rtc_cm:resolvedBy",
"rtc_cm:resolution",
"rtc_cm:startDate",
"rtc_cm:timeSpent",
"rtc_cm:progressTracking",
"rtc_cm:projectArea",
"oslc_cm:relatedChangeManagement",
"oslc_cm:trackedWorkItem",
"oslc_cm:tracksWorkItem",
"rtc_cm:timeSheet",
"oslc_pl:schedule"]
for remove_field in remove_fields:
try:
wk_raw_data.pop(remove_field)
self.log.debug("Successfully remove field [%s] from the "
"template originated from <Workitem %s>",
remove_field,
copied_from)
except:
self.log.warning("No field named [%s] in this template "
"from <Workitem %s>", remove_field,
copied_from)
continue
wk_raw_data["dc:description"] = "{{ description }}"
wk_raw_data["dc:title"] = "{{ title }}"
if keep:
if template_file_path:
self.log.info("Writing the template to file %s",
template_file_path)
return xmltodict.unparse(raw_data, output=output,
encoding=encoding,
pretty=True)
replace_fields = [("rtc_cm:teamArea", "{{ teamArea }}"),
("rtc_cm:ownedBy", "{{ ownedBy }}"),
("rtc_cm:plannedFor", "{{ plannedFor }}"),
("rtc_cm:foundIn", "{{ foundIn }}"),
("oslc_cm:severity", "{{ severity }}"),
("oslc_cm:priority", "{{ priority }}"),
("rtc_cm:filedAgainst", "{{ filedAgainst }}")]
for field in replace_fields:
try:
wk_raw_data[field[0]]["@rdf:resource"] = field[1]
self.log.debug("Successfully replace field [%s] with [%s]",
field[0], field[1])
except:
self.log.warning("Cannot replace field [%s]", field[0])
continue
if template_file_path:
self.log.info("Writing the template to file %s",
template_file_path)
return xmltodict.unparse(raw_data, output=output,
encoding=encoding,
pretty=True) | [
"def",
"getTemplate",
"(",
"self",
",",
"copied_from",
",",
"template_name",
"=",
"None",
",",
"template_folder",
"=",
"None",
",",
"keep",
"=",
"False",
",",
"encoding",
"=",
"\"UTF-8\"",
")",
":",
"try",
":",
"if",
"isinstance",
"(",
"copied_from",
",",
"bool",
")",
"or",
"isinstance",
"(",
"copied_from",
",",
"float",
")",
":",
"raise",
"ValueError",
"(",
")",
"if",
"isinstance",
"(",
"copied_from",
",",
"six",
".",
"string_types",
")",
":",
"copied_from",
"=",
"int",
"(",
"copied_from",
")",
"if",
"not",
"isinstance",
"(",
"copied_from",
",",
"int",
")",
":",
"raise",
"ValueError",
"(",
")",
"except",
"ValueError",
":",
"err_msg",
"=",
"\"Please input a valid workitem id you want to copy from\"",
"self",
".",
"log",
".",
"error",
"(",
"err_msg",
")",
"raise",
"exception",
".",
"BadValue",
"(",
"err_msg",
")",
"self",
".",
"log",
".",
"info",
"(",
"\"Fetch the template from <Workitem %s> with [keep]=%s\"",
",",
"copied_from",
",",
"keep",
")",
"if",
"template_folder",
"is",
"None",
":",
"template_folder",
"=",
"self",
".",
"searchpath",
"# identify whether output to a file",
"if",
"template_name",
"is",
"not",
"None",
":",
"template_file_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"template_folder",
",",
"template_name",
")",
"output",
"=",
"open",
"(",
"template_file_path",
",",
"\"w\"",
")",
"else",
":",
"template_file_path",
"=",
"None",
"output",
"=",
"None",
"workitem_url",
"=",
"\"/\"",
".",
"join",
"(",
"[",
"self",
".",
"url",
",",
"\"oslc/workitems/%s\"",
"%",
"copied_from",
"]",
")",
"resp",
"=",
"self",
".",
"get",
"(",
"workitem_url",
",",
"verify",
"=",
"False",
",",
"proxies",
"=",
"self",
".",
"rtc_obj",
".",
"proxies",
",",
"headers",
"=",
"self",
".",
"rtc_obj",
".",
"headers",
")",
"raw_data",
"=",
"xmltodict",
".",
"parse",
"(",
"resp",
".",
"content",
")",
"# pre-adjust the template:",
"# remove some attribute to avoid being overwritten, which will only be",
"# generated when the workitem is created",
"wk_raw_data",
"=",
"raw_data",
".",
"get",
"(",
"\"oslc_cm:ChangeRequest\"",
")",
"self",
".",
"_remove_long_fields",
"(",
"wk_raw_data",
")",
"# Be cautious when you want to modify these fields",
"# These fields have been tested as must-removed one",
"remove_fields",
"=",
"[",
"\"@rdf:about\"",
",",
"\"dc:created\"",
",",
"\"dc:creator\"",
",",
"\"dc:identifier\"",
",",
"\"rtc_cm:contextId\"",
",",
"\"rtc_cm:comments\"",
",",
"\"rtc_cm:state\"",
",",
"\"dc:type\"",
",",
"\"rtc_cm:subscribers\"",
",",
"\"dc:modified\"",
",",
"\"rtc_cm:modifiedBy\"",
",",
"\"rtc_cm:resolved\"",
",",
"\"rtc_cm:resolvedBy\"",
",",
"\"rtc_cm:resolution\"",
",",
"\"rtc_cm:startDate\"",
",",
"\"rtc_cm:timeSpent\"",
",",
"\"rtc_cm:progressTracking\"",
",",
"\"rtc_cm:projectArea\"",
",",
"\"oslc_cm:relatedChangeManagement\"",
",",
"\"oslc_cm:trackedWorkItem\"",
",",
"\"oslc_cm:tracksWorkItem\"",
",",
"\"rtc_cm:timeSheet\"",
",",
"\"oslc_pl:schedule\"",
"]",
"for",
"remove_field",
"in",
"remove_fields",
":",
"try",
":",
"wk_raw_data",
".",
"pop",
"(",
"remove_field",
")",
"self",
".",
"log",
".",
"debug",
"(",
"\"Successfully remove field [%s] from the \"",
"\"template originated from <Workitem %s>\"",
",",
"remove_field",
",",
"copied_from",
")",
"except",
":",
"self",
".",
"log",
".",
"warning",
"(",
"\"No field named [%s] in this template \"",
"\"from <Workitem %s>\"",
",",
"remove_field",
",",
"copied_from",
")",
"continue",
"wk_raw_data",
"[",
"\"dc:description\"",
"]",
"=",
"\"{{ description }}\"",
"wk_raw_data",
"[",
"\"dc:title\"",
"]",
"=",
"\"{{ title }}\"",
"if",
"keep",
":",
"if",
"template_file_path",
":",
"self",
".",
"log",
".",
"info",
"(",
"\"Writing the template to file %s\"",
",",
"template_file_path",
")",
"return",
"xmltodict",
".",
"unparse",
"(",
"raw_data",
",",
"output",
"=",
"output",
",",
"encoding",
"=",
"encoding",
",",
"pretty",
"=",
"True",
")",
"replace_fields",
"=",
"[",
"(",
"\"rtc_cm:teamArea\"",
",",
"\"{{ teamArea }}\"",
")",
",",
"(",
"\"rtc_cm:ownedBy\"",
",",
"\"{{ ownedBy }}\"",
")",
",",
"(",
"\"rtc_cm:plannedFor\"",
",",
"\"{{ plannedFor }}\"",
")",
",",
"(",
"\"rtc_cm:foundIn\"",
",",
"\"{{ foundIn }}\"",
")",
",",
"(",
"\"oslc_cm:severity\"",
",",
"\"{{ severity }}\"",
")",
",",
"(",
"\"oslc_cm:priority\"",
",",
"\"{{ priority }}\"",
")",
",",
"(",
"\"rtc_cm:filedAgainst\"",
",",
"\"{{ filedAgainst }}\"",
")",
"]",
"for",
"field",
"in",
"replace_fields",
":",
"try",
":",
"wk_raw_data",
"[",
"field",
"[",
"0",
"]",
"]",
"[",
"\"@rdf:resource\"",
"]",
"=",
"field",
"[",
"1",
"]",
"self",
".",
"log",
".",
"debug",
"(",
"\"Successfully replace field [%s] with [%s]\"",
",",
"field",
"[",
"0",
"]",
",",
"field",
"[",
"1",
"]",
")",
"except",
":",
"self",
".",
"log",
".",
"warning",
"(",
"\"Cannot replace field [%s]\"",
",",
"field",
"[",
"0",
"]",
")",
"continue",
"if",
"template_file_path",
":",
"self",
".",
"log",
".",
"info",
"(",
"\"Writing the template to file %s\"",
",",
"template_file_path",
")",
"return",
"xmltodict",
".",
"unparse",
"(",
"raw_data",
",",
"output",
"=",
"output",
",",
"encoding",
"=",
"encoding",
",",
"pretty",
"=",
"True",
")"
]
| Get template from some to-be-copied
:class:`rtcclient.workitem.Workitem`
The resulting XML document is returned as a :class:`string`, but if
`template_name` (a string value) is specified,
it is written there instead.
:param copied_from: the to-be-copied
:class:`rtcclient.workitem.Workitem` id (integer or
equivalent string)
:param template_name: the template file name
:param template_folder: the folder to store template file
:param keep: (default is False) If `True`, some of below parameters
(which may not be included in some customized
:class:`rtcclient.workitem.Workitem` type ) will remain
unchangeable with the to-be-copied
:class:`rtcclient.workitem.Workitem`.
Otherwise for `False`.
* teamArea (Team Area)
* ownedBy (Owned By)
* plannedFor(Planned For)
* severity(Severity)
* priority(Priority)
* filedAgainst(Filed Against)
:param encoding: (default is "UTF-8") coding format
:return:
* a :class:`string` object: if `template_name` is not specified
* write the template to file `template_name`: if `template_name` is
specified | [
"Get",
"template",
"from",
"some",
"to",
"-",
"be",
"-",
"copied",
":",
"class",
":",
"rtcclient",
".",
"workitem",
".",
"Workitem"
]
| python | train |
uw-it-aca/uw-restclients-grad | uw_grad/petition.py | https://github.com/uw-it-aca/uw-restclients-grad/blob/ca06ed2f24f3683314a5690f6078e97d37fc8e52/uw_grad/petition.py#L20-L39 | def _process_json(data):
"""
return a list of GradPetition objects.
"""
requests = []
for item in data:
petition = GradPetition()
petition.description = item.get('description')
petition.submit_date = parse_datetime(item.get('submitDate'))
petition.decision_date = parse_datetime(item.get('decisionDate'))
if item.get('deptRecommend') and len(item.get('deptRecommend')):
petition.dept_recommend = item.get('deptRecommend').lower()
if item.get('gradSchoolDecision') and\
len(item.get('gradSchoolDecision')):
petition.gradschool_decision =\
item.get('gradSchoolDecision').lower()
requests.append(petition)
return requests | [
"def",
"_process_json",
"(",
"data",
")",
":",
"requests",
"=",
"[",
"]",
"for",
"item",
"in",
"data",
":",
"petition",
"=",
"GradPetition",
"(",
")",
"petition",
".",
"description",
"=",
"item",
".",
"get",
"(",
"'description'",
")",
"petition",
".",
"submit_date",
"=",
"parse_datetime",
"(",
"item",
".",
"get",
"(",
"'submitDate'",
")",
")",
"petition",
".",
"decision_date",
"=",
"parse_datetime",
"(",
"item",
".",
"get",
"(",
"'decisionDate'",
")",
")",
"if",
"item",
".",
"get",
"(",
"'deptRecommend'",
")",
"and",
"len",
"(",
"item",
".",
"get",
"(",
"'deptRecommend'",
")",
")",
":",
"petition",
".",
"dept_recommend",
"=",
"item",
".",
"get",
"(",
"'deptRecommend'",
")",
".",
"lower",
"(",
")",
"if",
"item",
".",
"get",
"(",
"'gradSchoolDecision'",
")",
"and",
"len",
"(",
"item",
".",
"get",
"(",
"'gradSchoolDecision'",
")",
")",
":",
"petition",
".",
"gradschool_decision",
"=",
"item",
".",
"get",
"(",
"'gradSchoolDecision'",
")",
".",
"lower",
"(",
")",
"requests",
".",
"append",
"(",
"petition",
")",
"return",
"requests"
]
| return a list of GradPetition objects. | [
"return",
"a",
"list",
"of",
"GradPetition",
"objects",
"."
]
| python | train |
sk-/git-lint | gitlint/git.py | https://github.com/sk-/git-lint/blob/4f19ec88bfa1b6670ff37ccbfc53c6b67251b027/gitlint/git.py#L109-L140 | def modified_lines(filename, extra_data, commit=None):
"""Returns the lines that have been modifed for this file.
Args:
filename: the file to check.
extra_data: is the extra_data returned by modified_files. Additionally, a
value of None means that the file was not modified.
commit: the complete sha1 (40 chars) of the commit. Note that specifying
this value will only work (100%) when commit == last_commit (with
respect to the currently checked out revision), otherwise, we could miss
some lines.
Returns: a list of lines that were modified, or None in case all lines are
new.
"""
if extra_data is None:
return []
if extra_data not in ('M ', ' M', 'MM'):
return None
if commit is None:
commit = '0' * 40
commit = commit.encode('utf-8')
# Split as bytes, as the output may have some non unicode characters.
blame_lines = subprocess.check_output(
['git', 'blame', '--porcelain', filename]).split(
os.linesep.encode('utf-8'))
modified_line_numbers = utils.filter_lines(
blame_lines, commit + br' (?P<line>\d+) (\d+)', groups=('line', ))
return list(map(int, modified_line_numbers)) | [
"def",
"modified_lines",
"(",
"filename",
",",
"extra_data",
",",
"commit",
"=",
"None",
")",
":",
"if",
"extra_data",
"is",
"None",
":",
"return",
"[",
"]",
"if",
"extra_data",
"not",
"in",
"(",
"'M '",
",",
"' M'",
",",
"'MM'",
")",
":",
"return",
"None",
"if",
"commit",
"is",
"None",
":",
"commit",
"=",
"'0'",
"*",
"40",
"commit",
"=",
"commit",
".",
"encode",
"(",
"'utf-8'",
")",
"# Split as bytes, as the output may have some non unicode characters.",
"blame_lines",
"=",
"subprocess",
".",
"check_output",
"(",
"[",
"'git'",
",",
"'blame'",
",",
"'--porcelain'",
",",
"filename",
"]",
")",
".",
"split",
"(",
"os",
".",
"linesep",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"modified_line_numbers",
"=",
"utils",
".",
"filter_lines",
"(",
"blame_lines",
",",
"commit",
"+",
"br' (?P<line>\\d+) (\\d+)'",
",",
"groups",
"=",
"(",
"'line'",
",",
")",
")",
"return",
"list",
"(",
"map",
"(",
"int",
",",
"modified_line_numbers",
")",
")"
]
| Returns the lines that have been modifed for this file.
Args:
filename: the file to check.
extra_data: is the extra_data returned by modified_files. Additionally, a
value of None means that the file was not modified.
commit: the complete sha1 (40 chars) of the commit. Note that specifying
this value will only work (100%) when commit == last_commit (with
respect to the currently checked out revision), otherwise, we could miss
some lines.
Returns: a list of lines that were modified, or None in case all lines are
new. | [
"Returns",
"the",
"lines",
"that",
"have",
"been",
"modifed",
"for",
"this",
"file",
"."
]
| python | train |
thombashi/pathvalidate | pathvalidate/_file.py | https://github.com/thombashi/pathvalidate/blob/22d64038fb08c04aa9d0e8dd9fd1a955c1a9bfef/pathvalidate/_file.py#L477-L515 | def validate_filepath(file_path, platform=None, min_len=1, max_len=None):
"""Verifying whether the ``file_path`` is a valid file path or not.
Args:
file_path (str):
File path to validate.
platform (str, optional):
.. include:: platform.txt
min_len (int, optional):
Minimum length of the ``file_path``. The value must be greater or equal to one.
Defaults to ``1``.
max_len (int, optional):
Maximum length of the ``file_path`` length. If the value is |None|,
in the default, automatically determined by the ``platform``:
- ``Linux``: 4096
- ``macOS``: 1024
- ``Windows``: 260
Raises:
NullNameError:
If the ``file_path`` is empty.
InvalidCharError:
If the ``file_path`` includes invalid char(s):
|invalid_file_path_chars|.
The following characters are also invalid for Windows platform:
|invalid_win_file_path_chars|
InvalidLengthError:
If the ``file_path`` is longer than ``max_len`` characters.
Example:
:ref:`example-validate-file-path`
See Also:
`Naming Files, Paths, and Namespaces (Windows)
<https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx>`__
"""
FilePathSanitizer(platform=platform, min_len=min_len, max_len=max_len).validate(file_path) | [
"def",
"validate_filepath",
"(",
"file_path",
",",
"platform",
"=",
"None",
",",
"min_len",
"=",
"1",
",",
"max_len",
"=",
"None",
")",
":",
"FilePathSanitizer",
"(",
"platform",
"=",
"platform",
",",
"min_len",
"=",
"min_len",
",",
"max_len",
"=",
"max_len",
")",
".",
"validate",
"(",
"file_path",
")"
]
| Verifying whether the ``file_path`` is a valid file path or not.
Args:
file_path (str):
File path to validate.
platform (str, optional):
.. include:: platform.txt
min_len (int, optional):
Minimum length of the ``file_path``. The value must be greater or equal to one.
Defaults to ``1``.
max_len (int, optional):
Maximum length of the ``file_path`` length. If the value is |None|,
in the default, automatically determined by the ``platform``:
- ``Linux``: 4096
- ``macOS``: 1024
- ``Windows``: 260
Raises:
NullNameError:
If the ``file_path`` is empty.
InvalidCharError:
If the ``file_path`` includes invalid char(s):
|invalid_file_path_chars|.
The following characters are also invalid for Windows platform:
|invalid_win_file_path_chars|
InvalidLengthError:
If the ``file_path`` is longer than ``max_len`` characters.
Example:
:ref:`example-validate-file-path`
See Also:
`Naming Files, Paths, and Namespaces (Windows)
<https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx>`__ | [
"Verifying",
"whether",
"the",
"file_path",
"is",
"a",
"valid",
"file",
"path",
"or",
"not",
"."
]
| python | train |
mobolic/facebook-sdk | facebook/__init__.py | https://github.com/mobolic/facebook-sdk/blob/65ff582e77f7ed68b6e9643a7490e5dee2a1031b/facebook/__init__.py#L218-L222 | def delete_request(self, user_id, request_id):
"""Deletes the Request with the given ID for the given user."""
return self.request(
"{0}_{1}".format(request_id, user_id), method="DELETE"
) | [
"def",
"delete_request",
"(",
"self",
",",
"user_id",
",",
"request_id",
")",
":",
"return",
"self",
".",
"request",
"(",
"\"{0}_{1}\"",
".",
"format",
"(",
"request_id",
",",
"user_id",
")",
",",
"method",
"=",
"\"DELETE\"",
")"
]
| Deletes the Request with the given ID for the given user. | [
"Deletes",
"the",
"Request",
"with",
"the",
"given",
"ID",
"for",
"the",
"given",
"user",
"."
]
| python | train |
m0n5t3r/gstats | examples/generate_traffic.py | https://github.com/m0n5t3r/gstats/blob/ae600d309ae8a159079fe1d6e6fa1c9097125f5b/examples/generate_traffic.py#L16-L24 | def run(self):
"""
generate <nreq> requests taking a random amount of time between 0 and 0.5 seconds
"""
for i in xrange(self.nreq):
req = '%s_%s' % (self.ident, i)
pre_request(None, req)
sleep(random() / 2)
post_request(None, req) | [
"def",
"run",
"(",
"self",
")",
":",
"for",
"i",
"in",
"xrange",
"(",
"self",
".",
"nreq",
")",
":",
"req",
"=",
"'%s_%s'",
"%",
"(",
"self",
".",
"ident",
",",
"i",
")",
"pre_request",
"(",
"None",
",",
"req",
")",
"sleep",
"(",
"random",
"(",
")",
"/",
"2",
")",
"post_request",
"(",
"None",
",",
"req",
")"
]
| generate <nreq> requests taking a random amount of time between 0 and 0.5 seconds | [
"generate",
"<nreq",
">",
"requests",
"taking",
"a",
"random",
"amount",
"of",
"time",
"between",
"0",
"and",
"0",
".",
"5",
"seconds"
]
| python | train |
DLR-RM/RAFCON | source/rafcon/gui/controllers/state_editor/semantic_data_editor.py | https://github.com/DLR-RM/RAFCON/blob/24942ef1a904531f49ab8830a1dbb604441be498/source/rafcon/gui/controllers/state_editor/semantic_data_editor.py#L170-L174 | def add_action_callback(self, key_value, modifier_mask, a_dict=False):
"""Callback method for add action"""
if react_to_event(self.view, self.tree_view, event=(key_value, modifier_mask)) and self.active_entry_widget is None:
self.on_add(None, a_dict)
return True | [
"def",
"add_action_callback",
"(",
"self",
",",
"key_value",
",",
"modifier_mask",
",",
"a_dict",
"=",
"False",
")",
":",
"if",
"react_to_event",
"(",
"self",
".",
"view",
",",
"self",
".",
"tree_view",
",",
"event",
"=",
"(",
"key_value",
",",
"modifier_mask",
")",
")",
"and",
"self",
".",
"active_entry_widget",
"is",
"None",
":",
"self",
".",
"on_add",
"(",
"None",
",",
"a_dict",
")",
"return",
"True"
]
| Callback method for add action | [
"Callback",
"method",
"for",
"add",
"action"
]
| python | train |
Devoxin/Lavalink.py | lavalink/WebSocket.py | https://github.com/Devoxin/Lavalink.py/blob/63f55c3d726d24c4cfd3674d3cd6aab6f5be110d/lavalink/WebSocket.py#L36-L73 | async def connect(self):
""" Establishes a connection to the Lavalink server. """
await self._lavalink.bot.wait_until_ready()
if self._ws and self._ws.open:
log.debug('WebSocket still open, closing...')
await self._ws.close()
user_id = self._lavalink.bot.user.id
shard_count = self._lavalink.bot.shard_count or self._shards
headers = {
'Authorization': self._password,
'Num-Shards': shard_count,
'User-Id': str(user_id)
}
log.debug('Preparing to connect to Lavalink')
log.debug(' with URI: {}'.format(self._uri))
log.debug(' with headers: {}'.format(str(headers)))
log.info('Connecting to Lavalink...')
try:
self._ws = await websockets.connect(self._uri, loop=self._loop, extra_headers=headers)
except OSError as error:
log.exception('Failed to connect to Lavalink: {}'.format(str(error)))
else:
log.info('Connected to Lavalink!')
self._loop.create_task(self.listen())
version = self._ws.response_headers.get('Lavalink-Major-Version', 2)
try:
self._lavalink._server_version = int(version)
except ValueError:
self._lavalink._server_version = 2
log.info('Lavalink server version is {}'.format(version))
if self._queue:
log.info('Replaying {} queued events...'.format(len(self._queue)))
for task in self._queue:
await self.send(**task) | [
"async",
"def",
"connect",
"(",
"self",
")",
":",
"await",
"self",
".",
"_lavalink",
".",
"bot",
".",
"wait_until_ready",
"(",
")",
"if",
"self",
".",
"_ws",
"and",
"self",
".",
"_ws",
".",
"open",
":",
"log",
".",
"debug",
"(",
"'WebSocket still open, closing...'",
")",
"await",
"self",
".",
"_ws",
".",
"close",
"(",
")",
"user_id",
"=",
"self",
".",
"_lavalink",
".",
"bot",
".",
"user",
".",
"id",
"shard_count",
"=",
"self",
".",
"_lavalink",
".",
"bot",
".",
"shard_count",
"or",
"self",
".",
"_shards",
"headers",
"=",
"{",
"'Authorization'",
":",
"self",
".",
"_password",
",",
"'Num-Shards'",
":",
"shard_count",
",",
"'User-Id'",
":",
"str",
"(",
"user_id",
")",
"}",
"log",
".",
"debug",
"(",
"'Preparing to connect to Lavalink'",
")",
"log",
".",
"debug",
"(",
"' with URI: {}'",
".",
"format",
"(",
"self",
".",
"_uri",
")",
")",
"log",
".",
"debug",
"(",
"' with headers: {}'",
".",
"format",
"(",
"str",
"(",
"headers",
")",
")",
")",
"log",
".",
"info",
"(",
"'Connecting to Lavalink...'",
")",
"try",
":",
"self",
".",
"_ws",
"=",
"await",
"websockets",
".",
"connect",
"(",
"self",
".",
"_uri",
",",
"loop",
"=",
"self",
".",
"_loop",
",",
"extra_headers",
"=",
"headers",
")",
"except",
"OSError",
"as",
"error",
":",
"log",
".",
"exception",
"(",
"'Failed to connect to Lavalink: {}'",
".",
"format",
"(",
"str",
"(",
"error",
")",
")",
")",
"else",
":",
"log",
".",
"info",
"(",
"'Connected to Lavalink!'",
")",
"self",
".",
"_loop",
".",
"create_task",
"(",
"self",
".",
"listen",
"(",
")",
")",
"version",
"=",
"self",
".",
"_ws",
".",
"response_headers",
".",
"get",
"(",
"'Lavalink-Major-Version'",
",",
"2",
")",
"try",
":",
"self",
".",
"_lavalink",
".",
"_server_version",
"=",
"int",
"(",
"version",
")",
"except",
"ValueError",
":",
"self",
".",
"_lavalink",
".",
"_server_version",
"=",
"2",
"log",
".",
"info",
"(",
"'Lavalink server version is {}'",
".",
"format",
"(",
"version",
")",
")",
"if",
"self",
".",
"_queue",
":",
"log",
".",
"info",
"(",
"'Replaying {} queued events...'",
".",
"format",
"(",
"len",
"(",
"self",
".",
"_queue",
")",
")",
")",
"for",
"task",
"in",
"self",
".",
"_queue",
":",
"await",
"self",
".",
"send",
"(",
"*",
"*",
"task",
")"
]
| Establishes a connection to the Lavalink server. | [
"Establishes",
"a",
"connection",
"to",
"the",
"Lavalink",
"server",
"."
