repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
sequence | docstring
stringlengths 1
46.9k
| docstring_tokens
sequence | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
RRZE-HPC/kerncraft | kerncraft/kernel.py | https://github.com/RRZE-HPC/kerncraft/blob/c60baf8043e4da8d8d66da7575021c2f4c6c78af/kerncraft/kernel.py#L168-L174 | def reduce_path(path):
"""Reduce absolute path to relative (if shorter) for easier readability."""
relative_path = os.path.relpath(path)
if len(relative_path) < len(path):
return relative_path
else:
return path | [
"def",
"reduce_path",
"(",
"path",
")",
":",
"relative_path",
"=",
"os",
".",
"path",
".",
"relpath",
"(",
"path",
")",
"if",
"len",
"(",
"relative_path",
")",
"<",
"len",
"(",
"path",
")",
":",
"return",
"relative_path",
"else",
":",
"return",
"path"
] | Reduce absolute path to relative (if shorter) for easier readability. | [
"Reduce",
"absolute",
"path",
"to",
"relative",
"(",
"if",
"shorter",
")",
"for",
"easier",
"readability",
"."
] | python | test |
dmlc/xgboost | python-package/xgboost/core.py | https://github.com/dmlc/xgboost/blob/253fdd8a42d5ec6b819788199584d27bf9ea6253/python-package/xgboost/core.py#L179-L194 | def ctypes2numpy(cptr, length, dtype):
"""Convert a ctypes pointer array to a numpy array.
"""
NUMPY_TO_CTYPES_MAPPING = {
np.float32: ctypes.c_float,
np.uint32: ctypes.c_uint,
}
if dtype not in NUMPY_TO_CTYPES_MAPPING:
raise RuntimeError('Supported types: {}'.format(NUMPY_TO_CTYPES_MAPPING.keys()))
ctype = NUMPY_TO_CTYPES_MAPPING[dtype]
if not isinstance(cptr, ctypes.POINTER(ctype)):
raise RuntimeError('expected {} pointer'.format(ctype))
res = np.zeros(length, dtype=dtype)
if not ctypes.memmove(res.ctypes.data, cptr, length * res.strides[0]):
raise RuntimeError('memmove failed')
return res | [
"def",
"ctypes2numpy",
"(",
"cptr",
",",
"length",
",",
"dtype",
")",
":",
"NUMPY_TO_CTYPES_MAPPING",
"=",
"{",
"np",
".",
"float32",
":",
"ctypes",
".",
"c_float",
",",
"np",
".",
"uint32",
":",
"ctypes",
".",
"c_uint",
",",
"}",
"if",
"dtype",
"not",
"in",
"NUMPY_TO_CTYPES_MAPPING",
":",
"raise",
"RuntimeError",
"(",
"'Supported types: {}'",
".",
"format",
"(",
"NUMPY_TO_CTYPES_MAPPING",
".",
"keys",
"(",
")",
")",
")",
"ctype",
"=",
"NUMPY_TO_CTYPES_MAPPING",
"[",
"dtype",
"]",
"if",
"not",
"isinstance",
"(",
"cptr",
",",
"ctypes",
".",
"POINTER",
"(",
"ctype",
")",
")",
":",
"raise",
"RuntimeError",
"(",
"'expected {} pointer'",
".",
"format",
"(",
"ctype",
")",
")",
"res",
"=",
"np",
".",
"zeros",
"(",
"length",
",",
"dtype",
"=",
"dtype",
")",
"if",
"not",
"ctypes",
".",
"memmove",
"(",
"res",
".",
"ctypes",
".",
"data",
",",
"cptr",
",",
"length",
"*",
"res",
".",
"strides",
"[",
"0",
"]",
")",
":",
"raise",
"RuntimeError",
"(",
"'memmove failed'",
")",
"return",
"res"
] | Convert a ctypes pointer array to a numpy array. | [
"Convert",
"a",
"ctypes",
"pointer",
"array",
"to",
"a",
"numpy",
"array",
"."
] | python | train |
dslackw/slpkg | slpkg/utils.py | https://github.com/dslackw/slpkg/blob/dd2e08a80e944d337d157b992167ba631a4343de/slpkg/utils.py#L50-L57 | def remove_dbs(self, double):
"""Remove double item from list
"""
one = []
for dup in double:
if dup not in one:
one.append(dup)
return one | [
"def",
"remove_dbs",
"(",
"self",
",",
"double",
")",
":",
"one",
"=",
"[",
"]",
"for",
"dup",
"in",
"double",
":",
"if",
"dup",
"not",
"in",
"one",
":",
"one",
".",
"append",
"(",
"dup",
")",
"return",
"one"
] | Remove double item from list | [
"Remove",
"double",
"item",
"from",
"list"
] | python | train |
tanghaibao/goatools | goatools/gosubdag/plot/go_name_shorten.py | https://github.com/tanghaibao/goatools/blob/407682e573a108864a79031f8ca19ee3bf377626/goatools/gosubdag/plot/go_name_shorten.py#L26-L60 | def get_short_plot_name(self, goobj):
"""Shorten some GO names so plots are smaller."""
name = goobj.name
if self._keep_this(name):
return self.replace_greek(name)
name = name.replace("cellular response to chemical stimulus",
"cellular rsp. to chemical stim.")
depth = goobj.depth
if depth > 1:
name = name.replace("regulation of ", "reg. of ")
name = name.replace("positive reg", "+reg")
name = name.replace("negative reg", "-reg")
name = name.replace("involved in", "in")
if depth > 2:
name = name.replace("antigen processing and presentation", "a.p.p")
name = name.replace("MHC class I", "MHC-I")
if depth == 4:
if goobj.id == "GO:0002460":
before = " ".join([
"adaptive immune response based on somatic recombination of",
"immune receptors built from immunoglobulin superfamily domains"])
name = name.replace(
before,
"rsp. based on somatic recombination of Ig immune receptors")
if depth > 3:
name = name.replace("signaling pathway", "sig. pw.")
name = name.replace("response", "rsp.")
name = name.replace("immunoglobulin superfamily domains", "Ig domains")
name = name.replace("immunoglobulin", "Ig")
if depth > 4:
name = name.replace("production", "prod.")
if depth == 6 or depth == 5:
name = name.replace("tumor necrosis factor", "TNF")
name = self.replace_greek(name)
return name | [
"def",
"get_short_plot_name",
"(",
"self",
",",
"goobj",
")",
":",
"name",
"=",
"goobj",
".",
"name",
"if",
"self",
".",
"_keep_this",
"(",
"name",
")",
":",
"return",
"self",
".",
"replace_greek",
"(",
"name",
")",
"name",
"=",
"name",
".",
"replace",
"(",
"\"cellular response to chemical stimulus\"",
",",
"\"cellular rsp. to chemical stim.\"",
")",
"depth",
"=",
"goobj",
".",
"depth",
"if",
"depth",
">",
"1",
":",
"name",
"=",
"name",
".",
"replace",
"(",
"\"regulation of \"",
",",
"\"reg. of \"",
")",
"name",
"=",
"name",
".",
"replace",
"(",
"\"positive reg\"",
",",
"\"+reg\"",
")",
"name",
"=",
"name",
".",
"replace",
"(",
"\"negative reg\"",
",",
"\"-reg\"",
")",
"name",
"=",
"name",
".",
"replace",
"(",
"\"involved in\"",
",",
"\"in\"",
")",
"if",
"depth",
">",
"2",
":",
"name",
"=",
"name",
".",
"replace",
"(",
"\"antigen processing and presentation\"",
",",
"\"a.p.p\"",
")",
"name",
"=",
"name",
".",
"replace",
"(",
"\"MHC class I\"",
",",
"\"MHC-I\"",
")",
"if",
"depth",
"==",
"4",
":",
"if",
"goobj",
".",
"id",
"==",
"\"GO:0002460\"",
":",
"before",
"=",
"\" \"",
".",
"join",
"(",
"[",
"\"adaptive immune response based on somatic recombination of\"",
",",
"\"immune receptors built from immunoglobulin superfamily domains\"",
"]",
")",
"name",
"=",
"name",
".",
"replace",
"(",
"before",
",",
"\"rsp. based on somatic recombination of Ig immune receptors\"",
")",
"if",
"depth",
">",
"3",
":",
"name",
"=",
"name",
".",
"replace",
"(",
"\"signaling pathway\"",
",",
"\"sig. pw.\"",
")",
"name",
"=",
"name",
".",
"replace",
"(",
"\"response\"",
",",
"\"rsp.\"",
")",
"name",
"=",
"name",
".",
"replace",
"(",
"\"immunoglobulin superfamily domains\"",
",",
"\"Ig domains\"",
")",
"name",
"=",
"name",
".",
"replace",
"(",
"\"immunoglobulin\"",
",",
"\"Ig\"",
")",
"if",
"depth",
">",
"4",
":",
"name",
"=",
"name",
".",
"replace",
"(",
"\"production\"",
",",
"\"prod.\"",
")",
"if",
"depth",
"==",
"6",
"or",
"depth",
"==",
"5",
":",
"name",
"=",
"name",
".",
"replace",
"(",
"\"tumor necrosis factor\"",
",",
"\"TNF\"",
")",
"name",
"=",
"self",
".",
"replace_greek",
"(",
"name",
")",
"return",
"name"
] | Shorten some GO names so plots are smaller. | [
"Shorten",
"some",
"GO",
"names",
"so",
"plots",
"are",
"smaller",
"."
] | python | train |
biosignalsnotebooks/biosignalsnotebooks | biosignalsnotebooks/biosignalsnotebooks/synchronisation.py | https://github.com/biosignalsnotebooks/biosignalsnotebooks/blob/aaa01d4125180b3a34f1e26e0d3ff08c23f666d3/biosignalsnotebooks/biosignalsnotebooks/synchronisation.py#L128-L160 | def generate_sync_txt_file(in_path, channels=("CH1", "CH1"), new_path='sync_file.txt'):
"""
-----
Brief
-----
This function allows to generate a text file with synchronised signals from the input file(s).
-----------
Description
-----------
OpenSignals files follow a specific structure that allows to analyse all files in the same way. Furthermore, it
allows those files to be opened and analysed in the OpenSignals software without the need of programming.
This functions takes one or two files, synchronises the signals in channels and generates a new file in the new
path.
----------
Parameters
----------
in_path : str or list
If the input is a string, it is assumed that the two signals are in the same file, else, if the input is a list,
it is assumed that the two signals are in different file (the list should contain the paths to the two files).
channels : list
List with the strings identifying the channels of each signal. (default: ("CH1", "CH1"))
new_path : str
The path to create the new file. (default: 'sync_file.txt')
"""
if type(in_path) is str:
_create_txt_from_str(in_path, channels, new_path)
elif type(in_path) is list:
_create_txt_from_list(in_path, channels, new_path)
else:
raise TypeError('The path should be a list of str or a str.') | [
"def",
"generate_sync_txt_file",
"(",
"in_path",
",",
"channels",
"=",
"(",
"\"CH1\"",
",",
"\"CH1\"",
")",
",",
"new_path",
"=",
"'sync_file.txt'",
")",
":",
"if",
"type",
"(",
"in_path",
")",
"is",
"str",
":",
"_create_txt_from_str",
"(",
"in_path",
",",
"channels",
",",
"new_path",
")",
"elif",
"type",
"(",
"in_path",
")",
"is",
"list",
":",
"_create_txt_from_list",
"(",
"in_path",
",",
"channels",
",",
"new_path",
")",
"else",
":",
"raise",
"TypeError",
"(",
"'The path should be a list of str or a str.'",
")"
] | -----
Brief
-----
This function allows to generate a text file with synchronised signals from the input file(s).
-----------
Description
-----------
OpenSignals files follow a specific structure that allows to analyse all files in the same way. Furthermore, it
allows those files to be opened and analysed in the OpenSignals software without the need of programming.
This functions takes one or two files, synchronises the signals in channels and generates a new file in the new
path.
----------
Parameters
----------
in_path : str or list
If the input is a string, it is assumed that the two signals are in the same file, else, if the input is a list,
it is assumed that the two signals are in different file (the list should contain the paths to the two files).
channels : list
List with the strings identifying the channels of each signal. (default: ("CH1", "CH1"))
new_path : str
The path to create the new file. (default: 'sync_file.txt') | [
"-----",
"Brief",
"-----",
"This",
"function",
"allows",
"to",
"generate",
"a",
"text",
"file",
"with",
"synchronised",
"signals",
"from",
"the",
"input",
"file",
"(",
"s",
")",
"."
] | python | train |
cloud9ers/gurumate | environment/lib/python2.7/site-packages/IPython/parallel/controller/hub.py | https://github.com/cloud9ers/gurumate/blob/075dc74d1ee62a8c6b7a8bf2b271364f01629d1e/environment/lib/python2.7/site-packages/IPython/parallel/controller/hub.py#L1237-L1287 | def get_results(self, client_id, msg):
"""Get the result of 1 or more messages."""
content = msg['content']
msg_ids = sorted(set(content['msg_ids']))
statusonly = content.get('status_only', False)
pending = []
completed = []
content = dict(status='ok')
content['pending'] = pending
content['completed'] = completed
buffers = []
if not statusonly:
try:
matches = self.db.find_records(dict(msg_id={'$in':msg_ids}))
# turn match list into dict, for faster lookup
records = {}
for rec in matches:
records[rec['msg_id']] = rec
except Exception:
content = error.wrap_exception()
self.session.send(self.query, "result_reply", content=content,
parent=msg, ident=client_id)
return
else:
records = {}
for msg_id in msg_ids:
if msg_id in self.pending:
pending.append(msg_id)
elif msg_id in self.all_completed:
completed.append(msg_id)
if not statusonly:
c,bufs = self._extract_record(records[msg_id])
content[msg_id] = c
buffers.extend(bufs)
elif msg_id in records:
if rec['completed']:
completed.append(msg_id)
c,bufs = self._extract_record(records[msg_id])
content[msg_id] = c
buffers.extend(bufs)
else:
pending.append(msg_id)
else:
try:
raise KeyError('No such message: '+msg_id)
except:
content = error.wrap_exception()
break
self.session.send(self.query, "result_reply", content=content,
parent=msg, ident=client_id,
buffers=buffers) | [
"def",
"get_results",
"(",
"self",
",",
"client_id",
",",
"msg",
")",
":",
"content",
"=",
"msg",
"[",
"'content'",
"]",
"msg_ids",
"=",
"sorted",
"(",
"set",
"(",
"content",
"[",
"'msg_ids'",
"]",
")",
")",
"statusonly",
"=",
"content",
".",
"get",
"(",
"'status_only'",
",",
"False",
")",
"pending",
"=",
"[",
"]",
"completed",
"=",
"[",
"]",
"content",
"=",
"dict",
"(",
"status",
"=",
"'ok'",
")",
"content",
"[",
"'pending'",
"]",
"=",
"pending",
"content",
"[",
"'completed'",
"]",
"=",
"completed",
"buffers",
"=",
"[",
"]",
"if",
"not",
"statusonly",
":",
"try",
":",
"matches",
"=",
"self",
".",
"db",
".",
"find_records",
"(",
"dict",
"(",
"msg_id",
"=",
"{",
"'$in'",
":",
"msg_ids",
"}",
")",
")",
"# turn match list into dict, for faster lookup",
"records",
"=",
"{",
"}",
"for",
"rec",
"in",
"matches",
":",
"records",
"[",
"rec",
"[",
"'msg_id'",
"]",
"]",
"=",
"rec",
"except",
"Exception",
":",
"content",
"=",
"error",
".",
"wrap_exception",
"(",
")",
"self",
".",
"session",
".",
"send",
"(",
"self",
".",
"query",
",",
"\"result_reply\"",
",",
"content",
"=",
"content",
",",
"parent",
"=",
"msg",
",",
"ident",
"=",
"client_id",
")",
"return",
"else",
":",
"records",
"=",
"{",
"}",
"for",
"msg_id",
"in",
"msg_ids",
":",
"if",
"msg_id",
"in",
"self",
".",
"pending",
":",
"pending",
".",
"append",
"(",
"msg_id",
")",
"elif",
"msg_id",
"in",
"self",
".",
"all_completed",
":",
"completed",
".",
"append",
"(",
"msg_id",
")",
"if",
"not",
"statusonly",
":",
"c",
",",
"bufs",
"=",
"self",
".",
"_extract_record",
"(",
"records",
"[",
"msg_id",
"]",
")",
"content",
"[",
"msg_id",
"]",
"=",
"c",
"buffers",
".",
"extend",
"(",
"bufs",
")",
"elif",
"msg_id",
"in",
"records",
":",
"if",
"rec",
"[",
"'completed'",
"]",
":",
"completed",
".",
"append",
"(",
"msg_id",
")",
"c",
",",
"bufs",
"=",
"self",
".",
"_extract_record",
"(",
"records",
"[",
"msg_id",
"]",
")",
"content",
"[",
"msg_id",
"]",
"=",
"c",
"buffers",
".",
"extend",
"(",
"bufs",
")",
"else",
":",
"pending",
".",
"append",
"(",
"msg_id",
")",
"else",
":",
"try",
":",
"raise",
"KeyError",
"(",
"'No such message: '",
"+",
"msg_id",
")",
"except",
":",
"content",
"=",
"error",
".",
"wrap_exception",
"(",
")",
"break",
"self",
".",
"session",
".",
"send",
"(",
"self",
".",
"query",
",",
"\"result_reply\"",
",",
"content",
"=",
"content",
",",
"parent",
"=",
"msg",
",",
"ident",
"=",
"client_id",
",",
"buffers",
"=",
"buffers",
")"
] | Get the result of 1 or more messages. | [
"Get",
"the",
"result",
"of",
"1",
"or",
"more",
"messages",
"."
] | python | test |
saltstack/salt | salt/modules/mod_random.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/mod_random.py#L197-L220 | def seed(range=10, hash=None):
'''
Returns a random number within a range. Optional hash argument can
be any hashable object. If hash is omitted or None, the id of the minion is used.
.. versionadded: 2015.8.0
hash: None
Any hashable object.
range: 10
Any valid integer number
CLI Example:
.. code-block:: bash
salt '*' random.seed 10 hash=None
'''
if hash is None:
hash = __grains__['id']
random.seed(hash)
return random.randrange(range) | [
"def",
"seed",
"(",
"range",
"=",
"10",
",",
"hash",
"=",
"None",
")",
":",
"if",
"hash",
"is",
"None",
":",
"hash",
"=",
"__grains__",
"[",
"'id'",
"]",
"random",
".",
"seed",
"(",
"hash",
")",
"return",
"random",
".",
"randrange",
"(",
"range",
")"
] | Returns a random number within a range. Optional hash argument can
be any hashable object. If hash is omitted or None, the id of the minion is used.
.. versionadded: 2015.8.0
hash: None
Any hashable object.
range: 10
Any valid integer number
CLI Example:
.. code-block:: bash
salt '*' random.seed 10 hash=None | [
"Returns",
"a",
"random",
"number",
"within",
"a",
"range",
".",
"Optional",
"hash",
"argument",
"can",
"be",
"any",
"hashable",
"object",
".",
"If",
"hash",
"is",
"omitted",
"or",
"None",
"the",
"id",
"of",
"the",
"minion",
"is",
"used",
"."
] | python | train |
census-instrumentation/opencensus-python | contrib/opencensus-ext-stackdriver/opencensus/ext/stackdriver/stats_exporter/__init__.py | https://github.com/census-instrumentation/opencensus-python/blob/992b223f7e34c5dcb65922b7d5c827e7a1351e7d/contrib/opencensus-ext-stackdriver/opencensus/ext/stackdriver/stats_exporter/__init__.py#L258-L285 | def get_metric_descriptor(self, oc_md):
"""Convert an OC metric descriptor to a SD metric descriptor."""
try:
metric_kind, value_type = OC_MD_TO_SD_TYPE[oc_md.type]
except KeyError:
raise TypeError("Unsupported metric type: {}".format(oc_md.type))
if self.options.metric_prefix:
display_name_prefix = self.options.metric_prefix
else:
display_name_prefix = DEFAULT_DISPLAY_NAME_PREFIX
desc_labels = new_label_descriptors(
self.options.default_monitoring_labels, oc_md.label_keys)
descriptor = monitoring_v3.types.MetricDescriptor(labels=desc_labels)
metric_type = self.get_metric_type(oc_md)
descriptor.type = metric_type
descriptor.metric_kind = metric_kind
descriptor.value_type = value_type
descriptor.description = oc_md.description
descriptor.unit = oc_md.unit
descriptor.name = ("projects/{}/metricDescriptors/{}"
.format(self.options.project_id, metric_type))
descriptor.display_name = ("{}/{}"
.format(display_name_prefix, oc_md.name))
return descriptor | [
"def",
"get_metric_descriptor",
"(",
"self",
",",
"oc_md",
")",
":",
"try",
":",
"metric_kind",
",",
"value_type",
"=",
"OC_MD_TO_SD_TYPE",
"[",
"oc_md",
".",
"type",
"]",
"except",
"KeyError",
":",
"raise",
"TypeError",
"(",
"\"Unsupported metric type: {}\"",
".",
"format",
"(",
"oc_md",
".",
"type",
")",
")",
"if",
"self",
".",
"options",
".",
"metric_prefix",
":",
"display_name_prefix",
"=",
"self",
".",
"options",
".",
"metric_prefix",
"else",
":",
"display_name_prefix",
"=",
"DEFAULT_DISPLAY_NAME_PREFIX",
"desc_labels",
"=",
"new_label_descriptors",
"(",
"self",
".",
"options",
".",
"default_monitoring_labels",
",",
"oc_md",
".",
"label_keys",
")",
"descriptor",
"=",
"monitoring_v3",
".",
"types",
".",
"MetricDescriptor",
"(",
"labels",
"=",
"desc_labels",
")",
"metric_type",
"=",
"self",
".",
"get_metric_type",
"(",
"oc_md",
")",
"descriptor",
".",
"type",
"=",
"metric_type",
"descriptor",
".",
"metric_kind",
"=",
"metric_kind",
"descriptor",
".",
"value_type",
"=",
"value_type",
"descriptor",
".",
"description",
"=",
"oc_md",
".",
"description",
"descriptor",
".",
"unit",
"=",
"oc_md",
".",
"unit",
"descriptor",
".",
"name",
"=",
"(",
"\"projects/{}/metricDescriptors/{}\"",
".",
"format",
"(",
"self",
".",
"options",
".",
"project_id",
",",
"metric_type",
")",
")",
"descriptor",
".",
"display_name",
"=",
"(",
"\"{}/{}\"",
".",
"format",
"(",
"display_name_prefix",
",",
"oc_md",
".",
"name",
")",
")",
"return",
"descriptor"
] | Convert an OC metric descriptor to a SD metric descriptor. | [
"Convert",
"an",
"OC",
"metric",
"descriptor",
"to",
"a",
"SD",
"metric",
"descriptor",
"."
] | python | train |
asyncee/django-easy-select2 | docs/source/_ext/djangodocs.py | https://github.com/asyncee/django-easy-select2/blob/f81bbaa91d0266029be7ef6d075d85f13273e3a5/docs/source/_ext/djangodocs.py#L364-L403 | def visit_console_html(self, node):
"""Generate HTML for the console directive."""
if self.builder.name in ('djangohtml', 'json') and node['win_console_text']:
# Put a mark on the document object signaling the fact the directive
# has been used on it.
self.document._console_directive_used_flag = True
uid = node['uid']
self.body.append('''\
<div class="console-block" id="console-block-%(id)s">
<input class="c-tab-unix" id="c-tab-%(id)s-unix" type="radio" name="console-%(id)s" checked>
<label for="c-tab-%(id)s-unix" title="Linux/macOS">/</label>
<input class="c-tab-win" id="c-tab-%(id)s-win" type="radio" name="console-%(id)s">
<label for="c-tab-%(id)s-win" title="Windows"></label>
<section class="c-content-unix" id="c-content-%(id)s-unix">\n''' % {'id': uid})
try:
self.visit_literal_block(node)
except nodes.SkipNode:
pass
self.body.append('</section>\n')
self.body.append('<section class="c-content-win" id="c-content-%(id)s-win">\n' % {'id': uid})
win_text = node['win_console_text']
highlight_args = {'force': True}
if 'linenos' in node:
linenos = node['linenos']
else:
linenos = win_text.count('\n') >= self.highlightlinenothreshold - 1
def warner(msg):
self.builder.warn(msg, (self.builder.current_docname, node.line))
highlighted = self.highlighter.highlight_block(
win_text, 'doscon', warn=warner, linenos=linenos, **highlight_args
)
self.body.append(highlighted)
self.body.append('</section>\n')
self.body.append('</div>\n')
raise nodes.SkipNode
else:
self.visit_literal_block(node) | [
"def",
"visit_console_html",
"(",
"self",
",",
"node",
")",
":",
"if",
"self",
".",
"builder",
".",
"name",
"in",
"(",
"'djangohtml'",
",",
"'json'",
")",
"and",
"node",
"[",
"'win_console_text'",
"]",
":",
"# Put a mark on the document object signaling the fact the directive",
"# has been used on it.",
"self",
".",
"document",
".",
"_console_directive_used_flag",
"=",
"True",
"uid",
"=",
"node",
"[",
"'uid'",
"]",
"self",
".",
"body",
".",
"append",
"(",
"'''\\\n<div class=\"console-block\" id=\"console-block-%(id)s\">\n<input class=\"c-tab-unix\" id=\"c-tab-%(id)s-unix\" type=\"radio\" name=\"console-%(id)s\" checked>\n<label for=\"c-tab-%(id)s-unix\" title=\"Linux/macOS\">/</label>\n<input class=\"c-tab-win\" id=\"c-tab-%(id)s-win\" type=\"radio\" name=\"console-%(id)s\">\n<label for=\"c-tab-%(id)s-win\" title=\"Windows\"></label>\n<section class=\"c-content-unix\" id=\"c-content-%(id)s-unix\">\\n'''",
"%",
"{",
"'id'",
":",
"uid",
"}",
")",
"try",
":",
"self",
".",
"visit_literal_block",
"(",
"node",
")",
"except",
"nodes",
".",
"SkipNode",
":",
"pass",
"self",
".",
"body",
".",
"append",
"(",
"'</section>\\n'",
")",
"self",
".",
"body",
".",
"append",
"(",
"'<section class=\"c-content-win\" id=\"c-content-%(id)s-win\">\\n'",
"%",
"{",
"'id'",
":",
"uid",
"}",
")",
"win_text",
"=",
"node",
"[",
"'win_console_text'",
"]",
"highlight_args",
"=",
"{",
"'force'",
":",
"True",
"}",
"if",
"'linenos'",
"in",
"node",
":",
"linenos",
"=",
"node",
"[",
"'linenos'",
"]",
"else",
":",
"linenos",
"=",
"win_text",
".",
"count",
"(",
"'\\n'",
")",
">=",
"self",
".",
"highlightlinenothreshold",
"-",
"1",
"def",
"warner",
"(",
"msg",
")",
":",
"self",
".",
"builder",
".",
"warn",
"(",
"msg",
",",
"(",
"self",
".",
"builder",
".",
"current_docname",
",",
"node",
".",
"line",
")",
")",
"highlighted",
"=",
"self",
".",
"highlighter",
".",
"highlight_block",
"(",
"win_text",
",",
"'doscon'",
",",
"warn",
"=",
"warner",
",",
"linenos",
"=",
"linenos",
",",
"*",
"*",
"highlight_args",
")",
"self",
".",
"body",
".",
"append",
"(",
"highlighted",
")",
"self",
".",
"body",
".",
"append",
"(",
"'</section>\\n'",
")",
"self",
".",
"body",
".",
"append",
"(",
"'</div>\\n'",
")",
"raise",
"nodes",
".",
"SkipNode",
"else",
":",
"self",
".",
"visit_literal_block",
"(",
"node",
")"
] | Generate HTML for the console directive. | [
"Generate",
"HTML",
"for",
"the",
"console",
"directive",
"."
] | python | train |
ttinies/sc2gameLobby | sc2gameLobby/debugCmds.py | https://github.com/ttinies/sc2gameLobby/blob/5352d51d53ddeb4858e92e682da89c4434123e52/sc2gameLobby/debugCmds.py#L28-L41 | def modify(*units):
"""set the unit defined by in-game tag with desired properties
NOTE: all units must be owned by the same player or the command fails."""
ret = []
for unit in units: # add one command for each attribute
for attr, idx in [("energy", 1), ("life", 2), ("shields", 3)]: # see debug_pb2.UnitValue for enum declaration
newValue = getattr(unit, attr)
if not newValue: continue # don't bother setting something that isn't necessary
new = DebugCommand(unit_value=DebugSetUnitValue(
value = newValue,
unit_value = idx,
unit_tag = unit.tag))
ret.append(new)
return ret | [
"def",
"modify",
"(",
"*",
"units",
")",
":",
"ret",
"=",
"[",
"]",
"for",
"unit",
"in",
"units",
":",
"# add one command for each attribute",
"for",
"attr",
",",
"idx",
"in",
"[",
"(",
"\"energy\"",
",",
"1",
")",
",",
"(",
"\"life\"",
",",
"2",
")",
",",
"(",
"\"shields\"",
",",
"3",
")",
"]",
":",
"# see debug_pb2.UnitValue for enum declaration",
"newValue",
"=",
"getattr",
"(",
"unit",
",",
"attr",
")",
"if",
"not",
"newValue",
":",
"continue",
"# don't bother setting something that isn't necessary",
"new",
"=",
"DebugCommand",
"(",
"unit_value",
"=",
"DebugSetUnitValue",
"(",
"value",
"=",
"newValue",
",",
"unit_value",
"=",
"idx",
",",
"unit_tag",
"=",
"unit",
".",
"tag",
")",
")",
"ret",
".",
"append",
"(",
"new",
")",
"return",
"ret"
] | set the unit defined by in-game tag with desired properties
NOTE: all units must be owned by the same player or the command fails. | [
"set",
"the",
"unit",
"defined",
"by",
"in",
"-",
"game",
"tag",
"with",
"desired",
"properties",
"NOTE",
":",
"all",
"units",
"must",
"be",
"owned",
"by",
"the",
"same",
"player",
"or",
"the",
"command",
"fails",
"."
] | python | train |
glue-viz/glue-vispy-viewers | glue_vispy_viewers/extern/vispy/geometry/triangulation.py | https://github.com/glue-viz/glue-vispy-viewers/blob/54a4351d98c1f90dfb1a557d1b447c1f57470eea/glue_vispy_viewers/extern/vispy/geometry/triangulation.py#L537-L557 | def _adjacent_tri(self, edge, i):
"""
Given a triangle formed by edge and i, return the triangle that shares
edge. *i* may be either a point or the entire triangle.
