repo
stringlengths
7
54
path
stringlengths
4
192
url
stringlengths
87
284
code
stringlengths
78
104k
code_tokens
list
docstring
stringlengths
1
46.9k
docstring_tokens
list
language
stringclasses
1 value
partition
stringclasses
3 values
google/grr
grr/server/grr_response_server/signed_binary_utils.py
https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/server/grr_response_server/signed_binary_utils.py#L278-L303
def StreamSignedBinaryContents(blob_iterator, chunk_size = 1024 ): """Yields the contents of the given binary in chunks of the given size. Args: blob_iterator: An Iterator over all the binary's blobs. chunk_size: Size, in bytes, of the chunks to yield. """ all_blobs_read = False byte_buffer = io.BytesIO() while not all_blobs_read or byte_buffer.getvalue(): while not all_blobs_read and byte_buffer.tell() < chunk_size: try: blob = next(blob_iterator) except StopIteration: all_blobs_read = True break byte_buffer.write(blob.data) if byte_buffer.tell() > 0: # Yield a chunk of the signed binary and reset the buffer to contain # only data that hasn't been sent yet. byte_buffer.seek(0) yield byte_buffer.read(chunk_size) byte_buffer = io.BytesIO(byte_buffer.read()) byte_buffer.seek(0, io.SEEK_END)
[ "def", "StreamSignedBinaryContents", "(", "blob_iterator", ",", "chunk_size", "=", "1024", ")", ":", "all_blobs_read", "=", "False", "byte_buffer", "=", "io", ".", "BytesIO", "(", ")", "while", "not", "all_blobs_read", "or", "byte_buffer", ".", "getvalue", "(", ")", ":", "while", "not", "all_blobs_read", "and", "byte_buffer", ".", "tell", "(", ")", "<", "chunk_size", ":", "try", ":", "blob", "=", "next", "(", "blob_iterator", ")", "except", "StopIteration", ":", "all_blobs_read", "=", "True", "break", "byte_buffer", ".", "write", "(", "blob", ".", "data", ")", "if", "byte_buffer", ".", "tell", "(", ")", ">", "0", ":", "# Yield a chunk of the signed binary and reset the buffer to contain", "# only data that hasn't been sent yet.", "byte_buffer", ".", "seek", "(", "0", ")", "yield", "byte_buffer", ".", "read", "(", "chunk_size", ")", "byte_buffer", "=", "io", ".", "BytesIO", "(", "byte_buffer", ".", "read", "(", ")", ")", "byte_buffer", ".", "seek", "(", "0", ",", "io", ".", "SEEK_END", ")" ]
Yields the contents of the given binary in chunks of the given size. Args: blob_iterator: An Iterator over all the binary's blobs. chunk_size: Size, in bytes, of the chunks to yield.
[ "Yields", "the", "contents", "of", "the", "given", "binary", "in", "chunks", "of", "the", "given", "size", "." ]
python
train
log2timeline/plaso
plaso/lib/lexer.py
https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/lib/lexer.py#L409-L423
def StringEscape(self, string, match, **unused_kwargs): """Escape backslashes found inside a string quote. Backslashes followed by anything other than ['"rnbt] will just be included in the string. Args: string: The string that matched. match: the match object (instance of re.MatchObject). Where match.group(1) contains the escaped code. """ if match.group(1) in '\'"rnbt': self.string += string.decode('unicode_escape') else: self.string += string
[ "def", "StringEscape", "(", "self", ",", "string", ",", "match", ",", "*", "*", "unused_kwargs", ")", ":", "if", "match", ".", "group", "(", "1", ")", "in", "'\\'\"rnbt'", ":", "self", ".", "string", "+=", "string", ".", "decode", "(", "'unicode_escape'", ")", "else", ":", "self", ".", "string", "+=", "string" ]
Escape backslashes found inside a string quote. Backslashes followed by anything other than ['"rnbt] will just be included in the string. Args: string: The string that matched. match: the match object (instance of re.MatchObject). Where match.group(1) contains the escaped code.
[ "Escape", "backslashes", "found", "inside", "a", "string", "quote", "." ]
python
train
user-cont/colin
colin/utils/cmd_tools.py
https://github.com/user-cont/colin/blob/00bb80e6e91522e15361935f813e8cf13d7e76dc/colin/utils/cmd_tools.py#L100-L124
def exit_after(s): """ Use as decorator to exit process if function takes longer than s seconds. Direct call is available via exit_after(TIMEOUT_IN_S)(fce)(args). Inspired by https://stackoverflow.com/a/31667005 """ def outer(fn): def inner(*args, **kwargs): timer = threading.Timer(s, thread.interrupt_main) timer.start() try: result = fn(*args, **kwargs) except KeyboardInterrupt: raise TimeoutError("Function '{}' hit the timeout ({}s).".format(fn.__name__, s)) finally: timer.cancel() return result return inner return outer
[ "def", "exit_after", "(", "s", ")", ":", "def", "outer", "(", "fn", ")", ":", "def", "inner", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "timer", "=", "threading", ".", "Timer", "(", "s", ",", "thread", ".", "interrupt_main", ")", "timer", ".", "start", "(", ")", "try", ":", "result", "=", "fn", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "KeyboardInterrupt", ":", "raise", "TimeoutError", "(", "\"Function '{}' hit the timeout ({}s).\"", ".", "format", "(", "fn", ".", "__name__", ",", "s", ")", ")", "finally", ":", "timer", ".", "cancel", "(", ")", "return", "result", "return", "inner", "return", "outer" ]
Use as decorator to exit process if function takes longer than s seconds. Direct call is available via exit_after(TIMEOUT_IN_S)(fce)(args). Inspired by https://stackoverflow.com/a/31667005
[ "Use", "as", "decorator", "to", "exit", "process", "if", "function", "takes", "longer", "than", "s", "seconds", "." ]
python
train
jaredLunde/vital-tools
vital/debug/stats.py
https://github.com/jaredLunde/vital-tools/blob/ea924c9bbb6ec22aa66f8095f018b1ee0099ac04/vital/debug/stats.py#L19-L25
def mean(data): """Return the sample arithmetic mean of data.""" #: http://stackoverflow.com/a/27758326 n = len(data) if n < 1: raise ValueError('mean requires at least one data point') return sum(data)/n
[ "def", "mean", "(", "data", ")", ":", "#: http://stackoverflow.com/a/27758326", "n", "=", "len", "(", "data", ")", "if", "n", "<", "1", ":", "raise", "ValueError", "(", "'mean requires at least one data point'", ")", "return", "sum", "(", "data", ")", "/", "n" ]
Return the sample arithmetic mean of data.
[ "Return", "the", "sample", "arithmetic", "mean", "of", "data", "." ]
python
train
KelSolaar/Foundations
foundations/common.py
https://github.com/KelSolaar/Foundations/blob/5c141330faf09dad70a12bc321f4c564917d0a91/foundations/common.py#L86-L97
def ordered_uniqify(sequence): """ Uniqifies the given hashable sequence while preserving its order. :param sequence: Sequence. :type sequence: object :return: Uniqified sequence. :rtype: list """ items = set() return [key for key in sequence if key not in items and not items.add(key)]
[ "def", "ordered_uniqify", "(", "sequence", ")", ":", "items", "=", "set", "(", ")", "return", "[", "key", "for", "key", "in", "sequence", "if", "key", "not", "in", "items", "and", "not", "items", ".", "add", "(", "key", ")", "]" ]
Uniqifies the given hashable sequence while preserving its order. :param sequence: Sequence. :type sequence: object :return: Uniqified sequence. :rtype: list
[ "Uniqifies", "the", "given", "hashable", "sequence", "while", "preserving", "its", "order", "." ]
python
train
saltstack/salt
salt/ext/ipaddress.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/ext/ipaddress.py#L1249-L1278
def _is_valid_netmask(self, netmask): """Verify that the netmask is valid. Args: netmask: A string, either a prefix or dotted decimal netmask. Returns: A boolean, True if the prefix represents a valid IPv4 netmask. """ mask = netmask.split('.') if len(mask) == 4: try: for x in mask: if int(x) not in self._valid_mask_octets: return False except ValueError: # Found something that isn't an integer or isn't valid return False for idx, y in enumerate(mask): if idx > 0 and y > mask[idx - 1]: return False return True try: netmask = int(netmask) except ValueError: return False return 0 <= netmask <= self._max_prefixlen
[ "def", "_is_valid_netmask", "(", "self", ",", "netmask", ")", ":", "mask", "=", "netmask", ".", "split", "(", "'.'", ")", "if", "len", "(", "mask", ")", "==", "4", ":", "try", ":", "for", "x", "in", "mask", ":", "if", "int", "(", "x", ")", "not", "in", "self", ".", "_valid_mask_octets", ":", "return", "False", "except", "ValueError", ":", "# Found something that isn't an integer or isn't valid", "return", "False", "for", "idx", ",", "y", "in", "enumerate", "(", "mask", ")", ":", "if", "idx", ">", "0", "and", "y", ">", "mask", "[", "idx", "-", "1", "]", ":", "return", "False", "return", "True", "try", ":", "netmask", "=", "int", "(", "netmask", ")", "except", "ValueError", ":", "return", "False", "return", "0", "<=", "netmask", "<=", "self", ".", "_max_prefixlen" ]
Verify that the netmask is valid. Args: netmask: A string, either a prefix or dotted decimal netmask. Returns: A boolean, True if the prefix represents a valid IPv4 netmask.
[ "Verify", "that", "the", "netmask", "is", "valid", "." ]
python
train
pymc-devs/pymc
pymc/gp/cov_funs/cov_utils.py
https://github.com/pymc-devs/pymc/blob/c6e530210bff4c0d7189b35b2c971bc53f93f7cd/pymc/gp/cov_funs/cov_utils.py#L23-L49
def regularize_array(A): """ Takes an np.ndarray as an input. - If the array is one-dimensional, it's assumed to be an array of input values. - If the array is more than one-dimensional, its last index is assumed to curse over spatial dimension. Either way, the return value is at least two dimensional. A.shape[-1] gives the number of spatial dimensions. """ if not isinstance(A,np.ndarray): A = np.array(A, dtype=float) else: A = np.asarray(A, dtype=float) if len(A.shape) <= 1: return A.reshape(-1,1) elif A.shape[-1]>1: return A.reshape(-1, A.shape[-1]) else: return A
[ "def", "regularize_array", "(", "A", ")", ":", "if", "not", "isinstance", "(", "A", ",", "np", ".", "ndarray", ")", ":", "A", "=", "np", ".", "array", "(", "A", ",", "dtype", "=", "float", ")", "else", ":", "A", "=", "np", ".", "asarray", "(", "A", ",", "dtype", "=", "float", ")", "if", "len", "(", "A", ".", "shape", ")", "<=", "1", ":", "return", "A", ".", "reshape", "(", "-", "1", ",", "1", ")", "elif", "A", ".", "shape", "[", "-", "1", "]", ">", "1", ":", "return", "A", ".", "reshape", "(", "-", "1", ",", "A", ".", "shape", "[", "-", "1", "]", ")", "else", ":", "return", "A" ]
Takes an np.ndarray as an input. - If the array is one-dimensional, it's assumed to be an array of input values. - If the array is more than one-dimensional, its last index is assumed to curse over spatial dimension. Either way, the return value is at least two dimensional. A.shape[-1] gives the number of spatial dimensions.
[ "Takes", "an", "np", ".", "ndarray", "as", "an", "input", "." ]
python
train
quodlibet/mutagen
mutagen/mp4/_atom.py
https://github.com/quodlibet/mutagen/blob/e393df5971ba41ba5a50de9c2c9e7e5484d82c4e/mutagen/mp4/_atom.py#L84-L89
def read(self, fileobj): """Return if all data could be read and the atom payload""" fileobj.seek(self._dataoffset, 0) data = fileobj.read(self.datalength) return len(data) == self.datalength, data
[ "def", "read", "(", "self", ",", "fileobj", ")", ":", "fileobj", ".", "seek", "(", "self", ".", "_dataoffset", ",", "0", ")", "data", "=", "fileobj", ".", "read", "(", "self", ".", "datalength", ")", "return", "len", "(", "data", ")", "==", "self", ".", "datalength", ",", "data" ]
Return if all data could be read and the atom payload
[ "Return", "if", "all", "data", "could", "be", "read", "and", "the", "atom", "payload" ]
python
train
user-cont/conu
conu/backend/k8s/deployment.py
https://github.com/user-cont/conu/blob/08caae7bb6bdd265b55bb106c3da6a7946a5a352/conu/backend/k8s/deployment.py#L124-L136
def all_pods_ready(self): """ Check if number of replicas with same selector is equals to number of ready replicas :return: bool """ if self.get_status().replicas and self.get_status().ready_replicas: if self.get_status().replicas == self.get_status().ready_replicas: logger.info("All pods are ready for deployment %s in namespace: %s", self.name, self.namespace) return True return False
[ "def", "all_pods_ready", "(", "self", ")", ":", "if", "self", ".", "get_status", "(", ")", ".", "replicas", "and", "self", ".", "get_status", "(", ")", ".", "ready_replicas", ":", "if", "self", ".", "get_status", "(", ")", ".", "replicas", "==", "self", ".", "get_status", "(", ")", ".", "ready_replicas", ":", "logger", ".", "info", "(", "\"All pods are ready for deployment %s in namespace: %s\"", ",", "self", ".", "name", ",", "self", ".", "namespace", ")", "return", "True", "return", "False" ]
Check if number of replicas with same selector is equals to number of ready replicas :return: bool
[ "Check", "if", "number", "of", "replicas", "with", "same", "selector", "is", "equals", "to", "number", "of", "ready", "replicas", ":", "return", ":", "bool" ]
python
train
StanfordBioinformatics/scgpm_seqresults_dnanexus
scgpm_seqresults_dnanexus/dnanexus_utils.py
https://github.com/StanfordBioinformatics/scgpm_seqresults_dnanexus/blob/2bdaae5ec5d38a07fec99e0c5379074a591d77b6/scgpm_seqresults_dnanexus/dnanexus_utils.py#L67-L84
def select_newest_project(dx_project_ids): """ Given a list of DNAnexus project IDs, returns the one that is newest as determined by creation date. Args: dx_project_ids: `list` of DNAnexus project IDs. Returns: `str`. """ if len(dx_project_ids) == 1: return dx_project_ids[0] projects = [dxpy.DXProject(x) for x in dx_project_ids] created_times = [x.describe()["created"] for x in projects] paired = zip(created_times,projects) paired.sort(reverse=True) return paired[0][0]
[ "def", "select_newest_project", "(", "dx_project_ids", ")", ":", "if", "len", "(", "dx_project_ids", ")", "==", "1", ":", "return", "dx_project_ids", "[", "0", "]", "projects", "=", "[", "dxpy", ".", "DXProject", "(", "x", ")", "for", "x", "in", "dx_project_ids", "]", "created_times", "=", "[", "x", ".", "describe", "(", ")", "[", "\"created\"", "]", "for", "x", "in", "projects", "]", "paired", "=", "zip", "(", "created_times", ",", "projects", ")", "paired", ".", "sort", "(", "reverse", "=", "True", ")", "return", "paired", "[", "0", "]", "[", "0", "]" ]
Given a list of DNAnexus project IDs, returns the one that is newest as determined by creation date. Args: dx_project_ids: `list` of DNAnexus project IDs. Returns: `str`.
[ "Given", "a", "list", "of", "DNAnexus", "project", "IDs", "returns", "the", "one", "that", "is", "newest", "as", "determined", "by", "creation", "date", ".", "Args", ":", "dx_project_ids", ":", "list", "of", "DNAnexus", "project", "IDs", ".", "Returns", ":", "str", "." ]
python
train
SBRG/ssbio
ssbio/pipeline/atlas2.py
https://github.com/SBRG/ssbio/blob/e9449e64ffc1a1f5ad07e5849aa12a650095f8a2/ssbio/pipeline/atlas2.py#L390-L407
def build_strain_specific_models(self, joblib=False, cores=1, force_rerun=False): """Wrapper function for _build_strain_specific_model""" if len(self.df_orthology_matrix) == 0: raise RuntimeError('Empty orthology matrix, please calculate first!') ref_functional_genes = [g.id for g in self.reference_gempro.functional_genes] log.info('Building strain specific models...') if joblib: result = DictList(Parallel(n_jobs=cores)(delayed(self._build_strain_specific_model)(s, ref_functional_genes, self.df_orthology_matrix, force_rerun=force_rerun) for s in self.strain_ids)) # if sc: # strains_rdd = sc.parallelize(self.strain_ids) # result = strains_rdd.map(self._build_strain_specific_model).collect() else: result = [] for s in tqdm(self.strain_ids): result.append(self._build_strain_specific_model(s, ref_functional_genes, self.df_orthology_matrix, force_rerun=force_rerun)) for strain_id, gp_noseqs_path in result: self.strain_infodict[strain_id]['gp_noseqs_path'] = gp_noseqs_path
[ "def", "build_strain_specific_models", "(", "self", ",", "joblib", "=", "False", ",", "cores", "=", "1", ",", "force_rerun", "=", "False", ")", ":", "if", "len", "(", "self", ".", "df_orthology_matrix", ")", "==", "0", ":", "raise", "RuntimeError", "(", "'Empty orthology matrix, please calculate first!'", ")", "ref_functional_genes", "=", "[", "g", ".", "id", "for", "g", "in", "self", ".", "reference_gempro", ".", "functional_genes", "]", "log", ".", "info", "(", "'Building strain specific models...'", ")", "if", "joblib", ":", "result", "=", "DictList", "(", "Parallel", "(", "n_jobs", "=", "cores", ")", "(", "delayed", "(", "self", ".", "_build_strain_specific_model", ")", "(", "s", ",", "ref_functional_genes", ",", "self", ".", "df_orthology_matrix", ",", "force_rerun", "=", "force_rerun", ")", "for", "s", "in", "self", ".", "strain_ids", ")", ")", "# if sc:", "# strains_rdd = sc.parallelize(self.strain_ids)", "# result = strains_rdd.map(self._build_strain_specific_model).collect()", "else", ":", "result", "=", "[", "]", "for", "s", "in", "tqdm", "(", "self", ".", "strain_ids", ")", ":", "result", ".", "append", "(", "self", ".", "_build_strain_specific_model", "(", "s", ",", "ref_functional_genes", ",", "self", ".", "df_orthology_matrix", ",", "force_rerun", "=", "force_rerun", ")", ")", "for", "strain_id", ",", "gp_noseqs_path", "in", "result", ":", "self", ".", "strain_infodict", "[", "strain_id", "]", "[", "'gp_noseqs_path'", "]", "=", "gp_noseqs_path" ]
Wrapper function for _build_strain_specific_model
[ "Wrapper", "function", "for", "_build_strain_specific_model" ]
python
train
bjmorgan/lattice_mc
lattice_mc/simulation.py
https://github.com/bjmorgan/lattice_mc/blob/7fa7be85f2f23a2d8dfd0830ecdb89d0dbf2bfd5/lattice_mc/simulation.py#L81-L93
def define_lattice_from_file( self, filename, cell_lengths ): """ Set up the simulation lattice from a file containing site data. Uses `init_lattice.lattice_from_sites_file`, which defines the site file spec. Args: filename (Str): sites file filename. cell_lengths (List(x,y,z)): cell lengths for the simulation cell. Returns: None """ self.lattice = init_lattice.lattice_from_sites_file( filename, cell_lengths = cell_lengths )
[ "def", "define_lattice_from_file", "(", "self", ",", "filename", ",", "cell_lengths", ")", ":", "self", ".", "lattice", "=", "init_lattice", ".", "lattice_from_sites_file", "(", "filename", ",", "cell_lengths", "=", "cell_lengths", ")" ]
Set up the simulation lattice from a file containing site data. Uses `init_lattice.lattice_from_sites_file`, which defines the site file spec. Args: filename (Str): sites file filename. cell_lengths (List(x,y,z)): cell lengths for the simulation cell. Returns: None
[ "Set", "up", "the", "simulation", "lattice", "from", "a", "file", "containing", "site", "data", ".", "Uses", "init_lattice", ".", "lattice_from_sites_file", "which", "defines", "the", "site", "file", "spec", ".", "Args", ":", "filename", "(", "Str", ")", ":", "sites", "file", "filename", ".", "cell_lengths", "(", "List", "(", "x", "y", "z", "))", ":", "cell", "lengths", "for", "the", "simulation", "cell", "." ]
python
train
roboogle/gtkmvc3
gtkmvco/examples/undo/undo_manager.py
https://github.com/roboogle/gtkmvc3/blob/63405fd8d2056be26af49103b13a8d5e57fe4dff/gtkmvco/examples/undo/undo_manager.py#L165-L175
def undo(self): """ Raises IndexError if more than one group is open, otherwise closes it and invokes undo_nested_group. """ if self.grouping_level() == 1: self.end_grouping() if self._open: raise IndexError self.undo_nested_group() self.notify()
[ "def", "undo", "(", "self", ")", ":", "if", "self", ".", "grouping_level", "(", ")", "==", "1", ":", "self", ".", "end_grouping", "(", ")", "if", "self", ".", "_open", ":", "raise", "IndexError", "self", ".", "undo_nested_group", "(", ")", "self", ".", "notify", "(", ")" ]
Raises IndexError if more than one group is open, otherwise closes it and invokes undo_nested_group.
[ "Raises", "IndexError", "if", "more", "than", "one", "group", "is", "open", "otherwise", "closes", "it", "and", "invokes", "undo_nested_group", "." ]
python
train
mozilla/build-mar
src/mardor/signing.py
https://github.com/mozilla/build-mar/blob/d8c3b3469e55654d31f430cb343fd89392196c4e/src/mardor/signing.py#L59-L101
def get_signature_data(fileobj, filesize): """Read data from MAR file that is required for MAR signatures. Args: fileboj (file-like object): file-like object to read the MAR data from filesize (int): the total size of the file Yields: blocks of bytes representing the data required to generate or validate signatures. """ # Read everything except the signature entries # The first 8 bytes are covered, as is everything from the beginning # of the additional section to the end of the file. The signature # algorithm id and size fields are also covered. fileobj.seek(0) marfile = mar.parse_stream(fileobj) if not marfile.signatures: raise IOError("Can't generate signature data for file without signature blocks") # MAR header fileobj.seek(0) block = fileobj.read(8) yield block # Signatures header sigs = sigs_header.parse_stream(fileobj) sig_types = [(sig.algorithm_id, sig.size) for sig in sigs.sigs] block = Int64ub.build(filesize) + Int32ub.build(sigs.count) yield block # Signature algorithm id and size per entry for algorithm_id, size in sig_types: block = Int32ub.build(algorithm_id) + Int32ub.build(size) yield block # Everything else in the file is covered for block in file_iter(fileobj): yield block
[ "def", "get_signature_data", "(", "fileobj", ",", "filesize", ")", ":", "# Read everything except the signature entries", "# The first 8 bytes are covered, as is everything from the beginning", "# of the additional section to the end of the file. The signature", "# algorithm id and size fields are also covered.", "fileobj", ".", "seek", "(", "0", ")", "marfile", "=", "mar", ".", "parse_stream", "(", "fileobj", ")", "if", "not", "marfile", ".", "signatures", ":", "raise", "IOError", "(", "\"Can't generate signature data for file without signature blocks\"", ")", "# MAR header", "fileobj", ".", "seek", "(", "0", ")", "block", "=", "fileobj", ".", "read", "(", "8", ")", "yield", "block", "# Signatures header", "sigs", "=", "sigs_header", ".", "parse_stream", "(", "fileobj", ")", "sig_types", "=", "[", "(", "sig", ".", "algorithm_id", ",", "sig", ".", "size", ")", "for", "sig", "in", "sigs", ".", "sigs", "]", "block", "=", "Int64ub", ".", "build", "(", "filesize", ")", "+", "Int32ub", ".", "build", "(", "sigs", ".", "count", ")", "yield", "block", "# Signature algorithm id and size per entry", "for", "algorithm_id", ",", "size", "in", "sig_types", ":", "block", "=", "Int32ub", ".", "build", "(", "algorithm_id", ")", "+", "Int32ub", ".", "build", "(", "size", ")", "yield", "block", "# Everything else in the file is covered", "for", "block", "in", "file_iter", "(", "fileobj", ")", ":", "yield", "block" ]
Read data from MAR file that is required for MAR signatures. Args: fileboj (file-like object): file-like object to read the MAR data from filesize (int): the total size of the file Yields: blocks of bytes representing the data required to generate or validate signatures.
[ "Read", "data", "from", "MAR", "file", "that", "is", "required", "for", "MAR", "signatures", "." ]
python
train
edx/i18n-tools
i18n/transifex.py
https://github.com/edx/i18n-tools/blob/99b20c17d1a0ca07a8839f33e0e9068248a581e5/i18n/transifex.py#L114-L125
def clean_locale(configuration, locale): """ Strips out the warning from all of a locale's translated po files about being an English source file. Iterates over machine-generated files. """ dirname = configuration.get_messages_dir(locale) if not dirname.exists(): # Happens when we have a supported locale that doesn't exist in Transifex return for filename in dirname.files('*.po'): clean_file(configuration, dirname.joinpath(filename))
[ "def", "clean_locale", "(", "configuration", ",", "locale", ")", ":", "dirname", "=", "configuration", ".", "get_messages_dir", "(", "locale", ")", "if", "not", "dirname", ".", "exists", "(", ")", ":", "# Happens when we have a supported locale that doesn't exist in Transifex", "return", "for", "filename", "in", "dirname", ".", "files", "(", "'*.po'", ")", ":", "clean_file", "(", "configuration", ",", "dirname", ".", "joinpath", "(", "filename", ")", ")" ]
Strips out the warning from all of a locale's translated po files about being an English source file. Iterates over machine-generated files.
[ "Strips", "out", "the", "warning", "from", "all", "of", "a", "locale", "s", "translated", "po", "files", "about", "being", "an", "English", "source", "file", ".", "Iterates", "over", "machine", "-", "generated", "files", "." ]
python
train
ungarj/mapchete
mapchete/formats/__init__.py
https://github.com/ungarj/mapchete/blob/d482918d0e66a5b414dff6aa7cc854e01fc60ee4/mapchete/formats/__init__.py#L78-L93
def available_input_formats(): """ Return all available input formats. Returns ------- formats : list all available input formats """ input_formats = [] for v in pkg_resources.iter_entry_points(DRIVERS_ENTRY_POINT): logger.debug("driver found: %s", v) driver_ = v.load() if hasattr(driver_, "METADATA") and (driver_.METADATA["mode"] in ["r", "rw"]): input_formats.append(driver_.METADATA["driver_name"]) return input_formats
[ "def", "available_input_formats", "(", ")", ":", "input_formats", "=", "[", "]", "for", "v", "in", "pkg_resources", ".", "iter_entry_points", "(", "DRIVERS_ENTRY_POINT", ")", ":", "logger", ".", "debug", "(", "\"driver found: %s\"", ",", "v", ")", "driver_", "=", "v", ".", "load", "(", ")", "if", "hasattr", "(", "driver_", ",", "\"METADATA\"", ")", "and", "(", "driver_", ".", "METADATA", "[", "\"mode\"", "]", "in", "[", "\"r\"", ",", "\"rw\"", "]", ")", ":", "input_formats", ".", "append", "(", "driver_", ".", "METADATA", "[", "\"driver_name\"", "]", ")", "return", "input_formats" ]
Return all available input formats. Returns ------- formats : list all available input formats
[ "Return", "all", "available", "input", "formats", "." ]
python
valid
PmagPy/PmagPy
SPD/lib/lib_arai_plot_statistics.py
https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/SPD/lib/lib_arai_plot_statistics.py#L257-L263
def get_b_wiggle(x, y, y_int): """returns instantaneous slope from the ratio of NRM lost to TRM gained at the ith step""" if x == 0: b_wiggle = 0 else: b_wiggle = old_div((y_int - y), x) return b_wiggle
[ "def", "get_b_wiggle", "(", "x", ",", "y", ",", "y_int", ")", ":", "if", "x", "==", "0", ":", "b_wiggle", "=", "0", "else", ":", "b_wiggle", "=", "old_div", "(", "(", "y_int", "-", "y", ")", ",", "x", ")", "return", "b_wiggle" ]
returns instantaneous slope from the ratio of NRM lost to TRM gained at the ith step
[ "returns", "instantaneous", "slope", "from", "the", "ratio", "of", "NRM", "lost", "to", "TRM", "gained", "at", "the", "ith", "step" ]
python
train
ISA-tools/biopy-isatab
bcbio/isatab/parser.py
https://github.com/ISA-tools/biopy-isatab/blob/fe42c98184d5eb5f28d8c0b7c3fc63a9b9729f27/bcbio/isatab/parser.py#L371-L381
def _collapse_attributes(self, line, header, indexes): """Combine attributes in multiple columns into single named tuple. """ names = [] vals = [] pat = re.compile("[\W]+") for i in indexes: names.append(pat.sub("_", self._clean_header(header[i]))) vals.append(line[i]) Attrs = collections.namedtuple('Attrs', names) return Attrs(*vals)
[ "def", "_collapse_attributes", "(", "self", ",", "line", ",", "header", ",", "indexes", ")", ":", "names", "=", "[", "]", "vals", "=", "[", "]", "pat", "=", "re", ".", "compile", "(", "\"[\\W]+\"", ")", "for", "i", "in", "indexes", ":", "names", ".", "append", "(", "pat", ".", "sub", "(", "\"_\"", ",", "self", ".", "_clean_header", "(", "header", "[", "i", "]", ")", ")", ")", "vals", ".", "append", "(", "line", "[", "i", "]", ")", "Attrs", "=", "collections", ".", "namedtuple", "(", "'Attrs'", ",", "names", ")", "return", "Attrs", "(", "*", "vals", ")" ]
Combine attributes in multiple columns into single named tuple.
