repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
list | docstring
stringlengths 1
46.9k
| docstring_tokens
list | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
aganezov/bg | bg/grimm.py | https://github.com/aganezov/bg/blob/1ec758193441e49e7b34e0da09571480f4c24455/bg/grimm.py#L342-L360 | def get_blocks_in_grimm_from_breakpoint_graph(bg):
"""
:param bg: a breakpoint graph, that contians all the information
:type bg: ``bg.breakpoint_graph.BreakpointGraph``
:return: list of strings, which represent genomes present in breakpoint graph as orders of blocks and is compatible with GRIMM format
"""
result = []
genomes = bg.get_overall_set_of_colors()
for genome in genomes:
genome_graph = bg.get_genome_graph(color=genome)
genome_blocks_orders = genome_graph.get_blocks_order()
blocks_orders = genome_blocks_orders[genome]
if len(blocks_orders) > 0:
result.append(">{genome_name}".format(genome_name=genome.name))
for chr_type, blocks_order in blocks_orders:
string = " ".join(value if sign == "+" else sign + value for sign, value in blocks_order)
string += " {chr_type}".format(chr_type=chr_type)
result.append(string)
return result | [
"def",
"get_blocks_in_grimm_from_breakpoint_graph",
"(",
"bg",
")",
":",
"result",
"=",
"[",
"]",
"genomes",
"=",
"bg",
".",
"get_overall_set_of_colors",
"(",
")",
"for",
"genome",
"in",
"genomes",
":",
"genome_graph",
"=",
"bg",
".",
"get_genome_graph",
"(",
"color",
"=",
"genome",
")",
"genome_blocks_orders",
"=",
"genome_graph",
".",
"get_blocks_order",
"(",
")",
"blocks_orders",
"=",
"genome_blocks_orders",
"[",
"genome",
"]",
"if",
"len",
"(",
"blocks_orders",
")",
">",
"0",
":",
"result",
".",
"append",
"(",
"\">{genome_name}\"",
".",
"format",
"(",
"genome_name",
"=",
"genome",
".",
"name",
")",
")",
"for",
"chr_type",
",",
"blocks_order",
"in",
"blocks_orders",
":",
"string",
"=",
"\" \"",
".",
"join",
"(",
"value",
"if",
"sign",
"==",
"\"+\"",
"else",
"sign",
"+",
"value",
"for",
"sign",
",",
"value",
"in",
"blocks_order",
")",
"string",
"+=",
"\" {chr_type}\"",
".",
"format",
"(",
"chr_type",
"=",
"chr_type",
")",
"result",
".",
"append",
"(",
"string",
")",
"return",
"result"
] | :param bg: a breakpoint graph, that contians all the information
:type bg: ``bg.breakpoint_graph.BreakpointGraph``
:return: list of strings, which represent genomes present in breakpoint graph as orders of blocks and is compatible with GRIMM format | [
":",
"param",
"bg",
":",
"a",
"breakpoint",
"graph",
"that",
"contians",
"all",
"the",
"information",
":",
"type",
"bg",
":",
"bg",
".",
"breakpoint_graph",
".",
"BreakpointGraph",
":",
"return",
":",
"list",
"of",
"strings",
"which",
"represent",
"genomes",
"present",
"in",
"breakpoint",
"graph",
"as",
"orders",
"of",
"blocks",
"and",
"is",
"compatible",
"with",
"GRIMM",
"format"
] | python | train |
uw-it-aca/django-saferecipient-email-backend | saferecipient/__init__.py | https://github.com/uw-it-aca/django-saferecipient-email-backend/blob/8af20dece5a668d6bcad5dea75cc60871a4bd9fa/saferecipient/__init__.py#L56-L61 | def _is_whitelisted(self, email):
"""Check if an email is in the whitelist. If there's no whitelist,
it's assumed it's not whitelisted."""
return hasattr(settings, "SAFE_EMAIL_WHITELIST") and \
any(re.match(m, email) for m in settings.SAFE_EMAIL_WHITELIST) | [
"def",
"_is_whitelisted",
"(",
"self",
",",
"email",
")",
":",
"return",
"hasattr",
"(",
"settings",
",",
"\"SAFE_EMAIL_WHITELIST\"",
")",
"and",
"any",
"(",
"re",
".",
"match",
"(",
"m",
",",
"email",
")",
"for",
"m",
"in",
"settings",
".",
"SAFE_EMAIL_WHITELIST",
")"
] | Check if an email is in the whitelist. If there's no whitelist,
it's assumed it's not whitelisted. | [
"Check",
"if",
"an",
"email",
"is",
"in",
"the",
"whitelist",
".",
"If",
"there",
"s",
"no",
"whitelist",
"it",
"s",
"assumed",
"it",
"s",
"not",
"whitelisted",
"."
] | python | train |
quantumlib/Cirq | cirq/linalg/diagonalize.py | https://github.com/quantumlib/Cirq/blob/0827da80dd7880e5b923eb69407e980ed9bc0bd2/cirq/linalg/diagonalize.py#L153-L230 | def bidiagonalize_real_matrix_pair_with_symmetric_products(
mat1: np.ndarray,
mat2: np.ndarray,
*,
rtol: float = 1e-5,
atol: float = 1e-8,
check_preconditions: bool = True) -> Tuple[np.ndarray, np.ndarray]:
"""Finds orthogonal matrices that diagonalize both mat1 and mat2.
Requires mat1 and mat2 to be real.
Requires mat1.T @ mat2 to be symmetric.
Requires mat1 @ mat2.T to be symmetric.
Args:
mat1: One of the real matrices.
mat2: The other real matrix.
rtol: Relative numeric error threshold.
atol: Absolute numeric error threshold.
check_preconditions: If set, verifies that the inputs are real, and that
mat1.T @ mat2 and mat1 @ mat2.T are both symmetric. Defaults to set.
Returns:
A tuple (L, R) of two orthogonal matrices, such that both L @ mat1 @ R
and L @ mat2 @ R are diagonal matrices.
Raises:
ValueError: Matrices don't meet preconditions (e.g. not real).
"""
if check_preconditions:
if np.any(np.imag(mat1) != 0):
raise ValueError('mat1 must be real.')
if np.any(np.imag(mat2) != 0):
raise ValueError('mat2 must be real.')
if not predicates.is_hermitian(mat1.dot(mat2.T), rtol=rtol, atol=atol):
raise ValueError('mat1 @ mat2.T must be symmetric.')
if not predicates.is_hermitian(mat1.T.dot(mat2), rtol=rtol, atol=atol):
raise ValueError('mat1.T @ mat2 must be symmetric.')
# Use SVD to bi-diagonalize the first matrix.
base_left, base_diag, base_right = _svd_handling_empty(np.real(mat1))
base_diag = np.diag(base_diag)
# Determine where we switch between diagonalization-fixup strategies.
dim = base_diag.shape[0]
rank = dim
while rank > 0 and tolerance.all_near_zero(base_diag[rank - 1, rank - 1],
atol=atol):
rank -= 1
base_diag = base_diag[:rank, :rank]
# Try diagonalizing the second matrix with the same factors as the first.
semi_corrected = base_left.T.dot(np.real(mat2)).dot(base_right.T)
# Fix up the part of the second matrix's diagonalization that's matched
# against non-zero diagonal entries in the first matrix's diagonalization
# by performing simultaneous diagonalization.
overlap = semi_corrected[:rank, :rank]
overlap_adjust = diagonalize_real_symmetric_and_sorted_diagonal_matrices(
overlap,
base_diag,
rtol=rtol,
atol=atol,
check_preconditions=check_preconditions)
# Fix up the part of the second matrix's diagonalization that's matched
# against zeros in the first matrix's diagonalization by performing an SVD.
extra = semi_corrected[rank:, rank:]
extra_left_adjust, _, extra_right_adjust = _svd_handling_empty(extra)
# Merge the fixup factors into the initial diagonalization.
left_adjust = combinators.block_diag(overlap_adjust, extra_left_adjust)
right_adjust = combinators.block_diag(overlap_adjust.T,
extra_right_adjust)
left = left_adjust.T.dot(base_left.T)
right = base_right.T.dot(right_adjust.T)
return left, right | [
"def",
"bidiagonalize_real_matrix_pair_with_symmetric_products",
"(",
"mat1",
":",
"np",
".",
"ndarray",
",",
"mat2",
":",
"np",
".",
"ndarray",
",",
"*",
",",
"rtol",
":",
"float",
"=",
"1e-5",
",",
"atol",
":",
"float",
"=",
"1e-8",
",",
"check_preconditions",
":",
"bool",
"=",
"True",
")",
"->",
"Tuple",
"[",
"np",
".",
"ndarray",
",",
"np",
".",
"ndarray",
"]",
":",
"if",
"check_preconditions",
":",
"if",
"np",
".",
"any",
"(",
"np",
".",
"imag",
"(",
"mat1",
")",
"!=",
"0",
")",
":",
"raise",
"ValueError",
"(",
"'mat1 must be real.'",
")",
"if",
"np",
".",
"any",
"(",
"np",
".",
"imag",
"(",
"mat2",
")",
"!=",
"0",
")",
":",
"raise",
"ValueError",
"(",
"'mat2 must be real.'",
")",
"if",
"not",
"predicates",
".",
"is_hermitian",
"(",
"mat1",
".",
"dot",
"(",
"mat2",
".",
"T",
")",
",",
"rtol",
"=",
"rtol",
",",
"atol",
"=",
"atol",
")",
":",
"raise",
"ValueError",
"(",
"'mat1 @ mat2.T must be symmetric.'",
")",
"if",
"not",
"predicates",
".",
"is_hermitian",
"(",
"mat1",
".",
"T",
".",
"dot",
"(",
"mat2",
")",
",",
"rtol",
"=",
"rtol",
",",
"atol",
"=",
"atol",
")",
":",
"raise",
"ValueError",
"(",
"'mat1.T @ mat2 must be symmetric.'",
")",
"# Use SVD to bi-diagonalize the first matrix.",
"base_left",
",",
"base_diag",
",",
"base_right",
"=",
"_svd_handling_empty",
"(",
"np",
".",
"real",
"(",
"mat1",
")",
")",
"base_diag",
"=",
"np",
".",
"diag",
"(",
"base_diag",
")",
"# Determine where we switch between diagonalization-fixup strategies.",
"dim",
"=",
"base_diag",
".",
"shape",
"[",
"0",
"]",
"rank",
"=",
"dim",
"while",
"rank",
">",
"0",
"and",
"tolerance",
".",
"all_near_zero",
"(",
"base_diag",
"[",
"rank",
"-",
"1",
",",
"rank",
"-",
"1",
"]",
",",
"atol",
"=",
"atol",
")",
":",
"rank",
"-=",
"1",
"base_diag",
"=",
"base_diag",
"[",
":",
"rank",
",",
":",
"rank",
"]",
"# Try diagonalizing the second matrix with the same factors as the first.",
"semi_corrected",
"=",
"base_left",
".",
"T",
".",
"dot",
"(",
"np",
".",
"real",
"(",
"mat2",
")",
")",
".",
"dot",
"(",
"base_right",
".",
"T",
")",
"# Fix up the part of the second matrix's diagonalization that's matched",
"# against non-zero diagonal entries in the first matrix's diagonalization",
"# by performing simultaneous diagonalization.",
"overlap",
"=",
"semi_corrected",
"[",
":",
"rank",
",",
":",
"rank",
"]",
"overlap_adjust",
"=",
"diagonalize_real_symmetric_and_sorted_diagonal_matrices",
"(",
"overlap",
",",
"base_diag",
",",
"rtol",
"=",
"rtol",
",",
"atol",
"=",
"atol",
",",
"check_preconditions",
"=",
"check_preconditions",
")",
"# Fix up the part of the second matrix's diagonalization that's matched",
"# against zeros in the first matrix's diagonalization by performing an SVD.",
"extra",
"=",
"semi_corrected",
"[",
"rank",
":",
",",
"rank",
":",
"]",
"extra_left_adjust",
",",
"_",
",",
"extra_right_adjust",
"=",
"_svd_handling_empty",
"(",
"extra",
")",
"# Merge the fixup factors into the initial diagonalization.",
"left_adjust",
"=",
"combinators",
".",
"block_diag",
"(",
"overlap_adjust",
",",
"extra_left_adjust",
")",
"right_adjust",
"=",
"combinators",
".",
"block_diag",
"(",
"overlap_adjust",
".",
"T",
",",
"extra_right_adjust",
")",
"left",
"=",
"left_adjust",
".",
"T",
".",
"dot",
"(",
"base_left",
".",
"T",
")",
"right",
"=",
"base_right",
".",
"T",
".",
"dot",
"(",
"right_adjust",
".",
"T",
")",
"return",
"left",
",",
"right"
] | Finds orthogonal matrices that diagonalize both mat1 and mat2.