"""
if not np.isscalar(i):
i = [x for x in i if x not in edge][0]
try:
pt1 = self._edges_lookup[edge]
pt2 = self._edges_lookup[(edge[1], edge[0])]
except KeyError:
return None
if pt1 == i:
return (edge[1], edge[0], pt2)
elif pt2 == i:
return (edge[1], edge[0], pt1)
else:
raise RuntimeError("Edge %s and point %d do not form a triangle "
"in this mesh." % (edge, i)) | [
"def",
"_adjacent_tri",
"(",
"self",
",",
"edge",
",",
"i",
")",
":",
"if",
"not",
"np",
".",
"isscalar",
"(",
"i",
")",
":",
"i",
"=",
"[",
"x",
"for",
"x",
"in",
"i",
"if",
"x",
"not",
"in",
"edge",
"]",
"[",
"0",
"]",
"try",
":",
"pt1",
"=",
"self",
".",
"_edges_lookup",
"[",
"edge",
"]",
"pt2",
"=",
"self",
".",
"_edges_lookup",
"[",
"(",
"edge",
"[",
"1",
"]",
",",
"edge",
"[",
"0",
"]",
")",
"]",
"except",
"KeyError",
":",
"return",
"None",
"if",
"pt1",
"==",
"i",
":",
"return",
"(",
"edge",
"[",
"1",
"]",
",",
"edge",
"[",
"0",
"]",
",",
"pt2",
")",
"elif",
"pt2",
"==",
"i",
":",
"return",
"(",
"edge",
"[",
"1",
"]",
",",
"edge",
"[",
"0",
"]",
",",
"pt1",
")",
"else",
":",
"raise",
"RuntimeError",
"(",
"\"Edge %s and point %d do not form a triangle \"",
"\"in this mesh.\"",
"%",
"(",
"edge",
",",
"i",
")",
")"
] | Given a triangle formed by edge and i, return the triangle that shares
edge. *i* may be either a point or the entire triangle. | [
"Given",
"a",
"triangle",
"formed",
"by",
"edge",
"and",
"i",
"return",
"the",
"triangle",
"that",
"shares",
"edge",
".",
"*",
"i",
"*",
"may",
"be",
"either",
"a",
"point",
"or",
"the",
"entire",
"triangle",
"."
] | python | train |
nerdvegas/rez | src/rez/vendor/pygraph/algorithms/critical.py | https://github.com/nerdvegas/rez/blob/1d3b846d53b5b5404edfe8ddb9083f9ceec8c5e7/src/rez/vendor/pygraph/algorithms/critical.py#L98-L163 | def critical_path(graph):
"""
Compute and return the critical path in an acyclic directed weighted graph.
@attention: This function is only meaningful for directed weighted acyclic graphs
@type graph: digraph
@param graph: Digraph
@rtype: List
@return: List containing all the nodes in the path (or an empty array if the graph
contains a cycle)
"""
#if the graph contains a cycle we return an empty array
if not len(find_cycle(graph)) == 0:
return []
#this empty dictionary will contain a tuple for every single node
#the tuple contains the information about the most costly predecessor
#of the given node and the cost of the path to this node
#(predecessor, cost)
node_tuples = {}
topological_nodes = topological_sorting(graph)
#all the tuples must be set to a default value for every node in the graph
for node in topological_nodes:
node_tuples.update( {node :(None, 0)} )
#run trough all the nodes in a topological order
for node in topological_nodes:
predecessors =[]
#we must check all the predecessors
for pre in graph.incidents(node):
max_pre = node_tuples[pre][1]
predecessors.append( (pre, graph.edge_weight( (pre, node) ) + max_pre ) )
max = 0; max_tuple = (None, 0)
for i in predecessors:#look for the most costly predecessor
if i[1] >= max:
max = i[1]
max_tuple = i
#assign the maximum value to the given node in the node_tuples dictionary
node_tuples[node] = max_tuple
#find the critical node
max = 0; critical_node = None
for k,v in list(node_tuples.items()):
if v[1] >= max:
max= v[1]
critical_node = k
path = []
#find the critical path with backtracking trought the dictionary
def mid_critical_path(end):
if node_tuples[end][0] != None:
path.append(end)
mid_critical_path(node_tuples[end][0])
else:
path.append(end)
#call the recursive function
mid_critical_path(critical_node)
path.reverse()
return path | [
"def",
"critical_path",
"(",
"graph",
")",
":",
"#if the graph contains a cycle we return an empty array",
"if",
"not",
"len",
"(",
"find_cycle",
"(",
"graph",
")",
")",
"==",
"0",
":",
"return",
"[",
"]",
"#this empty dictionary will contain a tuple for every single node",
"#the tuple contains the information about the most costly predecessor ",
"#of the given node and the cost of the path to this node",
"#(predecessor, cost)",
"node_tuples",
"=",
"{",
"}",
"topological_nodes",
"=",
"topological_sorting",
"(",
"graph",
")",
"#all the tuples must be set to a default value for every node in the graph",
"for",
"node",
"in",
"topological_nodes",
":",
"node_tuples",
".",
"update",
"(",
"{",
"node",
":",
"(",
"None",
",",
"0",
")",
"}",
")",
"#run trough all the nodes in a topological order",
"for",
"node",
"in",
"topological_nodes",
":",
"predecessors",
"=",
"[",
"]",
"#we must check all the predecessors",
"for",
"pre",
"in",
"graph",
".",
"incidents",
"(",
"node",
")",
":",
"max_pre",
"=",
"node_tuples",
"[",
"pre",
"]",
"[",
"1",
"]",
"predecessors",
".",
"append",
"(",
"(",
"pre",
",",
"graph",
".",
"edge_weight",
"(",
"(",
"pre",
",",
"node",
")",
")",
"+",
"max_pre",
")",
")",
"max",
"=",
"0",
"max_tuple",
"=",
"(",
"None",
",",
"0",
")",
"for",
"i",
"in",
"predecessors",
":",
"#look for the most costly predecessor",
"if",
"i",
"[",
"1",
"]",
">=",
"max",
":",
"max",
"=",
"i",
"[",
"1",
"]",
"max_tuple",
"=",
"i",
"#assign the maximum value to the given node in the node_tuples dictionary",
"node_tuples",
"[",
"node",
"]",
"=",
"max_tuple",
"#find the critical node",
"max",
"=",
"0",
"critical_node",
"=",
"None",
"for",
"k",
",",
"v",
"in",
"list",
"(",
"node_tuples",
".",
"items",
"(",
")",
")",
":",
"if",
"v",
"[",
"1",
"]",
">=",
"max",
":",
"max",
"=",
"v",
"[",
"1",
"]",
"critical_node",
"=",
"k",
"path",
"=",
"[",
"]",
"#find the critical path with backtracking trought the dictionary",
"def",
"mid_critical_path",
"(",
"end",
")",
":",
"if",
"node_tuples",
"[",
"end",
"]",
"[",
"0",
"]",
"!=",
"None",
":",
"path",
".",
"append",
"(",
"end",
")",
"mid_critical_path",
"(",
"node_tuples",
"[",
"end",
"]",
"[",
"0",
"]",
")",
"else",
":",
"path",
".",
"append",
"(",
"end",
")",
"#call the recursive function",
"mid_critical_path",
"(",
"critical_node",
")",
"path",
".",
"reverse",
"(",
")",
"return",
"path"
] | Compute and return the critical path in an acyclic directed weighted graph.
@attention: This function is only meaningful for directed weighted acyclic graphs
@type graph: digraph
@param graph: Digraph
@rtype: List
@return: List containing all the nodes in the path (or an empty array if the graph
contains a cycle) | [
"Compute",
"and",
"return",
"the",
"critical",
"path",
"in",
"an",
"acyclic",
"directed",
"weighted",
"graph",
"."
] | python | train |
awacha/sastool | sastool/utils2d/corrections.py | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/utils2d/corrections.py#L26-L39 | def solidangle(twotheta, sampletodetectordistance, pixelsize=None):
"""Solid-angle correction for two-dimensional SAS images
Inputs:
twotheta: matrix of two-theta values
sampletodetectordistance: sample-to-detector distance
pixelsize: the pixel size in mm
The output matrix is of the same shape as twotheta. The scattering intensity
matrix should be multiplied by it.
"""
if pixelsize is None:
pixelsize = 1
return sampletodetectordistance ** 2 / np.cos(twotheta) ** 3 / pixelsize ** 2 | [
"def",
"solidangle",
"(",
"twotheta",
",",
"sampletodetectordistance",
",",
"pixelsize",
"=",
"None",
")",
":",
"if",
"pixelsize",
"is",
"None",
":",
"pixelsize",
"=",
"1",
"return",
"sampletodetectordistance",
"**",
"2",
"/",
"np",
".",
"cos",
"(",
"twotheta",
")",
"**",
"3",
"/",
"pixelsize",
"**",
"2"
] | Solid-angle correction for two-dimensional SAS images
Inputs:
twotheta: matrix of two-theta values
sampletodetectordistance: sample-to-detector distance
pixelsize: the pixel size in mm
The output matrix is of the same shape as twotheta. The scattering intensity
matrix should be multiplied by it. | [
"Solid",
"-",
"angle",
"correction",
"for",
"two",
"-",
"dimensional",
"SAS",
"images"
] | python | train |
cloud-custodian/cloud-custodian | tools/c7n_sentry/c7n_sentry/c7nsentry.py | https://github.com/cloud-custodian/cloud-custodian/blob/52ef732eb3d7bc939d1579faf519314814695c08/tools/c7n_sentry/c7n_sentry/c7nsentry.py#L97-L116 | def process_log_event(event, context):
"""Lambda Entrypoint - Log Subscriber
Format log events and relay to sentry (direct or sqs)
"""
init()
# Grab the actual error log payload
serialized = event['awslogs'].pop('data')
data = json.loads(zlib.decompress(
base64.b64decode(serialized), 16 + zlib.MAX_WBITS))
msg = get_sentry_message(config, data)
if msg is None:
return
if config['sentry_dsn']:
# Deliver directly to sentry
send_sentry_message(config['sentry_dsn'], msg)
elif config['sentry_sqs']:
# Delivery indirectly via sqs
sqs.send_message(
QueueUrl=config['sentry_sqs']) | [
"def",
"process_log_event",
"(",
"event",
",",
"context",
")",
":",
"init",
"(",
")",
"# Grab the actual error log payload",
"serialized",
"=",
"event",
"[",
"'awslogs'",
"]",
".",
"pop",
"(",
"'data'",
")",
"data",
"=",
"json",
".",
"loads",
"(",
"zlib",
".",
"decompress",
"(",
"base64",
".",
"b64decode",
"(",
"serialized",
")",
",",
"16",
"+",
"zlib",
".",
"MAX_WBITS",
")",
")",
"msg",
"=",
"get_sentry_message",
"(",
"config",
",",
"data",
")",
"if",
"msg",
"is",
"None",
":",
"return",
"if",
"config",
"[",
"'sentry_dsn'",
"]",
":",
"# Deliver directly to sentry",
"send_sentry_message",
"(",
"config",
"[",
"'sentry_dsn'",
"]",
",",
"msg",
")",
"elif",
"config",
"[",
"'sentry_sqs'",
"]",
":",
"# Delivery indirectly via sqs",
"sqs",
".",
"send_message",
"(",
"QueueUrl",
"=",
"config",
"[",
"'sentry_sqs'",
"]",
")"
] | Lambda Entrypoint - Log Subscriber
Format log events and relay to sentry (direct or sqs) | [
"Lambda",
"Entrypoint",
"-",
"Log",
"Subscriber"
] | python | train |
hearsaycorp/normalize | normalize/coll.py | https://github.com/hearsaycorp/normalize/blob/8b36522ddca6d41b434580bd848f3bdaa7a999c8/normalize/coll.py#L470-L498 | def _make_generic(of, coll):
"""Used to make a new Collection type, without that type having to be
defined explicitly. Generates a new type name using the item type and a
'suffix' Collection class property.
args:
``of=``\ *Record type*
The type of values of the collection
``coll=``\ *Collection sub-class*
The container class.
"""
assert(issubclass(coll, Collection))
key = (coll.__name__, "%s.%s" % (of.__module__, of.__name__))
if key in GENERIC_TYPES:
if GENERIC_TYPES[key].itemtype != of:
raise exc.PropertyNotUnique(key=key)
else:
# oh, we get to name it? Goodie!
generic_name = "%s%s" % (of.__name__, coll.suffix)
GENERIC_TYPES[key] = type(
generic_name, (coll, _Generic), dict(itemtype=of, generic_key=key)
)
mod = sys.modules[of.__module__]
if not hasattr(mod, generic_name):
setattr(mod, generic_name, GENERIC_TYPES[key])
return GENERIC_TYPES[key] | [
"def",
"_make_generic",
"(",
"of",
",",
"coll",
")",
":",
"assert",
"(",
"issubclass",
"(",
"coll",
",",
"Collection",
")",
")",
"key",
"=",
"(",
"coll",
".",
"__name__",
",",
"\"%s.%s\"",
"%",
"(",
"of",
".",
"__module__",
",",
"of",
".",
"__name__",
")",
")",
"if",
"key",
"in",
"GENERIC_TYPES",
":",
"if",
"GENERIC_TYPES",
"[",
"key",
"]",
".",
"itemtype",
"!=",
"of",
":",
"raise",
"exc",
".",
"PropertyNotUnique",
"(",
"key",
"=",
"key",
")",
"else",
":",
"# oh, we get to name it? Goodie!",
"generic_name",
"=",
"\"%s%s\"",
"%",
"(",
"of",
".",
"__name__",
",",
"coll",
".",
"suffix",
")",
"GENERIC_TYPES",
"[",
"key",
"]",
"=",
"type",
"(",
"generic_name",
",",
"(",
"coll",
",",
"_Generic",
")",
",",
"dict",
"(",
"itemtype",
"=",
"of",
",",
"generic_key",
"=",
"key",
")",
")",
"mod",
"=",
"sys",
".",
"modules",
"[",
"of",
".",
"__module__",
"]",
"if",
"not",
"hasattr",
"(",
"mod",
",",
"generic_name",
")",
":",
"setattr",
"(",
"mod",
",",
"generic_name",
",",
"GENERIC_TYPES",
"[",
"key",
"]",
")",
"return",
"GENERIC_TYPES",
"[",
"key",
"]"
] | Used to make a new Collection type, without that type having to be
defined explicitly. Generates a new type name using the item type and a
'suffix' Collection class property.
args:
``of=``\ *Record type*
The type of values of the collection
``coll=``\ *Collection sub-class*
The container class. | [
"Used",
"to",
"make",
"a",
"new",
"Collection",
"type",
"without",
"that",
"type",
"having",
"to",
"be",
"defined",
"explicitly",
".",
"Generates",
"a",
"new",
"type",
"name",
"using",
"the",
"item",
"type",
"and",
"a",
"suffix",
"Collection",
"class",
"property",
"."
] | python | train |
delph-in/pydelphin | delphin/itsdb.py | https://github.com/delph-in/pydelphin/blob/7bd2cd63ab7cf74803e1d6547b9ebc014b382abd/delphin/itsdb.py#L324-L331 | def from_file(cls, source):
"""Instantiate Relations from a relations file."""
if hasattr(source, 'read'):
relations = cls.from_string(source.read())
else:
with open(source) as f:
relations = cls.from_string(f.read())
return relations | [
"def",
"from_file",
"(",
"cls",
",",
"source",
")",
":",
"if",
"hasattr",
"(",
"source",
",",
"'read'",
")",
":",
"relations",
"=",
"cls",
".",
"from_string",
"(",
"source",
".",
"read",
"(",
")",
")",
"else",
":",
"with",
"open",
"(",
"source",
")",
"as",
"f",
":",
"relations",
"=",
"cls",
".",
"from_string",
"(",
"f",
".",
"read",
"(",
")",
")",
"return",
"relations"
] | Instantiate Relations from a relations file. | [
"Instantiate",
"Relations",
"from",
"a",
"relations",
"file",
"."
] | python | train |
crdoconnor/pathquery | hitch/key.py | https://github.com/crdoconnor/pathquery/blob/4905fef27fc666ea4511eb0eee5098f754bb52ed/hitch/key.py#L291-L302 | def regression():
"""
Run regression testing - lint and then run all tests.
"""
# HACK: Start using hitchbuildpy to get around this.
Command("touch", DIR.project.joinpath("pathquery", "__init__.py").abspath()).run()
storybook = _storybook({}).only_uninherited()
#storybook.with_params(**{"python version": "2.7.10"})\
#.ordered_by_name().play()
Command("touch", DIR.project.joinpath("pathquery", "__init__.py").abspath()).run()
storybook.with_params(**{"python version": "3.5.0"}).ordered_by_name().play()
lint() | [
"def",
"regression",
"(",
")",
":",
"# HACK: Start using hitchbuildpy to get around this.",
"Command",
"(",
"\"touch\"",
",",
"DIR",
".",
"project",
".",
"joinpath",
"(",
"\"pathquery\"",
",",
"\"__init__.py\"",
")",
".",
"abspath",
"(",
")",
")",
".",
"run",
"(",
")",
"storybook",
"=",
"_storybook",
"(",
"{",
"}",
")",
".",
"only_uninherited",
"(",
")",
"#storybook.with_params(**{\"python version\": \"2.7.10\"})\\",
"#.ordered_by_name().play()",
"Command",
"(",
"\"touch\"",
",",
"DIR",
".",
"project",
".",
"joinpath",
"(",
"\"pathquery\"",
",",
"\"__init__.py\"",
")",
".",
"abspath",
"(",
")",
")",
".",
"run",
"(",
")",
"storybook",
".",
"with_params",
"(",
"*",
"*",
"{",
"\"python version\"",
":",
"\"3.5.0\"",
"}",
")",
".",
"ordered_by_name",
"(",
")",
".",
"play",
"(",
")",
"lint",
"(",
")"
] | Run regression testing - lint and then run all tests. | [
"Run",
"regression",
"testing",
"-",
"lint",
"and",
"then",
"run",
"all",
"tests",
"."
] | python | train |
saltstack/salt | salt/modules/netbox.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/netbox.py#L259-L283 | def create_device_role(role, color):
'''
.. versionadded:: 2019.2.0
Create a device role
role
String of device role, e.g., ``router``
CLI Example:
.. code-block:: bash
salt myminion netbox.create_device_role router
'''
nb_role = get_('dcim', 'device-roles', name=role)
if nb_role:
return False
else:
payload = {'name': role, 'slug': slugify(role), 'color': color}
role = _add('dcim', 'device-roles', payload)
if role:
return{'dcim': {'device-roles': payload}}
else:
return False | [
"def",
"create_device_role",
"(",
"role",
",",
"color",
")",
":",
"nb_role",
"=",
"get_",
"(",
"'dcim'",
",",
"'device-roles'",
",",
"name",
"=",
"role",
")",
"if",
"nb_role",
":",
"return",
"False",
"else",
":",
"payload",
"=",
"{",
"'name'",
":",
"role",
",",
"'slug'",
":",
"slugify",
"(",
"role",
")",
",",
"'color'",
":",
"color",
"}",
"role",
"=",
"_add",
"(",
"'dcim'",
",",
"'device-roles'",
",",
"payload",
")",
"if",
"role",
":",
"return",
"{",
"'dcim'",
":",
"{",
"'device-roles'",
":",
"payload",
"}",
"}",
"else",
":",
"return",
"False"
] | .. versionadded:: 2019.2.0
Create a device role
role
String of device role, e.g., ``router``
CLI Example:
.. code-block:: bash
salt myminion netbox.create_device_role router | [
"..",
"versionadded",
"::",
"2019",
".",
"2",
".",
"0"
] | python | train |
GibbsConsulting/django-plotly-dash | django_plotly_dash/dash_wrapper.py | https://github.com/GibbsConsulting/django-plotly-dash/blob/773ed081fc2ea3cc7607590322a14686a7a79bc5/django_plotly_dash/dash_wrapper.py#L433-L436 | def _fix_callback_item(self, item):
'Update component identifier'
item.component_id = self._fix_id(item.component_id)
return item | [
"def",
"_fix_callback_item",
"(",
"self",
",",
"item",
")",
":",
"item",
".",
"component_id",
"=",
"self",
".",
"_fix_id",
"(",
"item",
".",
"component_id",
")",
"return",
"item"
] | Update component identifier | [
"Update",
"component",
"identifier"
] | python | train |
BD2KOnFHIR/fhirtordf | fhirtordf/fhir/picklejar.py | https://github.com/BD2KOnFHIR/fhirtordf/blob/f97b3df683fa4caacf5cf4f29699ab060bcc0fbf/fhirtordf/fhir/picklejar.py#L107-L121 | def get(self, name: str, sig: Tuple) -> Optional[object]:
"""
Return the object representing name if it is cached
:param name: name of object
:param sig: unique signature of object
:return: object if exists and signature matches
"""
if name not in self._cache:
return None
if self._cache[name].sig != sig:
del self._cache[name]
self._update()
return None
with open(self._cache[name].loc, 'rb') as f:
return pickle.load(f) | [
"def",
"get",
"(",
"self",
",",
"name",
":",
"str",
",",
"sig",
":",
"Tuple",
")",
"->",
"Optional",
"[",
"object",
"]",
":",
"if",
"name",
"not",
"in",
"self",
".",
"_cache",
":",
"return",
"None",
"if",
"self",
".",
"_cache",
"[",
"name",
"]",
".",
"sig",
"!=",
"sig",
":",
"del",
"self",
".",
"_cache",
"[",
"name",
"]",
"self",
".",
"_update",
"(",
")",
"return",
"None",
"with",
"open",
"(",
"self",
".",
"_cache",
"[",
"name",
"]",
".",
"loc",
",",
"'rb'",
")",
"as",
"f",
":",
"return",
"pickle",
".",
"load",
"(",
"f",
")"
] | Return the object representing name if it is cached
:param name: name of object
:param sig: unique signature of object
:return: object if exists and signature matches | [
"Return",
"the",
"object",
"representing",
"name",
"if",
"it",
"is",
"cached",
":",
"param",
"name",
":",
"name",
"of",
"object",
":",
"param",
"sig",
":",
"unique",
"signature",
"of",
"object",
":",
"return",
":",
"object",
"if",
"exists",
"and",
"signature",
"matches"
] | python | train |
deepmind/sonnet | sonnet/python/modules/conv.py | https://github.com/deepmind/sonnet/blob/00612ca3178964d86b556e062694d808ff81fcca/sonnet/python/modules/conv.py#L994-L1093 | def _build(self, inputs):
"""Connects the _ConvNDTranspose module into the graph.
If this is not the first time the module has been connected to the graph,
the input Tensor provided here must have the same final N dimensions, in
order for the existing variables to be the correct size for the
multiplication. The batch size may differ for each connection.
Args:
inputs: A Tensor of shape `data_format` and of type
`tf.float16`, `tf.bfloat16` or `tf.float32`.
Returns:
A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`
or `tf.float32`.
Raises:
ValueError: If connecting the module into the graph any time after the
first time and the inferred size of the input does not match previous
invocations.
base.IncompatibleShapeError: If the input tensor has the wrong number
of dimensions.
base.UnderspecifiedError: If the channel dimension of `inputs` isn't
defined.
base.IncompatibleShapeError: If `output_shape` is an iterable and is not
in the format `(out_height, out_width)`.
TypeError: If input Tensor dtype is not compatible with either
`tf.float16`, `tf.bfloat16` or `tf.float32`.
"""
_verify_inputs(inputs, self._channel_index, self._data_format)
self._input_shape = tuple(inputs.get_shape().as_list())
self._input_channels = self._input_shape[self._channel_index]
# First, figure out what the non-(N,C) dims will be.
if self._use_default_output_shape:
def _default_transpose_size_wrapper():
if self._data_format.startswith("NC"):
input_size = self._input_shape[2:]
stride = self.stride[2:]
else: # self._data_format == N*WC
input_size = self._input_shape[1:-1]
stride = self.stride[1:-1]
return _default_transpose_size(input_size,
stride,
kernel_shape=self._kernel_shape,
padding=self._padding)
self._output_shape = _default_transpose_size_wrapper
if len(self.output_shape) != self._n:
raise base.IncompatibleShapeError(
"Output shape must have rank {}, but instead was {}".format(
self._n, len(self.output_shape)))
# Now, construct the size of the output, including the N + C dims.
output_shape = self._infer_all_output_dims(inputs)
self._w = self._construct_w(inputs)
if self._n == 1:
# Add a dimension for the height.
if self._data_format == DATA_FORMAT_NWC:
h_dim = 1
two_dim_conv_data_format = DATA_FORMAT_NHWC
else: # self._data_format == DATA_FORMAT_NCW
h_dim = 2
two_dim_conv_data_format = DATA_FORMAT_NCHW
inputs = tf.expand_dims(inputs, h_dim)
two_dim_conv_stride = self.stride[:h_dim] + (1,) + self.stride[h_dim:]
outputs = tf.nn.conv2d_transpose(inputs,
self._w,
output_shape,
strides=two_dim_conv_stride,
padding=self._padding,
data_format=two_dim_conv_data_format)
# Remove the height dimension to return a 3D tensor.
outputs = tf.squeeze(outputs, [h_dim])
elif self._n == 2:
outputs = tf.nn.conv2d_transpose(inputs,
self._w,
output_shape,
strides=self._stride,
padding=self._padding,
data_format=self._data_format)
else:
outputs = tf.nn.conv3d_transpose(inputs,
self._w,
output_shape,
strides=self._stride,
padding=self._padding,
data_format=self._data_format)
if self._use_bias:
self._b, outputs = _apply_bias(
inputs, outputs, self._channel_index, self._data_format,
self._output_channels, self._initializers, self._partitioners,
self._regularizers)
outputs = self._recover_shape_information(inputs, outputs)
return outputs | [
"def",
"_build",
"(",
"self",
",",
"inputs",
")",
":",
"_verify_inputs",
"(",
"inputs",
",",
"self",
".",
"_channel_index",
",",
"self",
".",
"_data_format",
")",
"self",
".",
"_input_shape",
"=",
"tuple",
"(",
"inputs",
".",
"get_shape",
"(",
")",
".",
"as_list",
"(",
")",
")",
"self",
".",
"_input_channels",
"=",
"self",
".",
"_input_shape",
"[",
"self",
".",
"_channel_index",
"]",
"# First, figure out what the non-(N,C) dims will be.",
"if",
"self",
".",
"_use_default_output_shape",
":",
"def",
"_default_transpose_size_wrapper",
"(",
")",
":",
"if",
"self",
".",
"_data_format",
".",
"startswith",
"(",
"\"NC\"",
")",
":",
"input_size",
"=",
"self",
".",
"_input_shape",
"[",
"2",
":",
"]",
"stride",
"=",
"self",
".",
"stride",
"[",
"2",
":",
"]",
"else",
":",
"# self._data_format == N*WC",
"input_size",
"=",
"self",
".",
"_input_shape",
"[",
"1",
":",
"-",
"1",
"]",
"stride",
"=",
"self",
".",
"stride",
"[",
"1",
":",
"-",
"1",
"]",
"return",
"_default_transpose_size",
"(",
"input_size",
",",
"stride",
",",
"kernel_shape",
"=",
"self",
".",
"_kernel_shape",
",",
"padding",
"=",
"self",
".",
"_padding",
")",
"self",
".",
"_output_shape",
"=",
"_default_transpose_size_wrapper",
"if",
"len",
"(",
"self",
".",
"output_shape",
")",
"!=",
"self",
".",
"_n",
":",
"raise",
"base",
".",
"IncompatibleShapeError",
"(",
"\"Output shape must have rank {}, but instead was {}\"",
".",
"format",
"(",
"self",
".",
"_n",
",",
"len",
"(",
"self",
".",
"output_shape",
")",
")",
")",
"# Now, construct the size of the output, including the N + C dims.",
"output_shape",
"=",
"self",
".",
"_infer_all_output_dims",
"(",
"inputs",
")",
"self",
".",
"_w",
"=",
"self",
".",
"_construct_w",
"(",
"inputs",
")",
"if",
"self",
".",
"_n",
"==",
"1",
":",
"# Add a dimension for the height.",
"if",
"self",
".",
"_data_format",
"==",
"DATA_FORMAT_NWC",
":",
"h_dim",
"=",
"1",
"two_dim_conv_data_format",
"=",
"DATA_FORMAT_NHWC",
"else",
":",
"# self._data_format == DATA_FORMAT_NCW",
"h_dim",
"=",
"2",
"two_dim_conv_data_format",
"=",
"DATA_FORMAT_NCHW",
"inputs",
"=",
"tf",
".",
"expand_dims",
"(",
"inputs",
",",
"h_dim",
")",
"two_dim_conv_stride",
"=",
"self",
".",
"stride",
"[",
":",
"h_dim",
"]",
"+",
"(",
"1",
",",
")",
"+",
"self",
".",
"stride",
"[",
"h_dim",
":",
"]",
"outputs",
"=",
"tf",
".",
"nn",
".",
"conv2d_transpose",
"(",
"inputs",
",",
"self",
".",
"_w",
",",
"output_shape",
",",
"strides",
"=",
"two_dim_conv_stride",
",",
"padding",
"=",
"self",
".",
"_padding",
",",
"data_format",
"=",
"two_dim_conv_data_format",
")",
"# Remove the height dimension to return a 3D tensor.",
"outputs",
"=",
"tf",
".",
"squeeze",
"(",
"outputs",
",",
"[",
"h_dim",
"]",
")",
"elif",
"self",
".",
"_n",
"==",
"2",
":",
"outputs",
"=",
"tf",
".",
"nn",
".",
"conv2d_transpose",
"(",
"inputs",
",",
"self",
".",
"_w",
",",
"output_shape",
",",
"strides",
"=",
"self",
".",
"_stride",
",",
"padding",
"=",
"self",
".",
"_padding",
",",
"data_format",
"=",
"self",
".",
"_data_format",
")",
"else",
":",
"outputs",
"=",
"tf",
".",
"nn",
".",
"conv3d_transpose",
"(",
"inputs",
",",
"self",
".",
"_w",
",",
"output_shape",
",",
"strides",
"=",
"self",
".",
"_stride",
",",
"padding",
"=",
"self",
".",
"_padding",
",",
"data_format",
"=",
"self",
".",
"_data_format",
")",
"if",
"self",
".",
"_use_bias",
":",
"self",
".",
"_b",
",",
"outputs",
"=",
"_apply_bias",
"(",
"inputs",
",",
"outputs",
",",
"self",
".",
"_channel_index",
",",
"self",
".",
"_data_format",
",",
"self",
".",
"_output_channels",
",",
"self",
".",
"_initializers",
",",
"self",
".",
"_partitioners",
",",
"self",
".",
"_regularizers",
")",
"outputs",
"=",
"self",
".",
"_recover_shape_information",
"(",
"inputs",
",",
"outputs",
")",
"return",
"outputs"
] | Connects the _ConvNDTranspose module into the graph.
If this is not the first time the module has been connected to the graph,
the input Tensor provided here must have the same final N dimensions, in
order for the existing variables to be the correct size for the
multiplication. The batch size may differ for each connection.
Args:
inputs: A Tensor of shape `data_format` and of type
`tf.float16`, `tf.bfloat16` or `tf.float32`.
Returns:
A Tensor of shape `data_format` and of type `tf.float16`, `tf.bfloat16`
or `tf.float32`.
Raises:
ValueError: If connecting the module into the graph any time after the
first time and the inferred size of the input does not match previous
invocations.
base.IncompatibleShapeError: If the input tensor has the wrong number
of dimensions.
base.UnderspecifiedError: If the channel dimension of `inputs` isn't
defined.
base.IncompatibleShapeError: If `output_shape` is an iterable and is not
in the format `(out_height, out_width)`.
TypeError: If input Tensor dtype is not compatible with either
`tf.float16`, `tf.bfloat16` or `tf.float32`. | [
"Connects",
"the",
"_ConvNDTranspose",
"module",
"into",
"the",
"graph",
"."
] | python | train |
fabioz/PyDev.Debugger | third_party/pep8/lib2to3/lib2to3/refactor.py | https://github.com/fabioz/PyDev.Debugger/blob/ed9c4307662a5593b8a7f1f3389ecd0e79b8c503/third_party/pep8/lib2to3/lib2to3/refactor.py#L303-L321 | def refactor_dir(self, dir_name, write=False, doctests_only=False):
"""Descends down a directory and refactor every Python file found.