[ "Combine", "attributes", "in", "multiple", "columns", "into", "single", "named", "tuple", "." ]
python
train
django-danceschool/django-danceschool
danceschool/vouchers/handlers.py
https://github.com/django-danceschool/django-danceschool/blob/bb08cbf39017a812a5a94bdb4ea34170bf1a30ba/danceschool/vouchers/handlers.py#L20-L71
def checkVoucherCode(sender,**kwargs): ''' Check that the given voucher code is valid ''' logger.debug('Signal to check RegistrationContactForm handled by vouchers app.') formData = kwargs.get('formData',{}) request = kwargs.get('request',{}) registration = kwargs.get('registration',None) session = getattr(request,'session',{}).get(REG_VALIDATION_STR,{}) id = formData.get('gift','') first = formData.get('firstName') last = formData.get('lastName') email = formData.get('email') # Clean out the session data relating to vouchers so that we can revalidate it. session.pop('total_voucher_amount',0) session.pop('voucher_names',None) session.pop('gift',None) if id == '': return if not getConstant('vouchers__enableVouchers'): raise ValidationError({'gift': _('Vouchers are disabled.')}) if session.get('gift','') != '': raise ValidationError({'gift': _('Can\'t have more than one voucher')}) eventids = [x.event.id for x in registration.temporaryeventregistration_set.exclude(dropIn=True)] seriess = Series.objects.filter(id__in=eventids) obj = Voucher.objects.filter(voucherId=id).first() if not obj: raise ValidationError({'gift':_('Invalid Voucher Id')}) else: customer = Customer.objects.filter( first_name=first, last_name=last, email=email).first() # This will raise any other errors that may be relevant try: obj.validateForCustomerAndSeriess(customer,seriess) except ValidationError as e: # Ensures that the error is applied to the correct field raise ValidationError({'gift': e}) # If we got this far, then the voucher is determined to be valid, so the registration # can proceed with no errors. return
[ "def", "checkVoucherCode", "(", "sender", ",", "*", "*", "kwargs", ")", ":", "logger", ".", "debug", "(", "'Signal to check RegistrationContactForm handled by vouchers app.'", ")", "formData", "=", "kwargs", ".", "get", "(", "'formData'", ",", "{", "}", ")", "request", "=", "kwargs", ".", "get", "(", "'request'", ",", "{", "}", ")", "registration", "=", "kwargs", ".", "get", "(", "'registration'", ",", "None", ")", "session", "=", "getattr", "(", "request", ",", "'session'", ",", "{", "}", ")", ".", "get", "(", "REG_VALIDATION_STR", ",", "{", "}", ")", "id", "=", "formData", ".", "get", "(", "'gift'", ",", "''", ")", "first", "=", "formData", ".", "get", "(", "'firstName'", ")", "last", "=", "formData", ".", "get", "(", "'lastName'", ")", "email", "=", "formData", ".", "get", "(", "'email'", ")", "# Clean out the session data relating to vouchers so that we can revalidate it.\r", "session", ".", "pop", "(", "'total_voucher_amount'", ",", "0", ")", "session", ".", "pop", "(", "'voucher_names'", ",", "None", ")", "session", ".", "pop", "(", "'gift'", ",", "None", ")", "if", "id", "==", "''", ":", "return", "if", "not", "getConstant", "(", "'vouchers__enableVouchers'", ")", ":", "raise", "ValidationError", "(", "{", "'gift'", ":", "_", "(", "'Vouchers are disabled.'", ")", "}", ")", "if", "session", ".", "get", "(", "'gift'", ",", "''", ")", "!=", "''", ":", "raise", "ValidationError", "(", "{", "'gift'", ":", "_", "(", "'Can\\'t have more than one voucher'", ")", "}", ")", "eventids", "=", "[", "x", ".", "event", ".", "id", "for", "x", "in", "registration", ".", "temporaryeventregistration_set", ".", "exclude", "(", "dropIn", "=", "True", ")", "]", "seriess", "=", "Series", ".", "objects", ".", "filter", "(", "id__in", "=", "eventids", ")", "obj", "=", "Voucher", ".", "objects", ".", "filter", "(", "voucherId", "=", "id", ")", ".", "first", "(", ")", "if", "not", "obj", ":", "raise", "ValidationError", "(", "{", "'gift'", ":", "_", "(", "'Invalid Voucher Id'", ")", "}", ")", "else", ":", "customer", "=", "Customer", ".", "objects", ".", "filter", "(", "first_name", "=", "first", ",", "last_name", "=", "last", ",", "email", "=", "email", ")", ".", "first", "(", ")", "# This will raise any other errors that may be relevant\r", "try", ":", "obj", ".", "validateForCustomerAndSeriess", "(", "customer", ",", "seriess", ")", "except", "ValidationError", "as", "e", ":", "# Ensures that the error is applied to the correct field\r", "raise", "ValidationError", "(", "{", "'gift'", ":", "e", "}", ")", "# If we got this far, then the voucher is determined to be valid, so the registration\r", "# can proceed with no errors.\r", "return" ]
Check that the given voucher code is valid
[ "Check", "that", "the", "given", "voucher", "code", "is", "valid" ]
python
train
azraq27/neural
neural/dsets.py
https://github.com/azraq27/neural/blob/fe91bfeecbf73ad99708cf5dca66cb61fcd529f5/neural/dsets.py#L273-L285
def resample_dset(dset,template,prefix=None,resam='NN'): '''Resamples ``dset`` to the grid of ``template`` using resampling mode ``resam``. Default prefix is to suffix ``_resam`` at the end of ``dset`` Available resampling modes: :NN: Nearest Neighbor :Li: Linear :Cu: Cubic :Bk: Blocky ''' if prefix==None: prefix = nl.suffix(dset,'_resam') nl.run(['3dresample','-master',template,'-rmode',resam,'-prefix',prefix,'-inset',dset])
[ "def", "resample_dset", "(", "dset", ",", "template", ",", "prefix", "=", "None", ",", "resam", "=", "'NN'", ")", ":", "if", "prefix", "==", "None", ":", "prefix", "=", "nl", ".", "suffix", "(", "dset", ",", "'_resam'", ")", "nl", ".", "run", "(", "[", "'3dresample'", ",", "'-master'", ",", "template", ",", "'-rmode'", ",", "resam", ",", "'-prefix'", ",", "prefix", ",", "'-inset'", ",", "dset", "]", ")" ]
Resamples ``dset`` to the grid of ``template`` using resampling mode ``resam``. Default prefix is to suffix ``_resam`` at the end of ``dset`` Available resampling modes: :NN: Nearest Neighbor :Li: Linear :Cu: Cubic :Bk: Blocky
[ "Resamples", "dset", "to", "the", "grid", "of", "template", "using", "resampling", "mode", "resam", ".", "Default", "prefix", "is", "to", "suffix", "_resam", "at", "the", "end", "of", "dset" ]
python
train
gagneurlab/concise
concise/preprocessing/splines.py
https://github.com/gagneurlab/concise/blob/d15262eb1e590008bc96ba31e93bfbdbfa1a9fd4/concise/preprocessing/splines.py#L93-L149
def encodeSplines(x, n_bases=10, spline_order=3, start=None, end=None, warn=True): """**Deprecated**. Function version of the transformer class `EncodeSplines`. Get B-spline base-function expansion # Details First, the knots for B-spline basis functions are placed equidistantly on the [start, end] range. (inferred from the data if None). Next, b_n(x) value is is computed for each x and each n (spline-index) with `scipy.interpolate.splev`. # Arguments x: a numpy array of positions with 2 dimensions n_bases int: Number of spline bases. spline_order: 2 for quadratic, 3 for qubic splines start, end: range of values. If None, they are inferred from the data as minimum and maximum value. warn: Show warnings. # Returns `np.ndarray` of shape `(x.shape[0], x.shape[1], n_bases)` """ # TODO - make it general... if len(x.shape) == 1: x = x.reshape((-1, 1)) if start is None: start = np.nanmin(x) else: if x.min() < start: if warn: print("WARNING, x.min() < start for some elements. Truncating them to start: x[x < start] = start") x = _trunc(x, minval=start) if end is None: end = np.nanmax(x) else: if x.max() > end: if warn: print("WARNING, x.max() > end for some elements. Truncating them to end: x[x > end] = end") x = _trunc(x, maxval=end) bs = BSpline(start, end, n_bases=n_bases, spline_order=spline_order ) # concatenate x to long assert len(x.shape) == 2 n_rows = x.shape[0] n_cols = x.shape[1] x_long = x.reshape((-1,)) x_feat = bs.predict(x_long, add_intercept=False) # shape = (n_rows * n_cols, n_bases) x_final = x_feat.reshape((n_rows, n_cols, n_bases)) return x_final
[ "def", "encodeSplines", "(", "x", ",", "n_bases", "=", "10", ",", "spline_order", "=", "3", ",", "start", "=", "None", ",", "end", "=", "None", ",", "warn", "=", "True", ")", ":", "# TODO - make it general...", "if", "len", "(", "x", ".", "shape", ")", "==", "1", ":", "x", "=", "x", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", "if", "start", "is", "None", ":", "start", "=", "np", ".", "nanmin", "(", "x", ")", "else", ":", "if", "x", ".", "min", "(", ")", "<", "start", ":", "if", "warn", ":", "print", "(", "\"WARNING, x.min() < start for some elements. Truncating them to start: x[x < start] = start\"", ")", "x", "=", "_trunc", "(", "x", ",", "minval", "=", "start", ")", "if", "end", "is", "None", ":", "end", "=", "np", ".", "nanmax", "(", "x", ")", "else", ":", "if", "x", ".", "max", "(", ")", ">", "end", ":", "if", "warn", ":", "print", "(", "\"WARNING, x.max() > end for some elements. Truncating them to end: x[x > end] = end\"", ")", "x", "=", "_trunc", "(", "x", ",", "maxval", "=", "end", ")", "bs", "=", "BSpline", "(", "start", ",", "end", ",", "n_bases", "=", "n_bases", ",", "spline_order", "=", "spline_order", ")", "# concatenate x to long", "assert", "len", "(", "x", ".", "shape", ")", "==", "2", "n_rows", "=", "x", ".", "shape", "[", "0", "]", "n_cols", "=", "x", ".", "shape", "[", "1", "]", "x_long", "=", "x", ".", "reshape", "(", "(", "-", "1", ",", ")", ")", "x_feat", "=", "bs", ".", "predict", "(", "x_long", ",", "add_intercept", "=", "False", ")", "# shape = (n_rows * n_cols, n_bases)", "x_final", "=", "x_feat", ".", "reshape", "(", "(", "n_rows", ",", "n_cols", ",", "n_bases", ")", ")", "return", "x_final" ]
**Deprecated**. Function version of the transformer class `EncodeSplines`. Get B-spline base-function expansion # Details First, the knots for B-spline basis functions are placed equidistantly on the [start, end] range. (inferred from the data if None). Next, b_n(x) value is is computed for each x and each n (spline-index) with `scipy.interpolate.splev`. # Arguments x: a numpy array of positions with 2 dimensions n_bases int: Number of spline bases. spline_order: 2 for quadratic, 3 for qubic splines start, end: range of values. If None, they are inferred from the data as minimum and maximum value. warn: Show warnings. # Returns `np.ndarray` of shape `(x.shape[0], x.shape[1], n_bases)`
[ "**", "Deprecated", "**", ".", "Function", "version", "of", "the", "transformer", "class", "EncodeSplines", ".", "Get", "B", "-", "spline", "base", "-", "function", "expansion" ]
python
train
dmwm/DBS
Server/Python/src/dbs/dao/Oracle/FileBuffer/List.py
https://github.com/dmwm/DBS/blob/9619bafce3783b3e77f0415f8f9a258e33dd1e6f/Server/Python/src/dbs/dao/Oracle/FileBuffer/List.py#L20-L31
def execute(self, conn, block_id="", transaction=False): """ simple execute """ if not conn: dbsExceptionHandler("dbsException-db-conn-failed", "Oracle/FileBuffer/List. Expects db connection from upper layer.") sql = self.sql binds = { "block_id" : block_id} cursors = self.dbi.processData(sql, binds, conn, transaction, returnCursor=True) result = self.formatCursor(cursors[0]) return result
[ "def", "execute", "(", "self", ",", "conn", ",", "block_id", "=", "\"\"", ",", "transaction", "=", "False", ")", ":", "if", "not", "conn", ":", "dbsExceptionHandler", "(", "\"dbsException-db-conn-failed\"", ",", "\"Oracle/FileBuffer/List. Expects db connection from upper layer.\"", ")", "sql", "=", "self", ".", "sql", "binds", "=", "{", "\"block_id\"", ":", "block_id", "}", "cursors", "=", "self", ".", "dbi", ".", "processData", "(", "sql", ",", "binds", ",", "conn", ",", "transaction", ",", "returnCursor", "=", "True", ")", "result", "=", "self", ".", "formatCursor", "(", "cursors", "[", "0", "]", ")", "return", "result" ]
simple execute
[ "simple", "execute" ]
python
train
project-rig/rig
rig/machine_control/machine_controller.py
https://github.com/project-rig/rig/blob/3a3e053d3214899b6d68758685835de0afd5542b/rig/machine_control/machine_controller.py#L1803-L1840
def get_chip_info(self, x, y): """Get general information about the resources available on a chip. Returns ------- :py:class:`.ChipInfo` A named tuple indicating the number of working cores, the states of all working cores, the set of working links and the size of the largest free block in SDRAM and SRAM. """ info = self._send_scp(x, y, 0, SCPCommands.info, expected_args=3) # Unpack values encoded in the argument fields num_cores = info.arg1 & 0x1F working_links = set(link for link in Links if (info.arg1 >> (8 + link)) & 1) largest_free_rtr_mc_block = (info.arg1 >> 14) & 0x7FF ethernet_up = bool(info.arg1 & (1 << 25)) # Unpack the values in the data payload data = struct.unpack_from("<18BHI", info.data) core_states = [consts.AppState(c) for c in data[:18]] local_ethernet_chip = ((data[18] >> 8) & 0xFF, (data[18] >> 0) & 0xFF) ip_address = ".".join(str((data[19] >> i) & 0xFF) for i in range(0, 32, 8)) return ChipInfo( num_cores=num_cores, core_states=core_states[:num_cores], working_links=working_links, largest_free_sdram_block=info.arg2, largest_free_sram_block=info.arg3, largest_free_rtr_mc_block=largest_free_rtr_mc_block, ethernet_up=ethernet_up, ip_address=ip_address, local_ethernet_chip=local_ethernet_chip, )
[ "def", "get_chip_info", "(", "self", ",", "x", ",", "y", ")", ":", "info", "=", "self", ".", "_send_scp", "(", "x", ",", "y", ",", "0", ",", "SCPCommands", ".", "info", ",", "expected_args", "=", "3", ")", "# Unpack values encoded in the argument fields", "num_cores", "=", "info", ".", "arg1", "&", "0x1F", "working_links", "=", "set", "(", "link", "for", "link", "in", "Links", "if", "(", "info", ".", "arg1", ">>", "(", "8", "+", "link", ")", ")", "&", "1", ")", "largest_free_rtr_mc_block", "=", "(", "info", ".", "arg1", ">>", "14", ")", "&", "0x7FF", "ethernet_up", "=", "bool", "(", "info", ".", "arg1", "&", "(", "1", "<<", "25", ")", ")", "# Unpack the values in the data payload", "data", "=", "struct", ".", "unpack_from", "(", "\"<18BHI\"", ",", "info", ".", "data", ")", "core_states", "=", "[", "consts", ".", "AppState", "(", "c", ")", "for", "c", "in", "data", "[", ":", "18", "]", "]", "local_ethernet_chip", "=", "(", "(", "data", "[", "18", "]", ">>", "8", ")", "&", "0xFF", ",", "(", "data", "[", "18", "]", ">>", "0", ")", "&", "0xFF", ")", "ip_address", "=", "\".\"", ".", "join", "(", "str", "(", "(", "data", "[", "19", "]", ">>", "i", ")", "&", "0xFF", ")", "for", "i", "in", "range", "(", "0", ",", "32", ",", "8", ")", ")", "return", "ChipInfo", "(", "num_cores", "=", "num_cores", ",", "core_states", "=", "core_states", "[", ":", "num_cores", "]", ",", "working_links", "=", "working_links", ",", "largest_free_sdram_block", "=", "info", ".", "arg2", ",", "largest_free_sram_block", "=", "info", ".", "arg3", ",", "largest_free_rtr_mc_block", "=", "largest_free_rtr_mc_block", ",", "ethernet_up", "=", "ethernet_up", ",", "ip_address", "=", "ip_address", ",", "local_ethernet_chip", "=", "local_ethernet_chip", ",", ")" ]
Get general information about the resources available on a chip. Returns ------- :py:class:`.ChipInfo` A named tuple indicating the number of working cores, the states of all working cores, the set of working links and the size of the largest free block in SDRAM and SRAM.
[ "Get", "general", "information", "about", "the", "resources", "available", "on", "a", "chip", "." ]
python
train
matthew-brett/delocate
delocate/delocating.py
https://github.com/matthew-brett/delocate/blob/ed48de15fce31c3f52f1a9f32cae1b02fc55aa60/delocate/delocating.py#L104-L147
def copy_recurse(lib_path, copy_filt_func = None, copied_libs = None): """ Analyze `lib_path` for library dependencies and copy libraries `lib_path` is a directory containing libraries. The libraries might themselves have dependencies. This function analyzes the dependencies and copies library dependencies that match the filter `copy_filt_func`. It also adjusts the depending libraries to use the copy. It keeps iterating over `lib_path` until all matching dependencies (of dependencies of dependencies ...) have been copied. Parameters ---------- lib_path : str Directory containing libraries copy_filt_func : None or callable, optional If None, copy any library that found libraries depend on. If callable, called on each depended library name; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise copied_libs : dict Dict with (key, value) pairs of (``copied_lib_path``, ``dependings_dict``) where ``copied_lib_path`` is the canonical path of a library that has been copied to `lib_path`, and ``dependings_dict`` is a dictionary with (key, value) pairs of (``depending_lib_path``, ``install_name``). ``depending_lib_path`` is the canonical path of the library depending on ``copied_lib_path``, ``install_name`` is the name that ``depending_lib_path`` uses to refer to ``copied_lib_path`` (in its install names). Returns ------- copied_libs : dict Input `copied_libs` dict with any extra libraries and / or dependencies added. """ if copied_libs is None: copied_libs = {} else: copied_libs = dict(copied_libs) done = False while not done: in_len = len(copied_libs) _copy_required(lib_path, copy_filt_func, copied_libs) done = len(copied_libs) == in_len return copied_libs
[ "def", "copy_recurse", "(", "lib_path", ",", "copy_filt_func", "=", "None", ",", "copied_libs", "=", "None", ")", ":", "if", "copied_libs", "is", "None", ":", "copied_libs", "=", "{", "}", "else", ":", "copied_libs", "=", "dict", "(", "copied_libs", ")", "done", "=", "False", "while", "not", "done", ":", "in_len", "=", "len", "(", "copied_libs", ")", "_copy_required", "(", "lib_path", ",", "copy_filt_func", ",", "copied_libs", ")", "done", "=", "len", "(", "copied_libs", ")", "==", "in_len", "return", "copied_libs" ]
Analyze `lib_path` for library dependencies and copy libraries `lib_path` is a directory containing libraries. The libraries might themselves have dependencies. This function analyzes the dependencies and copies library dependencies that match the filter `copy_filt_func`. It also adjusts the depending libraries to use the copy. It keeps iterating over `lib_path` until all matching dependencies (of dependencies of dependencies ...) have been copied. Parameters ---------- lib_path : str Directory containing libraries copy_filt_func : None or callable, optional If None, copy any library that found libraries depend on. If callable, called on each depended library name; copy where ``copy_filt_func(libname)`` is True, don't copy otherwise copied_libs : dict Dict with (key, value) pairs of (``copied_lib_path``, ``dependings_dict``) where ``copied_lib_path`` is the canonical path of a library that has been copied to `lib_path`, and ``dependings_dict`` is a dictionary with (key, value) pairs of (``depending_lib_path``, ``install_name``). ``depending_lib_path`` is the canonical path of the library depending on ``copied_lib_path``, ``install_name`` is the name that ``depending_lib_path`` uses to refer to ``copied_lib_path`` (in its install names). Returns ------- copied_libs : dict Input `copied_libs` dict with any extra libraries and / or dependencies added.
[ "Analyze", "lib_path", "for", "library", "dependencies", "and", "copy", "libraries" ]
python
train
acorg/dark-matter
dark/blast/params.py
https://github.com/acorg/dark-matter/blob/c78a1bf262667fa5db3548fa7066c4ec14d0551d/dark/blast/params.py#L12-L46
def checkCompatibleParams(initialParams, laterParams): """ Check a later set of BLAST parameters against those originally found. @param initialParams: A C{dict} with the originally encountered BLAST parameter settings. @param laterParams: A C{dict} with BLAST parameter settings encountered later. @return: A C{str} summary of the parameter differences if the parameter sets differ, else C{None}. """ # Note that although the params contains a 'date', its value is empty # (as far as I've seen). This could become an issue one day if it # becomes non-empty and differs between JSON files that we cat # together. In that case we may need to be more specific in our params # compatible checking. err = [] for param in initialParams: if param in laterParams: if (param not in VARIABLE_PARAMS and initialParams[param] != laterParams[param]): err.append( '\tParam %r initial value %r differs from ' 'later value %r' % (param, initialParams[param], laterParams[param])) else: err.append('\t%r found in initial parameters, not found ' 'in later parameters' % param) for param in laterParams: if param not in initialParams: err.append('\t%r found in later parameters, not seen in ' 'initial parameters' % param) return 'Summary of differences:\n%s' % '\n'.join(err) if err else None
[ "def", "checkCompatibleParams", "(", "initialParams", ",", "laterParams", ")", ":", "# Note that although the params contains a 'date', its value is empty", "# (as far as I've seen). This could become an issue one day if it", "# becomes non-empty and differs between JSON files that we cat", "# together. In that case we may need to be more specific in our params", "# compatible checking.", "err", "=", "[", "]", "for", "param", "in", "initialParams", ":", "if", "param", "in", "laterParams", ":", "if", "(", "param", "not", "in", "VARIABLE_PARAMS", "and", "initialParams", "[", "param", "]", "!=", "laterParams", "[", "param", "]", ")", ":", "err", ".", "append", "(", "'\\tParam %r initial value %r differs from '", "'later value %r'", "%", "(", "param", ",", "initialParams", "[", "param", "]", ",", "laterParams", "[", "param", "]", ")", ")", "else", ":", "err", ".", "append", "(", "'\\t%r found in initial parameters, not found '", "'in later parameters'", "%", "param", ")", "for", "param", "in", "laterParams", ":", "if", "param", "not", "in", "initialParams", ":", "err", ".", "append", "(", "'\\t%r found in later parameters, not seen in '", "'initial parameters'", "%", "param", ")", "return", "'Summary of differences:\\n%s'", "%", "'\\n'", ".", "join", "(", "err", ")", "if", "err", "else", "None" ]
Check a later set of BLAST parameters against those originally found. @param initialParams: A C{dict} with the originally encountered BLAST parameter settings. @param laterParams: A C{dict} with BLAST parameter settings encountered later. @return: A C{str} summary of the parameter differences if the parameter sets differ, else C{None}.
[ "Check", "a", "later", "set", "of", "BLAST", "parameters", "against", "those", "originally", "found", "." ]
python
train
iotile/coretools
iotilebuild/iotile/build/utilities/template.py
https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilebuild/iotile/build/utilities/template.py#L79-L106
def render_template(template_name, info, out_path=None): """Render a template using the variables in info. You can optionally render to a file by passing out_path. Args: template_name (str): The name of the template to load. This must be a file in config/templates inside this package out_path (str): An optional path of where to save the output file, otherwise it is just returned as a string. info (dict): A dictionary of variables passed into the template to perform substitutions. Returns: string: The rendered template data. """ env = Environment(loader=PackageLoader('iotile.build', 'config/templates'), trim_blocks=True, lstrip_blocks=True) template = env.get_template(template_name) result = template.render(info) if out_path is not None: with open(out_path, 'wb') as outfile: outfile.write(result.encode('utf-8')) return result
[ "def", "render_template", "(", "template_name", ",", "info", ",", "out_path", "=", "None", ")", ":", "env", "=", "Environment", "(", "loader", "=", "PackageLoader", "(", "'iotile.build'", ",", "'config/templates'", ")", ",", "trim_blocks", "=", "True", ",", "lstrip_blocks", "=", "True", ")", "template", "=", "env", ".", "get_template", "(", "template_name", ")", "result", "=", "template", ".", "render", "(", "info", ")", "if", "out_path", "is", "not", "None", ":", "with", "open", "(", "out_path", ",", "'wb'", ")", "as", "outfile", ":", "outfile", ".", "write", "(", "result", ".", "encode", "(", "'utf-8'", ")", ")", "return", "result" ]
Render a template using the variables in info. You can optionally render to a file by passing out_path. Args: template_name (str): The name of the template to load. This must be a file in config/templates inside this package out_path (str): An optional path of where to save the output file, otherwise it is just returned as a string. info (dict): A dictionary of variables passed into the template to perform substitutions. Returns: string: The rendered template data.
[ "Render", "a", "template", "using", "the", "variables", "in", "info", "." ]
python
train
saltstack/salt
salt/modules/boto_apigateway.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/boto_apigateway.py#L998-L1025
def create_api_method_response(restApiId, resourcePath, httpMethod, statusCode, responseParameters=None, responseModels=None, region=None, key=None, keyid=None, profile=None): ''' Create API method response for a method on a given resource in the given API CLI Example: .. code-block:: bash salt myminion boto_apigateway.create_api_method_response restApiId resourcePath httpMethod \\ statusCode responseParameters='{"name", "True|False"}' responseModels='{"content-type", "model"}' ''' try: resource = describe_api_resource(restApiId, resourcePath, region=region, key=key, keyid=keyid, profile=profile).get('resource') if resource: responseParameters = dict() if responseParameters is None else responseParameters responseModels = dict() if responseModels is None else responseModels conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) response = conn.put_method_response(restApiId=restApiId, resourceId=resource['id'], httpMethod=httpMethod, statusCode=str(statusCode), # future lint: disable=blacklisted-function responseParameters=responseParameters, responseModels=responseModels) return {'created': True, 'response': response} return {'created': False, 'error': 'no such resource'} except ClientError as e: return {'created': False, 'error': __utils__['boto3.get_error'](e)}
[ "def", "create_api_method_response", "(", "restApiId", ",", "resourcePath", ",", "httpMethod", ",", "statusCode", ",", "responseParameters", "=", "None", ",", "responseModels", "=", "None", ",", "region", "=", "None", ",", "key", "=", "None", ",", "keyid", "=", "None", ",", "profile", "=", "None", ")", ":", "try", ":", "resource", "=", "describe_api_resource", "(", "restApiId", ",", "resourcePath", ",", "region", "=", "region", ",", "key", "=", "key", ",", "keyid", "=", "keyid", ",", "profile", "=", "profile", ")", ".", "get", "(", "'resource'", ")", "if", "resource", ":", "responseParameters", "=", "dict", "(", ")", "if", "responseParameters", "is", "None", "else", "responseParameters", "responseModels", "=", "dict", "(", ")", "if", "responseModels", "is", "None", "else", "responseModels", "conn", "=", "_get_conn", "(", "region", "=", "region", ",", "key", "=", "key", ",", "keyid", "=", "keyid", ",", "profile", "=", "profile", ")", "response", "=", "conn", ".", "put_method_response", "(", "restApiId", "=", "restApiId", ",", "resourceId", "=", "resource", "[", "'id'", "]", ",", "httpMethod", "=", "httpMethod", ",", "statusCode", "=", "str", "(", "statusCode", ")", ",", "# future lint: disable=blacklisted-function", "responseParameters", "=", "responseParameters", ",", "responseModels", "=", "responseModels", ")", "return", "{", "'created'", ":", "True", ",", "'response'", ":", "response", "}", "return", "{", "'created'", ":", "False", ",", "'error'", ":", "'no such resource'", "}", "except", "ClientError", "as", "e", ":", "return", "{", "'created'", ":", "False", ",", "'error'", ":", "__utils__", "[", "'boto3.get_error'", "]", "(", "e", ")", "}" ]
Create API method response for a method on a given resource in the given API CLI Example: .. code-block:: bash salt myminion boto_apigateway.create_api_method_response restApiId resourcePath httpMethod \\ statusCode responseParameters='{"name", "True|False"}' responseModels='{"content-type", "model"}'
[ "Create", "API", "method", "response", "for", "a", "method", "on", "a", "given", "resource", "in", "the", "given", "API" ]
python
train
Gorialis/jishaku
jishaku/cog.py
https://github.com/Gorialis/jishaku/blob/fc7c479b9d510ede189a929c8aa6f7c8ef7f9a6e/jishaku/cog.py#L379-L396
async def jsk_debug(self, ctx: commands.Context, *, command_string: str): """ Run a command timing execution and catching exceptions. """ alt_ctx = await copy_context_with(ctx, content=ctx.prefix + command_string) if alt_ctx.command is None: return await ctx.send(f'Command "{alt_ctx.invoked_with}" is not found') start = time.perf_counter() async with ReplResponseReactor(ctx.message): with self.submit(ctx): await alt_ctx.command.invoke(alt_ctx) end = time.perf_counter() return await ctx.send(f"Command `{alt_ctx.command.qualified_name}` finished in {end - start:.3f}s.")
[ "async", "def", "jsk_debug", "(", "self", ",", "ctx", ":", "commands", ".", "Context", ",", "*", ",", "command_string", ":", "str", ")", ":", "alt_ctx", "=", "await", "copy_context_with", "(", "ctx", ",", "content", "=", "ctx", ".", "prefix", "+", "command_string", ")", "if", "alt_ctx", ".", "command", "is", "None", ":", "return", "await", "ctx", ".", "send", "(", "f'Command \"{alt_ctx.invoked_with}\" is not found'", ")", "start", "=", "time", ".", "perf_counter", "(", ")", "async", "with", "ReplResponseReactor", "(", "ctx", ".", "message", ")", ":", "with", "self", ".", "submit", "(", "ctx", ")", ":", "await", "alt_ctx", ".", "command", ".", "invoke", "(", "alt_ctx", ")", "end", "=", "time", ".", "perf_counter", "(", ")", "return", "await", "ctx", ".", "send", "(", "f\"Command `{alt_ctx.command.qualified_name}` finished in {end - start:.3f}s.\"", ")" ]
Run a command timing execution and catching exceptions.