Requires mat1 and mat2 to be real.
Requires mat1.T @ mat2 to be symmetric.
Requires mat1 @ mat2.T to be symmetric.
Args:
mat1: One of the real matrices.
mat2: The other real matrix.
rtol: Relative numeric error threshold.
atol: Absolute numeric error threshold.
check_preconditions: If set, verifies that the inputs are real, and that
mat1.T @ mat2 and mat1 @ mat2.T are both symmetric. Defaults to set.
Returns:
A tuple (L, R) of two orthogonal matrices, such that both L @ mat1 @ R
and L @ mat2 @ R are diagonal matrices.
Raises:
ValueError: Matrices don't meet preconditions (e.g. not real). | [
"Finds",
"orthogonal",
"matrices",
"that",
"diagonalize",
"both",
"mat1",
"and",
"mat2",
"."
] | python | train |
dshean/pygeotools | pygeotools/lib/filtlib.py | https://github.com/dshean/pygeotools/blob/5ac745717c0098d01eb293ff1fe32fd7358c76ab/pygeotools/lib/filtlib.py#L341-L380 | def median_fltr_skimage(dem, radius=3, erode=1, origmask=False):
"""
Older skimage.filter.median_filter
This smooths, removes noise and fills in nodata areas with median of valid pixels! Effectively an inpainting routine
"""
#Note, ndimage doesn't properly handle ma - convert to nan
dem = malib.checkma(dem)
dem = dem.astype(np.float64)
#Mask islands
if erode > 0:
print("Eroding islands smaller than %s pixels" % (erode * 2))
dem = malib.mask_islands(dem, iterations=erode)
print("Applying median filter with radius %s" % radius)
#Note: this funcitonality was present in scikit-image 0.9.3
import skimage.filter
dem_filt_med = skimage.filter.median_filter(dem, radius, mask=~dem.mask)
#Starting in version 0.10.0, this is the new filter
#This is the new filter, but only supports uint8 or unit16
#import skimage.filters
#import skimage.morphology
#dem_filt_med = skimage.filters.rank.median(dem, disk(radius), mask=~dem.mask)
#dem_filt_med = skimage.filters.median(dem, skimage.morphology.disk(radius), mask=~dem.mask)
#Now mask all nans
#skimage assigns the minimum value as nodata
#CHECK THIS, seems pretty hacky
#Also, looks like some valid values are masked at this stage, even though they should be above min
ndv = np.min(dem_filt_med)
#ndv = dem_filt_med.min() + 0.001
out = np.ma.masked_less_equal(dem_filt_med, ndv)
#Should probably replace the ndv with original ndv
out.set_fill_value(dem.fill_value)
if origmask:
print("Applying original mask")
#Allow filling of interior holes, but use original outer edge
#maskfill = malib.maskfill(dem, iterations=radius)
maskfill = malib.maskfill(dem)
#dem_filt_gauss = np.ma.array(dem_filt_gauss, mask=dem.mask, fill_value=dem.fill_value)
out = np.ma.array(out, mask=maskfill, fill_value=dem.fill_value)
return out | [
"def",
"median_fltr_skimage",
"(",
"dem",
",",
"radius",
"=",
"3",
",",
"erode",
"=",
"1",
",",
"origmask",
"=",
"False",
")",
":",
"#Note, ndimage doesn't properly handle ma - convert to nan",
"dem",
"=",
"malib",
".",
"checkma",
"(",
"dem",
")",
"dem",
"=",
"dem",
".",
"astype",
"(",
"np",
".",
"float64",
")",
"#Mask islands",
"if",
"erode",
">",
"0",
":",
"print",
"(",
"\"Eroding islands smaller than %s pixels\"",
"%",
"(",
"erode",
"*",
"2",
")",
")",
"dem",
"=",
"malib",
".",
"mask_islands",
"(",
"dem",
",",
"iterations",
"=",
"erode",
")",
"print",
"(",
"\"Applying median filter with radius %s\"",
"%",
"radius",
")",
"#Note: this funcitonality was present in scikit-image 0.9.3",
"import",
"skimage",
".",
"filter",
"dem_filt_med",
"=",
"skimage",
".",
"filter",
".",
"median_filter",
"(",
"dem",
",",
"radius",
",",
"mask",
"=",
"~",
"dem",
".",
"mask",
")",
"#Starting in version 0.10.0, this is the new filter",
"#This is the new filter, but only supports uint8 or unit16",
"#import skimage.filters",
"#import skimage.morphology ",
"#dem_filt_med = skimage.filters.rank.median(dem, disk(radius), mask=~dem.mask)",
"#dem_filt_med = skimage.filters.median(dem, skimage.morphology.disk(radius), mask=~dem.mask)",
"#Now mask all nans",
"#skimage assigns the minimum value as nodata",
"#CHECK THIS, seems pretty hacky",
"#Also, looks like some valid values are masked at this stage, even though they should be above min",
"ndv",
"=",
"np",
".",
"min",
"(",
"dem_filt_med",
")",
"#ndv = dem_filt_med.min() + 0.001",
"out",
"=",
"np",
".",
"ma",
".",
"masked_less_equal",
"(",
"dem_filt_med",
",",
"ndv",
")",
"#Should probably replace the ndv with original ndv",
"out",
".",
"set_fill_value",
"(",
"dem",
".",
"fill_value",
")",
"if",
"origmask",
":",
"print",
"(",
"\"Applying original mask\"",
")",
"#Allow filling of interior holes, but use original outer edge",
"#maskfill = malib.maskfill(dem, iterations=radius)",
"maskfill",
"=",
"malib",
".",
"maskfill",
"(",
"dem",
")",
"#dem_filt_gauss = np.ma.array(dem_filt_gauss, mask=dem.mask, fill_value=dem.fill_value)",
"out",
"=",
"np",
".",
"ma",
".",
"array",
"(",
"out",
",",
"mask",
"=",
"maskfill",
",",
"fill_value",
"=",
"dem",
".",
"fill_value",
")",
"return",
"out"
] | Older skimage.filter.median_filter
This smooths, removes noise and fills in nodata areas with median of valid pixels! Effectively an inpainting routine | [
"Older",
"skimage",
".",
"filter",
".",
"median_filter"
] | python | train |
bcbio/bcbio-nextgen | bcbio/pipeline/run_info.py | https://github.com/bcbio/bcbio-nextgen/blob/6a9348c0054ccd5baffd22f1bb7d0422f6978b20/bcbio/pipeline/run_info.py#L850-L871 | def _sanity_check_files(item, files):
"""Ensure input files correspond with supported approaches.
Handles BAM, fastqs, plus split fastqs.
"""
msg = None
file_types = set([("bam" if x.endswith(".bam") else "fastq") for x in files if x])
if len(file_types) > 1:
msg = "Found multiple file types (BAM and fastq)"
file_type = file_types.pop()
if file_type == "bam":
if len(files) != 1:
msg = "Expect a single BAM file input as input"
elif file_type == "fastq":
if len(files) not in [1, 2] and item["analysis"].lower() != "scrna-seq":
pair_types = set([len(xs) for xs in fastq.combine_pairs(files)])
if len(pair_types) != 1 or pair_types.pop() not in [1, 2]:
msg = "Expect either 1 (single end) or 2 (paired end) fastq inputs"
if len(files) == 2 and files[0] == files[1]:
msg = "Expect both fastq files to not be the same"
if msg:
raise ValueError("%s for %s: %s" % (msg, item.get("description", ""), files)) | [
"def",
"_sanity_check_files",
"(",
"item",
",",
"files",
")",
":",
"msg",
"=",
"None",
"file_types",
"=",
"set",
"(",
"[",
"(",
"\"bam\"",
"if",
"x",
".",
"endswith",
"(",
"\".bam\"",
")",
"else",
"\"fastq\"",
")",
"for",
"x",
"in",
"files",
"if",
"x",
"]",
")",
"if",
"len",
"(",
"file_types",
")",
">",
"1",
":",
"msg",
"=",
"\"Found multiple file types (BAM and fastq)\"",
"file_type",
"=",
"file_types",
".",
"pop",
"(",
")",
"if",
"file_type",
"==",
"\"bam\"",
":",
"if",
"len",
"(",
"files",
")",
"!=",
"1",
":",
"msg",
"=",
"\"Expect a single BAM file input as input\"",
"elif",
"file_type",
"==",
"\"fastq\"",
":",
"if",
"len",
"(",
"files",
")",
"not",
"in",
"[",
"1",
",",
"2",
"]",
"and",
"item",
"[",
"\"analysis\"",
"]",
".",
"lower",
"(",
")",
"!=",
"\"scrna-seq\"",
":",
"pair_types",
"=",
"set",
"(",
"[",
"len",
"(",
"xs",
")",
"for",
"xs",
"in",
"fastq",
".",
"combine_pairs",
"(",
"files",
")",
"]",
")",
"if",
"len",
"(",
"pair_types",
")",
"!=",
"1",
"or",
"pair_types",
".",
"pop",
"(",
")",
"not",
"in",
"[",
"1",
",",
"2",
"]",
":",
"msg",
"=",
"\"Expect either 1 (single end) or 2 (paired end) fastq inputs\"",
"if",
"len",
"(",
"files",
")",
"==",
"2",
"and",
"files",
"[",
"0",
"]",
"==",
"files",
"[",
"1",
"]",
":",
"msg",
"=",
"\"Expect both fastq files to not be the same\"",
"if",
"msg",
":",
"raise",
"ValueError",
"(",
"\"%s for %s: %s\"",
"%",
"(",
"msg",
",",
"item",
".",
"get",
"(",
"\"description\"",
",",
"\"\"",
")",
",",
"files",
")",
")"
] | Ensure input files correspond with supported approaches.
Handles BAM, fastqs, plus split fastqs. | [
"Ensure",
"input",
"files",
"correspond",
"with",
"supported",
"approaches",
"."
] | python | train |
adrienverge/yamllint | yamllint/rules/common.py | https://github.com/adrienverge/yamllint/blob/fec2c2fba736cabf6bee6b5eeb905cab0dc820f6/yamllint/rules/common.py#L51-L58 | def get_line_indent(token):
"""Finds the indent of the line the token starts in."""
start = token.start_mark.buffer.rfind('\n', 0,
token.start_mark.pointer) + 1
content = start
while token.start_mark.buffer[content] == ' ':
content += 1
return content - start | [
"def",
"get_line_indent",
"(",
"token",
")",
":",
"start",
"=",
"token",
".",
"start_mark",
".",
"buffer",
".",
"rfind",
"(",
"'\\n'",
",",
"0",
",",
"token",
".",
"start_mark",
".",
"pointer",
")",
"+",
"1",
"content",
"=",
"start",
"while",
"token",
".",
"start_mark",
".",
"buffer",
"[",
"content",
"]",
"==",
"' '",
":",
"content",
"+=",
"1",
"return",
"content",
"-",
"start"
] | Finds the indent of the line the token starts in. | [
"Finds",
"the",
"indent",
"of",
"the",
"line",
"the",
"token",
"starts",
"in",
"."