Python files are assumed to have a .py extension.
Files and subdirectories starting with '.' are skipped.
"""
py_ext = os.extsep + "py"
for dirpath, dirnames, filenames in os.walk(dir_name):
self.log_debug("Descending into %s", dirpath)
dirnames.sort()
filenames.sort()
for name in filenames:
if (not name.startswith(".") and
os.path.splitext(name)[1] == py_ext):
fullname = os.path.join(dirpath, name)
self.refactor_file(fullname, write, doctests_only)
# Modify dirnames in-place to remove subdirs with leading dots
dirnames[:] = [dn for dn in dirnames if not dn.startswith(".")] | [
"def",
"refactor_dir",
"(",
"self",
",",
"dir_name",
",",
"write",
"=",
"False",
",",
"doctests_only",
"=",
"False",
")",
":",
"py_ext",
"=",
"os",
".",
"extsep",
"+",
"\"py\"",
"for",
"dirpath",
",",
"dirnames",
",",
"filenames",
"in",
"os",
".",
"walk",
"(",
"dir_name",
")",
":",
"self",
".",
"log_debug",
"(",
"\"Descending into %s\"",
",",
"dirpath",
")",
"dirnames",
".",
"sort",
"(",
")",
"filenames",
".",
"sort",
"(",
")",
"for",
"name",
"in",
"filenames",
":",
"if",
"(",
"not",
"name",
".",
"startswith",
"(",
"\".\"",
")",
"and",
"os",
".",
"path",
".",
"splitext",
"(",
"name",
")",
"[",
"1",
"]",
"==",
"py_ext",
")",
":",
"fullname",
"=",
"os",
".",
"path",
".",
"join",
"(",
"dirpath",
",",
"name",
")",
"self",
".",
"refactor_file",
"(",
"fullname",
",",
"write",
",",
"doctests_only",
")",
"# Modify dirnames in-place to remove subdirs with leading dots",
"dirnames",
"[",
":",
"]",
"=",
"[",
"dn",
"for",
"dn",
"in",
"dirnames",
"if",
"not",
"dn",
".",
"startswith",
"(",
"\".\"",
")",
"]"
] | Descends down a directory and refactor every Python file found.
Python files are assumed to have a .py extension.
Files and subdirectories starting with '.' are skipped. | [
"Descends",
"down",
"a",
"directory",
"and",
"refactor",
"every",
"Python",
"file",
"found",
"."
] | python | train |
sentinel-hub/eo-learn | mask/eolearn/mask/cloud_mask.py | https://github.com/sentinel-hub/eo-learn/blob/b8c390b9f553c561612fe9eb64e720611633a035/mask/eolearn/mask/cloud_mask.py#L145-L169 | def _downscaling(self, hr_array, meta_info, interp='linear', smooth=True):
""" Downscale existing array to resolution requested by cloud detector
:param hr_array: High-resolution data array to be downscaled
:param meta_info: Meta-info of eopatch
:param interp: Interpolation method to be used in downscaling. Default is `'linear'`
:param smooth: Apply Gaussian smoothing in spatial directions before downscaling. Sigma of kernel is estimated
by rescaling factor. Default is `True`
:return: Down-scaled array
"""
# Run cloud mask on full resolution
if (self.cm_size_y is None) and (self.cm_size_x is None):
return hr_array, None
# Rescaling factor in spatial (height, width) dimensions
rescale = self._get_rescale_factors(hr_array.shape[1:3], meta_info)
if smooth:
sigma = (0,) + tuple(int(1/x) for x in rescale) + (0,)
hr_array = scipy.ndimage.gaussian_filter(hr_array, sigma)
lr_array = scipy.ndimage.interpolation.zoom(hr_array, (1.0,) + rescale + (1.0,),
order=INTERP_METHODS.index(interp), mode='nearest')
return lr_array, rescale | [
"def",
"_downscaling",
"(",
"self",
",",
"hr_array",
",",
"meta_info",
",",
"interp",
"=",
"'linear'",
",",
"smooth",
"=",
"True",
")",
":",
"# Run cloud mask on full resolution",
"if",
"(",
"self",
".",
"cm_size_y",
"is",
"None",
")",
"and",
"(",
"self",
".",
"cm_size_x",
"is",
"None",
")",
":",
"return",
"hr_array",
",",
"None",
"# Rescaling factor in spatial (height, width) dimensions",
"rescale",
"=",
"self",
".",
"_get_rescale_factors",
"(",
"hr_array",
".",
"shape",
"[",
"1",
":",
"3",
"]",
",",
"meta_info",
")",
"if",
"smooth",
":",
"sigma",
"=",
"(",
"0",
",",
")",
"+",
"tuple",
"(",
"int",
"(",
"1",
"/",
"x",
")",
"for",
"x",
"in",
"rescale",
")",
"+",
"(",
"0",
",",
")",
"hr_array",
"=",
"scipy",
".",
"ndimage",
".",
"gaussian_filter",
"(",
"hr_array",
",",
"sigma",
")",
"lr_array",
"=",
"scipy",
".",
"ndimage",
".",
"interpolation",
".",
"zoom",
"(",
"hr_array",
",",
"(",
"1.0",
",",
")",
"+",
"rescale",
"+",
"(",
"1.0",
",",
")",
",",
"order",
"=",
"INTERP_METHODS",
".",
"index",
"(",
"interp",
")",
",",
"mode",
"=",
"'nearest'",
")",
"return",
"lr_array",
",",
"rescale"
] | Downscale existing array to resolution requested by cloud detector
:param hr_array: High-resolution data array to be downscaled
:param meta_info: Meta-info of eopatch
:param interp: Interpolation method to be used in downscaling. Default is `'linear'`
:param smooth: Apply Gaussian smoothing in spatial directions before downscaling. Sigma of kernel is estimated
by rescaling factor. Default is `True`
:return: Down-scaled array | [
"Downscale",
"existing",
"array",
"to",
"resolution",
"requested",
"by",
"cloud",
"detector"
] | python | train |
shichaoji/json2df | build/lib/json2df/base.py | https://github.com/shichaoji/json2df/blob/0463d6b494ab636b3c654616cb6be3b1e09e61a0/build/lib/json2df/base.py#L100-L105 | def load_data(self, path, *args, **kwargs):
"""see print instance.doc, e.g. cat=LoadFile(kind='excel')
read how to use cat.load_data, exec: print (cat.doc)"""
self.df = self._load(path,*args, **kwargs)
self.series = self.df.iloc[:,0]
print ("Success! file length: " +str(self.df.shape[0])) | [
"def",
"load_data",
"(",
"self",
",",
"path",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"self",
".",
"df",
"=",
"self",
".",
"_load",
"(",
"path",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"self",
".",
"series",
"=",
"self",
".",
"df",
".",
"iloc",
"[",
":",
",",
"0",
"]",
"print",
"(",
"\"Success! file length: \"",
"+",
"str",
"(",
"self",
".",
"df",
".",
"shape",
"[",
"0",
"]",
")",
")"
] | see print instance.doc, e.g. cat=LoadFile(kind='excel')
read how to use cat.load_data, exec: print (cat.doc) | [
"see",
"print",
"instance",
".",
"doc",
"e",
".",
"g",
".",
"cat",
"=",
"LoadFile",
"(",
"kind",
"=",
"excel",
")",
"read",
"how",
"to",
"use",
"cat",
".",
"load_data",
"exec",
":",
"print",
"(",
"cat",
".",
"doc",
")"
] | python | train |
bitcraze/crazyflie-lib-python | cflib/drivers/crazyradio.py | https://github.com/bitcraze/crazyflie-lib-python/blob/f6ebb4eb315bbe6e02db518936ac17fb615b2af8/cflib/drivers/crazyradio.py#L191-L198 | def set_address(self, address):
""" Set the radio address to be used"""
if len(address) != 5:
raise Exception('Crazyradio: the radio address shall be 5'
' bytes long')
if address != self.current_address:
_send_vendor_setup(self.handle, SET_RADIO_ADDRESS, 0, 0, address)
self.current_address = address | [
"def",
"set_address",
"(",
"self",
",",
"address",
")",
":",
"if",
"len",
"(",
"address",
")",
"!=",
"5",
":",
"raise",
"Exception",
"(",
"'Crazyradio: the radio address shall be 5'",
"' bytes long'",
")",
"if",
"address",
"!=",
"self",
".",
"current_address",
":",
"_send_vendor_setup",
"(",
"self",
".",
"handle",
",",
"SET_RADIO_ADDRESS",
",",
"0",
",",
"0",
",",
"address",
")",
"self",
".",
"current_address",
"=",
"address"
] | Set the radio address to be used | [
"Set",
"the",
"radio",
"address",
"to",
"be",
"used"
] | python | train |
slightlynybbled/tk_tools | tk_tools/canvas.py | https://github.com/slightlynybbled/tk_tools/blob/7c1792cad42890251a34f0617ce9b4b3e7abcf50/tk_tools/canvas.py#L43-L54 | def to_absolute(self, x, y):
"""
Converts coordinates provided with reference to the center \
of the canvas (0, 0) to absolute coordinates which are used \
by the canvas object in which (0, 0) is located in the top \
left of the object.
:param x: x value in pixels
:param y: x value in pixels
:return: None
"""
return x + self.size/2, y + self.size/2 | [
"def",
"to_absolute",
"(",
"self",
",",
"x",
",",
"y",
")",
":",
"return",
"x",
"+",
"self",
".",
"size",
"/",
"2",
",",
"y",
"+",
"self",
".",
"size",
"/",
"2"
] | Converts coordinates provided with reference to the center \
of the canvas (0, 0) to absolute coordinates which are used \
by the canvas object in which (0, 0) is located in the top \
left of the object.
:param x: x value in pixels
:param y: x value in pixels
:return: None | [
"Converts",
"coordinates",
"provided",
"with",
"reference",
"to",
"the",
"center",
"\\",
"of",
"the",
"canvas",
"(",
"0",
"0",
")",
"to",
"absolute",
"coordinates",
"which",
"are",
"used",
"\\",
"by",
"the",
"canvas",
"object",
"in",
"which",
"(",
"0",
"0",
")",
"is",
"located",
"in",
"the",
"top",
"\\",
"left",
"of",
"the",
"object",
"."
] | python | train |
gwastro/pycbc | pycbc/io/record.py | https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/io/record.py#L973-L992 | def add_functions(self, names, functions):
"""Adds the given functions to the function library.
Functions are added to this instance of the array; all copies of
and slices of this array will also have the new functions included.
Parameters
----------
names : (list of) string(s)
Name or list of names of the functions.
functions : (list of) function(s)
The function(s) to call.
"""
if isinstance(names, string_types):
names = [names]
functions = [functions]
if len(functions) != len(names):
raise ValueError("number of provided names must be same as number "
"of functions")
self._functionlib.update(dict(zip(names, functions))) | [
"def",
"add_functions",
"(",
"self",
",",
"names",
",",
"functions",
")",
":",
"if",
"isinstance",
"(",
"names",
",",
"string_types",
")",
":",
"names",
"=",
"[",
"names",
"]",
"functions",
"=",
"[",
"functions",
"]",
"if",
"len",
"(",
"functions",
")",
"!=",
"len",
"(",
"names",
")",
":",
"raise",
"ValueError",
"(",
"\"number of provided names must be same as number \"",
"\"of functions\"",
")",
"self",
".",
"_functionlib",
".",
"update",
"(",
"dict",
"(",
"zip",
"(",
"names",
",",
"functions",
")",
")",
")"
] | Adds the given functions to the function library.
Functions are added to this instance of the array; all copies of
and slices of this array will also have the new functions included.
Parameters
----------
names : (list of) string(s)
Name or list of names of the functions.
functions : (list of) function(s)
The function(s) to call. | [
"Adds",
"the",
"given",
"functions",
"to",
"the",
"function",
"library",
"."
] | python | train |
trevisanj/a99 | a99/gui/a_WBase.py | https://github.com/trevisanj/a99/blob/193e6e3c9b3e4f4a0ba7eb3eece846fe7045c539/a99/gui/a_WBase.py#L38-L40 | def add_log_error(self, x, flag_also_show=False, E=None):
"""Delegates to parent form"""
self.parent_form.add_log_error(x, flag_also_show, E) | [
"def",
"add_log_error",
"(",
"self",
",",
"x",
",",
"flag_also_show",
"=",
"False",
",",
"E",
"=",
"None",
")",
":",
"self",
".",
"parent_form",
".",
"add_log_error",
"(",
"x",
",",
"flag_also_show",
",",
"E",
")"
] | Delegates to parent form | [
"Delegates",
"to",
"parent",
"form"
] | python | train |
pri22296/beautifultable | beautifultable/beautifultable.py | https://github.com/pri22296/beautifultable/blob/c9638f73dff4bb1f341c9ee783e4e47f26efba0b/beautifultable/beautifultable.py#L1049-L1110 | def _get_horizontal_line(self, char, intersect_left,
intersect_mid, intersect_right):
"""Get a horizontal line for the table.
Internal method used to actually get all horizontal lines in the table.
Column width should be set prior to calling this method. This method
detects intersection and handles it according to the values of
`intersect_*_*` attributes.
Parameters
----------
char : str
Character used to draw the line.
Returns
-------
str
String which will be printed as the Top border of the table.
"""
width = self.get_table_width()
try:
line = list(char * (int(width/termwidth(char)) + 1))[:width]
except ZeroDivisionError:
line = [' '] * width
if len(line) == 0:
return ''
# Only if Special Intersection is enabled and horizontal line is
# visible
if not char.isspace():
# If left border is enabled and it is visible
visible_junc = not intersect_left.isspace()
if termwidth(self.left_border_char) > 0:
if not (self.left_border_char.isspace() and visible_junc):
length = min(termwidth(self.left_border_char),
termwidth(intersect_left))
for i in range(length):
line[i] = intersect_left[i]
visible_junc = not intersect_right.isspace()
# If right border is enabled and it is visible
if termwidth(self.right_border_char) > 0:
if not (self.right_border_char.isspace() and visible_junc):
length = min(termwidth(self.right_border_char),
termwidth(intersect_right))
for i in range(length):
line[-i-1] = intersect_right[-i-1]
visible_junc = not intersect_mid.isspace()
# If column separator is enabled and it is visible
if termwidth(self.column_separator_char):
if not (self.column_separator_char.isspace() and visible_junc):
index = termwidth(self.left_border_char)
for i in range(self._column_count-1):
index += (self._column_widths[i])
length = min(termwidth(self.column_separator_char),
termwidth(intersect_mid))
for i in range(length):
line[index+i] = intersect_mid[i]
index += termwidth(self.column_separator_char)
return ''.join(line) | [
"def",
"_get_horizontal_line",
"(",
"self",
",",
"char",
",",
"intersect_left",
",",
"intersect_mid",
",",
"intersect_right",
")",
":",
"width",
"=",
"self",
".",
"get_table_width",
"(",
")",
"try",
":",
"line",
"=",
"list",
"(",
"char",
"*",
"(",
"int",
"(",
"width",
"/",
"termwidth",
"(",
"char",
")",
")",
"+",
"1",
")",
")",
"[",
":",
"width",
"]",
"except",
"ZeroDivisionError",
":",
"line",
"=",
"[",
"' '",
"]",
"*",
"width",
"if",
"len",
"(",
"line",
")",
"==",
"0",
":",
"return",
"''",
"# Only if Special Intersection is enabled and horizontal line is",
"# visible",
"if",
"not",
"char",
".",
"isspace",
"(",
")",
":",
"# If left border is enabled and it is visible",
"visible_junc",
"=",
"not",
"intersect_left",
".",
"isspace",
"(",
")",
"if",
"termwidth",
"(",
"self",
".",
"left_border_char",
")",
">",
"0",
":",
"if",
"not",
"(",
"self",
".",
"left_border_char",
".",
"isspace",
"(",
")",
"and",
"visible_junc",
")",
":",
"length",
"=",
"min",
"(",
"termwidth",
"(",
"self",
".",
"left_border_char",
")",
",",
"termwidth",
"(",
"intersect_left",
")",
")",
"for",
"i",
"in",
"range",
"(",
"length",
")",
":",
"line",
"[",
"i",
"]",
"=",
"intersect_left",
"[",
"i",
"]",
"visible_junc",
"=",
"not",
"intersect_right",
".",
"isspace",
"(",
")",
"# If right border is enabled and it is visible",
"if",
"termwidth",
"(",
"self",
".",
"right_border_char",
")",
">",
"0",
":",
"if",
"not",
"(",
"self",
".",
"right_border_char",
".",
"isspace",
"(",
")",
"and",
"visible_junc",
")",
":",
"length",
"=",
"min",
"(",
"termwidth",
"(",
"self",
".",
"right_border_char",
")",
",",
"termwidth",
"(",
"intersect_right",
")",
")",
"for",
"i",
"in",
"range",
"(",
"length",
")",
":",
"line",
"[",
"-",
"i",
"-",
"1",
"]",
"=",
"intersect_right",
"[",
"-",
"i",
"-",
"1",
"]",
"visible_junc",
"=",
"not",
"intersect_mid",
".",
"isspace",
"(",
")",
"# If column separator is enabled and it is visible",
"if",
"termwidth",
"(",
"self",
".",
"column_separator_char",
")",
":",
"if",
"not",
"(",
"self",
".",
"column_separator_char",
".",
"isspace",
"(",
")",
"and",
"visible_junc",
")",
":",
"index",
"=",
"termwidth",
"(",
"self",
".",
"left_border_char",
")",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"_column_count",
"-",
"1",
")",
":",
"index",
"+=",
"(",
"self",
".",
"_column_widths",
"[",
"i",
"]",
")",
"length",
"=",
"min",
"(",
"termwidth",
"(",
"self",
".",
"column_separator_char",
")",
",",
"termwidth",
"(",
"intersect_mid",
")",
")",
"for",
"i",
"in",
"range",
"(",
"length",
")",
":",
"line",
"[",
"index",
"+",
"i",
"]",
"=",
"intersect_mid",
"[",
"i",
"]",
"index",
"+=",
"termwidth",
"(",
"self",
".",
"column_separator_char",
")",
"return",
"''",
".",
"join",
"(",
"line",
")"
] | Get a horizontal line for the table.
Internal method used to actually get all horizontal lines in the table.
Column width should be set prior to calling this method. This method
detects intersection and handles it according to the values of
`intersect_*_*` attributes.
Parameters
----------
char : str
Character used to draw the line.
Returns
-------
str
String which will be printed as the Top border of the table. | [
"Get",
"a",
"horizontal",
"line",
"for",
"the",
"table",
"."
] | python | train |
quandyfactory/dicttoxml | dicttoxml.py | https://github.com/quandyfactory/dicttoxml/blob/2016fe9817ad03b26aa5f1a475f5b79ad6757b96/dicttoxml.py#L342-L353 | def convert_bool(key, val, attr_type, attr={}, cdata=False):
"""Converts a boolean into an XML element"""
LOG.info('Inside convert_bool(): key="%s", val="%s", type(val) is: "%s"' % (
unicode_me(key), unicode_me(val), type(val).__name__)
)
key, attr = make_valid_xml_name(key, attr)
if attr_type:
attr['type'] = get_xml_type(val)
attrstring = make_attrstring(attr)
return '<%s%s>%s</%s>' % (key, attrstring, unicode(val).lower(), key) | [
"def",
"convert_bool",
"(",
"key",
",",
"val",
",",
"attr_type",
",",
"attr",
"=",
"{",
"}",
",",
"cdata",
"=",
"False",
")",
":",
"LOG",
".",
"info",
"(",
"'Inside convert_bool(): key=\"%s\", val=\"%s\", type(val) is: \"%s\"'",
"%",
"(",
"unicode_me",
"(",
"key",
")",
",",
"unicode_me",
"(",
"val",
")",
",",
"type",
"(",
"val",
")",
".",
"__name__",
")",
")",
"key",
",",
"attr",
"=",
"make_valid_xml_name",
"(",
"key",
",",
"attr",
")",
"if",
"attr_type",
":",
"attr",
"[",
"'type'",
"]",
"=",
"get_xml_type",
"(",
"val",
")",
"attrstring",
"=",
"make_attrstring",
"(",
"attr",
")",
"return",
"'<%s%s>%s</%s>'",
"%",
"(",
"key",
",",
"attrstring",
",",
"unicode",
"(",
"val",
")",
".",
"lower",
"(",
")",
",",
"key",
")"
] | Converts a boolean into an XML element | [
"Converts",
"a",
"boolean",
"into",
"an",
"XML",
"element"
] | python | train |
FNNDSC/pftree | pftree/pftree.py | https://github.com/FNNDSC/pftree/blob/b841e337c976bce151735f9d5dd95eded62aa094/pftree/pftree.py#L164-L182 | def walklevel(path, depth = -1, **kwargs):
"""It works just like os.walk, but you can pass it a level parameter
that indicates how deep the recursion will go.
If depth is -1 (or less than 0), the full depth is walked.
"""
# if depth is negative, just walk
if depth < 0:
for root, dirs, files in os.walk(path, **kwargs):
yield root, dirs, files
# path.count works because is a file has a "/" it will show up in the list
# as a ":"
path = path.rstrip(os.path.sep)
num_sep = path.count(os.path.sep)
for root, dirs, files in os.walk(path, **kwargs):
yield root, dirs, files
num_sep_this = root.count(os.path.sep)
if num_sep + depth <= num_sep_this:
del dirs[:] | [
"def",
"walklevel",
"(",
"path",
",",
"depth",
"=",
"-",
"1",
",",
"*",
"*",
"kwargs",
")",
":",
"# if depth is negative, just walk",
"if",
"depth",
"<",
"0",
":",
"for",
"root",
",",
"dirs",
",",
"files",
"in",
"os",
".",
"walk",
"(",
"path",
",",
"*",
"*",
"kwargs",
")",
":",
"yield",
"root",
",",
"dirs",
",",
"files",
"# path.count works because is a file has a \"/\" it will show up in the list",
"# as a \":\"",
"path",
"=",
"path",
".",
"rstrip",
"(",
"os",
".",
"path",
".",
"sep",
")",
"num_sep",
"=",
"path",
".",
"count",
"(",
"os",
".",
"path",
".",
"sep",
")",
"for",
"root",
",",
"dirs",
",",
"files",
"in",
"os",
".",
"walk",
"(",
"path",
",",
"*",
"*",
"kwargs",
")",
":",
"yield",
"root",
",",
"dirs",
",",
"files",
"num_sep_this",
"=",
"root",
".",
"count",
"(",
"os",
".",
"path",
".",
"sep",
")",
"if",
"num_sep",
"+",
"depth",
"<=",
"num_sep_this",
":",
"del",
"dirs",
"[",
":",
"]"
] | It works just like os.walk, but you can pass it a level parameter
that indicates how deep the recursion will go.
If depth is -1 (or less than 0), the full depth is walked. | [
"It",
"works",
"just",
"like",
"os",
".",
"walk",
"but",
"you",
"can",
"pass",
"it",
"a",
"level",
"parameter",
"that",
"indicates",
"how",
"deep",
"the",
"recursion",
"will",
"go",
".",
"If",
"depth",
"is",
"-",
"1",
"(",
"or",
"less",
"than",
"0",
")",
"the",
"full",
"depth",
"is",
"walked",
"."
] | python | train |
Erotemic/utool | utool/util_dev.py | https://github.com/Erotemic/utool/blob/3b27e1f4e6e6fb23cd8744af7b7195b57d99e03a/utool/util_dev.py#L1586-L1607 | def _memory_profile(with_gc=False):
"""
Helper for memory debugging. Mostly just a namespace where I experiment with
guppy and heapy.
References:
http://stackoverflow.com/questions/2629680/deciding-between-subprocess-multiprocessing-and-thread-in-python
Reset Numpy Memory::
%reset out
%reset array
"""
import utool as ut
if with_gc:
garbage_collect()
import guppy
hp = guppy.hpy()
print('[hpy] Waiting for heap output...')
heap_output = hp.heap()
print(heap_output)
print('[hpy] total heap size: ' + ut.byte_str2(heap_output.size))
ut.util_resources.memstats() | [
"def",
"_memory_profile",
"(",
"with_gc",
"=",
"False",
")",
":",
"import",
"utool",
"as",
"ut",
"if",
"with_gc",
":",
"garbage_collect",
"(",
")",
"import",
"guppy",
"hp",
"=",
"guppy",
".",
"hpy",
"(",
")",
"print",
"(",
"'[hpy] Waiting for heap output...'",
")",
"heap_output",
"=",
"hp",
".",
"heap",
"(",
")",
"print",
"(",
"heap_output",
")",
"print",
"(",
"'[hpy] total heap size: '",
"+",
"ut",
".",
"byte_str2",
"(",
"heap_output",
".",
"size",
")",
")",
"ut",
".",
"util_resources",
".",
"memstats",
"(",
")"
] | Helper for memory debugging. Mostly just a namespace where I experiment with
guppy and heapy.
References:
http://stackoverflow.com/questions/2629680/deciding-between-subprocess-multiprocessing-and-thread-in-python
Reset Numpy Memory::
%reset out
%reset array | [
"Helper",
"for",
"memory",
"debugging",
".",
"Mostly",
"just",
"a",
"namespace",
"where",
"I",
"experiment",
"with",
"guppy",
"and",
"heapy",
"."
] | python | train |
bunq/sdk_python | bunq/sdk/security.py | https://github.com/bunq/sdk_python/blob/da6c9b83e6d83ee8062617f53c6eb7293c0d863d/bunq/sdk/security.py#L274-L287 | def _get_header_correctly_cased(header_name):
"""
:type header_name: str
:rtype: str
"""
header_name = header_name.capitalize()
matches = re.findall(_REGEX_FOR_LOWERCASE_HEADERS, header_name)
for match in matches:
header_name = (re.sub(match, match.upper(), header_name))
return header_name | [
"def",
"_get_header_correctly_cased",
"(",
"header_name",
")",
":",
"header_name",
"=",
"header_name",
".",
"capitalize",
"(",
")",
"matches",
"=",
"re",
".",
"findall",
"(",
"_REGEX_FOR_LOWERCASE_HEADERS",
",",
"header_name",
")",
"for",
"match",
"in",
"matches",
":",
"header_name",
"=",
"(",
"re",
".",
"sub",
"(",
"match",
",",
"match",
".",
"upper",
"(",
")",
",",
"header_name",
")",
")",
"return",
"header_name"
] | :type header_name: str
:rtype: str | [
":",
"type",
"header_name",
":",
"str",
":",
"rtype",
":",
"str"
] | python | train |
Parquery/sphinx-icontract | sphinx_icontract/__init__.py | https://github.com/Parquery/sphinx-icontract/blob/92918f23a8ea1873112e9b7446c64cd6f12ee04b/sphinx_icontract/__init__.py#L449-L467 | def _format_function_contracts(func: Callable, prefix: Optional[str] = None) -> List[str]:
"""
Format the preconditions and postconditions of a function given its checker decorator.
:param func: function whose contracts we are describing
:param prefix: prefix to be prepended to the contract directives such as ``get`` or ``set``
:return: list of lines
"""
checker = icontract._checkers.find_checker(func=func)
if checker is None:
return []
pps = _preconditions_snapshots_postconditions(checker=checker)
pre_block = _format_preconditions(preconditions=pps.preconditions, prefix=prefix)
old_block = _format_snapshots(snapshots=pps.snapshots, prefix=prefix)
post_block = _format_postconditions(postconditions=pps.postconditions, prefix=prefix)
return pre_block + old_block + post_block | [
"def",
"_format_function_contracts",
"(",
"func",
":",
"Callable",
",",
"prefix",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
")",
"->",
"List",
"[",
"str",
"]",
":",
"checker",
"=",
"icontract",
".",
"_checkers",
".",
"find_checker",
"(",
"func",
"=",
"func",
")",
"if",
"checker",
"is",
"None",
":",
"return",
"[",
"]",
"pps",
"=",
"_preconditions_snapshots_postconditions",
"(",
"checker",
"=",
"checker",
")",
"pre_block",
"=",
"_format_preconditions",
"(",
"preconditions",
"=",
"pps",
".",
"preconditions",
",",
"prefix",
"=",
"prefix",
")",
"old_block",
"=",
"_format_snapshots",
"(",
"snapshots",
"=",
"pps",
".",
"snapshots",
",",
"prefix",
"=",
"prefix",
")",
"post_block",
"=",
"_format_postconditions",
"(",
"postconditions",
"=",
"pps",
".",
"postconditions",
",",
"prefix",
"=",
"prefix",
")",
"return",
"pre_block",
"+",
"old_block",
"+",
"post_block"
] | Format the preconditions and postconditions of a function given its checker decorator.
:param func: function whose contracts we are describing
:param prefix: prefix to be prepended to the contract directives such as ``get`` or ``set``
:return: list of lines | [
"Format",
"the",
"preconditions",
"and",
"postconditions",
"of",
"a",
"function",
"given",
"its",
"checker",
"decorator",
"."
] | python | train |
saltstack/salt | salt/states/saltmod.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/saltmod.py#L1006-L1079 | def wheel(name, **kwargs):
'''
Execute a wheel module on the master
.. versionadded:: 2014.7.0
name
The name of the function to run
kwargs
Any keyword arguments to pass to the wheel function
asynchronous
Run the salt command but don't wait for a reply.