]
| python | valid |
tensorflow/mesh | mesh_tensorflow/ops.py | https://github.com/tensorflow/mesh/blob/3921196e5e43302e820da0a87329f25d7e2a3016/mesh_tensorflow/ops.py#L225-L245 | def tensor_dimension_to_mesh_axis(self, tensor_dimension, mesh_shape):
"""Mesh axis associated with tensor dimension (or None).
Args:
tensor_dimension: Dimension.
mesh_shape: Shape.
Returns:
Integer or None.
Raises:
ValueError: If one Tensor dimension maps to two mesh dimensions.
"""
val = [i for i, mesh_dimension in enumerate(mesh_shape)
if (tensor_dimension.name, mesh_dimension.name) in self._pairs]
if len(val) > 1:
raise ValueError(
"Tensor dimension maps to multiple mesh dimensions"
" tensor_dimension=%s mesh_shape=%s layout=%s"
% (tensor_dimension, mesh_shape, self._pairs))
return val[0] if val else None | [
"def",
"tensor_dimension_to_mesh_axis",
"(",
"self",
",",
"tensor_dimension",
",",
"mesh_shape",
")",
":",
"val",
"=",
"[",
"i",
"for",
"i",
",",
"mesh_dimension",
"in",
"enumerate",
"(",
"mesh_shape",
")",
"if",
"(",
"tensor_dimension",
".",
"name",
",",
"mesh_dimension",
".",
"name",
")",
"in",
"self",
".",
"_pairs",
"]",
"if",
"len",
"(",
"val",
")",
">",
"1",
":",
"raise",
"ValueError",
"(",
"\"Tensor dimension maps to multiple mesh dimensions\"",
"\" tensor_dimension=%s mesh_shape=%s layout=%s\"",
"%",
"(",
"tensor_dimension",
",",
"mesh_shape",
",",
"self",
".",
"_pairs",
")",
")",
"return",
"val",
"[",
"0",
"]",
"if",
"val",
"else",
"None"
]
| Mesh axis associated with tensor dimension (or None).
Args:
tensor_dimension: Dimension.
mesh_shape: Shape.
Returns:
Integer or None.
Raises:
ValueError: If one Tensor dimension maps to two mesh dimensions. | [
"Mesh",
"axis",
"associated",
"with",
"tensor",
"dimension",
"(",
"or",
"None",
")",
"."
]
| python | train |
datastax/python-driver | cassandra/cqlengine/models.py | https://github.com/datastax/python-driver/blob/30a80d0b798b1f45f8cb77163b1fa791f3e3ca29/cassandra/cqlengine/models.py#L448-L488 | def _construct_instance(cls, values):
"""
method used to construct instances from query results
this is where polymorphic deserialization occurs
"""
# we're going to take the values, which is from the DB as a dict
# and translate that into our local fields
# the db_map is a db_field -> model field map
if cls._db_map:
values = dict((cls._db_map.get(k, k), v) for k, v in values.items())
if cls._is_polymorphic:
disc_key = values.get(cls._discriminator_column_name)
if disc_key is None:
raise PolymorphicModelException('discriminator value was not found in values')
poly_base = cls if cls._is_polymorphic_base else cls._polymorphic_base
klass = poly_base._get_model_by_discriminator_value(disc_key)
if klass is None:
poly_base._discover_polymorphic_submodels()
klass = poly_base._get_model_by_discriminator_value(disc_key)
if klass is None:
raise PolymorphicModelException(
'unrecognized discriminator column {0} for class {1}'.format(disc_key, poly_base.__name__)
)
if not issubclass(klass, cls):
raise PolymorphicModelException(
'{0} is not a subclass of {1}'.format(klass.__name__, cls.__name__)
)
values = dict((k, v) for k, v in values.items() if k in klass._columns.keys())
else:
klass = cls
instance = klass(**values)
instance._set_persisted(force=True)
return instance | [
"def",
"_construct_instance",
"(",
"cls",
",",
"values",
")",
":",
"# we're going to take the values, which is from the DB as a dict",
"# and translate that into our local fields",
"# the db_map is a db_field -> model field map",
"if",
"cls",
".",
"_db_map",
":",
"values",
"=",
"dict",
"(",
"(",
"cls",
".",
"_db_map",
".",
"get",
"(",
"k",
",",
"k",
")",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"values",
".",
"items",
"(",
")",
")",
"if",
"cls",
".",
"_is_polymorphic",
":",
"disc_key",
"=",
"values",
".",
"get",
"(",
"cls",
".",
"_discriminator_column_name",
")",
"if",
"disc_key",
"is",
"None",
":",
"raise",
"PolymorphicModelException",
"(",
"'discriminator value was not found in values'",
")",
"poly_base",
"=",
"cls",
"if",
"cls",
".",
"_is_polymorphic_base",
"else",
"cls",
".",
"_polymorphic_base",
"klass",
"=",
"poly_base",
".",
"_get_model_by_discriminator_value",
"(",
"disc_key",
")",
"if",
"klass",
"is",
"None",
":",
"poly_base",
".",
"_discover_polymorphic_submodels",
"(",
")",
"klass",
"=",
"poly_base",
".",
"_get_model_by_discriminator_value",
"(",
"disc_key",
")",
"if",
"klass",
"is",
"None",
":",
"raise",
"PolymorphicModelException",
"(",
"'unrecognized discriminator column {0} for class {1}'",
".",
"format",
"(",
"disc_key",
",",
"poly_base",
".",
"__name__",
")",
")",
"if",
"not",
"issubclass",
"(",
"klass",
",",
"cls",
")",
":",
"raise",
"PolymorphicModelException",
"(",
"'{0} is not a subclass of {1}'",
".",
"format",
"(",
"klass",
".",
"__name__",
",",
"cls",
".",
"__name__",
")",
")",
"values",
"=",
"dict",
"(",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"values",
".",
"items",
"(",
")",
"if",
"k",
"in",
"klass",
".",
"_columns",
".",
"keys",
"(",
")",
")",
"else",
":",
"klass",
"=",
"cls",
"instance",
"=",
"klass",
"(",
"*",
"*",
"values",
")",
"instance",
".",
"_set_persisted",
"(",
"force",
"=",
"True",
")",
"return",
"instance"
]
| method used to construct instances from query results
this is where polymorphic deserialization occurs | [
"method",
"used",
"to",
"construct",
"instances",
"from",
"query",
"results",
"this",
"is",
"where",
"polymorphic",
"deserialization",
"occurs"
]
| python | train |
inspirehep/refextract | refextract/references/text.py | https://github.com/inspirehep/refextract/blob/d70e3787be3c495a3a07d1517b53f81d51c788c7/refextract/references/text.py#L91-L142 | def get_reference_lines(docbody,
ref_sect_start_line,
ref_sect_end_line,
ref_sect_title,
ref_line_marker_ptn,
title_marker_same_line):
"""After the reference section of a document has been identified, and the
first and last lines of the reference section have been recorded, this
function is called to take the reference lines out of the document body.
The document's reference lines are returned in a list of strings whereby
each string is a reference line. Before this can be done however, the
reference section is passed to another function that rebuilds any broken
reference lines.
@param docbody: (list) of strings - the entire document body.
@param ref_sect_start_line: (integer) - the index in docbody of the first
reference line.
@param ref_sect_end_line: (integer) - the index in docbody of the last
reference line.
@param ref_sect_title: (string) - the title of the reference section
(e.g. "References").
@param ref_line_marker_ptn: (string) - the patern used to match the
marker for each reference line (e.g., could be used to match lines
with markers of the form [1], [2], etc.)
@param title_marker_same_line: (integer) - a flag to indicate whether
or not the reference section title was on the same line as the first
reference line's marker.
@return: (list) of strings. Each string is a reference line, extracted
from the document.
"""
start_idx = ref_sect_start_line
if title_marker_same_line:
# Title on same line as 1st ref- take title out!
title_start = docbody[start_idx].find(ref_sect_title)
if title_start != -1:
# Set the first line with no title
docbody[start_idx] = docbody[start_idx][title_start +
len(ref_sect_title):]
elif ref_sect_title is not None:
# Set the start of the reference section to be after the title line
start_idx += 1
if ref_sect_end_line is not None:
ref_lines = docbody[start_idx:ref_sect_end_line + 1]
else:
ref_lines = docbody[start_idx:]
if ref_sect_title:
ref_lines = strip_footer(ref_lines, ref_sect_title)
# Now rebuild reference lines:
# (Go through each raw reference line, and format them into a set
# of properly ordered lines based on markers)
return rebuild_reference_lines(ref_lines, ref_line_marker_ptn) | [
"def",
"get_reference_lines",
"(",
"docbody",
",",
"ref_sect_start_line",
",",
"ref_sect_end_line",
",",
"ref_sect_title",
",",
"ref_line_marker_ptn",
",",
"title_marker_same_line",
")",
":",
"start_idx",
"=",
"ref_sect_start_line",
"if",
"title_marker_same_line",
":",
"# Title on same line as 1st ref- take title out!",
"title_start",
"=",
"docbody",
"[",
"start_idx",
"]",
".",
"find",
"(",
"ref_sect_title",
")",
"if",
"title_start",
"!=",
"-",
"1",
":",
"# Set the first line with no title",
"docbody",
"[",
"start_idx",
"]",
"=",
"docbody",
"[",
"start_idx",
"]",
"[",
"title_start",
"+",
"len",
"(",
"ref_sect_title",
")",
":",
"]",
"elif",
"ref_sect_title",
"is",
"not",
"None",
":",
"# Set the start of the reference section to be after the title line",
"start_idx",
"+=",
"1",
"if",
"ref_sect_end_line",
"is",
"not",
"None",
":",
"ref_lines",
"=",
"docbody",
"[",
"start_idx",
":",
"ref_sect_end_line",
"+",
"1",
"]",
"else",
":",
"ref_lines",
"=",
"docbody",
"[",
"start_idx",
":",
"]",
"if",
"ref_sect_title",
":",
"ref_lines",
"=",
"strip_footer",
"(",
"ref_lines",
",",
"ref_sect_title",
")",
"# Now rebuild reference lines:",
"# (Go through each raw reference line, and format them into a set",
"# of properly ordered lines based on markers)",
"return",
"rebuild_reference_lines",
"(",
"ref_lines",
",",
"ref_line_marker_ptn",
")"
]
| After the reference section of a document has been identified, and the
first and last lines of the reference section have been recorded, this
function is called to take the reference lines out of the document body.
The document's reference lines are returned in a list of strings whereby
each string is a reference line. Before this can be done however, the
reference section is passed to another function that rebuilds any broken
reference lines.
@param docbody: (list) of strings - the entire document body.
@param ref_sect_start_line: (integer) - the index in docbody of the first
reference line.
@param ref_sect_end_line: (integer) - the index in docbody of the last
reference line.
@param ref_sect_title: (string) - the title of the reference section
(e.g. "References").
@param ref_line_marker_ptn: (string) - the patern used to match the
marker for each reference line (e.g., could be used to match lines
with markers of the form [1], [2], etc.)
@param title_marker_same_line: (integer) - a flag to indicate whether
or not the reference section title was on the same line as the first
reference line's marker.
@return: (list) of strings. Each string is a reference line, extracted
from the document. | [
"After",
"the",
"reference",
"section",
"of",
"a",
"document",
"has",
"been",
"identified",
"and",
"the",
"first",
"and",
"last",
"lines",
"of",
"the",
"reference",
"section",
"have",
"been",
"recorded",
"this",
"function",
"is",
"called",
"to",
"take",
"the",
"reference",
"lines",
"out",
"of",
"the",
"document",
"body",
".",
"The",
"document",
"s",
"reference",
"lines",
"are",
"returned",
"in",
"a",
"list",
"of",
"strings",
"whereby",
"each",
"string",
"is",
"a",
"reference",
"line",
".",
"Before",
"this",
"can",
"be",
"done",
"however",
"the",
"reference",
"section",
"is",
"passed",
"to",
"another",
"function",
"that",
"rebuilds",
"any",
"broken",
"reference",
"lines",
"."
]
| python | train |
wummel/patool | patoolib/programs/star.py | https://github.com/wummel/patool/blob/d7e64d9fd60faaa4b3f824bd97c43ce59b185c40/patoolib/programs/star.py#L26-L31 | def list_tar (archive, compression, cmd, verbosity, interactive):
"""List a TAR archive."""
cmdlist = [cmd, '-n']
add_star_opts(cmdlist, compression, verbosity)
cmdlist.append("file=%s" % archive)
return cmdlist | [
"def",
"list_tar",
"(",
"archive",
",",
"compression",
",",
"cmd",
",",
"verbosity",
",",
"interactive",
")",
":",
"cmdlist",
"=",
"[",
"cmd",
",",
"'-n'",
"]",
"add_star_opts",
"(",
"cmdlist",
",",
"compression",
",",
"verbosity",
")",
"cmdlist",
".",
"append",
"(",
"\"file=%s\"",
"%",
"archive",
")",
"return",
"cmdlist"
]
| List a TAR archive. | [
"List",
"a",
"TAR",
"archive",
"."
]
| python | train |
craffel/mir_eval | mir_eval/chord.py | https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/chord.py#L759-L804 | def thirds_inv(reference_labels, estimated_labels):
"""Score chords along root, third, & bass relationships.
Examples
--------
>>> (ref_intervals,
... ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab')
>>> (est_intervals,
... est_labels) = mir_eval.io.load_labeled_intervals('est.lab')
>>> est_intervals, est_labels = mir_eval.util.adjust_intervals(
... est_intervals, est_labels, ref_intervals.min(),
... ref_intervals.max(), mir_eval.chord.NO_CHORD,
... mir_eval.chord.NO_CHORD)
>>> (intervals,
... ref_labels,
... est_labels) = mir_eval.util.merge_labeled_intervals(
... ref_intervals, ref_labels, est_intervals, est_labels)
>>> durations = mir_eval.util.intervals_to_durations(intervals)
>>> comparisons = mir_eval.chord.thirds_inv(ref_labels, est_labels)
>>> score = mir_eval.chord.weighted_accuracy(comparisons, durations)
Parameters
----------
reference_labels : list, len=n
Reference chord labels to score against.
estimated_labels : list, len=n
Estimated chord labels to score against.
Returns
-------
scores : np.ndarray, shape=(n,), dtype=float
Comparison scores, in [0.0, 1.0]
"""
validate(reference_labels, estimated_labels)
ref_roots, ref_semitones, ref_bass = encode_many(reference_labels, False)
est_roots, est_semitones, est_bass = encode_many(estimated_labels, False)
eq_root = ref_roots == est_roots
eq_bass = ref_bass == est_bass
eq_third = ref_semitones[:, 3] == est_semitones[:, 3]
comparison_scores = (eq_root * eq_third * eq_bass).astype(np.float)
# Ignore 'X' chords
comparison_scores[np.any(ref_semitones < 0, axis=1)] = -1.0
return comparison_scores | [
"def",
"thirds_inv",
"(",
"reference_labels",
",",
"estimated_labels",
")",
":",
"validate",
"(",
"reference_labels",
",",
"estimated_labels",
")",
"ref_roots",
",",
"ref_semitones",
",",
"ref_bass",
"=",
"encode_many",
"(",
"reference_labels",
",",
"False",
")",
"est_roots",
",",
"est_semitones",
",",
"est_bass",
"=",
"encode_many",
"(",
"estimated_labels",
",",
"False",
")",
"eq_root",
"=",
"ref_roots",
"==",
"est_roots",
"eq_bass",
"=",
"ref_bass",
"==",
"est_bass",
"eq_third",
"=",
"ref_semitones",
"[",
":",
",",
"3",
"]",
"==",
"est_semitones",
"[",
":",
",",
"3",
"]",
"comparison_scores",
"=",
"(",
"eq_root",
"*",
"eq_third",
"*",
"eq_bass",
")",
".",
"astype",
"(",
"np",
".",
"float",
")",
"# Ignore 'X' chords",
"comparison_scores",
"[",
"np",
".",
"any",
"(",
"ref_semitones",
"<",
"0",
",",
"axis",
"=",
"1",
")",
"]",
"=",
"-",
"1.0",
"return",
"comparison_scores"
]
| Score chords along root, third, & bass relationships.
Examples
--------
>>> (ref_intervals,
... ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab')
>>> (est_intervals,
... est_labels) = mir_eval.io.load_labeled_intervals('est.lab')
>>> est_intervals, est_labels = mir_eval.util.adjust_intervals(
... est_intervals, est_labels, ref_intervals.min(),
... ref_intervals.max(), mir_eval.chord.NO_CHORD,
... mir_eval.chord.NO_CHORD)
>>> (intervals,
... ref_labels,
... est_labels) = mir_eval.util.merge_labeled_intervals(
... ref_intervals, ref_labels, est_intervals, est_labels)
>>> durations = mir_eval.util.intervals_to_durations(intervals)
>>> comparisons = mir_eval.chord.thirds_inv(ref_labels, est_labels)
>>> score = mir_eval.chord.weighted_accuracy(comparisons, durations)
Parameters
----------
reference_labels : list, len=n
Reference chord labels to score against.
estimated_labels : list, len=n
Estimated chord labels to score against.
Returns
-------
scores : np.ndarray, shape=(n,), dtype=float
Comparison scores, in [0.0, 1.0] | [
"Score",
"chords",
"along",
"root",
"third",
"&",
"bass",
"relationships",
"."
]
| python | train |
geophysics-ubonn/reda | lib/reda/containers/sEIT.py | https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/containers/sEIT.py#L455-L493 | def plot_pseudosections(self, column, filename=None, return_fig=False):
"""Create a multi-plot with one pseudosection for each frequency.
Parameters
----------
column : string
which column to plot
filename : None|string
output filename. If set to None, do not write to file. Default:
None
return_fig : bool
if True, return the generated figure object. Default: False
Returns
-------
fig : None|matplotlib.Figure
if return_fig is set to True, return the generated Figure object
"""
assert column in self.data.columns
g = self.data.groupby('frequency')
fig, axes = plt.subplots(
4, 2,
figsize=(15 / 2.54, 20 / 2.54),
sharex=True, sharey=True
)
for ax, (key, item) in zip(axes.flat, g):
fig, ax, cb = PS.plot_pseudosection_type2(
item, ax=ax, column=column
)
ax.set_title('f: {} Hz'.format(key))
fig.tight_layout()
if filename is not None:
fig.savefig(filename, dpi=300)
if return_fig:
return fig
else:
plt.close(fig) | [
"def",
"plot_pseudosections",
"(",
"self",
",",
"column",
",",
"filename",
"=",
"None",
",",
"return_fig",
"=",
"False",
")",
":",
"assert",
"column",
"in",
"self",
".",
"data",
".",
"columns",
"g",
"=",
"self",
".",
"data",
".",
"groupby",
"(",
"'frequency'",
")",
"fig",
",",
"axes",
"=",
"plt",
".",
"subplots",
"(",
"4",
",",
"2",
",",
"figsize",
"=",
"(",
"15",
"/",
"2.54",
",",
"20",
"/",
"2.54",
")",
",",
"sharex",
"=",
"True",
",",
"sharey",
"=",
"True",
")",
"for",
"ax",
",",
"(",
"key",
",",
"item",
")",
"in",
"zip",
"(",
"axes",
".",
"flat",
",",
"g",
")",
":",
"fig",
",",
"ax",
",",
"cb",
"=",
"PS",
".",
"plot_pseudosection_type2",
"(",
"item",
",",
"ax",
"=",
"ax",
",",
"column",
"=",
"column",
")",
"ax",
".",
"set_title",
"(",
"'f: {} Hz'",
".",
"format",
"(",
"key",
")",
")",
"fig",
".",
"tight_layout",
"(",
")",
"if",
"filename",
"is",
"not",
"None",
":",
"fig",
".",
"savefig",
"(",
"filename",
",",
"dpi",
"=",
"300",
")",
"if",
"return_fig",
":",
"return",
"fig",
"else",
":",
"plt",
".",
"close",
"(",
"fig",
")"
]
| Create a multi-plot with one pseudosection for each frequency.
Parameters
----------
column : string
which column to plot
filename : None|string
output filename. If set to None, do not write to file. Default:
None
return_fig : bool
if True, return the generated figure object. Default: False
Returns
-------
fig : None|matplotlib.Figure
if return_fig is set to True, return the generated Figure object | [
"Create",
"a",
"multi",
"-",
"plot",
"with",
"one",
"pseudosection",
"for",
"each",
"frequency",
"."
]
| python | train |
stefankoegl/kdtree | kdtree.py | https://github.com/stefankoegl/kdtree/blob/587edc7056d7735177ad56a84ad5abccdea91693/kdtree.py#L644-L677 | def visualize(tree, max_level=100, node_width=10, left_padding=5):
""" Prints the tree to stdout """
height = min(max_level, tree.height()-1)
max_width = pow(2, height)
per_level = 1
in_level = 0
level = 0
for node in level_order(tree, include_all=True):
if in_level == 0:
print()
print()
print(' '*left_padding, end=' ')
width = int(max_width*node_width/per_level)
node_str = (str(node.data) if node else '').center(width)
print(node_str, end=' ')
in_level += 1
if in_level == per_level:
in_level = 0
per_level *= 2
level += 1
if level > height:
break
print()
print() | [
"def",
"visualize",
"(",
"tree",
",",
"max_level",
"=",
"100",
",",
"node_width",
"=",
"10",
",",
"left_padding",
"=",
"5",
")",
":",
"height",
"=",
"min",
"(",
"max_level",
",",
"tree",
".",
"height",
"(",
")",
"-",
"1",
")",
"max_width",
"=",
"pow",
"(",
"2",
",",
"height",
")",
"per_level",
"=",
"1",
"in_level",
"=",
"0",
"level",
"=",
"0",
"for",
"node",
"in",
"level_order",
"(",
"tree",
",",
"include_all",
"=",
"True",
")",
":",
"if",
"in_level",
"==",
"0",
":",
"print",
"(",
")",
"print",
"(",
")",
"print",
"(",
"' '",
"*",
"left_padding",
",",
"end",
"=",
"' '",
")",
"width",
"=",
"int",
"(",
"max_width",
"*",
"node_width",
"/",
"per_level",
")",
"node_str",
"=",
"(",
"str",
"(",
"node",
".",
"data",
")",
"if",
"node",
"else",
"''",
")",
".",
"center",
"(",
"width",
")",
"print",
"(",
"node_str",
",",
"end",
"=",
"' '",
")",
"in_level",
"+=",
"1",
"if",
"in_level",
"==",
"per_level",
":",
"in_level",
"=",
"0",
"per_level",
"*=",
"2",
"level",
"+=",
"1",
"if",
"level",
">",
"height",
":",
"break",
"print",
"(",
")",
"print",
"(",
")"
]
| Prints the tree to stdout | [
"Prints",
"the",
"tree",
"to",
"stdout"
]
| python | train |
nicolargo/glances | glances/plugins/glances_ports.py | https://github.com/nicolargo/glances/blob/5bd4d587a736e0d2b03170b56926841d2a3eb7ee/glances/plugins/glances_ports.py#L75-L98 | def update(self):
"""Update the ports list."""
if self.input_method == 'local':
# Only refresh:
# * if there is not other scanning thread
# * every refresh seconds (define in the configuration file)
if self._thread is None:
thread_is_running = False
else:
thread_is_running = self._thread.isAlive()
if self.timer_ports.finished() and not thread_is_running:
# Run ports scanner
self._thread = ThreadScanner(self.stats)
self._thread.start()
# Restart timer
if len(self.stats) > 0:
self.timer_ports = Timer(self.stats[0]['refresh'])
else:
self.timer_ports = Timer(0)
else:
# Not available in SNMP mode
pass
return self.stats | [
"def",
"update",
"(",
"self",
")",
":",
"if",
"self",
".",
"input_method",
"==",
"'local'",
":",
"# Only refresh:",
"# * if there is not other scanning thread",
"# * every refresh seconds (define in the configuration file)",
"if",
"self",
".",
"_thread",
"is",
"None",
":",
"thread_is_running",
"=",
"False",
"else",
":",
"thread_is_running",
"=",
"self",
".",
"_thread",
".",
"isAlive",
"(",
")",
"if",
"self",
".",
"timer_ports",
".",
"finished",
"(",
")",
"and",
"not",
"thread_is_running",
":",
"# Run ports scanner",
"self",
".",
"_thread",
"=",
"ThreadScanner",
"(",
"self",
".",
"stats",
")",
"self",
".",
"_thread",
".",
"start",
"(",
")",
"# Restart timer",
"if",
"len",
"(",
"self",
".",
"stats",
")",
">",
"0",
":",
"self",
".",
"timer_ports",
"=",
"Timer",
"(",
"self",
".",
"stats",
"[",
"0",
"]",
"[",
"'refresh'",
"]",
")",
"else",
":",
"self",
".",
"timer_ports",
"=",
"Timer",
"(",
"0",
")",
"else",
":",
"# Not available in SNMP mode",
"pass",
"return",
"self",
".",
"stats"
]
| Update the ports list. | [
"Update",
"the",
"ports",
"list",
"."