] | python | train |
note35/sinon | sinon/lib/stub.py | https://github.com/note35/sinon/blob/f1d551b679b393d64d926a8a279320904c38d0f5/sinon/lib/stub.py#L89-L99 | def __get_call_count(self, args, kwargs, args_list, kwargs_list):
"""
Args:
args: tuple, the arguments inputed by the user
kwargs: dictionary, the keyword arguments inputed by the user
args_list: list, the tuples of args from all the times this stub was called
kwargs_list: list, the dictionaries of kwargs from all the times this stub was called
Returns:
integer, the number of times this combination of args/kwargs has been called
"""
return len(self.__get_matching_indices(args, kwargs, args_list, kwargs_list)) | [
"def",
"__get_call_count",
"(",
"self",
",",
"args",
",",
"kwargs",
",",
"args_list",
",",
"kwargs_list",
")",
":",
"return",
"len",
"(",
"self",
".",
"__get_matching_indices",
"(",
"args",
",",
"kwargs",
",",
"args_list",
",",
"kwargs_list",
")",
")"
] | Args:
args: tuple, the arguments inputed by the user
kwargs: dictionary, the keyword arguments inputed by the user
args_list: list, the tuples of args from all the times this stub was called
kwargs_list: list, the dictionaries of kwargs from all the times this stub was called
Returns:
integer, the number of times this combination of args/kwargs has been called | [
"Args",
":",
"args",
":",
"tuple",
"the",
"arguments",
"inputed",
"by",
"the",
"user",
"kwargs",
":",
"dictionary",
"the",
"keyword",
"arguments",
"inputed",
"by",
"the",
"user",
"args_list",
":",
"list",
"the",
"tuples",
"of",
"args",
"from",
"all",
"the",
"times",
"this",
"stub",
"was",
"called",
"kwargs_list",
":",
"list",
"the",
"dictionaries",
"of",
"kwargs",
"from",
"all",
"the",
"times",
"this",
"stub",
"was",
"called",
"Returns",
":",
"integer",
"the",
"number",
"of",
"times",
"this",
"combination",
"of",
"args",
"/",
"kwargs",
"has",
"been",
"called"
] | python | train |
mitsei/dlkit | dlkit/handcar/learning/sessions.py | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/handcar/learning/sessions.py#L3754-L3773 | def get_objective_bank_form_for_create(self, objective_bank_record_types=None):
"""Gets the objective bank form for creating new objective banks.
A new form should be requested for each create transaction.
arg: objectiveBankRecordTypes (osid.type.Type): array of
objective bank record types
return: (osid.learning.ObjectiveBankForm) - the objective bank
form
raise: NullArgument - objectiveBankRecordTypes is null
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - unable to get form for requested record
types.
compliance: mandatory - This method must be implemented.
"""
if objective_bank_record_types is None:
pass # Still need to deal with the record_types argument
objective_bank_form = objects.ObjectiveBankForm()
self._forms[objective_bank_form.get_id().get_identifier()] = not CREATED
return objective_bank_form | [
"def",
"get_objective_bank_form_for_create",
"(",
"self",
",",
"objective_bank_record_types",
"=",
"None",
")",
":",
"if",
"objective_bank_record_types",
"is",
"None",
":",
"pass",
"# Still need to deal with the record_types argument",
"objective_bank_form",
"=",
"objects",
".",
"ObjectiveBankForm",
"(",
")",
"self",
".",
"_forms",
"[",
"objective_bank_form",
".",
"get_id",
"(",
")",
".",
"get_identifier",
"(",
")",
"]",
"=",
"not",
"CREATED",
"return",
"objective_bank_form"
] | Gets the objective bank form for creating new objective banks.
A new form should be requested for each create transaction.
arg: objectiveBankRecordTypes (osid.type.Type): array of
objective bank record types
return: (osid.learning.ObjectiveBankForm) - the objective bank
form
raise: NullArgument - objectiveBankRecordTypes is null
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - unable to get form for requested record
types.
compliance: mandatory - This method must be implemented. | [
"Gets",
"the",
"objective",
"bank",
"form",
"for",
"creating",
"new",
"objective",
"banks",
".",
"A",
"new",
"form",
"should",
"be",
"requested",
"for",
"each",
"create",
"transaction",
".",
"arg",
":",
"objectiveBankRecordTypes",
"(",
"osid",
".",
"type",
".",
"Type",
")",
":",
"array",
"of",
"objective",
"bank",
"record",
"types",
"return",
":",
"(",
"osid",
".",
"learning",
".",
"ObjectiveBankForm",
")",
"-",
"the",
"objective",
"bank",
"form",
"raise",
":",
"NullArgument",
"-",
"objectiveBankRecordTypes",
"is",
"null",
"raise",
":",
"OperationFailed",
"-",
"unable",
"to",
"complete",
"request",
"raise",
":",
"PermissionDenied",
"-",
"authorization",
"failure",
"raise",
":",
"Unsupported",
"-",
"unable",
"to",
"get",
"form",
"for",
"requested",
"record",
"types",
".",
"compliance",
":",
"mandatory",
"-",
"This",
"method",
"must",
"be",
"implemented",
"."
] | python | train |
google/grr | grr/core/grr_response_core/lib/rdfvalues/client.py | https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/core/grr_response_core/lib/rdfvalues/client.py#L534-L572 | def FromCurrentSystem(cls):
"""Fill a Uname from the currently running platform."""
uname = platform.uname()
fqdn = socket.getfqdn()
system = uname[0]
architecture, _ = platform.architecture()
if system == "Windows":
service_pack = platform.win32_ver()[2]
kernel = uname[3] # 5.1.2600
release = uname[2] # XP, 2000, 7
version = uname[3] + service_pack # 5.1.2600 SP3, 6.1.7601 SP1
elif system == "Darwin":
kernel = uname[2] # 12.2.0
release = "OSX" # OSX
version = platform.mac_ver()[0] # 10.8.2
elif system == "Linux":
kernel = uname[2] # 3.2.5
release = platform.linux_distribution()[0] # Ubuntu
version = platform.linux_distribution()[1] # 12.04
# Emulate PEP 425 naming conventions - e.g. cp27-cp27mu-linux_x86_64.
if pep425tags:
pep425tag = "%s%s-%s-%s" % (
pep425tags.get_abbr_impl(), pep425tags.get_impl_ver(),
str(pep425tags.get_abi_tag()).lower(), pep425tags.get_platform())
else:
# For example: windows_7_amd64
pep425tag = "%s_%s_%s" % (system, release, architecture)
return cls(
system=system,
architecture=architecture,
release=release,
version=version,
machine=uname[4], # x86, x86_64
kernel=kernel,
fqdn=fqdn,
pep425tag=pep425tag,
) | [
"def",
"FromCurrentSystem",
"(",
"cls",
")",
":",
"uname",
"=",
"platform",
".",
"uname",
"(",
")",
"fqdn",
"=",
"socket",
".",
"getfqdn",
"(",
")",
"system",
"=",
"uname",
"[",
"0",
"]",
"architecture",
",",
"_",
"=",
"platform",
".",
"architecture",
"(",
")",
"if",
"system",
"==",
"\"Windows\"",
":",
"service_pack",
"=",
"platform",
".",
"win32_ver",
"(",
")",
"[",
"2",
"]",
"kernel",
"=",
"uname",
"[",
"3",
"]",
"# 5.1.2600",
"release",
"=",
"uname",
"[",
"2",
"]",
"# XP, 2000, 7",
"version",
"=",
"uname",
"[",
"3",
"]",
"+",
"service_pack",
"# 5.1.2600 SP3, 6.1.7601 SP1",
"elif",
"system",
"==",
"\"Darwin\"",
":",
"kernel",
"=",
"uname",
"[",
"2",
"]",
"# 12.2.0",
"release",
"=",
"\"OSX\"",
"# OSX",
"version",
"=",
"platform",
".",
"mac_ver",
"(",
")",
"[",
"0",
"]",
"# 10.8.2",
"elif",
"system",
"==",
"\"Linux\"",
":",
"kernel",
"=",
"uname",
"[",
"2",
"]",
"# 3.2.5",
"release",
"=",
"platform",
".",
"linux_distribution",
"(",
")",
"[",
"0",
"]",
"# Ubuntu",
"version",
"=",
"platform",
".",
"linux_distribution",
"(",
")",
"[",
"1",
"]",
"# 12.04",
"# Emulate PEP 425 naming conventions - e.g. cp27-cp27mu-linux_x86_64.",
"if",
"pep425tags",
":",
"pep425tag",
"=",
"\"%s%s-%s-%s\"",
"%",
"(",
"pep425tags",
".",
"get_abbr_impl",
"(",
")",
",",
"pep425tags",
".",
"get_impl_ver",
"(",
")",
",",
"str",
"(",
"pep425tags",
".",
"get_abi_tag",
"(",
")",
")",
".",
"lower",
"(",
")",
",",
"pep425tags",
".",
"get_platform",
"(",
")",
")",
"else",
":",
"# For example: windows_7_amd64",
"pep425tag",
"=",
"\"%s_%s_%s\"",
"%",
"(",
"system",
",",
"release",
",",
"architecture",
")",
"return",
"cls",
"(",
"system",
"=",
"system",
",",
"architecture",
"=",
"architecture",
",",
"release",
"=",
"release",
",",
"version",
"=",
"version",
",",
"machine",
"=",
"uname",
"[",
"4",
"]",
",",
"# x86, x86_64",
"kernel",
"=",
"kernel",
",",
"fqdn",
"=",
"fqdn",
",",
"pep425tag",
"=",
"pep425tag",
",",
")"
] | Fill a Uname from the currently running platform. | [
"Fill",
"a",
"Uname",
"from",
"the",
"currently",
"running",
"platform",
"."
] | python | train |
googledatalab/pydatalab | solutionbox/ml_workbench/tensorflow/trainer/feature_transforms.py | https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/solutionbox/ml_workbench/tensorflow/trainer/feature_transforms.py#L503-L531 | def csv_header_and_defaults(features, schema, stats, keep_target):
"""Gets csv header and default lists."""
target_name = get_target_name(features)
if keep_target and not target_name:
raise ValueError('Cannot find target transform')
csv_header = []
record_defaults = []
for col in schema:
if not keep_target and col['name'] == target_name:
continue
# Note that numerical key columns do not have a stats entry, hence the use
# of get(col['name'], {})
csv_header.append(col['name'])
if col['type'].lower() == INTEGER_SCHEMA:
dtype = tf.int64
default = int(stats['column_stats'].get(col['name'], {}).get('mean', 0))
elif col['type'].lower() == FLOAT_SCHEMA:
dtype = tf.float32
default = float(stats['column_stats'].get(col['name'], {}).get('mean', 0.0))
else:
dtype = tf.string
default = ''
record_defaults.append(tf.constant([default], dtype=dtype))
return csv_header, record_defaults | [
"def",
"csv_header_and_defaults",
"(",
"features",
",",
"schema",
",",
"stats",
",",
"keep_target",
")",
":",
"target_name",
"=",
"get_target_name",
"(",
"features",
")",
"if",
"keep_target",
"and",
"not",
"target_name",
":",
"raise",
"ValueError",
"(",
"'Cannot find target transform'",
")",
"csv_header",
"=",
"[",
"]",
"record_defaults",
"=",
"[",
"]",
"for",
"col",
"in",
"schema",
":",
"if",
"not",
"keep_target",
"and",
"col",
"[",
"'name'",
"]",
"==",
"target_name",
":",
"continue",
"# Note that numerical key columns do not have a stats entry, hence the use",
"# of get(col['name'], {})",
"csv_header",
".",
"append",
"(",
"col",
"[",
"'name'",
"]",
")",
"if",
"col",
"[",
"'type'",
"]",
".",
"lower",
"(",
")",
"==",
"INTEGER_SCHEMA",
":",
"dtype",
"=",
"tf",
".",
"int64",
"default",
"=",
"int",
"(",
"stats",
"[",
"'column_stats'",
"]",
".",
"get",
"(",
"col",
"[",
"'name'",
"]",
",",
"{",
"}",
")",
".",
"get",
"(",
"'mean'",
",",
"0",
")",
")",
"elif",
"col",
"[",
"'type'",
"]",
".",
"lower",
"(",
")",
"==",
"FLOAT_SCHEMA",
":",
"dtype",
"=",
"tf",
".",
"float32",
"default",
"=",
"float",
"(",
"stats",
"[",
"'column_stats'",
"]",
".",
"get",
"(",
"col",
"[",
"'name'",
"]",
",",
"{",
"}",
")",
".",
"get",
"(",
"'mean'",
",",
"0.0",
")",
")",
"else",
":",
"dtype",
"=",
"tf",
".",
"string",
"default",
"=",
"''",
"record_defaults",
".",
"append",
"(",
"tf",
".",
"constant",
"(",
"[",
"default",
"]",
",",
"dtype",
"=",
"dtype",
")",
")",
"return",
"csv_header",
",",
"record_defaults"
] | Gets csv header and default lists. | [
"Gets",
"csv",
"header",
"and",
"default",
"lists",
"."