.. versionadded:: neon
.. code-block:: yaml
accept_minion_key:
salt.wheel:
- name: key.accept
- match: frank
'''
ret = {'name': name, 'result': False, 'changes': {}, 'comment': ''}
try:
jid = __orchestration_jid__
except NameError:
log.debug(
'Unable to fire args event due to missing __orchestration_jid__'
)
jid = None
if __opts__.get('test', False):
ret['result'] = None,
ret['changes'] = {}
ret['comment'] = "Wheel function '{0}' would be executed.".format(name)
return ret
out = __salt__['saltutil.wheel'](name,
__orchestration_jid__=jid,
__env__=__env__,
**kwargs)
if kwargs.get('asynchronous'):
ret['__jid__'] = ret.get('jid')
ret['changes'] = out
if int(out.get('jid', 0)) > 0:
ret['result'] = True
ret['comment'] = 'wheel submitted successfully.'
else:
ret['result'] = False
ret['comment'] = 'wheel failed to run.'
return ret
wheel_return = out.get('return')
if isinstance(wheel_return, dict) and 'Error' in wheel_return:
out['success'] = False
success = out.get('success', True)
ret = {'name': name,
'changes': {'return': wheel_return},
'result': success}
ret['comment'] = "Wheel function '{0}' {1}.".format(
name,
'executed' if success else 'failed',
)
ret['__orchestration__'] = True
if 'jid' in out:
ret['__jid__'] = out['jid']
return ret | [
"def",
"wheel",
"(",
"name",
",",
"*",
"*",
"kwargs",
")",
":",
"ret",
"=",
"{",
"'name'",
":",
"name",
",",
"'result'",
":",
"False",
",",
"'changes'",
":",
"{",
"}",
",",
"'comment'",
":",
"''",
"}",
"try",
":",
"jid",
"=",
"__orchestration_jid__",
"except",
"NameError",
":",
"log",
".",
"debug",
"(",
"'Unable to fire args event due to missing __orchestration_jid__'",
")",
"jid",
"=",
"None",
"if",
"__opts__",
".",
"get",
"(",
"'test'",
",",
"False",
")",
":",
"ret",
"[",
"'result'",
"]",
"=",
"None",
",",
"ret",
"[",
"'changes'",
"]",
"=",
"{",
"}",
"ret",
"[",
"'comment'",
"]",
"=",
"\"Wheel function '{0}' would be executed.\"",
".",
"format",
"(",
"name",
")",
"return",
"ret",
"out",
"=",
"__salt__",
"[",
"'saltutil.wheel'",
"]",
"(",
"name",
",",
"__orchestration_jid__",
"=",
"jid",
",",
"__env__",
"=",
"__env__",
",",
"*",
"*",
"kwargs",
")",
"if",
"kwargs",
".",
"get",
"(",
"'asynchronous'",
")",
":",
"ret",
"[",
"'__jid__'",
"]",
"=",
"ret",
".",
"get",
"(",
"'jid'",
")",
"ret",
"[",
"'changes'",
"]",
"=",
"out",
"if",
"int",
"(",
"out",
".",
"get",
"(",
"'jid'",
",",
"0",
")",
")",
">",
"0",
":",
"ret",
"[",
"'result'",
"]",
"=",
"True",
"ret",
"[",
"'comment'",
"]",
"=",
"'wheel submitted successfully.'",
"else",
":",
"ret",
"[",
"'result'",
"]",
"=",
"False",
"ret",
"[",
"'comment'",
"]",
"=",
"'wheel failed to run.'",
"return",
"ret",
"wheel_return",
"=",
"out",
".",
"get",
"(",
"'return'",
")",
"if",
"isinstance",
"(",
"wheel_return",
",",
"dict",
")",
"and",
"'Error'",
"in",
"wheel_return",
":",
"out",
"[",
"'success'",
"]",
"=",
"False",
"success",
"=",
"out",
".",
"get",
"(",
"'success'",
",",
"True",
")",
"ret",
"=",
"{",
"'name'",
":",
"name",
",",
"'changes'",
":",
"{",
"'return'",
":",
"wheel_return",
"}",
",",
"'result'",
":",
"success",
"}",
"ret",
"[",
"'comment'",
"]",
"=",
"\"Wheel function '{0}' {1}.\"",
".",
"format",
"(",
"name",
",",
"'executed'",
"if",
"success",
"else",
"'failed'",
",",
")",
"ret",
"[",
"'__orchestration__'",
"]",
"=",
"True",
"if",
"'jid'",
"in",
"out",
":",
"ret",
"[",
"'__jid__'",
"]",
"=",
"out",
"[",
"'jid'",
"]",
"return",
"ret"
] | Execute a wheel module on the master
.. versionadded:: 2014.7.0
name
The name of the function to run
kwargs
Any keyword arguments to pass to the wheel function
asynchronous
Run the salt command but don't wait for a reply.
.. versionadded:: neon
.. code-block:: yaml
accept_minion_key:
salt.wheel:
- name: key.accept
- match: frank | [
"Execute",
"a",
"wheel",
"module",
"on",
"the",
"master"
] | python | train |
eaton-lab/toytree | toytree/etemini.py | https://github.com/eaton-lab/toytree/blob/0347ed2098acc5f707fadf52a0ecd411a6d1859c/toytree/etemini.py#L1789-L1807 | def get_topology_id(self, attr="name"):
"""
Returns the unique ID representing the topology of the current tree.
Two trees with the same topology will produce the same id. If trees are
unrooted, make sure that the root node is not binary or use the
tree.unroot() function before generating the topology id.
This is useful to detect the number of unique topologies over a bunch
of trees, without requiring full distance methods.
The id is, by default, calculated based on the terminal node's names.
Any other node attribute could be used instead.
"""
edge_keys = []
for s1, s2 in self.get_edges():
k1 = sorted([getattr(e, attr) for e in s1])
k2 = sorted([getattr(e, attr) for e in s2])
edge_keys.append(sorted([k1, k2]))
return md5(str(sorted(edge_keys)).encode('utf-8')).hexdigest() | [
"def",
"get_topology_id",
"(",
"self",
",",
"attr",
"=",
"\"name\"",
")",
":",
"edge_keys",
"=",
"[",
"]",
"for",
"s1",
",",
"s2",
"in",
"self",
".",
"get_edges",
"(",
")",
":",
"k1",
"=",
"sorted",
"(",
"[",
"getattr",
"(",
"e",
",",
"attr",
")",
"for",
"e",
"in",
"s1",
"]",
")",
"k2",
"=",
"sorted",
"(",
"[",
"getattr",
"(",
"e",
",",
"attr",
")",
"for",
"e",
"in",
"s2",
"]",
")",
"edge_keys",
".",
"append",
"(",
"sorted",
"(",
"[",
"k1",
",",
"k2",
"]",
")",
")",
"return",
"md5",
"(",
"str",
"(",
"sorted",
"(",
"edge_keys",
")",
")",
".",
"encode",
"(",
"'utf-8'",
")",
")",
".",
"hexdigest",
"(",
")"
] | Returns the unique ID representing the topology of the current tree.
Two trees with the same topology will produce the same id. If trees are
unrooted, make sure that the root node is not binary or use the
tree.unroot() function before generating the topology id.
This is useful to detect the number of unique topologies over a bunch
of trees, without requiring full distance methods.
The id is, by default, calculated based on the terminal node's names.
Any other node attribute could be used instead. | [
"Returns",
"the",
"unique",
"ID",
"representing",
"the",
"topology",
"of",
"the",
"current",
"tree",
".",
"Two",
"trees",
"with",
"the",
"same",
"topology",
"will",
"produce",
"the",
"same",
"id",
".",
"If",
"trees",
"are",
"unrooted",
"make",
"sure",
"that",
"the",
"root",
"node",
"is",
"not",
"binary",
"or",
"use",
"the",
"tree",
".",
"unroot",
"()",
"function",
"before",
"generating",
"the",
"topology",
"id",
"."
] | python | train |
aequitas/python-rflink | rflink/parser.py | https://github.com/aequitas/python-rflink/blob/46759ce8daf95cfc7cdb608ae17bc5501be9f6d8/rflink/parser.py#L393-L427 | def deserialize_packet_id(packet_id: str) -> dict:
r"""Turn a packet id into individual packet components.
>>> deserialize_packet_id('newkaku_000001_01') == {
... 'protocol': 'newkaku',
... 'id': '000001',
... 'switch': '01',
... }
True
>>> deserialize_packet_id('ikeakoppla_000080_0') == {
... 'protocol': 'ikea koppla',
... 'id': '000080',
... 'switch': '0',
... }
True
"""
if packet_id == 'rflink':
return {'protocol': UNKNOWN}
protocol, *id_switch = packet_id.split(PACKET_ID_SEP)
assert len(id_switch) < 3
packet_identifiers = {
# lookup the reverse translation of the protocol in the translation
# table, fallback to protocol. If this is a unserializable protocol
# name, it has not been serialized before and is not in the
# translate_protocols table this will result in an invalid command.
'protocol': protocol_translations.get(protocol, protocol),
}
if id_switch:
packet_identifiers['id'] = id_switch[0]
if len(id_switch) > 1:
packet_identifiers['switch'] = id_switch[1]
return packet_identifiers | [
"def",
"deserialize_packet_id",
"(",
"packet_id",
":",
"str",
")",
"->",
"dict",
":",
"if",
"packet_id",
"==",
"'rflink'",
":",
"return",
"{",
"'protocol'",
":",
"UNKNOWN",
"}",
"protocol",
",",
"",
"*",
"id_switch",
"=",
"packet_id",
".",
"split",
"(",
"PACKET_ID_SEP",
")",
"assert",
"len",
"(",
"id_switch",
")",
"<",
"3",
"packet_identifiers",
"=",
"{",
"# lookup the reverse translation of the protocol in the translation",
"# table, fallback to protocol. If this is a unserializable protocol",
"# name, it has not been serialized before and is not in the",
"# translate_protocols table this will result in an invalid command.",
"'protocol'",
":",
"protocol_translations",
".",
"get",
"(",
"protocol",
",",
"protocol",
")",
",",
"}",
"if",
"id_switch",
":",
"packet_identifiers",
"[",
"'id'",
"]",
"=",
"id_switch",
"[",
"0",
"]",
"if",
"len",
"(",
"id_switch",
")",
">",
"1",
":",
"packet_identifiers",
"[",
"'switch'",
"]",
"=",
"id_switch",
"[",
"1",
"]",
"return",
"packet_identifiers"
] | r"""Turn a packet id into individual packet components.
>>> deserialize_packet_id('newkaku_000001_01') == {
... 'protocol': 'newkaku',
... 'id': '000001',
... 'switch': '01',
... }
True
>>> deserialize_packet_id('ikeakoppla_000080_0') == {
... 'protocol': 'ikea koppla',
... 'id': '000080',
... 'switch': '0',
... }
True | [
"r",
"Turn",
"a",
"packet",
"id",
"into",
"individual",
"packet",
"components",
"."
] | python | train |
Accelize/pycosio | pycosio/_core/functions_core.py | https://github.com/Accelize/pycosio/blob/1cc1f8fdf5394d92918b7bae2bfa682169ccc48c/pycosio/_core/functions_core.py#L53-L88 | def equivalent_to(std_function):
"""
Decorates a cloud object compatible function
to provides fall back to standard function if
used on local files.
Args:
std_function (function): standard function to
used with local files.
Returns:
function: new function
"""
def decorate(cos_function):
"""Decorator argument handler"""
@wraps(cos_function)
def decorated(path, *args, **kwargs):
"""Decorated function"""
# Handles path-like objects
path = fsdecode(path).replace('\\', '/')
# Storage object: Handle with Cloud object storage
# function
if is_storage(path):
with handle_os_exceptions():
return cos_function(path, *args, **kwargs)
# Local file: Redirect to standard function
return std_function(path, *args, **kwargs)
return decorated
return decorate | [
"def",
"equivalent_to",
"(",
"std_function",
")",
":",
"def",
"decorate",
"(",
"cos_function",
")",
":",
"\"\"\"Decorator argument handler\"\"\"",
"@",
"wraps",
"(",
"cos_function",
")",
"def",
"decorated",
"(",
"path",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"\"\"\"Decorated function\"\"\"",
"# Handles path-like objects",
"path",
"=",
"fsdecode",
"(",
"path",
")",
".",
"replace",
"(",
"'\\\\'",
",",
"'/'",
")",
"# Storage object: Handle with Cloud object storage",
"# function",
"if",
"is_storage",
"(",
"path",
")",
":",
"with",
"handle_os_exceptions",
"(",
")",
":",
"return",
"cos_function",
"(",
"path",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"# Local file: Redirect to standard function",
"return",
"std_function",
"(",
"path",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"decorated",
"return",
"decorate"
] | Decorates a cloud object compatible function
to provides fall back to standard function if
used on local files.
Args:
std_function (function): standard function to
used with local files.
Returns:
function: new function | [
"Decorates",
"a",
"cloud",
"object",
"compatible",
"function",
"to",
"provides",
"fall",
"back",
"to",
"standard",
"function",
"if",
"used",
"on",
"local",
"files",
"."
] | python | train |
openstack/pyghmi | pyghmi/ipmi/private/util.py | https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/private/util.py#L41-L52 | def decode_wireformat_uuid(rawguid):
"""Decode a wire format UUID
It handles the rather particular scheme where half is little endian
and half is big endian. It returns a string like dmidecode would output.
"""
if isinstance(rawguid, list):
rawguid = bytearray(rawguid)
lebytes = struct.unpack_from('<IHH', buffer(rawguid[:8]))
bebytes = struct.unpack_from('>HHI', buffer(rawguid[8:]))
return '{0:08X}-{1:04X}-{2:04X}-{3:04X}-{4:04X}{5:08X}'.format(
lebytes[0], lebytes[1], lebytes[2], bebytes[0], bebytes[1], bebytes[2]) | [
"def",
"decode_wireformat_uuid",
"(",
"rawguid",
")",
":",
"if",
"isinstance",
"(",
"rawguid",
",",
"list",
")",
":",
"rawguid",
"=",
"bytearray",
"(",
"rawguid",
")",
"lebytes",
"=",
"struct",
".",
"unpack_from",
"(",
"'<IHH'",
",",
"buffer",
"(",
"rawguid",
"[",
":",
"8",
"]",
")",
")",
"bebytes",
"=",
"struct",
".",
"unpack_from",
"(",
"'>HHI'",
",",
"buffer",
"(",
"rawguid",
"[",
"8",
":",
"]",
")",
")",
"return",
"'{0:08X}-{1:04X}-{2:04X}-{3:04X}-{4:04X}{5:08X}'",
".",
"format",
"(",
"lebytes",
"[",
"0",
"]",
",",
"lebytes",
"[",
"1",
"]",
",",
"lebytes",
"[",
"2",
"]",
",",
"bebytes",
"[",
"0",
"]",
",",
"bebytes",
"[",
"1",
"]",
",",
"bebytes",
"[",
"2",
"]",
")"
] | Decode a wire format UUID
It handles the rather particular scheme where half is little endian
and half is big endian. It returns a string like dmidecode would output. | [
"Decode",
"a",
"wire",
"format",
"UUID"
] | python | train |
ibis-project/ibis | ibis/impala/udf.py | https://github.com/ibis-project/ibis/blob/1e39a5fd9ef088b45c155e8a5f541767ee8ef2e7/ibis/impala/udf.py#L169-L220 | def wrap_uda(
hdfs_file,
inputs,
output,
update_fn,
init_fn=None,
merge_fn=None,
finalize_fn=None,
serialize_fn=None,
close_fn=None,
name=None,
):
"""
Creates a callable aggregation function object. Must be created in Impala
to be used
Parameters
----------
hdfs_file: .so file that contains relevant UDA
inputs: list of strings denoting ibis datatypes
output: string denoting ibis datatype
update_fn: string
Library symbol name for update function
init_fn: string, optional
Library symbol name for initialization function
merge_fn: string, optional
Library symbol name for merge function
finalize_fn: string, optional
Library symbol name for finalize function
serialize_fn : string, optional
Library symbol name for serialize UDA API function. Not required for all
UDAs; see documentation for more.
close_fn : string, optional
name: string, optional
Used internally to track function
Returns
-------
container : UDA object
"""
func = ImpalaUDA(
inputs,
output,
update_fn,
init_fn,
merge_fn,
finalize_fn,
serialize_fn=serialize_fn,
name=name,
lib_path=hdfs_file,
)
return func | [
"def",
"wrap_uda",
"(",
"hdfs_file",
",",
"inputs",
",",
"output",
",",
"update_fn",
",",
"init_fn",
"=",
"None",
",",
"merge_fn",
"=",
"None",
",",
"finalize_fn",
"=",
"None",
",",
"serialize_fn",
"=",
"None",
",",
"close_fn",
"=",
"None",
",",
"name",
"=",
"None",
",",
")",
":",
"func",
"=",
"ImpalaUDA",
"(",
"inputs",
",",
"output",
",",
"update_fn",
",",
"init_fn",
",",
"merge_fn",
",",
"finalize_fn",
",",
"serialize_fn",
"=",
"serialize_fn",
",",
"name",
"=",
"name",
",",
"lib_path",
"=",
"hdfs_file",
",",
")",
"return",
"func"
] | Creates a callable aggregation function object. Must be created in Impala
to be used
Parameters
----------
hdfs_file: .so file that contains relevant UDA
inputs: list of strings denoting ibis datatypes
output: string denoting ibis datatype
update_fn: string
Library symbol name for update function
init_fn: string, optional
Library symbol name for initialization function
merge_fn: string, optional
Library symbol name for merge function
finalize_fn: string, optional
Library symbol name for finalize function
serialize_fn : string, optional
Library symbol name for serialize UDA API function. Not required for all
UDAs; see documentation for more.
close_fn : string, optional
name: string, optional
Used internally to track function
Returns
-------
container : UDA object | [
"Creates",
"a",
"callable",
"aggregation",
"function",
"object",
".",
"Must",
"be",
"created",
"in",
"Impala",
"to",
"be",
"used"
] | python | train |
deepmind/sonnet | sonnet/python/modules/conv.py | https://github.com/deepmind/sonnet/blob/00612ca3178964d86b556e062694d808ff81fcca/sonnet/python/modules/conv.py#L209-L233 | def _padding_to_conv_op_padding(padding):
"""Whether to use SAME or VALID for the underlying convolution op.
Args:
padding: A tuple of members of ALLOWED_PADDINGS, e.g. as returned from
`_fill_and_verify_padding`.
Returns:
One of CONV_OP_ALLOWED_PADDINGS, the padding method to use for the
underlying convolution op.
Raises:
ValueError: If padding is not a tuple.
"""
if not isinstance(padding, tuple):
raise ValueError("padding should be a tuple.")
if all(p == SAME for p in padding):
# If we want SAME padding for all dimensions then we can use SAME for the
# conv and avoid doing any extra padding.
return SAME
else:
# Otherwise we prefer to use VALID, since we can implement all the other
# padding types just by adding some extra padding before doing a VALID conv.
# (We could use SAME but then we'd also have to crop outputs in some cases).
return VALID | [
"def",
"_padding_to_conv_op_padding",
"(",
"padding",
")",
":",
"if",
"not",
"isinstance",
"(",
"padding",
",",
"tuple",
")",
":",
"raise",
"ValueError",
"(",
"\"padding should be a tuple.\"",
")",
"if",
"all",
"(",
"p",
"==",
"SAME",
"for",
"p",
"in",
"padding",
")",
":",
"# If we want SAME padding for all dimensions then we can use SAME for the",
"# conv and avoid doing any extra padding.",
"return",
"SAME",
"else",
":",
"# Otherwise we prefer to use VALID, since we can implement all the other",
"# padding types just by adding some extra padding before doing a VALID conv.",
"# (We could use SAME but then we'd also have to crop outputs in some cases).",
"return",
"VALID"
] | Whether to use SAME or VALID for the underlying convolution op.
Args:
padding: A tuple of members of ALLOWED_PADDINGS, e.g. as returned from
`_fill_and_verify_padding`.
Returns:
One of CONV_OP_ALLOWED_PADDINGS, the padding method to use for the
underlying convolution op.
Raises:
ValueError: If padding is not a tuple. | [
"Whether",
"to",
"use",
"SAME",
"or",
"VALID",
"for",
"the",
"underlying",
"convolution",
"op",
"."
] | python | train |
TheGhouls/oct | oct/core/turrets_manager.py | https://github.com/TheGhouls/oct/blob/7e9bddeb3b8495a26442b1c86744e9fb187fe88f/oct/core/turrets_manager.py#L68-L84 | def add(self, turret_data, is_started=False):
"""Add a turret object to current turrets configuration
:param dict turret_data: the data of the turret to add
:param bool is_started: tell if test are already runing
"""
if turret_data.get('uuid') in self.turrets:
return False
turret = Turret(**turret_data)
self.write(turret)
self.turrets[turret.uuid] = turret
if is_started:
self.publish(self.START, turret.uuid)
return True | [
"def",
"add",
"(",
"self",
",",
"turret_data",
",",
"is_started",
"=",
"False",
")",
":",
"if",
"turret_data",
".",
"get",
"(",
"'uuid'",
")",
"in",
"self",
".",
"turrets",
":",
"return",
"False",
"turret",
"=",
"Turret",
"(",
"*",
"*",
"turret_data",
")",
"self",
".",
"write",
"(",
"turret",
")",
"self",
".",
"turrets",
"[",
"turret",
".",
"uuid",
"]",
"=",
"turret",
"if",
"is_started",
":",
"self",
".",
"publish",
"(",
"self",
".",
"START",
",",
"turret",
".",
"uuid",
")",
"return",
"True"
] | Add a turret object to current turrets configuration
:param dict turret_data: the data of the turret to add
:param bool is_started: tell if test are already runing | [
"Add",
"a",
"turret",
"object",
"to",
"current",
"turrets",
"configuration"
] | python | train |
codelv/enaml-web | web/impl/lxml_toolkit_object.py | https://github.com/codelv/enaml-web/blob/88f1131a7b3ba9e83467b4f44bc3bab6f0de7559/web/impl/lxml_toolkit_object.py#L34-L42 | def create_widget(self):
""" Create the toolkit widget for the proxy object.
This method is called during the top-down pass, just before the
'init_widget()' method is called. This method should create the
toolkit widget and assign it to the 'widget' attribute.
"""
self.widget = SubElement(self.parent_widget(), self.declaration.tag) | [
"def",
"create_widget",
"(",
"self",
")",
":",
"self",
".",
"widget",
"=",
"SubElement",
"(",
"self",
".",
"parent_widget",
"(",
")",
",",
"self",
".",
"declaration",
".",
"tag",
")"
] | Create the toolkit widget for the proxy object.
This method is called during the top-down pass, just before the
'init_widget()' method is called. This method should create the
toolkit widget and assign it to the 'widget' attribute. | [
"Create",
"the",
"toolkit",
"widget",
"for",
"the",
"proxy",
"object",
"."
] | python | test |
unfoldingWord-dev/python-gogs-client | gogs_client/interface.py | https://github.com/unfoldingWord-dev/python-gogs-client/blob/b7f27f4995abf914c0db8a424760f5b27331939d/gogs_client/interface.py#L306-L317 | def user_exists(self, username):
"""
Returns whether a user with username ``username`` exists.
:param str username: username of user
:return: whether a user with the specified username exists
:rtype: bool
:raises NetworkFailure: if there is an error communicating with the server
:return:
"""
path = "/users/{}".format(username)
return self._get(path).ok | [
"def",
"user_exists",
"(",
"self",
",",
"username",
")",
":",
"path",
"=",
"\"/users/{}\"",
".",
"format",
"(",
"username",
")",
"return",
"self",
".",
"_get",
"(",
"path",
")",
".",
"ok"
] | Returns whether a user with username ``username`` exists.
:param str username: username of user
:return: whether a user with the specified username exists
:rtype: bool
:raises NetworkFailure: if there is an error communicating with the server
:return: | [
"Returns",
"whether",
"a",
"user",
"with",
"username",
"username",
"exists",
"."
] | python | train |
darothen/xbpch | xbpch/util/cf.py | https://github.com/darothen/xbpch/blob/31972dd6fd5f3f7cecc3a46080ce4f43ca23fbe5/xbpch/util/cf.py#L123-L143 | def get_valid_varname(varname):
"""
Replace characters (e.g., ':', '$', '=', '-') of a variable name, which
may cause problems when using with (CF-)netCDF based packages.
Parameters
----------
varname : string
variable name.
Notes
-----
Characters replacement is based on the table stored in
:attr:`VARNAME_MAP_CHAR`.
"""
vname = varname
for s, r in VARNAME_MAP_CHAR:
vname = vname.replace(s, r)
return vname | [
"def",
"get_valid_varname",
"(",
"varname",
")",
":",
"vname",
"=",
"varname",
"for",
"s",
",",
"r",
"in",
"VARNAME_MAP_CHAR",
":",
"vname",
"=",
"vname",
".",
"replace",
"(",
"s",
",",
"r",
")",
"return",
"vname"
] | Replace characters (e.g., ':', '$', '=', '-') of a variable name, which
may cause problems when using with (CF-)netCDF based packages.
Parameters
----------
varname : string
variable name.
Notes
-----
Characters replacement is based on the table stored in
:attr:`VARNAME_MAP_CHAR`. | [
"Replace",
"characters",
"(",
"e",
".",
"g",
".",
":",
"$",
"=",
"-",
")",
"of",
"a",
"variable",
"name",
"which",
"may",
"cause",
"problems",
"when",
"using",
"with",
"(",
"CF",
"-",
")",
"netCDF",
"based",
"packages",
"."
] | python | train |
numenta/htmresearch | htmresearch/frameworks/layers/laminar_network.py | https://github.com/numenta/htmresearch/blob/70c096b09a577ea0432c3f3bfff4442d4871b7aa/htmresearch/frameworks/layers/laminar_network.py#L77-L86 | def printNetwork(network):
"""
Given a network, print out regions sorted by phase
"""
print "The network has",len(network.regions.values()),"regions"
for p in range(network.getMaxPhase()):
print "=== Phase",p
for region in network.regions.values():
if network.getPhases(region.name)[0] == p:
print " ",region.name | [
"def",
"printNetwork",
"(",
"network",
")",
":",
"print",
"\"The network has\"",
",",
"len",
"(",
"network",
".",
"regions",
".",
"values",
"(",
")",
")",
",",
"\"regions\"",
"for",
"p",
"in",
"range",
"(",
"network",
".",
"getMaxPhase",
"(",
")",
")",
":",
"print",
"\"=== Phase\"",
",",
"p",
"for",
"region",
"in",
"network",
".",
"regions",
".",
"values",
"(",
")",
":",
"if",
"network",
".",
"getPhases",
"(",
"region",
".",
"name",
")",
"[",
"0",
"]",
"==",
"p",
":",
"print",
"\" \"",
",",
"region",
".",
"name"
] | Given a network, print out regions sorted by phase | [
"Given",
"a",
"network",
"print",
"out",
"regions",
"sorted",
"by",
"phase"
] | python | train |
gamechanger/confluent_schema_registry_client | confluent_schema_registry_client/__init__.py | https://github.com/gamechanger/confluent_schema_registry_client/blob/ac9196e366724eeb2f19f1a169fd2f9a0c8d68ae/confluent_schema_registry_client/__init__.py#L152-L158 | def get_global_compatibility_level(self):
"""
Gets the global compatibility level.
"""
res = requests.get(self._url('/config'), headers=HEADERS)
raise_if_failed(res)
return res.json()['compatibility'] | [
"def",
"get_global_compatibility_level",
"(",
"self",
")",
":",
"res",
"=",
"requests",
".",
"get",
"(",
"self",
".",
"_url",
"(",
"'/config'",
")",
",",
"headers",
"=",
"HEADERS",
")",
"raise_if_failed",
"(",
"res",
")",
"return",
"res",
".",
"json",
"(",
")",
"[",
"'compatibility'",
"]"
] | Gets the global compatibility level. | [
"Gets",
"the",
"global",
"compatibility",
"level",
"."
] | python | train |
gem/oq-engine | openquake/hazardlib/gsim/afshari_stewart_2016.py | https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hazardlib/gsim/afshari_stewart_2016.py#L104-L117 | def get_distance_term(self, C, rrup):
"""
Returns the distance scaling term in equation 7
"""
f_p = C["c1"] * rrup
idx = np.logical_and(rrup > self.CONSTANTS["r1"],
rrup <= self.CONSTANTS["r2"])
f_p[idx] = (C["c1"] * self.CONSTANTS["r1"]) +\
C["c2"] * (rrup[idx] - self.CONSTANTS["r1"])
idx = rrup > self.CONSTANTS["r2"]
f_p[idx] = C["c1"] * self.CONSTANTS["r1"] +\
C["c2"] * (self.CONSTANTS["r2"] - self.CONSTANTS["r1"]) +\
C["c3"] * (rrup[idx] - self.CONSTANTS["r2"])
return f_p | [
"def",
"get_distance_term",
"(",
"self",
",",
"C",
",",
"rrup",
")",
":",
"f_p",
"=",
"C",
"[",
"\"c1\"",
"]",
"*",
"rrup",
"idx",
"=",
"np",
".",
"logical_and",
"(",
"rrup",
">",
"self",
".",
"CONSTANTS",
"[",
"\"r1\"",
"]",
",",
"rrup",
"<=",
"self",
".",
"CONSTANTS",
"[",
"\"r2\"",
"]",
")",
"f_p",
"[",
"idx",
"]",
"=",
"(",
"C",
"[",
"\"c1\"",
"]",
"*",
"self",
".",
"CONSTANTS",
"[",
"\"r1\"",
"]",
")",
"+",
"C",
"[",
"\"c2\"",
"]",
"*",
"(",
"rrup",
"[",
"idx",
"]",
"-",
"self",
".",
"CONSTANTS",
"[",
"\"r1\"",
"]",
")",
"idx",
"=",
"rrup",
">",
"self",
".",
"CONSTANTS",
"[",
"\"r2\"",
"]",
"f_p",
"[",
"idx",
"]",
"=",
"C",
"[",
"\"c1\"",
"]",
"*",
"self",
".",
"CONSTANTS",
"[",
"\"r1\"",
"]",
"+",
"C",
"[",
"\"c2\"",
"]",
"*",
"(",
"self",
".",
"CONSTANTS",
"[",
"\"r2\"",
"]",
"-",
"self",
".",
"CONSTANTS",
"[",
"\"r1\"",
"]",
")",
"+",
"C",
"[",
"\"c3\"",
"]",
"*",
"(",
"rrup",
"[",
"idx",
"]",
"-",
"self",
".",
"CONSTANTS",
"[",
"\"r2\"",
"]",
")",
"return",
"f_p"
] | Returns the distance scaling term in equation 7 | [
"Returns",
"the",
"distance",
"scaling",
"term",
"in",
"equation",
"7"
] | python | train |
shmir/PyTrafficGenerator | trafficgenerator/tgn_object.py | https://github.com/shmir/PyTrafficGenerator/blob/382e5d549c83404af2a6571fe19c9e71df8bac14/trafficgenerator/tgn_object.py#L44-L57 | def dumps(self, indent=1):
""" Returns nested string representation of the dictionary (like json.dumps).
:param indent: indentation level.
"""
str_keys_dict = OrderedDict({str(k): v for k, v in self.items()})
for k, v in str_keys_dict.items():
if isinstance(v, dict):
str_keys_dict[k] = OrderedDict({str(k1): v1 for k1, v1 in v.items()})
for k1, v1 in str_keys_dict[k].items():
if isinstance(v1, dict):
str_keys_dict[k][k1] = OrderedDict({str(k2): v2 for k2, v2 in v1.items()})
return json.dumps(str_keys_dict, indent=indent) | [
"def",
"dumps",
"(",
"self",
",",
"indent",
"=",
"1",
")",
":",
"str_keys_dict",
"=",
"OrderedDict",
"(",
"{",
"str",
"(",
"k",
")",
":",
"v",
"for",
"k",
",",
"v",
"in",
"self",
".",
"items",
"(",
")",
"}",
")",
"for",
"k",
",",
"v",
"in",
"str_keys_dict",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"v",
",",
"dict",
")",
":",
"str_keys_dict",
"[",
"k",
"]",
"=",
"OrderedDict",
"(",
"{",
"str",
"(",
"k1",
")",
":",
"v1",
"for",
"k1",
",",
"v1",
"in",
"v",
".",
"items",
"(",
")",
"}",
")",
"for",
"k1",
",",
"v1",
"in",
"str_keys_dict",
"[",
"k",
"]",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"v1",
",",
"dict",
")",
":",
"str_keys_dict",
"[",
"k",
"]",
"[",
"k1",
"]",
"=",
"OrderedDict",
"(",
"{",
"str",
"(",
"k2",
")",
":",
"v2",
"for",
"k2",
",",
"v2",
"in",
"v1",
".",
"items",
"(",
")",
"}",
")",
"return",
"json",
".",
"dumps",
"(",
"str_keys_dict",
",",
"indent",
"=",
"indent",
")"
] | Returns nested string representation of the dictionary (like json.dumps).
:param indent: indentation level. | [
"Returns",
"nested",
"string",
"representation",
"of",
"the",
"dictionary",
"(",
"like",
"json",
".",
"dumps",
")",
"."