]
| python | train |
data-8/datascience | datascience/util.py | https://github.com/data-8/datascience/blob/4cee38266903ca169cea4a53b8cc39502d85c464/datascience/util.py#L203-L244 | def minimize(f, start=None, smooth=False, log=None, array=False, **vargs):
"""Minimize a function f of one or more arguments.
Args:
f: A function that takes numbers and returns a number
start: A starting value or list of starting values
smooth: Whether to assume that f is smooth and use first-order info
log: Logging function called on the result of optimization (e.g. print)
vargs: Other named arguments passed to scipy.optimize.minimize
Returns either:
(a) the minimizing argument of a one-argument function
(b) an array of minimizing arguments of a multi-argument function
"""
if start is None:
assert not array, "Please pass starting values explicitly when array=True"
arg_count = f.__code__.co_argcount
assert arg_count > 0, "Please pass starting values explicitly for variadic functions"
start = [0] * arg_count
if not hasattr(start, '__len__'):
start = [start]
if array:
objective = f
else:
@functools.wraps(f)
def objective(args):
return f(*args)
if not smooth and 'method' not in vargs:
vargs['method'] = 'Powell'
result = optimize.minimize(objective, start, **vargs)
if log is not None:
log(result)
if len(start) == 1:
return result.x.item(0)
else:
return result.x | [
"def",
"minimize",
"(",
"f",
",",
"start",
"=",
"None",
",",
"smooth",
"=",
"False",
",",
"log",
"=",
"None",
",",
"array",
"=",
"False",
",",
"*",
"*",
"vargs",
")",
":",
"if",
"start",
"is",
"None",
":",
"assert",
"not",
"array",
",",
"\"Please pass starting values explicitly when array=True\"",
"arg_count",
"=",
"f",
".",
"__code__",
".",
"co_argcount",
"assert",
"arg_count",
">",
"0",
",",
"\"Please pass starting values explicitly for variadic functions\"",
"start",
"=",
"[",
"0",
"]",
"*",
"arg_count",
"if",
"not",
"hasattr",
"(",
"start",
",",
"'__len__'",
")",
":",
"start",
"=",
"[",
"start",
"]",
"if",
"array",
":",
"objective",
"=",
"f",
"else",
":",
"@",
"functools",
".",
"wraps",
"(",
"f",
")",
"def",
"objective",
"(",
"args",
")",
":",
"return",
"f",
"(",
"*",
"args",
")",
"if",
"not",
"smooth",
"and",
"'method'",
"not",
"in",
"vargs",
":",
"vargs",
"[",
"'method'",
"]",
"=",
"'Powell'",
"result",
"=",
"optimize",
".",
"minimize",
"(",
"objective",
",",
"start",
",",
"*",
"*",
"vargs",
")",
"if",
"log",
"is",
"not",
"None",
":",
"log",
"(",
"result",
")",
"if",
"len",
"(",
"start",
")",
"==",
"1",
":",
"return",
"result",
".",
"x",
".",
"item",
"(",
"0",
")",
"else",
":",
"return",
"result",
".",
"x"
]
| Minimize a function f of one or more arguments.
Args:
f: A function that takes numbers and returns a number
start: A starting value or list of starting values
smooth: Whether to assume that f is smooth and use first-order info
log: Logging function called on the result of optimization (e.g. print)
vargs: Other named arguments passed to scipy.optimize.minimize
Returns either:
(a) the minimizing argument of a one-argument function
(b) an array of minimizing arguments of a multi-argument function | [
"Minimize",
"a",
"function",
"f",
"of",
"one",
"or",
"more",
"arguments",
"."
]
| python | train |
laysakura/relshell | relshell/daemon_shelloperator.py | https://github.com/laysakura/relshell/blob/9ca5c03a34c11cb763a4a75595f18bf4383aa8cc/relshell/daemon_shelloperator.py#L82-L118 | def run(self, in_batches):
"""Run shell operator synchronously to eat `in_batches`
:param in_batches: `tuple` of batches to process
"""
if len(in_batches) != len(self._batcmd.batch_to_file_s):
BaseShellOperator._rm_process_input_tmpfiles(self._batcmd.batch_to_file_s) # [todo] - Removing tmpfiles can be easily forgot. Less lifetime for tmpfile.
raise AttributeError('len(in_batches) == %d, while %d IN_BATCH* are specified in command below:%s$ %s' %
(len(in_batches), len(self._batcmd.batch_to_file_s), os.linesep, self._batcmd.sh_cmd))
# prepare & start process (if necessary)
BaseShellOperator._batches_to_tmpfile(self._in_record_sep, self._in_column_sep, in_batches, self._batcmd.batch_to_file_s)
if self._process is None:
self._process = BaseShellOperator._start_process(
self._batcmd, self._cwd, self._env,
non_blocking_stdout=True)
# Begin thread to read from subprocess's stdout.
# Without this thread, subprocess's output buffer becomes full and no one solves it.
t_consumer = Thread(target=get_subprocess_output,
args=(self._process.stdout, self._batch_done_output, self._subprocess_out_str))
t_consumer.start()
# pass batch to subprocess
BaseShellOperator._batch_to_stdin(self._process, self._in_record_sep, self._in_column_sep,
in_batches, self._batcmd.batch_to_file_s)
# pass batch-done indicator to subprocess
self._process.stdin.write(self._batch_done_indicator)
# get output from subprocess
t_consumer.join()
subprocess_out_str = self._subprocess_out_str[0]
self._subprocess_out_str = []
out_batch = BaseShellOperator._out_str_to_batch(subprocess_out_str,
self._out_recdef, self._out_col_patterns)
return out_batch | [
"def",
"run",
"(",
"self",
",",
"in_batches",
")",
":",
"if",
"len",
"(",
"in_batches",
")",
"!=",
"len",
"(",
"self",
".",
"_batcmd",
".",
"batch_to_file_s",
")",
":",
"BaseShellOperator",
".",
"_rm_process_input_tmpfiles",
"(",
"self",
".",
"_batcmd",
".",
"batch_to_file_s",
")",
"# [todo] - Removing tmpfiles can be easily forgot. Less lifetime for tmpfile.",
"raise",
"AttributeError",
"(",
"'len(in_batches) == %d, while %d IN_BATCH* are specified in command below:%s$ %s'",
"%",
"(",
"len",
"(",
"in_batches",
")",
",",
"len",
"(",
"self",
".",
"_batcmd",
".",
"batch_to_file_s",
")",
",",
"os",
".",
"linesep",
",",
"self",
".",
"_batcmd",
".",
"sh_cmd",
")",
")",
"# prepare & start process (if necessary)",
"BaseShellOperator",
".",
"_batches_to_tmpfile",
"(",
"self",
".",
"_in_record_sep",
",",
"self",
".",
"_in_column_sep",
",",
"in_batches",
",",
"self",
".",
"_batcmd",
".",
"batch_to_file_s",
")",
"if",
"self",
".",
"_process",
"is",
"None",
":",
"self",
".",
"_process",
"=",
"BaseShellOperator",
".",
"_start_process",
"(",
"self",
".",
"_batcmd",
",",
"self",
".",
"_cwd",
",",
"self",
".",
"_env",
",",
"non_blocking_stdout",
"=",
"True",
")",
"# Begin thread to read from subprocess's stdout.",
"# Without this thread, subprocess's output buffer becomes full and no one solves it.",
"t_consumer",
"=",
"Thread",
"(",
"target",
"=",
"get_subprocess_output",
",",
"args",
"=",
"(",
"self",
".",
"_process",
".",
"stdout",
",",
"self",
".",
"_batch_done_output",
",",
"self",
".",
"_subprocess_out_str",
")",
")",
"t_consumer",
".",
"start",
"(",
")",
"# pass batch to subprocess",
"BaseShellOperator",
".",
"_batch_to_stdin",
"(",
"self",
".",
"_process",
",",
"self",
".",
"_in_record_sep",
",",
"self",
".",
"_in_column_sep",
",",
"in_batches",
",",
"self",
".",
"_batcmd",
".",
"batch_to_file_s",
")",
"# pass batch-done indicator to subprocess",
"self",
".",
"_process",
".",
"stdin",
".",
"write",
"(",
"self",
".",
"_batch_done_indicator",
")",
"# get output from subprocess",
"t_consumer",
".",
"join",
"(",
")",
"subprocess_out_str",
"=",
"self",
".",
"_subprocess_out_str",
"[",
"0",
"]",
"self",
".",
"_subprocess_out_str",
"=",
"[",
"]",
"out_batch",
"=",
"BaseShellOperator",
".",
"_out_str_to_batch",
"(",
"subprocess_out_str",
",",
"self",
".",
"_out_recdef",
",",
"self",
".",
"_out_col_patterns",
")",
"return",
"out_batch"
]
| Run shell operator synchronously to eat `in_batches`
:param in_batches: `tuple` of batches to process | [
"Run",
"shell",
"operator",
"synchronously",
"to",
"eat",
"in_batches"
]
| python | train |
DLR-RM/RAFCON | source/rafcon/gui/controllers/state_machine_tree.py | https://github.com/DLR-RM/RAFCON/blob/24942ef1a904531f49ab8830a1dbb604441be498/source/rafcon/gui/controllers/state_machine_tree.py#L509-L528 | def _handle_double_click(self, event):
""" Double click with left mouse button focuses the state and toggles the collapse status"""
if event.get_button()[1] == 1: # Left mouse button
path_info = self.tree_view.get_path_at_pos(int(event.x), int(event.y))
if path_info: # Valid entry was clicked on
path = path_info[0]
iter = self.tree_store.get_iter(path)
state_model = self.tree_store.get_value(iter, self.MODEL_STORAGE_ID)
# Set focus to StateModel
selection = self._selected_sm_model.selection
selection.focus = state_model
# Toggle collapse status if applicable for this kind of state
if self.view.row_expanded(path):
self.view.collapse_row(path)
else:
if isinstance(state_model, ContainerStateModel) or \
isinstance(state_model, LibraryStateModel) and self.show_content(state_model):
self.view.expand_to_path(path) | [
"def",
"_handle_double_click",
"(",
"self",
",",
"event",
")",
":",
"if",
"event",
".",
"get_button",
"(",
")",
"[",
"1",
"]",
"==",
"1",
":",
"# Left mouse button",
"path_info",
"=",
"self",
".",
"tree_view",
".",
"get_path_at_pos",
"(",
"int",
"(",
"event",
".",
"x",
")",
",",
"int",
"(",
"event",
".",
"y",
")",
")",
"if",
"path_info",
":",
"# Valid entry was clicked on",
"path",
"=",
"path_info",
"[",
"0",
"]",
"iter",
"=",
"self",
".",
"tree_store",
".",
"get_iter",
"(",
"path",
")",
"state_model",
"=",
"self",
".",
"tree_store",
".",
"get_value",
"(",
"iter",
",",
"self",
".",
"MODEL_STORAGE_ID",
")",
"# Set focus to StateModel",
"selection",
"=",
"self",
".",
"_selected_sm_model",
".",
"selection",
"selection",
".",
"focus",
"=",
"state_model",
"# Toggle collapse status if applicable for this kind of state",
"if",
"self",
".",
"view",
".",
"row_expanded",
"(",
"path",
")",
":",
"self",
".",
"view",
".",
"collapse_row",
"(",
"path",
")",
"else",
":",
"if",
"isinstance",
"(",
"state_model",
",",
"ContainerStateModel",
")",
"or",
"isinstance",
"(",
"state_model",
",",
"LibraryStateModel",
")",
"and",
"self",
".",
"show_content",
"(",
"state_model",
")",
":",
"self",
".",
"view",
".",
"expand_to_path",
"(",
"path",
")"
]
| Double click with left mouse button focuses the state and toggles the collapse status | [
"Double",
"click",
"with",
"left",
"mouse",
"button",
"focuses",
"the",
"state",
"and",
"toggles",
"the",
"collapse",
"status"
]
| python | train |
scour-project/scour | scour/scour.py | https://github.com/scour-project/scour/blob/049264eba6b1a54ae5ba1d6a5077d8e7b80e8835/scour/scour.py#L831-L854 | def unprotected_ids(doc, options):
u"""Returns a list of unprotected IDs within the document doc."""
identifiedElements = findElementsWithId(doc.documentElement)
if not (options.protect_ids_noninkscape or
options.protect_ids_list or
options.protect_ids_prefix):
return identifiedElements
if options.protect_ids_list:
protect_ids_list = options.protect_ids_list.split(",")
if options.protect_ids_prefix:
protect_ids_prefixes = options.protect_ids_prefix.split(",")
for id in list(identifiedElements):
protected = False
if options.protect_ids_noninkscape and not id[-1].isdigit():
protected = True
if options.protect_ids_list and id in protect_ids_list:
protected = True
if options.protect_ids_prefix:
for prefix in protect_ids_prefixes:
if id.startswith(prefix):
protected = True
if protected:
del identifiedElements[id]
return identifiedElements | [
"def",
"unprotected_ids",
"(",
"doc",
",",
"options",
")",
":",
"identifiedElements",
"=",
"findElementsWithId",
"(",
"doc",
".",
"documentElement",
")",
"if",
"not",
"(",
"options",
".",
"protect_ids_noninkscape",
"or",
"options",
".",
"protect_ids_list",
"or",
"options",
".",
"protect_ids_prefix",
")",
":",
"return",
"identifiedElements",
"if",
"options",
".",
"protect_ids_list",
":",
"protect_ids_list",
"=",
"options",
".",
"protect_ids_list",
".",
"split",
"(",
"\",\"",
")",
"if",
"options",
".",
"protect_ids_prefix",
":",
"protect_ids_prefixes",
"=",
"options",
".",
"protect_ids_prefix",
".",
"split",
"(",
"\",\"",
")",
"for",
"id",
"in",
"list",
"(",
"identifiedElements",
")",
":",
"protected",
"=",
"False",
"if",
"options",
".",
"protect_ids_noninkscape",
"and",
"not",
"id",
"[",
"-",
"1",
"]",
".",
"isdigit",
"(",
")",
":",
"protected",
"=",
"True",
"if",
"options",
".",
"protect_ids_list",
"and",
"id",
"in",
"protect_ids_list",
":",
"protected",
"=",
"True",
"if",
"options",
".",
"protect_ids_prefix",
":",
"for",
"prefix",
"in",
"protect_ids_prefixes",
":",
"if",
"id",
".",
"startswith",
"(",
"prefix",
")",
":",
"protected",
"=",
"True",
"if",
"protected",
":",
"del",
"identifiedElements",
"[",
"id",
"]",
"return",
"identifiedElements"
]
| u"""Returns a list of unprotected IDs within the document doc. | [
"u",
"Returns",
"a",
"list",
"of",
"unprotected",
"IDs",
"within",
"the",
"document",
"doc",
"."
]
| python | train |
dls-controls/annotypes | annotypes/_serializable.py | https://github.com/dls-controls/annotypes/blob/31ab68a0367bb70ebd9898e8b9fa9405423465bd/annotypes/_serializable.py#L125-L138 | def to_dict(self, dict_cls=FrozenOrderedDict):
# type: (Type[dict]) -> Dict[str, Any]
"""Create a dictionary representation of object attributes
Returns:
OrderedDict serialised version of self
"""
pairs = tuple((k, serialize_object(getattr(self, k), dict_cls))
for k in self.call_types)
if self.typeid:
d = dict_cls((("typeid", self.typeid),) + pairs)
else:
d = dict_cls(pairs)
return d | [
"def",
"to_dict",
"(",
"self",
",",
"dict_cls",
"=",
"FrozenOrderedDict",
")",
":",
"# type: (Type[dict]) -> Dict[str, Any]",
"pairs",
"=",
"tuple",
"(",
"(",
"k",
",",
"serialize_object",
"(",
"getattr",
"(",
"self",
",",
"k",
")",
",",
"dict_cls",
")",
")",
"for",
"k",
"in",
"self",
".",
"call_types",
")",
"if",
"self",
".",
"typeid",
":",
"d",
"=",
"dict_cls",
"(",
"(",
"(",
"\"typeid\"",
",",
"self",
".",
"typeid",
")",
",",
")",
"+",
"pairs",
")",
"else",
":",
"d",
"=",
"dict_cls",
"(",
"pairs",
")",
"return",
"d"
]
| Create a dictionary representation of object attributes
Returns:
OrderedDict serialised version of self | [
"Create",
"a",
"dictionary",
"representation",
"of",
"object",
"attributes"
]
| python | train |
matthiask/django-cte-forest | cte_forest/models.py | https://github.com/matthiask/django-cte-forest/blob/7bff29d69eddfcf214e9cf61647c91d28655619c/cte_forest/models.py#L880-L910 | def prepare_delete_monarchy(self, node, position=None, save=True):
""" Prepares a given :class:`CTENode` `node` for deletion, by executing
the :const:`DELETE_METHOD_MONARCHY` semantics. Descendant nodes,
if present, will be moved; in this case the optional `position` can
be a ``callable`` which is invoked prior to each move operation (see
:meth:`move` for details).
By default, after each move operation, sub-tree nodes which were
moved will be saved through a call to :meth:`Model.save` unless
`save` is ``False``.
This method delegates move operations to :meth:`move`.
:param node: the :class:`CTENode` to prepare for deletion.
:param position: optionally, a ``callable`` to invoke prior to each
move operation.
:param save: flag indicating whether to save after each move
operation, ``True`` by default.
"""
# We are going to iterate all children, even though the first child is
# treated in a special way, because the query iterator may be custom, so
# we will avoid using slicing children[0] and children[1:].
first = None
for child in node.children.all():
if first is None:
first = child
first.move(node.parent, position, save)
else:
child.move(first, position, save) | [
"def",
"prepare_delete_monarchy",
"(",
"self",
",",
"node",
",",
"position",
"=",
"None",
",",
"save",
"=",
"True",
")",
":",
"# We are going to iterate all children, even though the first child is",
"# treated in a special way, because the query iterator may be custom, so",
"# we will avoid using slicing children[0] and children[1:].",
"first",
"=",
"None",
"for",
"child",
"in",
"node",
".",
"children",
".",
"all",
"(",
")",
":",
"if",
"first",
"is",
"None",
":",
"first",
"=",
"child",
"first",
".",
"move",
"(",
"node",
".",
"parent",
",",
"position",
",",
"save",
")",
"else",
":",
"child",
".",
"move",
"(",
"first",
",",
"position",
",",
"save",
")"
]
| Prepares a given :class:`CTENode` `node` for deletion, by executing
the :const:`DELETE_METHOD_MONARCHY` semantics. Descendant nodes,
if present, will be moved; in this case the optional `position` can
be a ``callable`` which is invoked prior to each move operation (see
:meth:`move` for details).
By default, after each move operation, sub-tree nodes which were
moved will be saved through a call to :meth:`Model.save` unless
`save` is ``False``.
This method delegates move operations to :meth:`move`.
:param node: the :class:`CTENode` to prepare for deletion.
:param position: optionally, a ``callable`` to invoke prior to each
move operation.
:param save: flag indicating whether to save after each move
operation, ``True`` by default. | [
"Prepares",
"a",
"given",
":",
"class",
":",
"CTENode",
"node",
"for",
"deletion",
"by",
"executing",
"the",
":",
"const",
":",
"DELETE_METHOD_MONARCHY",
"semantics",
".",
"Descendant",
"nodes",
"if",
"present",
"will",
"be",
"moved",
";",
"in",
"this",
"case",
"the",
"optional",
"position",
"can",
"be",
"a",
"callable",
"which",
"is",
"invoked",
"prior",
"to",
"each",
"move",
"operation",
"(",
"see",
":",
"meth",
":",
"move",
"for",
"details",
")",
"."
]
| python | train |
adafruit/Adafruit_CircuitPython_framebuf | adafruit_framebuf.py | https://github.com/adafruit/Adafruit_CircuitPython_framebuf/blob/b9f62c4b71efa963150f9c5a0284b61c7add9d02/adafruit_framebuf.py#L249-L275 | def line(self, x_0, y_0, x_1, y_1, color):
# pylint: disable=too-many-arguments
"""Bresenham's line algorithm"""
d_x = abs(x_1 - x_0)
d_y = abs(y_1 - y_0)
x, y = x_0, y_0
s_x = -1 if x_0 > x_1 else 1
s_y = -1 if y_0 > y_1 else 1
if d_x > d_y:
err = d_x / 2.0
while x != x_1:
self.pixel(x, y, color)
err -= d_y
if err < 0:
y += s_y
err += d_x
x += s_x
else:
err = d_y / 2.0
while y != y_1:
self.pixel(x, y, color)
err -= d_x
if err < 0:
x += s_x
err += d_y
y += s_y
self.pixel(x, y, color) | [
"def",
"line",
"(",
"self",
",",
"x_0",
",",
"y_0",
",",
"x_1",
",",
"y_1",
",",
"color",
")",
":",
"# pylint: disable=too-many-arguments",
"d_x",
"=",
"abs",
"(",
"x_1",
"-",
"x_0",
")",
"d_y",
"=",
"abs",
"(",
"y_1",
"-",
"y_0",
")",
"x",
",",
"y",
"=",
"x_0",
",",
"y_0",
"s_x",
"=",
"-",
"1",
"if",
"x_0",
">",
"x_1",
"else",
"1",
"s_y",
"=",
"-",
"1",
"if",
"y_0",
">",
"y_1",
"else",
"1",
"if",
"d_x",
">",
"d_y",
":",
"err",
"=",
"d_x",
"/",
"2.0",
"while",
"x",
"!=",
"x_1",
":",
"self",
".",
"pixel",
"(",
"x",
",",
"y",
",",
"color",
")",
"err",
"-=",
"d_y",
"if",
"err",
"<",
"0",
":",
"y",
"+=",
"s_y",
"err",
"+=",
"d_x",
"x",
"+=",
"s_x",
"else",
":",
"err",
"=",
"d_y",
"/",
"2.0",
"while",
"y",
"!=",
"y_1",
":",
"self",
".",
"pixel",
"(",
"x",
",",
"y",
",",
"color",
")",
"err",
"-=",
"d_x",
"if",
"err",
"<",
"0",
":",
"x",
"+=",
"s_x",
"err",
"+=",
"d_y",
"y",
"+=",
"s_y",
"self",
".",
"pixel",
"(",
"x",
",",
"y",
",",
"color",
")"
]
| Bresenham's line algorithm | [
"Bresenham",
"s",
"line",
"algorithm"
]
| python | train |
openstack/proliantutils | proliantutils/redfish/resources/system/storage/array_controller.py | https://github.com/openstack/proliantutils/blob/86ef3b47b4eca97c221577e3570b0240d6a25f22/proliantutils/redfish/resources/system/storage/array_controller.py#L151-L158 | def array_controller_by_model(self, model):
"""Returns array controller instance by model
:returns Instance of array controller
"""
for member in self.get_members():
if member.model == model:
return member | [
"def",
"array_controller_by_model",
"(",
"self",
",",
"model",
")",
":",
"for",
"member",
"in",
"self",
".",
"get_members",
"(",
")",
":",
"if",
"member",
".",
"model",
"==",
"model",
":",
"return",
"member"
]
| Returns array controller instance by model
:returns Instance of array controller | [
"Returns",
"array",
"controller",
"instance",
"by",
"model"
]
| python | train |
vmware/pyvmomi | pyVmomi/VmomiSupport.py | https://github.com/vmware/pyvmomi/blob/3ffcb23bf77d757175c0d5216ba9a25345d824cd/pyVmomi/VmomiSupport.py#L379-L395 | def explode(self, obj):
""" Determine if the object should be exploded. """
if obj in self._done:
return False
result = False
for item in self._explode:
if hasattr(item, '_moId'):
# If it has a _moId it is an instance
if obj._moId == item._moId:
result = True
else:
# If it does not have a _moId it is a template
if obj.__class__.__name__ == item.__name__:
result = True
if result:
self._done.add(obj)
return result | [
"def",
"explode",
"(",
"self",
",",
"obj",
")",
":",
"if",
"obj",
"in",
"self",
".",
"_done",
":",
"return",
"False",
"result",
"=",
"False",
"for",
"item",
"in",
"self",
".",
"_explode",
":",
"if",
"hasattr",
"(",
"item",
",",
"'_moId'",
")",
":",
"# If it has a _moId it is an instance",
"if",
"obj",
".",
"_moId",
"==",
"item",
".",
"_moId",
":",
"result",
"=",
"True",
"else",
":",
"# If it does not have a _moId it is a template",
"if",
"obj",
".",
"__class__",
".",
"__name__",
"==",
"item",
".",
"__name__",
":",
"result",
"=",
"True",
"if",
"result",
":",
"self",
".",
"_done",
".",
"add",
"(",
"obj",
")",
"return",
"result"
]
| Determine if the object should be exploded. | [
"Determine",
"if",
"the",
"object",
"should",
"be",
"exploded",
"."