] | python | train |
SpriteLink/NIPAP | nipap-www/nipapwww/controllers/version.py | https://github.com/SpriteLink/NIPAP/blob/f96069f11ab952d80b13cab06e0528f2d24b3de9/nipap-www/nipapwww/controllers/version.py#L14-L25 | def index(self):
""" Display NIPAP version info
"""
c.pynipap_version = pynipap.__version__
try:
c.nipapd_version = pynipap.nipapd_version()
except:
c.nipapd_version = 'unknown'
c.nipap_db_version = pynipap.nipap_db_version()
return render('/version.html') | [
"def",
"index",
"(",
"self",
")",
":",
"c",
".",
"pynipap_version",
"=",
"pynipap",
".",
"__version__",
"try",
":",
"c",
".",
"nipapd_version",
"=",
"pynipap",
".",
"nipapd_version",
"(",
")",
"except",
":",
"c",
".",
"nipapd_version",
"=",
"'unknown'",
"c",
".",
"nipap_db_version",
"=",
"pynipap",
".",
"nipap_db_version",
"(",
")",
"return",
"render",
"(",
"'/version.html'",
")"
] | Display NIPAP version info | [
"Display",
"NIPAP",
"version",
"info"
] | python | train |
TheHive-Project/TheHive4py | thehive4py/api.py | https://github.com/TheHive-Project/TheHive4py/blob/35762bbd50d8376943268464326b59c752d6241b/thehive4py/api.py#L145-L164 | def update_case_task(self, task):
"""
:Updates TheHive Task
:param case: The task to update. The task's `id` determines which Task to update.
:return:
"""
req = self.url + "/api/case/task/{}".format(task.id)
# Choose which attributes to send
update_keys = [
'title', 'description', 'status', 'order', 'user', 'owner', 'flag', 'endDate'
]
data = {k: v for k, v in task.__dict__.items() if k in update_keys}
try:
return requests.patch(req, headers={'Content-Type': 'application/json'}, json=data,
proxies=self.proxies, auth=self.auth, verify=self.cert)
except requests.exceptions.RequestException as e:
raise CaseTaskException("Case task update error: {}".format(e)) | [
"def",
"update_case_task",
"(",
"self",
",",
"task",
")",
":",
"req",
"=",
"self",
".",
"url",
"+",
"\"/api/case/task/{}\"",
".",
"format",
"(",
"task",
".",
"id",
")",
"# Choose which attributes to send",
"update_keys",
"=",
"[",
"'title'",
",",
"'description'",
",",
"'status'",
",",
"'order'",
",",
"'user'",
",",
"'owner'",
",",
"'flag'",
",",
"'endDate'",
"]",
"data",
"=",
"{",
"k",
":",
"v",
"for",
"k",
",",
"v",
"in",
"task",
".",
"__dict__",
".",
"items",
"(",
")",
"if",
"k",
"in",
"update_keys",
"}",
"try",
":",
"return",
"requests",
".",
"patch",
"(",
"req",
",",
"headers",
"=",
"{",
"'Content-Type'",
":",
"'application/json'",
"}",
",",
"json",
"=",
"data",
",",
"proxies",
"=",
"self",
".",
"proxies",
",",
"auth",
"=",
"self",
".",
"auth",
",",
"verify",
"=",
"self",
".",
"cert",
")",
"except",
"requests",
".",
"exceptions",
".",
"RequestException",
"as",
"e",
":",
"raise",
"CaseTaskException",
"(",
"\"Case task update error: {}\"",
".",
"format",
"(",
"e",
")",
")"
] | :Updates TheHive Task
:param case: The task to update. The task's `id` determines which Task to update.
:return: | [
":",
"Updates",
"TheHive",
"Task",
":",
"param",
"case",
":",
"The",
"task",
"to",
"update",
".",
"The",
"task",
"s",
"id",
"determines",
"which",
"Task",
"to",
"update",
".",
":",
"return",
":"
] | python | train |
andreikop/qutepart | qutepart/__init__.py | https://github.com/andreikop/qutepart/blob/109d76b239751318bcef06f39b2fbbf18687a40b/qutepart/__init__.py#L1266-L1285 | def _currentLineExtraSelections(self):
"""QTextEdit.ExtraSelection, which highlightes current line
"""
if self._currentLineColor is None:
return []
def makeSelection(cursor):
selection = QTextEdit.ExtraSelection()
selection.format.setBackground(self._currentLineColor)
selection.format.setProperty(QTextFormat.FullWidthSelection, True)
cursor.clearSelection()
selection.cursor = cursor
return selection
rectangularSelectionCursors = self._rectangularSelection.cursors()
if rectangularSelectionCursors:
return [makeSelection(cursor) \
for cursor in rectangularSelectionCursors]
else:
return [makeSelection(self.textCursor())] | [
"def",
"_currentLineExtraSelections",
"(",
"self",
")",
":",
"if",
"self",
".",
"_currentLineColor",
"is",
"None",
":",
"return",
"[",
"]",
"def",
"makeSelection",
"(",
"cursor",
")",
":",
"selection",
"=",
"QTextEdit",
".",
"ExtraSelection",
"(",
")",
"selection",
".",
"format",
".",
"setBackground",
"(",
"self",
".",
"_currentLineColor",
")",
"selection",
".",
"format",
".",
"setProperty",
"(",
"QTextFormat",
".",
"FullWidthSelection",
",",
"True",
")",
"cursor",
".",
"clearSelection",
"(",
")",
"selection",
".",
"cursor",
"=",
"cursor",
"return",
"selection",
"rectangularSelectionCursors",
"=",
"self",
".",
"_rectangularSelection",
".",
"cursors",
"(",
")",
"if",
"rectangularSelectionCursors",
":",
"return",
"[",
"makeSelection",
"(",
"cursor",
")",
"for",
"cursor",
"in",
"rectangularSelectionCursors",
"]",
"else",
":",
"return",
"[",
"makeSelection",
"(",
"self",
".",
"textCursor",
"(",
")",
")",
"]"
] | QTextEdit.ExtraSelection, which highlightes current line | [
"QTextEdit",
".",
"ExtraSelection",
"which",
"highlightes",
"current",
"line"
] | python | train |
ARMmbed/icetea | icetea_lib/tools/GenericProcess.py | https://github.com/ARMmbed/icetea/blob/b2b97ac607429830cf7d62dae2e3903692c7c778/icetea_lib/tools/GenericProcess.py#L132-L164 | def _read_select_poll(poll):
"""
Read PIPEs using select.poll() method
Available on Linux and some Unixes
"""
npipes = len(NonBlockingStreamReader._streams)
for stream_descr in NonBlockingStreamReader._streams:
if not stream_descr.has_error:
poll.register(stream_descr.stream,
select.POLLIN | select.POLLERR | select.POLLHUP | select.POLLNVAL)
while NonBlockingStreamReader._run_flag:
for (file_descr, event) in poll.poll(500):
if event == select.POLLIN:
NonBlockingStreamReader._read_fd(file_descr)
else:
# Because event != select.POLLIN, the pipe is closed
# but we still want to read all bytes
while NonBlockingStreamReader._read_fd(file_descr) != 0:
pass
# Dut died, signal the processing thread so it notices that no lines coming in
stream_descr = NonBlockingStreamReader._get_sd(file_descr)
if stream_descr is None:
return # PIPE closed but DUT already disappeared
stream_descr.has_error = True
if stream_descr.callback is not None:
stream_descr.callback()
return # Force poll object to reregister only alive descriptors
# Check if new pipes added, don't need mutext just for reading the size
# If we will not get it right now, we will at next time
if npipes != len(NonBlockingStreamReader._streams):
return | [
"def",
"_read_select_poll",
"(",
"poll",
")",
":",
"npipes",
"=",
"len",
"(",
"NonBlockingStreamReader",
".",
"_streams",
")",
"for",
"stream_descr",
"in",
"NonBlockingStreamReader",
".",
"_streams",
":",
"if",
"not",
"stream_descr",
".",
"has_error",
":",
"poll",
".",
"register",
"(",
"stream_descr",
".",
"stream",
",",
"select",
".",
"POLLIN",
"|",
"select",
".",
"POLLERR",
"|",
"select",
".",
"POLLHUP",
"|",
"select",
".",
"POLLNVAL",
")",
"while",
"NonBlockingStreamReader",
".",
"_run_flag",
":",
"for",
"(",
"file_descr",
",",
"event",
")",
"in",
"poll",
".",
"poll",
"(",
"500",
")",
":",
"if",
"event",
"==",
"select",
".",
"POLLIN",
":",
"NonBlockingStreamReader",
".",
"_read_fd",
"(",
"file_descr",
")",
"else",
":",
"# Because event != select.POLLIN, the pipe is closed",
"# but we still want to read all bytes",
"while",
"NonBlockingStreamReader",
".",
"_read_fd",
"(",
"file_descr",
")",
"!=",
"0",
":",
"pass",
"# Dut died, signal the processing thread so it notices that no lines coming in",
"stream_descr",
"=",
"NonBlockingStreamReader",
".",
"_get_sd",
"(",
"file_descr",
")",
"if",
"stream_descr",
"is",
"None",
":",
"return",
"# PIPE closed but DUT already disappeared",
"stream_descr",
".",
"has_error",
"=",
"True",
"if",
"stream_descr",
".",
"callback",
"is",
"not",
"None",
":",
"stream_descr",
".",
"callback",
"(",
")",
"return",
"# Force poll object to reregister only alive descriptors",
"# Check if new pipes added, don't need mutext just for reading the size",
"# If we will not get it right now, we will at next time",
"if",
"npipes",
"!=",
"len",
"(",
"NonBlockingStreamReader",
".",
"_streams",
")",
":",
"return"
] | Read PIPEs using select.poll() method
Available on Linux and some Unixes | [
"Read",
"PIPEs",
"using",
"select",
".",
"poll",
"()",
"method",
"Available",
"on",
"Linux",
"and",
"some",
"Unixes"
] | python | train |
log2timeline/plaso | plaso/parsers/interface.py | https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/parsers/interface.py#L170-L187 | def RegisterPlugin(cls, plugin_class):
"""Registers a plugin class.
The plugin classes are identified based on their lower case name.
Args:
plugin_class (type): class of the plugin.
Raises:
KeyError: if plugin class is already set for the corresponding name.