] | python | train |
sassoo/goldman | goldman/utils/responder_helpers.py | https://github.com/sassoo/goldman/blob/b72540c9ad06b5c68aadb1b4fa8cb0b716260bf2/goldman/utils/responder_helpers.py#L89-L96 | def _from_rest_ignore(model, props):
""" Purge fields that are completely unknown """
fields = model.all_fields
for prop in props.keys():
if prop not in fields:
del props[prop] | [
"def",
"_from_rest_ignore",
"(",
"model",
",",
"props",
")",
":",
"fields",
"=",
"model",
".",
"all_fields",
"for",
"prop",
"in",
"props",
".",
"keys",
"(",
")",
":",
"if",
"prop",
"not",
"in",
"fields",
":",
"del",
"props",
"[",
"prop",
"]"
] | Purge fields that are completely unknown | [
"Purge",
"fields",
"that",
"are",
"completely",
"unknown"
] | python | train |
zsiciarz/pyaavso | pyaavso/parsers/webobs.py | https://github.com/zsiciarz/pyaavso/blob/d3b9eb17bcecc6652841606802b5713fd6083cc1/pyaavso/parsers/webobs.py#L34-L56 | def get_observations(self):
"""
Parses the HTML table into a list of dictionaries, each of which
represents a single observation.
"""
if self.empty:
return []
rows = list(self.tbody)
observations = []
for row_observation, row_details in zip(rows[::2], rows[1::2]):
data = {}
cells = OBSERVATION_XPATH(row_observation)
data['name'] = _clean_cell(cells[0])
data['date'] = _clean_cell(cells[1])
data['magnitude'] = _clean_cell(cells[3])
data['obscode'] = _clean_cell(cells[6])
cells = DETAILS_XPATH(row_details)
data['comp1'] = _clean_cell(cells[0])
data['chart'] = _clean_cell(cells[3]).replace('None', '')
data['comment_code'] = _clean_cell(cells[4])
data['notes'] = _clean_cell(cells[5])
observations.append(data)
return observations | [
"def",
"get_observations",
"(",
"self",
")",
":",
"if",
"self",
".",
"empty",
":",
"return",
"[",
"]",
"rows",
"=",
"list",
"(",
"self",
".",
"tbody",
")",
"observations",
"=",
"[",
"]",
"for",
"row_observation",
",",
"row_details",
"in",
"zip",
"(",
"rows",
"[",
":",
":",
"2",
"]",
",",
"rows",
"[",
"1",
":",
":",
"2",
"]",
")",
":",
"data",
"=",
"{",
"}",
"cells",
"=",
"OBSERVATION_XPATH",
"(",
"row_observation",
")",
"data",
"[",
"'name'",
"]",
"=",
"_clean_cell",
"(",
"cells",
"[",
"0",
"]",
")",
"data",
"[",
"'date'",
"]",
"=",
"_clean_cell",
"(",
"cells",
"[",
"1",
"]",
")",
"data",
"[",
"'magnitude'",
"]",
"=",
"_clean_cell",
"(",
"cells",
"[",
"3",
"]",
")",
"data",
"[",
"'obscode'",
"]",
"=",
"_clean_cell",
"(",
"cells",
"[",
"6",
"]",
")",
"cells",
"=",
"DETAILS_XPATH",
"(",
"row_details",
")",
"data",
"[",
"'comp1'",
"]",
"=",
"_clean_cell",
"(",
"cells",
"[",
"0",
"]",
")",
"data",
"[",
"'chart'",
"]",
"=",
"_clean_cell",
"(",
"cells",
"[",
"3",
"]",
")",
".",
"replace",
"(",
"'None'",
",",
"''",
")",
"data",
"[",
"'comment_code'",
"]",
"=",
"_clean_cell",
"(",
"cells",
"[",
"4",
"]",
")",
"data",
"[",
"'notes'",
"]",
"=",
"_clean_cell",
"(",
"cells",
"[",
"5",
"]",
")",
"observations",
".",
"append",
"(",
"data",
")",
"return",
"observations"
] | Parses the HTML table into a list of dictionaries, each of which
represents a single observation. | [
"Parses",
"the",
"HTML",
"table",
"into",
"a",
"list",
"of",
"dictionaries",
"each",
"of",
"which",
"represents",
"a",
"single",
"observation",
"."
] | python | valid |
SBRG/ssbio | ssbio/utils.py | https://github.com/SBRG/ssbio/blob/e9449e64ffc1a1f5ad07e5849aa12a650095f8a2/ssbio/utils.py#L988-L1013 | def label_sequential_regions(inlist):
"""Input a list of labeled tuples and return a dictionary of sequentially labeled regions.
Args:
inlist (list): A list of tuples with the first number representing the index and the second the index label.
Returns:
dict: Dictionary of labeled regions.
Examples:
>>> label_sequential_regions([(1, 'O'), (2, 'O'), (3, 'O'), (4, 'M'), (5, 'M'), (6, 'I'), (7, 'M'), (8, 'O'), (9, 'O')])
{'O1': [1, 2, 3], 'M1': [4, 5], 'I1': [6], 'M2': [7], 'O2': [8, 9]}
"""
import more_itertools as mit
df = pd.DataFrame(inlist).set_index(0)
labeled = {}
for label in df[1].unique():
iterable = df[df[1] == label].index.tolist()
labeled.update({'{}{}'.format(label, i + 1): items for i, items in
enumerate([list(group) for group in mit.consecutive_groups(iterable)])})
return labeled | [
"def",
"label_sequential_regions",
"(",
"inlist",
")",
":",
"import",
"more_itertools",
"as",
"mit",
"df",
"=",
"pd",
".",
"DataFrame",
"(",
"inlist",
")",
".",
"set_index",
"(",
"0",
")",
"labeled",
"=",
"{",
"}",
"for",
"label",
"in",
"df",
"[",
"1",
"]",
".",
"unique",
"(",
")",
":",
"iterable",
"=",
"df",
"[",
"df",
"[",
"1",
"]",
"==",
"label",
"]",
".",
"index",
".",
"tolist",
"(",
")",
"labeled",
".",
"update",
"(",
"{",
"'{}{}'",
".",
"format",
"(",
"label",
",",
"i",
"+",
"1",
")",
":",
"items",
"for",
"i",
",",
"items",
"in",
"enumerate",
"(",
"[",
"list",
"(",
"group",
")",
"for",
"group",
"in",
"mit",
".",
"consecutive_groups",
"(",
"iterable",
")",
"]",
")",
"}",
")",
"return",
"labeled"
] | Input a list of labeled tuples and return a dictionary of sequentially labeled regions.
Args:
inlist (list): A list of tuples with the first number representing the index and the second the index label.
Returns:
dict: Dictionary of labeled regions.
Examples:
>>> label_sequential_regions([(1, 'O'), (2, 'O'), (3, 'O'), (4, 'M'), (5, 'M'), (6, 'I'), (7, 'M'), (8, 'O'), (9, 'O')])
{'O1': [1, 2, 3], 'M1': [4, 5], 'I1': [6], 'M2': [7], 'O2': [8, 9]} | [
"Input",
"a",
"list",
"of",
"labeled",
"tuples",
"and",
"return",
"a",
"dictionary",
"of",
"sequentially",
"labeled",
"regions",
"."
] | python | train |
gem/oq-engine | openquake/commonlib/calc.py | https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/commonlib/calc.py#L208-L229 | def make_hmap_array(pmap, imtls, poes, nsites):
"""
:returns: a compound array of hazard maps of shape nsites
"""
if isinstance(pmap, probability_map.ProbabilityMap):
# this is here for compatibility with the
# past, it could be removed in the future
hmap = make_hmap(pmap, imtls, poes)
pdic = general.DictArray({imt: poes for imt in imtls})
return convert_to_array(hmap, nsites, pdic)
try:
hcurves = pmap.value
except AttributeError:
hcurves = pmap
dtlist = [('%s-%s' % (imt, poe), F32) for imt in imtls for poe in poes]
array = numpy.zeros(len(pmap), dtlist)
for imt, imls in imtls.items():
curves = hcurves[:, imtls(imt)]
for poe in poes:
array['%s-%s' % (imt, poe)] = compute_hazard_maps(
curves, imls, poe).flat
return array | [
"def",
"make_hmap_array",
"(",
"pmap",
",",
"imtls",
",",
"poes",
",",
"nsites",
")",
":",
"if",
"isinstance",
"(",
"pmap",
",",
"probability_map",
".",
"ProbabilityMap",
")",
":",
"# this is here for compatibility with the",
"# past, it could be removed in the future",
"hmap",
"=",
"make_hmap",
"(",
"pmap",
",",
"imtls",
",",
"poes",
")",
"pdic",
"=",
"general",
".",
"DictArray",
"(",
"{",
"imt",
":",
"poes",
"for",
"imt",
"in",
"imtls",
"}",
")",
"return",
"convert_to_array",
"(",
"hmap",
",",
"nsites",
",",
"pdic",
")",
"try",
":",
"hcurves",
"=",
"pmap",
".",
"value",
"except",
"AttributeError",
":",
"hcurves",
"=",
"pmap",
"dtlist",
"=",
"[",
"(",
"'%s-%s'",
"%",
"(",
"imt",
",",
"poe",
")",
",",
"F32",
")",
"for",
"imt",
"in",
"imtls",
"for",
"poe",
"in",
"poes",
"]",
"array",
"=",
"numpy",
".",
"zeros",
"(",
"len",
"(",
"pmap",
")",
",",
"dtlist",
")",
"for",
"imt",
",",
"imls",
"in",
"imtls",
".",
"items",
"(",
")",
":",
"curves",
"=",
"hcurves",
"[",
":",
",",
"imtls",
"(",
"imt",
")",
"]",
"for",
"poe",
"in",
"poes",
":",
"array",
"[",
"'%s-%s'",
"%",
"(",
"imt",
",",
"poe",
")",
"]",
"=",
"compute_hazard_maps",
"(",
"curves",
",",
"imls",
",",
"poe",
")",
".",
"flat",
"return",
"array"
] | :returns: a compound array of hazard maps of shape nsites | [
":",
"returns",
":",
"a",
"compound",
"array",
"of",
"hazard",
"maps",
"of",
"shape",
"nsites"
] | python | train |
priestc/moneywagon | moneywagon/services/exchange_services.py | https://github.com/priestc/moneywagon/blob/00518f1f557dcca8b3031f46d3564c2baa0227a3/moneywagon/services/exchange_services.py#L49-L65 | def eight_decimal_places(amount, format="str"):
"""
>>> eight_decimal_places(3.12345678912345)
"3.12345679"
>>> eight_decimal_places("3.12345678912345")
"3.12345679"
>>> eight_decimal_places(3.12345678912345, format='float')
3.12345679
>>> eight_decimal_places("3.12345678912345", format='float')
3.12345679
"""
if type(amount) == str:
return amount
if format == 'str':
return "%.8f" % amount
if format == 'float':
return float("%.8f" % amount) | [
"def",
"eight_decimal_places",
"(",
"amount",
",",
"format",
"=",
"\"str\"",
")",
":",
"if",
"type",
"(",
"amount",
")",
"==",
"str",
":",
"return",
"amount",
"if",
"format",
"==",
"'str'",
":",
"return",
"\"%.8f\"",
"%",
"amount",
"if",
"format",
"==",
"'float'",
":",
"return",
"float",
"(",
"\"%.8f\"",
"%",
"amount",
")"
] | >>> eight_decimal_places(3.12345678912345)
"3.12345679"
>>> eight_decimal_places("3.12345678912345")
"3.12345679"
>>> eight_decimal_places(3.12345678912345, format='float')
3.12345679
>>> eight_decimal_places("3.12345678912345", format='float')
3.12345679 | [
">>>",
"eight_decimal_places",
"(",
"3",
".",
"12345678912345",
")",
"3",
".",
"12345679",
">>>",
"eight_decimal_places",
"(",
"3",
".",
"12345678912345",
")",
"3",
".",
"12345679",
">>>",
"eight_decimal_places",
"(",
"3",
".",
"12345678912345",
"format",
"=",
"float",
")",
"3",
".",
"12345679",
">>>",
"eight_decimal_places",
"(",
"3",
".",
"12345678912345",
"format",
"=",
"float",
")",
"3",
".",
"12345679"
] | python | train |
elliterate/capybara.py | capybara/queries/selector_query.py | https://github.com/elliterate/capybara.py/blob/0c6ae449cc37e4445ec3cd6af95674533beedc6c/capybara/queries/selector_query.py#L136-L149 | def visible(self):
""" str: The desired element visibility. """
if self.options["visible"] is not None:
if self.options["visible"] is True:
return "visible"
elif self.options["visible"] is False:
return "all"
else:
return self.options["visible"]
else:
if capybara.ignore_hidden_elements:
return "visible"
else:
return "all" | [
"def",
"visible",
"(",
"self",
")",
":",
"if",
"self",
".",
"options",
"[",
"\"visible\"",
"]",
"is",
"not",
"None",
":",
"if",
"self",
".",
"options",
"[",
"\"visible\"",
"]",
"is",
"True",
":",
"return",
"\"visible\"",
"elif",
"self",
".",
"options",
"[",
"\"visible\"",
"]",
"is",
"False",
":",
"return",
"\"all\"",
"else",
":",
"return",
"self",
".",
"options",
"[",
"\"visible\"",
"]",
"else",
":",
"if",
"capybara",
".",
"ignore_hidden_elements",
":",
"return",
"\"visible\"",
"else",
":",
"return",
"\"all\""
] | str: The desired element visibility. | [
"str",
":",
"The",
"desired",
"element",
"visibility",
"."
] | python | test |
peri-source/peri | peri/comp/ilms.py | https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/comp/ilms.py#L823-L837 | def _barnes(self, pos):
"""Creates a barnes interpolant & calculates its values"""
b_in = self.b_in
dist = lambda x: np.sqrt(np.dot(x,x))
#we take a filter size as the max distance between the grids along
#x or y:
sz = self.npts[1]
coeffs = self.get_values(self.barnes_params)
b = BarnesInterpolationND(
b_in, coeffs, filter_size=self.filtsize, damp=0.9, iterations=3,
clip=self.local_updates, clipsize=self.barnes_clip_size,
blocksize=100 # FIXME magic blocksize
)
return b(pos) | [
"def",
"_barnes",
"(",
"self",
",",
"pos",
")",
":",
"b_in",
"=",
"self",
".",
"b_in",
"dist",
"=",
"lambda",
"x",
":",
"np",
".",
"sqrt",
"(",
"np",
".",
"dot",
"(",
"x",
",",
"x",
")",
")",
"#we take a filter size as the max distance between the grids along",
"#x or y:",
"sz",
"=",
"self",
".",
"npts",
"[",
"1",
"]",
"coeffs",
"=",
"self",
".",
"get_values",
"(",
"self",
".",
"barnes_params",
")",
"b",
"=",
"BarnesInterpolationND",
"(",
"b_in",
",",
"coeffs",
",",
"filter_size",
"=",
"self",
".",
"filtsize",
",",
"damp",
"=",
"0.9",
",",
"iterations",
"=",
"3",
",",
"clip",
"=",
"self",
".",
"local_updates",
",",
"clipsize",
"=",
"self",
".",
"barnes_clip_size",
",",
"blocksize",
"=",
"100",
"# FIXME magic blocksize",
")",
"return",
"b",
"(",
"pos",
")"
] | Creates a barnes interpolant & calculates its values | [
"Creates",
"a",
"barnes",
"interpolant",
"&",
"calculates",
"its",
"values"
] | python | valid |
xtuml/pyxtuml | bridgepoint/gen_sql_schema.py | https://github.com/xtuml/pyxtuml/blob/7dd9343b9a0191d1db1887ab9288d0a026608d9a/bridgepoint/gen_sql_schema.py#L38-L82 | def main():
'''
Parse argv for options and arguments, and start schema generation.
'''
parser = optparse.OptionParser(usage="%prog [options] <model_path> [another_model_path...]",
version=xtuml.version.complete_string,
formatter=optparse.TitledHelpFormatter())
parser.set_description(__doc__.strip())
parser.add_option("-c", "--component", dest="component", metavar="NAME",
help="export sql schema for the component named NAME",
action="store", default=None)
parser.add_option("-d", "--derived-attributes", dest="derived",
help="include derived attributes in the schema",
action="store_true", default=False)
parser.add_option("-o", "--output", dest='output', metavar="PATH",
help="save sql schema to PATH (required)",
action="store", default=None)
parser.add_option("-v", "--verbosity", dest='verbosity', action="count",
help="increase debug logging level", default=2)
(opts, args) = parser.parse_args()
if len(args) == 0 or opts.output is None:
parser.print_help()
sys.exit(1)
levels = {
0: logging.ERROR,
1: logging.WARNING,
2: logging.INFO,
3: logging.DEBUG,
}
logging.basicConfig(level=levels.get(opts.verbosity, logging.DEBUG))
loader = ooaofooa.Loader()
for filename in args:
loader.filename_input(filename)
c = loader.build_component(opts.component, opts.derived)
xtuml.persist_database(c, opts.output) | [
"def",
"main",
"(",
")",
":",
"parser",
"=",
"optparse",
".",
"OptionParser",
"(",
"usage",
"=",
"\"%prog [options] <model_path> [another_model_path...]\"",
",",
"version",
"=",
"xtuml",
".",
"version",
".",
"complete_string",
",",
"formatter",
"=",
"optparse",
".",
"TitledHelpFormatter",
"(",
")",
")",
"parser",
".",
"set_description",
"(",
"__doc__",
".",
"strip",
"(",
")",
")",
"parser",
".",
"add_option",
"(",
"\"-c\"",
",",
"\"--component\"",
",",
"dest",
"=",
"\"component\"",
",",
"metavar",
"=",
"\"NAME\"",
",",
"help",
"=",
"\"export sql schema for the component named NAME\"",
",",
"action",
"=",
"\"store\"",
",",
"default",
"=",
"None",
")",
"parser",
".",
"add_option",
"(",
"\"-d\"",
",",
"\"--derived-attributes\"",
",",
"dest",
"=",
"\"derived\"",
",",
"help",
"=",
"\"include derived attributes in the schema\"",
",",
"action",
"=",
"\"store_true\"",
",",
"default",
"=",
"False",
")",
"parser",
".",
"add_option",
"(",
"\"-o\"",
",",
"\"--output\"",
",",
"dest",
"=",
"'output'",
",",
"metavar",
"=",
"\"PATH\"",
",",
"help",
"=",
"\"save sql schema to PATH (required)\"",
",",
"action",
"=",
"\"store\"",
",",
"default",
"=",
"None",
")",
"parser",
".",
"add_option",
"(",
"\"-v\"",
",",
"\"--verbosity\"",
",",
"dest",
"=",
"'verbosity'",
",",
"action",
"=",
"\"count\"",
",",
"help",
"=",
"\"increase debug logging level\"",
",",
"default",
"=",
"2",
")",
"(",
"opts",
",",
"args",
")",
"=",
"parser",
".",
"parse_args",
"(",
")",
"if",
"len",
"(",
"args",
")",
"==",
"0",
"or",
"opts",
".",
"output",
"is",
"None",
":",
"parser",
".",
"print_help",
"(",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"levels",
"=",
"{",
"0",
":",
"logging",
".",
"ERROR",
",",
"1",
":",
"logging",
".",
"WARNING",
",",
"2",
":",
"logging",
".",
"INFO",
",",
"3",
":",
"logging",
".",
"DEBUG",
",",
"}",
"logging",
".",
"basicConfig",
"(",
"level",
"=",
"levels",
".",
"get",
"(",
"opts",
".",
"verbosity",
",",
"logging",
".",
"DEBUG",
")",
")",
"loader",
"=",
"ooaofooa",
".",
"Loader",
"(",
")",
"for",
"filename",
"in",
"args",
":",
"loader",
".",
"filename_input",
"(",
"filename",
")",
"c",
"=",
"loader",
".",
"build_component",
"(",
"opts",
".",
"component",
",",
"opts",
".",
"derived",
")",
"xtuml",
".",
"persist_database",
"(",
"c",
",",
"opts",
".",
"output",
")"
] | Parse argv for options and arguments, and start schema generation. | [
"Parse",
"argv",
"for",
"options",
"and",
"arguments",
"and",
"start",
"schema",
"generation",
"."
] | python | test |
micha030201/aionationstates | aionationstates/nation_.py | https://github.com/micha030201/aionationstates/blob/dc86b86d994cbab830b69ab8023601c73e778b3a/aionationstates/nation_.py#L572-L582 | async def deaths(self, root):
"""Causes of death in the nation, as percentages.
Returns
-------
an :class:`ApiQuery` of dict with keys of str and values of float
"""
return {
elem.get('type'): float(elem.text)
for elem in root.find('DEATHS')
} | [
"async",
"def",
"deaths",
"(",
"self",
",",
"root",
")",
":",
"return",
"{",
"elem",
".",
"get",
"(",
"'type'",
")",
":",
"float",
"(",
"elem",
".",
"text",
")",
"for",
"elem",
"in",
"root",
".",
"find",
"(",
"'DEATHS'",
")",
"}"
] | Causes of death in the nation, as percentages.
Returns
-------
an :class:`ApiQuery` of dict with keys of str and values of float | [
"Causes",
"of",
"death",
"in",
"the",
"nation",
"as",
"percentages",
"."
] | python | train |
kdeldycke/chessboard | chessboard/board.py | https://github.com/kdeldycke/chessboard/blob/ac7a14dc7b6905701e3f6d4e01e8fe1869241bed/chessboard/board.py#L202-L206 | def get(self, x, y):
""" Return piece placed at the provided coordinates. """
for piece in self.pieces:
if (piece.x, piece.y) == (x, y):
return piece | [
"def",
"get",
"(",
"self",
",",
"x",
",",
"y",
")",
":",
"for",
"piece",
"in",
"self",
".",
"pieces",
":",
"if",
"(",
"piece",
".",
"x",
",",
"piece",
".",
"y",
")",
"==",
"(",
"x",
",",
"y",
")",
":",
"return",
"piece"
] | Return piece placed at the provided coordinates. | [
"Return",
"piece",
"placed",
"at",
"the",
"provided",
"coordinates",
"."
] | python | train |
saltstack/salt | salt/states/mssql_user.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/states/mssql_user.py#L88-L114 | def absent(name, **kwargs):
'''
Ensure that the named user is absent
name
The username of the user to remove
'''
ret = {'name': name,
'changes': {},
'result': True,
'comment': ''}
if not __salt__['mssql.user_exists'](name):
ret['comment'] = 'User {0} is not present'.format(name)
return ret
if __opts__['test']:
ret['result'] = None
ret['comment'] = 'User {0} is set to be removed'.format(name)
return ret
if __salt__['mssql.user_remove'](name, **kwargs):
ret['comment'] = 'User {0} has been removed'.format(name)
ret['changes'][name] = 'Absent'
return ret
# else:
ret['result'] = False
ret['comment'] = 'User {0} failed to be removed'.format(name)
return ret | [
"def",
"absent",
"(",
"name",
",",
"*",
"*",
"kwargs",
")",
":",
"ret",
"=",
"{",
"'name'",
":",
"name",
",",
"'changes'",
":",
"{",
"}",
",",
"'result'",
":",
"True",
",",
"'comment'",
":",
"''",
"}",
"if",
"not",
"__salt__",
"[",
"'mssql.user_exists'",
"]",
"(",
"name",
")",
":",
"ret",
"[",
"'comment'",
"]",
"=",
"'User {0} is not present'",
".",
"format",
"(",
"name",
")",
"return",
"ret",
"if",
"__opts__",
"[",
"'test'",
"]",
":",
"ret",
"[",
"'result'",
"]",
"=",
"None",
"ret",
"[",
"'comment'",
"]",
"=",
"'User {0} is set to be removed'",
".",
"format",
"(",
"name",
")",
"return",
"ret",
"if",
"__salt__",
"[",
"'mssql.user_remove'",
"]",
"(",
"name",
",",
"*",
"*",
"kwargs",
")",
":",
"ret",
"[",
"'comment'",
"]",
"=",
"'User {0} has been removed'",
".",
"format",
"(",
"name",
")",
"ret",
"[",
"'changes'",
"]",
"[",
"name",
"]",
"=",
"'Absent'",
"return",
"ret",
"# else:",
"ret",
"[",
"'result'",
"]",
"=",
"False",
"ret",
"[",
"'comment'",
"]",
"=",
"'User {0} failed to be removed'",
".",
"format",
"(",
"name",
")",
"return",
"ret"
] | Ensure that the named user is absent
name
The username of the user to remove | [
"Ensure",
"that",
"the",
"named",
"user",
"is",
"absent"
] | python | train |
dwavesystems/dwave-cloud-client | dwave/cloud/coders.py | https://github.com/dwavesystems/dwave-cloud-client/blob/df3221a8385dc0c04d7b4d84f740bf3ad6706230/dwave/cloud/coders.py#L155-L169 | def _decode_doubles(message):
"""Helper for decode_qp, decodes a double array.
The double array is stored as little endian 64 bit doubles.
The array has then been base64 encoded. Since we are decoding we do these
steps in reverse.
Args:
message: the double array
Returns:
decoded double array
"""
binary = base64.b64decode(message)
return struct.unpack('<' + ('d' * (len(binary) // 8)), binary) | [
"def",
"_decode_doubles",
"(",
"message",
")",
":",
"binary",
"=",
"base64",
".",
"b64decode",
"(",
"message",
")",
"return",
"struct",
".",
"unpack",
"(",
"'<'",
"+",
"(",
"'d'",
"*",
"(",
"len",
"(",
"binary",
")",
"//",
"8",
")",
")",
",",
"binary",
")"
] | Helper for decode_qp, decodes a double array.
The double array is stored as little endian 64 bit doubles.
The array has then been base64 encoded. Since we are decoding we do these
steps in reverse.
Args:
message: the double array
Returns:
decoded double array | [
"Helper",
"for",
"decode_qp",
"decodes",
"a",
"double",
"array",
"."
] | python | train |
Azure/azure-kusto-python | azure-kusto-ingest/azure/kusto/ingest/_resource_manager.py | https://github.com/Azure/azure-kusto-python/blob/92466a2ae175d6353d1dee3496a02517b2a71a86/azure-kusto-ingest/azure/kusto/ingest/_resource_manager.py#L17-L20 | def parse(cls, uri):
"""Parses uri into a ResourceUri object"""
match = _URI_FORMAT.search(uri)
return cls(match.group(1), match.group(2), match.group(3), match.group(4)) | [
"def",
"parse",
"(",
"cls",
",",
"uri",
")",
":",
"match",
"=",
"_URI_FORMAT",
".",
"search",
"(",
"uri",
")",
"return",
"cls",
"(",
"match",
".",
"group",
"(",
"1",
")",
",",
"match",
".",
"group",
"(",
"2",
")",
",",
"match",
".",
"group",
"(",
"3",
")",
",",
"match",
".",
"group",
"(",
"4",
")",
")"
] | Parses uri into a ResourceUri object | [
"Parses",
"uri",
"into",
"a",
"ResourceUri",
"object"
] | python | train |
log2timeline/dfvfs | dfvfs/vfs/zip_file_entry.py | https://github.com/log2timeline/dfvfs/blob/2b3ccd115f9901d89f383397d4a1376a873c83c4/dfvfs/vfs/zip_file_entry.py#L197-L205 | def name(self):
"""str: name of the file entry, without the full path."""
path = getattr(self.path_spec, 'location', None)
if path is not None and not isinstance(path, py2to3.UNICODE_TYPE):
try:
path = path.decode(self._file_system.encoding)
except UnicodeDecodeError:
path = None
return self._file_system.BasenamePath(path) | [
"def",
"name",
"(",
"self",
")",
":",
"path",
"=",
"getattr",
"(",
"self",
".",
"path_spec",
",",
"'location'",
",",
"None",
")",
"if",
"path",
"is",
"not",
"None",
"and",
"not",
"isinstance",
"(",
"path",
",",
"py2to3",
".",
"UNICODE_TYPE",
")",
":",
"try",
":",
"path",
"=",
"path",
".",
"decode",
"(",
"self",
".",
"_file_system",
".",
"encoding",
")",
"except",
"UnicodeDecodeError",
":",
"path",
"=",
"None",
"return",
"self",
".",
"_file_system",
".",
"BasenamePath",
"(",
"path",
")"
] | str: name of the file entry, without the full path. | [
"str",
":",
"name",
"of",
"the",
"file",
"entry",
"without",
"the",
"full",
"path",
"."
] | python | train |
PyGithub/PyGithub | github/Branch.py | https://github.com/PyGithub/PyGithub/blob/f716df86bbe7dc276c6596699fa9712b61ef974c/github/Branch.py#L328-L338 | def get_team_push_restrictions(self):
"""
:calls: `GET /repos/:owner/:repo/branches/:branch/protection/restrictions/teams <https://developer.github.com/v3/repos/branches>`_
:rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Team.Team`
"""
return github.PaginatedList.PaginatedList(
github.Team.Team,
self._requester,
self.protection_url + "/restrictions/teams",
None
) | [
"def",
"get_team_push_restrictions",
"(",
"self",
")",
":",
"return",
"github",
".",
"PaginatedList",
".",
"PaginatedList",
"(",
"github",
".",
"Team",
".",
"Team",
",",
"self",
".",
"_requester",
",",
"self",
".",
"protection_url",
"+",
"\"/restrictions/teams\"",
",",
"None",
")"
] | :calls: `GET /repos/:owner/:repo/branches/:branch/protection/restrictions/teams <https://developer.github.com/v3/repos/branches>`_
:rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Team.Team` | [
":",
"calls",
":",
"GET",
"/",
"repos",
"/",
":",
"owner",
"/",
":",
"repo",
"/",
"branches",
"/",
":",
"branch",
"/",
"protection",
"/",
"restrictions",
"/",
"teams",
"<https",
":",
"//",
"developer",
".",
"github",
".",
"com",
"/",
"v3",
"/",
"repos",
"/",
"branches",
">",
"_",
":",
"rtype",
":",
":",
"class",
":",
"github",
".",
"PaginatedList",
".",
"PaginatedList",
"of",
":",
"class",
":",
"github",
".",
"Team",
".",
"Team"
] | python | train |
hubo1016/vlcp | vlcp/event/lock.py | https://github.com/hubo1016/vlcp/blob/239055229ec93a99cc7e15208075724ccf543bd1/vlcp/event/lock.py#L65-L76 | def trylock(self):
"Try to acquire lock and return True; if cannot acquire the lock at this moment, return False."
if self.locked:
return True
if self.lockroutine:
return False
waiter = self.scheduler.send(LockEvent(self.context, self.key, self))
if waiter:
return False
else:
self.locked = True
return True | [
"def",
"trylock",
"(",
"self",
")",
":",
"if",
"self",
".",
"locked",
":",
"return",
"True",
"if",
"self",
".",
"lockroutine",
":",
"return",
"False",
"waiter",
"=",
"self",
".",
"scheduler",
".",
"send",
"(",
"LockEvent",
"(",
"self",
".",
"context",
",",
"self",
".",
"key",
",",
"self",
")",
")",
"if",
"waiter",
":",
"return",
"False",
"else",
":",
"self",
".",
"locked",
"=",
"True",
"return",
"True"
] | Try to acquire lock and return True; if cannot acquire the lock at this moment, return False. | [
"Try",
"to",
"acquire",
"lock",
"and",
"return",
"True",
";",
"if",
"cannot",
"acquire",
"the",
"lock",
"at",
"this",
"moment",
"return",
"False",
"."
] | python | train |
numenta/nupic | src/nupic/data/generators/data_generator.py | https://github.com/numenta/nupic/blob/5922fafffdccc8812e72b3324965ad2f7d4bbdad/src/nupic/data/generators/data_generator.py#L129-L138 | def setFlag(self, index, flag):
"""Set flag for field at index. Flags are special characters such as 'S' for
sequence or 'T' for timestamp.