]
| python | train |
quantumlib/Cirq | dev_tools/incremental_coverage.py | https://github.com/quantumlib/Cirq/blob/0827da80dd7880e5b923eb69407e980ed9bc0bd2/dev_tools/incremental_coverage.py#L115-L162 | def get_incremental_uncovered_lines(abs_path: str,
base_commit: str,
actual_commit: Optional[str]
) -> List[Tuple[int, str, str]]:
"""
Uses git diff and the annotation files created by
`pytest --cov-report annotate` to find touched but uncovered lines in the
given file.
Args:
abs_path: The path of a file to look for uncovered lines in.
base_commit: Old state to diff against.
actual_commit: Current state. Use None to use local uncommitted files.
Returns:
A list of the indices, content, and reason-for-including of
'interesting' uncovered lines. An interesting uncovered line is one
involved with the diff.
"""
# Deleted files don't have any lines that need to be covered.
if not os.path.isfile(abs_path):
return []
unified_diff_lines_str = shell_tools.output_of(
'git',
'diff',
'--unified=0',
base_commit,
actual_commit,
'--',
abs_path)
unified_diff_lines = [e
for e in unified_diff_lines_str.split('\n')
if e.strip()]
touched_lines = diff_to_new_interesting_lines(unified_diff_lines)
with open(abs_path, 'r') as actual_file:
ignored_lines = determine_ignored_lines(actual_file.read())
cover_path = abs_path + ',cover'
has_cover_file = os.path.isfile(cover_path)
content_file = cover_path if has_cover_file else abs_path
with open(content_file, 'r') as annotated_coverage_file:
return [(i, fix_line_from_coverage_file(line), touched_lines[i])
for i, line in enumerate(annotated_coverage_file, start=1)
if i in touched_lines and i not in ignored_lines
if line_counts_as_uncovered(line, has_cover_file)] | [
"def",
"get_incremental_uncovered_lines",
"(",
"abs_path",
":",
"str",
",",
"base_commit",
":",
"str",
",",
"actual_commit",
":",
"Optional",
"[",
"str",
"]",
")",
"->",
"List",
"[",
"Tuple",
"[",
"int",
",",
"str",
",",
"str",
"]",
"]",
":",
"# Deleted files don't have any lines that need to be covered.",
"if",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"abs_path",
")",
":",
"return",
"[",
"]",
"unified_diff_lines_str",
"=",
"shell_tools",
".",
"output_of",
"(",
"'git'",
",",
"'diff'",
",",
"'--unified=0'",
",",
"base_commit",
",",
"actual_commit",
",",
"'--'",
",",
"abs_path",
")",
"unified_diff_lines",
"=",
"[",
"e",
"for",
"e",
"in",
"unified_diff_lines_str",
".",
"split",
"(",
"'\\n'",
")",
"if",
"e",
".",
"strip",
"(",
")",
"]",
"touched_lines",
"=",
"diff_to_new_interesting_lines",
"(",
"unified_diff_lines",
")",
"with",
"open",
"(",
"abs_path",
",",
"'r'",
")",
"as",
"actual_file",
":",
"ignored_lines",
"=",
"determine_ignored_lines",
"(",
"actual_file",
".",
"read",
"(",
")",
")",
"cover_path",
"=",
"abs_path",
"+",
"',cover'",
"has_cover_file",
"=",
"os",
".",
"path",
".",
"isfile",
"(",
"cover_path",
")",
"content_file",
"=",
"cover_path",
"if",
"has_cover_file",
"else",
"abs_path",
"with",
"open",
"(",
"content_file",
",",
"'r'",
")",
"as",
"annotated_coverage_file",
":",
"return",
"[",
"(",
"i",
",",
"fix_line_from_coverage_file",
"(",
"line",
")",
",",
"touched_lines",
"[",
"i",
"]",
")",
"for",
"i",
",",
"line",
"in",
"enumerate",
"(",
"annotated_coverage_file",
",",
"start",
"=",
"1",
")",
"if",
"i",
"in",
"touched_lines",
"and",
"i",
"not",
"in",
"ignored_lines",
"if",
"line_counts_as_uncovered",
"(",
"line",
",",
"has_cover_file",
")",
"]"
]
| Uses git diff and the annotation files created by
`pytest --cov-report annotate` to find touched but uncovered lines in the
given file.
Args:
abs_path: The path of a file to look for uncovered lines in.
base_commit: Old state to diff against.
actual_commit: Current state. Use None to use local uncommitted files.
Returns:
A list of the indices, content, and reason-for-including of
'interesting' uncovered lines. An interesting uncovered line is one
involved with the diff. | [
"Uses",
"git",
"diff",
"and",
"the",
"annotation",
"files",
"created",
"by",
"pytest",
"--",
"cov",
"-",
"report",
"annotate",
"to",
"find",
"touched",
"but",
"uncovered",
"lines",
"in",
"the",
"given",
"file",
"."
]
| python | train |
nerandell/cauldron | cauldron/redis_cache.py | https://github.com/nerandell/cauldron/blob/d363bac763781bb2da18debfa0fdd4be28288b92/cauldron/redis_cache.py#L9-L16 | def connect(self, host, port, minsize=5, maxsize=10, loop=asyncio.get_event_loop()):
"""
Setup a connection pool
:param host: Redis host
:param port: Redis port
:param loop: Event loop
"""
self._pool = yield from aioredis.create_pool((host, port), minsize=minsize, maxsize=maxsize, loop=loop) | [
"def",
"connect",
"(",
"self",
",",
"host",
",",
"port",
",",
"minsize",
"=",
"5",
",",
"maxsize",
"=",
"10",
",",
"loop",
"=",
"asyncio",
".",
"get_event_loop",
"(",
")",
")",
":",
"self",
".",
"_pool",
"=",
"yield",
"from",
"aioredis",
".",
"create_pool",
"(",
"(",
"host",
",",
"port",
")",
",",
"minsize",
"=",
"minsize",
",",
"maxsize",
"=",
"maxsize",
",",
"loop",
"=",
"loop",
")"
]
| Setup a connection pool
:param host: Redis host
:param port: Redis port
:param loop: Event loop | [
"Setup",
"a",
"connection",
"pool",
":",
"param",
"host",
":",
"Redis",
"host",
":",
"param",
"port",
":",
"Redis",
"port",
":",
"param",
"loop",
":",
"Event",
"loop"
]
| python | valid |
pyamg/pyamg | pyamg/vis/vis_coarse.py | https://github.com/pyamg/pyamg/blob/89dc54aa27e278f65d2f54bdaf16ab97d7768fa6/pyamg/vis/vis_coarse.py#L20-L147 | def vis_aggregate_groups(Verts, E2V, Agg, mesh_type, output='vtk',
fname='output.vtu'):
"""Coarse grid visualization of aggregate groups.
Create .vtu files for use in Paraview or display with Matplotlib.
Parameters
----------
Verts : {array}
coordinate array (N x D)
E2V : {array}
element index array (Nel x Nelnodes)
Agg : {csr_matrix}
sparse matrix for the aggregate-vertex relationship (N x Nagg)
mesh_type : {string}
type of elements: vertex, tri, quad, tet, hex (all 3d)
fname : {string, file object}
file to be written, e.g. 'output.vtu'
output : {string}
'vtk' or 'matplotlib'
Returns
-------
- Writes data to .vtu file for use in paraview (xml 0.1 format) or
displays to screen using matplotlib
Notes
-----
- Works for both 2d and 3d elements. Element groupings are colored
with data equal to 2.0 and stringy edges in the aggregate are colored
with 3.0
Examples
--------
>>> from pyamg.aggregation import standard_aggregation
>>> from pyamg.vis.vis_coarse import vis_aggregate_groups
>>> from pyamg.gallery import load_example
>>> data = load_example('unit_square')
>>> A = data['A'].tocsr()
>>> V = data['vertices']
>>> E2V = data['elements']
>>> Agg = standard_aggregation(A)[0]
>>> vis_aggregate_groups(Verts=V, E2V=E2V, Agg=Agg, mesh_type='tri',
output='vtk', fname='output.vtu')
>>> from pyamg.aggregation import standard_aggregation
>>> from pyamg.vis.vis_coarse import vis_aggregate_groups
>>> from pyamg.gallery import load_example
>>> data = load_example('unit_cube')
>>> A = data['A'].tocsr()
>>> V = data['vertices']
>>> E2V = data['elements']
>>> Agg = standard_aggregation(A)[0]
>>> vis_aggregate_groups(Verts=V, E2V=E2V, Agg=Agg, mesh_type='tet',
output='vtk', fname='output.vtu')
"""
check_input(Verts=Verts, E2V=E2V, Agg=Agg, mesh_type=mesh_type)
map_type_to_key = {'tri': 5, 'quad': 9, 'tet': 10, 'hex': 12}
if mesh_type not in map_type_to_key:
raise ValueError('unknown mesh_type=%s' % mesh_type)
key = map_type_to_key[mesh_type]
Agg = csr_matrix(Agg)
# remove elements with dirichlet BCs
if E2V.max() >= Agg.shape[0]:
E2V = E2V[E2V.max(axis=1) < Agg.shape[0]]
# 1 #
# Find elements with all vertices in same aggregate
# account for 0 rows. Mark them as solitary aggregates
# TODO: (Luke) full_aggs is not defined, I think its just a mask
# indicated with rows are not 0.
if len(Agg.indices) != Agg.shape[0]:
full_aggs = ((Agg.indptr[1:] - Agg.indptr[:-1]) == 0).nonzero()[0]
new_aggs = np.array(Agg.sum(axis=1), dtype=int).ravel()
new_aggs[full_aggs == 1] = Agg.indices # keep existing aggregate IDs
new_aggs[full_aggs == 0] = Agg.shape[1] # fill in singletons maxID+1
ElementAggs = new_aggs[E2V]
else:
ElementAggs = Agg.indices[E2V]
# 2 #
# find all aggregates encompassing full elements
# mask[i] == True if all vertices in element i belong to the same aggregate
mask = np.where(abs(np.diff(ElementAggs)).max(axis=1) == 0)[0]
# mask = (ElementAggs[:,:] == ElementAggs[:,0]).all(axis=1)
E2V_a = E2V[mask, :] # elements where element is full
Nel_a = E2V_a.shape[0]
# 3 #
# find edges of elements in the same aggregate (brute force)
# construct vertex to vertex graph
col = E2V.ravel()
row = np.kron(np.arange(0, E2V.shape[0]),
np.ones((E2V.shape[1],), dtype=int))
data = np.ones((len(col),))
if len(row) != len(col):
raise ValueError('Problem constructing vertex-to-vertex map')
V2V = coo_matrix((data, (row, col)), shape=(E2V.shape[0], E2V.max()+1))
V2V = V2V.T * V2V
V2V = triu(V2V, 1).tocoo()
# get all the edges
edges = np.vstack((V2V.row, V2V.col)).T
# all the edges in the same aggregate
E2V_b = edges[Agg.indices[V2V.row] == Agg.indices[V2V.col]]
Nel_b = E2V_b.shape[0]
# 3.5 #
# single node aggregates
sums = np.array(Agg.sum(axis=0)).ravel()
E2V_c = np.where(sums == 1)[0]
Nel_c = len(E2V_c)
# 4 #
# now write out the elements and edges
colors_a = 3*np.ones((Nel_a,)) # color triangles with threes
colors_b = 2*np.ones((Nel_b,)) # color edges with twos
colors_c = 1*np.ones((Nel_c,)) # color the vertices with ones
Cells = {1: E2V_c, 3: E2V_b, key: E2V_a}
cdata = {1: colors_c, 3: colors_b, key: colors_a} # make sure it's a tuple
write_vtu(Verts=Verts, Cells=Cells, fname=fname, cdata=cdata) | [
"def",
"vis_aggregate_groups",
"(",
"Verts",
",",
"E2V",
",",
"Agg",
",",
"mesh_type",
",",
"output",
"=",
"'vtk'",
",",
"fname",
"=",
"'output.vtu'",
")",
":",
"check_input",
"(",
"Verts",
"=",
"Verts",
",",
"E2V",
"=",
"E2V",
",",
"Agg",
"=",
"Agg",
",",
"mesh_type",
"=",
"mesh_type",
")",
"map_type_to_key",
"=",
"{",
"'tri'",
":",
"5",
",",
"'quad'",
":",
"9",
",",
"'tet'",
":",
"10",
",",
"'hex'",
":",
"12",
"}",
"if",
"mesh_type",
"not",
"in",
"map_type_to_key",
":",
"raise",
"ValueError",
"(",
"'unknown mesh_type=%s'",
"%",
"mesh_type",
")",
"key",
"=",
"map_type_to_key",
"[",
"mesh_type",
"]",
"Agg",
"=",
"csr_matrix",
"(",
"Agg",
")",
"# remove elements with dirichlet BCs",
"if",
"E2V",
".",
"max",
"(",
")",
">=",
"Agg",
".",
"shape",
"[",
"0",
"]",
":",
"E2V",
"=",
"E2V",
"[",
"E2V",
".",
"max",
"(",
"axis",
"=",
"1",
")",
"<",
"Agg",
".",
"shape",
"[",
"0",
"]",
"]",
"# 1 #",
"# Find elements with all vertices in same aggregate",
"# account for 0 rows. Mark them as solitary aggregates",
"# TODO: (Luke) full_aggs is not defined, I think its just a mask",
"# indicated with rows are not 0.",
"if",
"len",
"(",
"Agg",
".",
"indices",
")",
"!=",
"Agg",
".",
"shape",
"[",
"0",
"]",
":",
"full_aggs",
"=",
"(",
"(",
"Agg",
".",
"indptr",
"[",
"1",
":",
"]",
"-",
"Agg",
".",
"indptr",
"[",
":",
"-",
"1",
"]",
")",
"==",
"0",
")",
".",
"nonzero",
"(",
")",
"[",
"0",
"]",
"new_aggs",
"=",
"np",
".",
"array",
"(",
"Agg",
".",
"sum",
"(",
"axis",
"=",
"1",
")",
",",
"dtype",
"=",
"int",
")",
".",
"ravel",
"(",
")",
"new_aggs",
"[",
"full_aggs",
"==",
"1",
"]",
"=",
"Agg",
".",
"indices",
"# keep existing aggregate IDs",
"new_aggs",
"[",
"full_aggs",
"==",
"0",
"]",
"=",
"Agg",
".",
"shape",
"[",
"1",
"]",
"# fill in singletons maxID+1",
"ElementAggs",
"=",
"new_aggs",
"[",
"E2V",
"]",
"else",
":",
"ElementAggs",
"=",
"Agg",
".",
"indices",
"[",
"E2V",
"]",
"# 2 #",
"# find all aggregates encompassing full elements",
"# mask[i] == True if all vertices in element i belong to the same aggregate",
"mask",
"=",
"np",
".",
"where",
"(",
"abs",
"(",
"np",
".",
"diff",
"(",
"ElementAggs",
")",
")",
".",
"max",
"(",
"axis",
"=",
"1",
")",
"==",
"0",
")",
"[",
"0",
"]",
"# mask = (ElementAggs[:,:] == ElementAggs[:,0]).all(axis=1)",
"E2V_a",
"=",
"E2V",
"[",
"mask",
",",
":",
"]",
"# elements where element is full",
"Nel_a",
"=",
"E2V_a",
".",
"shape",
"[",
"0",
"]",
"# 3 #",
"# find edges of elements in the same aggregate (brute force)",
"# construct vertex to vertex graph",
"col",
"=",
"E2V",
".",
"ravel",
"(",
")",
"row",
"=",
"np",
".",
"kron",
"(",
"np",
".",
"arange",
"(",
"0",
",",
"E2V",
".",
"shape",
"[",
"0",
"]",
")",
",",
"np",
".",
"ones",
"(",
"(",
"E2V",
".",
"shape",
"[",
"1",
"]",
",",
")",
",",
"dtype",
"=",
"int",
")",
")",
"data",
"=",
"np",
".",
"ones",
"(",
"(",
"len",
"(",
"col",
")",
",",
")",
")",
"if",
"len",
"(",
"row",
")",
"!=",
"len",
"(",
"col",
")",
":",
"raise",
"ValueError",
"(",
"'Problem constructing vertex-to-vertex map'",
")",
"V2V",
"=",
"coo_matrix",
"(",
"(",
"data",
",",
"(",
"row",
",",
"col",
")",
")",
",",
"shape",
"=",
"(",
"E2V",
".",
"shape",
"[",
"0",
"]",
",",
"E2V",
".",
"max",
"(",
")",
"+",
"1",
")",
")",
"V2V",
"=",
"V2V",
".",
"T",
"*",
"V2V",
"V2V",
"=",
"triu",
"(",
"V2V",
",",
"1",
")",
".",
"tocoo",
"(",
")",
"# get all the edges",
"edges",
"=",
"np",
".",
"vstack",
"(",
"(",
"V2V",
".",
"row",
",",
"V2V",
".",
"col",
")",
")",
".",
"T",
"# all the edges in the same aggregate",
"E2V_b",
"=",
"edges",
"[",
"Agg",
".",
"indices",
"[",
"V2V",
".",
"row",
"]",
"==",
"Agg",
".",
"indices",
"[",
"V2V",
".",
"col",
"]",
"]",
"Nel_b",
"=",
"E2V_b",
".",
"shape",
"[",
"0",
"]",
"# 3.5 #",
"# single node aggregates",
"sums",
"=",
"np",
".",
"array",
"(",
"Agg",
".",
"sum",
"(",
"axis",
"=",
"0",
")",
")",
".",
"ravel",
"(",
")",
"E2V_c",
"=",
"np",
".",
"where",
"(",
"sums",
"==",
"1",
")",
"[",
"0",
"]",
"Nel_c",
"=",
"len",
"(",
"E2V_c",
")",
"# 4 #",
"# now write out the elements and edges",
"colors_a",
"=",
"3",
"*",
"np",
".",
"ones",
"(",
"(",
"Nel_a",
",",
")",
")",
"# color triangles with threes",
"colors_b",
"=",
"2",
"*",
"np",
".",
"ones",
"(",
"(",
"Nel_b",
",",
")",
")",
"# color edges with twos",
"colors_c",
"=",
"1",
"*",
"np",
".",
"ones",
"(",
"(",
"Nel_c",
",",
")",
")",
"# color the vertices with ones",
"Cells",
"=",
"{",
"1",
":",
"E2V_c",
",",
"3",
":",
"E2V_b",
",",
"key",
":",
"E2V_a",
"}",
"cdata",
"=",
"{",
"1",
":",
"colors_c",
",",
"3",
":",
"colors_b",
",",
"key",
":",
"colors_a",
"}",
"# make sure it's a tuple",
"write_vtu",
"(",
"Verts",
"=",
"Verts",
",",
"Cells",
"=",
"Cells",
",",
"fname",
"=",
"fname",
",",
"cdata",
"=",
"cdata",
")"
]
| Coarse grid visualization of aggregate groups.
Create .vtu files for use in Paraview or display with Matplotlib.
Parameters
----------
Verts : {array}
coordinate array (N x D)
E2V : {array}
element index array (Nel x Nelnodes)
Agg : {csr_matrix}
sparse matrix for the aggregate-vertex relationship (N x Nagg)
mesh_type : {string}
type of elements: vertex, tri, quad, tet, hex (all 3d)
fname : {string, file object}
file to be written, e.g. 'output.vtu'
output : {string}
'vtk' or 'matplotlib'
Returns
-------
- Writes data to .vtu file for use in paraview (xml 0.1 format) or
displays to screen using matplotlib
Notes
-----
- Works for both 2d and 3d elements. Element groupings are colored
with data equal to 2.0 and stringy edges in the aggregate are colored
with 3.0
Examples
--------
>>> from pyamg.aggregation import standard_aggregation
>>> from pyamg.vis.vis_coarse import vis_aggregate_groups
>>> from pyamg.gallery import load_example
>>> data = load_example('unit_square')
>>> A = data['A'].tocsr()
>>> V = data['vertices']
>>> E2V = data['elements']
>>> Agg = standard_aggregation(A)[0]
>>> vis_aggregate_groups(Verts=V, E2V=E2V, Agg=Agg, mesh_type='tri',
output='vtk', fname='output.vtu')
>>> from pyamg.aggregation import standard_aggregation
>>> from pyamg.vis.vis_coarse import vis_aggregate_groups
>>> from pyamg.gallery import load_example
>>> data = load_example('unit_cube')
>>> A = data['A'].tocsr()
>>> V = data['vertices']
>>> E2V = data['elements']
>>> Agg = standard_aggregation(A)[0]
>>> vis_aggregate_groups(Verts=V, E2V=E2V, Agg=Agg, mesh_type='tet',
output='vtk', fname='output.vtu') | [
"Coarse",
"grid",
"visualization",
"of",
"aggregate",
"groups",
"."
]
| python | train |
timknip/pycsg | csg/geom.py | https://github.com/timknip/pycsg/blob/b8f9710fd15c38dcc275d56a2108f604af38dcc8/csg/geom.py#L50-L52 | def plus(self, a):
""" Add. """
return Vector(self.x+a.x, self.y+a.y, self.z+a.z) | [
"def",
"plus",
"(",
"self",
",",
"a",
")",
":",
"return",
"Vector",
"(",
"self",
".",
"x",
"+",
"a",
".",
"x",
",",
"self",
".",
"y",
"+",
"a",
".",
"y",
",",
"self",
".",
"z",
"+",
"a",
".",
"z",
")"
]
| Add. | [
"Add",
"."
]
| python | train |
google/grr | grr/server/grr_response_server/flow.py | https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/server/grr_response_server/flow.py#L560-L566 | def Close(self):
"""Flushes the flow and all its requests to the data_store."""
self._CheckLeaseAndFlush()
super(FlowBase, self).Close()
# Writing the messages queued in the queue_manager of the runner always has
# to be the last thing that happens or we will have a race condition.
self.FlushMessages() | [
"def",
"Close",
"(",
"self",
")",
":",
"self",
".",
"_CheckLeaseAndFlush",
"(",
")",
"super",
"(",
"FlowBase",
",",
"self",
")",
".",
"Close",
"(",
")",
"# Writing the messages queued in the queue_manager of the runner always has",
"# to be the last thing that happens or we will have a race condition.",
"self",
".",
"FlushMessages",
"(",
")"
]
| Flushes the flow and all its requests to the data_store. | [
"Flushes",
"the",
"flow",
"and",
"all",
"its",
"requests",
"to",
"the",
"data_store",
"."
]
| python | train |
ihmeuw/vivarium | src/vivarium/interface/interactive.py | https://github.com/ihmeuw/vivarium/blob/c5f5d50f775c8bf337d3aae1ff7c57c025a8e258/src/vivarium/interface/interactive.py#L261-L286 | def initialize_simulation_from_model_specification(model_specification_file: str) -> InteractiveContext:
"""Construct a simulation from a model specification file.
The simulation context returned by this method still needs to be setup by
calling its setup method. It is mostly useful for testing and debugging.
Parameters
----------
model_specification_file
The path to a model specification file.
Returns
-------
An initialized (but not set up) simulation context.
"""
model_specification = build_model_specification(model_specification_file)
plugin_config = model_specification.plugins
component_config = model_specification.components
simulation_config = model_specification.configuration
plugin_manager = PluginManager(plugin_config)
component_config_parser = plugin_manager.get_plugin('component_configuration_parser')
components = component_config_parser.get_components(component_config)
return InteractiveContext(simulation_config, components, plugin_manager) | [
"def",
"initialize_simulation_from_model_specification",
"(",
"model_specification_file",
":",
"str",
")",
"->",
"InteractiveContext",
":",
"model_specification",
"=",
"build_model_specification",
"(",
"model_specification_file",
")",
"plugin_config",
"=",
"model_specification",
".",
"plugins",
"component_config",
"=",
"model_specification",
".",
"components",
"simulation_config",
"=",
"model_specification",
".",
"configuration",
"plugin_manager",
"=",
"PluginManager",
"(",
"plugin_config",
")",
"component_config_parser",
"=",
"plugin_manager",
".",
"get_plugin",
"(",
"'component_configuration_parser'",
")",
"components",
"=",
"component_config_parser",
".",
"get_components",
"(",
"component_config",
")",
"return",
"InteractiveContext",
"(",
"simulation_config",
",",
"components",
",",
"plugin_manager",
")"
]
| Construct a simulation from a model specification file.
The simulation context returned by this method still needs to be setup by
calling its setup method. It is mostly useful for testing and debugging.
Parameters
----------
model_specification_file
The path to a model specification file.
Returns
-------
An initialized (but not set up) simulation context. | [
"Construct",
"a",
"simulation",
"from",
"a",
"model",
"specification",
"file",
"."