[ "Run", "a", "command", "timing", "execution", "and", "catching", "exceptions", "." ]
python
train
saltstack/salt
salt/fileserver/__init__.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/fileserver/__init__.py#L847-L871
def symlink_list(self, load): ''' Return a list of symlinked files and dirs ''' if 'env' in load: # "env" is not supported; Use "saltenv". load.pop('env') ret = {} if 'saltenv' not in load: return {} if not isinstance(load['saltenv'], six.string_types): load['saltenv'] = six.text_type(load['saltenv']) for fsb in self.backends(load.pop('fsbackend', None)): symlstr = '{0}.symlink_list'.format(fsb) if symlstr in self.servers: ret = self.servers[symlstr](load) # some *fs do not handle prefix. Ensure it is filtered prefix = load.get('prefix', '').strip('/') if prefix != '': ret = dict([ (x, y) for x, y in six.iteritems(ret) if x.startswith(prefix) ]) return ret
[ "def", "symlink_list", "(", "self", ",", "load", ")", ":", "if", "'env'", "in", "load", ":", "# \"env\" is not supported; Use \"saltenv\".", "load", ".", "pop", "(", "'env'", ")", "ret", "=", "{", "}", "if", "'saltenv'", "not", "in", "load", ":", "return", "{", "}", "if", "not", "isinstance", "(", "load", "[", "'saltenv'", "]", ",", "six", ".", "string_types", ")", ":", "load", "[", "'saltenv'", "]", "=", "six", ".", "text_type", "(", "load", "[", "'saltenv'", "]", ")", "for", "fsb", "in", "self", ".", "backends", "(", "load", ".", "pop", "(", "'fsbackend'", ",", "None", ")", ")", ":", "symlstr", "=", "'{0}.symlink_list'", ".", "format", "(", "fsb", ")", "if", "symlstr", "in", "self", ".", "servers", ":", "ret", "=", "self", ".", "servers", "[", "symlstr", "]", "(", "load", ")", "# some *fs do not handle prefix. Ensure it is filtered", "prefix", "=", "load", ".", "get", "(", "'prefix'", ",", "''", ")", ".", "strip", "(", "'/'", ")", "if", "prefix", "!=", "''", ":", "ret", "=", "dict", "(", "[", "(", "x", ",", "y", ")", "for", "x", ",", "y", "in", "six", ".", "iteritems", "(", "ret", ")", "if", "x", ".", "startswith", "(", "prefix", ")", "]", ")", "return", "ret" ]
Return a list of symlinked files and dirs
[ "Return", "a", "list", "of", "symlinked", "files", "and", "dirs" ]
python
train
ReFirmLabs/binwalk
src/binwalk/core/display.py
https://github.com/ReFirmLabs/binwalk/blob/a0c5315fd2bae167e5c3d8469ce95d5defc743c2/src/binwalk/core/display.py#L155-L178
def _append_to_data_parts(self, data, start, end): ''' Intelligently appends data to self.string_parts. For use by self._format. ''' try: while data[start] == ' ': start += 1 if start == end: end = len(data[start:]) self.string_parts.append(data[start:end]) except KeyboardInterrupt as e: raise e except Exception: try: self.string_parts.append(data[start:]) except KeyboardInterrupt as e: raise e except Exception: pass return start
[ "def", "_append_to_data_parts", "(", "self", ",", "data", ",", "start", ",", "end", ")", ":", "try", ":", "while", "data", "[", "start", "]", "==", "' '", ":", "start", "+=", "1", "if", "start", "==", "end", ":", "end", "=", "len", "(", "data", "[", "start", ":", "]", ")", "self", ".", "string_parts", ".", "append", "(", "data", "[", "start", ":", "end", "]", ")", "except", "KeyboardInterrupt", "as", "e", ":", "raise", "e", "except", "Exception", ":", "try", ":", "self", ".", "string_parts", ".", "append", "(", "data", "[", "start", ":", "]", ")", "except", "KeyboardInterrupt", "as", "e", ":", "raise", "e", "except", "Exception", ":", "pass", "return", "start" ]
Intelligently appends data to self.string_parts. For use by self._format.
[ "Intelligently", "appends", "data", "to", "self", ".", "string_parts", ".", "For", "use", "by", "self", ".", "_format", "." ]
python
train
zeth/inputs
inputs.py
https://github.com/zeth/inputs/blob/a46681dbf77d6ab07834f550e5855c1f50701f99/inputs.py#L99-L102
def chunks(raw): """Yield successive EVENT_SIZE sized chunks from raw.""" for i in range(0, len(raw), EVENT_SIZE): yield struct.unpack(EVENT_FORMAT, raw[i:i+EVENT_SIZE])
[ "def", "chunks", "(", "raw", ")", ":", "for", "i", "in", "range", "(", "0", ",", "len", "(", "raw", ")", ",", "EVENT_SIZE", ")", ":", "yield", "struct", ".", "unpack", "(", "EVENT_FORMAT", ",", "raw", "[", "i", ":", "i", "+", "EVENT_SIZE", "]", ")" ]
Yield successive EVENT_SIZE sized chunks from raw.
[ "Yield", "successive", "EVENT_SIZE", "sized", "chunks", "from", "raw", "." ]
python
train
empymod/empymod
empymod/utils.py
https://github.com/empymod/empymod/blob/4a78ca4191ed4b4d42d019ce715a9a3889dba1bc/empymod/utils.py#L1864-L1877
def _check_shape(var, name, shape, shape2=None): r"""Check that <var> has shape <shape>; if false raise ValueError(name)""" varshape = np.shape(var) if shape != varshape: if shape2: if shape2 != varshape: print('* ERROR :: Parameter ' + name + ' has wrong shape!' + ' : ' + str(varshape) + ' instead of ' + str(shape) + 'or' + str(shape2) + '.') raise ValueError(name) else: print('* ERROR :: Parameter ' + name + ' has wrong shape! : ' + str(varshape) + ' instead of ' + str(shape) + '.') raise ValueError(name)
[ "def", "_check_shape", "(", "var", ",", "name", ",", "shape", ",", "shape2", "=", "None", ")", ":", "varshape", "=", "np", ".", "shape", "(", "var", ")", "if", "shape", "!=", "varshape", ":", "if", "shape2", ":", "if", "shape2", "!=", "varshape", ":", "print", "(", "'* ERROR :: Parameter '", "+", "name", "+", "' has wrong shape!'", "+", "' : '", "+", "str", "(", "varshape", ")", "+", "' instead of '", "+", "str", "(", "shape", ")", "+", "'or'", "+", "str", "(", "shape2", ")", "+", "'.'", ")", "raise", "ValueError", "(", "name", ")", "else", ":", "print", "(", "'* ERROR :: Parameter '", "+", "name", "+", "' has wrong shape! : '", "+", "str", "(", "varshape", ")", "+", "' instead of '", "+", "str", "(", "shape", ")", "+", "'.'", ")", "raise", "ValueError", "(", "name", ")" ]
r"""Check that <var> has shape <shape>; if false raise ValueError(name)
[ "r", "Check", "that", "<var", ">", "has", "shape", "<shape", ">", ";", "if", "false", "raise", "ValueError", "(", "name", ")" ]
python
train
molmod/molmod
molmod/unit_cells.py
https://github.com/molmod/molmod/blob/a7b5b4364ed514ad4c465856c05b5eda1cb561e0/molmod/unit_cells.py#L128-L147
def volume(self): """The volume of the unit cell The actual definition of the volume depends on the number of active directions: * num_active == 0 -- always -1 * num_active == 1 -- length of the cell vector * num_active == 2 -- surface of the parallelogram * num_active == 3 -- volume of the parallelepiped """ active = self.active_inactive[0] if len(active) == 0: return -1 elif len(active) == 1: return np.linalg.norm(self.matrix[:, active[0]]) elif len(active) == 2: return np.linalg.norm(np.cross(self.matrix[:, active[0]], self.matrix[:, active[1]])) elif len(active) == 3: return abs(np.linalg.det(self.matrix))
[ "def", "volume", "(", "self", ")", ":", "active", "=", "self", ".", "active_inactive", "[", "0", "]", "if", "len", "(", "active", ")", "==", "0", ":", "return", "-", "1", "elif", "len", "(", "active", ")", "==", "1", ":", "return", "np", ".", "linalg", ".", "norm", "(", "self", ".", "matrix", "[", ":", ",", "active", "[", "0", "]", "]", ")", "elif", "len", "(", "active", ")", "==", "2", ":", "return", "np", ".", "linalg", ".", "norm", "(", "np", ".", "cross", "(", "self", ".", "matrix", "[", ":", ",", "active", "[", "0", "]", "]", ",", "self", ".", "matrix", "[", ":", ",", "active", "[", "1", "]", "]", ")", ")", "elif", "len", "(", "active", ")", "==", "3", ":", "return", "abs", "(", "np", ".", "linalg", ".", "det", "(", "self", ".", "matrix", ")", ")" ]
The volume of the unit cell The actual definition of the volume depends on the number of active directions: * num_active == 0 -- always -1 * num_active == 1 -- length of the cell vector * num_active == 2 -- surface of the parallelogram * num_active == 3 -- volume of the parallelepiped
[ "The", "volume", "of", "the", "unit", "cell" ]
python
train
saltstack/salt
salt/modules/aptly.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/aptly.py#L259-L292
def get_repo(name, config_path=_DEFAULT_CONFIG_PATH, with_packages=False): ''' Get detailed information about a local package repository. :param str name: The name of the local repository. :param str config_path: The path to the configuration file for the aptly instance. :param bool with_packages: Return a list of packages in the repo. :return: A dictionary containing information about the repository. :rtype: dict CLI Example: .. code-block:: bash salt '*' aptly.get_repo name="test-repo" ''' _validate_config(config_path) with_packages = six.text_type(bool(with_packages)).lower() ret = dict() cmd = ['repo', 'show', '-config={}'.format(config_path), '-with-packages={}'.format(with_packages), name] cmd_ret = _cmd_run(cmd) ret = _parse_show_output(cmd_ret=cmd_ret) if ret: log.debug('Found repository: %s', name) else: log.debug('Unable to find repository: %s', name) return ret
[ "def", "get_repo", "(", "name", ",", "config_path", "=", "_DEFAULT_CONFIG_PATH", ",", "with_packages", "=", "False", ")", ":", "_validate_config", "(", "config_path", ")", "with_packages", "=", "six", ".", "text_type", "(", "bool", "(", "with_packages", ")", ")", ".", "lower", "(", ")", "ret", "=", "dict", "(", ")", "cmd", "=", "[", "'repo'", ",", "'show'", ",", "'-config={}'", ".", "format", "(", "config_path", ")", ",", "'-with-packages={}'", ".", "format", "(", "with_packages", ")", ",", "name", "]", "cmd_ret", "=", "_cmd_run", "(", "cmd", ")", "ret", "=", "_parse_show_output", "(", "cmd_ret", "=", "cmd_ret", ")", "if", "ret", ":", "log", ".", "debug", "(", "'Found repository: %s'", ",", "name", ")", "else", ":", "log", ".", "debug", "(", "'Unable to find repository: %s'", ",", "name", ")", "return", "ret" ]
Get detailed information about a local package repository. :param str name: The name of the local repository. :param str config_path: The path to the configuration file for the aptly instance. :param bool with_packages: Return a list of packages in the repo. :return: A dictionary containing information about the repository. :rtype: dict CLI Example: .. code-block:: bash salt '*' aptly.get_repo name="test-repo"
[ "Get", "detailed", "information", "about", "a", "local", "package", "repository", "." ]
python
train
ska-sa/katcp-python
katcp/sensortree.py
https://github.com/ska-sa/katcp-python/blob/9127c826a1d030c53b84d0e95743e20e5c5ea153/katcp/sensortree.py#L411-L438
def register_sensor(self, child): """Register a sensor required by an aggregate sensor registered with add_delayed. Parameters ---------- child : :class:`katcp.Sensor` object A child sensor required by one or more delayed aggregate sensors. """ child_name = self._get_sensor_reference(child) if child_name in self._registered_sensors: raise ValueError("Sensor %r already registered with aggregate" " tree" % child) self._registered_sensors[child_name] = child completed = [] for parent, (_rule, names, sensors) in \ self._incomplete_aggregates.iteritems(): if child_name in names: names.remove(child_name) sensors.add(child) if not names: completed.append(parent) for parent in completed: rule_function, _names, sensors = \ self._incomplete_aggregates[parent] del self._incomplete_aggregates[parent] self.add(parent, rule_function, sensors)
[ "def", "register_sensor", "(", "self", ",", "child", ")", ":", "child_name", "=", "self", ".", "_get_sensor_reference", "(", "child", ")", "if", "child_name", "in", "self", ".", "_registered_sensors", ":", "raise", "ValueError", "(", "\"Sensor %r already registered with aggregate\"", "\" tree\"", "%", "child", ")", "self", ".", "_registered_sensors", "[", "child_name", "]", "=", "child", "completed", "=", "[", "]", "for", "parent", ",", "(", "_rule", ",", "names", ",", "sensors", ")", "in", "self", ".", "_incomplete_aggregates", ".", "iteritems", "(", ")", ":", "if", "child_name", "in", "names", ":", "names", ".", "remove", "(", "child_name", ")", "sensors", ".", "add", "(", "child", ")", "if", "not", "names", ":", "completed", ".", "append", "(", "parent", ")", "for", "parent", "in", "completed", ":", "rule_function", ",", "_names", ",", "sensors", "=", "self", ".", "_incomplete_aggregates", "[", "parent", "]", "del", "self", ".", "_incomplete_aggregates", "[", "parent", "]", "self", ".", "add", "(", "parent", ",", "rule_function", ",", "sensors", ")" ]
Register a sensor required by an aggregate sensor registered with add_delayed. Parameters ---------- child : :class:`katcp.Sensor` object A child sensor required by one or more delayed aggregate sensors.
[ "Register", "a", "sensor", "required", "by", "an", "aggregate", "sensor", "registered", "with", "add_delayed", "." ]
python
train
TissueMAPS/TmClient
src/python/tmclient/api.py
https://github.com/TissueMAPS/TmClient/blob/6fb40622af19142cb5169a64b8c2965993a25ab1/src/python/tmclient/api.py#L1839-L1870
def rename_feature(self, mapobject_type_name, name, new_name): '''Renames a feature. Parameters ---------- mapobject_type_name: str name of the segmented objects type name: str name of the feature that should be renamed new_name: str name that should be given to the feature See also -------- :func:`tmserver.api.feature.update_feature` :class:`tmlib.models.feature.Feature` ''' logger.info( 'rename feature "%s" of experiment "%s", mapobject type "%s"', name, self.experiment_name, mapobject_type_name ) content = { 'name': new_name, } feature_id = self._get_feature_id(mapobject_type_name, name) url = self._build_api_url( '/experiments/{experiment_id}/features/{feature_id}'.format( experiment_id=self._experiment_id, feature_id=feature_id ) ) res = self._session.put(url, json=content) res.raise_for_status()
[ "def", "rename_feature", "(", "self", ",", "mapobject_type_name", ",", "name", ",", "new_name", ")", ":", "logger", ".", "info", "(", "'rename feature \"%s\" of experiment \"%s\", mapobject type \"%s\"'", ",", "name", ",", "self", ".", "experiment_name", ",", "mapobject_type_name", ")", "content", "=", "{", "'name'", ":", "new_name", ",", "}", "feature_id", "=", "self", ".", "_get_feature_id", "(", "mapobject_type_name", ",", "name", ")", "url", "=", "self", ".", "_build_api_url", "(", "'/experiments/{experiment_id}/features/{feature_id}'", ".", "format", "(", "experiment_id", "=", "self", ".", "_experiment_id", ",", "feature_id", "=", "feature_id", ")", ")", "res", "=", "self", ".", "_session", ".", "put", "(", "url", ",", "json", "=", "content", ")", "res", ".", "raise_for_status", "(", ")" ]
Renames a feature. Parameters ---------- mapobject_type_name: str name of the segmented objects type name: str name of the feature that should be renamed new_name: str name that should be given to the feature See also -------- :func:`tmserver.api.feature.update_feature` :class:`tmlib.models.feature.Feature`
[ "Renames", "a", "feature", "." ]
python
train
limodou/uliweb
uliweb/lib/werkzeug/templates.py
https://github.com/limodou/uliweb/blob/34472f25e4bc0b954a35346672f94e84ef18b076/uliweb/lib/werkzeug/templates.py#L377-L395
def render(self, *args, **kwargs): """This function accepts either a dict or some keyword arguments which will then be the context the template is evaluated in. The return value will be the rendered template. :param context: the function accepts the same arguments as the :class:`dict` constructor. :return: the rendered template as string """ ns = self.default_context.copy() if len(args) == 1 and isinstance(args[0], MultiDict): ns.update(args[0].to_dict(flat=True)) else: ns.update(dict(*args)) if kwargs: ns.update(kwargs) context = Context(ns, self.charset, self.errors) exec self.code in context.runtime, context return context.get_value(self.unicode_mode)
[ "def", "render", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "ns", "=", "self", ".", "default_context", ".", "copy", "(", ")", "if", "len", "(", "args", ")", "==", "1", "and", "isinstance", "(", "args", "[", "0", "]", ",", "MultiDict", ")", ":", "ns", ".", "update", "(", "args", "[", "0", "]", ".", "to_dict", "(", "flat", "=", "True", ")", ")", "else", ":", "ns", ".", "update", "(", "dict", "(", "*", "args", ")", ")", "if", "kwargs", ":", "ns", ".", "update", "(", "kwargs", ")", "context", "=", "Context", "(", "ns", ",", "self", ".", "charset", ",", "self", ".", "errors", ")", "exec", "self", ".", "code", "in", "context", ".", "runtime", ",", "context", "return", "context", ".", "get_value", "(", "self", ".", "unicode_mode", ")" ]
This function accepts either a dict or some keyword arguments which will then be the context the template is evaluated in. The return value will be the rendered template. :param context: the function accepts the same arguments as the :class:`dict` constructor. :return: the rendered template as string
[ "This", "function", "accepts", "either", "a", "dict", "or", "some", "keyword", "arguments", "which", "will", "then", "be", "the", "context", "the", "template", "is", "evaluated", "in", ".", "The", "return", "value", "will", "be", "the", "rendered", "template", "." ]
python
train
svinota/mdns
mdns/zeroconf.py
https://github.com/svinota/mdns/blob/295f6407132616a0ff7401124b9057d89555f91d/mdns/zeroconf.py#L1926-L1931
def update_record(self, now, rec): """Used to notify listeners of new information that has updated a record.""" for listener in self.listeners: listener.update_record(self, now, rec) self.notify_all()
[ "def", "update_record", "(", "self", ",", "now", ",", "rec", ")", ":", "for", "listener", "in", "self", ".", "listeners", ":", "listener", ".", "update_record", "(", "self", ",", "now", ",", "rec", ")", "self", ".", "notify_all", "(", ")" ]
Used to notify listeners of new information that has updated a record.
[ "Used", "to", "notify", "listeners", "of", "new", "information", "that", "has", "updated", "a", "record", "." ]
python
train
ihmeuw/vivarium
src/vivarium/framework/randomness.py
https://github.com/ihmeuw/vivarium/blob/c5f5d50f775c8bf337d3aae1ff7c57c025a8e258/src/vivarium/framework/randomness.py#L630-L657
def get_randomness_stream(self, decision_point: str, for_initialization: bool=False) -> RandomnessStream: """Provides a new source of random numbers for the given decision point. Parameters ---------- decision_point : A unique identifier for a stream of random numbers. Typically represents a decision that needs to be made each time step like 'moves_left' or 'gets_disease'. for_initialization : A flag indicating whether this stream is used to generate key initialization information that will be used to identify simulants in the Common Random Number framework. These streams cannot be copied and should only be used to generate the state table columns specified in ``builder.configuration.randomness.key_columns``. Raises ------ RandomnessError : If another location in the simulation has already created a randomness stream with the same identifier. """ if decision_point in self._decision_points: raise RandomnessError(f"Two separate places are attempting to create " f"the same randomness stream for {decision_point}") stream = RandomnessStream(key=decision_point, clock=self._clock, seed=self._seed, index_map=self._key_mapping, manager=self, for_initialization=for_initialization) self._decision_points[decision_point] = stream return stream
[ "def", "get_randomness_stream", "(", "self", ",", "decision_point", ":", "str", ",", "for_initialization", ":", "bool", "=", "False", ")", "->", "RandomnessStream", ":", "if", "decision_point", "in", "self", ".", "_decision_points", ":", "raise", "RandomnessError", "(", "f\"Two separate places are attempting to create \"", "f\"the same randomness stream for {decision_point}\"", ")", "stream", "=", "RandomnessStream", "(", "key", "=", "decision_point", ",", "clock", "=", "self", ".", "_clock", ",", "seed", "=", "self", ".", "_seed", ",", "index_map", "=", "self", ".", "_key_mapping", ",", "manager", "=", "self", ",", "for_initialization", "=", "for_initialization", ")", "self", ".", "_decision_points", "[", "decision_point", "]", "=", "stream", "return", "stream" ]
Provides a new source of random numbers for the given decision point. Parameters ---------- decision_point : A unique identifier for a stream of random numbers. Typically represents a decision that needs to be made each time step like 'moves_left' or 'gets_disease'. for_initialization : A flag indicating whether this stream is used to generate key initialization information that will be used to identify simulants in the Common Random Number framework. These streams cannot be copied and should only be used to generate the state table columns specified in ``builder.configuration.randomness.key_columns``. Raises ------ RandomnessError : If another location in the simulation has already created a randomness stream with the same identifier.
[ "Provides", "a", "new", "source", "of", "random", "numbers", "for", "the", "given", "decision", "point", "." ]
python
train
saltstack/salt
salt/modules/yumpkg.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/yumpkg.py#L3289-L3320
def _complete_transaction(cleanup_only, recursive, max_attempts, run_count, cmd_ret_list): ''' .. versionadded:: Fluorine Called from ``complete_transaction`` to protect the arguments used for tail recursion, ``run_count`` and ``cmd_ret_list``. ''' cmd = ['yum-complete-transaction'] if cleanup_only: cmd.append('--cleanup-only') cmd_ret_list.append(__salt__['cmd.run_all']( cmd, output_loglevel='trace', python_shell=False )) if (cmd_ret_list[-1]['retcode'] == salt.defaults.exitcodes.EX_OK and recursive and 'No unfinished transactions left.' not in cmd_ret_list[-1]['stdout']): if run_count >= max_attempts: cmd_ret_list[-1]['retcode'] = salt.defaults.exitcodes.EX_GENERIC log.error('Attempt %s/%s exceeded `max_attempts` for command: `%s`', run_count, max_attempts, ' '.join(cmd)) raise CommandExecutionError('The `max_attempts` limit was reached and unfinished transactions remain.' ' You may wish to increase `max_attempts` or re-execute this module.', info={'results': cmd_ret_list}) else: return _complete_transaction(cleanup_only, recursive, max_attempts, run_count + 1, cmd_ret_list) return cmd_ret_list
[ "def", "_complete_transaction", "(", "cleanup_only", ",", "recursive", ",", "max_attempts", ",", "run_count", ",", "cmd_ret_list", ")", ":", "cmd", "=", "[", "'yum-complete-transaction'", "]", "if", "cleanup_only", ":", "cmd", ".", "append", "(", "'--cleanup-only'", ")", "cmd_ret_list", ".", "append", "(", "__salt__", "[", "'cmd.run_all'", "]", "(", "cmd", ",", "output_loglevel", "=", "'trace'", ",", "python_shell", "=", "False", ")", ")", "if", "(", "cmd_ret_list", "[", "-", "1", "]", "[", "'retcode'", "]", "==", "salt", ".", "defaults", ".", "exitcodes", ".", "EX_OK", "and", "recursive", "and", "'No unfinished transactions left.'", "not", "in", "cmd_ret_list", "[", "-", "1", "]", "[", "'stdout'", "]", ")", ":", "if", "run_count", ">=", "max_attempts", ":", "cmd_ret_list", "[", "-", "1", "]", "[", "'retcode'", "]", "=", "salt", ".", "defaults", ".", "exitcodes", ".", "EX_GENERIC", "log", ".", "error", "(", "'Attempt %s/%s exceeded `max_attempts` for command: `%s`'", ",", "run_count", ",", "max_attempts", ",", "' '", ".", "join", "(", "cmd", ")", ")", "raise", "CommandExecutionError", "(", "'The `max_attempts` limit was reached and unfinished transactions remain.'", "' You may wish to increase `max_attempts` or re-execute this module.'", ",", "info", "=", "{", "'results'", ":", "cmd_ret_list", "}", ")", "else", ":", "return", "_complete_transaction", "(", "cleanup_only", ",", "recursive", ",", "max_attempts", ",", "run_count", "+", "1", ",", "cmd_ret_list", ")", "return", "cmd_ret_list" ]
.. versionadded:: Fluorine Called from ``complete_transaction`` to protect the arguments used for tail recursion, ``run_count`` and ``cmd_ret_list``.