Parameters:
--------------------------------------------------------------------
index: index of field whose flag is being set
flag: special character
"""
assert len(self.fields)>index
self.fields[index].flag=flag | [
"def",
"setFlag",
"(",
"self",
",",
"index",
",",
"flag",
")",
":",
"assert",
"len",
"(",
"self",
".",
"fields",
")",
">",
"index",
"self",
".",
"fields",
"[",
"index",
"]",
".",
"flag",
"=",
"flag"
] | Set flag for field at index. Flags are special characters such as 'S' for
sequence or 'T' for timestamp.
Parameters:
--------------------------------------------------------------------
index: index of field whose flag is being set
flag: special character | [
"Set",
"flag",
"for",
"field",
"at",
"index",
".",
"Flags",
"are",
"special",
"characters",
"such",
"as",
"S",
"for",
"sequence",
"or",
"T",
"for",
"timestamp",
".",
"Parameters",
":",
"--------------------------------------------------------------------",
"index",
":",
"index",
"of",
"field",
"whose",
"flag",
"is",
"being",
"set",
"flag",
":",
"special",
"character"
] | python | valid |
materialsproject/pymatgen | pymatgen/io/feff/inputs.py | https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/io/feff/inputs.py#L307-L325 | def _set_cluster(self):
"""
Compute and set the cluster of atoms as a Molecule object. The siteato
coordinates are translated such that the absorbing atom(aka central
atom) is at the origin.
Returns:
Molecule
"""
center = self.struct[self.center_index].coords
sphere = self.struct.get_neighbors(self.struct[self.center_index], self.radius)
symbols = [self.absorbing_atom]
coords = [[0, 0, 0]]
for i, site_dist in enumerate(sphere):
site_symbol = re.sub(r"[^aA-zZ]+", "", site_dist[0].species_string)
symbols.append(site_symbol)
coords.append(site_dist[0].coords - center)
return Molecule(symbols, coords) | [
"def",
"_set_cluster",
"(",
"self",
")",
":",
"center",
"=",
"self",
".",
"struct",
"[",
"self",
".",
"center_index",
"]",
".",
"coords",
"sphere",
"=",
"self",
".",
"struct",
".",
"get_neighbors",
"(",
"self",
".",
"struct",
"[",
"self",
".",
"center_index",
"]",
",",
"self",
".",
"radius",
")",
"symbols",
"=",
"[",
"self",
".",
"absorbing_atom",
"]",
"coords",
"=",
"[",
"[",
"0",
",",
"0",
",",
"0",
"]",
"]",
"for",
"i",
",",
"site_dist",
"in",
"enumerate",
"(",
"sphere",
")",
":",
"site_symbol",
"=",
"re",
".",
"sub",
"(",
"r\"[^aA-zZ]+\"",
",",
"\"\"",
",",
"site_dist",
"[",
"0",
"]",
".",
"species_string",
")",
"symbols",
".",
"append",
"(",
"site_symbol",
")",
"coords",
".",
"append",
"(",
"site_dist",
"[",
"0",
"]",
".",
"coords",
"-",
"center",
")",
"return",
"Molecule",
"(",
"symbols",
",",
"coords",
")"
] | Compute and set the cluster of atoms as a Molecule object. The siteato
coordinates are translated such that the absorbing atom(aka central
atom) is at the origin.
Returns:
Molecule | [
"Compute",
"and",
"set",
"the",
"cluster",
"of",
"atoms",
"as",
"a",
"Molecule",
"object",
".",
"The",
"siteato",
"coordinates",
"are",
"translated",
"such",
"that",
"the",
"absorbing",
"atom",
"(",
"aka",
"central",
"atom",
")",
"is",
"at",
"the",
"origin",
"."
] | python | train |
brechtm/rinohtype | src/rinoh/backend/pdf/xobject/purepng.py | https://github.com/brechtm/rinohtype/blob/40a63c4e5ad7550f62b6860f1812cb67cafb9dc7/src/rinoh/backend/pdf/xobject/purepng.py#L1604-L1609 | def newarray(self, length, value=0):
"""Initialise empty row"""
if self.bitdepth > 8:
return array('H', [value] * length)
else:
return bytearray([value] * length) | [
"def",
"newarray",
"(",
"self",
",",
"length",
",",
"value",
"=",
"0",
")",
":",
"if",
"self",
".",
"bitdepth",
">",
"8",
":",
"return",
"array",
"(",
"'H'",
",",
"[",
"value",
"]",
"*",
"length",
")",
"else",
":",
"return",
"bytearray",
"(",
"[",
"value",
"]",
"*",
"length",
")"
] | Initialise empty row | [
"Initialise",
"empty",
"row"
] | python | train |
thiagopbueno/pyrddl | pyrddl/parser.py | https://github.com/thiagopbueno/pyrddl/blob/3bcfa850b1a7532c7744358f3c6b9e0f8ab978c9/pyrddl/parser.py#L318-L324 | def p_type_def(self, p):
'''type_def : IDENT COLON OBJECT SEMI
| IDENT COLON LCURLY enum_list RCURLY SEMI'''
if len(p) == 5:
p[0] = (p[1], p[3])
elif len(p) == 7:
p[0] = (p[1], p[4]) | [
"def",
"p_type_def",
"(",
"self",
",",
"p",
")",
":",
"if",
"len",
"(",
"p",
")",
"==",
"5",
":",
"p",
"[",
"0",
"]",
"=",
"(",
"p",
"[",
"1",
"]",
",",
"p",
"[",
"3",
"]",
")",
"elif",
"len",
"(",
"p",
")",
"==",
"7",
":",
"p",
"[",
"0",
"]",
"=",
"(",
"p",
"[",
"1",
"]",
",",
"p",
"[",
"4",
"]",
")"
] | type_def : IDENT COLON OBJECT SEMI
| IDENT COLON LCURLY enum_list RCURLY SEMI | [
"type_def",
":",
"IDENT",
"COLON",
"OBJECT",
"SEMI",
"|",
"IDENT",
"COLON",
"LCURLY",
"enum_list",
"RCURLY",
"SEMI"
] | python | train |
markovmodel/msmtools | msmtools/estimation/api.py | https://github.com/markovmodel/msmtools/blob/54dc76dd2113a0e8f3d15d5316abab41402941be/msmtools/estimation/api.py#L1003-L1073 | def log_likelihood(C, T):
r"""Log-likelihood of the count matrix given a transition matrix.
Parameters
----------
C : (M, M) ndarray or scipy.sparse matrix
Count matrix
T : (M, M) ndarray orscipy.sparse matrix
Transition matrix
Returns
-------
logL : float
Log-likelihood of the count matrix
Notes
-----
The likelihood of a set of observed transition counts
:math:`C=(c_{ij})` for a given matrix of transition counts
:math:`T=(t_{ij})` is given by
.. math:: L(C|P)=\prod_{i=1}^{M} \left( \prod_{j=1}^{M} p_{ij}^{c_{ij}} \right)
The log-likelihood is given by
.. math:: l(C|P)=\sum_{i,j=1}^{M}c_{ij} \log p_{ij}.
The likelihood describes the probability of making an observation
:math:`C` for a given model :math:`P`.
Examples
--------
>>> import numpy as np
>>> from msmtools.estimation import log_likelihood
>>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]])
>>> C = np.array([[58, 7, 0], [6, 0, 4], [0, 3, 21]])
>>> logL = log_likelihood(C, T)
>>> logL # doctest: +ELLIPSIS
-38.2808034725...
>>> C = np.array([[58, 20, 0], [6, 0, 4], [0, 3, 21]])
>>> logL = log_likelihood(C, T)
>>> logL # doctest: +ELLIPSIS
-68.2144096814...
References
----------
.. [1] Prinz, J H, H Wu, M Sarich, B Keller, M Senne, M Held, J D
Chodera, C Schuette and F Noe. 2011. Markov models of
molecular kinetics: Generation and validation. J Chem Phys
134: 174105
"""
if issparse(C) and issparse(T):
return sparse.likelihood.log_likelihood(C, T)
else:
# use the dense likelihood calculator for all other cases
# if a mix of dense/sparse C/T matrices is used, then both
# will be converted to ndarrays.
if not isinstance(C, np.ndarray):
C = np.array(C)
if not isinstance(T, np.ndarray):
T = np.array(T)
# computation is still efficient, because we only use terms
# for nonzero elements of T
nz = np.nonzero(T)
return np.dot(C[nz], np.log(T[nz])) | [
"def",
"log_likelihood",
"(",
"C",
",",
"T",
")",
":",
"if",
"issparse",
"(",
"C",
")",
"and",
"issparse",
"(",
"T",
")",
":",
"return",
"sparse",
".",
"likelihood",
".",
"log_likelihood",
"(",
"C",
",",
"T",
")",
"else",
":",
"# use the dense likelihood calculator for all other cases",
"# if a mix of dense/sparse C/T matrices is used, then both",
"# will be converted to ndarrays.",
"if",
"not",
"isinstance",
"(",
"C",
",",
"np",
".",
"ndarray",
")",
":",
"C",
"=",
"np",
".",
"array",
"(",
"C",
")",
"if",
"not",
"isinstance",
"(",
"T",
",",
"np",
".",
"ndarray",
")",
":",
"T",
"=",
"np",
".",
"array",
"(",
"T",
")",
"# computation is still efficient, because we only use terms",
"# for nonzero elements of T",
"nz",
"=",
"np",
".",
"nonzero",
"(",
"T",
")",
"return",
"np",
".",
"dot",
"(",
"C",
"[",
"nz",
"]",
",",
"np",
".",
"log",
"(",
"T",
"[",
"nz",
"]",
")",
")"
] | r"""Log-likelihood of the count matrix given a transition matrix.
Parameters
----------
C : (M, M) ndarray or scipy.sparse matrix
Count matrix
T : (M, M) ndarray orscipy.sparse matrix
Transition matrix
Returns
-------
logL : float
Log-likelihood of the count matrix
Notes
-----
The likelihood of a set of observed transition counts
:math:`C=(c_{ij})` for a given matrix of transition counts
:math:`T=(t_{ij})` is given by
.. math:: L(C|P)=\prod_{i=1}^{M} \left( \prod_{j=1}^{M} p_{ij}^{c_{ij}} \right)
The log-likelihood is given by
.. math:: l(C|P)=\sum_{i,j=1}^{M}c_{ij} \log p_{ij}.
The likelihood describes the probability of making an observation
:math:`C` for a given model :math:`P`.
Examples
--------
>>> import numpy as np
>>> from msmtools.estimation import log_likelihood
>>> T = np.array([[0.9, 0.1, 0.0], [0.5, 0.0, 0.5], [0.0, 0.1, 0.9]])
>>> C = np.array([[58, 7, 0], [6, 0, 4], [0, 3, 21]])
>>> logL = log_likelihood(C, T)
>>> logL # doctest: +ELLIPSIS
-38.2808034725...
>>> C = np.array([[58, 20, 0], [6, 0, 4], [0, 3, 21]])
>>> logL = log_likelihood(C, T)
>>> logL # doctest: +ELLIPSIS
-68.2144096814...
References
----------
.. [1] Prinz, J H, H Wu, M Sarich, B Keller, M Senne, M Held, J D
Chodera, C Schuette and F Noe. 2011. Markov models of
molecular kinetics: Generation and validation. J Chem Phys
134: 174105 | [
"r",
"Log",
"-",
"likelihood",
"of",
"the",
"count",
"matrix",
"given",
"a",
"transition",
"matrix",
"."
] | python | train |
awacha/sastool | sastool/io/credo_cct/header.py | https://github.com/awacha/sastool/blob/deaddfa3002f3f6818697e36139633b7e30427a3/sastool/io/credo_cct/header.py#L124-L131 | def beamcentery(self) -> ErrorValue:
"""Y (row) coordinate of the beam center, pixel units, 0-based."""
try:
return ErrorValue(self._data['geometry']['beamposx'],
self._data['geometry']['beamposx.err'])
except KeyError:
return ErrorValue(self._data['geometry']['beamposx'],
0.0) | [
"def",
"beamcentery",
"(",
"self",
")",
"->",
"ErrorValue",
":",
"try",
":",
"return",
"ErrorValue",
"(",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'beamposx'",
"]",
",",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'beamposx.err'",
"]",
")",
"except",
"KeyError",
":",
"return",
"ErrorValue",
"(",
"self",
".",
"_data",
"[",
"'geometry'",
"]",
"[",
"'beamposx'",
"]",
",",
"0.0",
")"
] | Y (row) coordinate of the beam center, pixel units, 0-based. | [
"Y",
"(",
"row",
")",
"coordinate",
"of",
"the",
"beam",
"center",
"pixel",
"units",
"0",
"-",
"based",
"."
] | python | train |
PMEAL/OpenPNM | openpnm/core/Base.py | https://github.com/PMEAL/OpenPNM/blob/0547b5724ffedc0a593aae48639d36fe10e0baed/openpnm/core/Base.py#L1589-L1631 | def _parse_labels(self, labels, element):
r"""
This private method is used for converting \'labels\' to a proper
format, including dealing with wildcards (\*).
Parameters
----------
labels : string or list of strings
The label or list of labels to be parsed. Note that the \* can be
used as a wildcard.
Returns
-------
A list of label strings, with all wildcard matches included if
applicable.
"""
if labels is None:
raise Exception('Labels cannot be None')
if type(labels) is str:
labels = [labels]
# Parse the labels list
parsed_labels = []
for label in labels:
# Remove element from label, if present
if element in label:
label = label.split('.')[-1]
# Deal with wildcards
if '*' in label:
Ls = [L.split('.')[-1] for L in self.labels(element=element)]
if label.startswith('*'):
temp = [L for L in Ls if L.endswith(label.strip('*'))]
if label.endswith('*'):
temp = [L for L in Ls if L.startswith(label.strip('*'))]
temp = [element+'.'+L for L in temp]
elif element+'.'+label in self.keys():
temp = [element+'.'+label]
else:
temp = [element+'.'+label]
parsed_labels.extend(temp)
# Remove duplicates if any
[parsed_labels.remove(L) for L in parsed_labels
if parsed_labels.count(L) > 1]
return parsed_labels | [
"def",
"_parse_labels",
"(",
"self",
",",
"labels",
",",
"element",
")",
":",
"if",
"labels",
"is",
"None",
":",
"raise",
"Exception",
"(",
"'Labels cannot be None'",
")",
"if",
"type",
"(",
"labels",
")",
"is",
"str",
":",
"labels",
"=",
"[",
"labels",
"]",
"# Parse the labels list",
"parsed_labels",
"=",
"[",
"]",
"for",
"label",
"in",
"labels",
":",
"# Remove element from label, if present",
"if",
"element",
"in",
"label",
":",
"label",
"=",
"label",
".",
"split",
"(",
"'.'",
")",
"[",
"-",
"1",
"]",
"# Deal with wildcards",
"if",
"'*'",
"in",
"label",
":",
"Ls",
"=",
"[",
"L",
".",
"split",
"(",
"'.'",
")",
"[",
"-",
"1",
"]",
"for",
"L",
"in",
"self",
".",
"labels",
"(",
"element",
"=",
"element",
")",
"]",
"if",
"label",
".",
"startswith",
"(",
"'*'",
")",
":",
"temp",
"=",
"[",
"L",
"for",
"L",
"in",
"Ls",
"if",
"L",
".",
"endswith",
"(",
"label",
".",
"strip",
"(",
"'*'",
")",
")",
"]",
"if",
"label",
".",
"endswith",
"(",
"'*'",
")",
":",
"temp",
"=",
"[",
"L",
"for",
"L",
"in",
"Ls",
"if",
"L",
".",
"startswith",
"(",
"label",
".",
"strip",
"(",
"'*'",
")",
")",
"]",
"temp",
"=",
"[",
"element",
"+",
"'.'",
"+",
"L",
"for",
"L",
"in",
"temp",
"]",
"elif",
"element",
"+",
"'.'",
"+",
"label",
"in",
"self",
".",
"keys",
"(",
")",
":",
"temp",
"=",
"[",
"element",
"+",
"'.'",
"+",
"label",
"]",
"else",
":",
"temp",
"=",
"[",
"element",
"+",
"'.'",
"+",
"label",
"]",
"parsed_labels",
".",
"extend",
"(",
"temp",
")",
"# Remove duplicates if any",
"[",
"parsed_labels",
".",
"remove",
"(",
"L",
")",
"for",
"L",
"in",
"parsed_labels",
"if",
"parsed_labels",
".",
"count",
"(",
"L",
")",
">",
"1",
"]",
"return",
"parsed_labels"
] | r"""
This private method is used for converting \'labels\' to a proper
format, including dealing with wildcards (\*).
Parameters
----------
labels : string or list of strings
The label or list of labels to be parsed. Note that the \* can be
used as a wildcard.
Returns
-------
A list of label strings, with all wildcard matches included if
applicable. | [
"r",
"This",
"private",
"method",
"is",
"used",
"for",
"converting",
"\\",
"labels",
"\\",
"to",
"a",
"proper",
"format",
"including",
"dealing",
"with",
"wildcards",
"(",
"\\",
"*",
")",
"."
] | python | train |
OpenHumans/open-humans-api | ohapi/utils_fs.py | https://github.com/OpenHumans/open-humans-api/blob/ca2a28cf5d55cfdae13dd222ba58c25565bdb86e/ohapi/utils_fs.py#L509-L526 | def read_id_list(filepath):
"""
Get project member id from a file.
:param filepath: This field is the path of file to read.
"""
if not filepath:
return None
id_list = []
with open(filepath) as f:
for line in f:
line = line.rstrip()
if not re.match('^[0-9]{8}$', line):
raise('Each line in whitelist or blacklist is expected '
'to contain an eight digit ID, and nothing else.')
else:
id_list.append(line)
return id_list | [
"def",
"read_id_list",
"(",
"filepath",
")",
":",
"if",
"not",
"filepath",
":",
"return",
"None",
"id_list",
"=",
"[",
"]",
"with",
"open",
"(",
"filepath",
")",
"as",
"f",
":",
"for",
"line",
"in",
"f",
":",
"line",
"=",
"line",
".",
"rstrip",
"(",
")",
"if",
"not",
"re",
".",
"match",
"(",
"'^[0-9]{8}$'",
",",
"line",
")",
":",
"raise",
"(",
"'Each line in whitelist or blacklist is expected '",
"'to contain an eight digit ID, and nothing else.'",
")",
"else",
":",
"id_list",
".",
"append",
"(",
"line",
")",
"return",
"id_list"
] | Get project member id from a file.
:param filepath: This field is the path of file to read. | [
"Get",
"project",
"member",
"id",
"from",
"a",
"file",
"."
] | python | train |
dsoprea/NsqSpinner | nsq/master.py | https://github.com/dsoprea/NsqSpinner/blob/972237b8ddce737983bfed001fde52e5236be695/nsq/master.py#L239-L257 | def set_servers(self, node_couplets):
"""Set the current collection of servers. The entries are 2-tuples of
contexts and nodes.
"""
node_couplets_s = set(node_couplets)
if node_couplets_s != self.__node_couplets_s:
_logger.info("Servers have changed. NEW: %s REMOVED: %s",
node_couplets_s - self.__node_couplets_s,
self.__node_couplets_s - node_couplets_s)
# Since no servers means no connection greenlets, and the discover
# greenlet is technically scheduled and not running between
# invocations, this should successfully terminate the process.
if not node_couplets_s:
raise EnvironmentError("No servers available.")
self.__node_couplets_s = node_couplets_s | [
"def",
"set_servers",
"(",
"self",
",",
"node_couplets",
")",
":",
"node_couplets_s",
"=",
"set",
"(",
"node_couplets",
")",
"if",
"node_couplets_s",
"!=",
"self",
".",
"__node_couplets_s",
":",
"_logger",
".",
"info",
"(",
"\"Servers have changed. NEW: %s REMOVED: %s\"",
",",
"node_couplets_s",
"-",
"self",
".",
"__node_couplets_s",
",",
"self",
".",
"__node_couplets_s",
"-",
"node_couplets_s",
")",
"# Since no servers means no connection greenlets, and the discover ",
"# greenlet is technically scheduled and not running between ",
"# invocations, this should successfully terminate the process.",
"if",
"not",
"node_couplets_s",
":",
"raise",
"EnvironmentError",
"(",
"\"No servers available.\"",
")",
"self",
".",
"__node_couplets_s",
"=",
"node_couplets_s"
] | Set the current collection of servers. The entries are 2-tuples of
contexts and nodes. | [
"Set",
"the",
"current",
"collection",
"of",
"servers",
".",
"The",
"entries",
"are",
"2",
"-",
"tuples",
"of",
"contexts",
"and",
"nodes",
"."
] | python | train |
ouroboroscoding/format-oc-python | FormatOC/__init__.py | https://github.com/ouroboroscoding/format-oc-python/blob/c160b46fe4ff2c92333c776991c712de23991225/FormatOC/__init__.py#L2361-L2372 | def viewkeys(self):
"""View Keys
Returns a view associated with the parent's keys
Returns:
dict_view
"""
if hasattr(self._nodes, 'viewkeys'):
return self._nodes.viewkeys()
else:
return self._nodes.keys() | [
"def",
"viewkeys",
"(",
"self",
")",
":",
"if",
"hasattr",
"(",
"self",
".",
"_nodes",
",",
"'viewkeys'",
")",
":",
"return",
"self",
".",
"_nodes",
".",
"viewkeys",
"(",
")",
"else",
":",
"return",
"self",
".",
"_nodes",
".",
"keys",
"(",
")"
] | View Keys
Returns a view associated with the parent's keys
Returns:
dict_view | [
"View",
"Keys"
] | python | train |
inveniosoftware/invenio-oauthclient | invenio_oauthclient/contrib/cern.py | https://github.com/inveniosoftware/invenio-oauthclient/blob/2500dc6935738107617aeade79e050d7608004bb/invenio_oauthclient/contrib/cern.py#L300-L327 | def account_info(remote, resp):
"""Retrieve remote account information used to find local user."""
resource = get_resource(remote)
valid_identities = current_app.config.get(
'OAUTHCLIENT_CERN_ALLOWED_IDENTITY_CLASSES',
OAUTHCLIENT_CERN_ALLOWED_IDENTITY_CLASSES
)
identity_class = resource.get('IdentityClass', [None])[0]
if identity_class is None or identity_class not in valid_identities:
raise OAuthCERNRejectedAccountError(
'Identity class {0} is not one of [{1}]'.format(
identity_class, ''.join(valid_identities)), remote, resp, )
email = resource['EmailAddress'][0]
person_id = resource.get('PersonID', [None])
external_id = resource.get('uidNumber', person_id)[0]
nice = resource['CommonName'][0]
name = resource['DisplayName'][0]
return dict(
user=dict(
email=email.lower(),
profile=dict(username=nice, full_name=name),
),
external_id=external_id, external_method='cern',
active=True
) | [
"def",
"account_info",
"(",
"remote",
",",
"resp",
")",
":",
"resource",
"=",
"get_resource",
"(",
"remote",
")",
"valid_identities",
"=",
"current_app",
".",
"config",
".",
"get",
"(",
"'OAUTHCLIENT_CERN_ALLOWED_IDENTITY_CLASSES'",
",",
"OAUTHCLIENT_CERN_ALLOWED_IDENTITY_CLASSES",
")",
"identity_class",
"=",
"resource",
".",
"get",
"(",
"'IdentityClass'",
",",
"[",
"None",
"]",
")",
"[",
"0",
"]",
"if",
"identity_class",
"is",
"None",
"or",
"identity_class",
"not",
"in",
"valid_identities",
":",
"raise",
"OAuthCERNRejectedAccountError",
"(",
"'Identity class {0} is not one of [{1}]'",
".",
"format",
"(",
"identity_class",
",",
"''",
".",
"join",
"(",
"valid_identities",
")",
")",
",",
"remote",
",",
"resp",
",",
")",
"email",
"=",
"resource",
"[",
"'EmailAddress'",
"]",
"[",
"0",
"]",
"person_id",
"=",
"resource",
".",
"get",
"(",
"'PersonID'",
",",
"[",
"None",
"]",
")",
"external_id",
"=",
"resource",
".",
"get",
"(",
"'uidNumber'",
",",
"person_id",
")",
"[",
"0",
"]",
"nice",
"=",
"resource",
"[",
"'CommonName'",
"]",
"[",
"0",
"]",
"name",
"=",
"resource",
"[",
"'DisplayName'",
"]",
"[",
"0",
"]",
"return",
"dict",
"(",
"user",
"=",
"dict",
"(",
"email",
"=",
"email",
".",
"lower",
"(",
")",
",",
"profile",
"=",
"dict",
"(",
"username",
"=",
"nice",
",",
"full_name",
"=",
"name",
")",
",",
")",
",",
"external_id",
"=",
"external_id",
",",
"external_method",
"=",
"'cern'",
",",
"active",
"=",
"True",
")"
] | Retrieve remote account information used to find local user. | [
"Retrieve",
"remote",
"account",
"information",
"used",
"to",
"find",
"local",
"user",
"."
] | python | train |
tijme/not-your-average-web-crawler | nyawc/helpers/URLHelper.py | https://github.com/tijme/not-your-average-web-crawler/blob/d77c14e1616c541bb3980f649a7e6f8ed02761fb/nyawc/helpers/URLHelper.py#L205-L219 | def get_path(url):
"""Get the path (e.g /page/23) of the given URL.
Args:
url (str): The URL to get the path from.
Returns:
str: The path
"""
if url not in URLHelper.__cache:
URLHelper.__cache[url] = urlparse(url)
return URLHelper.__cache[url].path | [
"def",
"get_path",
"(",
"url",
")",
":",
"if",
"url",
"not",
"in",
"URLHelper",
".",
"__cache",
":",
"URLHelper",
".",
"__cache",
"[",
"url",
"]",
"=",
"urlparse",
"(",
"url",
")",
"return",
"URLHelper",
".",
"__cache",
"[",
"url",
"]",
".",
"path"
] | Get the path (e.g /page/23) of the given URL.
Args:
url (str): The URL to get the path from.
Returns:
str: The path | [
"Get",
"the",
"path",
"(",
"e",
".",
"g",
"/",
"page",
"/",
"23",
")",
"of",
"the",
"given",
"URL",
"."
] | python | train |
matrix-org/matrix-python-sdk | matrix_client/api.py | https://github.com/matrix-org/matrix-python-sdk/blob/e734cce3ccd35f2d355c6a19a7a701033472498a/matrix_client/api.py#L815-L849 | def get_thumbnail(self, mxcurl, width, height, method='scale', allow_remote=True):
"""Download raw media thumbnail from provided mxc URL.
Args:
mxcurl (str): mxc media URL
width (int): desired thumbnail width
height (int): desired thumbnail height
method (str): thumb creation method. Must be
in ['scale', 'crop']. Default 'scale'.
allow_remote (bool): indicates to the server that it should not
attempt to fetch the media if it is deemed remote. Defaults
to true if not provided.
"""
if method not in ['scale', 'crop']:
raise ValueError(
"Unsupported thumb method '%s'" % method
)
query_params = {
"width": width,
"height": height,
"method": method
}
if not allow_remote:
query_params["allow_remote"] = False
if mxcurl.startswith('mxc://'):
return self._send(
"GET", mxcurl[6:],
query_params=query_params,
api_path="/_matrix/media/r0/thumbnail/",
return_json=False
)
else:
raise ValueError(
"MXC URL '%s' did not begin with 'mxc://'" % mxcurl
) | [
"def",
"get_thumbnail",
"(",
"self",
",",
"mxcurl",
",",
"width",
",",
"height",
",",
"method",
"=",
"'scale'",
",",
"allow_remote",
"=",
"True",
")",
":",
"if",
"method",
"not",
"in",
"[",
"'scale'",
",",
"'crop'",
"]",
":",
"raise",
"ValueError",
"(",
"\"Unsupported thumb method '%s'\"",
"%",
"method",
")",
"query_params",
"=",
"{",
"\"width\"",
":",
"width",
",",
"\"height\"",
":",
"height",
",",
"\"method\"",
":",
"method",
"}",
"if",
"not",
"allow_remote",
":",
"query_params",
"[",
"\"allow_remote\"",
"]",
"=",
"False",
"if",
"mxcurl",
".",
"startswith",
"(",
"'mxc://'",
")",
":",
"return",
"self",
".",
"_send",
"(",
"\"GET\"",
",",
"mxcurl",
"[",
"6",
":",
"]",
",",
"query_params",
"=",
"query_params",
",",
"api_path",
"=",
"\"/_matrix/media/r0/thumbnail/\"",
",",
"return_json",
"=",
"False",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"MXC URL '%s' did not begin with 'mxc://'\"",
"%",
"mxcurl",
")"
] | Download raw media thumbnail from provided mxc URL.
Args:
mxcurl (str): mxc media URL
width (int): desired thumbnail width
height (int): desired thumbnail height
method (str): thumb creation method. Must be
in ['scale', 'crop']. Default 'scale'.
allow_remote (bool): indicates to the server that it should not
attempt to fetch the media if it is deemed remote. Defaults
to true if not provided. | [
"Download",
"raw",
"media",
"thumbnail",
"from",
"provided",
"mxc",
"URL",
"."
] | python | train |
twisted/mantissa | xmantissa/webtheme.py | https://github.com/twisted/mantissa/blob/53e5502aba23ce99be78b27f923a276593033fe8/xmantissa/webtheme.py#L78-L86 | def getInstalledThemes(self, store):
"""
Collect themes from all offerings installed on this store, or (if called
multiple times) return the previously collected list.
"""
if not store in self._getInstalledThemesCache:
self._getInstalledThemesCache[store] = (self.
_realGetInstalledThemes(store))
return self._getInstalledThemesCache[store] | [
"def",
"getInstalledThemes",
"(",
"self",
",",
"store",
")",
":",
"if",
"not",
"store",
"in",
"self",
".",
"_getInstalledThemesCache",
":",
"self",
".",
"_getInstalledThemesCache",
"[",
"store",
"]",
"=",
"(",
"self",
".",
"_realGetInstalledThemes",
"(",
"store",
")",
")",
"return",
"self",
".",
"_getInstalledThemesCache",
"[",
"store",
"]"
] | Collect themes from all offerings installed on this store, or (if called
multiple times) return the previously collected list. | [
"Collect",
"themes",
"from",
"all",
"offerings",
"installed",
"on",
"this",
"store",
"or",
"(",
"if",
"called",
"multiple",
"times",
")",
"return",
"the",
"previously",
"collected",
"list",
"."