]
| python | train |
PredixDev/predixpy | predix/admin/cf/api.py | https://github.com/PredixDev/predixpy/blob/a0cb34cf40f716229351bb6d90d6ecace958c81f/predix/admin/cf/api.py#L50-L66 | def get(self, path):
"""
Generic GET with headers
"""
uri = self.config.get_target() + path
headers = self._get_headers()
logging.debug("URI=GET " + str(uri))
logging.debug("HEADERS=" + str(headers))
response = self.session.get(uri, headers=headers)
if response.status_code == 200:
return response.json()
elif response.status_code == 401:
raise predix.admin.cf.config.CloudFoundryLoginError('token invalid')
else:
response.raise_for_status() | [
"def",
"get",
"(",
"self",
",",
"path",
")",
":",
"uri",
"=",
"self",
".",
"config",
".",
"get_target",
"(",
")",
"+",
"path",
"headers",
"=",
"self",
".",
"_get_headers",
"(",
")",
"logging",
".",
"debug",
"(",
"\"URI=GET \"",
"+",
"str",
"(",
"uri",
")",
")",
"logging",
".",
"debug",
"(",
"\"HEADERS=\"",
"+",
"str",
"(",
"headers",
")",
")",
"response",
"=",
"self",
".",
"session",
".",
"get",
"(",
"uri",
",",
"headers",
"=",
"headers",
")",
"if",
"response",
".",
"status_code",
"==",
"200",
":",
"return",
"response",
".",
"json",
"(",
")",
"elif",
"response",
".",
"status_code",
"==",
"401",
":",
"raise",
"predix",
".",
"admin",
".",
"cf",
".",
"config",
".",
"CloudFoundryLoginError",
"(",
"'token invalid'",
")",
"else",
":",
"response",
".",
"raise_for_status",
"(",
")"
]
| Generic GET with headers | [
"Generic",
"GET",
"with",
"headers"
]
| python | train |
jssimporter/python-jss | jss/jss_prefs.py | https://github.com/jssimporter/python-jss/blob/b95185d74e0c0531b0b563f280d4129e21d5fe5d/jss/jss_prefs.py#L134-L167 | def parse_plist(self, preferences_file):
"""Try to reset preferences from preference_file."""
preferences_file = os.path.expanduser(preferences_file)
# Try to open using FoundationPlist. If it's not available,
# fall back to plistlib and hope it's not binary encoded.
try:
prefs = FoundationPlist.readPlist(preferences_file)
except NameError:
try:
prefs = plistlib.readPlist(preferences_file)
except ExpatError:
# If we're on OSX, try to convert using another
# tool.
if is_osx():
subprocess.call(["plutil", "-convert", "xml1",
preferences_file])
prefs = plistlib.readPlist(preferences_file)
self.preferences_file = preferences_file
self.user = prefs.get("jss_user")
self.password = prefs.get("jss_pass")
self.url = prefs.get("jss_url")
if not all([self.user, self.password, self.url]):
raise JSSPrefsMissingKeyError("Please provide all required "
"preferences!")
# Optional file repository array. Defaults to empty list.
self.repos = []
for repo in prefs.get("repos", []):
self.repos.append(dict(repo))
self.verify = prefs.get("verify", True)
self.suppress_warnings = prefs.get("suppress_warnings", True) | [
"def",
"parse_plist",
"(",
"self",
",",
"preferences_file",
")",
":",
"preferences_file",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"preferences_file",
")",
"# Try to open using FoundationPlist. If it's not available,",
"# fall back to plistlib and hope it's not binary encoded.",
"try",
":",
"prefs",
"=",
"FoundationPlist",
".",
"readPlist",
"(",
"preferences_file",
")",
"except",
"NameError",
":",
"try",
":",
"prefs",
"=",
"plistlib",
".",
"readPlist",
"(",
"preferences_file",
")",
"except",
"ExpatError",
":",
"# If we're on OSX, try to convert using another",
"# tool.",
"if",
"is_osx",
"(",
")",
":",
"subprocess",
".",
"call",
"(",
"[",
"\"plutil\"",
",",
"\"-convert\"",
",",
"\"xml1\"",
",",
"preferences_file",
"]",
")",
"prefs",
"=",
"plistlib",
".",
"readPlist",
"(",
"preferences_file",
")",
"self",
".",
"preferences_file",
"=",
"preferences_file",
"self",
".",
"user",
"=",
"prefs",
".",
"get",
"(",
"\"jss_user\"",
")",
"self",
".",
"password",
"=",
"prefs",
".",
"get",
"(",
"\"jss_pass\"",
")",
"self",
".",
"url",
"=",
"prefs",
".",
"get",
"(",
"\"jss_url\"",
")",
"if",
"not",
"all",
"(",
"[",
"self",
".",
"user",
",",
"self",
".",
"password",
",",
"self",
".",
"url",
"]",
")",
":",
"raise",
"JSSPrefsMissingKeyError",
"(",
"\"Please provide all required \"",
"\"preferences!\"",
")",
"# Optional file repository array. Defaults to empty list.",
"self",
".",
"repos",
"=",
"[",
"]",
"for",
"repo",
"in",
"prefs",
".",
"get",
"(",
"\"repos\"",
",",
"[",
"]",
")",
":",
"self",
".",
"repos",
".",
"append",
"(",
"dict",
"(",
"repo",
")",
")",
"self",
".",
"verify",
"=",
"prefs",
".",
"get",
"(",
"\"verify\"",
",",
"True",
")",
"self",
".",
"suppress_warnings",
"=",
"prefs",
".",
"get",
"(",
"\"suppress_warnings\"",
",",
"True",
")"
]
| Try to reset preferences from preference_file. | [
"Try",
"to",
"reset",
"preferences",
"from",
"preference_file",
"."
]
| python | train |
pybel/pybel | src/pybel/manager/database_io.py | https://github.com/pybel/pybel/blob/c8a7a1bdae4c475fa2a8c77f3a9a5f6d79556ca0/src/pybel/manager/database_io.py#L20-L38 | def to_database(graph, manager: Optional[Manager] = None, store_parts: bool = True, use_tqdm: bool = False):
"""Store a graph in a database.
:param BELGraph graph: A BEL graph
:param store_parts: Should the graph be stored in the edge store?
:return: If successful, returns the network object from the database.
:rtype: Optional[Network]
"""
if manager is None:
manager = Manager()
try:
return manager.insert_graph(graph, store_parts=store_parts, use_tqdm=use_tqdm)
except (IntegrityError, OperationalError):
manager.session.rollback()
log.exception('Error storing graph')
except Exception as e:
manager.session.rollback()
raise e | [
"def",
"to_database",
"(",
"graph",
",",
"manager",
":",
"Optional",
"[",
"Manager",
"]",
"=",
"None",
",",
"store_parts",
":",
"bool",
"=",
"True",
",",
"use_tqdm",
":",
"bool",
"=",
"False",
")",
":",
"if",
"manager",
"is",
"None",
":",
"manager",
"=",
"Manager",
"(",
")",
"try",
":",
"return",
"manager",
".",
"insert_graph",
"(",
"graph",
",",
"store_parts",
"=",
"store_parts",
",",
"use_tqdm",
"=",
"use_tqdm",
")",
"except",
"(",
"IntegrityError",
",",
"OperationalError",
")",
":",
"manager",
".",
"session",
".",
"rollback",
"(",
")",
"log",
".",
"exception",
"(",
"'Error storing graph'",
")",
"except",
"Exception",
"as",
"e",
":",
"manager",
".",
"session",
".",
"rollback",
"(",
")",
"raise",
"e"
]
| Store a graph in a database.
:param BELGraph graph: A BEL graph
:param store_parts: Should the graph be stored in the edge store?
:return: If successful, returns the network object from the database.
:rtype: Optional[Network] | [
"Store",
"a",
"graph",
"in",
"a",
"database",
"."
]
| python | train |
xeroc/python-graphenelib | grapheneapi/http.py | https://github.com/xeroc/python-graphenelib/blob/8bb5396bc79998ee424cf3813af478304173f3a6/grapheneapi/http.py#L22-L38 | def rpcexec(self, payload):
""" Execute a call by sending the payload
:param json payload: Payload data
:raises ValueError: if the server does not respond in proper JSON
format
:raises HttpInvalidStatusCode: if the server returns a status code
that is not 200
"""
log.debug(json.dumps(payload))
query = requests.post(self.url, json=payload, proxies=self.proxies())
if query.status_code != 200: # pragma: no cover
raise HttpInvalidStatusCode(
"Status code returned: {}".format(query.status_code)
)
return query.text | [
"def",
"rpcexec",
"(",
"self",
",",
"payload",
")",
":",
"log",
".",
"debug",
"(",
"json",
".",
"dumps",
"(",
"payload",
")",
")",
"query",
"=",
"requests",
".",
"post",
"(",
"self",
".",
"url",
",",
"json",
"=",
"payload",
",",
"proxies",
"=",
"self",
".",
"proxies",
"(",
")",
")",
"if",
"query",
".",
"status_code",
"!=",
"200",
":",
"# pragma: no cover",
"raise",
"HttpInvalidStatusCode",
"(",
"\"Status code returned: {}\"",
".",
"format",
"(",
"query",
".",
"status_code",
")",
")",
"return",
"query",
".",
"text"
]
| Execute a call by sending the payload
:param json payload: Payload data
:raises ValueError: if the server does not respond in proper JSON
format
:raises HttpInvalidStatusCode: if the server returns a status code
that is not 200 | [
"Execute",
"a",
"call",
"by",
"sending",
"the",
"payload"
]
| python | valid |
Karaage-Cluster/python-tldap | tldap/backend/fake_transactions.py | https://github.com/Karaage-Cluster/python-tldap/blob/61f1af74a3648cb6491e7eeb1ee2eb395d67bf59/tldap/backend/fake_transactions.py#L215-L294 | def modify(self, dn: str, mod_list: dict) -> None:
"""
Modify a DN in the LDAP database; See ldap module. Doesn't return a
result if transactions enabled.
"""
_debug("modify", self, dn, mod_list)
# need to work out how to reverse changes in mod_list; result in revlist
revlist = {}
# get the current cached attributes
result = self._cache_get_for_dn(dn)
# find the how to reverse mod_list (for rollback) and put result in
# revlist. Also simulate actions on cache.
for mod_type, l in six.iteritems(mod_list):
for mod_op, mod_vals in l:
_debug("attribute:", mod_type)
if mod_type in result:
_debug("attribute cache:", result[mod_type])
else:
_debug("attribute cache is empty")
_debug("attribute modify:", (mod_op, mod_vals))
if mod_vals is not None:
if not isinstance(mod_vals, list):
mod_vals = [mod_vals]
if mod_op == ldap3.MODIFY_ADD:
# reverse of MODIFY_ADD is MODIFY_DELETE
reverse = (ldap3.MODIFY_DELETE, mod_vals)
elif mod_op == ldap3.MODIFY_DELETE and len(mod_vals) > 0:
# Reverse of MODIFY_DELETE is MODIFY_ADD, but only if value
# is given if mod_vals is None, this means all values where
# deleted.
reverse = (ldap3.MODIFY_ADD, mod_vals)
elif mod_op == ldap3.MODIFY_DELETE \
or mod_op == ldap3.MODIFY_REPLACE:
if mod_type in result:
# If MODIFY_DELETE with no values or MODIFY_REPLACE
# then we have to replace all attributes with cached
# state
reverse = (
ldap3.MODIFY_REPLACE,
tldap.modlist.escape_list(result[mod_type])
)
else:
# except if we have no cached state for this DN, in
# which case we delete it.
reverse = (ldap3.MODIFY_DELETE, [])
else:
raise RuntimeError("mod_op of %d not supported" % mod_op)
reverse = [reverse]
_debug("attribute reverse:", reverse)
if mod_type in result:
_debug("attribute cache:", result[mod_type])
else:
_debug("attribute cache is empty")
revlist[mod_type] = reverse
_debug("--")
_debug("mod_list:", mod_list)
_debug("revlist:", revlist)
_debug("--")
# now the hard stuff is over, we get to the easy stuff
def on_commit(obj):
obj.modify(dn, mod_list)
def on_rollback(obj):
obj.modify(dn, revlist)
return self._process(on_commit, on_rollback) | [
"def",
"modify",
"(",
"self",
",",
"dn",
":",
"str",
",",
"mod_list",
":",
"dict",
")",
"->",
"None",
":",
"_debug",
"(",
"\"modify\"",
",",
"self",
",",
"dn",
",",
"mod_list",
")",
"# need to work out how to reverse changes in mod_list; result in revlist",
"revlist",
"=",
"{",
"}",
"# get the current cached attributes",
"result",
"=",
"self",
".",
"_cache_get_for_dn",
"(",
"dn",
")",
"# find the how to reverse mod_list (for rollback) and put result in",
"# revlist. Also simulate actions on cache.",
"for",
"mod_type",
",",
"l",
"in",
"six",
".",
"iteritems",
"(",
"mod_list",
")",
":",
"for",
"mod_op",
",",
"mod_vals",
"in",
"l",
":",
"_debug",
"(",
"\"attribute:\"",
",",
"mod_type",
")",
"if",
"mod_type",
"in",
"result",
":",
"_debug",
"(",
"\"attribute cache:\"",
",",
"result",
"[",
"mod_type",
"]",
")",
"else",
":",
"_debug",
"(",
"\"attribute cache is empty\"",
")",
"_debug",
"(",
"\"attribute modify:\"",
",",
"(",
"mod_op",
",",
"mod_vals",
")",
")",
"if",
"mod_vals",
"is",
"not",
"None",
":",
"if",
"not",
"isinstance",
"(",
"mod_vals",
",",
"list",
")",
":",
"mod_vals",
"=",
"[",
"mod_vals",
"]",
"if",
"mod_op",
"==",
"ldap3",
".",
"MODIFY_ADD",
":",
"# reverse of MODIFY_ADD is MODIFY_DELETE",
"reverse",
"=",
"(",
"ldap3",
".",
"MODIFY_DELETE",
",",
"mod_vals",
")",
"elif",
"mod_op",
"==",
"ldap3",
".",
"MODIFY_DELETE",
"and",
"len",
"(",
"mod_vals",
")",
">",
"0",
":",
"# Reverse of MODIFY_DELETE is MODIFY_ADD, but only if value",
"# is given if mod_vals is None, this means all values where",
"# deleted.",
"reverse",
"=",
"(",
"ldap3",
".",
"MODIFY_ADD",
",",
"mod_vals",
")",
"elif",
"mod_op",
"==",
"ldap3",
".",
"MODIFY_DELETE",
"or",
"mod_op",
"==",
"ldap3",
".",
"MODIFY_REPLACE",
":",
"if",
"mod_type",
"in",
"result",
":",
"# If MODIFY_DELETE with no values or MODIFY_REPLACE",
"# then we have to replace all attributes with cached",
"# state",
"reverse",
"=",
"(",
"ldap3",
".",
"MODIFY_REPLACE",
",",
"tldap",
".",
"modlist",
".",
"escape_list",
"(",
"result",
"[",
"mod_type",
"]",
")",
")",
"else",
":",
"# except if we have no cached state for this DN, in",
"# which case we delete it.",
"reverse",
"=",
"(",
"ldap3",
".",
"MODIFY_DELETE",
",",
"[",
"]",
")",
"else",
":",
"raise",
"RuntimeError",
"(",
"\"mod_op of %d not supported\"",
"%",
"mod_op",
")",
"reverse",
"=",
"[",
"reverse",
"]",
"_debug",
"(",
"\"attribute reverse:\"",
",",
"reverse",
")",
"if",
"mod_type",
"in",
"result",
":",
"_debug",
"(",
"\"attribute cache:\"",
",",
"result",
"[",
"mod_type",
"]",
")",
"else",
":",
"_debug",
"(",
"\"attribute cache is empty\"",
")",
"revlist",
"[",
"mod_type",
"]",
"=",
"reverse",
"_debug",
"(",
"\"--\"",
")",
"_debug",
"(",
"\"mod_list:\"",
",",
"mod_list",
")",
"_debug",
"(",
"\"revlist:\"",
",",
"revlist",
")",
"_debug",
"(",
"\"--\"",
")",
"# now the hard stuff is over, we get to the easy stuff",
"def",
"on_commit",
"(",
"obj",
")",
":",
"obj",
".",
"modify",
"(",
"dn",
",",
"mod_list",
")",
"def",
"on_rollback",
"(",
"obj",
")",
":",
"obj",
".",
"modify",
"(",
"dn",
",",
"revlist",
")",
"return",
"self",
".",
"_process",
"(",
"on_commit",
",",
"on_rollback",
")"
]
| Modify a DN in the LDAP database; See ldap module. Doesn't return a
result if transactions enabled. | [
"Modify",
"a",
"DN",
"in",
"the",
"LDAP",
"database",
";",
"See",
"ldap",
"module",
".",
"Doesn",
"t",
"return",
"a",
"result",
"if",
"transactions",
"enabled",
"."
]
| python | train |
BernardFW/bernard | src/bernard/platforms/facebook/platform.py | https://github.com/BernardFW/bernard/blob/9c55703e5ffe5717c9fa39793df59dbfa5b4c5ab/src/bernard/platforms/facebook/platform.py#L484-L505 | async def _get_messenger_profile(self, page, fields: List[Text]):
"""
Fetch the value of specified fields in order to avoid setting the same
field twice at the same value (since Facebook engineers are not able
to make menus that keep on working if set again).
"""
params = {
'access_token': page['page_token'],
'fields': ','.join(fields),
}
get = self.session.get(PROFILE_ENDPOINT, params=params)
async with get as r:
await self._handle_fb_response(r)
out = {}
for data in (await r.json())['data']:
out.update(data)
return out | [
"async",
"def",
"_get_messenger_profile",
"(",
"self",
",",
"page",
",",
"fields",
":",
"List",
"[",
"Text",
"]",
")",
":",
"params",
"=",
"{",
"'access_token'",
":",
"page",
"[",
"'page_token'",
"]",
",",
"'fields'",
":",
"','",
".",
"join",
"(",
"fields",
")",
",",
"}",
"get",
"=",
"self",
".",
"session",
".",
"get",
"(",
"PROFILE_ENDPOINT",
",",
"params",
"=",
"params",
")",
"async",
"with",
"get",
"as",
"r",
":",
"await",
"self",
".",
"_handle_fb_response",
"(",
"r",
")",
"out",
"=",
"{",
"}",
"for",
"data",
"in",
"(",
"await",
"r",
".",
"json",
"(",
")",
")",
"[",
"'data'",
"]",
":",
"out",
".",
"update",
"(",
"data",
")",
"return",
"out"
]
| Fetch the value of specified fields in order to avoid setting the same
field twice at the same value (since Facebook engineers are not able
to make menus that keep on working if set again). | [
"Fetch",
"the",
"value",
"of",
"specified",
"fields",
"in",
"order",
"to",
"avoid",
"setting",
"the",
"same",
"field",
"twice",
"at",
"the",
"same",
"value",
"(",
"since",
"Facebook",
"engineers",
"are",
"not",
"able",
"to",
"make",
"menus",
"that",
"keep",
"on",
"working",
"if",
"set",
"again",
")",
"."
]
| python | train |
GoogleCloudPlatform/compute-image-packages | packages/python-google-compute-engine/google_compute_engine/accounts/accounts_daemon.py | https://github.com/GoogleCloudPlatform/compute-image-packages/blob/53ea8cd069fb4d9a1984d1c167e54c133033f8da/packages/python-google-compute-engine/google_compute_engine/accounts/accounts_daemon.py#L221-L230 | def _RemoveUsers(self, remove_users):
"""Deprovision Linux user accounts that do not appear in account metadata.
Args:
remove_users: list, the username strings of the Linux accounts to remove.
"""
for username in remove_users:
self.utils.RemoveUser(username)
self.user_ssh_keys.pop(username, None)
self.invalid_users -= set(remove_users) | [
"def",
"_RemoveUsers",
"(",
"self",
",",
"remove_users",
")",
":",
"for",
"username",
"in",
"remove_users",
":",
"self",
".",
"utils",
".",
"RemoveUser",
"(",
"username",
")",
"self",
".",
"user_ssh_keys",
".",
"pop",
"(",
"username",
",",
"None",
")",
"self",
".",
"invalid_users",
"-=",
"set",
"(",
"remove_users",
")"
]
| Deprovision Linux user accounts that do not appear in account metadata.
Args:
remove_users: list, the username strings of the Linux accounts to remove. | [
"Deprovision",
"Linux",
"user",
"accounts",
"that",
"do",
"not",
"appear",
"in",
"account",
"metadata",
"."
]
| python | train |
jvamvas/rhymediscovery | rhymediscovery/celex.py | https://github.com/jvamvas/rhymediscovery/blob/b76509c98554b12efa06fe9ab557cca5fa5e4a79/rhymediscovery/celex.py#L44-L74 | def init_perfect_ttable(words):
"""initialize (normalized) theta according to whether words rhyme"""
d = read_celex()
not_in_dict = 0
n = len(words)
t_table = numpy.zeros((n, n + 1))
# initialize P(c|r) accordingly
for r, w in enumerate(words):
if w not in d:
not_in_dict += 1
for c, v in enumerate(words):
if c < r:
t_table[r, c] = t_table[c, r]
elif w in d and v in d:
t_table[r, c] = int(is_rhyme(d, w, v)) + 0.001 # for backoff
else:
t_table[r, c] = random.random()
t_table[r, n] = random.random() # no estimate for P(r|no history)
print(not_in_dict, "of", n, " words are not in CELEX")
# normalize
for c in range(n + 1):
tot = sum(t_table[:, c])
for r in range(n):
t_table[r, c] = t_table[r, c] / tot
return t_table | [
"def",
"init_perfect_ttable",
"(",
"words",
")",
":",
"d",
"=",
"read_celex",
"(",
")",
"not_in_dict",
"=",
"0",
"n",
"=",
"len",
"(",
"words",
")",
"t_table",
"=",
"numpy",
".",
"zeros",
"(",
"(",
"n",
",",
"n",
"+",
"1",
")",
")",
"# initialize P(c|r) accordingly",
"for",
"r",
",",
"w",
"in",
"enumerate",
"(",
"words",
")",
":",
"if",
"w",
"not",
"in",
"d",
":",
"not_in_dict",
"+=",
"1",
"for",
"c",
",",
"v",
"in",
"enumerate",
"(",
"words",
")",
":",
"if",
"c",
"<",
"r",
":",
"t_table",
"[",
"r",
",",
"c",
"]",
"=",
"t_table",
"[",
"c",
",",
"r",
"]",
"elif",
"w",
"in",
"d",
"and",
"v",
"in",
"d",
":",
"t_table",
"[",
"r",
",",
"c",
"]",
"=",
"int",
"(",
"is_rhyme",
"(",
"d",
",",
"w",
",",
"v",
")",
")",
"+",
"0.001",
"# for backoff",
"else",
":",
"t_table",
"[",
"r",
",",
"c",
"]",
"=",
"random",
".",
"random",
"(",
")",
"t_table",
"[",
"r",
",",
"n",
"]",
"=",
"random",
".",
"random",
"(",
")",
"# no estimate for P(r|no history)",
"print",
"(",
"not_in_dict",
",",
"\"of\"",
",",
"n",
",",
"\" words are not in CELEX\"",
")",
"# normalize",
"for",
"c",
"in",
"range",
"(",
"n",
"+",
"1",
")",
":",
"tot",
"=",
"sum",
"(",
"t_table",
"[",
":",
",",
"c",
"]",
")",
"for",
"r",
"in",
"range",
"(",
"n",
")",
":",
"t_table",
"[",
"r",
",",
"c",
"]",
"=",
"t_table",
"[",
"r",
",",
"c",
"]",
"/",
"tot",
"return",
"t_table"
]
| initialize (normalized) theta according to whether words rhyme | [
"initialize",
"(",
"normalized",
")",
"theta",
"according",
"to",
"whether",
"words",
"rhyme"
]
| python | train |
lsst-sqre/sqre-codekit | codekit/codetools.py | https://github.com/lsst-sqre/sqre-codekit/blob/98122404cd9065d4d1d570867fe518042669126c/codekit/codetools.py#L24-L91 | def setup_logging(verbosity=0):
"""Configure python `logging`. This is required before the `debug()`,
`info()`, etc. functions may be used.
If any other `codekit.*` modules, which are not a "package", have been
imported, and they have a `setup_logging()` function, that is called before
`logging` is configured. This gives other modules a chance to configure
their own logging.
As an example, if `progressbar2` is being used, it needs to be configure a
`sys.stderr` wrapper before `logging` is configured. Thus, some gymnastics
are being done to delay `logging` setup while simultanously not requiring
that `progressbar2` be imported unless it is actually being used.
Parameters
----------
verbosity: int
Logging / output verbosity level. 1 is useful for more purposes while
2+ is generaly TMI.
"""
import pkgutil
import logging
import codekit
# https://packaging.python.org/guides/creating-and-discovering-plugins/#using-namespace-packages
def iter_namespace(ns_pkg):
# Specifying the second argument (prefix) to iter_modules makes the
# returned name an absolute name instead of a relative one. This allows
# import_module to work without having to do additional modification to
# the name.
return pkgutil.iter_modules(ns_pkg.__path__, ns_pkg.__name__ + ".")