[ "..", "versionadded", "::", "Fluorine" ]
python
train
Jajcus/pyxmpp2
pyxmpp2/ext/vcard.py
https://github.com/Jajcus/pyxmpp2/blob/14a40a3950910a9cd008b55f0d8905aa0186ce18/pyxmpp2/ext/vcard.py#L1243-L1257
def as_xml(self,parent): """Create vcard-tmp XML representation of the field. :Parameters: - `parent`: parent node for the element :Types: - `parent`: `libxml2.xmlNode` :return: xml node with the field data. :returntype: `libxml2.xmlNode`""" n=parent.newChild(None,self.name.upper(),None) if self.type: n.newTextChild(None,"TYPE",self.type) n.newTextChild(None,"CRED",binascii.b2a_base64(self.cred)) return n
[ "def", "as_xml", "(", "self", ",", "parent", ")", ":", "n", "=", "parent", ".", "newChild", "(", "None", ",", "self", ".", "name", ".", "upper", "(", ")", ",", "None", ")", "if", "self", ".", "type", ":", "n", ".", "newTextChild", "(", "None", ",", "\"TYPE\"", ",", "self", ".", "type", ")", "n", ".", "newTextChild", "(", "None", ",", "\"CRED\"", ",", "binascii", ".", "b2a_base64", "(", "self", ".", "cred", ")", ")", "return", "n" ]
Create vcard-tmp XML representation of the field. :Parameters: - `parent`: parent node for the element :Types: - `parent`: `libxml2.xmlNode` :return: xml node with the field data. :returntype: `libxml2.xmlNode`
[ "Create", "vcard", "-", "tmp", "XML", "representation", "of", "the", "field", "." ]
python
valid
kakwa/ldapcherry
ldapcherry/__init__.py
https://github.com/kakwa/ldapcherry/blob/b5e7cb6a44065abc30d164e72981b3713a172dda/ldapcherry/__init__.py#L205-L229
def _init_auth(self, config): """ Init authentication @dict: configuration of ldapcherry """ self.auth_mode = self._get_param('auth', 'auth.mode', config) if self.auth_mode in ['and', 'or', 'none']: pass elif self.auth_mode == 'custom': # load custom auth module auth_module = self._get_param('auth', 'auth.module', config) auth = __import__(auth_module, globals(), locals(), ['Auth'], 0) self.auth = auth.Auth(config['auth'], cherrypy.log) else: raise WrongParamValue( 'auth.mode', 'auth', ['and', 'or', 'none', 'custom'], ) self.roles_file = self._get_param('roles', 'roles.file', config) cherrypy.log.error( msg="loading roles file '%(file)s'" % {'file': self.roles_file}, severity=logging.DEBUG ) self.roles = Roles(self.roles_file)
[ "def", "_init_auth", "(", "self", ",", "config", ")", ":", "self", ".", "auth_mode", "=", "self", ".", "_get_param", "(", "'auth'", ",", "'auth.mode'", ",", "config", ")", "if", "self", ".", "auth_mode", "in", "[", "'and'", ",", "'or'", ",", "'none'", "]", ":", "pass", "elif", "self", ".", "auth_mode", "==", "'custom'", ":", "# load custom auth module", "auth_module", "=", "self", ".", "_get_param", "(", "'auth'", ",", "'auth.module'", ",", "config", ")", "auth", "=", "__import__", "(", "auth_module", ",", "globals", "(", ")", ",", "locals", "(", ")", ",", "[", "'Auth'", "]", ",", "0", ")", "self", ".", "auth", "=", "auth", ".", "Auth", "(", "config", "[", "'auth'", "]", ",", "cherrypy", ".", "log", ")", "else", ":", "raise", "WrongParamValue", "(", "'auth.mode'", ",", "'auth'", ",", "[", "'and'", ",", "'or'", ",", "'none'", ",", "'custom'", "]", ",", ")", "self", ".", "roles_file", "=", "self", ".", "_get_param", "(", "'roles'", ",", "'roles.file'", ",", "config", ")", "cherrypy", ".", "log", ".", "error", "(", "msg", "=", "\"loading roles file '%(file)s'\"", "%", "{", "'file'", ":", "self", ".", "roles_file", "}", ",", "severity", "=", "logging", ".", "DEBUG", ")", "self", ".", "roles", "=", "Roles", "(", "self", ".", "roles_file", ")" ]
Init authentication @dict: configuration of ldapcherry
[ "Init", "authentication" ]
python
train
marcomusy/vtkplotter
vtkplotter/actors.py
https://github.com/marcomusy/vtkplotter/blob/692c3396782722ec525bc1346a26999868c650c6/vtkplotter/actors.py#L1773-L1806
def addCurvatureScalars(self, method=0, lut=None): """ Build an ``Actor`` that contains the color coded surface curvature calculated in three different ways. :param int method: 0-gaussian, 1-mean, 2-max, 3-min curvature. :param float lut: optional look up table. :Example: .. code-block:: python from vtkplotter import * t = Torus().addCurvatureScalars() show(t) |curvature| """ curve = vtk.vtkCurvatures() curve.SetInputData(self.poly) curve.SetCurvatureType(method) curve.Update() self.poly = curve.GetOutput() scls = self.poly.GetPointData().GetScalars().GetRange() print("curvature(): scalar range is", scls) self.mapper.SetInputData(self.poly) if lut: self.mapper.SetLookupTable(lut) self.mapper.SetUseLookupTableScalarRange(1) self.mapper.Update() self.Modified() self.mapper.ScalarVisibilityOn() return self
[ "def", "addCurvatureScalars", "(", "self", ",", "method", "=", "0", ",", "lut", "=", "None", ")", ":", "curve", "=", "vtk", ".", "vtkCurvatures", "(", ")", "curve", ".", "SetInputData", "(", "self", ".", "poly", ")", "curve", ".", "SetCurvatureType", "(", "method", ")", "curve", ".", "Update", "(", ")", "self", ".", "poly", "=", "curve", ".", "GetOutput", "(", ")", "scls", "=", "self", ".", "poly", ".", "GetPointData", "(", ")", ".", "GetScalars", "(", ")", ".", "GetRange", "(", ")", "print", "(", "\"curvature(): scalar range is\"", ",", "scls", ")", "self", ".", "mapper", ".", "SetInputData", "(", "self", ".", "poly", ")", "if", "lut", ":", "self", ".", "mapper", ".", "SetLookupTable", "(", "lut", ")", "self", ".", "mapper", ".", "SetUseLookupTableScalarRange", "(", "1", ")", "self", ".", "mapper", ".", "Update", "(", ")", "self", ".", "Modified", "(", ")", "self", ".", "mapper", ".", "ScalarVisibilityOn", "(", ")", "return", "self" ]
Build an ``Actor`` that contains the color coded surface curvature calculated in three different ways. :param int method: 0-gaussian, 1-mean, 2-max, 3-min curvature. :param float lut: optional look up table. :Example: .. code-block:: python from vtkplotter import * t = Torus().addCurvatureScalars() show(t) |curvature|
[ "Build", "an", "Actor", "that", "contains", "the", "color", "coded", "surface", "curvature", "calculated", "in", "three", "different", "ways", "." ]
python
train
fumitoh/modelx
modelx/core/system.py
https://github.com/fumitoh/modelx/blob/0180da34d052c44fb94dab9e115e218bbebfc9c3/modelx/core/system.py#L355-L373
def custom_showtraceback( self, exc_tuple=None, filename=None, tb_offset=None, exception_only=False, running_compiled_code=False, ): """Custom showtraceback for monkey-patching IPython's InteractiveShell https://stackoverflow.com/questions/1261668/cannot-override-sys-excepthook """ self.default_showtraceback( exc_tuple, filename, tb_offset, exception_only=True, running_compiled_code=running_compiled_code, )
[ "def", "custom_showtraceback", "(", "self", ",", "exc_tuple", "=", "None", ",", "filename", "=", "None", ",", "tb_offset", "=", "None", ",", "exception_only", "=", "False", ",", "running_compiled_code", "=", "False", ",", ")", ":", "self", ".", "default_showtraceback", "(", "exc_tuple", ",", "filename", ",", "tb_offset", ",", "exception_only", "=", "True", ",", "running_compiled_code", "=", "running_compiled_code", ",", ")" ]
Custom showtraceback for monkey-patching IPython's InteractiveShell https://stackoverflow.com/questions/1261668/cannot-override-sys-excepthook
[ "Custom", "showtraceback", "for", "monkey", "-", "patching", "IPython", "s", "InteractiveShell" ]
python
valid
RiotGames/cloud-inquisitor
backend/cloud_inquisitor/utils.py
https://github.com/RiotGames/cloud-inquisitor/blob/181dc2566ca59fc855f695b7fcc2c3b934e6ee9f/backend/cloud_inquisitor/utils.py#L549-L585
def send_notification(*, subsystem, recipients, subject, body_html, body_text): """Method to send a notification. A plugin may use only part of the information, but all fields are required. Args: subsystem (`str`): Name of the subsystem originating the notification recipients (`list` of :obj:`NotificationContact`): List of recipients subject (`str`): Subject / title of the notification body_html (`str)`: HTML formatted version of the message body_text (`str`): Text formatted version of the message Returns: `None` """ from cloud_inquisitor import CINQ_PLUGINS if not body_html and not body_text: raise ValueError('body_html or body_text must be provided') # Make sure that we don't have any duplicate recipients recipients = list(set(recipients)) notifiers = map(lambda plugin: plugin.load(), CINQ_PLUGINS['cloud_inquisitor.plugins.notifiers']['plugins']) for cls in filter(lambda x: x.enabled(), notifiers): for recipient in recipients: if isinstance(recipient, NotificationContact): if recipient.type == cls.notifier_type: try: notifier = cls() notifier.notify(subsystem, recipient.value, subject, body_html, body_text) except Exception: log.exception('Failed sending notification for {}/{}'.format( recipient.type, recipient.value )) else: log.warning('Unexpected recipient {}'.format(recipient))
[ "def", "send_notification", "(", "*", ",", "subsystem", ",", "recipients", ",", "subject", ",", "body_html", ",", "body_text", ")", ":", "from", "cloud_inquisitor", "import", "CINQ_PLUGINS", "if", "not", "body_html", "and", "not", "body_text", ":", "raise", "ValueError", "(", "'body_html or body_text must be provided'", ")", "# Make sure that we don't have any duplicate recipients", "recipients", "=", "list", "(", "set", "(", "recipients", ")", ")", "notifiers", "=", "map", "(", "lambda", "plugin", ":", "plugin", ".", "load", "(", ")", ",", "CINQ_PLUGINS", "[", "'cloud_inquisitor.plugins.notifiers'", "]", "[", "'plugins'", "]", ")", "for", "cls", "in", "filter", "(", "lambda", "x", ":", "x", ".", "enabled", "(", ")", ",", "notifiers", ")", ":", "for", "recipient", "in", "recipients", ":", "if", "isinstance", "(", "recipient", ",", "NotificationContact", ")", ":", "if", "recipient", ".", "type", "==", "cls", ".", "notifier_type", ":", "try", ":", "notifier", "=", "cls", "(", ")", "notifier", ".", "notify", "(", "subsystem", ",", "recipient", ".", "value", ",", "subject", ",", "body_html", ",", "body_text", ")", "except", "Exception", ":", "log", ".", "exception", "(", "'Failed sending notification for {}/{}'", ".", "format", "(", "recipient", ".", "type", ",", "recipient", ".", "value", ")", ")", "else", ":", "log", ".", "warning", "(", "'Unexpected recipient {}'", ".", "format", "(", "recipient", ")", ")" ]
Method to send a notification. A plugin may use only part of the information, but all fields are required. Args: subsystem (`str`): Name of the subsystem originating the notification recipients (`list` of :obj:`NotificationContact`): List of recipients subject (`str`): Subject / title of the notification body_html (`str)`: HTML formatted version of the message body_text (`str`): Text formatted version of the message Returns: `None`
[ "Method", "to", "send", "a", "notification", ".", "A", "plugin", "may", "use", "only", "part", "of", "the", "information", "but", "all", "fields", "are", "required", "." ]
python
train
AnalogJ/lexicon
lexicon/providers/auto.py
https://github.com/AnalogJ/lexicon/blob/9330b871988753cad44fe2876a217b4c67b1fa0e/lexicon/providers/auto.py#L157-L206
def authenticate(self): # pylint: disable=too-many-locals """ Launch the authentication process: for 'auto' provider, it means first to find the relevant provider, then call its authenticate() method. Almost every subsequent operation will then be delegated to that provider. """ mapping_override = self.config.resolve('lexicon:auto:mapping_override') mapping_override_processed = {} if mapping_override: for one_mapping in mapping_override.split(','): one_mapping_processed = one_mapping.split(':') mapping_override_processed[one_mapping_processed[0] ] = one_mapping_processed[1] override_provider = mapping_override_processed.get(self.domain) if override_provider: provider = [ element for element in AVAILABLE_PROVIDERS.items() if element[0] == override_provider][0] LOGGER.info('Provider authoritatively mapped for domain %s: %s.', self.domain, provider.__name__) (provider_name, provider_module) = provider else: (provider_name, provider_module) = _relevant_provider_for_domain(self.domain) LOGGER.info('Provider discovered for domain %s: %s.', self.domain, provider_name) new_config = ConfigResolver() new_config.with_dict({'lexicon:provider_name': provider_name}) target_prefix = 'auto_{0}_'.format(provider_name) for config_source in self.config._config_sources: # pylint: disable=protected-access if not isinstance(config_source, ArgsConfigSource): new_config.with_config_source(config_source) else: # ArgsConfigSource needs to be reprocessed to rescope the provided # args to the delegate provider new_dict = {} for key, value in config_source._parameters.items(): # pylint: disable=protected-access if key.startswith(target_prefix): new_param_name = re.sub( '^{0}'.format(target_prefix), '', key) new_dict['lexicon:{0}:{1}'.format( provider_name, new_param_name)] = value elif not key.startswith('auto_'): new_dict['lexicon:{0}'.format(key)] = value new_config.with_dict(new_dict) self.proxy_provider = provider_module.Provider(new_config) self.proxy_provider.authenticate()
[ "def", "authenticate", "(", "self", ")", ":", "# pylint: disable=too-many-locals", "mapping_override", "=", "self", ".", "config", ".", "resolve", "(", "'lexicon:auto:mapping_override'", ")", "mapping_override_processed", "=", "{", "}", "if", "mapping_override", ":", "for", "one_mapping", "in", "mapping_override", ".", "split", "(", "','", ")", ":", "one_mapping_processed", "=", "one_mapping", ".", "split", "(", "':'", ")", "mapping_override_processed", "[", "one_mapping_processed", "[", "0", "]", "]", "=", "one_mapping_processed", "[", "1", "]", "override_provider", "=", "mapping_override_processed", ".", "get", "(", "self", ".", "domain", ")", "if", "override_provider", ":", "provider", "=", "[", "element", "for", "element", "in", "AVAILABLE_PROVIDERS", ".", "items", "(", ")", "if", "element", "[", "0", "]", "==", "override_provider", "]", "[", "0", "]", "LOGGER", ".", "info", "(", "'Provider authoritatively mapped for domain %s: %s.'", ",", "self", ".", "domain", ",", "provider", ".", "__name__", ")", "(", "provider_name", ",", "provider_module", ")", "=", "provider", "else", ":", "(", "provider_name", ",", "provider_module", ")", "=", "_relevant_provider_for_domain", "(", "self", ".", "domain", ")", "LOGGER", ".", "info", "(", "'Provider discovered for domain %s: %s.'", ",", "self", ".", "domain", ",", "provider_name", ")", "new_config", "=", "ConfigResolver", "(", ")", "new_config", ".", "with_dict", "(", "{", "'lexicon:provider_name'", ":", "provider_name", "}", ")", "target_prefix", "=", "'auto_{0}_'", ".", "format", "(", "provider_name", ")", "for", "config_source", "in", "self", ".", "config", ".", "_config_sources", ":", "# pylint: disable=protected-access", "if", "not", "isinstance", "(", "config_source", ",", "ArgsConfigSource", ")", ":", "new_config", ".", "with_config_source", "(", "config_source", ")", "else", ":", "# ArgsConfigSource needs to be reprocessed to rescope the provided", "# args to the delegate provider", "new_dict", "=", "{", "}", "for", "key", ",", "value", "in", "config_source", ".", "_parameters", ".", "items", "(", ")", ":", "# pylint: disable=protected-access", "if", "key", ".", "startswith", "(", "target_prefix", ")", ":", "new_param_name", "=", "re", ".", "sub", "(", "'^{0}'", ".", "format", "(", "target_prefix", ")", ",", "''", ",", "key", ")", "new_dict", "[", "'lexicon:{0}:{1}'", ".", "format", "(", "provider_name", ",", "new_param_name", ")", "]", "=", "value", "elif", "not", "key", ".", "startswith", "(", "'auto_'", ")", ":", "new_dict", "[", "'lexicon:{0}'", ".", "format", "(", "key", ")", "]", "=", "value", "new_config", ".", "with_dict", "(", "new_dict", ")", "self", ".", "proxy_provider", "=", "provider_module", ".", "Provider", "(", "new_config", ")", "self", ".", "proxy_provider", ".", "authenticate", "(", ")" ]
Launch the authentication process: for 'auto' provider, it means first to find the relevant provider, then call its authenticate() method. Almost every subsequent operation will then be delegated to that provider.
[ "Launch", "the", "authentication", "process", ":", "for", "auto", "provider", "it", "means", "first", "to", "find", "the", "relevant", "provider", "then", "call", "its", "authenticate", "()", "method", ".", "Almost", "every", "subsequent", "operation", "will", "then", "be", "delegated", "to", "that", "provider", "." ]
python
train
vatlab/SoS
src/sos/actions_r.py
https://github.com/vatlab/SoS/blob/6b60ed0770916d135e17322e469520d778e9d4e7/src/sos/actions_r.py#L41-L124
def Rmarkdown(script=None, input=None, output=None, args='{input:r}, output_file={output:ar}', **kwargs): '''Convert input file to output using Rmarkdown The input can be specified in three ways: 1. instant script, which is assumed to be in md format Rmarkdown: output='report.html' script 2. one or more input files. The format is determined by extension of input file Rmarkdown(input, output='report.html') 3. input file specified by command line option `-r` . Rmarkdown(output='report.html') If no output is specified, it is assumed to be in html format and is written to standard output. You can specify more options using the args parameter of the action. The default value of args is `${input!r} --output ${output!ar}' ''' if not R_library('rmarkdown').target_exists(): raise RuntimeError('Library rmarkdown does not exist') input = sos_targets(collect_input(script, input)) output = sos_targets(output) if len(output) == 0: write_to_stdout = True output = sos_targets( tempfile.NamedTemporaryFile( mode='w+t', suffix='.html', delete=False).name) else: write_to_stdout = False # ret = 1 try: # render(input, output_format = NULL, output_file = NULL, output_dir = NULL, # output_options = NULL, intermediates_dir = NULL, # runtime = c("auto", "static", "shiny"), # clean = TRUE, params = NULL, knit_meta = NULL, envir = parent.frame(), # run_Rmarkdown = TRUE, quiet = FALSE, encoding = getOption("encoding")) cmd = interpolate(f'Rscript -e "rmarkdown::render({args})"', { 'input': input, 'output': output }) if 'ACTION' in env.config['SOS_DEBUG'] or 'ALL' in env.config['SOS_DEBUG']: env.log_to_file('ACTION', f'Running command "{cmd}"') if env.config['run_mode'] == 'interactive': # need to catch output and send to python output, which will in trun be hijacked by SoS notebook p = subprocess.Popen( cmd, shell=True, stderr=subprocess.PIPE, stdout=subprocess.PIPE) #pid = p.pid out, err = p.communicate() sys.stdout.write(out.decode()) sys.stderr.write(err.decode()) ret = p.returncode else: p = subprocess.Popen(cmd, shell=True) #pid = p.pid ret = p.wait() except Exception as e: env.logger.error(e) if ret != 0: temp_file = os.path.join('.sos', f'{"Rmarkdown"}_{os.getpid()}.md') shutil.copyfile(str(input), temp_file) cmd = interpolate(f'Rscript -e "rmarkdown::render({args})"', { 'input': input, 'output': sos_targets(temp_file) }) raise RuntimeError( f'Failed to execute script. Please use command \n"{cmd}"\nunder {os.getcwd()} to test it.' ) if write_to_stdout: with open(str(output[0])) as out: sys.stdout.write(out.read()) else: env.logger.info(f'Report saved to {output}')
[ "def", "Rmarkdown", "(", "script", "=", "None", ",", "input", "=", "None", ",", "output", "=", "None", ",", "args", "=", "'{input:r}, output_file={output:ar}'", ",", "*", "*", "kwargs", ")", ":", "if", "not", "R_library", "(", "'rmarkdown'", ")", ".", "target_exists", "(", ")", ":", "raise", "RuntimeError", "(", "'Library rmarkdown does not exist'", ")", "input", "=", "sos_targets", "(", "collect_input", "(", "script", ",", "input", ")", ")", "output", "=", "sos_targets", "(", "output", ")", "if", "len", "(", "output", ")", "==", "0", ":", "write_to_stdout", "=", "True", "output", "=", "sos_targets", "(", "tempfile", ".", "NamedTemporaryFile", "(", "mode", "=", "'w+t'", ",", "suffix", "=", "'.html'", ",", "delete", "=", "False", ")", ".", "name", ")", "else", ":", "write_to_stdout", "=", "False", "#", "ret", "=", "1", "try", ":", "# render(input, output_format = NULL, output_file = NULL, output_dir = NULL,", "# output_options = NULL, intermediates_dir = NULL,", "# runtime = c(\"auto\", \"static\", \"shiny\"),", "# clean = TRUE, params = NULL, knit_meta = NULL, envir = parent.frame(),", "# run_Rmarkdown = TRUE, quiet = FALSE, encoding = getOption(\"encoding\"))", "cmd", "=", "interpolate", "(", "f'Rscript -e \"rmarkdown::render({args})\"'", ",", "{", "'input'", ":", "input", ",", "'output'", ":", "output", "}", ")", "if", "'ACTION'", "in", "env", ".", "config", "[", "'SOS_DEBUG'", "]", "or", "'ALL'", "in", "env", ".", "config", "[", "'SOS_DEBUG'", "]", ":", "env", ".", "log_to_file", "(", "'ACTION'", ",", "f'Running command \"{cmd}\"'", ")", "if", "env", ".", "config", "[", "'run_mode'", "]", "==", "'interactive'", ":", "# need to catch output and send to python output, which will in trun be hijacked by SoS notebook", "p", "=", "subprocess", ".", "Popen", "(", "cmd", ",", "shell", "=", "True", ",", "stderr", "=", "subprocess", ".", "PIPE", ",", "stdout", "=", "subprocess", ".", "PIPE", ")", "#pid = p.pid", "out", ",", "err", "=", "p", ".", "communicate", "(", ")", "sys", ".", "stdout", ".", "write", "(", "out", ".", "decode", "(", ")", ")", "sys", ".", "stderr", ".", "write", "(", "err", ".", "decode", "(", ")", ")", "ret", "=", "p", ".", "returncode", "else", ":", "p", "=", "subprocess", ".", "Popen", "(", "cmd", ",", "shell", "=", "True", ")", "#pid = p.pid", "ret", "=", "p", ".", "wait", "(", ")", "except", "Exception", "as", "e", ":", "env", ".", "logger", ".", "error", "(", "e", ")", "if", "ret", "!=", "0", ":", "temp_file", "=", "os", ".", "path", ".", "join", "(", "'.sos'", ",", "f'{\"Rmarkdown\"}_{os.getpid()}.md'", ")", "shutil", ".", "copyfile", "(", "str", "(", "input", ")", ",", "temp_file", ")", "cmd", "=", "interpolate", "(", "f'Rscript -e \"rmarkdown::render({args})\"'", ",", "{", "'input'", ":", "input", ",", "'output'", ":", "sos_targets", "(", "temp_file", ")", "}", ")", "raise", "RuntimeError", "(", "f'Failed to execute script. Please use command \\n\"{cmd}\"\\nunder {os.getcwd()} to test it.'", ")", "if", "write_to_stdout", ":", "with", "open", "(", "str", "(", "output", "[", "0", "]", ")", ")", "as", "out", ":", "sys", ".", "stdout", ".", "write", "(", "out", ".", "read", "(", ")", ")", "else", ":", "env", ".", "logger", ".", "info", "(", "f'Report saved to {output}'", ")" ]
Convert input file to output using Rmarkdown The input can be specified in three ways: 1. instant script, which is assumed to be in md format Rmarkdown: output='report.html' script 2. one or more input files. The format is determined by extension of input file Rmarkdown(input, output='report.html') 3. input file specified by command line option `-r` . Rmarkdown(output='report.html') If no output is specified, it is assumed to be in html format and is written to standard output. You can specify more options using the args parameter of the action. The default value of args is `${input!r} --output ${output!ar}'
[ "Convert", "input", "file", "to", "output", "using", "Rmarkdown" ]
python
train
ARMmbed/yotta
yotta/lib/utils.py
https://github.com/ARMmbed/yotta/blob/56bc1e56c602fa20307b23fe27518e9cd6c11af1/yotta/lib/utils.py#L9-L20
def islast(generator): ''' indicate whether the current item is the last one in a generator ''' next_x = None first = True for x in generator: if not first: yield (next_x, False) next_x = x first = False if not first: yield (next_x, True)
[ "def", "islast", "(", "generator", ")", ":", "next_x", "=", "None", "first", "=", "True", "for", "x", "in", "generator", ":", "if", "not", "first", ":", "yield", "(", "next_x", ",", "False", ")", "next_x", "=", "x", "first", "=", "False", "if", "not", "first", ":", "yield", "(", "next_x", ",", "True", ")" ]
indicate whether the current item is the last one in a generator
[ "indicate", "whether", "the", "current", "item", "is", "the", "last", "one", "in", "a", "generator" ]
python
valid
tanghaibao/jcvi
jcvi/assembly/hic.py
https://github.com/tanghaibao/jcvi/blob/d2e31a77b6ade7f41f3b321febc2b4744d1cdeca/jcvi/assembly/hic.py#L1375-L1418
def movieframe(args): """ %prog movieframe tour test.clm contigs.ref.anchors Draw heatmap and synteny in the same plot. """ p = OptionParser(movieframe.__doc__) p.add_option("--label", help="Figure title") p.set_beds() p.set_outfile(outfile=None) opts, args, iopts = p.set_image_options(args, figsize="16x8", style="white", cmap="coolwarm", format="png", dpi=120) if len(args) != 3: sys.exit(not p.print_help()) tour, clmfile, anchorsfile = args tour = tour.split(",") image_name = opts.outfile or ("movieframe." + iopts.format) label = opts.label or op.basename(image_name).rsplit(".", 1)[0] clm = CLMFile(clmfile) totalbins, bins, breaks = make_bins(tour, clm.tig_to_size) M = read_clm(clm, totalbins, bins) fig = plt.figure(1, (iopts.w, iopts.h)) root = fig.add_axes([0, 0, 1, 1]) # whole canvas ax1 = fig.add_axes([.05, .1, .4, .8]) # heatmap ax2 = fig.add_axes([.55, .1, .4, .8]) # dot plot ax2_root = fig.add_axes([.5, 0, .5, 1]) # dot plot canvas # Left axis: heatmap plot_heatmap(ax1, M, breaks, iopts) # Right axis: synteny qbed, sbed, qorder, sorder, is_self = check_beds(anchorsfile, p, opts, sorted=False) dotplot(anchorsfile, qbed, sbed, fig, ax2_root, ax2, sep=False, title="") root.text(.5, .98, clm.name, color="g", ha="center", va="center") root.text(.5, .95, label, color="darkslategray", ha="center", va="center") normalize_axes(root) savefig(image_name, dpi=iopts.dpi, iopts=iopts)
[ "def", "movieframe", "(", "args", ")", ":", "p", "=", "OptionParser", "(", "movieframe", ".", "__doc__", ")", "p", ".", "add_option", "(", "\"--label\"", ",", "help", "=", "\"Figure title\"", ")", "p", ".", "set_beds", "(", ")", "p", ".", "set_outfile", "(", "outfile", "=", "None", ")", "opts", ",", "args", ",", "iopts", "=", "p", ".", "set_image_options", "(", "args", ",", "figsize", "=", "\"16x8\"", ",", "style", "=", "\"white\"", ",", "cmap", "=", "\"coolwarm\"", ",", "format", "=", "\"png\"", ",", "dpi", "=", "120", ")", "if", "len", "(", "args", ")", "!=", "3", ":", "sys", ".", "exit", "(", "not", "p", ".", "print_help", "(", ")", ")", "tour", ",", "clmfile", ",", "anchorsfile", "=", "args", "tour", "=", "tour", ".", "split", "(", "\",\"", ")", "image_name", "=", "opts", ".", "outfile", "or", "(", "\"movieframe.\"", "+", "iopts", ".", "format", ")", "label", "=", "opts", ".", "label", "or", "op", ".", "basename", "(", "image_name", ")", ".", "rsplit", "(", "\".\"", ",", "1", ")", "[", "0", "]", "clm", "=", "CLMFile", "(", "clmfile", ")", "totalbins", ",", "bins", ",", "breaks", "=", "make_bins", "(", "tour", ",", "clm", ".", "tig_to_size", ")", "M", "=", "read_clm", "(", "clm", ",", "totalbins", ",", "bins", ")", "fig", "=", "plt", ".", "figure", "(", "1", ",", "(", "iopts", ".", "w", ",", "iopts", ".", "h", ")", ")", "root", "=", "fig", ".", "add_axes", "(", "[", "0", ",", "0", ",", "1", ",", "1", "]", ")", "# whole canvas", "ax1", "=", "fig", ".", "add_axes", "(", "[", ".05", ",", ".1", ",", ".4", ",", ".8", "]", ")", "# heatmap", "ax2", "=", "fig", ".", "add_axes", "(", "[", ".55", ",", ".1", ",", ".4", ",", ".8", "]", ")", "# dot plot", "ax2_root", "=", "fig", ".", "add_axes", "(", "[", ".5", ",", "0", ",", ".5", ",", "1", "]", ")", "# dot plot canvas", "# Left axis: heatmap", "plot_heatmap", "(", "ax1", ",", "M", ",", "breaks", ",", "iopts", ")", "# Right axis: synteny", "qbed", ",", "sbed", ",", "qorder", ",", "sorder", ",", "is_self", "=", "check_beds", "(", "anchorsfile", ",", "p", ",", "opts", ",", "sorted", "=", "False", ")", "dotplot", "(", "anchorsfile", ",", "qbed", ",", "sbed", ",", "fig", ",", "ax2_root", ",", "ax2", ",", "sep", "=", "False", ",", "title", "=", "\"\"", ")", "root", ".", "text", "(", ".5", ",", ".98", ",", "clm", ".", "name", ",", "color", "=", "\"g\"", ",", "ha", "=", "\"center\"", ",", "va", "=", "\"center\"", ")", "root", ".", "text", "(", ".5", ",", ".95", ",", "label", ",", "color", "=", "\"darkslategray\"", ",", "ha", "=", "\"center\"", ",", "va", "=", "\"center\"", ")", "normalize_axes", "(", "root", ")", "savefig", "(", "image_name", ",", "dpi", "=", "iopts", ".", "dpi", ",", "iopts", "=", "iopts", ")" ]
%prog movieframe tour test.clm contigs.ref.anchors Draw heatmap and synteny in the same plot.
[ "%prog", "movieframe", "tour", "test", ".", "clm", "contigs", ".", "ref", ".", "anchors" ]
python
train
Alignak-monitoring/alignak
alignak/objects/host.py
https://github.com/Alignak-monitoring/alignak/blob/f3c145207e83159b799d3714e4241399c7740a64/alignak/objects/host.py#L1499-L1524
def is_correct(self): """Check if the hosts list configuration is correct :: * check if any loop exists in each host dependencies * Call our parent class is_correct checker :return: True if the configuration is correct, otherwise False :rtype: bool """ state = True # Internal checks before executing inherited function... loop = self.no_loop_in_parents("self", "parents") if loop: self.add_error("Loop detected while checking hosts") state = False for uuid, item in list(self.items.items()): for elem in loop: if elem == uuid: self.add_error("Host %s is parent in dependency defined in %s" % (item.get_name(), item.imported_from)) elif elem in item.parents: self.add_error("Host %s is child in dependency defined in %s" % (self[elem].get_name(), self[elem].imported_from)) return super(Hosts, self).is_correct() and state
[ "def", "is_correct", "(", "self", ")", ":", "state", "=", "True", "# Internal checks before executing inherited function...", "loop", "=", "self", ".", "no_loop_in_parents", "(", "\"self\"", ",", "\"parents\"", ")", "if", "loop", ":", "self", ".", "add_error", "(", "\"Loop detected while checking hosts\"", ")", "state", "=", "False", "for", "uuid", ",", "item", "in", "list", "(", "self", ".", "items", ".", "items", "(", ")", ")", ":", "for", "elem", "in", "loop", ":", "if", "elem", "==", "uuid", ":", "self", ".", "add_error", "(", "\"Host %s is parent in dependency defined in %s\"", "%", "(", "item", ".", "get_name", "(", ")", ",", "item", ".", "imported_from", ")", ")", "elif", "elem", "in", "item", ".", "parents", ":", "self", ".", "add_error", "(", "\"Host %s is child in dependency defined in %s\"", "%", "(", "self", "[", "elem", "]", ".", "get_name", "(", ")", ",", "self", "[", "elem", "]", ".", "imported_from", ")", ")", "return", "super", "(", "Hosts", ",", "self", ")", ".", "is_correct", "(", ")", "and", "state" ]
Check if the hosts list configuration is correct :: * check if any loop exists in each host dependencies * Call our parent class is_correct checker :return: True if the configuration is correct, otherwise False :rtype: bool
[ "Check", "if", "the", "hosts", "list", "configuration", "is", "correct", "::" ]
python
train
TeamHG-Memex/MaybeDont
maybedont/predict.py
https://github.com/TeamHG-Memex/MaybeDont/blob/34721f67b69d426adda324a0ed905d3860828af9/maybedont/predict.py#L199-L214
def _nodup_filter(self, min_hash, all_urls, max_sample=200): """ This filters results that are considered not duplicates. But we really need to check that, because lsh.query does not always return ALL duplicates, esp. when there are a lot of them, so here we double-check and return only urls that are NOT duplicates. Return estimated number of not duplicates. """ if not all_urls: return 0 urls = random.sample(all_urls, max_sample) \ if len(all_urls) > max_sample else all_urls filtered = [ url for url in urls if min_hash.jaccard(self.seen_urls[url].min_hash) < self.jaccard_threshold] return int(len(filtered) / len(urls) * len(all_urls))
[ "def", "_nodup_filter", "(", "self", ",", "min_hash", ",", "all_urls", ",", "max_sample", "=", "200", ")", ":", "if", "not", "all_urls", ":", "return", "0", "urls", "=", "random", ".", "sample", "(", "all_urls", ",", "max_sample", ")", "if", "len", "(", "all_urls", ")", ">", "max_sample", "else", "all_urls", "filtered", "=", "[", "url", "for", "url", "in", "urls", "if", "min_hash", ".", "jaccard", "(", "self", ".", "seen_urls", "[", "url", "]", ".", "min_hash", ")", "<", "self", ".", "jaccard_threshold", "]", "return", "int", "(", "len", "(", "filtered", ")", "/", "len", "(", "urls", ")", "*", "len", "(", "all_urls", ")", ")" ]
This filters results that are considered not duplicates. But we really need to check that, because lsh.query does not always return ALL duplicates, esp. when there are a lot of them, so here we double-check and return only urls that are NOT duplicates. Return estimated number of not duplicates.
[ "This", "filters", "results", "that", "are", "considered", "not", "duplicates", ".", "But", "we", "really", "need", "to", "check", "that", "because", "lsh", ".", "query", "does", "not", "always", "return", "ALL", "duplicates", "esp", ".", "when", "there", "are", "a", "lot", "of", "them", "so", "here", "we", "double", "-", "check", "and", "return", "only", "urls", "that", "are", "NOT", "duplicates", ".", "Return", "estimated", "number", "of", "not", "duplicates", "." ]
python
train
ardexa/ardexaplugin
ardexaplugin.py
https://github.com/ardexa/ardexaplugin/blob/5068532f601ae3042bd87af1063057e8f274f670/ardexaplugin.py#L280-L300
def parse_address_list(addrs): """Yield each integer from a complex range string like "1-9,12,15-20,23" >>> list(parse_address_list('1-9,12,15-20,23')) [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 23] >>> list(parse_address_list('1-9,12,15-20,2-3-4')) Traceback (most recent call last): ... ValueError: format error in 2-3-4 """ for addr in addrs.split(','): elem = addr.split('-') if len(elem) == 1: # a number yield int(elem[0]) elif len(elem) == 2: # a range inclusive start, end = list(map(int, elem)) for i in range(start, end+1): yield i else: # more than one hyphen raise ValueError('format error in %s' % addr)
[ "def", "parse_address_list", "(", "addrs", ")", ":", "for", "addr", "in", "addrs", ".", "split", "(", "','", ")", ":", "elem", "=", "addr", ".", "split", "(", "'-'", ")", "if", "len", "(", "elem", ")", "==", "1", ":", "# a number", "yield", "int", "(", "elem", "[", "0", "]", ")", "elif", "len", "(", "elem", ")", "==", "2", ":", "# a range inclusive", "start", ",", "end", "=", "list", "(", "map", "(", "int", ",", "elem", ")", ")", "for", "i", "in", "range", "(", "start", ",", "end", "+", "1", ")", ":", "yield", "i", "else", ":", "# more than one hyphen", "raise", "ValueError", "(", "'format error in %s'", "%", "addr", ")" ]
Yield each integer from a complex range string like "1-9,12,15-20,23" >>> list(parse_address_list('1-9,12,15-20,23')) [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 23] >>> list(parse_address_list('1-9,12,15-20,2-3-4')) Traceback (most recent call last): ... ValueError: format error in 2-3-4
[ "Yield", "each", "integer", "from", "a", "complex", "range", "string", "like", "1", "-", "9", "12", "15", "-", "20", "23" ]
python
valid
Unidata/siphon
siphon/cdmr/cdmremote.py
https://github.com/Unidata/siphon/blob/53fb0d84fbce1c18c8e81c9e68bc81620ee0a6ac/siphon/cdmr/cdmremote.py#L46-L63
def query(self): """Generate a new query for CDMRemote. This handles turning on compression if necessary. Returns ------- HTTPQuery The created query. """ q = super(CDMRemote, self).query() # Turn on compression if it's been set on the object if self.deflate: q.add_query_parameter(deflate=self.deflate) return q
[ "def", "query", "(", "self", ")", ":", "q", "=", "super", "(", "CDMRemote", ",", "self", ")", ".", "query", "(", ")", "# Turn on compression if it's been set on the object", "if", "self", ".", "deflate", ":", "q", ".", "add_query_parameter", "(", "deflate", "=", "self", ".", "deflate", ")", "return", "q" ]
Generate a new query for CDMRemote. This handles turning on compression if necessary. Returns ------- HTTPQuery The created query.