"""
plugin_name = plugin_class.NAME.lower()
if plugin_name in cls._plugin_classes:
raise KeyError((
'Plugin class already set for name: {0:s}.').format(
plugin_class.NAME))
cls._plugin_classes[plugin_name] = plugin_class | [
"def",
"RegisterPlugin",
"(",
"cls",
",",
"plugin_class",
")",
":",
"plugin_name",
"=",
"plugin_class",
".",
"NAME",
".",
"lower",
"(",
")",
"if",
"plugin_name",
"in",
"cls",
".",
"_plugin_classes",
":",
"raise",
"KeyError",
"(",
"(",
"'Plugin class already set for name: {0:s}.'",
")",
".",
"format",
"(",
"plugin_class",
".",
"NAME",
")",
")",
"cls",
".",
"_plugin_classes",
"[",
"plugin_name",
"]",
"=",
"plugin_class"
] | Registers a plugin class.
The plugin classes are identified based on their lower case name.
Args:
plugin_class (type): class of the plugin.
Raises:
KeyError: if plugin class is already set for the corresponding name. | [
"Registers",
"a",
"plugin",
"class",
"."
] | python | train |
storax/upme | src/upme/main.py | https://github.com/storax/upme/blob/41c2d91f922691e31ff940f33b755d2cb64dfef8/src/upme/main.py#L8-L29 | def get_required(dist):
"""Return a set with all distributions that are required of dist
This also includes subdependencies and the given distribution.
:param dist: the distribution to query. Can also be the name of the distribution
:type dist: :class:`pkg_resources.Distribution` | str
:returns: a list of distributions that are required including the given one
:rtype: set of :class:`pkg_resources.Distribution`
:raises: class:`pkg_resources.DistributionNotFound`
"""
d = pkg_resources.get_distribution(dist)
reqs = set(d.requires())
allds = set([d])
while reqs:
newreqs = set([])
for r in reqs:
dr = pkg_resources.get_distribution(r)
allds.add(dr)
newreqs = newreqs & set(dr.requires())
reqs = newreqs - reqs
return allds | [
"def",
"get_required",
"(",
"dist",
")",
":",
"d",
"=",
"pkg_resources",
".",
"get_distribution",
"(",
"dist",
")",
"reqs",
"=",
"set",
"(",
"d",
".",
"requires",
"(",
")",
")",
"allds",
"=",
"set",
"(",
"[",
"d",
"]",
")",
"while",
"reqs",
":",
"newreqs",
"=",
"set",
"(",
"[",
"]",
")",
"for",
"r",
"in",
"reqs",
":",
"dr",
"=",
"pkg_resources",
".",
"get_distribution",
"(",
"r",
")",
"allds",
".",
"add",
"(",
"dr",
")",
"newreqs",
"=",
"newreqs",
"&",
"set",
"(",
"dr",
".",
"requires",
"(",
")",
")",
"reqs",
"=",
"newreqs",
"-",
"reqs",
"return",
"allds"
] | Return a set with all distributions that are required of dist
This also includes subdependencies and the given distribution.
:param dist: the distribution to query. Can also be the name of the distribution
:type dist: :class:`pkg_resources.Distribution` | str
:returns: a list of distributions that are required including the given one
:rtype: set of :class:`pkg_resources.Distribution`
:raises: class:`pkg_resources.DistributionNotFound` | [
"Return",
"a",
"set",
"with",
"all",
"distributions",
"that",
"are",
"required",
"of",
"dist"
] | python | train |
senaite/senaite.core | bika/lims/browser/analysisrequest/reject_samples.py | https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/browser/analysisrequest/reject_samples.py#L147-L161 | def get_samples_data(self):
"""Returns a list of Samples data (dictionary)
"""
for obj in self.get_samples_from_request():
yield {
"obj": obj,
"id": api.get_id(obj),
"uid": api.get_uid(obj),
"title": api.get_title(obj),
"path": api.get_path(obj),
"url": api.get_url(obj),
"sample_type": obj.getSampleTypeTitle(),
"client_title": obj.getClientTitle(),
"date": ulocalized_time(obj.created(), long_format=True),
} | [
"def",
"get_samples_data",
"(",
"self",
")",
":",
"for",
"obj",
"in",
"self",
".",
"get_samples_from_request",
"(",
")",
":",
"yield",
"{",
"\"obj\"",
":",
"obj",
",",
"\"id\"",
":",
"api",
".",
"get_id",
"(",
"obj",
")",
",",
"\"uid\"",
":",
"api",
".",
"get_uid",
"(",
"obj",
")",
",",
"\"title\"",
":",
"api",
".",
"get_title",
"(",
"obj",
")",
",",
"\"path\"",
":",
"api",
".",
"get_path",
"(",
"obj",
")",
",",
"\"url\"",
":",
"api",
".",
"get_url",
"(",
"obj",
")",
",",
"\"sample_type\"",
":",
"obj",
".",
"getSampleTypeTitle",
"(",
")",
",",
"\"client_title\"",
":",
"obj",
".",
"getClientTitle",
"(",
")",
",",
"\"date\"",
":",
"ulocalized_time",
"(",
"obj",
".",
"created",
"(",
")",
",",
"long_format",
"=",
"True",
")",
",",
"}"
] | Returns a list of Samples data (dictionary) | [
"Returns",
"a",
"list",
"of",
"Samples",
"data",
"(",
"dictionary",
")"
] | python | train |
StackStorm/pybind | pybind/slxos/v17r_1_01a/interface/port_channel/logical_interface/port_channel/pc_cmd_container_dummy/service_instance_vlan_cmds_dummy_container/get_untagged_vlan_dummy/__init__.py | https://github.com/StackStorm/pybind/blob/44c467e71b2b425be63867aba6e6fa28b2cfe7fb/pybind/slxos/v17r_1_01a/interface/port_channel/logical_interface/port_channel/pc_cmd_container_dummy/service_instance_vlan_cmds_dummy_container/get_untagged_vlan_dummy/__init__.py#L92-L113 | def _set_untagged(self, v, load=False):
"""
Setter method for untagged, mapped from YANG variable /interface/port_channel/logical_interface/port_channel/pc_cmd_container_dummy/service_instance_vlan_cmds_dummy_container/get_untagged_vlan_dummy/untagged (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_untagged is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_untagged() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=untagged.untagged, is_container='container', presence=False, yang_name="untagged", rest_name="untagged", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure untagged VLAN on this logical interface', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-lif', defining_module='brocade-lif', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """untagged must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=untagged.untagged, is_container='container', presence=False, yang_name="untagged", rest_name="untagged", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure untagged VLAN on this logical interface', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-lif', defining_module='brocade-lif', yang_type='container', is_config=True)""",
})
self.__untagged = t
if hasattr(self, '_set'):
self._set() | [
"def",
"_set_untagged",
"(",
"self",
",",
"v",
",",
"load",
"=",
"False",
")",
":",
"if",
"hasattr",
"(",
"v",
",",
"\"_utype\"",
")",
":",
"v",
"=",
"v",
".",
"_utype",
"(",
"v",
")",
"try",
":",
"t",
"=",
"YANGDynClass",
"(",
"v",
",",
"base",
"=",
"untagged",
".",
"untagged",
",",
"is_container",
"=",
"'container'",
",",
"presence",
"=",
"False",
",",
"yang_name",
"=",
"\"untagged\"",
",",
"rest_name",
"=",
"\"untagged\"",
",",
"parent",
"=",
"self",
",",
"path_helper",
"=",
"self",
".",
"_path_helper",
",",
"extmethods",
"=",
"self",
".",
"_extmethods",
",",
"register_paths",
"=",
"True",
",",
"extensions",
"=",
"{",
"u'tailf-common'",
":",
"{",
"u'info'",
":",
"u'Configure untagged VLAN on this logical interface'",
",",
"u'cli-incomplete-command'",
":",
"None",
"}",
"}",
",",
"namespace",
"=",
"'urn:brocade.com:mgmt:brocade-lif'",
",",
"defining_module",
"=",
"'brocade-lif'",
",",
"yang_type",
"=",
"'container'",
",",
"is_config",
"=",
"True",
")",
"except",
"(",
"TypeError",
",",
"ValueError",
")",
":",
"raise",
"ValueError",
"(",
"{",
"'error-string'",
":",
"\"\"\"untagged must be of a type compatible with container\"\"\"",
",",
"'defined-type'",
":",
"\"container\"",
",",
"'generated-type'",
":",
"\"\"\"YANGDynClass(base=untagged.untagged, is_container='container', presence=False, yang_name=\"untagged\", rest_name=\"untagged\", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure untagged VLAN on this logical interface', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-lif', defining_module='brocade-lif', yang_type='container', is_config=True)\"\"\"",
",",
"}",
")",
"self",
".",
"__untagged",
"=",
"t",
"if",
"hasattr",
"(",
"self",
",",
"'_set'",
")",
":",
"self",
".",
"_set",
"(",
")"
] | Setter method for untagged, mapped from YANG variable /interface/port_channel/logical_interface/port_channel/pc_cmd_container_dummy/service_instance_vlan_cmds_dummy_container/get_untagged_vlan_dummy/untagged (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_untagged is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_untagged() directly. | [
"Setter",
"method",
"for",
"untagged",
"mapped",
"from",
"YANG",
"variable",
"/",
"interface",
"/",
"port_channel",
"/",
"logical_interface",
"/",
"port_channel",
"/",
"pc_cmd_container_dummy",
"/",
"service_instance_vlan_cmds_dummy_container",
"/",
"get_untagged_vlan_dummy",
"/",
"untagged",
"(",
"container",
")",
"If",
"this",
"variable",
"is",
"read",
"-",
"only",
"(",
"config",
":",
"false",
")",
"in",
"the",
"source",
"YANG",
"file",
"then",
"_set_untagged",
"is",
"considered",
"as",
"a",
"private",
"method",
".",
"Backends",
"looking",
"to",
"populate",
"this",
"variable",
"should",
"do",
"so",
"via",
"calling",
"thisObj",
".",
"_set_untagged",
"()",
"directly",
"."
] | python | train |
annoviko/pyclustering | pyclustering/core/som_wrapper.py | https://github.com/annoviko/pyclustering/blob/98aa0dd89fd36f701668fb1eb29c8fb5662bf7d0/pyclustering/core/som_wrapper.py#L73-L95 | def som_load(som_pointer, weights, award, capture_objects):
"""!
@brief Load dump of the network to SOM.
@details Initialize SOM using existed weights, amount of captured objects by each neuron, captured
objects by each neuron. Initialization is not performed if weights are empty.
@param[in] som_pointer (POINTER): pointer to object of self-organized map.
@param[in] weights (list): weights that should assigned to neurons.
@param[in] awards (list): amount of captured objects by each neuron.
@param[in] capture_objects (list): captured objects by each neuron.
"""
if len(weights) == 0:
return
ccore = ccore_library.get()
package_weights = package_builder(weights, c_double).create()
package_award = package_builder(award, c_size_t).create()
package_capture_objects = package_builder(capture_objects, c_size_t).create()
ccore.som_load(som_pointer, package_weights, package_award, package_capture_objects) | [
"def",
"som_load",
"(",
"som_pointer",
",",
"weights",
",",
"award",
",",
"capture_objects",
")",
":",
"if",
"len",
"(",
"weights",
")",
"==",
"0",
":",
"return",
"ccore",
"=",
"ccore_library",
".",
"get",
"(",
")",
"package_weights",
"=",
"package_builder",
"(",
"weights",
",",
"c_double",
")",
".",
"create",
"(",
")",
"package_award",
"=",
"package_builder",
"(",
"award",
",",
"c_size_t",
")",
".",
"create",
"(",
")",
"package_capture_objects",
"=",
"package_builder",
"(",
"capture_objects",
",",
"c_size_t",
")",
".",
"create",
"(",
")",
"ccore",
".",
"som_load",
"(",
"som_pointer",
",",
"package_weights",
",",
"package_award",
",",
"package_capture_objects",
")"
] | !