# find codekit modules that are not a package
codekit_mods = [name for finder, name, ispkg in iter_namespace(codekit)
if ispkg is False]
# filter out the current module
# XXX `is not` doesn't work here but `!=` does... why???
codekit_mods = [m for m in codekit_mods
if m != __name__]
# filter out modules that have not been imported
codekit_mods = [m for m in codekit_mods
if m in sys.modules]
# record funcs successfully called
logging_funcs = []
for m in codekit_mods:
try:
lsetup = getattr(sys.modules[m], 'setup_logging')
lsetup(verbosity=verbosity)
logging_funcs.append(lsetup)
except AttributeError:
# ignore modules that do have a setup_logging()
pass
logging.basicConfig()
# configure `logger` for the entire module
global logger
logger = logging.getLogger('codekit')
if verbosity:
logger.setLevel(logging.DEBUG)
else:
logger.setLevel(logging.INFO)
[debug("{m}.{f}()".format(m=f.__module__, f=f.__name__))
for f in logging_funcs] | [
"def",
"setup_logging",
"(",
"verbosity",
"=",
"0",
")",
":",
"import",
"pkgutil",
"import",
"logging",
"import",
"codekit",
"# https://packaging.python.org/guides/creating-and-discovering-plugins/#using-namespace-packages",
"def",
"iter_namespace",
"(",
"ns_pkg",
")",
":",
"# Specifying the second argument (prefix) to iter_modules makes the",
"# returned name an absolute name instead of a relative one. This allows",
"# import_module to work without having to do additional modification to",
"# the name.",
"return",
"pkgutil",
".",
"iter_modules",
"(",
"ns_pkg",
".",
"__path__",
",",
"ns_pkg",
".",
"__name__",
"+",
"\".\"",
")",
"# find codekit modules that are not a package",
"codekit_mods",
"=",
"[",
"name",
"for",
"finder",
",",
"name",
",",
"ispkg",
"in",
"iter_namespace",
"(",
"codekit",
")",
"if",
"ispkg",
"is",
"False",
"]",
"# filter out the current module",
"# XXX `is not` doesn't work here but `!=` does... why???",
"codekit_mods",
"=",
"[",
"m",
"for",
"m",
"in",
"codekit_mods",
"if",
"m",
"!=",
"__name__",
"]",
"# filter out modules that have not been imported",
"codekit_mods",
"=",
"[",
"m",
"for",
"m",
"in",
"codekit_mods",
"if",
"m",
"in",
"sys",
".",
"modules",
"]",
"# record funcs successfully called",
"logging_funcs",
"=",
"[",
"]",
"for",
"m",
"in",
"codekit_mods",
":",
"try",
":",
"lsetup",
"=",
"getattr",
"(",
"sys",
".",
"modules",
"[",
"m",
"]",
",",
"'setup_logging'",
")",
"lsetup",
"(",
"verbosity",
"=",
"verbosity",
")",
"logging_funcs",
".",
"append",
"(",
"lsetup",
")",
"except",
"AttributeError",
":",
"# ignore modules that do have a setup_logging()",
"pass",
"logging",
".",
"basicConfig",
"(",
")",
"# configure `logger` for the entire module",
"global",
"logger",
"logger",
"=",
"logging",
".",
"getLogger",
"(",
"'codekit'",
")",
"if",
"verbosity",
":",
"logger",
".",
"setLevel",
"(",
"logging",
".",
"DEBUG",
")",
"else",
":",
"logger",
".",
"setLevel",
"(",
"logging",
".",
"INFO",
")",
"[",
"debug",
"(",
"\"{m}.{f}()\"",
".",
"format",
"(",
"m",
"=",
"f",
".",
"__module__",
",",
"f",
"=",
"f",
".",
"__name__",
")",
")",
"for",
"f",
"in",
"logging_funcs",
"]"
]
| Configure python `logging`. This is required before the `debug()`,
`info()`, etc. functions may be used.
If any other `codekit.*` modules, which are not a "package", have been
imported, and they have a `setup_logging()` function, that is called before
`logging` is configured. This gives other modules a chance to configure
their own logging.
As an example, if `progressbar2` is being used, it needs to be configure a
`sys.stderr` wrapper before `logging` is configured. Thus, some gymnastics
are being done to delay `logging` setup while simultanously not requiring
that `progressbar2` be imported unless it is actually being used.
Parameters
----------
verbosity: int
Logging / output verbosity level. 1 is useful for more purposes while
2+ is generaly TMI. | [
"Configure",
"python",
"logging",
".",
"This",
"is",
"required",
"before",
"the",
"debug",
"()",
"info",
"()",
"etc",
".",
"functions",
"may",
"be",
"used",
"."
]
| python | train |
vxgmichel/aiostream | aiostream/stream/advanced.py | https://github.com/vxgmichel/aiostream/blob/43bdf04ab19108a3f1b5a472062e1392a26cbcf8/aiostream/stream/advanced.py#L116-L126 | def flatten(source, task_limit=None):
"""Given an asynchronous sequence of sequences, generate the elements
of the sequences as soon as they're received.
The sequences are awaited concurrently, although it's possible to limit
the amount of running sequences using the `task_limit` argument.
Errors raised in the source or an element sequence are propagated.
"""
return base_combine.raw(
source, task_limit=task_limit, switch=False, ordered=False) | [
"def",
"flatten",
"(",
"source",
",",
"task_limit",
"=",
"None",
")",
":",
"return",
"base_combine",
".",
"raw",
"(",
"source",
",",
"task_limit",
"=",
"task_limit",
",",
"switch",
"=",
"False",
",",
"ordered",
"=",
"False",
")"
]
| Given an asynchronous sequence of sequences, generate the elements
of the sequences as soon as they're received.
The sequences are awaited concurrently, although it's possible to limit
the amount of running sequences using the `task_limit` argument.
Errors raised in the source or an element sequence are propagated. | [
"Given",
"an",
"asynchronous",
"sequence",
"of",
"sequences",
"generate",
"the",
"elements",
"of",
"the",
"sequences",
"as",
"soon",
"as",
"they",
"re",
"received",
"."
]
| python | train |
ASKIDA/Selenium2LibraryExtension | src/Selenium2LibraryExtension/keywords/__init__.py | https://github.com/ASKIDA/Selenium2LibraryExtension/blob/5ca3fa776063c6046dff317cb2575e4772d7541f/src/Selenium2LibraryExtension/keywords/__init__.py#L332-L339 | def element_focus_should_be_set(self, locator):
"""Verifies the element identified by `locator` has focus.
| *Argument* | *Description* | *Example* |
| locator | Selenium 2 element locator | id=my_id |"""
self._info("Verifying element '%s' focus is set" % locator)
self._check_element_focus(True, locator) | [
"def",
"element_focus_should_be_set",
"(",
"self",
",",
"locator",
")",
":",
"self",
".",
"_info",
"(",
"\"Verifying element '%s' focus is set\"",
"%",
"locator",
")",
"self",
".",
"_check_element_focus",
"(",
"True",
",",
"locator",
")"
]
| Verifies the element identified by `locator` has focus.
| *Argument* | *Description* | *Example* |
| locator | Selenium 2 element locator | id=my_id | | [
"Verifies",
"the",
"element",
"identified",
"by",
"locator",
"has",
"focus",
"."
]
| python | train |
google/grr | api_client/python/grr_api_client/root.py | https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/api_client/python/grr_api_client/root.py#L144-L159 | def CreateGrrUser(self, username=None, user_type=None, password=None):
"""Creates a new GRR user of a given type with a given username/password."""
if not username:
raise ValueError("Username can't be empty.")
args = user_management_pb2.ApiCreateGrrUserArgs(username=username)
if user_type is not None:
args.user_type = user_type
if password is not None:
args.password = password
data = self._context.SendRequest("CreateGrrUser", args)
return GrrUser(data=data, context=self._context) | [
"def",
"CreateGrrUser",
"(",
"self",
",",
"username",
"=",
"None",
",",
"user_type",
"=",
"None",
",",
"password",
"=",
"None",
")",
":",
"if",
"not",
"username",
":",
"raise",
"ValueError",
"(",
"\"Username can't be empty.\"",
")",
"args",
"=",
"user_management_pb2",
".",
"ApiCreateGrrUserArgs",
"(",
"username",
"=",
"username",
")",
"if",
"user_type",
"is",
"not",
"None",
":",
"args",
".",
"user_type",
"=",
"user_type",
"if",
"password",
"is",
"not",
"None",
":",
"args",
".",
"password",
"=",
"password",
"data",
"=",
"self",
".",
"_context",
".",
"SendRequest",
"(",
"\"CreateGrrUser\"",
",",
"args",
")",
"return",
"GrrUser",
"(",
"data",
"=",
"data",
",",
"context",
"=",
"self",
".",
"_context",
")"
]
| Creates a new GRR user of a given type with a given username/password. | [
"Creates",
"a",
"new",
"GRR",
"user",
"of",
"a",
"given",
"type",
"with",
"a",
"given",
"username",
"/",
"password",
"."
]
| python | train |
Stewori/pytypes | pytypes/type_util.py | https://github.com/Stewori/pytypes/blob/b814d38709e84c0e0825caf8b721c20eb5a8ab3b/pytypes/type_util.py#L1104-L1145 | def _issubclass_Mapping_covariant(subclass, superclass, bound_Generic, bound_typevars,
bound_typevars_readonly, follow_fwd_refs, _recursion_check):
"""Helper for _issubclass, a.k.a pytypes.issubtype.
This subclass-check treats Mapping-values as covariant.
"""
if is_Generic(subclass):
if subclass.__origin__ is None or not issubclass(subclass.__origin__, Mapping):
return _issubclass_Generic(subclass, superclass, bound_Generic, bound_typevars,
bound_typevars_readonly, follow_fwd_refs, _recursion_check)
if superclass.__args__ is None:
if not pytypes.check_unbound_types:
raise TypeError("Attempted to check unbound mapping type(superclass): "+
str(superclass))
if pytypes.strict_unknown_check:
# Nothing is subtype of unknown type
return False
super_args = (Any, Any)
else:
super_args = superclass.__args__
if subclass.__args__ is None:
if not pytypes.check_unbound_types:
raise TypeError("Attempted to check unbound mapping type(subclass): "+
str(subclass))
if pytypes.strict_unknown_check:
# Nothing can subclass unknown type
# For value type it would be okay if superclass had Any as value type,
# as unknown type is subtype of Any. However, since key type is invariant
# and also unknown, it cannot pass.
return False
sub_args = (Any, Any)
else:
sub_args = subclass.__args__
if not _issubclass(sub_args[0], super_args[0],
bound_Generic, bound_typevars,
bound_typevars_readonly, follow_fwd_refs, _recursion_check):
return False
if not _issubclass(sub_args[1], super_args[1],
bound_Generic, bound_typevars,
bound_typevars_readonly, follow_fwd_refs, _recursion_check):
return False
return True
return issubclass(subclass, superclass) | [
"def",
"_issubclass_Mapping_covariant",
"(",
"subclass",
",",
"superclass",
",",
"bound_Generic",
",",
"bound_typevars",
",",
"bound_typevars_readonly",
",",
"follow_fwd_refs",
",",
"_recursion_check",
")",
":",
"if",
"is_Generic",
"(",
"subclass",
")",
":",
"if",
"subclass",
".",
"__origin__",
"is",
"None",
"or",
"not",
"issubclass",
"(",
"subclass",
".",
"__origin__",
",",
"Mapping",
")",
":",
"return",
"_issubclass_Generic",
"(",
"subclass",
",",
"superclass",
",",
"bound_Generic",
",",
"bound_typevars",
",",
"bound_typevars_readonly",
",",
"follow_fwd_refs",
",",
"_recursion_check",
")",
"if",
"superclass",
".",
"__args__",
"is",
"None",
":",
"if",
"not",
"pytypes",
".",
"check_unbound_types",
":",
"raise",
"TypeError",
"(",
"\"Attempted to check unbound mapping type(superclass): \"",
"+",
"str",
"(",
"superclass",
")",
")",
"if",
"pytypes",
".",
"strict_unknown_check",
":",
"# Nothing is subtype of unknown type",
"return",
"False",
"super_args",
"=",
"(",
"Any",
",",
"Any",
")",
"else",
":",
"super_args",
"=",
"superclass",
".",
"__args__",
"if",
"subclass",
".",
"__args__",
"is",
"None",
":",
"if",
"not",
"pytypes",
".",
"check_unbound_types",
":",
"raise",
"TypeError",
"(",
"\"Attempted to check unbound mapping type(subclass): \"",
"+",
"str",
"(",
"subclass",
")",
")",
"if",
"pytypes",
".",
"strict_unknown_check",
":",
"# Nothing can subclass unknown type",
"# For value type it would be okay if superclass had Any as value type,",
"# as unknown type is subtype of Any. However, since key type is invariant",
"# and also unknown, it cannot pass.",
"return",
"False",
"sub_args",
"=",
"(",
"Any",
",",
"Any",
")",
"else",
":",
"sub_args",
"=",
"subclass",
".",
"__args__",
"if",
"not",
"_issubclass",
"(",
"sub_args",
"[",
"0",
"]",
",",
"super_args",
"[",
"0",
"]",
",",
"bound_Generic",
",",
"bound_typevars",
",",
"bound_typevars_readonly",
",",
"follow_fwd_refs",
",",
"_recursion_check",
")",
":",
"return",
"False",
"if",
"not",
"_issubclass",
"(",
"sub_args",
"[",
"1",
"]",
",",
"super_args",
"[",
"1",
"]",
",",
"bound_Generic",
",",
"bound_typevars",
",",
"bound_typevars_readonly",
",",
"follow_fwd_refs",
",",
"_recursion_check",
")",
":",
"return",
"False",
"return",
"True",
"return",
"issubclass",
"(",
"subclass",
",",
"superclass",
")"
]
| Helper for _issubclass, a.k.a pytypes.issubtype.
This subclass-check treats Mapping-values as covariant. | [
"Helper",
"for",
"_issubclass",
"a",
".",
"k",
".",
"a",
"pytypes",
".",
"issubtype",
".",
"This",
"subclass",
"-",
"check",
"treats",
"Mapping",
"-",
"values",
"as",
"covariant",
"."
]
| python | train |
sassoo/goldman | goldman/queryparams/page.py | https://github.com/sassoo/goldman/blob/b72540c9ad06b5c68aadb1b4fa8cb0b716260bf2/goldman/queryparams/page.py#L100-L110 | def prev(self):
""" Generate query parameters for the prev page """
if self.total:
if self.offset - self.limit - self.limit < 0:
return self.first
else:
offset = self.offset - self.limit
return {'page[offset]': offset, 'page[limit]': self.limit}
else:
return None | [
"def",
"prev",
"(",
"self",
")",
":",
"if",
"self",
".",
"total",
":",
"if",
"self",
".",
"offset",
"-",
"self",
".",
"limit",
"-",
"self",
".",
"limit",
"<",
"0",
":",
"return",
"self",
".",
"first",
"else",
":",
"offset",
"=",
"self",
".",
"offset",
"-",
"self",
".",
"limit",
"return",
"{",
"'page[offset]'",
":",
"offset",
",",
"'page[limit]'",
":",
"self",
".",
"limit",
"}",
"else",
":",
"return",
"None"
]
| Generate query parameters for the prev page | [
"Generate",
"query",
"parameters",
"for",
"the",
"prev",
"page"
]
| python | train |
basho/riak-python-client | riak/riak_object.py | https://github.com/basho/riak-python-client/blob/91de13a16607cdf553d1a194e762734e3bec4231/riak/riak_object.py#L319-L348 | def delete(self, r=None, w=None, dw=None, pr=None, pw=None,
timeout=None):
"""
Delete this object from Riak.
:param r: R-value, wait for this many partitions to read object
before performing the put
:type r: integer
:param w: W-value, wait for this many partitions to respond
before returning to client.
:type w: integer
:param dw: DW-value, wait for this many partitions to
confirm the write before returning to client.
:type dw: integer
:param pr: PR-value, require this many primary partitions to
be available before performing the read that
precedes the put
:type pr: integer
:param pw: PW-value, require this many primary partitions to
be available before performing the put
:type pw: integer
:param timeout: a timeout value in milliseconds
:type timeout: int
:rtype: :class:`RiakObject`
"""
self.client.delete(self, r=r, w=w, dw=dw, pr=pr, pw=pw,
timeout=timeout)
self.clear()
return self | [
"def",
"delete",
"(",
"self",
",",
"r",
"=",
"None",
",",
"w",
"=",
"None",
",",
"dw",
"=",
"None",
",",
"pr",
"=",
"None",
",",
"pw",
"=",
"None",
",",
"timeout",
"=",
"None",
")",
":",
"self",
".",
"client",
".",
"delete",
"(",
"self",
",",
"r",
"=",
"r",
",",
"w",
"=",
"w",
",",
"dw",
"=",
"dw",
",",
"pr",
"=",
"pr",
",",
"pw",
"=",
"pw",
",",
"timeout",
"=",
"timeout",
")",
"self",
".",
"clear",
"(",
")",
"return",
"self"
]
| Delete this object from Riak.
:param r: R-value, wait for this many partitions to read object
before performing the put
:type r: integer
:param w: W-value, wait for this many partitions to respond
before returning to client.
:type w: integer
:param dw: DW-value, wait for this many partitions to
confirm the write before returning to client.
:type dw: integer
:param pr: PR-value, require this many primary partitions to
be available before performing the read that
precedes the put
:type pr: integer
:param pw: PW-value, require this many primary partitions to
be available before performing the put
:type pw: integer
:param timeout: a timeout value in milliseconds
:type timeout: int
:rtype: :class:`RiakObject` | [
"Delete",
"this",
"object",
"from",
"Riak",
"."
]
| python | train |
mongodb/mongo-python-driver | pymongo/message.py | https://github.com/mongodb/mongo-python-driver/blob/c29c21449e3aae74154207058cf85fd94018d4cd/pymongo/message.py#L544-L553 | def _insert_uncompressed(collection_name, docs, check_keys,
safe, last_error_args, continue_on_error, opts):
"""Internal insert message helper."""
op_insert, max_bson_size = _insert(
collection_name, docs, check_keys, continue_on_error, opts)
rid, msg = __pack_message(2002, op_insert)
if safe:
rid, gle, _ = __last_error(collection_name, last_error_args)
return rid, msg + gle, max_bson_size
return rid, msg, max_bson_size | [
"def",
"_insert_uncompressed",
"(",
"collection_name",
",",
"docs",
",",
"check_keys",
",",
"safe",
",",
"last_error_args",
",",
"continue_on_error",
",",
"opts",
")",
":",
"op_insert",
",",
"max_bson_size",
"=",
"_insert",
"(",
"collection_name",
",",
"docs",
",",
"check_keys",
",",
"continue_on_error",
",",
"opts",
")",
"rid",
",",
"msg",
"=",
"__pack_message",
"(",
"2002",
",",
"op_insert",
")",
"if",
"safe",
":",
"rid",
",",
"gle",
",",
"_",
"=",
"__last_error",
"(",
"collection_name",
",",
"last_error_args",
")",
"return",
"rid",
",",
"msg",
"+",
"gle",
",",
"max_bson_size",
"return",
"rid",
",",
"msg",
",",
"max_bson_size"
]
| Internal insert message helper. | [
"Internal",
"insert",
"message",
"helper",
"."
]
| python | train |
DataBiosphere/toil | src/toil/jobStores/googleJobStore.py | https://github.com/DataBiosphere/toil/blob/a8252277ff814e7bee0971139c2344f88e44b644/src/toil/jobStores/googleJobStore.py#L450-L476 | def _uploadStream(self, fileName, update=False, encrypt=True):
"""
Yields a context manager that can be used to write to the bucket
with a stream. See :class:`~toil.jobStores.utils.WritablePipe` for an example.
Will throw assertion error if the file shouldn't be updated
and yet exists.
:param fileName: name of file to be inserted into bucket
:type fileName: str
:param update: whether or not the file is to be updated
:type update: bool
:param encrypt: whether or not the file is encrypted
:type encrypt: bool
:return: an instance of WritablePipe.
:rtype: :class:`~toil.jobStores.utils.writablePipe`
"""
blob = self.bucket.blob(bytes(fileName), encryption_key=self.sseKey if encrypt else None)
class UploadPipe(WritablePipe):
def readFrom(self, readable):
if not update:
assert not blob.exists()
blob.upload_from_file(readable)
with UploadPipe() as writable:
yield writable | [
"def",
"_uploadStream",
"(",
"self",
",",
"fileName",
",",
"update",
"=",
"False",
",",
"encrypt",
"=",
"True",
")",
":",
"blob",
"=",
"self",
".",
"bucket",
".",
"blob",
"(",
"bytes",
"(",
"fileName",
")",
",",
"encryption_key",
"=",
"self",
".",
"sseKey",
"if",
"encrypt",
"else",
"None",
")",
"class",
"UploadPipe",
"(",
"WritablePipe",
")",
":",
"def",
"readFrom",
"(",
"self",
",",
"readable",
")",
":",
"if",
"not",
"update",
":",
"assert",
"not",
"blob",
".",
"exists",
"(",
")",
"blob",
".",
"upload_from_file",
"(",
"readable",
")",
"with",
"UploadPipe",
"(",
")",
"as",
"writable",
":",
"yield",
"writable"
]
| Yields a context manager that can be used to write to the bucket
with a stream. See :class:`~toil.jobStores.utils.WritablePipe` for an example.
Will throw assertion error if the file shouldn't be updated
and yet exists.
:param fileName: name of file to be inserted into bucket
:type fileName: str
:param update: whether or not the file is to be updated
:type update: bool
:param encrypt: whether or not the file is encrypted
:type encrypt: bool
:return: an instance of WritablePipe.
:rtype: :class:`~toil.jobStores.utils.writablePipe` | [
"Yields",
"a",
"context",
"manager",
"that",
"can",
"be",
"used",
"to",
"write",
"to",
"the",
"bucket",
"with",
"a",
"stream",
".",
"See",
":",
"class",
":",
"~toil",
".",
"jobStores",
".",
"utils",
".",
"WritablePipe",
"for",
"an",
"example",
"."
]
| python | train |
rstoneback/pysat | pysat/instruments/netcdf_pandas.py | https://github.com/rstoneback/pysat/blob/4ae1afd80e15e4449397d39dce8c3e969c32c422/pysat/instruments/netcdf_pandas.py#L49-L104 | def load(fnames, tag=None, sat_id=None, **kwargs):
"""Loads data using pysat.utils.load_netcdf4 .
This routine is called as needed by pysat. It is not intended
for direct user interaction.
Parameters
----------
fnames : array-like
iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.
tag : string
tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.
sat_id : string
Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.
**kwargs : extra keywords
Passthrough for additional keyword arguments specified when
instantiating an Instrument object. These additional keywords
are passed through to this routine by pysat.
Returns
-------
data, metadata
Data and Metadata are formatted for pysat. Data is a pandas
DataFrame while metadata is a pysat.Meta instance.
Note
----
Any additional keyword arguments passed to pysat.Instrument
upon instantiation are passed along to this routine and through
to the load_netcdf4 call.
Examples
--------
::
inst = pysat.Instrument('sport', 'ivm')
inst.load(2019,1)
# create quick Instrument object for a new, random netCDF4 file
# define filename template string to identify files
# this is normally done by instrument code, but in this case
# there is no built in pysat instrument support
# presumes files are named default_2019-01-01.NC
format_str = 'default_{year:04d}-{month:02d}-{day:02d}.NC'
inst = pysat.Instrument('netcdf', 'pandas',
custom_kwarg='test'
data_path='./',
format_str=format_str)
inst.load(2019,1)
"""
return pysat.utils.load_netcdf4(fnames, **kwargs) | [
"def",
"load",
"(",
"fnames",
",",
"tag",
"=",
"None",
",",
"sat_id",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"pysat",
".",
"utils",
".",
"load_netcdf4",
"(",
"fnames",
",",
"*",
"*",
"kwargs",
")"
]
| Loads data using pysat.utils.load_netcdf4 .
This routine is called as needed by pysat. It is not intended
for direct user interaction.
Parameters
----------
fnames : array-like
iterable of filename strings, full path, to data files to be loaded.
This input is nominally provided by pysat itself.
tag : string
tag name used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.
sat_id : string
Satellite ID used to identify particular data set to be loaded.
This input is nominally provided by pysat itself.
**kwargs : extra keywords
Passthrough for additional keyword arguments specified when
instantiating an Instrument object. These additional keywords
are passed through to this routine by pysat.
Returns
-------
data, metadata
Data and Metadata are formatted for pysat. Data is a pandas
DataFrame while metadata is a pysat.Meta instance.
Note
----
Any additional keyword arguments passed to pysat.Instrument
upon instantiation are passed along to this routine and through
to the load_netcdf4 call.
Examples
--------
::
inst = pysat.Instrument('sport', 'ivm')
inst.load(2019,1)
# create quick Instrument object for a new, random netCDF4 file
# define filename template string to identify files
# this is normally done by instrument code, but in this case
# there is no built in pysat instrument support
# presumes files are named default_2019-01-01.NC
format_str = 'default_{year:04d}-{month:02d}-{day:02d}.NC'
inst = pysat.Instrument('netcdf', 'pandas',
custom_kwarg='test'
data_path='./',
format_str=format_str)
inst.load(2019,1) | [
"Loads",
"data",
"using",
"pysat",
".",
"utils",
".",
"load_netcdf4",
"."