[ "Generate", "a", "new", "query", "for", "CDMRemote", "." ]
python
train
tensorflow/probability
tensorflow_probability/python/optimizer/differential_evolution.py
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/optimizer/differential_evolution.py#L771-L785
def _ensure_list(tensor_or_list): """Converts the input arg to a list if it is not a list already. Args: tensor_or_list: A `Tensor` or a Python list of `Tensor`s. The argument to convert to a list of `Tensor`s. Returns: A tuple of two elements. The first is a Python list of `Tensor`s containing the original arguments. The second is a boolean indicating whether the original argument was a list or tuple already. """ if isinstance(tensor_or_list, (list, tuple)): return list(tensor_or_list), True return [tensor_or_list], False
[ "def", "_ensure_list", "(", "tensor_or_list", ")", ":", "if", "isinstance", "(", "tensor_or_list", ",", "(", "list", ",", "tuple", ")", ")", ":", "return", "list", "(", "tensor_or_list", ")", ",", "True", "return", "[", "tensor_or_list", "]", ",", "False" ]
Converts the input arg to a list if it is not a list already. Args: tensor_or_list: A `Tensor` or a Python list of `Tensor`s. The argument to convert to a list of `Tensor`s. Returns: A tuple of two elements. The first is a Python list of `Tensor`s containing the original arguments. The second is a boolean indicating whether the original argument was a list or tuple already.
[ "Converts", "the", "input", "arg", "to", "a", "list", "if", "it", "is", "not", "a", "list", "already", "." ]
python
test
illagrenan/django-upload-path
tasks.py
https://github.com/illagrenan/django-upload-path/blob/a3518f8f06826807f6cebb0cacc06906dbc2ebdd/tasks.py#L48-L54
def coverage(): """check code coverage quickly with the default Python""" run("coverage run --source {PROJECT_NAME} -m py.test".format(PROJECT_NAME=PROJECT_NAME)) run("coverage report -m") run("coverage html") webbrowser.open('file://' + os.path.realpath("htmlcov/index.html"), new=2)
[ "def", "coverage", "(", ")", ":", "run", "(", "\"coverage run --source {PROJECT_NAME} -m py.test\"", ".", "format", "(", "PROJECT_NAME", "=", "PROJECT_NAME", ")", ")", "run", "(", "\"coverage report -m\"", ")", "run", "(", "\"coverage html\"", ")", "webbrowser", ".", "open", "(", "'file://'", "+", "os", ".", "path", ".", "realpath", "(", "\"htmlcov/index.html\"", ")", ",", "new", "=", "2", ")" ]
check code coverage quickly with the default Python
[ "check", "code", "coverage", "quickly", "with", "the", "default", "Python" ]
python
train
mitsei/dlkit
dlkit/aws_adapter/repository/sessions.py
https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/aws_adapter/repository/sessions.py#L986-L1002
def update_asset(self, asset_form=None): """Updates an existing asset. arg: asset_form (osid.repository.AssetForm): the form containing the elements to be updated raise: IllegalState - ``asset_form`` already used in anupdate transaction raise: InvalidArgument - the form contains an invalid value raise: NullArgument - ``asset_form`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure raise: Unsupported - ``asset_form`` did not originate from ``get_asset_form_for_update()`` *compliance: mandatory -- This method must be implemented.* """ return Asset(self._provider_session.update_asset(asset_form), self._config_map)
[ "def", "update_asset", "(", "self", ",", "asset_form", "=", "None", ")", ":", "return", "Asset", "(", "self", ".", "_provider_session", ".", "update_asset", "(", "asset_form", ")", ",", "self", ".", "_config_map", ")" ]
Updates an existing asset. arg: asset_form (osid.repository.AssetForm): the form containing the elements to be updated raise: IllegalState - ``asset_form`` already used in anupdate transaction raise: InvalidArgument - the form contains an invalid value raise: NullArgument - ``asset_form`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure raise: Unsupported - ``asset_form`` did not originate from ``get_asset_form_for_update()`` *compliance: mandatory -- This method must be implemented.*
[ "Updates", "an", "existing", "asset", "." ]
python
train
tswicegood/Dolt
dolt/__init__.py
https://github.com/tswicegood/Dolt/blob/e0da1918b7db18f885734a89f824b9e173cc30a5/dolt/__init__.py#L246-L271
def _clone(self): """ Clones the state of the current operation. The state is cloned so that you can freeze the state at a certain point for re-use. :: >>> cat = dolt.cat >>> cat.get_url() '/cat' >>> o = cat.foo >>> o.get_url() '/cat/foo' >>> cat.get_url() '/cat' """ cls = self.__class__ q = cls.__new__(cls) q.__dict__ = self.__dict__.copy() q._params = self._params.copy() q._headers = self._headers.copy() q._attribute_stack = self._attribute_stack[:] return q
[ "def", "_clone", "(", "self", ")", ":", "cls", "=", "self", ".", "__class__", "q", "=", "cls", ".", "__new__", "(", "cls", ")", "q", ".", "__dict__", "=", "self", ".", "__dict__", ".", "copy", "(", ")", "q", ".", "_params", "=", "self", ".", "_params", ".", "copy", "(", ")", "q", ".", "_headers", "=", "self", ".", "_headers", ".", "copy", "(", ")", "q", ".", "_attribute_stack", "=", "self", ".", "_attribute_stack", "[", ":", "]", "return", "q" ]
Clones the state of the current operation. The state is cloned so that you can freeze the state at a certain point for re-use. :: >>> cat = dolt.cat >>> cat.get_url() '/cat' >>> o = cat.foo >>> o.get_url() '/cat/foo' >>> cat.get_url() '/cat'
[ "Clones", "the", "state", "of", "the", "current", "operation", "." ]
python
train
jmvrbanac/lplight
lplight/client.py
https://github.com/jmvrbanac/lplight/blob/4d58b45e49ad9ba9e95f8c106d5c49e1658a69a7/lplight/client.py#L87-L95
def get_bug_by_id(self, bug_id): """ Retrieves a single bug by it's Launchpad bug_id :param bug_id: The Launchpad id for the bug. """ uri = '{base}/bugs/{bug_id}'.format(base=self.BASE_URI, bug_id=bug_id) resp = self._client.get(uri, model=models.Bug) return resp
[ "def", "get_bug_by_id", "(", "self", ",", "bug_id", ")", ":", "uri", "=", "'{base}/bugs/{bug_id}'", ".", "format", "(", "base", "=", "self", ".", "BASE_URI", ",", "bug_id", "=", "bug_id", ")", "resp", "=", "self", ".", "_client", ".", "get", "(", "uri", ",", "model", "=", "models", ".", "Bug", ")", "return", "resp" ]
Retrieves a single bug by it's Launchpad bug_id :param bug_id: The Launchpad id for the bug.
[ "Retrieves", "a", "single", "bug", "by", "it", "s", "Launchpad", "bug_id" ]
python
train
pmbarrett314/curses-menu
cursesmenu/items/submenu_item.py
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/items/submenu_item.py#L45-L54
def clean_up(self): """ This class overrides this method """ self.submenu.join() self.menu.clear_screen() curses.reset_prog_mode() curses.curs_set(1) # reset doesn't do this right curses.curs_set(0) self.menu.resume()
[ "def", "clean_up", "(", "self", ")", ":", "self", ".", "submenu", ".", "join", "(", ")", "self", ".", "menu", ".", "clear_screen", "(", ")", "curses", ".", "reset_prog_mode", "(", ")", "curses", ".", "curs_set", "(", "1", ")", "# reset doesn't do this right", "curses", ".", "curs_set", "(", "0", ")", "self", ".", "menu", ".", "resume", "(", ")" ]
This class overrides this method
[ "This", "class", "overrides", "this", "method" ]
python
test
monkeython/scriba
scriba/schemes/data.py
https://github.com/monkeython/scriba/blob/fb8e7636ed07c3d035433fdd153599ac8b24dfc4/scriba/schemes/data.py#L23-L35
def read(url, **args): """Loads an object from a data URI.""" info, data = url.path.split(',') info = data_re.search(info).groupdict() mediatype = info.setdefault('mediatype', 'text/plain;charset=US-ASCII') if ';' in mediatype: mimetype, params = mediatype.split(';', 1) params = [p.split('=') for p in params.split(';')] params = dict((k.strip(), v.strip()) for k, v in params) else: mimetype, params = mediatype, dict() data = base64.b64decode(data) if info['base64'] else urllib.unquote(data) return content_types.get(mimetype).parse(data, **params)
[ "def", "read", "(", "url", ",", "*", "*", "args", ")", ":", "info", ",", "data", "=", "url", ".", "path", ".", "split", "(", "','", ")", "info", "=", "data_re", ".", "search", "(", "info", ")", ".", "groupdict", "(", ")", "mediatype", "=", "info", ".", "setdefault", "(", "'mediatype'", ",", "'text/plain;charset=US-ASCII'", ")", "if", "';'", "in", "mediatype", ":", "mimetype", ",", "params", "=", "mediatype", ".", "split", "(", "';'", ",", "1", ")", "params", "=", "[", "p", ".", "split", "(", "'='", ")", "for", "p", "in", "params", ".", "split", "(", "';'", ")", "]", "params", "=", "dict", "(", "(", "k", ".", "strip", "(", ")", ",", "v", ".", "strip", "(", ")", ")", "for", "k", ",", "v", "in", "params", ")", "else", ":", "mimetype", ",", "params", "=", "mediatype", ",", "dict", "(", ")", "data", "=", "base64", ".", "b64decode", "(", "data", ")", "if", "info", "[", "'base64'", "]", "else", "urllib", ".", "unquote", "(", "data", ")", "return", "content_types", ".", "get", "(", "mimetype", ")", ".", "parse", "(", "data", ",", "*", "*", "params", ")" ]
Loads an object from a data URI.
[ "Loads", "an", "object", "from", "a", "data", "URI", "." ]
python
train
GGiecold/Concurrent_AP
Concurrent_AP.py
https://github.com/GGiecold/Concurrent_AP/blob/d4cebe06268b5d520352a83cadb2f7520650460c/Concurrent_AP.py#L433-L471
def get_sum(hdf5_file, path, array_out, out_lock, rows_slice): """Access an array at node 'path' of the 'hdf5_file', compute the sums along a slice of rows specified by 'rows_slice' and add the resulting vector to 'array_out'. Parameters ---------- hdf5_file : string or file handle The location of the HDF5 data structure containing the matrices of availabitilites, responsibilities and similarities among others. path : string Specify the node where the matrix whose row-sums are to be computed is located within the given hierarchical data format. array_out : multiprocessing.Array object This ctypes array is allocated from shared memory and used by various processes to store the outcome of their computations. out_lock : multiprocessing.Lock object Synchronize access to the values stored in 'array_out'. rows_slice : slice object Specifies a range of rows indices. """ Worker.hdf5_lock.acquire() with tables.open_file(hdf5_file, 'r+') as fileh: hdf5_array = fileh.get_node(path) tmp = hdf5_array[rows_slice, ...] Worker.hdf5_lock.release() szum = np.sum(tmp, axis = 0) with out_lock: array_out += szum del tmp
[ "def", "get_sum", "(", "hdf5_file", ",", "path", ",", "array_out", ",", "out_lock", ",", "rows_slice", ")", ":", "Worker", ".", "hdf5_lock", ".", "acquire", "(", ")", "with", "tables", ".", "open_file", "(", "hdf5_file", ",", "'r+'", ")", "as", "fileh", ":", "hdf5_array", "=", "fileh", ".", "get_node", "(", "path", ")", "tmp", "=", "hdf5_array", "[", "rows_slice", ",", "...", "]", "Worker", ".", "hdf5_lock", ".", "release", "(", ")", "szum", "=", "np", ".", "sum", "(", "tmp", ",", "axis", "=", "0", ")", "with", "out_lock", ":", "array_out", "+=", "szum", "del", "tmp" ]
Access an array at node 'path' of the 'hdf5_file', compute the sums along a slice of rows specified by 'rows_slice' and add the resulting vector to 'array_out'. Parameters ---------- hdf5_file : string or file handle The location of the HDF5 data structure containing the matrices of availabitilites, responsibilities and similarities among others. path : string Specify the node where the matrix whose row-sums are to be computed is located within the given hierarchical data format. array_out : multiprocessing.Array object This ctypes array is allocated from shared memory and used by various processes to store the outcome of their computations. out_lock : multiprocessing.Lock object Synchronize access to the values stored in 'array_out'. rows_slice : slice object Specifies a range of rows indices.
[ "Access", "an", "array", "at", "node", "path", "of", "the", "hdf5_file", "compute", "the", "sums", "along", "a", "slice", "of", "rows", "specified", "by", "rows_slice", "and", "add", "the", "resulting", "vector", "to", "array_out", ".", "Parameters", "----------", "hdf5_file", ":", "string", "or", "file", "handle", "The", "location", "of", "the", "HDF5", "data", "structure", "containing", "the", "matrices", "of", "availabitilites", "responsibilities", "and", "similarities", "among", "others", ".", "path", ":", "string", "Specify", "the", "node", "where", "the", "matrix", "whose", "row", "-", "sums", "are", "to", "be", "computed", "is", "located", "within", "the", "given", "hierarchical", "data", "format", ".", "array_out", ":", "multiprocessing", ".", "Array", "object", "This", "ctypes", "array", "is", "allocated", "from", "shared", "memory", "and", "used", "by", "various", "processes", "to", "store", "the", "outcome", "of", "their", "computations", ".", "out_lock", ":", "multiprocessing", ".", "Lock", "object", "Synchronize", "access", "to", "the", "values", "stored", "in", "array_out", ".", "rows_slice", ":", "slice", "object", "Specifies", "a", "range", "of", "rows", "indices", "." ]
python
train
monarch-initiative/dipper
dipper/sources/OMIM.py
https://github.com/monarch-initiative/dipper/blob/24cc80db355bbe15776edc5c7b41e0886959ba41/dipper/sources/OMIM.py#L634-L756
def _process_morbidmap(self, limit): """ This will process the morbidmap file to get the links between omim genes and diseases. Here, we create anonymous nodes for some variant loci that are variants of the gene that causes the disease. Triples created: <some_anonymous_variant_locus> is_allele_of <omim_gene_id> <some_anonymous_variant_locus> causes condition <omim_disease_id> <assoc> hasSubject <some_anonymous_variant_locus> <assoc> hasObject <omim_disease_id> <assoc> hasPredicate <causes condition> <assoc> DC:evidence <eco_id> :param limit: :return: """ if self.test_mode: graph = self.testgraph else: graph = self.graph line_counter = 0 assoc_count = 0 src_key = 'morbidmap' col = self.files[src_key]['columns'] raw = '/'.join((self.rawdir, self.files[src_key]['file'])) with open(raw) as reader: line = reader.readline() # Copyright line = reader.readline() # Generated: 2016-04-11 line = reader.readline() # EOF for field spec line = reader.readline().strip() # columns header line_counter = 4 row = line.split('\t') # includes funky leading octothorpe if row != col: # assert LOG.error('Expected %s to have columns: %s', raw, col) LOG.error('But Found %s to have columns: %s', raw, row) raise AssertionError('Incomming data headers have changed.') for line in reader: line_counter += 1 line = line.strip() # since there are comments at the end of the file as well, if line[0] == '#': continue row = line.split('\t') if len(row) != len(col): LOG.warning( 'Unexpected input on line: %i got: %s', line_counter, row) continue disorder = row[col.index('# Phenotype')] gene_symbols = row[col.index('Gene Symbols')] gene_num = row[col.index('MIM Number')] # loc = row[col.index('Cyto Location')] # LOG.info("morbidmap disorder: %s", disorder) # too verbose # disorder = disorder label , number (mapping key) # 3-M syndrome 1, 273750 (3)|CUL7, 3M1|609577|6p21.1 # but note that for those diseases where they are genomic loci # (not genes though), the omim id is only listed as the gene # Alopecia areata 1 (2)|AA1|104000|18p11.3-p11.2 # when there's a gene and disease disorder_match = self.disorder_regex.match(disorder) nogene_match = self.nogene_regex.match(disorder) if disorder_match is not None: disorder_parts = disorder_match.groups() (disorder_label, disorder_num, phene_key) = disorder_parts if self.test_mode and ( int(disorder_num) not in self.test_ids or int(gene_num) not in self.test_ids): continue assoc_count += 1 gene_symbols = gene_symbols.split(', ') gene_id = 'OMIM:' + str(gene_num) self._make_pheno_assoc( graph, gene_id, disorder_num, disorder_label, phene_key) elif nogene_match is not None: # this is a case where the disorder # a blended gene/phenotype # we lookup the NCBIGene feature and make the association (disorder_label, phene_key) = nogene_match.groups() disorder_num = gene_num # make what's in the gene column the disease disorder_id = 'OMIM:' + str(disorder_num) if self.test_mode and int(disorder_num) not in self.test_ids: continue if disorder_id in self.omim_ncbigene_idmap: # get the gene ids gene_ids = self.omim_ncbigene_idmap[disorder_id] if gene_ids is None: continue for gene_num in gene_ids: # TODO add gene filter for testMode and NCBIGenes gene_id = 'NCBIGene:' + str(gene_num).strip() assoc_count += 1 self._make_pheno_assoc( graph, gene_id, disorder_num, disorder_label, phene_key) else: # we can create an anonymous feature # to house this thing for example, 158900 feature_id = self._make_anonymous_feature(gene_num) assoc_count += 1 self._make_pheno_assoc( graph, feature_id, disorder_num, disorder_label, phene_key) LOG.info( "We don't have an NCBIGene feature id to link %s with %s", disorder_id, disorder_label) if self.test_mode and gene_num not in self.test_ids: continue else: LOG.warning( "There are misformatted rows %i:%s", line_counter, line) if not self.test_mode and limit is not None and line_counter > limit: break LOG.info("Added %d G2P associations", assoc_count)
[ "def", "_process_morbidmap", "(", "self", ",", "limit", ")", ":", "if", "self", ".", "test_mode", ":", "graph", "=", "self", ".", "testgraph", "else", ":", "graph", "=", "self", ".", "graph", "line_counter", "=", "0", "assoc_count", "=", "0", "src_key", "=", "'morbidmap'", "col", "=", "self", ".", "files", "[", "src_key", "]", "[", "'columns'", "]", "raw", "=", "'/'", ".", "join", "(", "(", "self", ".", "rawdir", ",", "self", ".", "files", "[", "src_key", "]", "[", "'file'", "]", ")", ")", "with", "open", "(", "raw", ")", "as", "reader", ":", "line", "=", "reader", ".", "readline", "(", ")", "# Copyright", "line", "=", "reader", ".", "readline", "(", ")", "# Generated: 2016-04-11", "line", "=", "reader", ".", "readline", "(", ")", "# EOF for field spec", "line", "=", "reader", ".", "readline", "(", ")", ".", "strip", "(", ")", "# columns header", "line_counter", "=", "4", "row", "=", "line", ".", "split", "(", "'\\t'", ")", "# includes funky leading octothorpe", "if", "row", "!=", "col", ":", "# assert", "LOG", ".", "error", "(", "'Expected %s to have columns: %s'", ",", "raw", ",", "col", ")", "LOG", ".", "error", "(", "'But Found %s to have columns: %s'", ",", "raw", ",", "row", ")", "raise", "AssertionError", "(", "'Incomming data headers have changed.'", ")", "for", "line", "in", "reader", ":", "line_counter", "+=", "1", "line", "=", "line", ".", "strip", "(", ")", "# since there are comments at the end of the file as well,", "if", "line", "[", "0", "]", "==", "'#'", ":", "continue", "row", "=", "line", ".", "split", "(", "'\\t'", ")", "if", "len", "(", "row", ")", "!=", "len", "(", "col", ")", ":", "LOG", ".", "warning", "(", "'Unexpected input on line: %i got: %s'", ",", "line_counter", ",", "row", ")", "continue", "disorder", "=", "row", "[", "col", ".", "index", "(", "'# Phenotype'", ")", "]", "gene_symbols", "=", "row", "[", "col", ".", "index", "(", "'Gene Symbols'", ")", "]", "gene_num", "=", "row", "[", "col", ".", "index", "(", "'MIM Number'", ")", "]", "# loc = row[col.index('Cyto Location')]", "# LOG.info(\"morbidmap disorder: %s\", disorder) # too verbose", "# disorder = disorder label , number (mapping key)", "# 3-M syndrome 1, 273750 (3)|CUL7, 3M1|609577|6p21.1", "# but note that for those diseases where they are genomic loci", "# (not genes though), the omim id is only listed as the gene", "# Alopecia areata 1 (2)|AA1|104000|18p11.3-p11.2", "# when there's a gene and disease", "disorder_match", "=", "self", ".", "disorder_regex", ".", "match", "(", "disorder", ")", "nogene_match", "=", "self", ".", "nogene_regex", ".", "match", "(", "disorder", ")", "if", "disorder_match", "is", "not", "None", ":", "disorder_parts", "=", "disorder_match", ".", "groups", "(", ")", "(", "disorder_label", ",", "disorder_num", ",", "phene_key", ")", "=", "disorder_parts", "if", "self", ".", "test_mode", "and", "(", "int", "(", "disorder_num", ")", "not", "in", "self", ".", "test_ids", "or", "int", "(", "gene_num", ")", "not", "in", "self", ".", "test_ids", ")", ":", "continue", "assoc_count", "+=", "1", "gene_symbols", "=", "gene_symbols", ".", "split", "(", "', '", ")", "gene_id", "=", "'OMIM:'", "+", "str", "(", "gene_num", ")", "self", ".", "_make_pheno_assoc", "(", "graph", ",", "gene_id", ",", "disorder_num", ",", "disorder_label", ",", "phene_key", ")", "elif", "nogene_match", "is", "not", "None", ":", "# this is a case where the disorder", "# a blended gene/phenotype", "# we lookup the NCBIGene feature and make the association", "(", "disorder_label", ",", "phene_key", ")", "=", "nogene_match", ".", "groups", "(", ")", "disorder_num", "=", "gene_num", "# make what's in the gene column the disease", "disorder_id", "=", "'OMIM:'", "+", "str", "(", "disorder_num", ")", "if", "self", ".", "test_mode", "and", "int", "(", "disorder_num", ")", "not", "in", "self", ".", "test_ids", ":", "continue", "if", "disorder_id", "in", "self", ".", "omim_ncbigene_idmap", ":", "# get the gene ids", "gene_ids", "=", "self", ".", "omim_ncbigene_idmap", "[", "disorder_id", "]", "if", "gene_ids", "is", "None", ":", "continue", "for", "gene_num", "in", "gene_ids", ":", "# TODO add gene filter for testMode and NCBIGenes", "gene_id", "=", "'NCBIGene:'", "+", "str", "(", "gene_num", ")", ".", "strip", "(", ")", "assoc_count", "+=", "1", "self", ".", "_make_pheno_assoc", "(", "graph", ",", "gene_id", ",", "disorder_num", ",", "disorder_label", ",", "phene_key", ")", "else", ":", "# we can create an anonymous feature", "# to house this thing for example, 158900", "feature_id", "=", "self", ".", "_make_anonymous_feature", "(", "gene_num", ")", "assoc_count", "+=", "1", "self", ".", "_make_pheno_assoc", "(", "graph", ",", "feature_id", ",", "disorder_num", ",", "disorder_label", ",", "phene_key", ")", "LOG", ".", "info", "(", "\"We don't have an NCBIGene feature id to link %s with %s\"", ",", "disorder_id", ",", "disorder_label", ")", "if", "self", ".", "test_mode", "and", "gene_num", "not", "in", "self", ".", "test_ids", ":", "continue", "else", ":", "LOG", ".", "warning", "(", "\"There are misformatted rows %i:%s\"", ",", "line_counter", ",", "line", ")", "if", "not", "self", ".", "test_mode", "and", "limit", "is", "not", "None", "and", "line_counter", ">", "limit", ":", "break", "LOG", ".", "info", "(", "\"Added %d G2P associations\"", ",", "assoc_count", ")" ]
This will process the morbidmap file to get the links between omim genes and diseases. Here, we create anonymous nodes for some variant loci that are variants of the gene that causes the disease. Triples created: <some_anonymous_variant_locus> is_allele_of <omim_gene_id> <some_anonymous_variant_locus> causes condition <omim_disease_id> <assoc> hasSubject <some_anonymous_variant_locus> <assoc> hasObject <omim_disease_id> <assoc> hasPredicate <causes condition> <assoc> DC:evidence <eco_id> :param limit: :return:
[ "This", "will", "process", "the", "morbidmap", "file", "to", "get", "the", "links", "between", "omim", "genes", "and", "diseases", ".", "Here", "we", "create", "anonymous", "nodes", "for", "some", "variant", "loci", "that", "are", "variants", "of", "the", "gene", "that", "causes", "the", "disease", ".", "Triples", "created", ":", "<some_anonymous_variant_locus", ">", "is_allele_of", "<omim_gene_id", ">", "<some_anonymous_variant_locus", ">", "causes", "condition", "<omim_disease_id", ">", "<assoc", ">", "hasSubject", "<some_anonymous_variant_locus", ">", "<assoc", ">", "hasObject", "<omim_disease_id", ">", "<assoc", ">", "hasPredicate", "<causes", "condition", ">", "<assoc", ">", "DC", ":", "evidence", "<eco_id", ">", ":", "param", "limit", ":", ":", "return", ":" ]
python
train
tcalmant/ipopo
pelix/ipopo/handlers/properties.py
https://github.com/tcalmant/ipopo/blob/2f9ae0c44cd9c34ef1a9d50837b3254e75678eb1/pelix/ipopo/handlers/properties.py#L169-L186
def get_methods_names(public_properties): """ Generates the names of the fields where to inject the getter and setter methods :param public_properties: If True, returns the names of public property accessors, else of hidden property ones :return: getter and a setter field names """ if public_properties: prefix = ipopo_constants.IPOPO_PROPERTY_PREFIX else: prefix = ipopo_constants.IPOPO_HIDDEN_PROPERTY_PREFIX return ( "{0}{1}".format(prefix, ipopo_constants.IPOPO_GETTER_SUFFIX), "{0}{1}".format(prefix, ipopo_constants.IPOPO_SETTER_SUFFIX), )
[ "def", "get_methods_names", "(", "public_properties", ")", ":", "if", "public_properties", ":", "prefix", "=", "ipopo_constants", ".", "IPOPO_PROPERTY_PREFIX", "else", ":", "prefix", "=", "ipopo_constants", ".", "IPOPO_HIDDEN_PROPERTY_PREFIX", "return", "(", "\"{0}{1}\"", ".", "format", "(", "prefix", ",", "ipopo_constants", ".", "IPOPO_GETTER_SUFFIX", ")", ",", "\"{0}{1}\"", ".", "format", "(", "prefix", ",", "ipopo_constants", ".", "IPOPO_SETTER_SUFFIX", ")", ",", ")" ]
Generates the names of the fields where to inject the getter and setter methods :param public_properties: If True, returns the names of public property accessors, else of hidden property ones :return: getter and a setter field names
[ "Generates", "the", "names", "of", "the", "fields", "where", "to", "inject", "the", "getter", "and", "setter", "methods" ]
python
train
geophysics-ubonn/reda
lib/reda/containers/sEIT.py
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/containers/sEIT.py#L207-L223
def compute_K_analytical(self, spacing): """Assuming an equal electrode spacing, compute the K-factor over a homogeneous half-space. For more complex grids, please refer to the module: reda.utils.geometric_factors Parameters ---------- spacing: float Electrode spacing """ assert isinstance(spacing, Number) K = geometric_factors.compute_K_analytical(self.data, spacing) self.data = geometric_factors.apply_K(self.data, K) fix_sign_with_K(self.data)
[ "def", "compute_K_analytical", "(", "self", ",", "spacing", ")", ":", "assert", "isinstance", "(", "spacing", ",", "Number", ")", "K", "=", "geometric_factors", ".", "compute_K_analytical", "(", "self", ".", "data", ",", "spacing", ")", "self", ".", "data", "=", "geometric_factors", ".", "apply_K", "(", "self", ".", "data", ",", "K", ")", "fix_sign_with_K", "(", "self", ".", "data", ")" ]
Assuming an equal electrode spacing, compute the K-factor over a homogeneous half-space. For more complex grids, please refer to the module: reda.utils.geometric_factors Parameters ---------- spacing: float Electrode spacing
[ "Assuming", "an", "equal", "electrode", "spacing", "compute", "the", "K", "-", "factor", "over", "a", "homogeneous", "half", "-", "space", "." ]
python
train
twisted/mantissa
xmantissa/scrolltable.py
https://github.com/twisted/mantissa/blob/53e5502aba23ce99be78b27f923a276593033fe8/xmantissa/scrolltable.py#L281-L297
def resort(self, columnName): """ Re-sort the table. @param columnName: the name of the column to sort by. This is a string because it is passed from the browser. """ csc = self.currentSortColumn newSortColumn = self.columns[columnName] if newSortColumn is None: raise Unsortable('column %r has no sort attribute' % (columnName,)) if csc is newSortColumn: self.isAscending = not self.isAscending else: self.currentSortColumn = newSortColumn self.isAscending = True return self.isAscending
[ "def", "resort", "(", "self", ",", "columnName", ")", ":", "csc", "=", "self", ".", "currentSortColumn", "newSortColumn", "=", "self", ".", "columns", "[", "columnName", "]", "if", "newSortColumn", "is", "None", ":", "raise", "Unsortable", "(", "'column %r has no sort attribute'", "%", "(", "columnName", ",", ")", ")", "if", "csc", "is", "newSortColumn", ":", "self", ".", "isAscending", "=", "not", "self", ".", "isAscending", "else", ":", "self", ".", "currentSortColumn", "=", "newSortColumn", "self", ".", "isAscending", "=", "True", "return", "self", ".", "isAscending" ]
Re-sort the table. @param columnName: the name of the column to sort by. This is a string because it is passed from the browser.