] | python | train |
Clinical-Genomics/scout | scout/parse/hpo.py | https://github.com/Clinical-Genomics/scout/blob/90a551e2e1653a319e654c2405c2866f93d0ebb9/scout/parse/hpo.py#L149-L168 | def parse_hpo_to_genes(hpo_lines):
"""Parse the map from hpo term to hgnc symbol
Args:
lines(iterable(str)):
Yields:
hpo_to_gene(dict): A dictionary with information on how a term map to a hgnc symbol
"""
for line in hpo_lines:
if line.startswith('#') or len(line) < 1:
continue
line = line.rstrip().split('\t')
hpo_id = line[0]
hgnc_symbol = line[3]
yield {
'hpo_id': hpo_id,
'hgnc_symbol': hgnc_symbol
} | [
"def",
"parse_hpo_to_genes",
"(",
"hpo_lines",
")",
":",
"for",
"line",
"in",
"hpo_lines",
":",
"if",
"line",
".",
"startswith",
"(",
"'#'",
")",
"or",
"len",
"(",
"line",
")",
"<",
"1",
":",
"continue",
"line",
"=",
"line",
".",
"rstrip",
"(",
")",
".",
"split",
"(",
"'\\t'",
")",
"hpo_id",
"=",
"line",
"[",
"0",
"]",
"hgnc_symbol",
"=",
"line",
"[",
"3",
"]",
"yield",
"{",
"'hpo_id'",
":",
"hpo_id",
",",
"'hgnc_symbol'",
":",
"hgnc_symbol",
"}"
] | Parse the map from hpo term to hgnc symbol
Args:
lines(iterable(str)):
Yields:
hpo_to_gene(dict): A dictionary with information on how a term map to a hgnc symbol | [
"Parse",
"the",
"map",
"from",
"hpo",
"term",
"to",
"hgnc",
"symbol",
"Args",
":",
"lines",
"(",
"iterable",
"(",
"str",
"))",
":",
"Yields",
":",
"hpo_to_gene",
"(",
"dict",
")",
":",
"A",
"dictionary",
"with",
"information",
"on",
"how",
"a",
"term",
"map",
"to",
"a",
"hgnc",
"symbol"
] | python | test |
CxAalto/gtfspy | gtfspy/gtfs.py | https://github.com/CxAalto/gtfspy/blob/bddba4b74faae6c1b91202f19184811e326547e5/gtfspy/gtfs.py#L1440-L1482 | def get_route_difference_with_other_db(self, other_gtfs, start_time, end_time, uniqueness_threshold=None,
uniqueness_ratio=None):
"""
Compares the routes based on stops in the schedule with the routes in another db and returns the ones without match.
Uniqueness thresholds or ratio can be used to allow small differences
:param uniqueness_threshold:
:param uniqueness_ratio:
:return:
"""
from gtfspy.stats import frequencies_by_generated_route
this_df = frequencies_by_generated_route(self, start_time, end_time)
other_df = frequencies_by_generated_route(other_gtfs, start_time, end_time)
this_routes = {x: set(x.split(',')) for x in this_df["route"]}
other_routes = {x: set(x.split(',')) for x in other_df["route"]}
# this_df["route_set"] = this_df.apply(lambda x: set(x.route.split(',')), axis=1)
# other_df["route_set"] = other_df.apply(lambda x: set(x.route.split(',')), axis=1)
this_uniques = list(this_routes.keys())
other_uniques = list(other_routes.keys())
print("initial routes A:", len(this_uniques))
print("initial routes B:", len(other_uniques))
for i_key, i in this_routes.items():
for j_key, j in other_routes.items():
union = i | j
intersection = i & j
symmetric_difference = i ^ j
if uniqueness_ratio:
if len(intersection) / len(union) >= uniqueness_ratio:
try:
this_uniques.remove(i_key)
this_df = this_df[this_df["route"] != i_key]
except ValueError:
pass
try:
other_uniques.remove(j_key)
other_df = other_df[other_df["route"] != j_key]
except ValueError:
pass
print("unique routes A", len(this_df))
print("unique routes B", len(other_df))
return this_df, other_df | [
"def",
"get_route_difference_with_other_db",
"(",
"self",
",",
"other_gtfs",
",",
"start_time",
",",
"end_time",
",",
"uniqueness_threshold",
"=",
"None",
",",
"uniqueness_ratio",
"=",
"None",
")",
":",
"from",
"gtfspy",
".",
"stats",
"import",
"frequencies_by_generated_route",
"this_df",
"=",
"frequencies_by_generated_route",
"(",
"self",
",",
"start_time",
",",
"end_time",
")",
"other_df",
"=",
"frequencies_by_generated_route",
"(",
"other_gtfs",
",",
"start_time",
",",
"end_time",
")",
"this_routes",
"=",
"{",
"x",
":",
"set",
"(",
"x",
".",
"split",
"(",
"','",
")",
")",
"for",
"x",
"in",
"this_df",
"[",
"\"route\"",
"]",
"}",
"other_routes",
"=",
"{",
"x",
":",
"set",
"(",
"x",
".",
"split",
"(",
"','",
")",
")",
"for",
"x",
"in",
"other_df",
"[",
"\"route\"",
"]",
"}",
"# this_df[\"route_set\"] = this_df.apply(lambda x: set(x.route.split(',')), axis=1)",
"# other_df[\"route_set\"] = other_df.apply(lambda x: set(x.route.split(',')), axis=1)",
"this_uniques",
"=",
"list",
"(",
"this_routes",
".",
"keys",
"(",
")",
")",
"other_uniques",
"=",
"list",
"(",
"other_routes",
".",
"keys",
"(",
")",
")",
"print",
"(",
"\"initial routes A:\"",
",",
"len",
"(",
"this_uniques",
")",
")",
"print",
"(",
"\"initial routes B:\"",
",",
"len",
"(",
"other_uniques",
")",
")",
"for",
"i_key",
",",
"i",
"in",
"this_routes",
".",
"items",
"(",
")",
":",
"for",
"j_key",
",",
"j",
"in",
"other_routes",
".",
"items",
"(",
")",
":",
"union",
"=",
"i",
"|",
"j",
"intersection",
"=",
"i",
"&",
"j",
"symmetric_difference",
"=",
"i",
"^",
"j",
"if",
"uniqueness_ratio",
":",
"if",
"len",
"(",
"intersection",
")",
"/",
"len",
"(",
"union",
")",
">=",
"uniqueness_ratio",
":",
"try",
":",
"this_uniques",
".",
"remove",
"(",
"i_key",
")",
"this_df",
"=",
"this_df",
"[",
"this_df",
"[",
"\"route\"",
"]",
"!=",
"i_key",
"]",
"except",
"ValueError",
":",
"pass",
"try",
":",
"other_uniques",
".",
"remove",
"(",
"j_key",
")",
"other_df",
"=",
"other_df",
"[",
"other_df",
"[",
"\"route\"",
"]",
"!=",
"j_key",
"]",
"except",
"ValueError",
":",
"pass",
"print",
"(",
"\"unique routes A\"",
",",
"len",
"(",
"this_df",
")",
")",
"print",
"(",
"\"unique routes B\"",
",",
"len",
"(",
"other_df",
")",
")",
"return",
"this_df",
",",
"other_df"
] | Compares the routes based on stops in the schedule with the routes in another db and returns the ones without match.
Uniqueness thresholds or ratio can be used to allow small differences
:param uniqueness_threshold:
:param uniqueness_ratio:
:return: | [
"Compares",
"the",
"routes",
"based",
"on",
"stops",
"in",
"the",
"schedule",
"with",
"the",
"routes",
"in",
"another",
"db",
"and",
"returns",
"the",
"ones",
"without",
"match",
".",
"Uniqueness",
"thresholds",
"or",
"ratio",
"can",
"be",
"used",
"to",
"allow",
"small",
"differences",
":",
"param",
"uniqueness_threshold",
":",
":",
"param",
"uniqueness_ratio",
":",
":",
"return",
":"
] | python | valid |
awslabs/sockeye | sockeye/lr_scheduler.py | https://github.com/awslabs/sockeye/blob/5d64a1ee1ef3cbba17c6d1d94bc061020c43f6ab/sockeye/lr_scheduler.py#L253-L299 | def get_lr_scheduler(scheduler_type: str,
updates_per_checkpoint: int,
learning_rate_half_life: int,
learning_rate_reduce_factor: float,
learning_rate_reduce_num_not_improved: int,
learning_rate_schedule: Optional[List[Tuple[float, int]]] = None,
learning_rate_warmup: Optional[int] = 0) -> Optional[LearningRateScheduler]:
"""
Returns a learning rate scheduler.
:param scheduler_type: Scheduler type.
:param updates_per_checkpoint: Number of batches between checkpoints.
:param learning_rate_half_life: Half life of the learning rate in number of checkpoints.
:param learning_rate_reduce_factor: Factor to reduce learning rate with.
:param learning_rate_reduce_num_not_improved: Number of checkpoints with no improvement after which learning rate is
reduced.
:param learning_rate_schedule: Optional fixed learning rate schedule.
:param learning_rate_warmup: Number of batches that the learning rate is linearly increased.
:raises: ValueError if unknown scheduler_type
:return: Learning rate scheduler.
"""
check_condition(learning_rate_schedule is None or scheduler_type == C.LR_SCHEDULER_FIXED_STEP,
"Learning rate schedule can only be used with '%s' learning rate scheduler."
% C.LR_SCHEDULER_FIXED_STEP)
if scheduler_type is None:
return None
if scheduler_type == C.LR_SCHEDULER_FIXED_RATE_INV_SQRT_T:
return LearningRateSchedulerInvSqrtT(updates_per_checkpoint, learning_rate_half_life, learning_rate_warmup)
elif scheduler_type == C.LR_SCHEDULER_FIXED_RATE_INV_T:
return LearningRateSchedulerInvT(updates_per_checkpoint, learning_rate_half_life, learning_rate_warmup)
elif scheduler_type == C.LR_SCHEDULER_FIXED_STEP:
check_condition(learning_rate_schedule is not None,
"learning_rate_schedule needed for %s scheduler" % C.LR_SCHEDULER_FIXED_STEP)
return LearningRateSchedulerFixedStep(learning_rate_schedule, updates_per_checkpoint)
elif scheduler_type == C.LR_SCHEDULER_PLATEAU_REDUCE:
check_condition(learning_rate_reduce_factor is not None,
"learning_rate_reduce_factor needed for %s scheduler" % C.LR_SCHEDULER_PLATEAU_REDUCE)
check_condition(learning_rate_reduce_num_not_improved is not None,
"learning_rate_reduce_num_not_improved needed for %s scheduler" % C.LR_SCHEDULER_PLATEAU_REDUCE)
if learning_rate_reduce_factor >= 1.0:
logger.warning("Not using %s learning rate scheduling: learning_rate_reduce_factor == 1.0"
% C.LR_SCHEDULER_PLATEAU_REDUCE)
return None
return LearningRateSchedulerPlateauReduce(learning_rate_reduce_factor, learning_rate_reduce_num_not_improved,
learning_rate_warmup)
else:
raise ValueError("Unknown learning rate scheduler type %s." % scheduler_type) | [
"def",
"get_lr_scheduler",
"(",
"scheduler_type",
":",
"str",
",",
"updates_per_checkpoint",
":",
"int",
",",
"learning_rate_half_life",
":",
"int",
",",
"learning_rate_reduce_factor",
":",
"float",
",",
"learning_rate_reduce_num_not_improved",
":",
"int",
",",
"learning_rate_schedule",
":",
"Optional",
"[",
"List",
"[",
"Tuple",
"[",
"float",
",",
"int",
"]",
"]",
"]",
"=",
"None",
",",
"learning_rate_warmup",
":",
"Optional",
"[",
"int",
"]",
"=",
"0",
")",
"->",
"Optional",
"[",
"LearningRateScheduler",
"]",
":",
"check_condition",
"(",
"learning_rate_schedule",
"is",
"None",
"or",
"scheduler_type",
"==",
"C",
".",
"LR_SCHEDULER_FIXED_STEP",
",",
"\"Learning rate schedule can only be used with '%s' learning rate scheduler.\"",
"%",
"C",
".",
"LR_SCHEDULER_FIXED_STEP",
")",
"if",
"scheduler_type",
"is",
"None",
":",
"return",
"None",
"if",
"scheduler_type",
"==",
"C",
".",
"LR_SCHEDULER_FIXED_RATE_INV_SQRT_T",
":",
"return",
"LearningRateSchedulerInvSqrtT",
"(",
"updates_per_checkpoint",
",",
"learning_rate_half_life",
",",
"learning_rate_warmup",
")",
"elif",
"scheduler_type",
"==",
"C",
".",
"LR_SCHEDULER_FIXED_RATE_INV_T",
":",
"return",
"LearningRateSchedulerInvT",
"(",
"updates_per_checkpoint",
",",
"learning_rate_half_life",
",",
"learning_rate_warmup",
")",
"elif",
"scheduler_type",
"==",
"C",
".",
"LR_SCHEDULER_FIXED_STEP",
":",
"check_condition",
"(",
"learning_rate_schedule",
"is",
"not",
"None",
",",
"\"learning_rate_schedule needed for %s scheduler\"",
"%",
"C",
".",
"LR_SCHEDULER_FIXED_STEP",
")",
"return",
"LearningRateSchedulerFixedStep",
"(",
"learning_rate_schedule",
",",
"updates_per_checkpoint",
")",
"elif",
"scheduler_type",
"==",
"C",
".",
"LR_SCHEDULER_PLATEAU_REDUCE",
":",
"check_condition",
"(",
"learning_rate_reduce_factor",
"is",
"not",
"None",
",",
"\"learning_rate_reduce_factor needed for %s scheduler\"",
"%",
"C",
".",
"LR_SCHEDULER_PLATEAU_REDUCE",
")",
"check_condition",
"(",
"learning_rate_reduce_num_not_improved",
"is",
"not",
"None",
",",
"\"learning_rate_reduce_num_not_improved needed for %s scheduler\"",
"%",
"C",
".",
"LR_SCHEDULER_PLATEAU_REDUCE",
")",
"if",
"learning_rate_reduce_factor",
">=",
"1.0",
":",
"logger",
".",
"warning",
"(",
"\"Not using %s learning rate scheduling: learning_rate_reduce_factor == 1.0\"",
"%",
"C",
".",
"LR_SCHEDULER_PLATEAU_REDUCE",
")",
"return",
"None",
"return",
"LearningRateSchedulerPlateauReduce",
"(",
"learning_rate_reduce_factor",
",",
"learning_rate_reduce_num_not_improved",
",",
"learning_rate_warmup",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Unknown learning rate scheduler type %s.\"",
"%",
"scheduler_type",
")"
] | Returns a learning rate scheduler.
:param scheduler_type: Scheduler type.
:param updates_per_checkpoint: Number of batches between checkpoints.
:param learning_rate_half_life: Half life of the learning rate in number of checkpoints.
:param learning_rate_reduce_factor: Factor to reduce learning rate with.
:param learning_rate_reduce_num_not_improved: Number of checkpoints with no improvement after which learning rate is
reduced.
:param learning_rate_schedule: Optional fixed learning rate schedule.
:param learning_rate_warmup: Number of batches that the learning rate is linearly increased.
:raises: ValueError if unknown scheduler_type
:return: Learning rate scheduler. | [
"Returns",
"a",
"learning",
"rate",
"scheduler",
"."
] | python | train |
jldantas/libmft | libmft/api.py | https://github.com/jldantas/libmft/blob/65a988605fe7663b788bd81dcb52c0a4eaad1549/libmft/api.py#L405-L427 | def add_data_attribute(self, data_attr):
'''Interprets a DATA attribute and add it to the datastream.'''
if data_attr.header.attr_type_id is not AttrTypes.DATA:
raise DataStreamError("Invalid attribute. A Datastream deals only with DATA attributes")
if data_attr.header.attr_name != self.name:
raise DataStreamError(f"Data from a different stream '{data_attr.header.attr_name}' cannot be add to this stream")
if data_attr.header.non_resident:
nonr_header = data_attr.header
if self._data_runs is None:
self._data_runs = []
if nonr_header.end_vcn > self.cluster_count:
self.cluster_count = nonr_header.end_vcn
if not nonr_header.start_vcn: #start_vcn == 0
self.size = nonr_header.curr_sstream
self.alloc_size = nonr_header.alloc_sstream
self._data_runs.append((nonr_header.start_vcn, nonr_header.data_runs))
self._data_runs_sorted = False
else: #if it is resident
self.size = self.alloc_size = data_attr.header.content_len
self._pending_processing = None
#respects mft_config["load_data"]
self._content = data_attr.content.content | [
"def",
"add_data_attribute",
"(",
"self",
",",
"data_attr",
")",
":",
"if",
"data_attr",
".",
"header",
".",
"attr_type_id",
"is",
"not",
"AttrTypes",
".",
"DATA",
":",
"raise",
"DataStreamError",
"(",
"\"Invalid attribute. A Datastream deals only with DATA attributes\"",
")",
"if",
"data_attr",
".",
"header",
".",
"attr_name",
"!=",
"self",
".",
"name",
":",
"raise",
"DataStreamError",
"(",
"f\"Data from a different stream '{data_attr.header.attr_name}' cannot be add to this stream\"",
")",
"if",
"data_attr",
".",
"header",
".",
"non_resident",
":",
"nonr_header",
"=",
"data_attr",
".",
"header",
"if",
"self",
".",
"_data_runs",
"is",
"None",
":",
"self",
".",
"_data_runs",
"=",
"[",
"]",
"if",
"nonr_header",
".",
"end_vcn",
">",
"self",
".",
"cluster_count",
":",
"self",
".",
"cluster_count",
"=",
"nonr_header",
".",
"end_vcn",
"if",
"not",
"nonr_header",
".",
"start_vcn",
":",
"#start_vcn == 0",
"self",
".",
"size",
"=",
"nonr_header",
".",
"curr_sstream",
"self",
".",
"alloc_size",
"=",
"nonr_header",
".",
"alloc_sstream",
"self",
".",
"_data_runs",
".",
"append",
"(",
"(",
"nonr_header",
".",
"start_vcn",
",",
"nonr_header",
".",
"data_runs",
")",
")",
"self",
".",
"_data_runs_sorted",
"=",
"False",
"else",
":",
"#if it is resident",
"self",
".",
"size",
"=",
"self",
".",
"alloc_size",
"=",
"data_attr",
".",
"header",
".",
"content_len",
"self",
".",
"_pending_processing",
"=",
"None",
"#respects mft_config[\"load_data\"]",
"self",
".",
"_content",
"=",
"data_attr",
".",
"content",
".",
"content"
] | Interprets a DATA attribute and add it to the datastream. | [
"Interprets",
"a",
"DATA",
"attribute",
"and",
"add",
"it",
"to",
"the",
"datastream",
"."
] | python | train |
quantopian/pyfolio | pyfolio/timeseries.py | https://github.com/quantopian/pyfolio/blob/712716ab0cdebbec9fabb25eea3bf40e4354749d/pyfolio/timeseries.py#L231-L258 | def downside_risk(returns, required_return=0, period=DAILY):
"""
Determines the downside deviation below a threshold
Parameters
----------
returns : pd.Series or pd.DataFrame
Daily returns of the strategy, noncumulative.
- See full explanation in :func:`~pyfolio.timeseries.cum_returns`.
required_return: float / series
minimum acceptable return
period : str, optional
Defines the periodicity of the 'returns' data for purposes of
annualizing. Can be 'monthly', 'weekly', or 'daily'.
- Defaults to 'daily'.
Returns
-------
depends on input type
series ==> float
DataFrame ==> np.array
Annualized downside deviation
"""
return ep.downside_risk(returns,
required_return=required_return,
period=period) | [
"def",
"downside_risk",
"(",
"returns",
",",
"required_return",
"=",
"0",
",",
"period",
"=",
"DAILY",
")",
":",
"return",
"ep",
".",
"downside_risk",
"(",
"returns",
",",
"required_return",
"=",
"required_return",
",",
"period",
"=",
"period",
")"
] | Determines the downside deviation below a threshold
Parameters
----------
returns : pd.Series or pd.DataFrame
Daily returns of the strategy, noncumulative.
- See full explanation in :func:`~pyfolio.timeseries.cum_returns`.
required_return: float / series
minimum acceptable return
period : str, optional
Defines the periodicity of the 'returns' data for purposes of
annualizing. Can be 'monthly', 'weekly', or 'daily'.
- Defaults to 'daily'.
Returns
-------
depends on input type
series ==> float
DataFrame ==> np.array
Annualized downside deviation | [
"Determines",
"the",
"downside",
"deviation",
"below",
"a",
"threshold"
] | python | valid |
Hackerfleet/hfos | modules/maps/hfos/map/TileTools.py | https://github.com/Hackerfleet/hfos/blob/b6df14eacaffb6be5c844108873ff8763ec7f0c9/modules/maps/hfos/map/TileTools.py#L40-L45 | def getMapScale(self, latitude, level, dpi=96):
'''
returns the map scale on the dpi of the screen
'''
dpm = dpi / 0.0254 # convert to dots per meter
return self.getGroundResolution(latitude, level) * dpm | [
"def",
"getMapScale",
"(",
"self",
",",
"latitude",
",",
"level",
",",
"dpi",
"=",
"96",
")",
":",
"dpm",
"=",
"dpi",
"/",
"0.0254",
"# convert to dots per meter",
"return",
"self",
".",
"getGroundResolution",
"(",
"latitude",
",",
"level",
")",
"*",
"dpm"
] | returns the map scale on the dpi of the screen | [
"returns",
"the",
"map",
"scale",
"on",
"the",
"dpi",
"of",
"the",
"screen"
] | python | train |
googlesamples/assistant-sdk-python | google-assistant-sdk/googlesamples/assistant/grpc/devicetool.py | https://github.com/googlesamples/assistant-sdk-python/blob/84995692f35be8e085de8dfa7032039a13ae3fab/google-assistant-sdk/googlesamples/assistant/grpc/devicetool.py#L222-L260 | def register_model(ctx, model, type, trait,
manufacturer, product_name, description):
"""Registers a device model.
Device model fields can only contain letters, numbers, and the following
symbols: period (.), hyphen (-), underscore (_), space ( ) and plus (+).
The first character of a field must be a letter or number.
"""
session, api_url, project_id = build_client_from_context(ctx)
model_base_url = '/'.join([api_url, 'deviceModels'])
model_url = '/'.join([model_base_url, model])
payload = {
'device_model_id': model,
'project_id': project_id,
'device_type': 'action.devices.types.' + type,
}
if trait:
payload['traits'] = trait
if manufacturer:
payload.setdefault('manifest', {})['manufacturer'] = manufacturer
if product_name:
payload.setdefault('manifest', {})['productName'] = product_name
if description:
payload.setdefault('manifest', {})['deviceDescription'] = description
logging.debug(json.dumps(payload))
r = session.get(model_url)
logging.debug(r.text)
if r.status_code == 200:
click.echo('Updating existing device model: %s' % model)
r = session.put(model_url, data=json.dumps(payload))
elif r.status_code in (400, 403, 404):
click.echo('Creating new device model')
r = session.post(model_base_url, data=json.dumps(payload))
else:
raise failed_request_exception('Failed to check existing device model',
r)
if r.status_code != 200:
raise failed_request_exception('Failed to register model', r)
click.echo('Model %s successfully registered' % model) | [
"def",
"register_model",
"(",
"ctx",
",",
"model",
",",
"type",
",",
"trait",
",",
"manufacturer",
",",
"product_name",
",",
"description",
")",
":",
"session",
",",
"api_url",
",",
"project_id",
"=",
"build_client_from_context",
"(",
"ctx",
")",
"model_base_url",
"=",
"'/'",
".",
"join",
"(",
"[",
"api_url",
",",
"'deviceModels'",
"]",
")",
"model_url",
"=",
"'/'",
".",
"join",
"(",
"[",
"model_base_url",
",",
"model",
"]",
")",
"payload",
"=",
"{",
"'device_model_id'",
":",
"model",
",",
"'project_id'",
":",
"project_id",
",",
"'device_type'",
":",
"'action.devices.types.'",
"+",
"type",
",",
"}",
"if",
"trait",
":",
"payload",
"[",
"'traits'",
"]",
"=",
"trait",
"if",
"manufacturer",
":",
"payload",
".",
"setdefault",
"(",
"'manifest'",
",",
"{",
"}",
")",
"[",
"'manufacturer'",
"]",
"=",
"manufacturer",
"if",
"product_name",
":",
"payload",
".",
"setdefault",
"(",
"'manifest'",
",",
"{",
"}",
")",
"[",
"'productName'",
"]",
"=",
"product_name",
"if",
"description",
":",
"payload",
".",
"setdefault",
"(",
"'manifest'",
",",
"{",
"}",
")",
"[",
"'deviceDescription'",
"]",
"=",
"description",
"logging",
".",
"debug",
"(",
"json",
".",
"dumps",
"(",
"payload",
")",
")",
"r",
"=",
"session",
".",
"get",
"(",
"model_url",
")",
"logging",
".",
"debug",
"(",
"r",
".",
"text",
")",
"if",
"r",
".",
"status_code",
"==",
"200",
":",
"click",
".",
"echo",
"(",
"'Updating existing device model: %s'",
"%",
"model",
")",
"r",
"=",
"session",
".",
"put",
"(",
"model_url",
",",
"data",
"=",
"json",
".",
"dumps",
"(",
"payload",
")",
")",
"elif",
"r",
".",
"status_code",
"in",
"(",
"400",
",",
"403",
",",
"404",
")",
":",
"click",
".",
"echo",
"(",
"'Creating new device model'",
")",
"r",
"=",
"session",
".",
"post",
"(",
"model_base_url",
",",
"data",
"=",
"json",
".",
"dumps",
"(",
"payload",
")",
")",
"else",
":",
"raise",
"failed_request_exception",
"(",
"'Failed to check existing device model'",
",",
"r",
")",
"if",
"r",
".",
"status_code",
"!=",
"200",
":",
"raise",
"failed_request_exception",
"(",
"'Failed to register model'",
",",
"r",
")",
"click",
".",
"echo",
"(",
"'Model %s successfully registered'",
"%",
"model",
")"
] | Registers a device model.
Device model fields can only contain letters, numbers, and the following
symbols: period (.), hyphen (-), underscore (_), space ( ) and plus (+).
The first character of a field must be a letter or number. | [
"Registers",
"a",
"device",
"model",
"."
] | python | train |
serge-sans-paille/pythran | pythran/types/type_dependencies.py | https://github.com/serge-sans-paille/pythran/blob/7e1b5af2dddfabc50bd2a977f0178be269b349b5/pythran/types/type_dependencies.py#L435-L451 | def visit_Name(self, node):
"""
Return dependencies for given variable.
It have to be register first.
"""
if node.id in self.naming:
return self.naming[node.id]
elif node.id in self.global_declarations:
return [frozenset([self.global_declarations[node.id]])]
elif isinstance(node.ctx, ast.Param):
deps = [frozenset()]
self.naming[node.id] = deps
return deps
else:
raise PythranInternalError("Variable '{}' use before assignment"
"".format(node.id)) | [
"def",
"visit_Name",
"(",
"self",
",",
"node",
")",
":",
"if",
"node",
".",
"id",
"in",
"self",
".",
"naming",
":",
"return",
"self",
".",
"naming",
"[",
"node",
".",
"id",
"]",
"elif",
"node",
".",
"id",
"in",
"self",
".",
"global_declarations",
":",
"return",
"[",
"frozenset",
"(",
"[",
"self",
".",
"global_declarations",
"[",
"node",
".",
"id",
"]",
"]",
")",
"]",
"elif",
"isinstance",
"(",
"node",
".",
"ctx",
",",
"ast",
".",
"Param",
")",
":",
"deps",
"=",
"[",
"frozenset",
"(",
")",
"]",
"self",
".",
"naming",
"[",
"node",
".",
"id",
"]",
"=",
"deps",
"return",
"deps",
"else",
":",
"raise",
"PythranInternalError",
"(",
"\"Variable '{}' use before assignment\"",
"\"\"",
".",
"format",
"(",
"node",
".",
"id",
")",
")"
] | Return dependencies for given variable.
It have to be register first. | [
"Return",
"dependencies",
"for",
"given",
"variable",
"."
] | python | train |
flatangle/flatlib | flatlib/tools/chartdynamics.py | https://github.com/flatangle/flatlib/blob/44e05b2991a296c678adbc17a1d51b6a21bc867c/flatlib/tools/chartdynamics.py#L143-L152 | def isVOC(self, ID):
""" Returns if a planet is Void of Course.
A planet is not VOC if has any exact or applicative aspects
ignoring the sign status (associate or dissociate).
"""
asps = self.aspectsByCat(ID, const.MAJOR_ASPECTS)
applications = asps[const.APPLICATIVE]
exacts = asps[const.EXACT]
return len(applications) == 0 and len(exacts) == 0 | [
"def",
"isVOC",
"(",
"self",
",",
"ID",
")",
":",
"asps",
"=",
"self",
".",
"aspectsByCat",
"(",
"ID",
",",
"const",
".",
"MAJOR_ASPECTS",
")",
"applications",
"=",
"asps",
"[",
"const",
".",
"APPLICATIVE",
"]",
"exacts",
"=",
"asps",
"[",
"const",
".",
"EXACT",
"]",
"return",
"len",
"(",
"applications",
")",
"==",
"0",
"and",
"len",
"(",
"exacts",
")",
"==",
"0"
] | Returns if a planet is Void of Course.
A planet is not VOC if has any exact or applicative aspects
ignoring the sign status (associate or dissociate). | [
"Returns",
"if",
"a",
"planet",
"is",
"Void",
"of",
"Course",
".",
"A",
"planet",
"is",
"not",
"VOC",
"if",
"has",
"any",
"exact",
"or",
"applicative",
"aspects",
"ignoring",
"the",
"sign",
"status",
"(",
"associate",
"or",
"dissociate",
")",
"."
] | python | train |
abhishek-ram/pyas2-lib | pyas2lib/cms.py | https://github.com/abhishek-ram/pyas2-lib/blob/6af6bc71fe8a8cfb3465dad82ecc50539e3fd551/pyas2lib/cms.py#L309-L371 | def verify_message(data_to_verify, signature, verify_cert):
"""Function parses an ASN.1 encrypted message and extracts/decrypts
the original message.
:param data_to_verify:
A byte string of the data to be verified against the signature.
:param signature: A CMS ASN.1 byte string containing the signature.
:param verify_cert: The certificate to be used for verifying the signature.
:return: The digest algorithm that was used in the signature.