]
| python | train |
saltstack/salt | salt/modules/poudriere.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/poudriere.py#L175-L204 | def create_jail(name, arch, version="9.0-RELEASE"):
'''
Creates a new poudriere jail if one does not exist
*NOTE* creating a new jail will take some time the master is not hanging
CLI Example:
.. code-block:: bash
salt '*' poudriere.create_jail 90amd64 amd64
'''
# Config file must be on system to create a poudriere jail
_check_config_exists()
# Check if the jail is there
if is_jail(name):
return '{0} already exists'.format(name)
cmd = 'poudriere jails -c -j {0} -v {1} -a {2}'.format(name, version, arch)
__salt__['cmd.run'](cmd)
# Make jail pkgng aware
make_pkgng_aware(name)
# Make sure the jail was created
if is_jail(name):
return 'Created jail {0}'.format(name)
return 'Issue creating jail {0}'.format(name) | [
"def",
"create_jail",
"(",
"name",
",",
"arch",
",",
"version",
"=",
"\"9.0-RELEASE\"",
")",
":",
"# Config file must be on system to create a poudriere jail",
"_check_config_exists",
"(",
")",
"# Check if the jail is there",
"if",
"is_jail",
"(",
"name",
")",
":",
"return",
"'{0} already exists'",
".",
"format",
"(",
"name",
")",
"cmd",
"=",
"'poudriere jails -c -j {0} -v {1} -a {2}'",
".",
"format",
"(",
"name",
",",
"version",
",",
"arch",
")",
"__salt__",
"[",
"'cmd.run'",
"]",
"(",
"cmd",
")",
"# Make jail pkgng aware",
"make_pkgng_aware",
"(",
"name",
")",
"# Make sure the jail was created",
"if",
"is_jail",
"(",
"name",
")",
":",
"return",
"'Created jail {0}'",
".",
"format",
"(",
"name",
")",
"return",
"'Issue creating jail {0}'",
".",
"format",
"(",
"name",
")"
]
| Creates a new poudriere jail if one does not exist
*NOTE* creating a new jail will take some time the master is not hanging
CLI Example:
.. code-block:: bash
salt '*' poudriere.create_jail 90amd64 amd64 | [
"Creates",
"a",
"new",
"poudriere",
"jail",
"if",
"one",
"does",
"not",
"exist"
]
| python | train |
nikhilkumarsingh/gnewsclient | gnewsclient/gnewsclient.py | https://github.com/nikhilkumarsingh/gnewsclient/blob/65422f1dee9408f1b51ae6a2ee08ae478432e1d5/gnewsclient/gnewsclient.py#L24-L33 | def get_config(self):
"""
function to get current configuration
"""
config = {
'location': self.location,
'language': self.language,
'topic': self.topic,
}
return config | [
"def",
"get_config",
"(",
"self",
")",
":",
"config",
"=",
"{",
"'location'",
":",
"self",
".",
"location",
",",
"'language'",
":",
"self",
".",
"language",
",",
"'topic'",
":",
"self",
".",
"topic",
",",
"}",
"return",
"config"
]
| function to get current configuration | [
"function",
"to",
"get",
"current",
"configuration"
]
| python | train |
nteract/papermill | papermill/parameterize.py | https://github.com/nteract/papermill/blob/7423a303f3fa22ec6d03edf5fd9700d659b5a6fa/papermill/parameterize.py#L55-L106 | def parameterize_notebook(nb, parameters, report_mode=False):
"""Assigned parameters into the appropriate place in the input notebook
Parameters
----------
nb : NotebookNode
Executable notebook object
parameters : dict
Arbitrary keyword arguments to pass as notebook parameters
report_mode : bool, optional
Flag to set report mode
"""
# Load from a file if 'parameters' is a string.
if isinstance(parameters, six.string_types):
parameters = read_yaml_file(parameters)
# Copy the nb object to avoid polluting the input
nb = copy.deepcopy(nb)
kernel_name = nb.metadata.kernelspec.name
language = nb.metadata.kernelspec.language
# Generate parameter content based on the kernel_name
param_content = translate_parameters(kernel_name, language, parameters)
newcell = nbformat.v4.new_code_cell(source=param_content)
newcell.metadata['tags'] = ['injected-parameters']
if report_mode:
newcell.metadata['jupyter'] = newcell.get('jupyter', {})
newcell.metadata['jupyter']['source_hidden'] = True
param_cell_index = _find_first_tagged_cell_index(nb, 'parameters')
injected_cell_index = _find_first_tagged_cell_index(nb, 'injected-parameters')
if injected_cell_index >= 0:
# Replace the injected cell with a new version
before = nb.cells[:injected_cell_index]
after = nb.cells[injected_cell_index + 1 :]
elif param_cell_index >= 0:
# Add an injected cell after the parameter cell
before = nb.cells[: param_cell_index + 1]
after = nb.cells[param_cell_index + 1 :]
else:
# Inject to the top of the notebook
logger.warning("Input notebook does not contain a cell with tag 'parameters'")
before = []
after = nb.cells
nb.cells = before + [newcell] + after
nb.metadata.papermill['parameters'] = parameters
return nb | [
"def",
"parameterize_notebook",
"(",
"nb",
",",
"parameters",
",",
"report_mode",
"=",
"False",
")",
":",
"# Load from a file if 'parameters' is a string.",
"if",
"isinstance",
"(",
"parameters",
",",
"six",
".",
"string_types",
")",
":",
"parameters",
"=",
"read_yaml_file",
"(",
"parameters",
")",
"# Copy the nb object to avoid polluting the input",
"nb",
"=",
"copy",
".",
"deepcopy",
"(",
"nb",
")",
"kernel_name",
"=",
"nb",
".",
"metadata",
".",
"kernelspec",
".",
"name",
"language",
"=",
"nb",
".",
"metadata",
".",
"kernelspec",
".",
"language",
"# Generate parameter content based on the kernel_name",
"param_content",
"=",
"translate_parameters",
"(",
"kernel_name",
",",
"language",
",",
"parameters",
")",
"newcell",
"=",
"nbformat",
".",
"v4",
".",
"new_code_cell",
"(",
"source",
"=",
"param_content",
")",
"newcell",
".",
"metadata",
"[",
"'tags'",
"]",
"=",
"[",
"'injected-parameters'",
"]",
"if",
"report_mode",
":",
"newcell",
".",
"metadata",
"[",
"'jupyter'",
"]",
"=",
"newcell",
".",
"get",
"(",
"'jupyter'",
",",
"{",
"}",
")",
"newcell",
".",
"metadata",
"[",
"'jupyter'",
"]",
"[",
"'source_hidden'",
"]",
"=",
"True",
"param_cell_index",
"=",
"_find_first_tagged_cell_index",
"(",
"nb",
",",
"'parameters'",
")",
"injected_cell_index",
"=",
"_find_first_tagged_cell_index",
"(",
"nb",
",",
"'injected-parameters'",
")",
"if",
"injected_cell_index",
">=",
"0",
":",
"# Replace the injected cell with a new version",
"before",
"=",
"nb",
".",
"cells",
"[",
":",
"injected_cell_index",
"]",
"after",
"=",
"nb",
".",
"cells",
"[",
"injected_cell_index",
"+",
"1",
":",
"]",
"elif",
"param_cell_index",
">=",
"0",
":",
"# Add an injected cell after the parameter cell",
"before",
"=",
"nb",
".",
"cells",
"[",
":",
"param_cell_index",
"+",
"1",
"]",
"after",
"=",
"nb",
".",
"cells",
"[",
"param_cell_index",
"+",
"1",
":",
"]",
"else",
":",
"# Inject to the top of the notebook",
"logger",
".",
"warning",
"(",
"\"Input notebook does not contain a cell with tag 'parameters'\"",
")",
"before",
"=",
"[",
"]",
"after",
"=",
"nb",
".",
"cells",
"nb",
".",
"cells",
"=",
"before",
"+",
"[",
"newcell",
"]",
"+",
"after",
"nb",
".",
"metadata",
".",
"papermill",
"[",
"'parameters'",
"]",
"=",
"parameters",
"return",
"nb"
]
| Assigned parameters into the appropriate place in the input notebook
Parameters
----------
nb : NotebookNode
Executable notebook object
parameters : dict
Arbitrary keyword arguments to pass as notebook parameters
report_mode : bool, optional
Flag to set report mode | [
"Assigned",
"parameters",
"into",
"the",
"appropriate",
"place",
"in",
"the",
"input",
"notebook"
]
| python | train |
dpkp/kafka-python | kafka/coordinator/base.py | https://github.com/dpkp/kafka-python/blob/f6a8a38937688ea2cc5dc13d3d1039493be5c9b5/kafka/coordinator/base.py#L297-L321 | def poll_heartbeat(self):
"""
Check the status of the heartbeat thread (if it is active) and indicate
the liveness of the client. This must be called periodically after
joining with :meth:`.ensure_active_group` to ensure that the member stays
in the group. If an interval of time longer than the provided rebalance
timeout (max_poll_interval_ms) expires without calling this method, then
the client will proactively leave the group.
Raises: RuntimeError for unexpected errors raised from the heartbeat thread
"""
with self._lock:
if self._heartbeat_thread is not None:
if self._heartbeat_thread.failed:
# set the heartbeat thread to None and raise an exception.
# If the user catches it, the next call to ensure_active_group()
# will spawn a new heartbeat thread.
cause = self._heartbeat_thread.failed
self._heartbeat_thread = None
raise cause # pylint: disable-msg=raising-bad-type
# Awake the heartbeat thread if needed
if self.heartbeat.should_heartbeat():
self._lock.notify()
self.heartbeat.poll() | [
"def",
"poll_heartbeat",
"(",
"self",
")",
":",
"with",
"self",
".",
"_lock",
":",
"if",
"self",
".",
"_heartbeat_thread",
"is",
"not",
"None",
":",
"if",
"self",
".",
"_heartbeat_thread",
".",
"failed",
":",
"# set the heartbeat thread to None and raise an exception.",
"# If the user catches it, the next call to ensure_active_group()",
"# will spawn a new heartbeat thread.",
"cause",
"=",
"self",
".",
"_heartbeat_thread",
".",
"failed",
"self",
".",
"_heartbeat_thread",
"=",
"None",
"raise",
"cause",
"# pylint: disable-msg=raising-bad-type",
"# Awake the heartbeat thread if needed",
"if",
"self",
".",
"heartbeat",
".",
"should_heartbeat",
"(",
")",
":",
"self",
".",
"_lock",
".",
"notify",
"(",
")",
"self",
".",
"heartbeat",
".",
"poll",
"(",
")"
]
| Check the status of the heartbeat thread (if it is active) and indicate
the liveness of the client. This must be called periodically after
joining with :meth:`.ensure_active_group` to ensure that the member stays
in the group. If an interval of time longer than the provided rebalance
timeout (max_poll_interval_ms) expires without calling this method, then
the client will proactively leave the group.
Raises: RuntimeError for unexpected errors raised from the heartbeat thread | [
"Check",
"the",
"status",
"of",
"the",
"heartbeat",
"thread",
"(",
"if",
"it",
"is",
"active",
")",
"and",
"indicate",
"the",
"liveness",
"of",
"the",
"client",
".",
"This",
"must",
"be",
"called",
"periodically",
"after",
"joining",
"with",
":",
"meth",
":",
".",
"ensure_active_group",
"to",
"ensure",
"that",
"the",
"member",
"stays",
"in",
"the",
"group",
".",
"If",
"an",
"interval",
"of",
"time",
"longer",
"than",
"the",
"provided",
"rebalance",
"timeout",
"(",
"max_poll_interval_ms",
")",
"expires",
"without",
"calling",
"this",
"method",
"then",
"the",
"client",
"will",
"proactively",
"leave",
"the",
"group",
"."
]
| python | train |
ojarva/python-sshpubkeys | sshpubkeys/keys.py | https://github.com/ojarva/python-sshpubkeys/blob/86dc1ab27ce82dcc091ce127416cc3ee219e9bec/sshpubkeys/keys.py#L163-L166 | def hash_sha512(self):
"""Calculates sha512 fingerprint."""
fp_plain = hashlib.sha512(self._decoded_key).digest()
return (b"SHA512:" + base64.b64encode(fp_plain).replace(b"=", b"")).decode("utf-8") | [
"def",
"hash_sha512",
"(",
"self",
")",
":",
"fp_plain",
"=",
"hashlib",
".",
"sha512",
"(",
"self",
".",
"_decoded_key",
")",
".",
"digest",
"(",
")",
"return",
"(",
"b\"SHA512:\"",
"+",
"base64",
".",
"b64encode",
"(",
"fp_plain",
")",
".",
"replace",
"(",
"b\"=\"",
",",
"b\"\"",
")",
")",
".",
"decode",
"(",
"\"utf-8\"",
")"
]
| Calculates sha512 fingerprint. | [
"Calculates",
"sha512",
"fingerprint",
"."
]
| python | test |
brainiak/brainiak | brainiak/fcma/voxelselector.py | https://github.com/brainiak/brainiak/blob/408f12dec2ff56559a26873a848a09e4c8facfeb/brainiak/fcma/voxelselector.py#L284-L329 | def _correlation_computation(self, task):
"""Use BLAS API to do correlation computation (matrix multiplication).
Parameters
----------
task: tuple (start_voxel_id, num_processed_voxels)
depicting the voxels assigned to compute
Returns
-------
corr: 3D array in shape [num_processed_voxels, num_epochs, num_voxels]
the correlation values of all subjects in all epochs
for the assigned values, in row-major
corr[i, e, s + j] = corr[j, e, s + i]
"""
time1 = time.time()
s = task[0]
nEpochs = len(self.raw_data)
logger.debug(
'start to compute the correlation: #epochs: %d, '
'#processed voxels: %d, #total voxels to compute against: %d' %
(nEpochs, task[1], self.num_voxels2)
)
corr = np.zeros((task[1], nEpochs, self.num_voxels2),
np.float32, order='C')
count = 0
for i in range(len(self.raw_data)):
mat = self.raw_data[i]
mat2 = self.raw_data2[i] if self.raw_data2 is not None else mat
no_trans = 'N'
trans = 'T'
blas.compute_self_corr_for_voxel_sel(no_trans, trans,
self.num_voxels2, task[1],
mat.shape[0], 1.0,
mat2, self.num_voxels2,
s, mat, self.num_voxels,
0.0, corr,
self.num_voxels2 * nEpochs,
count)
count += 1
time2 = time.time()
logger.debug(
'correlation computation for %d voxels, takes %.2f s' %
(task[1], (time2 - time1))
)
return corr | [
"def",
"_correlation_computation",
"(",
"self",
",",
"task",
")",
":",
"time1",
"=",
"time",
".",
"time",
"(",
")",
"s",
"=",
"task",
"[",
"0",
"]",
"nEpochs",
"=",
"len",
"(",
"self",
".",
"raw_data",
")",
"logger",
".",
"debug",
"(",
"'start to compute the correlation: #epochs: %d, '",
"'#processed voxels: %d, #total voxels to compute against: %d'",
"%",
"(",
"nEpochs",
",",
"task",
"[",
"1",
"]",
",",
"self",
".",
"num_voxels2",
")",
")",
"corr",
"=",
"np",
".",
"zeros",
"(",
"(",
"task",
"[",
"1",
"]",
",",
"nEpochs",
",",
"self",
".",
"num_voxels2",
")",
",",
"np",
".",
"float32",
",",
"order",
"=",
"'C'",
")",
"count",
"=",
"0",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"raw_data",
")",
")",
":",
"mat",
"=",
"self",
".",
"raw_data",
"[",
"i",
"]",
"mat2",
"=",
"self",
".",
"raw_data2",
"[",
"i",
"]",
"if",
"self",
".",
"raw_data2",
"is",
"not",
"None",
"else",
"mat",
"no_trans",
"=",
"'N'",
"trans",
"=",
"'T'",
"blas",
".",
"compute_self_corr_for_voxel_sel",
"(",
"no_trans",
",",
"trans",
",",
"self",
".",
"num_voxels2",
",",
"task",
"[",
"1",
"]",
",",
"mat",
".",
"shape",
"[",
"0",
"]",
",",
"1.0",
",",
"mat2",
",",
"self",
".",
"num_voxels2",
",",
"s",
",",
"mat",
",",
"self",
".",
"num_voxels",
",",
"0.0",
",",
"corr",
",",
"self",
".",
"num_voxels2",
"*",
"nEpochs",
",",
"count",
")",
"count",
"+=",
"1",
"time2",
"=",
"time",
".",
"time",
"(",
")",
"logger",
".",
"debug",
"(",
"'correlation computation for %d voxels, takes %.2f s'",
"%",
"(",
"task",
"[",
"1",
"]",
",",
"(",
"time2",
"-",
"time1",
")",
")",
")",
"return",
"corr"
]
| Use BLAS API to do correlation computation (matrix multiplication).
Parameters
----------
task: tuple (start_voxel_id, num_processed_voxels)
depicting the voxels assigned to compute
Returns
-------
corr: 3D array in shape [num_processed_voxels, num_epochs, num_voxels]
the correlation values of all subjects in all epochs
for the assigned values, in row-major
corr[i, e, s + j] = corr[j, e, s + i] | [
"Use",
"BLAS",
"API",
"to",
"do",
"correlation",
"computation",
"(",
"matrix",
"multiplication",
")",
"."
]
| python | train |
janpipek/physt | physt/binnings.py | https://github.com/janpipek/physt/blob/6dd441b073514e7728235f50b2352d56aacf38d4/physt/binnings.py#L972-L1007 | def ideal_bin_count(data, method: str = "default") -> int:
"""A theoretically ideal bin count.
Parameters
----------
data: array_likes
Data to work on. Most methods don't use this.
method: str
Name of the method to apply, available values:
- default (~sturges)
- sqrt
- sturges
- doane
- rice
See https://en.wikipedia.org/wiki/Histogram for the description
"""
n = data.size
if n < 1:
return 1
if method == "default":
if n <= 32:
return 7
else:
return ideal_bin_count(data, "sturges")
elif method == "sqrt":
return int(np.ceil(np.sqrt(n)))
elif method == "sturges":
return int(np.ceil(np.log2(n)) + 1)
elif method == "doane":
if n < 3:
return 1
from scipy.stats import skew
sigma = np.sqrt(6 * (n-2) / (n + 1) * (n + 3))
return int(np.ceil(1 + np.log2(n) + np.log2(1 + np.abs(skew(data)) / sigma)))
elif method == "rice":
return int(np.ceil(2 * np.power(n, 1 / 3))) | [
"def",
"ideal_bin_count",
"(",
"data",
",",
"method",
":",
"str",
"=",
"\"default\"",
")",
"->",
"int",
":",
"n",
"=",
"data",
".",
"size",
"if",
"n",
"<",
"1",
":",
"return",
"1",
"if",
"method",
"==",
"\"default\"",
":",
"if",
"n",
"<=",
"32",
":",
"return",
"7",
"else",
":",
"return",
"ideal_bin_count",
"(",
"data",
",",
"\"sturges\"",
")",
"elif",
"method",
"==",
"\"sqrt\"",
":",
"return",
"int",
"(",
"np",
".",
"ceil",
"(",
"np",
".",
"sqrt",
"(",
"n",
")",
")",
")",
"elif",
"method",
"==",
"\"sturges\"",
":",
"return",
"int",
"(",
"np",
".",
"ceil",
"(",
"np",
".",
"log2",
"(",
"n",
")",
")",
"+",
"1",
")",
"elif",
"method",
"==",
"\"doane\"",
":",
"if",
"n",
"<",
"3",
":",
"return",
"1",
"from",
"scipy",
".",
"stats",
"import",
"skew",
"sigma",
"=",
"np",
".",
"sqrt",
"(",
"6",
"*",
"(",
"n",
"-",
"2",
")",
"/",
"(",
"n",
"+",
"1",
")",
"*",
"(",
"n",
"+",
"3",
")",
")",
"return",
"int",
"(",
"np",
".",
"ceil",
"(",
"1",
"+",
"np",
".",
"log2",
"(",
"n",
")",
"+",
"np",
".",
"log2",
"(",
"1",
"+",
"np",
".",
"abs",
"(",
"skew",
"(",
"data",
")",
")",
"/",
"sigma",
")",
")",
")",
"elif",
"method",
"==",
"\"rice\"",
":",
"return",
"int",
"(",
"np",
".",
"ceil",
"(",
"2",
"*",
"np",
".",
"power",
"(",
"n",
",",
"1",
"/",
"3",
")",
")",
")"
]
| A theoretically ideal bin count.
Parameters
----------
data: array_likes
Data to work on. Most methods don't use this.
method: str
Name of the method to apply, available values:
- default (~sturges)
- sqrt
- sturges
- doane
- rice
See https://en.wikipedia.org/wiki/Histogram for the description | [
"A",
"theoretically",
"ideal",
"bin",
"count",
"."
]
| python | train |
bukun/TorCMS | torcms/handlers/filter_handler.py | https://github.com/bukun/TorCMS/blob/6567c7fe2604a1d646d4570c017840958630ed2b/torcms/handlers/filter_handler.py#L110-L159 | def echo_html(self, url_str):
'''
Show the HTML
'''
logger.info('info echo html: {0}'.format(url_str))
condition = self.gen_redis_kw()
url_arr = self.parse_url(url_str)
sig = url_arr[0]
num = (len(url_arr) - 2) // 2
catinfo = MCategory.get_by_uid(sig)
if catinfo.pid == '0000':
condition['def_cat_pid'] = sig
else:
condition['def_cat_uid'] = sig
fenye_num = 1
for idx in range(num):
ckey = url_arr[idx * 2 + 2]
tval = url_arr[idx * 2 + 3]
if tval == '0':
continue
if ckey == 'fenye':
# 分页参数。单独处理。
fenye_num = int(tval)
continue
else:
cval = tval
ckey = 'tag_' + ckey
condition[ckey] = cval
if url_arr[1] == 'con':
infos = MPost.query_list_pager(condition, fenye_num, kind=catinfo.kind)
self.echo_html_list_str(sig, infos)
elif url_arr[1] == 'num':
allinfos = MPost.query_under_condition(condition, kind=catinfo.kind)
self.write(
tornado.escape.xhtml_unescape(
echo_html_fenye_str(
allinfos.count(),
fenye_num
)
)
) | [
"def",
"echo_html",
"(",
"self",
",",
"url_str",
")",
":",
"logger",
".",
"info",
"(",
"'info echo html: {0}'",
".",
"format",
"(",
"url_str",
")",
")",
"condition",
"=",
"self",
".",
"gen_redis_kw",
"(",
")",
"url_arr",
"=",
"self",
".",
"parse_url",
"(",
"url_str",
")",
"sig",
"=",
"url_arr",
"[",
"0",
"]",
"num",
"=",
"(",
"len",
"(",
"url_arr",
")",
"-",
"2",
")",
"//",
"2",
"catinfo",
"=",
"MCategory",
".",
"get_by_uid",
"(",
"sig",
")",
"if",
"catinfo",
".",
"pid",
"==",
"'0000'",
":",
"condition",
"[",
"'def_cat_pid'",
"]",
"=",
"sig",
"else",
":",
"condition",
"[",
"'def_cat_uid'",
"]",
"=",
"sig",
"fenye_num",
"=",
"1",
"for",
"idx",
"in",
"range",
"(",
"num",
")",
":",
"ckey",
"=",
"url_arr",
"[",
"idx",
"*",
"2",
"+",
"2",
"]",
"tval",
"=",
"url_arr",
"[",
"idx",
"*",
"2",
"+",
"3",
"]",
"if",
"tval",
"==",
"'0'",
":",
"continue",
"if",
"ckey",
"==",
"'fenye'",
":",
"# 分页参数。单独处理。",
"fenye_num",
"=",
"int",
"(",
"tval",
")",
"continue",
"else",
":",
"cval",
"=",
"tval",
"ckey",
"=",
"'tag_'",
"+",
"ckey",
"condition",
"[",
"ckey",
"]",
"=",
"cval",
"if",
"url_arr",
"[",
"1",
"]",
"==",
"'con'",
":",
"infos",
"=",
"MPost",
".",
"query_list_pager",
"(",
"condition",
",",
"fenye_num",
",",
"kind",
"=",
"catinfo",
".",
"kind",
")",
"self",
".",
"echo_html_list_str",
"(",
"sig",
",",
"infos",
")",
"elif",
"url_arr",
"[",
"1",
"]",
"==",
"'num'",
":",
"allinfos",
"=",
"MPost",
".",
"query_under_condition",
"(",
"condition",
",",
"kind",
"=",
"catinfo",
".",
"kind",
")",
"self",
".",
"write",
"(",
"tornado",
".",
"escape",
".",
"xhtml_unescape",
"(",
"echo_html_fenye_str",
"(",
"allinfos",
".",
"count",
"(",
")",
",",
"fenye_num",
")",
")",
")"
]
| Show the HTML | [
"Show",
"the",
"HTML"
]
| python | train |
saltstack/salt | salt/client/ssh/ssh_py_shim.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/client/ssh/ssh_py_shim.py#L159-L172 | def unpack_thin(thin_path):
'''
Unpack the Salt thin archive.
'''
tfile = tarfile.TarFile.gzopen(thin_path)
old_umask = os.umask(0o077) # pylint: disable=blacklisted-function
tfile.extractall(path=OPTIONS.saltdir)
tfile.close()
os.umask(old_umask) # pylint: disable=blacklisted-function
try:
os.unlink(thin_path)
except OSError:
pass
reset_time(OPTIONS.saltdir) | [
"def",
"unpack_thin",
"(",
"thin_path",
")",
":",
"tfile",
"=",
"tarfile",
".",
"TarFile",
".",
"gzopen",
"(",
"thin_path",
")",
"old_umask",
"=",
"os",
".",
"umask",
"(",
"0o077",
")",
"# pylint: disable=blacklisted-function",
"tfile",
".",
"extractall",
"(",
"path",
"=",
"OPTIONS",
".",
"saltdir",
")",
"tfile",
".",
"close",
"(",
")",
"os",
".",
"umask",
"(",
"old_umask",
")",
"# pylint: disable=blacklisted-function",
"try",
":",
"os",
".",
"unlink",
"(",
"thin_path",
")",
"except",
"OSError",
":",
"pass",
"reset_time",
"(",
"OPTIONS",
".",
"saltdir",
")"
]
| Unpack the Salt thin archive. | [
"Unpack",
"the",
"Salt",
"thin",
"archive",
"."