[ "Re", "-", "sort", "the", "table", "." ]
python
train
bioidiap/gridtk
gridtk/sge.py
https://github.com/bioidiap/gridtk/blob/9e3291b8b50388682908927231b2730db1da147d/gridtk/sge.py#L92-L112
def submit(self, command_line, name = None, array = None, dependencies = [], exec_dir = None, log_dir = "logs", dry_run = False, verbosity = 0, stop_on_failure = False, **kwargs): """Submits a job that will be executed in the grid.""" # add job to database self.lock() job = add_job(self.session, command_line, name, dependencies, array, exec_dir=exec_dir, log_dir=log_dir, stop_on_failure=stop_on_failure, context=self.context, **kwargs) logger.info("Added job '%s' to the database." % job) if dry_run: print("Would have added the Job") print(job) print("to the database to be executed in the grid with options:", str(kwargs)) self.session.delete(job) logger.info("Deleted job '%s' from the database due to dry-run option" % job) job_id = None else: job_id = self._submit_to_grid(job, name, array, dependencies, log_dir, verbosity, **kwargs) self.session.commit() self.unlock() return job_id
[ "def", "submit", "(", "self", ",", "command_line", ",", "name", "=", "None", ",", "array", "=", "None", ",", "dependencies", "=", "[", "]", ",", "exec_dir", "=", "None", ",", "log_dir", "=", "\"logs\"", ",", "dry_run", "=", "False", ",", "verbosity", "=", "0", ",", "stop_on_failure", "=", "False", ",", "*", "*", "kwargs", ")", ":", "# add job to database", "self", ".", "lock", "(", ")", "job", "=", "add_job", "(", "self", ".", "session", ",", "command_line", ",", "name", ",", "dependencies", ",", "array", ",", "exec_dir", "=", "exec_dir", ",", "log_dir", "=", "log_dir", ",", "stop_on_failure", "=", "stop_on_failure", ",", "context", "=", "self", ".", "context", ",", "*", "*", "kwargs", ")", "logger", ".", "info", "(", "\"Added job '%s' to the database.\"", "%", "job", ")", "if", "dry_run", ":", "print", "(", "\"Would have added the Job\"", ")", "print", "(", "job", ")", "print", "(", "\"to the database to be executed in the grid with options:\"", ",", "str", "(", "kwargs", ")", ")", "self", ".", "session", ".", "delete", "(", "job", ")", "logger", ".", "info", "(", "\"Deleted job '%s' from the database due to dry-run option\"", "%", "job", ")", "job_id", "=", "None", "else", ":", "job_id", "=", "self", ".", "_submit_to_grid", "(", "job", ",", "name", ",", "array", ",", "dependencies", ",", "log_dir", ",", "verbosity", ",", "*", "*", "kwargs", ")", "self", ".", "session", ".", "commit", "(", ")", "self", ".", "unlock", "(", ")", "return", "job_id" ]
Submits a job that will be executed in the grid.
[ "Submits", "a", "job", "that", "will", "be", "executed", "in", "the", "grid", "." ]
python
train
dnanexus/dx-toolkit
src/python/dxpy/bindings/dxanalysis.py
https://github.com/dnanexus/dx-toolkit/blob/74befb53ad90fcf902d8983ae6d74580f402d619/src/python/dxpy/bindings/dxanalysis.py#L51-L68
def describe(self, fields=None, **kwargs): """ :param fields: dict where the keys are field names that should be returned, and values should be set to True (by default, all fields are returned) :type fields: dict :returns: Description of the analysis :rtype: dict Returns a hash with key-value pairs containing information about the analysis """ describe_input = {} if fields is not None: describe_input['fields'] = fields self._desc = dxpy.api.analysis_describe(self._dxid, describe_input, **kwargs) return self._desc
[ "def", "describe", "(", "self", ",", "fields", "=", "None", ",", "*", "*", "kwargs", ")", ":", "describe_input", "=", "{", "}", "if", "fields", "is", "not", "None", ":", "describe_input", "[", "'fields'", "]", "=", "fields", "self", ".", "_desc", "=", "dxpy", ".", "api", ".", "analysis_describe", "(", "self", ".", "_dxid", ",", "describe_input", ",", "*", "*", "kwargs", ")", "return", "self", ".", "_desc" ]
:param fields: dict where the keys are field names that should be returned, and values should be set to True (by default, all fields are returned) :type fields: dict :returns: Description of the analysis :rtype: dict Returns a hash with key-value pairs containing information about the analysis
[ ":", "param", "fields", ":", "dict", "where", "the", "keys", "are", "field", "names", "that", "should", "be", "returned", "and", "values", "should", "be", "set", "to", "True", "(", "by", "default", "all", "fields", "are", "returned", ")", ":", "type", "fields", ":", "dict", ":", "returns", ":", "Description", "of", "the", "analysis", ":", "rtype", ":", "dict" ]
python
train
ybrs/single-beat
singlebeat/beat.py
https://github.com/ybrs/single-beat/blob/d036b62d2531710dfd806e9dc2a8d67c77616082/singlebeat/beat.py#L348-L353
def cli_command_resume(self, msg): """\ sets state to waiting - so we resume spawning children """ if self.state == State.PAUSED: self.state = State.WAITING
[ "def", "cli_command_resume", "(", "self", ",", "msg", ")", ":", "if", "self", ".", "state", "==", "State", ".", "PAUSED", ":", "self", ".", "state", "=", "State", ".", "WAITING" ]
\ sets state to waiting - so we resume spawning children
[ "\\", "sets", "state", "to", "waiting", "-", "so", "we", "resume", "spawning", "children" ]
python
test
trp07/messages
messages/telegram.py
https://github.com/trp07/messages/blob/7789ebc960335a59ea5d319fceed3dd349023648/messages/telegram.py#L125-L132
def get_chat_id(self, username): """Lookup chat_id of username if chat_id is unknown via API call.""" if username is not None: chats = requests.get(self.base_url + "/getUpdates").json() user = username.split("@")[-1] for chat in chats["result"]: if chat["message"]["from"]["username"] == user: return chat["message"]["from"]["id"]
[ "def", "get_chat_id", "(", "self", ",", "username", ")", ":", "if", "username", "is", "not", "None", ":", "chats", "=", "requests", ".", "get", "(", "self", ".", "base_url", "+", "\"/getUpdates\"", ")", ".", "json", "(", ")", "user", "=", "username", ".", "split", "(", "\"@\"", ")", "[", "-", "1", "]", "for", "chat", "in", "chats", "[", "\"result\"", "]", ":", "if", "chat", "[", "\"message\"", "]", "[", "\"from\"", "]", "[", "\"username\"", "]", "==", "user", ":", "return", "chat", "[", "\"message\"", "]", "[", "\"from\"", "]", "[", "\"id\"", "]" ]
Lookup chat_id of username if chat_id is unknown via API call.
[ "Lookup", "chat_id", "of", "username", "if", "chat_id", "is", "unknown", "via", "API", "call", "." ]
python
test
diffeo/rejester
rejester/run.py
https://github.com/diffeo/rejester/blob/5438a4a18be2801d7826c46e2079ba9639d2ecb4/rejester/run.py#L620-L645
def do_clear(self, args): '''remove work units from a work spec''' # Which units? work_spec_name = self._get_work_spec_name(args) units = args.unit or None # What to do? count = 0 if args.status is None: all = units is None count += self.task_master.del_work_units(work_spec_name, work_unit_keys=units, all=all) elif args.status == 'available': count += self.task_master.del_work_units( work_spec_name, work_unit_keys=units, state=self.task_master.AVAILABLE) elif args.status == 'pending': count += self.task_master.del_work_units( work_spec_name, work_unit_keys=units, state=self.task_master.PENDING) elif args.status == 'blocked': count += self.task_master.del_work_units( work_spec_name, work_unit_keys=units, state=self.task_master.BLOCKED) elif args.status == 'finished': count += self.task_master.del_work_units( work_spec_name, work_unit_keys=units, state=self.task_master.FINISHED) elif args.status == 'failed': count += self.task_master.del_work_units( work_spec_name, work_unit_keys=units, state=self.task_master.FAILED) self.stdout.write('Removed {0} work units.\n'.format(count))
[ "def", "do_clear", "(", "self", ",", "args", ")", ":", "# Which units?", "work_spec_name", "=", "self", ".", "_get_work_spec_name", "(", "args", ")", "units", "=", "args", ".", "unit", "or", "None", "# What to do?", "count", "=", "0", "if", "args", ".", "status", "is", "None", ":", "all", "=", "units", "is", "None", "count", "+=", "self", ".", "task_master", ".", "del_work_units", "(", "work_spec_name", ",", "work_unit_keys", "=", "units", ",", "all", "=", "all", ")", "elif", "args", ".", "status", "==", "'available'", ":", "count", "+=", "self", ".", "task_master", ".", "del_work_units", "(", "work_spec_name", ",", "work_unit_keys", "=", "units", ",", "state", "=", "self", ".", "task_master", ".", "AVAILABLE", ")", "elif", "args", ".", "status", "==", "'pending'", ":", "count", "+=", "self", ".", "task_master", ".", "del_work_units", "(", "work_spec_name", ",", "work_unit_keys", "=", "units", ",", "state", "=", "self", ".", "task_master", ".", "PENDING", ")", "elif", "args", ".", "status", "==", "'blocked'", ":", "count", "+=", "self", ".", "task_master", ".", "del_work_units", "(", "work_spec_name", ",", "work_unit_keys", "=", "units", ",", "state", "=", "self", ".", "task_master", ".", "BLOCKED", ")", "elif", "args", ".", "status", "==", "'finished'", ":", "count", "+=", "self", ".", "task_master", ".", "del_work_units", "(", "work_spec_name", ",", "work_unit_keys", "=", "units", ",", "state", "=", "self", ".", "task_master", ".", "FINISHED", ")", "elif", "args", ".", "status", "==", "'failed'", ":", "count", "+=", "self", ".", "task_master", ".", "del_work_units", "(", "work_spec_name", ",", "work_unit_keys", "=", "units", ",", "state", "=", "self", ".", "task_master", ".", "FAILED", ")", "self", ".", "stdout", ".", "write", "(", "'Removed {0} work units.\\n'", ".", "format", "(", "count", ")", ")" ]
remove work units from a work spec
[ "remove", "work", "units", "from", "a", "work", "spec" ]
python
train
codelv/enaml-native-cli
enamlnativecli/main.py
https://github.com/codelv/enaml-native-cli/blob/81d6faa7e3dd437956f661c512031e49c0d44b63/enamlnativecli/main.py#L1557-L1567
def on_message(self, handler, msg): """ In remote debugging mode this simply acts as a forwarding proxy for the two clients. """ if self.remote_debugging: #: Forward to other clients for h in self.handlers: if h != handler: h.write_message(msg, True) else: print(msg)
[ "def", "on_message", "(", "self", ",", "handler", ",", "msg", ")", ":", "if", "self", ".", "remote_debugging", ":", "#: Forward to other clients", "for", "h", "in", "self", ".", "handlers", ":", "if", "h", "!=", "handler", ":", "h", ".", "write_message", "(", "msg", ",", "True", ")", "else", ":", "print", "(", "msg", ")" ]
In remote debugging mode this simply acts as a forwarding proxy for the two clients.
[ "In", "remote", "debugging", "mode", "this", "simply", "acts", "as", "a", "forwarding", "proxy", "for", "the", "two", "clients", "." ]
python
train
keon/algorithms
algorithms/calculator/math_parser.py
https://github.com/keon/algorithms/blob/4d6569464a62a75c1357acc97e2dd32ee2f9f4a3/algorithms/calculator/math_parser.py#L77-L99
def parse(expression): """ Return array of parsed tokens in the expression expression String: Math expression to parse in infix notation """ result = [] current = "" for i in expression: if i.isdigit() or i == '.': current += i else: if len(current) > 0: result.append(current) current = "" if i in __operators__ or i in __parenthesis__: result.append(i) else: raise Exception("invalid syntax " + i) if len(current) > 0: result.append(current) return result
[ "def", "parse", "(", "expression", ")", ":", "result", "=", "[", "]", "current", "=", "\"\"", "for", "i", "in", "expression", ":", "if", "i", ".", "isdigit", "(", ")", "or", "i", "==", "'.'", ":", "current", "+=", "i", "else", ":", "if", "len", "(", "current", ")", ">", "0", ":", "result", ".", "append", "(", "current", ")", "current", "=", "\"\"", "if", "i", "in", "__operators__", "or", "i", "in", "__parenthesis__", ":", "result", ".", "append", "(", "i", ")", "else", ":", "raise", "Exception", "(", "\"invalid syntax \"", "+", "i", ")", "if", "len", "(", "current", ")", ">", "0", ":", "result", ".", "append", "(", "current", ")", "return", "result" ]
Return array of parsed tokens in the expression expression String: Math expression to parse in infix notation
[ "Return", "array", "of", "parsed", "tokens", "in", "the", "expression", "expression", "String", ":", "Math", "expression", "to", "parse", "in", "infix", "notation" ]
python
train
saltstack/salt
salt/modules/pagerduty_util.py
https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/pagerduty_util.py#L124-L196
def _query(method='GET', profile=None, url=None, path='api/v1', action=None, api_key=None, service=None, params=None, data=None, subdomain=None, verify_ssl=True): ''' Query the PagerDuty API. This method should be in utils.pagerduty. ''' if profile: creds = __salt__['config.option'](profile) else: creds = { 'pagerduty.api_key': api_key, 'pagerduty.subdomain': subdomain, } if url is None: url = 'https://{0}.pagerduty.com/{1}/{2}'.format( creds['pagerduty.subdomain'], path, action ) if params is None: params = {} if data is None: data = {} headers = { 'Authorization': 'Token token={0}'.format(creds['pagerduty.api_key']) } if method != 'GET': headers['Content-type'] = 'application/json' result = requests.request( method, url, headers=headers, params=params, data=salt.utils.json.dumps(data), verify=verify_ssl ) if result.text is None or result.text == '': return None result_json = result.json() # if this query supports pagination, loop and fetch all results, merge them together if 'total' in result_json and 'offset' in result_json and 'limit' in result_json: offset = result_json['offset'] limit = result_json['limit'] total = result_json['total'] while offset + limit < total: offset = offset + limit limit = 100 data['offset'] = offset data['limit'] = limit next_page_results = requests.request(method, url, headers=headers, params=params, data=data, # Already serialized above, don't do it again verify=verify_ssl).json() offset = next_page_results['offset'] limit = next_page_results['limit'] # merge results for k, v in result_json.items(): if isinstance(v, list): result_json[k] += next_page_results[k] return result_json
[ "def", "_query", "(", "method", "=", "'GET'", ",", "profile", "=", "None", ",", "url", "=", "None", ",", "path", "=", "'api/v1'", ",", "action", "=", "None", ",", "api_key", "=", "None", ",", "service", "=", "None", ",", "params", "=", "None", ",", "data", "=", "None", ",", "subdomain", "=", "None", ",", "verify_ssl", "=", "True", ")", ":", "if", "profile", ":", "creds", "=", "__salt__", "[", "'config.option'", "]", "(", "profile", ")", "else", ":", "creds", "=", "{", "'pagerduty.api_key'", ":", "api_key", ",", "'pagerduty.subdomain'", ":", "subdomain", ",", "}", "if", "url", "is", "None", ":", "url", "=", "'https://{0}.pagerduty.com/{1}/{2}'", ".", "format", "(", "creds", "[", "'pagerduty.subdomain'", "]", ",", "path", ",", "action", ")", "if", "params", "is", "None", ":", "params", "=", "{", "}", "if", "data", "is", "None", ":", "data", "=", "{", "}", "headers", "=", "{", "'Authorization'", ":", "'Token token={0}'", ".", "format", "(", "creds", "[", "'pagerduty.api_key'", "]", ")", "}", "if", "method", "!=", "'GET'", ":", "headers", "[", "'Content-type'", "]", "=", "'application/json'", "result", "=", "requests", ".", "request", "(", "method", ",", "url", ",", "headers", "=", "headers", ",", "params", "=", "params", ",", "data", "=", "salt", ".", "utils", ".", "json", ".", "dumps", "(", "data", ")", ",", "verify", "=", "verify_ssl", ")", "if", "result", ".", "text", "is", "None", "or", "result", ".", "text", "==", "''", ":", "return", "None", "result_json", "=", "result", ".", "json", "(", ")", "# if this query supports pagination, loop and fetch all results, merge them together", "if", "'total'", "in", "result_json", "and", "'offset'", "in", "result_json", "and", "'limit'", "in", "result_json", ":", "offset", "=", "result_json", "[", "'offset'", "]", "limit", "=", "result_json", "[", "'limit'", "]", "total", "=", "result_json", "[", "'total'", "]", "while", "offset", "+", "limit", "<", "total", ":", "offset", "=", "offset", "+", "limit", "limit", "=", "100", "data", "[", "'offset'", "]", "=", "offset", "data", "[", "'limit'", "]", "=", "limit", "next_page_results", "=", "requests", ".", "request", "(", "method", ",", "url", ",", "headers", "=", "headers", ",", "params", "=", "params", ",", "data", "=", "data", ",", "# Already serialized above, don't do it again", "verify", "=", "verify_ssl", ")", ".", "json", "(", ")", "offset", "=", "next_page_results", "[", "'offset'", "]", "limit", "=", "next_page_results", "[", "'limit'", "]", "# merge results", "for", "k", ",", "v", "in", "result_json", ".", "items", "(", ")", ":", "if", "isinstance", "(", "v", ",", "list", ")", ":", "result_json", "[", "k", "]", "+=", "next_page_results", "[", "k", "]", "return", "result_json" ]
Query the PagerDuty API. This method should be in utils.pagerduty.
[ "Query", "the", "PagerDuty", "API", "." ]
python
train
O365/python-o365
O365/utils/token.py
https://github.com/O365/python-o365/blob/02a71cf3775cc6a3c042e003365d6a07c8c75a73/O365/utils/token.py#L192-L209
def save_token(self): """ Saves the token dict in the store :return bool: Success / Failure """ if self.token is None: raise ValueError('You have to set the "token" first.') try: # set token will overwrite previous data self.doc_ref.set({ self.field_name: self.serializer.dumps(self.token) }) except Exception as e: log.error('Token could not be saved: {}'.format(str(e))) return False return True
[ "def", "save_token", "(", "self", ")", ":", "if", "self", ".", "token", "is", "None", ":", "raise", "ValueError", "(", "'You have to set the \"token\" first.'", ")", "try", ":", "# set token will overwrite previous data", "self", ".", "doc_ref", ".", "set", "(", "{", "self", ".", "field_name", ":", "self", ".", "serializer", ".", "dumps", "(", "self", ".", "token", ")", "}", ")", "except", "Exception", "as", "e", ":", "log", ".", "error", "(", "'Token could not be saved: {}'", ".", "format", "(", "str", "(", "e", ")", ")", ")", "return", "False", "return", "True" ]
Saves the token dict in the store :return bool: Success / Failure
[ "Saves", "the", "token", "dict", "in", "the", "store", ":", "return", "bool", ":", "Success", "/", "Failure" ]
python
train
Oneiroe/PySimpleAutomata
PySimpleAutomata/NFA.py
https://github.com/Oneiroe/PySimpleAutomata/blob/0f9f2705fd8ddd5d8118bc31552a640f5d00c359/PySimpleAutomata/NFA.py#L35-L99
def nfa_intersection(nfa_1: dict, nfa_2: dict) -> dict: """ Returns a NFA that reads the intersection of the NFAs in input. Let :math:`A_1 = (Σ,S_1,S_1^0,ρ_1,F_1)` and :math:`A_2 =(Σ, S_2,S_2^0,ρ_2,F_2)` be two NFAs. There is a NFA :math:`A_∧` that runs simultaneously both :math:`A_1` and :math:`A_2` on the input word, so :math:`L(A_∧) = L(A_1)∩L(A_2)`. It is defined as: :math:`A_∧ = ( Σ , S , S_0 , ρ , F )` where • :math:`S = S_1 × S_2` • :math:`S_0 = S_1^0 × S_2^0` • :math:`F = F_1 × F_2` • :math:`((s,t), a, (s_X , t_X)) ∈ ρ` iff :math:`(s, a,s_X ) ∈ ρ_1` and :math:`(t, a, t_X ) ∈ ρ_2` :param dict nfa_1: first input NFA; :param dict nfa_2: second input NFA; :return: *(dict)* representing the intersected NFA. """ intersection = { 'alphabet': nfa_1['alphabet'].intersection(nfa_2['alphabet']), 'states': set(), 'initial_states': set(), 'accepting_states': set(), 'transitions': dict() } for init_1 in nfa_1['initial_states']: for init_2 in nfa_2['initial_states']: intersection['initial_states'].add((init_1, init_2)) intersection['states'].update(intersection['initial_states']) boundary = set() boundary.update(intersection['initial_states']) while boundary: (state_nfa_1, state_nfa_2) = boundary.pop() if state_nfa_1 in nfa_1['accepting_states'] \ and state_nfa_2 in nfa_2['accepting_states']: intersection['accepting_states'].add((state_nfa_1, state_nfa_2)) for a in intersection['alphabet']: if (state_nfa_1, a) not in nfa_1['transitions'] \ or (state_nfa_2, a) not in nfa_2['transitions']: continue s1 = nfa_1['transitions'][state_nfa_1, a] s2 = nfa_2['transitions'][state_nfa_2, a] for destination_1 in s1: for destination_2 in s2: next_state = (destination_1, destination_2) if next_state not in intersection['states']: intersection['states'].add(next_state) boundary.add(next_state) intersection['transitions'].setdefault( ((state_nfa_1, state_nfa_2), a), set()).add(next_state) if destination_1 in nfa_1['accepting_states'] \ and destination_2 in nfa_2['accepting_states']: intersection['accepting_states'].add(next_state) return intersection
[ "def", "nfa_intersection", "(", "nfa_1", ":", "dict", ",", "nfa_2", ":", "dict", ")", "->", "dict", ":", "intersection", "=", "{", "'alphabet'", ":", "nfa_1", "[", "'alphabet'", "]", ".", "intersection", "(", "nfa_2", "[", "'alphabet'", "]", ")", ",", "'states'", ":", "set", "(", ")", ",", "'initial_states'", ":", "set", "(", ")", ",", "'accepting_states'", ":", "set", "(", ")", ",", "'transitions'", ":", "dict", "(", ")", "}", "for", "init_1", "in", "nfa_1", "[", "'initial_states'", "]", ":", "for", "init_2", "in", "nfa_2", "[", "'initial_states'", "]", ":", "intersection", "[", "'initial_states'", "]", ".", "add", "(", "(", "init_1", ",", "init_2", ")", ")", "intersection", "[", "'states'", "]", ".", "update", "(", "intersection", "[", "'initial_states'", "]", ")", "boundary", "=", "set", "(", ")", "boundary", ".", "update", "(", "intersection", "[", "'initial_states'", "]", ")", "while", "boundary", ":", "(", "state_nfa_1", ",", "state_nfa_2", ")", "=", "boundary", ".", "pop", "(", ")", "if", "state_nfa_1", "in", "nfa_1", "[", "'accepting_states'", "]", "and", "state_nfa_2", "in", "nfa_2", "[", "'accepting_states'", "]", ":", "intersection", "[", "'accepting_states'", "]", ".", "add", "(", "(", "state_nfa_1", ",", "state_nfa_2", ")", ")", "for", "a", "in", "intersection", "[", "'alphabet'", "]", ":", "if", "(", "state_nfa_1", ",", "a", ")", "not", "in", "nfa_1", "[", "'transitions'", "]", "or", "(", "state_nfa_2", ",", "a", ")", "not", "in", "nfa_2", "[", "'transitions'", "]", ":", "continue", "s1", "=", "nfa_1", "[", "'transitions'", "]", "[", "state_nfa_1", ",", "a", "]", "s2", "=", "nfa_2", "[", "'transitions'", "]", "[", "state_nfa_2", ",", "a", "]", "for", "destination_1", "in", "s1", ":", "for", "destination_2", "in", "s2", ":", "next_state", "=", "(", "destination_1", ",", "destination_2", ")", "if", "next_state", "not", "in", "intersection", "[", "'states'", "]", ":", "intersection", "[", "'states'", "]", ".", "add", "(", "next_state", ")", "boundary", ".", "add", "(", "next_state", ")", "intersection", "[", "'transitions'", "]", ".", "setdefault", "(", "(", "(", "state_nfa_1", ",", "state_nfa_2", ")", ",", "a", ")", ",", "set", "(", ")", ")", ".", "add", "(", "next_state", ")", "if", "destination_1", "in", "nfa_1", "[", "'accepting_states'", "]", "and", "destination_2", "in", "nfa_2", "[", "'accepting_states'", "]", ":", "intersection", "[", "'accepting_states'", "]", ".", "add", "(", "next_state", ")", "return", "intersection" ]
Returns a NFA that reads the intersection of the NFAs in input. Let :math:`A_1 = (Σ,S_1,S_1^0,ρ_1,F_1)` and :math:`A_2 =(Σ, S_2,S_2^0,ρ_2,F_2)` be two NFAs. There is a NFA :math:`A_∧` that runs simultaneously both :math:`A_1` and :math:`A_2` on the input word, so :math:`L(A_∧) = L(A_1)∩L(A_2)`. It is defined as: :math:`A_∧ = ( Σ , S , S_0 , ρ , F )` where • :math:`S = S_1 × S_2` • :math:`S_0 = S_1^0 × S_2^0` • :math:`F = F_1 × F_2` • :math:`((s,t), a, (s_X , t_X)) ∈ ρ` iff :math:`(s, a,s_X ) ∈ ρ_1` and :math:`(t, a, t_X ) ∈ ρ_2` :param dict nfa_1: first input NFA; :param dict nfa_2: second input NFA; :return: *(dict)* representing the intersected NFA.
[ "Returns", "a", "NFA", "that", "reads", "the", "intersection", "of", "the", "NFAs", "in", "input", "." ]
python
train
laginha/django-mobileesp
src/django_mobileesp/mdetect.py
https://github.com/laginha/django-mobileesp/blob/91d4babb2343b992970bdb076508d380680c8b7e/src/django_mobileesp/mdetect.py#L977-L1001
def detectTierRichCss(self): """Return detection of any device in the 'Rich CSS' Tier The quick way to detect for a tier of devices. This method detects for devices which are likely to be capable of viewing CSS content optimized for the iPhone, but may not necessarily support JavaScript. Excludes all iPhone Tier devices. """ #The following devices are explicitly ok. #Note: 'High' BlackBerry devices ONLY if not self.detectMobileQuick(): return False #Exclude iPhone Tier and e-Ink Kindle devices if self.detectTierIphone() \ or self.detectKindle(): return False #The following devices are explicitly ok. #Note: 'High' BlackBerry devices ONLY #Older Windows 'Mobile' isn't good enough for iPhone Tier. return self.detectWebkit() \ or self.detectS60OssBrowser() \ or self.detectBlackBerryHigh() \ or self.detectWindowsMobile() \ or UAgentInfo.engineTelecaQ in self.__userAgent
[ "def", "detectTierRichCss", "(", "self", ")", ":", "#The following devices are explicitly ok.", "#Note: 'High' BlackBerry devices ONLY", "if", "not", "self", ".", "detectMobileQuick", "(", ")", ":", "return", "False", "#Exclude iPhone Tier and e-Ink Kindle devices", "if", "self", ".", "detectTierIphone", "(", ")", "or", "self", ".", "detectKindle", "(", ")", ":", "return", "False", "#The following devices are explicitly ok.", "#Note: 'High' BlackBerry devices ONLY", "#Older Windows 'Mobile' isn't good enough for iPhone Tier.", "return", "self", ".", "detectWebkit", "(", ")", "or", "self", ".", "detectS60OssBrowser", "(", ")", "or", "self", ".", "detectBlackBerryHigh", "(", ")", "or", "self", ".", "detectWindowsMobile", "(", ")", "or", "UAgentInfo", ".", "engineTelecaQ", "in", "self", ".", "__userAgent" ]
Return detection of any device in the 'Rich CSS' Tier The quick way to detect for a tier of devices. This method detects for devices which are likely to be capable of viewing CSS content optimized for the iPhone, but may not necessarily support JavaScript. Excludes all iPhone Tier devices.