"""
cms_content = cms.ContentInfo.load(signature)
digest_alg = None
if cms_content['content_type'].native == 'signed_data':
for signer in cms_content['content']['signer_infos']:
signed_attributes = signer['signed_attrs'].copy()
digest_alg = signer['digest_algorithm']['algorithm'].native
if digest_alg not in DIGEST_ALGORITHMS:
raise Exception('Unsupported Digest Algorithm')
sig_alg = signer['signature_algorithm']['algorithm'].native
sig = signer['signature'].native
signed_data = data_to_verify
if signed_attributes:
attr_dict = {}
for attr in signed_attributes.native:
attr_dict[attr['type']] = attr['values']
message_digest = byte_cls()
for d in attr_dict['message_digest']:
message_digest += d
digest_func = hashlib.new(digest_alg)
digest_func.update(data_to_verify)
calc_message_digest = digest_func.digest()
if message_digest != calc_message_digest:
raise IntegrityError('Failed to verify message signature: '
'Message Digest does not match.')
signed_data = signed_attributes.untag().dump()
try:
if sig_alg == 'rsassa_pkcs1v15':
asymmetric.rsa_pkcs1v15_verify(
verify_cert, sig, signed_data, digest_alg)
elif sig_alg == 'rsassa_pss':
asymmetric.rsa_pss_verify(
verify_cert, sig, signed_data, digest_alg)
else:
raise AS2Exception('Unsupported Signature Algorithm')
except Exception as e:
raise IntegrityError(
'Failed to verify message signature: {}'.format(e))
return digest_alg | [
"def",
"verify_message",
"(",
"data_to_verify",
",",
"signature",
",",
"verify_cert",
")",
":",
"cms_content",
"=",
"cms",
".",
"ContentInfo",
".",
"load",
"(",
"signature",
")",
"digest_alg",
"=",
"None",
"if",
"cms_content",
"[",
"'content_type'",
"]",
".",
"native",
"==",
"'signed_data'",
":",
"for",
"signer",
"in",
"cms_content",
"[",
"'content'",
"]",
"[",
"'signer_infos'",
"]",
":",
"signed_attributes",
"=",
"signer",
"[",
"'signed_attrs'",
"]",
".",
"copy",
"(",
")",
"digest_alg",
"=",
"signer",
"[",
"'digest_algorithm'",
"]",
"[",
"'algorithm'",
"]",
".",
"native",
"if",
"digest_alg",
"not",
"in",
"DIGEST_ALGORITHMS",
":",
"raise",
"Exception",
"(",
"'Unsupported Digest Algorithm'",
")",
"sig_alg",
"=",
"signer",
"[",
"'signature_algorithm'",
"]",
"[",
"'algorithm'",
"]",
".",
"native",
"sig",
"=",
"signer",
"[",
"'signature'",
"]",
".",
"native",
"signed_data",
"=",
"data_to_verify",
"if",
"signed_attributes",
":",
"attr_dict",
"=",
"{",
"}",
"for",
"attr",
"in",
"signed_attributes",
".",
"native",
":",
"attr_dict",
"[",
"attr",
"[",
"'type'",
"]",
"]",
"=",
"attr",
"[",
"'values'",
"]",
"message_digest",
"=",
"byte_cls",
"(",
")",
"for",
"d",
"in",
"attr_dict",
"[",
"'message_digest'",
"]",
":",
"message_digest",
"+=",
"d",
"digest_func",
"=",
"hashlib",
".",
"new",
"(",
"digest_alg",
")",
"digest_func",
".",
"update",
"(",
"data_to_verify",
")",
"calc_message_digest",
"=",
"digest_func",
".",
"digest",
"(",
")",
"if",
"message_digest",
"!=",
"calc_message_digest",
":",
"raise",
"IntegrityError",
"(",
"'Failed to verify message signature: '",
"'Message Digest does not match.'",
")",
"signed_data",
"=",
"signed_attributes",
".",
"untag",
"(",
")",
".",
"dump",
"(",
")",
"try",
":",
"if",
"sig_alg",
"==",
"'rsassa_pkcs1v15'",
":",
"asymmetric",
".",
"rsa_pkcs1v15_verify",
"(",
"verify_cert",
",",
"sig",
",",
"signed_data",
",",
"digest_alg",
")",
"elif",
"sig_alg",
"==",
"'rsassa_pss'",
":",
"asymmetric",
".",
"rsa_pss_verify",
"(",
"verify_cert",
",",
"sig",
",",
"signed_data",
",",
"digest_alg",
")",
"else",
":",
"raise",
"AS2Exception",
"(",
"'Unsupported Signature Algorithm'",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"IntegrityError",
"(",
"'Failed to verify message signature: {}'",
".",
"format",
"(",
"e",
")",
")",
"return",
"digest_alg"
] | Function parses an ASN.1 encrypted message and extracts/decrypts
the original message.
:param data_to_verify:
A byte string of the data to be verified against the signature.
:param signature: A CMS ASN.1 byte string containing the signature.
:param verify_cert: The certificate to be used for verifying the signature.
:return: The digest algorithm that was used in the signature. | [
"Function",
"parses",
"an",
"ASN",
".",
"1",
"encrypted",
"message",
"and",
"extracts",
"/",
"decrypts",
"the",
"original",
"message",
"."
] | python | train |
pymc-devs/pymc | pymc/distributions.py | https://github.com/pymc-devs/pymc/blob/c6e530210bff4c0d7189b35b2c971bc53f93f7cd/pymc/distributions.py#L1225-L1232 | def rexponweib(alpha, k, loc=0, scale=1, size=None):
"""
Random exponentiated Weibull variates.
"""
q = np.random.uniform(size=size)
r = flib.exponweib_ppf(q, alpha, k)
return loc + r * scale | [
"def",
"rexponweib",
"(",
"alpha",
",",
"k",
",",
"loc",
"=",
"0",
",",
"scale",
"=",
"1",
",",
"size",
"=",
"None",
")",
":",
"q",
"=",
"np",
".",
"random",
".",
"uniform",
"(",
"size",
"=",
"size",
")",
"r",
"=",
"flib",
".",
"exponweib_ppf",
"(",
"q",
",",
"alpha",
",",
"k",
")",
"return",
"loc",
"+",
"r",
"*",
"scale"
] | Random exponentiated Weibull variates. | [
"Random",
"exponentiated",
"Weibull",
"variates",
"."
] | python | train |
chaoss/grimoirelab-perceval | perceval/backends/core/mediawiki.py | https://github.com/chaoss/grimoirelab-perceval/blob/41c908605e88b7ebc3a536c643fa0f212eaf9e0e/perceval/backends/core/mediawiki.py#L85-L105 | def fetch(self, category=CATEGORY_PAGE, from_date=DEFAULT_DATETIME, reviews_api=False):
"""Fetch the pages from the backend url.
The method retrieves, from a MediaWiki url, the
wiki pages.
:param category: the category of items to fetch
:param from_date: obtain pages updated since this date
:param reviews_api: use the reviews API available in MediaWiki >= 1.27
:returns: a generator of pages
"""
if from_date == DEFAULT_DATETIME:
from_date = None
else:
from_date = datetime_to_utc(from_date)
kwargs = {"from_date": from_date, "reviews_api": reviews_api}
items = super().fetch(category, **kwargs)
return items | [
"def",
"fetch",
"(",
"self",
",",
"category",
"=",
"CATEGORY_PAGE",
",",
"from_date",
"=",
"DEFAULT_DATETIME",
",",
"reviews_api",
"=",
"False",
")",
":",
"if",
"from_date",
"==",
"DEFAULT_DATETIME",
":",
"from_date",
"=",
"None",
"else",
":",
"from_date",
"=",
"datetime_to_utc",
"(",
"from_date",
")",
"kwargs",
"=",
"{",
"\"from_date\"",
":",
"from_date",
",",
"\"reviews_api\"",
":",
"reviews_api",
"}",
"items",
"=",
"super",
"(",
")",
".",
"fetch",
"(",
"category",
",",
"*",
"*",
"kwargs",
")",
"return",
"items"
] | Fetch the pages from the backend url.
The method retrieves, from a MediaWiki url, the
wiki pages.
:param category: the category of items to fetch
:param from_date: obtain pages updated since this date
:param reviews_api: use the reviews API available in MediaWiki >= 1.27
:returns: a generator of pages | [
"Fetch",
"the",
"pages",
"from",
"the",
"backend",
"url",
"."
] | python | test |
SBRG/ssbio | ssbio/protein/sequence/utils/blast.py | https://github.com/SBRG/ssbio/blob/e9449e64ffc1a1f5ad07e5849aa12a650095f8a2/ssbio/protein/sequence/utils/blast.py#L180-L237 | def calculate_bbh(blast_results_1, blast_results_2, r_name=None, g_name=None, outdir=''):
"""Calculate the best bidirectional BLAST hits (BBH) and save a dataframe of results.
Args:
blast_results_1 (str): BLAST results for reference vs. other genome
blast_results_2 (str): BLAST results for other vs. reference genome
r_name: Name of reference genome
g_name: Name of other genome
outdir: Directory where BLAST results are stored.
Returns:
Path to Pandas DataFrame of the BBH results.
"""
# TODO: add force_rerun option
cols = ['gene', 'subject', 'PID', 'alnLength', 'mismatchCount', 'gapOpenCount', 'queryStart', 'queryEnd',
'subjectStart', 'subjectEnd', 'eVal', 'bitScore']
if not r_name and not g_name:
r_name = op.basename(blast_results_1).split('_vs_')[0]
g_name = op.basename(blast_results_1).split('_vs_')[1].replace('_blast.out', '')
r_name2 = op.basename(blast_results_2).split('_vs_')[1].replace('_blast.out', '')
if r_name != r_name2:
log.warning('{} != {}'.format(r_name, r_name2))
outfile = op.join(outdir, '{}_vs_{}_bbh.csv'.format(r_name, g_name))
if op.exists(outfile) and os.stat(outfile).st_size != 0:
log.debug('{} vs {} BLAST BBHs already found at {}'.format(r_name, g_name, outfile))
return outfile
bbh1 = pd.read_csv(blast_results_1, sep='\t', names=cols)
bbh2 = pd.read_csv(blast_results_2, sep='\t', names=cols)
out = pd.DataFrame()
log.debug('Finding BBHs for {} vs. {}'.format(r_name, g_name))
for g in bbh1[pd.notnull(bbh1.gene)].gene.unique():
res = bbh1[bbh1.gene == g]
if len(res) == 0:
continue
best_hit = res.ix[res.PID.idxmax()].copy()
best_gene = best_hit.subject
res2 = bbh2[bbh2.gene == best_gene]
if len(res2) == 0:
continue
best_hit2 = res2.ix[res2.PID.idxmax()]
best_gene2 = best_hit2.subject
if g == best_gene2:
best_hit['BBH'] = '<=>'
else:
best_hit['BBH'] = '->'
out = pd.concat([out, pd.DataFrame(best_hit).transpose()])
out.to_csv(outfile)
log.debug('{} vs {} BLAST BBHs saved at {}'.format(r_name, g_name, outfile))
return outfile | [
"def",
"calculate_bbh",
"(",
"blast_results_1",
",",
"blast_results_2",
",",
"r_name",
"=",
"None",
",",
"g_name",
"=",
"None",
",",
"outdir",
"=",
"''",
")",
":",
"# TODO: add force_rerun option",
"cols",
"=",
"[",
"'gene'",
",",
"'subject'",
",",
"'PID'",
",",
"'alnLength'",
",",
"'mismatchCount'",
",",
"'gapOpenCount'",
",",
"'queryStart'",
",",
"'queryEnd'",
",",
"'subjectStart'",
",",
"'subjectEnd'",
",",
"'eVal'",
",",
"'bitScore'",
"]",
"if",
"not",
"r_name",
"and",
"not",
"g_name",
":",
"r_name",
"=",
"op",
".",
"basename",
"(",
"blast_results_1",
")",
".",
"split",
"(",
"'_vs_'",
")",
"[",
"0",
"]",
"g_name",
"=",
"op",
".",
"basename",
"(",
"blast_results_1",
")",
".",
"split",
"(",
"'_vs_'",
")",
"[",
"1",
"]",
".",
"replace",
"(",
"'_blast.out'",
",",
"''",
")",
"r_name2",
"=",
"op",
".",
"basename",
"(",
"blast_results_2",
")",
".",
"split",
"(",
"'_vs_'",
")",
"[",
"1",
"]",
".",
"replace",
"(",
"'_blast.out'",
",",
"''",
")",
"if",
"r_name",
"!=",
"r_name2",
":",
"log",
".",
"warning",
"(",
"'{} != {}'",
".",
"format",
"(",
"r_name",
",",
"r_name2",
")",
")",
"outfile",
"=",
"op",
".",
"join",
"(",
"outdir",
",",
"'{}_vs_{}_bbh.csv'",
".",
"format",
"(",
"r_name",
",",
"g_name",
")",
")",
"if",
"op",
".",
"exists",
"(",
"outfile",
")",
"and",
"os",
".",
"stat",
"(",
"outfile",
")",
".",
"st_size",
"!=",
"0",
":",
"log",
".",
"debug",
"(",
"'{} vs {} BLAST BBHs already found at {}'",
".",
"format",
"(",
"r_name",
",",
"g_name",
",",
"outfile",
")",
")",
"return",
"outfile",
"bbh1",
"=",
"pd",
".",
"read_csv",
"(",
"blast_results_1",
",",
"sep",
"=",
"'\\t'",
",",
"names",
"=",
"cols",
")",
"bbh2",
"=",
"pd",
".",
"read_csv",
"(",
"blast_results_2",
",",
"sep",
"=",
"'\\t'",
",",
"names",
"=",
"cols",
")",
"out",
"=",
"pd",
".",
"DataFrame",
"(",
")",
"log",
".",
"debug",
"(",
"'Finding BBHs for {} vs. {}'",
".",
"format",
"(",
"r_name",
",",
"g_name",
")",
")",
"for",
"g",
"in",
"bbh1",
"[",
"pd",
".",
"notnull",
"(",
"bbh1",
".",
"gene",
")",
"]",
".",
"gene",
".",
"unique",
"(",
")",
":",
"res",
"=",
"bbh1",
"[",
"bbh1",
".",
"gene",
"==",
"g",
"]",
"if",
"len",
"(",
"res",
")",
"==",
"0",
":",
"continue",
"best_hit",
"=",
"res",
".",
"ix",
"[",
"res",
".",
"PID",
".",
"idxmax",
"(",
")",
"]",
".",
"copy",
"(",
")",
"best_gene",
"=",
"best_hit",
".",
"subject",
"res2",
"=",
"bbh2",
"[",
"bbh2",
".",
"gene",
"==",
"best_gene",
"]",
"if",
"len",
"(",
"res2",
")",
"==",
"0",
":",
"continue",
"best_hit2",
"=",
"res2",
".",
"ix",
"[",
"res2",
".",
"PID",
".",
"idxmax",
"(",
")",
"]",
"best_gene2",
"=",
"best_hit2",
".",
"subject",
"if",
"g",
"==",
"best_gene2",
":",
"best_hit",
"[",
"'BBH'",
"]",
"=",
"'<=>'",
"else",
":",
"best_hit",
"[",
"'BBH'",
"]",
"=",
"'->'",
"out",
"=",
"pd",
".",
"concat",
"(",
"[",
"out",
",",
"pd",
".",
"DataFrame",
"(",
"best_hit",
")",
".",
"transpose",
"(",
")",
"]",
")",
"out",
".",
"to_csv",
"(",
"outfile",
")",
"log",
".",
"debug",
"(",
"'{} vs {} BLAST BBHs saved at {}'",
".",
"format",
"(",
"r_name",
",",
"g_name",
",",
"outfile",
")",
")",
"return",
"outfile"
] | Calculate the best bidirectional BLAST hits (BBH) and save a dataframe of results.
Args:
blast_results_1 (str): BLAST results for reference vs. other genome
blast_results_2 (str): BLAST results for other vs. reference genome
r_name: Name of reference genome
g_name: Name of other genome
outdir: Directory where BLAST results are stored.
Returns:
Path to Pandas DataFrame of the BBH results. | [
"Calculate",
"the",
"best",
"bidirectional",
"BLAST",
"hits",
"(",
"BBH",
")",
"and",
"save",
"a",
"dataframe",
"of",
"results",
"."
] | python | train |
boriel/zxbasic | arch/zx48k/backend/__16bit.py | https://github.com/boriel/zxbasic/blob/23b28db10e41117805bdb3c0f78543590853b132/arch/zx48k/backend/__16bit.py#L575-L588 | def _geu16(ins):
''' Compares & pops top 2 operands out of the stack, and checks
if the 1st operand >= 2nd operand (top of the stack).
Pushes 0 if False, 1 if True.
16 bit unsigned version
'''
output = _16bit_oper(ins.quad[2], ins.quad[3])
output.append('or a')
output.append('sbc hl, de')
output.append('ccf')
output.append('sbc a, a')
output.append('push af')
return output | [
"def",
"_geu16",
"(",
"ins",
")",
":",
"output",
"=",
"_16bit_oper",
"(",
"ins",
".",
"quad",
"[",
"2",
"]",
",",
"ins",
".",
"quad",
"[",
"3",
"]",
")",
"output",
".",
"append",
"(",
"'or a'",
")",
"output",
".",
"append",
"(",
"'sbc hl, de'",
")",
"output",
".",
"append",
"(",
"'ccf'",
")",
"output",
".",
"append",
"(",
"'sbc a, a'",
")",
"output",
".",
"append",
"(",
"'push af'",
")",
"return",
"output"
] | Compares & pops top 2 operands out of the stack, and checks
if the 1st operand >= 2nd operand (top of the stack).
Pushes 0 if False, 1 if True.
16 bit unsigned version | [
"Compares",
"&",
"pops",
"top",
"2",
"operands",
"out",
"of",
"the",
"stack",
"and",
"checks",
"if",
"the",
"1st",
"operand",
">",
"=",
"2nd",
"operand",
"(",
"top",
"of",
"the",
"stack",
")",
".",
"Pushes",
"0",
"if",
"False",
"1",
"if",
"True",
"."
] | python | train |
autokey/autokey | lib/autokey/interface.py | https://github.com/autokey/autokey/blob/35decb72f286ce68cd2a1f09ace8891a520b58d1/lib/autokey/interface.py#L353-L374 | def __grabHotkeys(self):
"""
Run during startup to grab global and specific hotkeys in all open windows
"""
c = self.app.configManager
hotkeys = c.hotKeys + c.hotKeyFolders
# Grab global hotkeys in root window
for item in c.globalHotkeys:
if item.enabled:
self.__enqueue(self.__grabHotkey, item.hotKey, item.modifiers, self.rootWindow)
if self.__needsMutterWorkaround(item):
self.__enqueue(self.__grabRecurse, item, self.rootWindow, False)
# Grab hotkeys without a filter in root window
for item in hotkeys:
if item.get_applicable_regex() is None:
self.__enqueue(self.__grabHotkey, item.hotKey, item.modifiers, self.rootWindow)
if self.__needsMutterWorkaround(item):
self.__enqueue(self.__grabRecurse, item, self.rootWindow, False)
self.__enqueue(self.__recurseTree, self.rootWindow, hotkeys) | [
"def",
"__grabHotkeys",
"(",
"self",
")",
":",
"c",
"=",
"self",
".",
"app",
".",
"configManager",
"hotkeys",
"=",
"c",
".",
"hotKeys",
"+",
"c",
".",
"hotKeyFolders",
"# Grab global hotkeys in root window",
"for",
"item",
"in",
"c",
".",
"globalHotkeys",
":",
"if",
"item",
".",
"enabled",
":",
"self",
".",
"__enqueue",
"(",
"self",
".",
"__grabHotkey",
",",
"item",
".",
"hotKey",
",",
"item",
".",
"modifiers",
",",
"self",
".",
"rootWindow",
")",
"if",
"self",
".",
"__needsMutterWorkaround",
"(",
"item",
")",
":",
"self",
".",
"__enqueue",
"(",
"self",
".",
"__grabRecurse",
",",
"item",
",",
"self",
".",
"rootWindow",
",",
"False",
")",
"# Grab hotkeys without a filter in root window",
"for",
"item",
"in",
"hotkeys",
":",
"if",
"item",
".",
"get_applicable_regex",
"(",
")",
"is",
"None",
":",
"self",
".",
"__enqueue",
"(",
"self",
".",
"__grabHotkey",
",",
"item",
".",
"hotKey",
",",
"item",
".",
"modifiers",
",",
"self",
".",
"rootWindow",
")",
"if",
"self",
".",
"__needsMutterWorkaround",
"(",
"item",
")",
":",
"self",
".",
"__enqueue",
"(",
"self",
".",
"__grabRecurse",
",",
"item",
",",
"self",
".",
"rootWindow",
",",
"False",
")",
"self",
".",
"__enqueue",
"(",
"self",
".",
"__recurseTree",
",",
"self",
".",
"rootWindow",
",",
"hotkeys",
")"
] | Run during startup to grab global and specific hotkeys in all open windows | [
"Run",
"during",
"startup",
"to",
"grab",
"global",
"and",
"specific",
"hotkeys",
"in",
"all",
"open",
"windows"
] | python | train |
trendels/rhino | rhino/mapper.py | https://github.com/trendels/rhino/blob/f1f0ef21b6080a2bd130b38b5bef163074c94aed/rhino/mapper.py#L675-L693 | def wsgi(self, environ, start_response):
"""Implements the mapper's WSGI interface."""
request = Request(environ)
ctx = Context(request)
try:
try:
response = self(request, ctx)
ctx._run_callbacks('finalize', (request, response))
response = response.conditional_to(request)
except HTTPException as e:
response = e.response
except Exception:
self.handle_error(request, ctx)
response = InternalServerError().response
response.add_callback(lambda: ctx._run_callbacks('close'))
return response(environ, start_response)
finally:
ctx._run_callbacks('teardown', log_errors=True) | [
"def",
"wsgi",
"(",
"self",
",",
"environ",
",",
"start_response",
")",
":",
"request",
"=",
"Request",
"(",
"environ",
")",
"ctx",
"=",
"Context",
"(",
"request",
")",
"try",
":",
"try",
":",
"response",
"=",
"self",
"(",
"request",
",",
"ctx",
")",
"ctx",
".",
"_run_callbacks",
"(",
"'finalize'",
",",
"(",
"request",
",",
"response",
")",
")",
"response",
"=",
"response",
".",
"conditional_to",
"(",
"request",
")",
"except",
"HTTPException",
"as",
"e",
":",
"response",
"=",
"e",
".",
"response",
"except",
"Exception",
":",
"self",
".",
"handle_error",
"(",
"request",
",",
"ctx",
")",
"response",
"=",
"InternalServerError",
"(",
")",
".",
"response",
"response",
".",
"add_callback",
"(",
"lambda",
":",
"ctx",
".",
"_run_callbacks",
"(",
"'close'",
")",
")",
"return",
"response",
"(",
"environ",
",",
"start_response",
")",
"finally",
":",
"ctx",
".",
"_run_callbacks",
"(",
"'teardown'",
",",
"log_errors",
"=",
"True",
")"
] | Implements the mapper's WSGI interface. | [
"Implements",
"the",
"mapper",
"s",
"WSGI",
"interface",
"."
] | python | train |
bids-standard/pybids | bids/variables/kollekshuns.py | https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/kollekshuns.py#L245-L288 | def resample(self, sampling_rate=None, variables=None, force_dense=False,
in_place=False, kind='linear'):
''' Resample all dense variables (and optionally, sparse ones) to the
specified sampling rate.
Args:
sampling_rate (int, float): Target sampling rate (in Hz). If None,
uses the instance sampling rate.
variables (list): Optional list of Variables to resample. If None,
all variables are resampled.
force_dense (bool): if True, all sparse variables will be forced to
dense.
in_place (bool): When True, all variables are overwritten in-place.
When False, returns resampled versions of all variables.
kind (str): Argument to pass to scipy's interp1d; indicates the
kind of interpolation approach to use. See interp1d docs for
valid values.
'''
# Store old sampling rate-based variables
sampling_rate = sampling_rate or self.sampling_rate
_variables = {}
for name, var in self.variables.items():
if variables is not None and name not in variables:
continue
if isinstance(var, SparseRunVariable):
if force_dense and is_numeric_dtype(var.values):
_variables[name] = var.to_dense(sampling_rate)
else:
# None if in_place; no update needed
_var = var.resample(sampling_rate,
inplace=in_place,
kind=kind)
if not in_place:
_variables[name] = _var
if in_place:
for k, v in _variables.items():
self.variables[k] = v
self.sampling_rate = sampling_rate
else:
return _variables | [
"def",
"resample",
"(",
"self",
",",
"sampling_rate",
"=",
"None",
",",
"variables",
"=",
"None",
",",
"force_dense",
"=",
"False",
",",
"in_place",
"=",
"False",
",",
"kind",
"=",
"'linear'",
")",
":",
"# Store old sampling rate-based variables",
"sampling_rate",
"=",
"sampling_rate",
"or",
"self",
".",
"sampling_rate",
"_variables",
"=",
"{",
"}",
"for",
"name",
",",
"var",
"in",
"self",
".",
"variables",
".",
"items",
"(",
")",
":",
"if",
"variables",
"is",
"not",
"None",
"and",
"name",
"not",
"in",
"variables",
":",
"continue",
"if",
"isinstance",
"(",
"var",
",",
"SparseRunVariable",
")",
":",
"if",
"force_dense",
"and",
"is_numeric_dtype",
"(",
"var",
".",
"values",
")",
":",
"_variables",
"[",
"name",
"]",
"=",
"var",
".",
"to_dense",
"(",
"sampling_rate",
")",
"else",
":",
"# None if in_place; no update needed",
"_var",
"=",
"var",
".",
"resample",
"(",
"sampling_rate",
",",
"inplace",
"=",
"in_place",
",",
"kind",
"=",
"kind",
")",
"if",
"not",
"in_place",
":",
"_variables",
"[",
"name",
"]",
"=",
"_var",
"if",
"in_place",
":",
"for",
"k",
",",
"v",
"in",
"_variables",
".",
"items",
"(",
")",
":",
"self",
".",
"variables",
"[",
"k",
"]",
"=",
"v",
"self",
".",
"sampling_rate",
"=",
"sampling_rate",
"else",
":",
"return",
"_variables"
] | Resample all dense variables (and optionally, sparse ones) to the
specified sampling rate.
Args:
sampling_rate (int, float): Target sampling rate (in Hz). If None,
uses the instance sampling rate.
variables (list): Optional list of Variables to resample. If None,
all variables are resampled.
force_dense (bool): if True, all sparse variables will be forced to
dense.
in_place (bool): When True, all variables are overwritten in-place.
When False, returns resampled versions of all variables.
kind (str): Argument to pass to scipy's interp1d; indicates the
kind of interpolation approach to use. See interp1d docs for
valid values. | [
"Resample",
"all",
"dense",
"variables",
"(",
"and",
"optionally",
"sparse",
"ones",
")",
"to",
"the",
"specified",
"sampling",
"rate",
"."
] | python | train |
bcbio/bcbio-nextgen | bcbio/bam/fastq.py | https://github.com/bcbio/bcbio-nextgen/blob/6a9348c0054ccd5baffd22f1bb7d0422f6978b20/bcbio/bam/fastq.py#L101-L110 | def rstrip_extra(fname):
"""Strip extraneous, non-discriminative filename info from the end of a file.
"""
to_strip = ("_R", ".R", "-R", "_", "fastq", ".", "-")
while fname.endswith(to_strip):
for x in to_strip:
if fname.endswith(x):
fname = fname[:len(fname) - len(x)]
break
return fname | [
"def",
"rstrip_extra",
"(",
"fname",
")",
":",
"to_strip",
"=",
"(",
"\"_R\"",
",",
"\".R\"",
",",
"\"-R\"",
",",
"\"_\"",
",",
"\"fastq\"",
",",
"\".\"",
",",
"\"-\"",
")",
"while",
"fname",
".",
"endswith",
"(",
"to_strip",
")",
":",
"for",
"x",
"in",
"to_strip",
":",
"if",
"fname",
".",
"endswith",
"(",
"x",
")",
":",
"fname",
"=",
"fname",
"[",
":",
"len",
"(",
"fname",
")",
"-",
"len",
"(",
"x",
")",
"]",
"break",
"return",
"fname"
] | Strip extraneous, non-discriminative filename info from the end of a file. | [
"Strip",
"extraneous",
"non",
"-",
"discriminative",
"filename",
"info",
"from",
"the",
"end",
"of",
"a",
"file",
"."
] | python | train |
TeamHG-Memex/eli5 | eli5/sklearn/treeinspect.py | https://github.com/TeamHG-Memex/eli5/blob/371b402a0676295c05e582a2dd591f7af476b86b/eli5/sklearn/treeinspect.py#L16-L31 | def get_tree_info(decision_tree,
feature_names=None,
**export_graphviz_kwargs):
# type: (...) -> TreeInfo
"""
Convert DecisionTreeClassifier or DecisionTreeRegressor
to an inspectable object.
"""
return TreeInfo(
criterion=decision_tree.criterion,
tree=_get_root_node_info(decision_tree, feature_names),
graphviz=tree2dot(decision_tree,
feature_names=feature_names,
**export_graphviz_kwargs),
is_classification=isinstance(decision_tree, ClassifierMixin),
) | [
"def",
"get_tree_info",
"(",
"decision_tree",
",",
"feature_names",
"=",
"None",
",",
"*",
"*",
"export_graphviz_kwargs",
")",
":",
"# type: (...) -> TreeInfo",
"return",
"TreeInfo",
"(",
"criterion",
"=",
"decision_tree",
".",
"criterion",
",",
"tree",
"=",
"_get_root_node_info",
"(",
"decision_tree",
",",
"feature_names",
")",
",",
"graphviz",
"=",
"tree2dot",
"(",
"decision_tree",
",",
"feature_names",
"=",
"feature_names",
",",
"*",
"*",
"export_graphviz_kwargs",
")",
",",
"is_classification",
"=",
"isinstance",
"(",
"decision_tree",
",",
"ClassifierMixin",
")",
",",
")"
] | Convert DecisionTreeClassifier or DecisionTreeRegressor
to an inspectable object. | [
"Convert",
"DecisionTreeClassifier",
"or",
"DecisionTreeRegressor",
"to",
"an",
"inspectable",
"object",
"."
] | python | train |
josiah-wolf-oberholtzer/uqbar | uqbar/sphinx/style.py | https://github.com/josiah-wolf-oberholtzer/uqbar/blob/eca7fefebbbee1e2ae13bf5d6baa838be66b1db6/uqbar/sphinx/style.py#L22-L38 | def handle_class(signature_node, module, object_name, cache):
"""
Styles ``autoclass`` entries.
Adds ``abstract`` prefix to abstract classes.
"""
class_ = getattr(module, object_name, None)
if class_ is None:
return
if class_ not in cache:
cache[class_] = {}
attributes = inspect.classify_class_attrs(class_)
for attribute in attributes:
cache[class_][attribute.name] = attribute
if inspect.isabstract(class_):
emphasis = nodes.emphasis("abstract ", "abstract ", classes=["property"])
signature_node.insert(0, emphasis) | [
"def",
"handle_class",
"(",
"signature_node",
",",
"module",
",",
"object_name",
",",
"cache",
")",
":",
"class_",
"=",
"getattr",
"(",
"module",
",",
"object_name",
",",
"None",
")",
"if",
"class_",
"is",
"None",
":",
"return",
"if",
"class_",
"not",
"in",
"cache",
":",
"cache",
"[",
"class_",
"]",
"=",
"{",
"}",
"attributes",
"=",
"inspect",
".",
"classify_class_attrs",
"(",
"class_",
")",
"for",
"attribute",
"in",
"attributes",
":",
"cache",
"[",
"class_",
"]",
"[",
"attribute",
".",
"name",
"]",
"=",
"attribute",
"if",
"inspect",
".",
"isabstract",
"(",
"class_",
")",
":",
"emphasis",
"=",
"nodes",
".",
"emphasis",
"(",
"\"abstract \"",
",",
"\"abstract \"",
",",
"classes",
"=",
"[",
"\"property\"",
"]",
")",
"signature_node",
".",
"insert",
"(",
"0",
",",
"emphasis",
")"
] | Styles ``autoclass`` entries.
Adds ``abstract`` prefix to abstract classes. | [
"Styles",
"autoclass",
"entries",
"."
] | python | train |
bwesterb/sarah | src/pack.py | https://github.com/bwesterb/sarah/blob/a9e46e875dfff1dc11255d714bb736e5eb697809/src/pack.py#L1-L11 | def unpack_int(s):
""" Reads a packed integer from string <s> """
ret = 0
i = 0
while True:
b = ord(s[i])
ret |= (b & 127) << (i * 7)
i += 1
if b & 128 == 0:
break
return ret | [
"def",
"unpack_int",
"(",
"s",
")",
":",
"ret",
"=",
"0",
"i",
"=",
"0",
"while",
"True",
":",
"b",
"=",
"ord",
"(",
"s",
"[",
"i",
"]",
")",
"ret",
"|=",
"(",
"b",
"&",
"127",
")",
"<<",
"(",
"i",
"*",
"7",
")",
"i",
"+=",
"1",
"if",
"b",
"&",
"128",
"==",
"0",
":",
"break",
"return",
"ret"
] | Reads a packed integer from string <s> | [
"Reads",
"a",
"packed",
"integer",
"from",
"string",
"<s",
">"
] | python | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.