@brief Load dump of the network to SOM.
@details Initialize SOM using existed weights, amount of captured objects by each neuron, captured
objects by each neuron. Initialization is not performed if weights are empty.
@param[in] som_pointer (POINTER): pointer to object of self-organized map.
@param[in] weights (list): weights that should assigned to neurons.
@param[in] awards (list): amount of captured objects by each neuron.
@param[in] capture_objects (list): captured objects by each neuron. | [
"!"
] | python | valid |
tcalmant/ipopo | pelix/internals/registry.py | https://github.com/tcalmant/ipopo/blob/2f9ae0c44cd9c34ef1a9d50837b3254e75678eb1/pelix/internals/registry.py#L1090-L1115 | def __sort_registry(self, svc_ref):
# type: (ServiceReference) -> None
"""
Sorts the registry, after the update of the sort key of given service
reference
:param svc_ref: A service reference with a modified sort key
"""
with self.__svc_lock:
if svc_ref not in self.__svc_registry:
raise BundleException("Unknown service: {0}".format(svc_ref))
# Remove current references
for spec in svc_ref.get_property(OBJECTCLASS):
# Use bisect to remove the reference (faster)
spec_refs = self.__svc_specs[spec]
idx = bisect.bisect_left(spec_refs, svc_ref)
del spec_refs[idx]
# ... use the new sort key
svc_ref.update_sort_key()
for spec in svc_ref.get_property(OBJECTCLASS):
# ... and insert it again
spec_refs = self.__svc_specs[spec]
bisect.insort_left(spec_refs, svc_ref) | [
"def",
"__sort_registry",
"(",
"self",
",",
"svc_ref",
")",
":",
"# type: (ServiceReference) -> None",
"with",
"self",
".",
"__svc_lock",
":",
"if",
"svc_ref",
"not",
"in",
"self",
".",
"__svc_registry",
":",
"raise",
"BundleException",
"(",
"\"Unknown service: {0}\"",
".",
"format",
"(",
"svc_ref",
")",
")",
"# Remove current references",
"for",
"spec",
"in",
"svc_ref",
".",
"get_property",
"(",
"OBJECTCLASS",
")",
":",
"# Use bisect to remove the reference (faster)",
"spec_refs",
"=",
"self",
".",
"__svc_specs",
"[",
"spec",
"]",
"idx",
"=",
"bisect",
".",
"bisect_left",
"(",
"spec_refs",
",",
"svc_ref",
")",
"del",
"spec_refs",
"[",
"idx",
"]",
"# ... use the new sort key",
"svc_ref",
".",
"update_sort_key",
"(",
")",
"for",
"spec",
"in",
"svc_ref",
".",
"get_property",
"(",
"OBJECTCLASS",
")",
":",
"# ... and insert it again",
"spec_refs",
"=",
"self",
".",
"__svc_specs",
"[",
"spec",
"]",
"bisect",
".",
"insort_left",
"(",
"spec_refs",
",",
"svc_ref",
")"
] | Sorts the registry, after the update of the sort key of given service
reference
:param svc_ref: A service reference with a modified sort key | [
"Sorts",
"the",
"registry",
"after",
"the",
"update",
"of",
"the",
"sort",
"key",
"of",
"given",
"service",
"reference"
] | python | train |
daviddrysdale/python-phonenumbers | python/phonenumbers/carrier.py | https://github.com/daviddrysdale/python-phonenumbers/blob/9cc5bb4ab5e661e70789b4c64bf7a9383c7bdc20/python/phonenumbers/carrier.py#L53-L79 | def name_for_valid_number(numobj, lang, script=None, region=None):
"""Returns a carrier name for the given PhoneNumber object, in the
language provided.
The carrier name is the one the number was originally allocated to,
however if the country supports mobile number portability the number might
not belong to the returned carrier anymore. If no mapping is found an
empty string is returned.
This method assumes the validity of the number passed in has already been
checked, and that the number is suitable for carrier lookup. We consider
mobile and pager numbers possible candidates for carrier lookup.
Arguments:
numobj -- The PhoneNumber object for which we want to get a carrier name.
lang -- A 2-letter lowercase ISO 639-1 language code for the language in
which the description should be returned (e.g. "en")
script -- A 4-letter titlecase (first letter uppercase, rest lowercase)
ISO script code as defined in ISO 15924, separated by an
underscore (e.g. "Hant")
region -- A 2-letter uppercase ISO 3166-1 country code (e.g. "GB")
Returns a carrier name in the given language code, for the given phone
number, or an empty string if no description is available.
"""
return _prefix_description_for_number(CARRIER_DATA, CARRIER_LONGEST_PREFIX,
numobj, lang, script, region) | [
"def",
"name_for_valid_number",
"(",
"numobj",
",",
"lang",
",",
"script",
"=",
"None",
",",
"region",
"=",
"None",
")",
":",
"return",
"_prefix_description_for_number",
"(",
"CARRIER_DATA",
",",
"CARRIER_LONGEST_PREFIX",
",",
"numobj",
",",
"lang",
",",
"script",
",",
"region",
")"
] | Returns a carrier name for the given PhoneNumber object, in the
language provided.
The carrier name is the one the number was originally allocated to,
however if the country supports mobile number portability the number might
not belong to the returned carrier anymore. If no mapping is found an
empty string is returned.
This method assumes the validity of the number passed in has already been
checked, and that the number is suitable for carrier lookup. We consider
mobile and pager numbers possible candidates for carrier lookup.
Arguments:
numobj -- The PhoneNumber object for which we want to get a carrier name.
lang -- A 2-letter lowercase ISO 639-1 language code for the language in
which the description should be returned (e.g. "en")
script -- A 4-letter titlecase (first letter uppercase, rest lowercase)
ISO script code as defined in ISO 15924, separated by an
underscore (e.g. "Hant")
region -- A 2-letter uppercase ISO 3166-1 country code (e.g. "GB")
Returns a carrier name in the given language code, for the given phone
number, or an empty string if no description is available. | [
"Returns",
"a",
"carrier",
"name",
"for",
"the",
"given",
"PhoneNumber",
"object",
"in",
"the",
"language",
"provided",
"."
] | python | train |
mamrhein/identifiers | identifiers/banking.py | https://github.com/mamrhein/identifiers/blob/93ab2609e461faff245d1f582411bf831b428eef/identifiers/banking.py#L74-L78 | def elements(self):
"""Return the BIC's Party Prefix, Country Code, Party Suffix and
Branch Code as a tuple."""
return (self.party_prefix, self.country_code, self.party_suffix,
self.branch_code) | [
"def",
"elements",
"(",
"self",
")",
":",
"return",
"(",
"self",
".",
"party_prefix",
",",
"self",
".",
"country_code",
",",
"self",
".",
"party_suffix",
",",
"self",
".",
"branch_code",
")"
] | Return the BIC's Party Prefix, Country Code, Party Suffix and
Branch Code as a tuple. | [
"Return",
"the",
"BIC",
"s",
"Party",
"Prefix",
"Country",
"Code",
"Party",
"Suffix",
"and",
"Branch",
"Code",
"as",
"a",
"tuple",
"."
] | python | train |
last-partizan/pytils | pytils/translit.py | https://github.com/last-partizan/pytils/blob/1c570a32b15e564bc68587b8207e32d464e61d08/pytils/translit.py#L190-L217 | def slugify(in_string):
"""
Prepare string for slug (i.e. URL or file/dir name)
@param in_string: input string
@type in_string: C{basestring}
@return: slug-string
@rtype: C{str}
@raise ValueError: if in_string is C{str}, but it isn't ascii
"""
try:
u_in_string = six.text_type(in_string).lower()
except UnicodeDecodeError:
raise ValueError("We expects when in_string is str type," + \
"it is an ascii, but now it isn't. Use unicode " + \
"in this case.")
# convert & to "and"
u_in_string = re.sub('\&\;|\&', ' and ', u_in_string)
# replace spaces by hyphen
u_in_string = re.sub('[-\s]+', '-', u_in_string)
# remove symbols that not in alphabet
u_in_string = u''.join([symb for symb in u_in_string if symb in ALPHABET])
# translify it
out_string = translify(u_in_string)
# remove non-alpha
return re.sub('[^\w\s-]', '', out_string).strip().lower() | [
"def",
"slugify",
"(",
"in_string",
")",
":",
"try",
":",
"u_in_string",
"=",
"six",
".",
"text_type",
"(",
"in_string",
")",
".",
"lower",
"(",
")",
"except",
"UnicodeDecodeError",
":",
"raise",
"ValueError",
"(",
"\"We expects when in_string is str type,\"",
"+",
"\"it is an ascii, but now it isn't. Use unicode \"",
"+",
"\"in this case.\"",
")",
"# convert & to \"and\"",
"u_in_string",
"=",
"re",
".",
"sub",
"(",
"'\\&\\;|\\&'",
",",
"' and '",
",",
"u_in_string",
")",
"# replace spaces by hyphen",
"u_in_string",
"=",
"re",
".",
"sub",
"(",
"'[-\\s]+'",
",",
"'-'",
",",
"u_in_string",
")",
"# remove symbols that not in alphabet",
"u_in_string",
"=",
"u''",
".",
"join",
"(",
"[",
"symb",
"for",
"symb",
"in",
"u_in_string",
"if",
"symb",
"in",
"ALPHABET",
"]",
")",
"# translify it",
"out_string",
"=",
"translify",
"(",
"u_in_string",
")",
"# remove non-alpha",
"return",
"re",
".",
"sub",
"(",
"'[^\\w\\s-]'",
",",
"''",
",",
"out_string",
")",
".",
"strip",
"(",
")",
".",
"lower",
"(",
")"
] | Prepare string for slug (i.e. URL or file/dir name)
@param in_string: input string
@type in_string: C{basestring}
@return: slug-string
@rtype: C{str}
@raise ValueError: if in_string is C{str}, but it isn't ascii | [
"Prepare",
"string",
"for",
"slug",
"(",
"i",
".",
"e",
".",
"URL",
"or",
"file",
"/",
"dir",
"name",
")"
] | python | train |
mbj4668/pyang | pyang/plugins/sample-xml-skeleton.py | https://github.com/mbj4668/pyang/blob/f2a5cc3142162e5b9ee4e18d154568d939ff63dd/pyang/plugins/sample-xml-skeleton.py#L199-L220 | def sample_element(self, node, parent, module, path):
"""Create element under `parent`.
Declare new namespace if necessary.
"""
if path is None:
return parent, module, None
elif path == []:
# GO ON
pass
else:
if node.arg == path[0]:
path = path[1:]
else:
return parent, module, None
res = etree.SubElement(parent, node.arg)
mm = node.main_module()
if mm != module:
res.attrib["xmlns"] = self.ns_uri[mm]
module = mm
return res, module, path | [
"def",
"sample_element",
"(",
"self",
",",
"node",
",",
"parent",
",",
"module",
",",
"path",
")",
":",
"if",
"path",
"is",
"None",
":",
"return",
"parent",
",",
"module",
",",
"None",
"elif",
"path",
"==",
"[",
"]",
":",
"# GO ON",
"pass",
"else",
":",
"if",
"node",
".",
"arg",
"==",
"path",
"[",
"0",
"]",
":",
"path",
"=",
"path",
"[",
"1",
":",
"]",
"else",
":",
"return",
"parent",
",",
"module",
",",
"None",
"res",
"=",
"etree",
".",
"SubElement",
"(",
"parent",
",",
"node",
".",
"arg",
")",
"mm",
"=",
"node",
".",
"main_module",
"(",
")",
"if",
"mm",
"!=",
"module",
":",
"res",
".",
"attrib",
"[",
"\"xmlns\"",
"]",
"=",
"self",
".",
"ns_uri",
"[",
"mm",
"]",
"module",
"=",
"mm",
"return",
"res",
",",
"module",
",",
"path"
] | Create element under `parent`.