[ "Return", "detection", "of", "any", "device", "in", "the", "Rich", "CSS", "Tier" ]
python
train
Kaggle/kaggle-api
kaggle/api/kaggle_api_extended.py
https://github.com/Kaggle/kaggle-api/blob/65f14b1386470c5784d4753e491478e7537660d9/kaggle/api/kaggle_api_extended.py#L1502-L1590
def kernels_list(self, page=1, page_size=20, dataset=None, competition=None, parent_kernel=None, search=None, mine=False, user=None, language=None, kernel_type=None, output_type=None, sort_by=None): """ list kernels based on a set of search criteria Parameters ========== page: the page of results to return (default is 1) page_size: results per page (default is 20) dataset: if defined, filter to this dataset (default None) competition: if defined, filter to this competition (default None) parent_kernel: if defined, filter to those with specified parent search: a custom search string to pass to the list query mine: if true, group is specified as "my" to return personal kernels user: filter results to a specific user language: the programming language of the kernel kernel_type: the type of kernel, one of valid_kernel_types (str) output_type: the output type, one of valid_output_types (str) sort_by: if defined, sort results by this string (valid_sort_by) """ if int(page) <= 0: raise ValueError('Page number must be >= 1') page_size = int(page_size) if page_size <= 0: raise ValueError('Page size must be >= 1') if page_size > 100: page_size = 100 valid_languages = ['all', 'python', 'r', 'sqlite', 'julia'] if language and language not in valid_languages: raise ValueError('Invalid language specified. Valid options are ' + str(valid_languages)) valid_kernel_types = ['all', 'script', 'notebook'] if kernel_type and kernel_type not in valid_kernel_types: raise ValueError( 'Invalid kernel type specified. Valid options are ' + str(valid_kernel_types)) valid_output_types = ['all', 'visualization', 'data'] if output_type and output_type not in valid_output_types: raise ValueError( 'Invalid output type specified. Valid options are ' + str(valid_output_types)) valid_sort_by = [ 'hotness', 'commentCount', 'dateCreated', 'dateRun', 'relevance', 'scoreAscending', 'scoreDescending', 'viewCount', 'voteCount' ] if sort_by and sort_by not in valid_sort_by: raise ValueError( 'Invalid sort by type specified. Valid options are ' + str(valid_sort_by)) if sort_by == 'relevance' and search == '': raise ValueError('Cannot sort by relevance without a search term.') self.validate_dataset_string(dataset) self.validate_kernel_string(parent_kernel) group = 'everyone' if mine: group = 'profile' kernels_list_result = self.process_response( self.kernels_list_with_http_info( page=page, page_size=page_size, group=group, user=user or '', language=language or 'all', kernel_type=kernel_type or 'all', output_type=output_type or 'all', sort_by=sort_by or 'hotness', dataset=dataset or '', competition=competition or '', parent_kernel=parent_kernel or '', search=search or '')) return [Kernel(k) for k in kernels_list_result]
[ "def", "kernels_list", "(", "self", ",", "page", "=", "1", ",", "page_size", "=", "20", ",", "dataset", "=", "None", ",", "competition", "=", "None", ",", "parent_kernel", "=", "None", ",", "search", "=", "None", ",", "mine", "=", "False", ",", "user", "=", "None", ",", "language", "=", "None", ",", "kernel_type", "=", "None", ",", "output_type", "=", "None", ",", "sort_by", "=", "None", ")", ":", "if", "int", "(", "page", ")", "<=", "0", ":", "raise", "ValueError", "(", "'Page number must be >= 1'", ")", "page_size", "=", "int", "(", "page_size", ")", "if", "page_size", "<=", "0", ":", "raise", "ValueError", "(", "'Page size must be >= 1'", ")", "if", "page_size", ">", "100", ":", "page_size", "=", "100", "valid_languages", "=", "[", "'all'", ",", "'python'", ",", "'r'", ",", "'sqlite'", ",", "'julia'", "]", "if", "language", "and", "language", "not", "in", "valid_languages", ":", "raise", "ValueError", "(", "'Invalid language specified. Valid options are '", "+", "str", "(", "valid_languages", ")", ")", "valid_kernel_types", "=", "[", "'all'", ",", "'script'", ",", "'notebook'", "]", "if", "kernel_type", "and", "kernel_type", "not", "in", "valid_kernel_types", ":", "raise", "ValueError", "(", "'Invalid kernel type specified. Valid options are '", "+", "str", "(", "valid_kernel_types", ")", ")", "valid_output_types", "=", "[", "'all'", ",", "'visualization'", ",", "'data'", "]", "if", "output_type", "and", "output_type", "not", "in", "valid_output_types", ":", "raise", "ValueError", "(", "'Invalid output type specified. Valid options are '", "+", "str", "(", "valid_output_types", ")", ")", "valid_sort_by", "=", "[", "'hotness'", ",", "'commentCount'", ",", "'dateCreated'", ",", "'dateRun'", ",", "'relevance'", ",", "'scoreAscending'", ",", "'scoreDescending'", ",", "'viewCount'", ",", "'voteCount'", "]", "if", "sort_by", "and", "sort_by", "not", "in", "valid_sort_by", ":", "raise", "ValueError", "(", "'Invalid sort by type specified. Valid options are '", "+", "str", "(", "valid_sort_by", ")", ")", "if", "sort_by", "==", "'relevance'", "and", "search", "==", "''", ":", "raise", "ValueError", "(", "'Cannot sort by relevance without a search term.'", ")", "self", ".", "validate_dataset_string", "(", "dataset", ")", "self", ".", "validate_kernel_string", "(", "parent_kernel", ")", "group", "=", "'everyone'", "if", "mine", ":", "group", "=", "'profile'", "kernels_list_result", "=", "self", ".", "process_response", "(", "self", ".", "kernels_list_with_http_info", "(", "page", "=", "page", ",", "page_size", "=", "page_size", ",", "group", "=", "group", ",", "user", "=", "user", "or", "''", ",", "language", "=", "language", "or", "'all'", ",", "kernel_type", "=", "kernel_type", "or", "'all'", ",", "output_type", "=", "output_type", "or", "'all'", ",", "sort_by", "=", "sort_by", "or", "'hotness'", ",", "dataset", "=", "dataset", "or", "''", ",", "competition", "=", "competition", "or", "''", ",", "parent_kernel", "=", "parent_kernel", "or", "''", ",", "search", "=", "search", "or", "''", ")", ")", "return", "[", "Kernel", "(", "k", ")", "for", "k", "in", "kernels_list_result", "]" ]
list kernels based on a set of search criteria Parameters ========== page: the page of results to return (default is 1) page_size: results per page (default is 20) dataset: if defined, filter to this dataset (default None) competition: if defined, filter to this competition (default None) parent_kernel: if defined, filter to those with specified parent search: a custom search string to pass to the list query mine: if true, group is specified as "my" to return personal kernels user: filter results to a specific user language: the programming language of the kernel kernel_type: the type of kernel, one of valid_kernel_types (str) output_type: the output type, one of valid_output_types (str) sort_by: if defined, sort results by this string (valid_sort_by)
[ "list", "kernels", "based", "on", "a", "set", "of", "search", "criteria" ]
python
train
limodou/uliweb
uliweb/lib/werkzeug/contrib/cache.py
https://github.com/limodou/uliweb/blob/34472f25e4bc0b954a35346672f94e84ef18b076/uliweb/lib/werkzeug/contrib/cache.py#L73-L88
def _items(mappingorseq): """Wrapper for efficient iteration over mappings represented by dicts or sequences:: >>> for k, v in _items((i, i*i) for i in xrange(5)): ... assert k*k == v >>> for k, v in _items(dict((i, i*i) for i in xrange(5))): ... assert k*k == v """ if hasattr(mappingorseq, "iteritems"): return mappingorseq.iteritems() elif hasattr(mappingorseq, "items"): return mappingorseq.items() return mappingorseq
[ "def", "_items", "(", "mappingorseq", ")", ":", "if", "hasattr", "(", "mappingorseq", ",", "\"iteritems\"", ")", ":", "return", "mappingorseq", ".", "iteritems", "(", ")", "elif", "hasattr", "(", "mappingorseq", ",", "\"items\"", ")", ":", "return", "mappingorseq", ".", "items", "(", ")", "return", "mappingorseq" ]
Wrapper for efficient iteration over mappings represented by dicts or sequences:: >>> for k, v in _items((i, i*i) for i in xrange(5)): ... assert k*k == v >>> for k, v in _items(dict((i, i*i) for i in xrange(5))): ... assert k*k == v
[ "Wrapper", "for", "efficient", "iteration", "over", "mappings", "represented", "by", "dicts", "or", "sequences", "::" ]
python
train
nerox8664/pytorch2keras
pytorch2keras/padding_layers.py
https://github.com/nerox8664/pytorch2keras/blob/750eaf747323580e6732d0c5ba9f2f39cb096764/pytorch2keras/padding_layers.py#L9-L52
def convert_padding(params, w_name, scope_name, inputs, layers, weights, names): """ Convert padding layer. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers """ print('Converting padding...') if params['mode'] == 'constant': # raise AssertionError('Cannot convert non-constant padding') if params['value'] != 0.0: raise AssertionError('Cannot convert non-zero padding') if names: tf_name = 'PADD' + random_string(4) else: tf_name = w_name + str(random.random()) # Magic ordering padding_name = tf_name padding_layer = keras.layers.ZeroPadding2D( padding=((params['pads'][2], params['pads'][6]), (params['pads'][3], params['pads'][7])), name=padding_name ) layers[scope_name] = padding_layer(layers[inputs[0]]) elif params['mode'] == 'reflect': def target_layer(x, pads=params['pads']): # x = tf.transpose(x, [0, 2, 3, 1]) layer = tf.pad(x, [[0, 0], [0, 0], [pads[2], pads[6]], [pads[3], pads[7]]], 'REFLECT') # layer = tf.transpose(layer, [0, 3, 1, 2]) return layer lambda_layer = keras.layers.Lambda(target_layer) layers[scope_name] = lambda_layer(layers[inputs[0]])
[ "def", "convert_padding", "(", "params", ",", "w_name", ",", "scope_name", ",", "inputs", ",", "layers", ",", "weights", ",", "names", ")", ":", "print", "(", "'Converting padding...'", ")", "if", "params", "[", "'mode'", "]", "==", "'constant'", ":", "# raise AssertionError('Cannot convert non-constant padding')", "if", "params", "[", "'value'", "]", "!=", "0.0", ":", "raise", "AssertionError", "(", "'Cannot convert non-zero padding'", ")", "if", "names", ":", "tf_name", "=", "'PADD'", "+", "random_string", "(", "4", ")", "else", ":", "tf_name", "=", "w_name", "+", "str", "(", "random", ".", "random", "(", ")", ")", "# Magic ordering", "padding_name", "=", "tf_name", "padding_layer", "=", "keras", ".", "layers", ".", "ZeroPadding2D", "(", "padding", "=", "(", "(", "params", "[", "'pads'", "]", "[", "2", "]", ",", "params", "[", "'pads'", "]", "[", "6", "]", ")", ",", "(", "params", "[", "'pads'", "]", "[", "3", "]", ",", "params", "[", "'pads'", "]", "[", "7", "]", ")", ")", ",", "name", "=", "padding_name", ")", "layers", "[", "scope_name", "]", "=", "padding_layer", "(", "layers", "[", "inputs", "[", "0", "]", "]", ")", "elif", "params", "[", "'mode'", "]", "==", "'reflect'", ":", "def", "target_layer", "(", "x", ",", "pads", "=", "params", "[", "'pads'", "]", ")", ":", "# x = tf.transpose(x, [0, 2, 3, 1])", "layer", "=", "tf", ".", "pad", "(", "x", ",", "[", "[", "0", ",", "0", "]", ",", "[", "0", ",", "0", "]", ",", "[", "pads", "[", "2", "]", ",", "pads", "[", "6", "]", "]", ",", "[", "pads", "[", "3", "]", ",", "pads", "[", "7", "]", "]", "]", ",", "'REFLECT'", ")", "# layer = tf.transpose(layer, [0, 3, 1, 2])", "return", "layer", "lambda_layer", "=", "keras", ".", "layers", ".", "Lambda", "(", "target_layer", ")", "layers", "[", "scope_name", "]", "=", "lambda_layer", "(", "layers", "[", "inputs", "[", "0", "]", "]", ")" ]
Convert padding layer. Args: params: dictionary with layer parameters w_name: name prefix in state_dict scope_name: pytorch scope name inputs: pytorch node inputs layers: dictionary with keras tensors weights: pytorch state_dict names: use short names for keras layers
[ "Convert", "padding", "layer", "." ]
python
valid
astropy/photutils
photutils/segmentation/properties.py
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L1024-L1036
def covariance_eigvals(self): """ The two eigenvalues of the `covariance` matrix in decreasing order. """ if not np.isnan(np.sum(self.covariance)): eigvals = np.linalg.eigvals(self.covariance) if np.any(eigvals < 0): # negative variance return (np.nan, np.nan) * u.pix**2 # pragma: no cover return (np.max(eigvals), np.min(eigvals)) * u.pix**2 else: return (np.nan, np.nan) * u.pix**2
[ "def", "covariance_eigvals", "(", "self", ")", ":", "if", "not", "np", ".", "isnan", "(", "np", ".", "sum", "(", "self", ".", "covariance", ")", ")", ":", "eigvals", "=", "np", ".", "linalg", ".", "eigvals", "(", "self", ".", "covariance", ")", "if", "np", ".", "any", "(", "eigvals", "<", "0", ")", ":", "# negative variance", "return", "(", "np", ".", "nan", ",", "np", ".", "nan", ")", "*", "u", ".", "pix", "**", "2", "# pragma: no cover", "return", "(", "np", ".", "max", "(", "eigvals", ")", ",", "np", ".", "min", "(", "eigvals", ")", ")", "*", "u", ".", "pix", "**", "2", "else", ":", "return", "(", "np", ".", "nan", ",", "np", ".", "nan", ")", "*", "u", ".", "pix", "**", "2" ]
The two eigenvalues of the `covariance` matrix in decreasing order.
[ "The", "two", "eigenvalues", "of", "the", "covariance", "matrix", "in", "decreasing", "order", "." ]
python
train
spyder-ide/spyder
spyder/utils/workers.py
https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/utils/workers.py#L243-L247
def _clean_workers(self): """Delete periodically workers in workers bag.""" while self._bag_collector: self._bag_collector.popleft() self._timer_worker_delete.stop()
[ "def", "_clean_workers", "(", "self", ")", ":", "while", "self", ".", "_bag_collector", ":", "self", ".", "_bag_collector", ".", "popleft", "(", ")", "self", ".", "_timer_worker_delete", ".", "stop", "(", ")" ]
Delete periodically workers in workers bag.
[ "Delete", "periodically", "workers", "in", "workers", "bag", "." ]
python
train
AndrewAnnex/SpiceyPy
spiceypy/spiceypy.py
https://github.com/AndrewAnnex/SpiceyPy/blob/fc20a9b9de68b58eed5b332f0c051fb343a6e335/spiceypy/spiceypy.py#L12409-L12454
def spkw02(handle, body, center, inframe, first, last, segid, intlen, n, polydg, cdata, btime): """ Write a type 2 segment to an SPK file. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/spkw02_c.html :param handle: Handle of an SPK file open for writing. :type handle: int :param body: Body code for ephemeris object. :type body: int :param center: Body code for the center of motion of the body. :type center: int :param inframe: The reference frame of the states. :type inframe: str :param first: First valid time for which states can be computed. :type first: float :param last: Last valid time for which states can be computed. :type last: float :param segid: Segment identifier. :type segid: str :param intlen: Length of time covered by logical record. :type intlen: float :param n: Number of coefficient sets. :type n: int :param polydg: Chebyshev polynomial degree. :type polydg: int :param cdata: Array of Chebyshev coefficients. :type cdata: Array of floats :param btime: Begin time of first logical record. :type btime: float """ handle = ctypes.c_int(handle) body = ctypes.c_int(body) center = ctypes.c_int(center) inframe = stypes.stringToCharP(inframe) first = ctypes.c_double(first) last = ctypes.c_double(last) segid = stypes.stringToCharP(segid) intlen = ctypes.c_double(intlen) n = ctypes.c_int(n) polydg = ctypes.c_int(polydg) cdata = stypes.toDoubleVector(cdata) btime = ctypes.c_double(btime) libspice.spkw02_c(handle, body, center, inframe, first, last, segid, intlen, n, polydg, cdata, btime)
[ "def", "spkw02", "(", "handle", ",", "body", ",", "center", ",", "inframe", ",", "first", ",", "last", ",", "segid", ",", "intlen", ",", "n", ",", "polydg", ",", "cdata", ",", "btime", ")", ":", "handle", "=", "ctypes", ".", "c_int", "(", "handle", ")", "body", "=", "ctypes", ".", "c_int", "(", "body", ")", "center", "=", "ctypes", ".", "c_int", "(", "center", ")", "inframe", "=", "stypes", ".", "stringToCharP", "(", "inframe", ")", "first", "=", "ctypes", ".", "c_double", "(", "first", ")", "last", "=", "ctypes", ".", "c_double", "(", "last", ")", "segid", "=", "stypes", ".", "stringToCharP", "(", "segid", ")", "intlen", "=", "ctypes", ".", "c_double", "(", "intlen", ")", "n", "=", "ctypes", ".", "c_int", "(", "n", ")", "polydg", "=", "ctypes", ".", "c_int", "(", "polydg", ")", "cdata", "=", "stypes", ".", "toDoubleVector", "(", "cdata", ")", "btime", "=", "ctypes", ".", "c_double", "(", "btime", ")", "libspice", ".", "spkw02_c", "(", "handle", ",", "body", ",", "center", ",", "inframe", ",", "first", ",", "last", ",", "segid", ",", "intlen", ",", "n", ",", "polydg", ",", "cdata", ",", "btime", ")" ]
Write a type 2 segment to an SPK file. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/spkw02_c.html :param handle: Handle of an SPK file open for writing. :type handle: int :param body: Body code for ephemeris object. :type body: int :param center: Body code for the center of motion of the body. :type center: int :param inframe: The reference frame of the states. :type inframe: str :param first: First valid time for which states can be computed. :type first: float :param last: Last valid time for which states can be computed. :type last: float :param segid: Segment identifier. :type segid: str :param intlen: Length of time covered by logical record. :type intlen: float :param n: Number of coefficient sets. :type n: int :param polydg: Chebyshev polynomial degree. :type polydg: int :param cdata: Array of Chebyshev coefficients. :type cdata: Array of floats :param btime: Begin time of first logical record. :type btime: float
[ "Write", "a", "type", "2", "segment", "to", "an", "SPK", "file", "." ]
python
train
decentfox/aioh2
aioh2/protocol.py
https://github.com/decentfox/aioh2/blob/2f9b76161e99e32317083cd2ebd17ce2ed3e41ab/aioh2/protocol.py#L514-L526
def end_stream(self, stream_id): """ Close the given stream locally. This may block until the underlying transport becomes writable, or other coroutines release the wlock on this stream. :param stream_id: Which stream to close. """ with (yield from self._get_stream(stream_id).wlock): yield from self._resumed.wait() self._conn.end_stream(stream_id) self._flush()
[ "def", "end_stream", "(", "self", ",", "stream_id", ")", ":", "with", "(", "yield", "from", "self", ".", "_get_stream", "(", "stream_id", ")", ".", "wlock", ")", ":", "yield", "from", "self", ".", "_resumed", ".", "wait", "(", ")", "self", ".", "_conn", ".", "end_stream", "(", "stream_id", ")", "self", ".", "_flush", "(", ")" ]
Close the given stream locally. This may block until the underlying transport becomes writable, or other coroutines release the wlock on this stream. :param stream_id: Which stream to close.
[ "Close", "the", "given", "stream", "locally", "." ]
python
train
ratt-ru/PyMORESANE
pymoresane/iuwt.py
https://github.com/ratt-ru/PyMORESANE/blob/b024591ad0bbb69320d08841f28a2c27f62ae1af/pymoresane/iuwt.py#L113-L149
def ser_iuwt_recomposition(in1, scale_adjust, smoothed_array): """ This function calls the a trous algorithm code to recompose the input into a single array. This is the implementation of the isotropic undecimated wavelet transform recomposition for a single CPU core. INPUTS: in1 (no default): Array containing wavelet coefficients. scale_adjust (no default): Indicates the number of truncated array pages. smoothed_array (default=None): For a complete inverse transform, this must be the smoothest approximation. OUTPUTS: recomposition Array containing the reconstructed image. """ wavelet_filter = (1./16)*np.array([1,4,6,4,1]) # Filter-bank for use in the a trous algorithm. # Determines scale with adjustment and creates a zero array to store the output, unless smoothed_array is given. max_scale = in1.shape[0] + scale_adjust if smoothed_array is None: recomposition = np.zeros([in1.shape[1], in1.shape[2]]) else: recomposition = smoothed_array # The following loops call the a trous algorithm code to recompose the input. The first loop assumes that there are # non-zero wavelet coefficients at scales above scale_adjust, while the second loop completes the recomposition # on the scales less than scale_adjust. for i in range(max_scale-1, scale_adjust-1, -1): recomposition = ser_a_trous(recomposition, wavelet_filter, i) + in1[i-scale_adjust,:,:] if scale_adjust>0: for i in range(scale_adjust-1, -1, -1): recomposition = ser_a_trous(recomposition, wavelet_filter, i) return recomposition
[ "def", "ser_iuwt_recomposition", "(", "in1", ",", "scale_adjust", ",", "smoothed_array", ")", ":", "wavelet_filter", "=", "(", "1.", "/", "16", ")", "*", "np", ".", "array", "(", "[", "1", ",", "4", ",", "6", ",", "4", ",", "1", "]", ")", "# Filter-bank for use in the a trous algorithm.", "# Determines scale with adjustment and creates a zero array to store the output, unless smoothed_array is given.", "max_scale", "=", "in1", ".", "shape", "[", "0", "]", "+", "scale_adjust", "if", "smoothed_array", "is", "None", ":", "recomposition", "=", "np", ".", "zeros", "(", "[", "in1", ".", "shape", "[", "1", "]", ",", "in1", ".", "shape", "[", "2", "]", "]", ")", "else", ":", "recomposition", "=", "smoothed_array", "# The following loops call the a trous algorithm code to recompose the input. The first loop assumes that there are", "# non-zero wavelet coefficients at scales above scale_adjust, while the second loop completes the recomposition", "# on the scales less than scale_adjust.", "for", "i", "in", "range", "(", "max_scale", "-", "1", ",", "scale_adjust", "-", "1", ",", "-", "1", ")", ":", "recomposition", "=", "ser_a_trous", "(", "recomposition", ",", "wavelet_filter", ",", "i", ")", "+", "in1", "[", "i", "-", "scale_adjust", ",", ":", ",", ":", "]", "if", "scale_adjust", ">", "0", ":", "for", "i", "in", "range", "(", "scale_adjust", "-", "1", ",", "-", "1", ",", "-", "1", ")", ":", "recomposition", "=", "ser_a_trous", "(", "recomposition", ",", "wavelet_filter", ",", "i", ")", "return", "recomposition" ]
This function calls the a trous algorithm code to recompose the input into a single array. This is the implementation of the isotropic undecimated wavelet transform recomposition for a single CPU core. INPUTS: in1 (no default): Array containing wavelet coefficients. scale_adjust (no default): Indicates the number of truncated array pages. smoothed_array (default=None): For a complete inverse transform, this must be the smoothest approximation. OUTPUTS: recomposition Array containing the reconstructed image.
[ "This", "function", "calls", "the", "a", "trous", "algorithm", "code", "to", "recompose", "the", "input", "into", "a", "single", "array", ".", "This", "is", "the", "implementation", "of", "the", "isotropic", "undecimated", "wavelet", "transform", "recomposition", "for", "a", "single", "CPU", "core", "." ]
python
train
monarch-initiative/dipper
dipper/models/Genotype.py
https://github.com/monarch-initiative/dipper/blob/24cc80db355bbe15776edc5c7b41e0886959ba41/dipper/models/Genotype.py#L144-L161
def addAffectedLocus( self, allele_id, gene_id, rel_id=None): """ We make the assumption here that if the relationship is not provided, it is a GENO:is_allele_of. Here, the allele should be a variant_locus, not a sequence alteration. :param allele_id: :param gene_id: :param rel_id: :return: """ if rel_id is None: rel_id = self.globaltt['has_affected_feature'] self.graph.addTriple(allele_id, rel_id, gene_id) return
[ "def", "addAffectedLocus", "(", "self", ",", "allele_id", ",", "gene_id", ",", "rel_id", "=", "None", ")", ":", "if", "rel_id", "is", "None", ":", "rel_id", "=", "self", ".", "globaltt", "[", "'has_affected_feature'", "]", "self", ".", "graph", ".", "addTriple", "(", "allele_id", ",", "rel_id", ",", "gene_id", ")", "return" ]
We make the assumption here that if the relationship is not provided, it is a GENO:is_allele_of. Here, the allele should be a variant_locus, not a sequence alteration. :param allele_id: :param gene_id: :param rel_id: :return:
[ "We", "make", "the", "assumption", "here", "that", "if", "the", "relationship", "is", "not", "provided", "it", "is", "a", "GENO", ":", "is_allele_of", "." ]
python
train
guykisel/inline-plz
inlineplz/linter_runner.py
https://github.com/guykisel/inline-plz/blob/b5b1744e9156e31f68b519c0d8022feff79888ae/inlineplz/linter_runner.py#L167-L178
def cleanup(): """Delete standard installation directories.""" for install_dir in linters.INSTALL_DIRS: try: shutil.rmtree(install_dir, ignore_errors=True) except Exception: print( "{0}\nFailed to delete {1}".format( traceback.format_exc(), install_dir ) ) sys.stdout.flush()
[ "def", "cleanup", "(", ")", ":", "for", "install_dir", "in", "linters", ".", "INSTALL_DIRS", ":", "try", ":", "shutil", ".", "rmtree", "(", "install_dir", ",", "ignore_errors", "=", "True", ")", "except", "Exception", ":", "print", "(", "\"{0}\\nFailed to delete {1}\"", ".", "format", "(", "traceback", ".", "format_exc", "(", ")", ",", "install_dir", ")", ")", "sys", ".", "stdout", ".", "flush", "(", ")" ]
Delete standard installation directories.
[ "Delete", "standard", "installation", "directories", "." ]
python
train
Becksteinlab/GromacsWrapper
gromacs/fileformats/top.py
https://github.com/Becksteinlab/GromacsWrapper/blob/d4f9a8cb6f48292732cf7c7e4ef4a6d2ccbc51b9/gromacs/fileformats/top.py#L949-L1005
def assemble_topology(self): """Call the various member self._make_* functions to convert the topology object into a string""" self.logger.debug("starting to assemble topology...") top = '' self.logger.debug("making atom/pair/bond/angle/dihedral/improper types") top += self.toptemplate top = top.replace('*DEFAULTS*', ''.join( self._make_defaults(self.system)) ) top = top.replace('*ATOMTYPES*', ''.join( self._make_atomtypes(self.system)) ) top = top.replace('*NONBOND_PARAM*', ''.join( self._make_nonbond_param(self.system)) ) top = top.replace('*PAIRTYPES*', ''.join( self._make_pairtypes(self.system)) ) top = top.replace('*BONDTYPES*', ''.join( self._make_bondtypes(self.system)) ) top = top.replace('*CONSTRAINTTYPES*',''.join( self._make_constrainttypes(self.system))) top = top.replace('*ANGLETYPES*', ''.join( self._make_angletypes(self.system))) top = top.replace('*DIHEDRALTYPES*', ''.join( self._make_dihedraltypes(self.system)) ) top = top.replace('*IMPROPERTYPES*', ''.join( self._make_impropertypes(self.system)) ) top = top.replace('*CMAPTYPES*', ''.join( self._make_cmaptypes(self.system)) ) for i,(molname,m) in enumerate(self.system.dict_molname_mol.items()): itp = self.itptemplate itp = itp.replace('*MOLECULETYPE*', ''.join( self._make_moleculetype(m, molname, m.exclusion_numb)) ) itp = itp.replace('*ATOMS*', ''.join( self._make_atoms(m)) ) itp = itp.replace('*BONDS*', ''.join( self._make_bonds(m)) ) itp = itp.replace('*PAIRS*', ''.join( self._make_pairs(m)) ) itp = itp.replace('*SETTLES*', ''.join( self._make_settles(m)) ) itp = itp.replace('*VIRTUAL_SITES3*',''.join( self._make_virtual_sites3(m)) ) itp = itp.replace('*EXCLUSIONS*', ''.join( self._make_exclusions(m)) ) itp = itp.replace('*ANGLES*', ''.join( self._make_angles(m)) ) itp = itp.replace('*DIHEDRALS*', ''.join( self._make_dihedrals(m)) ) itp = itp.replace('*IMPROPERS*', ''.join( self._make_impropers(m)) ) itp = itp.replace('*CMAPS*', ''.join( self._make_cmaps(m)) ) if not self.multiple_output: top += itp else: outfile = "mol_{0}.itp".format(molname) top += '#include "mol_{0}.itp" \n'.format( molname ) with open(outfile, "w") as f: f.writelines([itp]) top += '\n[system] \nConvertedSystem\n\n' top += '[molecules] \n' molecules = [("", 0)] for m in self.system.molecules: if (molecules[-1][0] != m.name): molecules.append([m.name, 0]) if molecules[-1][0] == m.name: molecules[-1][1] += 1 for molname, n in molecules[1:]: top += '{0:s} {1:d}\n'.format(molname, n) top += '\n' with open(self.outfile, 'w') as f: f.writelines([top])
[ "def", "assemble_topology", "(", "self", ")", ":", "self", ".", "logger", ".", "debug", "(", "\"starting to assemble topology...\"", ")", "top", "=", "''", "self", ".", "logger", ".", "debug", "(", "\"making atom/pair/bond/angle/dihedral/improper types\"", ")", "top", "+=", "self", ".", "toptemplate", "top", "=", "top", ".", "replace", "(", "'*DEFAULTS*'", ",", "''", ".", "join", "(", "self", ".", "_make_defaults", "(", "self", ".", "system", ")", ")", ")", "top", "=", "top", ".", "replace", "(", "'*ATOMTYPES*'", ",", "''", ".", "join", "(", "self", ".", "_make_atomtypes", "(", "self", ".", "system", ")", ")", ")", "top", "=", "top", ".", "replace", "(", "'*NONBOND_PARAM*'", ",", "''", ".", "join", "(", "self", ".", "_make_nonbond_param", "(", "self", ".", "system", ")", ")", ")", "top", "=", "top", ".", "replace", "(", "'*PAIRTYPES*'", ",", "''", ".", "join", "(", "self", ".", "_make_pairtypes", "(", "self", ".", "system", ")", ")", ")", "top", "=", "top", ".", "replace", "(", "'*BONDTYPES*'", ",", "''", ".", "join", "(", "self", ".", "_make_bondtypes", "(", "self", ".", "system", ")", ")", ")", "top", "=", "top", ".", "replace", "(", "'*CONSTRAINTTYPES*'", ",", "''", ".", "join", "(", "self", ".", "_make_constrainttypes", "(", "self", ".", "system", ")", ")", ")", "top", "=", "top", ".", "replace", "(", "'*ANGLETYPES*'", ",", "''", ".", "join", "(", "self", ".", "_make_angletypes", "(", "self", ".", "system", ")", ")", ")", "top", "=", "top", ".", "replace", "(", "'*DIHEDRALTYPES*'", ",", "''", ".", "join", "(", "self", ".", "_make_dihedraltypes", "(", "self", ".", "system", ")", ")", ")", "top", "=", "top", ".", "replace", "(", "'*IMPROPERTYPES*'", ",", "''", ".", "join", "(", "self", ".", "_make_impropertypes", "(", "self", ".", "system", ")", ")", ")", "top", "=", "top", ".", "replace", "(", "'*CMAPTYPES*'", ",", "''", ".", "join", "(", "self", ".", "_make_cmaptypes", "(", "self", ".", "system", ")", ")", ")", "for", "i", ",", "(", "molname", ",", "m", ")", "in", "enumerate", "(", "self", ".", "system", ".", "dict_molname_mol", ".", "items", "(", ")", ")", ":", "itp", "=", "self", ".", "itptemplate", "itp", "=", "itp", ".", "replace", "(", "'*MOLECULETYPE*'", ",", "''", ".", "join", "(", "self", ".", "_make_moleculetype", "(", "m", ",", "molname", ",", "m", ".", "exclusion_numb", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*ATOMS*'", ",", "''", ".", "join", "(", "self", ".", "_make_atoms", "(", "m", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*BONDS*'", ",", "''", ".", "join", "(", "self", ".", "_make_bonds", "(", "m", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*PAIRS*'", ",", "''", ".", "join", "(", "self", ".", "_make_pairs", "(", "m", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*SETTLES*'", ",", "''", ".", "join", "(", "self", ".", "_make_settles", "(", "m", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*VIRTUAL_SITES3*'", ",", "''", ".", "join", "(", "self", ".", "_make_virtual_sites3", "(", "m", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*EXCLUSIONS*'", ",", "''", ".", "join", "(", "self", ".", "_make_exclusions", "(", "m", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*ANGLES*'", ",", "''", ".", "join", "(", "self", ".", "_make_angles", "(", "m", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*DIHEDRALS*'", ",", "''", ".", "join", "(", "self", ".", "_make_dihedrals", "(", "m", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*IMPROPERS*'", ",", "''", ".", "join", "(", "self", ".", "_make_impropers", "(", "m", ")", ")", ")", "itp", "=", "itp", ".", "replace", "(", "'*CMAPS*'", ",", "''", ".", "join", "(", "self", ".", "_make_cmaps", "(", "m", ")", ")", ")", "if", "not", "self", ".", "multiple_output", ":", "top", "+=", "itp", "else", ":", "outfile", "=", "\"mol_{0}.itp\"", ".", "format", "(", "molname", ")", "top", "+=", "'#include \"mol_{0}.itp\" \\n'", ".", "format", "(", "molname", ")", "with", "open", "(", "outfile", ",", "\"w\"", ")", "as", "f", ":", "f", ".", "writelines", "(", "[", "itp", "]", ")", "top", "+=", "'\\n[system] \\nConvertedSystem\\n\\n'", "top", "+=", "'[molecules] \\n'", "molecules", "=", "[", "(", "\"\"", ",", "0", ")", "]", "for", "m", "in", "self", ".", "system", ".", "molecules", ":", "if", "(", "molecules", "[", "-", "1", "]", "[", "0", "]", "!=", "m", ".", "name", ")", ":", "molecules", ".", "append", "(", "[", "m", ".", "name", ",", "0", "]", ")", "if", "molecules", "[", "-", "1", "]", "[", "0", "]", "==", "m", ".", "name", ":", "molecules", "[", "-", "1", "]", "[", "1", "]", "+=", "1", "for", "molname", ",", "n", "in", "molecules", "[", "1", ":", "]", ":", "top", "+=", "'{0:s} {1:d}\\n'", ".", "format", "(", "molname", ",", "n", ")", "top", "+=", "'\\n'", "with", "open", "(", "self", ".", "outfile", ",", "'w'", ")", "as", "f", ":", "f", ".", "writelines", "(", "[", "top", "]", ")" ]
Call the various member self._make_* functions to convert the topology object into a string
[ "Call", "the", "various", "member", "self", ".", "_make_", "*", "functions", "to", "convert", "the", "topology", "object", "into", "a", "string" ]
python
valid
materialsproject/pymatgen
pymatgen/core/sites.py
https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/core/sites.py#L477-L486
def to_unit_cell(self, in_place=False): """ Move frac coords to within the unit cell cell. """ frac_coords = np.mod(self.frac_coords, 1) if in_place: self.frac_coords = frac_coords else: return PeriodicSite(self.species, frac_coords, self.lattice, properties=self.properties)
[ "def", "to_unit_cell", "(", "self", ",", "in_place", "=", "False", ")", ":", "frac_coords", "=", "np", ".", "mod", "(", "self", ".", "frac_coords", ",", "1", ")", "if", "in_place", ":", "self", ".", "frac_coords", "=", "frac_coords", "else", ":", "return", "PeriodicSite", "(", "self", ".", "species", ",", "frac_coords", ",", "self", ".", "lattice", ",", "properties", "=", "self", ".", "properties", ")" ]
Move frac coords to within the unit cell cell.