]
| python | train |
soravux/scoop | examples/shared_example.py | https://github.com/soravux/scoop/blob/d391dfa62f47e49d48328ee9cf08aa114256fd33/examples/shared_example.py#L26-L35 | def myFunc(parameter):
"""This function will be executed on the remote host even if it was not
available at launch."""
print('Hello World from {0}!'.format(scoop.worker))
# It is possible to get a constant anywhere
print(shared.getConst('myVar')[2])
# Parameters are handled as usual
return parameter + 1 | [
"def",
"myFunc",
"(",
"parameter",
")",
":",
"print",
"(",
"'Hello World from {0}!'",
".",
"format",
"(",
"scoop",
".",
"worker",
")",
")",
"# It is possible to get a constant anywhere",
"print",
"(",
"shared",
".",
"getConst",
"(",
"'myVar'",
")",
"[",
"2",
"]",
")",
"# Parameters are handled as usual",
"return",
"parameter",
"+",
"1"
]
| This function will be executed on the remote host even if it was not
available at launch. | [
"This",
"function",
"will",
"be",
"executed",
"on",
"the",
"remote",
"host",
"even",
"if",
"it",
"was",
"not",
"available",
"at",
"launch",
"."
]
| python | train |
jantman/awslimitchecker | awslimitchecker/limit.py | https://github.com/jantman/awslimitchecker/blob/e50197f70f3d0abcc5cfc7fde6336f548b790e34/awslimitchecker/limit.py#L323-L353 | def set_threshold_override(self, warn_percent=None, warn_count=None,
crit_percent=None, crit_count=None):
"""
Override the default warning and critical thresholds used to evaluate
this limit's usage. Theresholds can be specified as a percentage
of the limit, or as a usage count, or both.
**Note:** The percent thresholds (``warn_percent`` and ``crit_percent``)
have default values that are set globally for awslimitchecker, unlike
the count thresholds. When setting threshold overrides to quiet or
suppress alerts for a limit, you **must** set the percent thresholds.
If you only set overrides for the ``count`` thresholds, the percent
thresholds will continue to be evaluated at their awslimitchecker-wide
default, and likely prevent alerts from being suppressed.
see :py:meth:`~.check_thresholds` for further information on threshold
evaluation.
:param warn_percent: new warning threshold, percentage used
:type warn_percent: int
:param warn_count: new warning threshold, actual count/number
:type warn_count: int
:param crit_percent: new critical threshold, percentage used
:type crit_percent: int
:param crit_count: new critical threshold, actual count/number
:type crit_count: int
"""
self.warn_percent = warn_percent
self.warn_count = warn_count
self.crit_percent = crit_percent
self.crit_count = crit_count | [
"def",
"set_threshold_override",
"(",
"self",
",",
"warn_percent",
"=",
"None",
",",
"warn_count",
"=",
"None",
",",
"crit_percent",
"=",
"None",
",",
"crit_count",
"=",
"None",
")",
":",
"self",
".",
"warn_percent",
"=",
"warn_percent",
"self",
".",
"warn_count",
"=",
"warn_count",
"self",
".",
"crit_percent",
"=",
"crit_percent",
"self",
".",
"crit_count",
"=",
"crit_count"
]
| Override the default warning and critical thresholds used to evaluate
this limit's usage. Theresholds can be specified as a percentage
of the limit, or as a usage count, or both.
**Note:** The percent thresholds (``warn_percent`` and ``crit_percent``)
have default values that are set globally for awslimitchecker, unlike
the count thresholds. When setting threshold overrides to quiet or
suppress alerts for a limit, you **must** set the percent thresholds.
If you only set overrides for the ``count`` thresholds, the percent
thresholds will continue to be evaluated at their awslimitchecker-wide
default, and likely prevent alerts from being suppressed.
see :py:meth:`~.check_thresholds` for further information on threshold
evaluation.
:param warn_percent: new warning threshold, percentage used
:type warn_percent: int
:param warn_count: new warning threshold, actual count/number
:type warn_count: int
:param crit_percent: new critical threshold, percentage used
:type crit_percent: int
:param crit_count: new critical threshold, actual count/number
:type crit_count: int | [
"Override",
"the",
"default",
"warning",
"and",
"critical",
"thresholds",
"used",
"to",
"evaluate",
"this",
"limit",
"s",
"usage",
".",
"Theresholds",
"can",
"be",
"specified",
"as",
"a",
"percentage",
"of",
"the",
"limit",
"or",
"as",
"a",
"usage",
"count",
"or",
"both",
"."
]
| python | train |
VingtCinq/python-mailchimp | mailchimp3/entities/campaignfeedback.py | https://github.com/VingtCinq/python-mailchimp/blob/1b472f1b64fdde974732ac4b7ed48908bb707260/mailchimp3/entities/campaignfeedback.py#L28-L51 | def create(self, campaign_id, data, **queryparams):
"""
Add feedback on a specific campaign.
:param campaign_id: The unique id for the campaign.
:type campaign_id: :py:class:`str`
:param data: The request body parameters
:type data: :py:class:`dict`
data = {
"message": string*
}
:param queryparams: The query string parameters
queryparams['fields'] = []
queryparams['exclude_fields'] = []
"""
self.campaign_id = campaign_id
if 'message' not in data:
raise KeyError('The campaign feedback must have a message')
response = self._mc_client._post(url=self._build_path(campaign_id, 'feedback'), data=data, **queryparams)
if response is not None:
self.feedback_id = response['feedback_id']
else:
self.feedback_id = None
return response | [
"def",
"create",
"(",
"self",
",",
"campaign_id",
",",
"data",
",",
"*",
"*",
"queryparams",
")",
":",
"self",
".",
"campaign_id",
"=",
"campaign_id",
"if",
"'message'",
"not",
"in",
"data",
":",
"raise",
"KeyError",
"(",
"'The campaign feedback must have a message'",
")",
"response",
"=",
"self",
".",
"_mc_client",
".",
"_post",
"(",
"url",
"=",
"self",
".",
"_build_path",
"(",
"campaign_id",
",",
"'feedback'",
")",
",",
"data",
"=",
"data",
",",
"*",
"*",
"queryparams",
")",
"if",
"response",
"is",
"not",
"None",
":",
"self",
".",
"feedback_id",
"=",
"response",
"[",
"'feedback_id'",
"]",
"else",
":",
"self",
".",
"feedback_id",
"=",
"None",
"return",
"response"
]
| Add feedback on a specific campaign.
:param campaign_id: The unique id for the campaign.
:type campaign_id: :py:class:`str`
:param data: The request body parameters
:type data: :py:class:`dict`
data = {
"message": string*
}
:param queryparams: The query string parameters
queryparams['fields'] = []
queryparams['exclude_fields'] = [] | [
"Add",
"feedback",
"on",
"a",
"specific",
"campaign",
"."
]
| python | valid |
pyca/pyopenssl | src/OpenSSL/SSL.py | https://github.com/pyca/pyopenssl/blob/1fbe064c50fd030948141d7d630673761525b0d0/src/OpenSSL/SSL.py#L861-L870 | def _check_env_vars_set(self, dir_env_var, file_env_var):
"""
Check to see if the default cert dir/file environment vars are present.
:return: bool
"""
return (
os.environ.get(file_env_var) is not None or
os.environ.get(dir_env_var) is not None
) | [
"def",
"_check_env_vars_set",
"(",
"self",
",",
"dir_env_var",
",",
"file_env_var",
")",
":",
"return",
"(",
"os",
".",
"environ",
".",
"get",
"(",
"file_env_var",
")",
"is",
"not",
"None",
"or",
"os",
".",
"environ",
".",
"get",
"(",
"dir_env_var",
")",
"is",
"not",
"None",
")"
]
| Check to see if the default cert dir/file environment vars are present.
:return: bool | [
"Check",
"to",
"see",
"if",
"the",
"default",
"cert",
"dir",
"/",
"file",
"environment",
"vars",
"are",
"present",
"."
]
| python | test |
LuminosoInsight/python-ftfy | ftfy/fixes.py | https://github.com/LuminosoInsight/python-ftfy/blob/476acc6ad270bffe07f97d4f7cf2139acdc69633/ftfy/fixes.py#L582-L600 | def restore_byte_a0(byts):
"""
Some mojibake has been additionally altered by a process that said "hmm,
byte A0, that's basically a space!" and replaced it with an ASCII space.
When the A0 is part of a sequence that we intend to decode as UTF-8,
changing byte A0 to 20 would make it fail to decode.
This process finds sequences that would convincingly decode as UTF-8 if
byte 20 were changed to A0, and puts back the A0. For the purpose of
deciding whether this is a good idea, this step gets a cost of twice
the number of bytes that are changed.
This is used as a step within `fix_encoding`.
"""
def replacement(match):
"The function to apply when this regex matches."
return match.group(0).replace(b'\x20', b'\xa0')
return ALTERED_UTF8_RE.sub(replacement, byts) | [
"def",
"restore_byte_a0",
"(",
"byts",
")",
":",
"def",
"replacement",
"(",
"match",
")",
":",
"\"The function to apply when this regex matches.\"",
"return",
"match",
".",
"group",
"(",
"0",
")",
".",
"replace",
"(",
"b'\\x20'",
",",
"b'\\xa0'",
")",
"return",
"ALTERED_UTF8_RE",
".",
"sub",
"(",
"replacement",
",",
"byts",
")"
]
| Some mojibake has been additionally altered by a process that said "hmm,
byte A0, that's basically a space!" and replaced it with an ASCII space.
When the A0 is part of a sequence that we intend to decode as UTF-8,
changing byte A0 to 20 would make it fail to decode.
This process finds sequences that would convincingly decode as UTF-8 if
byte 20 were changed to A0, and puts back the A0. For the purpose of
deciding whether this is a good idea, this step gets a cost of twice
the number of bytes that are changed.
This is used as a step within `fix_encoding`. | [
"Some",
"mojibake",
"has",
"been",
"additionally",
"altered",
"by",
"a",
"process",
"that",
"said",
"hmm",
"byte",
"A0",
"that",
"s",
"basically",
"a",
"space!",
"and",
"replaced",
"it",
"with",
"an",
"ASCII",
"space",
".",
"When",
"the",
"A0",
"is",
"part",
"of",
"a",
"sequence",
"that",
"we",
"intend",
"to",
"decode",
"as",
"UTF",
"-",
"8",
"changing",
"byte",
"A0",
"to",
"20",
"would",
"make",
"it",
"fail",
"to",
"decode",
"."
]
| python | train |
pixelogik/NearPy | nearpy/hashes/permutation/permutation.py | https://github.com/pixelogik/NearPy/blob/1b534b864d320d875508e95cd2b76b6d8c07a90b/nearpy/hashes/permutation/permutation.py#L40-L65 | def build_permuted_index(
self,
lshash,
buckets,
num_permutation,
beam_size,
num_neighbour):
"""
Build a permutedIndex and store it into the dict self.permutedIndexs.
lshash: the binary lshash object (nearpy.hashes.lshash).
buckets: the buckets object corresponding to lshash. It's a dict object
which can get from nearpy.storage.buckets[lshash.hash_name]
num_permutation: the number of sorted randomly-permuted bucket key lists (SRPBKL).
beam_size: beam size, details please refer to __init__() in nearpy.hashes.permutation.PermutedIndex
num_neighbour: the number of neighbour bucket keys needed to return in self.get_neighbour_keys().
"""
# Init a PermutedIndex
pi = PermutedIndex(
lshash,
buckets,
num_permutation,
beam_size,
num_neighbour)
# get hash_name
hash_name = lshash.hash_name
self.permutedIndexs[hash_name] = pi | [
"def",
"build_permuted_index",
"(",
"self",
",",
"lshash",
",",
"buckets",
",",
"num_permutation",
",",
"beam_size",
",",
"num_neighbour",
")",
":",
"# Init a PermutedIndex",
"pi",
"=",
"PermutedIndex",
"(",
"lshash",
",",
"buckets",
",",
"num_permutation",
",",
"beam_size",
",",
"num_neighbour",
")",
"# get hash_name",
"hash_name",
"=",
"lshash",
".",
"hash_name",
"self",
".",
"permutedIndexs",
"[",
"hash_name",
"]",
"=",
"pi"
]
| Build a permutedIndex and store it into the dict self.permutedIndexs.
lshash: the binary lshash object (nearpy.hashes.lshash).
buckets: the buckets object corresponding to lshash. It's a dict object
which can get from nearpy.storage.buckets[lshash.hash_name]
num_permutation: the number of sorted randomly-permuted bucket key lists (SRPBKL).
beam_size: beam size, details please refer to __init__() in nearpy.hashes.permutation.PermutedIndex
num_neighbour: the number of neighbour bucket keys needed to return in self.get_neighbour_keys(). | [
"Build",
"a",
"permutedIndex",
"and",
"store",
"it",
"into",
"the",
"dict",
"self",
".",
"permutedIndexs",
".",
"lshash",
":",
"the",
"binary",
"lshash",
"object",
"(",
"nearpy",
".",
"hashes",
".",
"lshash",
")",
".",
"buckets",
":",
"the",
"buckets",
"object",
"corresponding",
"to",
"lshash",
".",
"It",
"s",
"a",
"dict",
"object",
"which",
"can",
"get",
"from",
"nearpy",
".",
"storage",
".",
"buckets",
"[",
"lshash",
".",
"hash_name",
"]",
"num_permutation",
":",
"the",
"number",
"of",
"sorted",
"randomly",
"-",
"permuted",
"bucket",
"key",
"lists",
"(",
"SRPBKL",
")",
".",
"beam_size",
":",
"beam",
"size",
"details",
"please",
"refer",
"to",
"__init__",
"()",
"in",
"nearpy",
".",
"hashes",
".",
"permutation",
".",
"PermutedIndex",
"num_neighbour",
":",
"the",
"number",
"of",
"neighbour",
"bucket",
"keys",
"needed",
"to",
"return",
"in",
"self",
".",
"get_neighbour_keys",
"()",
"."
]
| python | train |
housecanary/hc-api-python | housecanary/utilities.py | https://github.com/housecanary/hc-api-python/blob/2bb9e2208b34e8617575de45934357ee33b8531c/housecanary/utilities.py#L6-L26 | def get_readable_time_string(seconds):
"""Returns human readable string from number of seconds"""
seconds = int(seconds)
minutes = seconds // 60
seconds = seconds % 60
hours = minutes // 60
minutes = minutes % 60
days = hours // 24
hours = hours % 24
result = ""
if days > 0:
result += "%d %s " % (days, "Day" if (days == 1) else "Days")
if hours > 0:
result += "%d %s " % (hours, "Hour" if (hours == 1) else "Hours")
if minutes > 0:
result += "%d %s " % (minutes, "Minute" if (minutes == 1) else "Minutes")
if seconds > 0:
result += "%d %s " % (seconds, "Second" if (seconds == 1) else "Seconds")
return result.strip() | [
"def",
"get_readable_time_string",
"(",
"seconds",
")",
":",
"seconds",
"=",
"int",
"(",
"seconds",
")",
"minutes",
"=",
"seconds",
"//",
"60",
"seconds",
"=",
"seconds",
"%",
"60",
"hours",
"=",
"minutes",
"//",
"60",
"minutes",
"=",
"minutes",
"%",
"60",
"days",
"=",
"hours",
"//",
"24",
"hours",
"=",
"hours",
"%",
"24",
"result",
"=",
"\"\"",
"if",
"days",
">",
"0",
":",
"result",
"+=",
"\"%d %s \"",
"%",
"(",
"days",
",",
"\"Day\"",
"if",
"(",
"days",
"==",
"1",
")",
"else",
"\"Days\"",
")",
"if",
"hours",
">",
"0",
":",
"result",
"+=",
"\"%d %s \"",
"%",
"(",
"hours",
",",
"\"Hour\"",
"if",
"(",
"hours",
"==",
"1",
")",
"else",
"\"Hours\"",
")",
"if",
"minutes",
">",
"0",
":",
"result",
"+=",
"\"%d %s \"",
"%",
"(",
"minutes",
",",
"\"Minute\"",
"if",
"(",
"minutes",
"==",
"1",
")",
"else",
"\"Minutes\"",
")",
"if",
"seconds",
">",
"0",
":",
"result",
"+=",
"\"%d %s \"",
"%",
"(",
"seconds",
",",
"\"Second\"",
"if",
"(",
"seconds",
"==",
"1",
")",
"else",
"\"Seconds\"",
")",
"return",
"result",
".",
"strip",
"(",
")"
]
| Returns human readable string from number of seconds | [
"Returns",
"human",
"readable",
"string",
"from",
"number",
"of",
"seconds"
]
| python | train |
LLNL/certipy | certipy/certipy.py | https://github.com/LLNL/certipy/blob/8705a8ba32655e12021d2893cf1c3c98c697edd7/certipy/certipy.py#L414-L428 | def remove_files(self, common_name, delete_dir=False):
"""Delete files and record associated with this common name"""
record = self.remove_record(common_name)
if delete_dir:
delete_dirs = []
if 'files' in record:
key_containing_dir = os.path.dirname(record['files']['key'])
delete_dirs.append(key_containing_dir)
cert_containing_dir = os.path.dirname(record['files']['cert'])
if key_containing_dir != cert_containing_dir:
delete_dirs.append(cert_containing_dir)
for d in delete_dirs:
shutil.rmtree(d)
return record | [
"def",
"remove_files",
"(",
"self",
",",
"common_name",
",",
"delete_dir",
"=",
"False",
")",
":",
"record",
"=",
"self",
".",
"remove_record",
"(",
"common_name",
")",
"if",
"delete_dir",
":",
"delete_dirs",
"=",
"[",
"]",
"if",
"'files'",
"in",
"record",
":",
"key_containing_dir",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"record",
"[",
"'files'",
"]",
"[",
"'key'",
"]",
")",
"delete_dirs",
".",
"append",
"(",
"key_containing_dir",
")",
"cert_containing_dir",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"record",
"[",
"'files'",
"]",
"[",
"'cert'",
"]",
")",
"if",
"key_containing_dir",
"!=",
"cert_containing_dir",
":",
"delete_dirs",
".",
"append",
"(",
"cert_containing_dir",
")",
"for",
"d",
"in",
"delete_dirs",
":",
"shutil",
".",
"rmtree",
"(",
"d",
")",
"return",
"record"
]
| Delete files and record associated with this common name | [
"Delete",
"files",
"and",
"record",
"associated",
"with",
"this",
"common",
"name"
]
| python | train |
fermiPy/fermipy | fermipy/jobs/file_archive.py | https://github.com/fermiPy/fermipy/blob/9df5e7e3728307fd58c5bba36fd86783c39fbad4/fermipy/jobs/file_archive.py#L386-L397 | def copy_to_scratch(file_mapping, dry_run=True):
"""Copy input files to scratch area """
for key, value in file_mapping.items():
if not os.path.exists(key):
continue
if dry_run:
print ("copy %s %s" % (key, value))
else:
print ("copy %s %s" % (key, value))
copyfile(key, value)
return file_mapping | [
"def",
"copy_to_scratch",
"(",
"file_mapping",
",",
"dry_run",
"=",
"True",
")",
":",
"for",
"key",
",",
"value",
"in",
"file_mapping",
".",
"items",
"(",
")",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"key",
")",
":",
"continue",
"if",
"dry_run",
":",
"print",
"(",
"\"copy %s %s\"",
"%",
"(",
"key",
",",
"value",
")",
")",
"else",
":",
"print",
"(",
"\"copy %s %s\"",
"%",
"(",
"key",
",",
"value",
")",
")",
"copyfile",
"(",
"key",
",",
"value",
")",
"return",
"file_mapping"
]
| Copy input files to scratch area | [
"Copy",
"input",
"files",
"to",
"scratch",
"area"
]
| python | train |
valohai/valohai-yaml | valohai_yaml/commands.py | https://github.com/valohai/valohai-yaml/blob/3d2e92381633d84cdba039f6905df34c9633a2e1/valohai_yaml/commands.py#L44-L83 | def build_command(command, parameter_map):
"""
Build command line(s) using the given parameter map.
Even if the passed a single `command`, this function will return a list
of shell commands. It is the caller's responsibility to concatenate them,
likely using the semicolon or double ampersands.
:param command: The command to interpolate params into.
:type command: str|list[str]
:param parameter_map: A ParameterMap object containing parameter knowledge.
:type parameter_map: valohai_yaml.objs.parameter_map.ParameterMap
:return: list of commands
:rtype: list[str]
"""
if isinstance(parameter_map, list): # Partially emulate old (pre-0.7) API for this function.
parameter_map = LegacyParameterMap(parameter_map)
out_commands = []
for command in listify(command):
# Only attempt formatting if the string smells like it should be formatted.
# This allows the user to include shell syntax in the commands, if required.
# (There's still naturally the chance for false-positives, so guard against
# those value errors and warn about them.)
if interpolable_re.search(command):
try:
command = interpolable_re.sub(
lambda match: _replace_interpolation(parameter_map, match),
command,
)
except ValueError as exc: # pragma: no cover
warnings.warn(
'failed to interpolate into %r: %s' % (command, exc),
CommandInterpolationWarning
)
out_commands.append(command.strip())
return out_commands | [
"def",
"build_command",
"(",
"command",
",",
"parameter_map",
")",
":",
"if",
"isinstance",
"(",
"parameter_map",
",",
"list",
")",
":",
"# Partially emulate old (pre-0.7) API for this function.",
"parameter_map",
"=",
"LegacyParameterMap",
"(",
"parameter_map",
")",
"out_commands",
"=",
"[",
"]",
"for",
"command",
"in",
"listify",
"(",
"command",
")",
":",
"# Only attempt formatting if the string smells like it should be formatted.",
"# This allows the user to include shell syntax in the commands, if required.",
"# (There's still naturally the chance for false-positives, so guard against",
"# those value errors and warn about them.)",
"if",
"interpolable_re",
".",
"search",
"(",
"command",
")",
":",
"try",
":",
"command",
"=",
"interpolable_re",
".",
"sub",
"(",
"lambda",
"match",
":",
"_replace_interpolation",
"(",
"parameter_map",
",",
"match",
")",
",",
"command",
",",
")",
"except",
"ValueError",
"as",
"exc",
":",
"# pragma: no cover",
"warnings",
".",
"warn",
"(",
"'failed to interpolate into %r: %s'",
"%",
"(",
"command",
",",
"exc",
")",
",",
"CommandInterpolationWarning",
")",
"out_commands",
".",
"append",
"(",
"command",
".",
"strip",
"(",
")",
")",
"return",
"out_commands"
]
| Build command line(s) using the given parameter map.
Even if the passed a single `command`, this function will return a list
of shell commands. It is the caller's responsibility to concatenate them,
likely using the semicolon or double ampersands.
:param command: The command to interpolate params into.
:type command: str|list[str]
:param parameter_map: A ParameterMap object containing parameter knowledge.
:type parameter_map: valohai_yaml.objs.parameter_map.ParameterMap
:return: list of commands
:rtype: list[str] | [
"Build",
"command",
"line",
"(",
"s",
")",
"using",
"the",
"given",
"parameter",
"map",
"."
]
| python | train |
seung-lab/cloud-volume | cloudvolume/lib.py | https://github.com/seung-lab/cloud-volume/blob/d2fd4500333f1bc3cd3e3919a8b649cec5d8e214/cloudvolume/lib.py#L206-L212 | def divisors(n):
"""Generate the divisors of n"""
for i in range(1, int(math.sqrt(n) + 1)):
if n % i == 0:
yield i
if i*i != n:
yield n / i | [
"def",
"divisors",
"(",
"n",
")",
":",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"int",
"(",
"math",
".",
"sqrt",
"(",
"n",
")",
"+",
"1",
")",
")",
":",
"if",
"n",
"%",
"i",
"==",
"0",
":",
"yield",
"i",
"if",
"i",
"*",
"i",
"!=",
"n",
":",
"yield",
"n",
"/",
"i"
]
| Generate the divisors of n | [
"Generate",
"the",
"divisors",
"of",
"n"
]
| python | train |
kytos/python-openflow | pyof/foundation/network_types.py | https://github.com/kytos/python-openflow/blob/4f2d0d08ab28e102ed88fe57a4ee17729f1e1bb7/pyof/foundation/network_types.py#L640-L649 | def value(self):
"""Return sub type and sub value as binary data.
Returns:
:class:`~pyof.foundation.basic_types.BinaryData`:
BinaryData calculated.
"""
binary = UBInt8(self.sub_type).pack() + self.sub_value.pack()
return BinaryData(binary) | [
"def",
"value",
"(",
"self",
")",
":",
"binary",
"=",
"UBInt8",
"(",
"self",
".",
"sub_type",
")",
".",
"pack",
"(",
")",
"+",
"self",
".",
"sub_value",
".",
"pack",
"(",
")",
"return",
"BinaryData",
"(",
"binary",
")"
]
| Return sub type and sub value as binary data.
Returns:
:class:`~pyof.foundation.basic_types.BinaryData`:
BinaryData calculated. | [
"Return",
"sub",
"type",
"and",
"sub",
"value",
"as",
"binary",
"data",
"."
]
| python | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.