Declare new namespace if necessary. | [
"Create",
"element",
"under",
"parent",
"."
] | python | train |
3DLIRIOUS/MeshLabXML | meshlabxml/transform.py | https://github.com/3DLIRIOUS/MeshLabXML/blob/177cce21e92baca500f56a932d66bd9a33257af8/meshlabxml/transform.py#L198-L220 | def rotate(script, axis='z', angle=0.0):
"""An alternative rotate implementation that uses a geometric function.
This is more accurate than the built-in version."""
angle = math.radians(angle)
if axis.lower() == 'x':
vert_function(script,
x_func='x',
y_func='y*cos({angle})-z*sin({angle})'.format(angle=angle),
z_func='y*sin({angle})+z*cos({angle})'.format(angle=angle))
elif axis.lower() == 'y':
vert_function(script,
x_func='z*sin({angle})+x*cos({angle})'.format(angle=angle),
y_func='y',
z_func='z*cos({angle})-x*sin({angle})'.format(angle=angle))
elif axis.lower() == 'z':
vert_function(script,
x_func='x*cos({angle})-y*sin({angle})'.format(angle=angle),
y_func='x*sin({angle})+y*cos({angle})'.format(angle=angle),
z_func='z')
else:
print('Axis name is not valid; exiting ...')
sys.exit(1)
return None | [
"def",
"rotate",
"(",
"script",
",",
"axis",
"=",
"'z'",
",",
"angle",
"=",
"0.0",
")",
":",
"angle",
"=",
"math",
".",
"radians",
"(",
"angle",
")",
"if",
"axis",
".",
"lower",
"(",
")",
"==",
"'x'",
":",
"vert_function",
"(",
"script",
",",
"x_func",
"=",
"'x'",
",",
"y_func",
"=",
"'y*cos({angle})-z*sin({angle})'",
".",
"format",
"(",
"angle",
"=",
"angle",
")",
",",
"z_func",
"=",
"'y*sin({angle})+z*cos({angle})'",
".",
"format",
"(",
"angle",
"=",
"angle",
")",
")",
"elif",
"axis",
".",
"lower",
"(",
")",
"==",
"'y'",
":",
"vert_function",
"(",
"script",
",",
"x_func",
"=",
"'z*sin({angle})+x*cos({angle})'",
".",
"format",
"(",
"angle",
"=",
"angle",
")",
",",
"y_func",
"=",
"'y'",
",",
"z_func",
"=",
"'z*cos({angle})-x*sin({angle})'",
".",
"format",
"(",
"angle",
"=",
"angle",
")",
")",
"elif",
"axis",
".",
"lower",
"(",
")",
"==",
"'z'",
":",
"vert_function",
"(",
"script",
",",
"x_func",
"=",
"'x*cos({angle})-y*sin({angle})'",
".",
"format",
"(",
"angle",
"=",
"angle",
")",
",",
"y_func",
"=",
"'x*sin({angle})+y*cos({angle})'",
".",
"format",
"(",
"angle",
"=",
"angle",
")",
",",
"z_func",
"=",
"'z'",
")",
"else",
":",
"print",
"(",
"'Axis name is not valid; exiting ...'",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"return",
"None"
] | An alternative rotate implementation that uses a geometric function.
This is more accurate than the built-in version. | [
"An",
"alternative",
"rotate",
"implementation",
"that",
"uses",
"a",
"geometric",
"function",
".",
"This",
"is",
"more",
"accurate",
"than",
"the",
"built",
"-",
"in",
"version",
"."
] | python | test |
daknuett/py_register_machine2 | engine_tools/output/gpu_alike/rendering.py | https://github.com/daknuett/py_register_machine2/blob/599c53cd7576297d0d7a53344ed5d9aa98acc751/engine_tools/output/gpu_alike/rendering.py#L65-L71 | def interrupt(self):
"""
Invoked on a write operation into the IR of the RendererDevice.
"""
if(self.device.read(9) & 0x01):
self.handle_request()
self.device.clear_IR() | [
"def",
"interrupt",
"(",
"self",
")",
":",
"if",
"(",
"self",
".",
"device",
".",
"read",
"(",
"9",
")",
"&",
"0x01",
")",
":",
"self",
".",
"handle_request",
"(",
")",
"self",
".",
"device",
".",
"clear_IR",
"(",
")"
] | Invoked on a write operation into the IR of the RendererDevice. | [
"Invoked",
"on",
"a",
"write",
"operation",
"into",
"the",
"IR",
"of",
"the",
"RendererDevice",
"."
] | python | train |
glitchassassin/lackey | lackey/RegionMatching.py | https://github.com/glitchassassin/lackey/blob/7adadfacd7f45d81186710be992f5668b15399fe/lackey/RegionMatching.py#L1112-L1132 | def getCol(self, column, numberColumns=None):
""" Returns the specified column of the region (if the raster is set)
If numberColumns is provided, uses that instead of the raster
"""
column = int(column)
if self._raster[0] == 0 or self._raster[1] == 0:
return self
if numberColumns is None or numberColumns < 1 or numberColumns > 9:
numberColumns = self._raster[1]
columnWidth = self.w / numberColumns
if column < 0:
# If column is negative, count backwards from the end
column = numberColumns - column
if column < 0:
# Bad column index, return last column
return Region(self.x+self.w-columnWidth, self.y, columnWidth, self.h)
elif column > numberColumns:
# Bad column index, return first column
return Region(self.x, self.y, columnWidth, self.h)
return Region(self.x + (column * columnWidth), self.y, columnWidth, self.h) | [
"def",
"getCol",
"(",
"self",
",",
"column",
",",
"numberColumns",
"=",
"None",
")",
":",
"column",
"=",
"int",
"(",
"column",
")",
"if",
"self",
".",
"_raster",
"[",
"0",
"]",
"==",
"0",
"or",
"self",
".",
"_raster",
"[",
"1",
"]",
"==",
"0",
":",
"return",
"self",
"if",
"numberColumns",
"is",
"None",
"or",
"numberColumns",
"<",
"1",
"or",
"numberColumns",
">",
"9",
":",
"numberColumns",
"=",
"self",
".",
"_raster",
"[",
"1",
"]",
"columnWidth",
"=",
"self",
".",
"w",
"/",
"numberColumns",
"if",
"column",
"<",
"0",
":",
"# If column is negative, count backwards from the end",
"column",
"=",
"numberColumns",
"-",
"column",
"if",
"column",
"<",
"0",
":",
"# Bad column index, return last column",
"return",
"Region",
"(",
"self",
".",
"x",
"+",
"self",
".",
"w",
"-",
"columnWidth",
",",
"self",
".",
"y",
",",
"columnWidth",
",",
"self",
".",
"h",
")",
"elif",
"column",
">",
"numberColumns",
":",
"# Bad column index, return first column",
"return",
"Region",
"(",
"self",
".",
"x",
",",
"self",
".",
"y",
",",
"columnWidth",
",",
"self",
".",
"h",
")",
"return",
"Region",
"(",
"self",
".",
"x",
"+",
"(",
"column",
"*",
"columnWidth",
")",
",",
"self",
".",
"y",
",",
"columnWidth",
",",
"self",
".",
"h",
")"
] | Returns the specified column of the region (if the raster is set)
If numberColumns is provided, uses that instead of the raster | [
"Returns",
"the",
"specified",
"column",
"of",
"the",
"region",
"(",
"if",
"the",
"raster",
"is",
"set",
")"
] | python | train |
atlassian-api/atlassian-python-api | atlassian/confluence.py | https://github.com/atlassian-api/atlassian-python-api/blob/540d269905c3e7547b666fe30c647b2d512cf358/atlassian/confluence.py#L374-L384 | def set_page_label(self, page_id, label):
"""
Set a label on the page
:param page_id: content_id format
:param label: label to add
:return:
"""
url = 'rest/api/content/{page_id}/label'.format(page_id=page_id)
data = {'prefix': 'global',
'name': label}
return self.post(path=url, data=data) | [
"def",
"set_page_label",
"(",
"self",
",",
"page_id",
",",
"label",
")",
":",
"url",
"=",
"'rest/api/content/{page_id}/label'",
".",
"format",
"(",
"page_id",
"=",
"page_id",
")",
"data",
"=",
"{",
"'prefix'",
":",
"'global'",
",",
"'name'",
":",
"label",
"}",
"return",
"self",
".",
"post",
"(",
"path",
"=",
"url",
",",
"data",
"=",
"data",
")"
] | Set a label on the page
:param page_id: content_id format
:param label: label to add
:return: | [
"Set",
"a",
"label",
"on",
"the",
"page",
":",
"param",
"page_id",
":",
"content_id",
"format",
":",
"param",
"label",
":",
"label",
"to",
"add",
":",
"return",
":"
] | python | train |
RRZE-HPC/kerncraft | kerncraft/kerncraft.py | https://github.com/RRZE-HPC/kerncraft/blob/c60baf8043e4da8d8d66da7575021c2f4c6c78af/kerncraft/kerncraft.py#L189-L202 | def check_arguments(args, parser):
"""Check arguments passed by user that are not checked by argparse itself."""
if args.asm_block not in ['auto', 'manual']:
try:
args.asm_block = int(args.asm_block)
except ValueError:
parser.error('--asm-block can only be "auto", "manual" or an integer')
# Set default unit depending on performance model requested
if not args.unit:
if 'Roofline' in args.pmodel or 'RooflineIACA' in args.pmodel:
args.unit = 'FLOP/s'
else:
args.unit = 'cy/CL' | [
"def",
"check_arguments",
"(",
"args",
",",
"parser",
")",
":",
"if",
"args",
".",
"asm_block",
"not",
"in",
"[",
"'auto'",
",",
"'manual'",
"]",
":",
"try",
":",
"args",
".",
"asm_block",
"=",
"int",
"(",
"args",
".",
"asm_block",
")",
"except",
"ValueError",
":",
"parser",
".",
"error",
"(",
"'--asm-block can only be \"auto\", \"manual\" or an integer'",
")",
"# Set default unit depending on performance model requested",
"if",
"not",
"args",
".",
"unit",
":",
"if",
"'Roofline'",
"in",
"args",
".",
"pmodel",
"or",
"'RooflineIACA'",
"in",
"args",
".",
"pmodel",
":",
"args",
".",
"unit",
"=",
"'FLOP/s'",
"else",
":",
"args",
".",
"unit",
"=",
"'cy/CL'"
] | Check arguments passed by user that are not checked by argparse itself. | [
"Check",
"arguments",
"passed",
"by",
"user",
"that",
"are",
"not",
"checked",
"by",
"argparse",
"itself",
"."
] | python | test |
Josef-Friedrich/phrydy | phrydy/mediafile.py | https://github.com/Josef-Friedrich/phrydy/blob/aa13755155977b4776e49f79984f9968ac1d74dc/phrydy/mediafile.py#L947-L966 | def serialize(self, image):
"""Return an APIC frame populated with data from ``image``.