[ "Move", "frac", "coords", "to", "within", "the", "unit", "cell", "cell", "." ]
python
train
funilrys/PyFunceble
PyFunceble/adblock.py
https://github.com/funilrys/PyFunceble/blob/cdf69cbde120199171f7158e1c33635753e6e2f5/PyFunceble/adblock.py#L309-L402
def _format_decoded(self, to_format, result=None): # pragma: no cover """ Format the exctracted adblock line before passing it to the system. :param to_format: The extracted line from the file. :type to_format: str :param result: A list of the result of this method. :type result: list :return: The list of domains or IP to test. :rtype: list """ if not result: # The result is not given. # We set the result as an empty list. result = [] for data in List(to_format).format(): # We loop through the different lines to format. if data: # The currently read line is not empty. if "^" in data: # There is an accent in the currently read line. # We recall this method but with the current result state # and splited data. return self._format_decoded(data.split("^"), result) if "#" in data: # There is a dash in the currently read line. # We recall this method but with the current result state # and splited data. return self._format_decoded(data.split("#"), result) if "," in data: # There is a comma in the currently read line. # We recall this method but with the current result state # and splited data. return self._format_decoded(data.split(","), result) if "!" in data: # There is an exclamation mark in the currently read line. # We recall this method but with the current result state # and splited data. return self._format_decoded(data.split("!"), result) if "|" in data: # There is a vertival bar in the currently read line. # We recall this method but with the current result state # and splited data. return self._format_decoded(data.split("|"), result) if data: # The currently read line is not empty. data = self._extract_base(data) if data and ( self.checker.is_domain_valid(data) or self.checker.is_ip_valid(data) ): # The extraced base is not empty. # and # * The currently read line is a valid domain. # or # * The currently read line is a valid IP. # We append the currently read line to the result. result.append(data) elif data: # * The currently read line is not a valid domain. # or # * The currently read line is not a valid IP. # We try to get the url base. url_base = self.checker.is_url_valid(data, return_base=True) if url_base: # The url_base is not empty or equal to False or None. # We append the url base to the result. result.append(url_base) # We return the result element. return result
[ "def", "_format_decoded", "(", "self", ",", "to_format", ",", "result", "=", "None", ")", ":", "# pragma: no cover", "if", "not", "result", ":", "# The result is not given.", "# We set the result as an empty list.", "result", "=", "[", "]", "for", "data", "in", "List", "(", "to_format", ")", ".", "format", "(", ")", ":", "# We loop through the different lines to format.", "if", "data", ":", "# The currently read line is not empty.", "if", "\"^\"", "in", "data", ":", "# There is an accent in the currently read line.", "# We recall this method but with the current result state", "# and splited data.", "return", "self", ".", "_format_decoded", "(", "data", ".", "split", "(", "\"^\"", ")", ",", "result", ")", "if", "\"#\"", "in", "data", ":", "# There is a dash in the currently read line.", "# We recall this method but with the current result state", "# and splited data.", "return", "self", ".", "_format_decoded", "(", "data", ".", "split", "(", "\"#\"", ")", ",", "result", ")", "if", "\",\"", "in", "data", ":", "# There is a comma in the currently read line.", "# We recall this method but with the current result state", "# and splited data.", "return", "self", ".", "_format_decoded", "(", "data", ".", "split", "(", "\",\"", ")", ",", "result", ")", "if", "\"!\"", "in", "data", ":", "# There is an exclamation mark in the currently read line.", "# We recall this method but with the current result state", "# and splited data.", "return", "self", ".", "_format_decoded", "(", "data", ".", "split", "(", "\"!\"", ")", ",", "result", ")", "if", "\"|\"", "in", "data", ":", "# There is a vertival bar in the currently read line.", "# We recall this method but with the current result state", "# and splited data.", "return", "self", ".", "_format_decoded", "(", "data", ".", "split", "(", "\"|\"", ")", ",", "result", ")", "if", "data", ":", "# The currently read line is not empty.", "data", "=", "self", ".", "_extract_base", "(", "data", ")", "if", "data", "and", "(", "self", ".", "checker", ".", "is_domain_valid", "(", "data", ")", "or", "self", ".", "checker", ".", "is_ip_valid", "(", "data", ")", ")", ":", "# The extraced base is not empty.", "# and", "# * The currently read line is a valid domain.", "# or", "# * The currently read line is a valid IP.", "# We append the currently read line to the result.", "result", ".", "append", "(", "data", ")", "elif", "data", ":", "# * The currently read line is not a valid domain.", "# or", "# * The currently read line is not a valid IP.", "# We try to get the url base.", "url_base", "=", "self", ".", "checker", ".", "is_url_valid", "(", "data", ",", "return_base", "=", "True", ")", "if", "url_base", ":", "# The url_base is not empty or equal to False or None.", "# We append the url base to the result.", "result", ".", "append", "(", "url_base", ")", "# We return the result element.", "return", "result" ]
Format the exctracted adblock line before passing it to the system. :param to_format: The extracted line from the file. :type to_format: str :param result: A list of the result of this method. :type result: list :return: The list of domains or IP to test. :rtype: list
[ "Format", "the", "exctracted", "adblock", "line", "before", "passing", "it", "to", "the", "system", "." ]
python
test
dlecocq/nsq-py
nsq/http/__init__.py
https://github.com/dlecocq/nsq-py/blob/3ecacf6ab7719d38031179277113d875554a0c16/nsq/http/__init__.py#L43-L48
def ok_check(function, *args, **kwargs): '''Ensure that the response body is OK''' req = function(*args, **kwargs) if req.content.lower() != 'ok': raise ClientException(req.content) return req.content
[ "def", "ok_check", "(", "function", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "req", "=", "function", "(", "*", "args", ",", "*", "*", "kwargs", ")", "if", "req", ".", "content", ".", "lower", "(", ")", "!=", "'ok'", ":", "raise", "ClientException", "(", "req", ".", "content", ")", "return", "req", ".", "content" ]
Ensure that the response body is OK
[ "Ensure", "that", "the", "response", "body", "is", "OK" ]
python
train
UCL-INGI/INGInious
inginious/common/tags.py
https://github.com/UCL-INGI/INGInious/blob/cbda9a9c7f2b8e8eb1e6d7d51f0d18092086300c/inginious/common/tags.py#L58-L67
def get_type_as_str(self): """ Return a textual description of the type """ if self.get_type() == 0: return _("Skill") elif self.get_type() == 1: return _("Misconception") elif self.get_type() == 2: return _("Category") else: return _("Unknown type")
[ "def", "get_type_as_str", "(", "self", ")", ":", "if", "self", ".", "get_type", "(", ")", "==", "0", ":", "return", "_", "(", "\"Skill\"", ")", "elif", "self", ".", "get_type", "(", ")", "==", "1", ":", "return", "_", "(", "\"Misconception\"", ")", "elif", "self", ".", "get_type", "(", ")", "==", "2", ":", "return", "_", "(", "\"Category\"", ")", "else", ":", "return", "_", "(", "\"Unknown type\"", ")" ]
Return a textual description of the type
[ "Return", "a", "textual", "description", "of", "the", "type" ]
python
train
dhylands/rshell
rshell/main.py
https://github.com/dhylands/rshell/blob/a92a8fa8074ac792241c83c640a51b394667c324/rshell/main.py#L1808-L1815
def print(self, *args, end='\n', file=None): """Convenience function so you don't need to remember to put the \n at the end of the line. """ if file is None: file = self.stdout s = ' '.join(str(arg) for arg in args) + end file.write(s)
[ "def", "print", "(", "self", ",", "*", "args", ",", "end", "=", "'\\n'", ",", "file", "=", "None", ")", ":", "if", "file", "is", "None", ":", "file", "=", "self", ".", "stdout", "s", "=", "' '", ".", "join", "(", "str", "(", "arg", ")", "for", "arg", "in", "args", ")", "+", "end", "file", ".", "write", "(", "s", ")" ]
Convenience function so you don't need to remember to put the \n at the end of the line.
[ "Convenience", "function", "so", "you", "don", "t", "need", "to", "remember", "to", "put", "the", "\\", "n", "at", "the", "end", "of", "the", "line", "." ]
python
train
wiheto/teneto
teneto/temporalcommunity/integration.py
https://github.com/wiheto/teneto/blob/80d7a83a9adc1714589b020627c45bd5b66248ab/teneto/temporalcommunity/integration.py#L5-L45
def integration(temporalcommunities, staticcommunities): """ Calculates the integration coefficient for each node. Measures the average probability that a node is in the same community as nodes from other systems. Parameters: ------------ temporalcommunities : array temporal communities vector (node,time) staticcommunities : array Static communities vector for each node Returns: ------- Icoeff : array integration coefficient for each node References: ---------- Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton. Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51. Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec 2;11(12):e1004533. """ # make sure the static and temporal communities have the same number of nodes if staticcommunities.shape[0] != temporalcommunities.shape[0]: raise ValueError( 'Temporal and static communities have different dimensions') alleg = allegiance(temporalcommunities) Icoeff = np.zeros(len(staticcommunities)) # calc integration for each node for i, statcom in enumerate(len(staticcommunities)): Icoeff[i] = np.mean(alleg[i, staticcommunities != statcom]) return Icoeff
[ "def", "integration", "(", "temporalcommunities", ",", "staticcommunities", ")", ":", "# make sure the static and temporal communities have the same number of nodes", "if", "staticcommunities", ".", "shape", "[", "0", "]", "!=", "temporalcommunities", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "'Temporal and static communities have different dimensions'", ")", "alleg", "=", "allegiance", "(", "temporalcommunities", ")", "Icoeff", "=", "np", ".", "zeros", "(", "len", "(", "staticcommunities", ")", ")", "# calc integration for each node", "for", "i", ",", "statcom", "in", "enumerate", "(", "len", "(", "staticcommunities", ")", ")", ":", "Icoeff", "[", "i", "]", "=", "np", ".", "mean", "(", "alleg", "[", "i", ",", "staticcommunities", "!=", "statcom", "]", ")", "return", "Icoeff" ]
Calculates the integration coefficient for each node. Measures the average probability that a node is in the same community as nodes from other systems. Parameters: ------------ temporalcommunities : array temporal communities vector (node,time) staticcommunities : array Static communities vector for each node Returns: ------- Icoeff : array integration coefficient for each node References: ---------- Danielle S. Bassett, Muzhi Yang, Nicholas F. Wymbs, Scott T. Grafton. Learning-Induced Autonomy of Sensorimotor Systems. Nat Neurosci. 2015 May;18(5):744-51. Marcelo Mattar, Michael W. Cole, Sharon Thompson-Schill, Danielle S. Bassett. A Functional Cartography of Cognitive Systems. PLoS Comput Biol. 2015 Dec 2;11(12):e1004533.
[ "Calculates", "the", "integration", "coefficient", "for", "each", "node", ".", "Measures", "the", "average", "probability", "that", "a", "node", "is", "in", "the", "same", "community", "as", "nodes", "from", "other", "systems", "." ]
python
train
iotile/coretools
transport_plugins/websocket/iotile_transport_websocket/generic/async_client.py
https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/transport_plugins/websocket/iotile_transport_websocket/generic/async_client.py#L164-L190
async def _manage_connection(self): """Internal coroutine for managing the client connection.""" try: while True: message = await self._con.recv() try: unpacked = unpack(message) except Exception: # pylint:disable=broad-except;This is a background worker self._logger.exception("Corrupt message received") continue if not VALID_SERVER_MESSAGE.matches(unpacked): self._logger.warning("Dropping invalid message from server: %s", unpacked) continue # Don't block until all callbacks have finished since once of # those callbacks may call self.send_command, which would deadlock # since it couldn't get the response until it had already finished. if not await self._manager.process_message(unpacked, wait=False): self._logger.warning("No handler found for received message, message=%s", unpacked) except asyncio.CancelledError: self._logger.info("Closing connection to server due to stop()") finally: await self._manager.process_message(dict(type='event', name=self.DISCONNECT_EVENT, payload=None)) await self._con.close()
[ "async", "def", "_manage_connection", "(", "self", ")", ":", "try", ":", "while", "True", ":", "message", "=", "await", "self", ".", "_con", ".", "recv", "(", ")", "try", ":", "unpacked", "=", "unpack", "(", "message", ")", "except", "Exception", ":", "# pylint:disable=broad-except;This is a background worker", "self", ".", "_logger", ".", "exception", "(", "\"Corrupt message received\"", ")", "continue", "if", "not", "VALID_SERVER_MESSAGE", ".", "matches", "(", "unpacked", ")", ":", "self", ".", "_logger", ".", "warning", "(", "\"Dropping invalid message from server: %s\"", ",", "unpacked", ")", "continue", "# Don't block until all callbacks have finished since once of", "# those callbacks may call self.send_command, which would deadlock", "# since it couldn't get the response until it had already finished.", "if", "not", "await", "self", ".", "_manager", ".", "process_message", "(", "unpacked", ",", "wait", "=", "False", ")", ":", "self", ".", "_logger", ".", "warning", "(", "\"No handler found for received message, message=%s\"", ",", "unpacked", ")", "except", "asyncio", ".", "CancelledError", ":", "self", ".", "_logger", ".", "info", "(", "\"Closing connection to server due to stop()\"", ")", "finally", ":", "await", "self", ".", "_manager", ".", "process_message", "(", "dict", "(", "type", "=", "'event'", ",", "name", "=", "self", ".", "DISCONNECT_EVENT", ",", "payload", "=", "None", ")", ")", "await", "self", ".", "_con", ".", "close", "(", ")" ]
Internal coroutine for managing the client connection.
[ "Internal", "coroutine", "for", "managing", "the", "client", "connection", "." ]
python
train
Qiskit/qiskit-terra
qiskit/circuit/quantumcircuit.py
https://github.com/Qiskit/qiskit-terra/blob/d4f58d903bc96341b816f7c35df936d6421267d1/qiskit/circuit/quantumcircuit.py#L481-L536
def depth(self): """Return circuit depth (i.e. length of critical path). This does not include compiler or simulator directives such as 'barrier' or 'snapshot'. Returns: int: Depth of circuit. Notes: The circuit depth and the DAG depth need not bt the same. """ # Labels the registers by ints # and then the qubit position in # a register is given by reg_int+qubit_num reg_offset = 0 reg_map = {} for reg in self.qregs+self.cregs: reg_map[reg.name] = reg_offset reg_offset += reg.size # A list that holds the height of each qubit # and classical bit. op_stack = [0]*reg_offset # Here we are playing a modified version of # Tetris where we stack gates, but multi-qubit # gates, or measurements have a block for each # qubit or cbit that are connected by a virtual # line so that they all stacked at the same depth. # Conditional gates act on all cbits in the register # they are conditioned on. # We do not consider barriers or snapshots as # They are transpiler and simulator directives. # The max stack height is the circuit depth. for instr, qargs, cargs in self.data: if instr.name not in ['barrier', 'snapshot']: levels = [] reg_ints = [] for ind, reg in enumerate(qargs+cargs): # Add to the stacks of the qubits and # cbits used in the gate. reg_ints.append(reg_map[reg[0].name]+reg[1]) levels.append(op_stack[reg_ints[ind]] + 1) if instr.control: # Controls operate over all bits in the # classical register they use. cint = reg_map[instr.control[0].name] for off in range(instr.control[0].size): if cint+off not in reg_ints: reg_ints.append(cint+off) levels.append(op_stack[cint+off]+1) max_level = max(levels) for ind in reg_ints: op_stack[ind] = max_level return max(op_stack)
[ "def", "depth", "(", "self", ")", ":", "# Labels the registers by ints", "# and then the qubit position in", "# a register is given by reg_int+qubit_num", "reg_offset", "=", "0", "reg_map", "=", "{", "}", "for", "reg", "in", "self", ".", "qregs", "+", "self", ".", "cregs", ":", "reg_map", "[", "reg", ".", "name", "]", "=", "reg_offset", "reg_offset", "+=", "reg", ".", "size", "# A list that holds the height of each qubit", "# and classical bit.", "op_stack", "=", "[", "0", "]", "*", "reg_offset", "# Here we are playing a modified version of", "# Tetris where we stack gates, but multi-qubit", "# gates, or measurements have a block for each", "# qubit or cbit that are connected by a virtual", "# line so that they all stacked at the same depth.", "# Conditional gates act on all cbits in the register", "# they are conditioned on.", "# We do not consider barriers or snapshots as", "# They are transpiler and simulator directives.", "# The max stack height is the circuit depth.", "for", "instr", ",", "qargs", ",", "cargs", "in", "self", ".", "data", ":", "if", "instr", ".", "name", "not", "in", "[", "'barrier'", ",", "'snapshot'", "]", ":", "levels", "=", "[", "]", "reg_ints", "=", "[", "]", "for", "ind", ",", "reg", "in", "enumerate", "(", "qargs", "+", "cargs", ")", ":", "# Add to the stacks of the qubits and", "# cbits used in the gate.", "reg_ints", ".", "append", "(", "reg_map", "[", "reg", "[", "0", "]", ".", "name", "]", "+", "reg", "[", "1", "]", ")", "levels", ".", "append", "(", "op_stack", "[", "reg_ints", "[", "ind", "]", "]", "+", "1", ")", "if", "instr", ".", "control", ":", "# Controls operate over all bits in the", "# classical register they use.", "cint", "=", "reg_map", "[", "instr", ".", "control", "[", "0", "]", ".", "name", "]", "for", "off", "in", "range", "(", "instr", ".", "control", "[", "0", "]", ".", "size", ")", ":", "if", "cint", "+", "off", "not", "in", "reg_ints", ":", "reg_ints", ".", "append", "(", "cint", "+", "off", ")", "levels", ".", "append", "(", "op_stack", "[", "cint", "+", "off", "]", "+", "1", ")", "max_level", "=", "max", "(", "levels", ")", "for", "ind", "in", "reg_ints", ":", "op_stack", "[", "ind", "]", "=", "max_level", "return", "max", "(", "op_stack", ")" ]
Return circuit depth (i.e. length of critical path). This does not include compiler or simulator directives such as 'barrier' or 'snapshot'. Returns: int: Depth of circuit. Notes: The circuit depth and the DAG depth need not bt the same.
[ "Return", "circuit", "depth", "(", "i", ".", "e", ".", "length", "of", "critical", "path", ")", ".", "This", "does", "not", "include", "compiler", "or", "simulator", "directives", "such", "as", "barrier", "or", "snapshot", "." ]
python
test
twilio/twilio-python
twilio/rest/proxy/v1/service/session/__init__.py
https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/proxy/v1/service/session/__init__.py#L154-L163
def get(self, sid): """ Constructs a SessionContext :param sid: The unique string that identifies the resource :returns: twilio.rest.proxy.v1.service.session.SessionContext :rtype: twilio.rest.proxy.v1.service.session.SessionContext """ return SessionContext(self._version, service_sid=self._solution['service_sid'], sid=sid, )
[ "def", "get", "(", "self", ",", "sid", ")", ":", "return", "SessionContext", "(", "self", ".", "_version", ",", "service_sid", "=", "self", ".", "_solution", "[", "'service_sid'", "]", ",", "sid", "=", "sid", ",", ")" ]
Constructs a SessionContext :param sid: The unique string that identifies the resource :returns: twilio.rest.proxy.v1.service.session.SessionContext :rtype: twilio.rest.proxy.v1.service.session.SessionContext
[ "Constructs", "a", "SessionContext" ]
python
train
ray-project/ray
python/ray/rllib/evaluation/metrics.py
https://github.com/ray-project/ray/blob/4eade036a0505e244c976f36aaa2d64386b5129b/python/ray/rllib/evaluation/metrics.py#L45-L53
def collect_metrics(local_evaluator=None, remote_evaluators=[], timeout_seconds=180): """Gathers episode metrics from PolicyEvaluator instances.""" episodes, num_dropped = collect_episodes( local_evaluator, remote_evaluators, timeout_seconds=timeout_seconds) metrics = summarize_episodes(episodes, episodes, num_dropped) return metrics
[ "def", "collect_metrics", "(", "local_evaluator", "=", "None", ",", "remote_evaluators", "=", "[", "]", ",", "timeout_seconds", "=", "180", ")", ":", "episodes", ",", "num_dropped", "=", "collect_episodes", "(", "local_evaluator", ",", "remote_evaluators", ",", "timeout_seconds", "=", "timeout_seconds", ")", "metrics", "=", "summarize_episodes", "(", "episodes", ",", "episodes", ",", "num_dropped", ")", "return", "metrics" ]
Gathers episode metrics from PolicyEvaluator instances.
[ "Gathers", "episode", "metrics", "from", "PolicyEvaluator", "instances", "." ]
python
train
lambdamusic/Ontospy
ontospy/extras/shell_lib.py
https://github.com/lambdamusic/Ontospy/blob/eb46cb13792b2b87f21babdf976996318eec7571/ontospy/extras/shell_lib.py#L277-L304
def _printTaxonomy(self, hrlinetop=True): """ print(a local taxonomy for the object) """ if not self.currentEntity: # ==> ontology level return if hrlinetop: self._print("----------------") self._print("TAXONOMY:", "IMPORTANT") x = self.currentEntity['object'] parents = x.parents() if not parents: if self.currentEntity['type'] == 'class': self._print("owl:Thing") elif self.currentEntity['type'] == 'property': self._print("RDF:Property") elif self.currentEntity['type'] == 'concept': self._print("SKOS:Concept") else: pass else: for p in parents: self._print(p.qname) self._print("..." + x.qname, "TEXT") for c in x.children(): self._print("......" + c.qname) self._print("----------------")
[ "def", "_printTaxonomy", "(", "self", ",", "hrlinetop", "=", "True", ")", ":", "if", "not", "self", ".", "currentEntity", ":", "# ==> ontology level", "return", "if", "hrlinetop", ":", "self", ".", "_print", "(", "\"----------------\"", ")", "self", ".", "_print", "(", "\"TAXONOMY:\"", ",", "\"IMPORTANT\"", ")", "x", "=", "self", ".", "currentEntity", "[", "'object'", "]", "parents", "=", "x", ".", "parents", "(", ")", "if", "not", "parents", ":", "if", "self", ".", "currentEntity", "[", "'type'", "]", "==", "'class'", ":", "self", ".", "_print", "(", "\"owl:Thing\"", ")", "elif", "self", ".", "currentEntity", "[", "'type'", "]", "==", "'property'", ":", "self", ".", "_print", "(", "\"RDF:Property\"", ")", "elif", "self", ".", "currentEntity", "[", "'type'", "]", "==", "'concept'", ":", "self", ".", "_print", "(", "\"SKOS:Concept\"", ")", "else", ":", "pass", "else", ":", "for", "p", "in", "parents", ":", "self", ".", "_print", "(", "p", ".", "qname", ")", "self", ".", "_print", "(", "\"...\"", "+", "x", ".", "qname", ",", "\"TEXT\"", ")", "for", "c", "in", "x", ".", "children", "(", ")", ":", "self", ".", "_print", "(", "\"......\"", "+", "c", ".", "qname", ")", "self", ".", "_print", "(", "\"----------------\"", ")" ]
print(a local taxonomy for the object)
[ "print", "(", "a", "local", "taxonomy", "for", "the", "object", ")" ]
python
train
flowersteam/explauto
explauto/sensorimotor_model/forward/lwr.py
https://github.com/flowersteam/explauto/blob/cf0f81ecb9f6412f7276a95bd27359000e1e26b6/explauto/sensorimotor_model/forward/lwr.py#L126-L153
def predict_dims(self, q, dims_x, dims_y, dims_out, sigma=None, k=None): """Provide a prediction of q in the output space @param xq an array of float of length dim_x @param estimated_sigma if False (default), sigma_sq=self.sigma_sq, else it is estimated from the neighbor distances in self._weights(.) """ assert len(q) == len(dims_x) + len(dims_y) sigma_sq = self.sigma_sq if sigma is None else sigma*sigma k = k or self.k dists, index = self.dataset.nn_dims(q[:len(dims_x)], q[len(dims_x):], dims_x, dims_y, k=k) w = self._weights(dists, index, sigma_sq) Xq = np.array(np.append([1.0], q), ndmin = 2) X = np.array([np.append([1.0], self.dataset.get_dims(i, dims_x=dims_x, dims_y=dims_y)) for i in index]) Y = np.array([self.dataset.get_dims(i, dims=dims_out) for i in index]) W = np.diag(w) WX = np.dot(W, X) WXT = WX.T B = np.dot(np.linalg.pinv(np.dot(WXT, WX)),WXT) self.mat = np.dot(B, np.dot(W, Y)) Yq = np.dot(Xq, self.mat) return Yq.ravel()
[ "def", "predict_dims", "(", "self", ",", "q", ",", "dims_x", ",", "dims_y", ",", "dims_out", ",", "sigma", "=", "None", ",", "k", "=", "None", ")", ":", "assert", "len", "(", "q", ")", "==", "len", "(", "dims_x", ")", "+", "len", "(", "dims_y", ")", "sigma_sq", "=", "self", ".", "sigma_sq", "if", "sigma", "is", "None", "else", "sigma", "*", "sigma", "k", "=", "k", "or", "self", ".", "k", "dists", ",", "index", "=", "self", ".", "dataset", ".", "nn_dims", "(", "q", "[", ":", "len", "(", "dims_x", ")", "]", ",", "q", "[", "len", "(", "dims_x", ")", ":", "]", ",", "dims_x", ",", "dims_y", ",", "k", "=", "k", ")", "w", "=", "self", ".", "_weights", "(", "dists", ",", "index", ",", "sigma_sq", ")", "Xq", "=", "np", ".", "array", "(", "np", ".", "append", "(", "[", "1.0", "]", ",", "q", ")", ",", "ndmin", "=", "2", ")", "X", "=", "np", ".", "array", "(", "[", "np", ".", "append", "(", "[", "1.0", "]", ",", "self", ".", "dataset", ".", "get_dims", "(", "i", ",", "dims_x", "=", "dims_x", ",", "dims_y", "=", "dims_y", ")", ")", "for", "i", "in", "index", "]", ")", "Y", "=", "np", ".", "array", "(", "[", "self", ".", "dataset", ".", "get_dims", "(", "i", ",", "dims", "=", "dims_out", ")", "for", "i", "in", "index", "]", ")", "W", "=", "np", ".", "diag", "(", "w", ")", "WX", "=", "np", ".", "dot", "(", "W", ",", "X", ")", "WXT", "=", "WX", ".", "T", "B", "=", "np", ".", "dot", "(", "np", ".", "linalg", ".", "pinv", "(", "np", ".", "dot", "(", "WXT", ",", "WX", ")", ")", ",", "WXT", ")", "self", ".", "mat", "=", "np", ".", "dot", "(", "B", ",", "np", ".", "dot", "(", "W", ",", "Y", ")", ")", "Yq", "=", "np", ".", "dot", "(", "Xq", ",", "self", ".", "mat", ")", "return", "Yq", ".", "ravel", "(", ")" ]
Provide a prediction of q in the output space @param xq an array of float of length dim_x @param estimated_sigma if False (default), sigma_sq=self.sigma_sq, else it is estimated from the neighbor distances in self._weights(.)
[ "Provide", "a", "prediction", "of", "q", "in", "the", "output", "space" ]
python
train
Jaymon/prom
prom/query.py
https://github.com/Jaymon/prom/blob/b7ad2c259eca198da03e1e4bc7d95014c168c361/prom/query.py#L1065-L1080
def value(self): """convenience method to just get one value or tuple of values for the query""" field_vals = None field_names = self.fields_select.names() fcount = len(field_names) if fcount: d = self._query('get_one') if d: field_vals = [d.get(fn, None) for fn in field_names] if fcount == 1: field_vals = field_vals[0] else: raise ValueError("no select fields were set, so cannot return value") return field_vals
[ "def", "value", "(", "self", ")", ":", "field_vals", "=", "None", "field_names", "=", "self", ".", "fields_select", ".", "names", "(", ")", "fcount", "=", "len", "(", "field_names", ")", "if", "fcount", ":", "d", "=", "self", ".", "_query", "(", "'get_one'", ")", "if", "d", ":", "field_vals", "=", "[", "d", ".", "get", "(", "fn", ",", "None", ")", "for", "fn", "in", "field_names", "]", "if", "fcount", "==", "1", ":", "field_vals", "=", "field_vals", "[", "0", "]", "else", ":", "raise", "ValueError", "(", "\"no select fields were set, so cannot return value\"", ")", "return", "field_vals" ]
convenience method to just get one value or tuple of values for the query
[ "convenience", "method", "to", "just", "get", "one", "value", "or", "tuple", "of", "values", "for", "the", "query" ]
python
train