"""
assert isinstance(image, Image)
frame = mutagen.id3.Frames[self.key]()
frame.data = image.data
frame.mime = image.mime_type
frame.desc = image.desc or u''
# For compatibility with OS X/iTunes prefer latin-1 if possible.
# See issue #899
try:
frame.desc.encode("latin-1")
except UnicodeEncodeError:
frame.encoding = mutagen.id3.Encoding.UTF16
else:
frame.encoding = mutagen.id3.Encoding.LATIN1
frame.type = image.type_index
return frame | [
"def",
"serialize",
"(",
"self",
",",
"image",
")",
":",
"assert",
"isinstance",
"(",
"image",
",",
"Image",
")",
"frame",
"=",
"mutagen",
".",
"id3",
".",
"Frames",
"[",
"self",
".",
"key",
"]",
"(",
")",
"frame",
".",
"data",
"=",
"image",
".",
"data",
"frame",
".",
"mime",
"=",
"image",
".",
"mime_type",
"frame",
".",
"desc",
"=",
"image",
".",
"desc",
"or",
"u''",
"# For compatibility with OS X/iTunes prefer latin-1 if possible.",
"# See issue #899",
"try",
":",
"frame",
".",
"desc",
".",
"encode",
"(",
"\"latin-1\"",
")",
"except",
"UnicodeEncodeError",
":",
"frame",
".",
"encoding",
"=",
"mutagen",
".",
"id3",
".",
"Encoding",
".",
"UTF16",
"else",
":",
"frame",
".",
"encoding",
"=",
"mutagen",
".",
"id3",
".",
"Encoding",
".",
"LATIN1",
"frame",
".",
"type",
"=",
"image",
".",
"type_index",
"return",
"frame"
] | Return an APIC frame populated with data from ``image``. | [
"Return",
"an",
"APIC",
"frame",
"populated",
"with",
"data",
"from",
"image",
"."
] | python | train |
yunpian/yunpian-python-sdk | yunpian_python_sdk/model/result.py | https://github.com/yunpian/yunpian-python-sdk/blob/405a1196ec83fdf29ff454f74ef036974be11970/yunpian_python_sdk/model/result.py#L53-L58 | def detail(self, detail=None, ret_r=False):
'''code's detail'''
if detail or ret_r:
self._detail = detail
return self
return self._detail | [
"def",
"detail",
"(",
"self",
",",
"detail",
"=",
"None",
",",
"ret_r",
"=",
"False",
")",
":",
"if",
"detail",
"or",
"ret_r",
":",
"self",
".",
"_detail",
"=",
"detail",
"return",
"self",
"return",
"self",
".",
"_detail"
] | code's detail | [
"code",
"s",
"detail"
] | python | train |
python/core-workflow | cherry_picker/cherry_picker/cherry_picker.py | https://github.com/python/core-workflow/blob/b93c76195f6db382cfcefee334380fb4c68d4e21/cherry_picker/cherry_picker/cherry_picker.py#L656-L668 | def validate_sha(sha):
"""
Validate that a hexdigest sha is a valid commit in the repo
raises ValueError if the sha does not reference a commit within the repo
"""
cmd = ["git", "log", "-r", sha]
try:
subprocess.check_output(cmd, stderr=subprocess.STDOUT)
except subprocess.SubprocessError:
raise ValueError(
f"The sha listed in the branch name, {sha}, is not present in the repository"
) | [
"def",
"validate_sha",
"(",
"sha",
")",
":",
"cmd",
"=",
"[",
"\"git\"",
",",
"\"log\"",
",",
"\"-r\"",
",",
"sha",
"]",
"try",
":",
"subprocess",
".",
"check_output",
"(",
"cmd",
",",
"stderr",
"=",
"subprocess",
".",
"STDOUT",
")",
"except",
"subprocess",
".",
"SubprocessError",
":",
"raise",
"ValueError",
"(",
"f\"The sha listed in the branch name, {sha}, is not present in the repository\"",
")"
] | Validate that a hexdigest sha is a valid commit in the repo
raises ValueError if the sha does not reference a commit within the repo | [
"Validate",
"that",
"a",
"hexdigest",
"sha",
"is",
"a",
"valid",
"commit",
"in",
"the",
"repo"
] | python | train |
dixudx/rtcclient | rtcclient/client.py | https://github.com/dixudx/rtcclient/blob/1721dd0b047478f5bdd6359b07a2c503cfafd86f/rtcclient/client.py#L1143-L1151 | def _checkMissingParamsFromWorkitem(self, copied_from, keep=False,
**kwargs):
"""Check the missing parameters for rendering directly from the
copied workitem
"""
parameters = self.listFieldsFromWorkitem(copied_from,
keep=keep)
self._findMissingParams(parameters, **kwargs) | [
"def",
"_checkMissingParamsFromWorkitem",
"(",
"self",
",",
"copied_from",
",",
"keep",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"parameters",
"=",
"self",
".",
"listFieldsFromWorkitem",
"(",
"copied_from",
",",
"keep",
"=",
"keep",
")",
"self",
".",
"_findMissingParams",
"(",
"parameters",
",",
"*",
"*",
"kwargs",
")"
] | Check the missing parameters for rendering directly from the
copied workitem | [
"Check",
"the",
"missing",
"parameters",
"for",
"rendering",
"directly",
"from",
"the",
"copied",
"workitem"
] | python | train |
ANTsX/ANTsPy | ants/utils/quantile.py | https://github.com/ANTsX/ANTsPy/blob/638020af2cdfc5ff4bdb9809ffe67aa505727a3b/ants/utils/quantile.py#L227-L292 | def bandpass_filter_matrix( matrix,
tr=1, lowf=0.01, highf=0.1, order = 3):
"""
Bandpass filter the input time series image
ANTsR function: `frequencyFilterfMRI`
Arguments
---------
image: input time series image
tr: sampling time interval (inverse of sampling rate)
lowf: low frequency cutoff
highf: high frequency cutoff
order: order of the butterworth filter run using `filtfilt`
Returns
-------
filtered matrix
Example
-------
>>> import numpy as np
>>> import ants
>>> import matplotlib.pyplot as plt
>>> brainSignal = np.random.randn( 400, 1000 )
>>> tr = 1
>>> filtered = ants.bandpass_filter_matrix( brainSignal, tr = tr )
>>> nsamples = brainSignal.shape[0]
>>> t = np.linspace(0, tr*nsamples, nsamples, endpoint=False)
>>> k = 20
>>> plt.plot(t, brainSignal[:,k], label='Noisy signal')
>>> plt.plot(t, filtered[:,k], label='Filtered signal')
>>> plt.xlabel('time (seconds)')
>>> plt.grid(True)
>>> plt.axis('tight')
>>> plt.legend(loc='upper left')
>>> plt.show()
"""
from scipy.signal import butter, filtfilt
def butter_bandpass(lowcut, highcut, fs, order ):
nyq = 0.5 * fs
low = lowcut / nyq
high = highcut / nyq
b, a = butter(order, [low, high], btype='band')
return b, a
def butter_bandpass_filter(data, lowcut, highcut, fs, order ):
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
y = filtfilt(b, a, data)
return y
fs = 1/tr # sampling rate based on tr
nsamples = matrix.shape[0]
ncolumns = matrix.shape[1]
matrixOut = matrix.copy()
for k in range( ncolumns ):
matrixOut[:,k] = butter_bandpass_filter(
matrix[:,k], lowf, highf, fs, order=order )
return matrixOut | [
"def",
"bandpass_filter_matrix",
"(",
"matrix",
",",
"tr",
"=",
"1",
",",
"lowf",
"=",
"0.01",
",",
"highf",
"=",
"0.1",
",",
"order",
"=",
"3",
")",
":",
"from",
"scipy",
".",
"signal",
"import",
"butter",
",",
"filtfilt",
"def",
"butter_bandpass",
"(",
"lowcut",
",",
"highcut",
",",
"fs",
",",
"order",
")",
":",
"nyq",
"=",
"0.5",
"*",
"fs",
"low",
"=",
"lowcut",
"/",
"nyq",
"high",
"=",
"highcut",
"/",
"nyq",
"b",
",",
"a",
"=",
"butter",
"(",
"order",
",",
"[",
"low",
",",
"high",
"]",
",",
"btype",
"=",
"'band'",
")",
"return",
"b",
",",
"a",
"def",
"butter_bandpass_filter",
"(",
"data",
",",
"lowcut",
",",
"highcut",
",",
"fs",
",",
"order",
")",
":",
"b",
",",
"a",
"=",
"butter_bandpass",
"(",
"lowcut",
",",
"highcut",
",",
"fs",
",",
"order",
"=",
"order",
")",
"y",
"=",
"filtfilt",
"(",
"b",
",",
"a",
",",
"data",
")",
"return",
"y",
"fs",
"=",
"1",
"/",
"tr",
"# sampling rate based on tr",
"nsamples",
"=",
"matrix",
".",
"shape",
"[",
"0",
"]",
"ncolumns",
"=",
"matrix",
".",
"shape",
"[",
"1",
"]",
"matrixOut",
"=",
"matrix",
".",
"copy",
"(",
")",
"for",
"k",
"in",
"range",
"(",
"ncolumns",
")",
":",
"matrixOut",
"[",
":",
",",
"k",
"]",
"=",
"butter_bandpass_filter",
"(",
"matrix",
"[",
":",
",",
"k",
"]",
",",
"lowf",
",",
"highf",
",",
"fs",
",",
"order",
"=",
"order",
")",
"return",
"matrixOut"
] | Bandpass filter the input time series image
ANTsR function: `frequencyFilterfMRI`
Arguments
---------
image: input time series image
tr: sampling time interval (inverse of sampling rate)
lowf: low frequency cutoff
highf: high frequency cutoff
order: order of the butterworth filter run using `filtfilt`
Returns
-------
filtered matrix
Example
-------
>>> import numpy as np
>>> import ants
>>> import matplotlib.pyplot as plt
>>> brainSignal = np.random.randn( 400, 1000 )
>>> tr = 1
>>> filtered = ants.bandpass_filter_matrix( brainSignal, tr = tr )
>>> nsamples = brainSignal.shape[0]
>>> t = np.linspace(0, tr*nsamples, nsamples, endpoint=False)
>>> k = 20
>>> plt.plot(t, brainSignal[:,k], label='Noisy signal')
>>> plt.plot(t, filtered[:,k], label='Filtered signal')
>>> plt.xlabel('time (seconds)')
>>> plt.grid(True)
>>> plt.axis('tight')
>>> plt.legend(loc='upper left')
>>> plt.show() | [
"Bandpass",
"filter",
"the",
"input",
"time",
"series",
"image"
] | python | train |
DataONEorg/d1_python | gmn/src/d1_gmn/app/views/util.py | https://github.com/DataONEorg/d1_python/blob/3ac4d4f3ca052d3e8641a6a329cab526c8ddcb0d/gmn/src/d1_gmn/app/views/util.py#L179-L196 | def parse_and_normalize_url_date(date_str):
"""Parse a ISO 8601 date-time with optional timezone.
- Return as datetime with timezone adjusted to UTC.
- Return naive date-time set to UTC.
"""
if date_str is None:
return None
try:
return d1_common.date_time.dt_from_iso8601_str(date_str)
except d1_common.date_time.iso8601.ParseError as e:
raise d1_common.types.exceptions.InvalidRequest(
0,
'Invalid date format for URL parameter. date="{}" error="{}"'.format(
date_str, str(e)
),
) | [
"def",
"parse_and_normalize_url_date",
"(",
"date_str",
")",
":",
"if",
"date_str",
"is",
"None",
":",
"return",
"None",
"try",
":",
"return",
"d1_common",
".",
"date_time",
".",
"dt_from_iso8601_str",
"(",
"date_str",
")",
"except",
"d1_common",
".",
"date_time",
".",
"iso8601",
".",
"ParseError",
"as",
"e",
":",
"raise",
"d1_common",
".",
"types",
".",
"exceptions",
".",
"InvalidRequest",
"(",
"0",
",",
"'Invalid date format for URL parameter. date=\"{}\" error=\"{}\"'",
".",
"format",
"(",
"date_str",
",",
"str",
"(",
"e",
")",
")",
",",
")"
] | Parse a ISO 8601 date-time with optional timezone.
- Return as datetime with timezone adjusted to UTC.
- Return naive date-time set to UTC. | [
"Parse",
"a",
"ISO",
"8601",
"date",
"-",
"time",
"with",
"optional",
"timezone",
"."
] | python | train |
tensorflow/cleverhans | cleverhans/experimental/certification/nn.py | https://github.com/tensorflow/cleverhans/blob/97488e215760547b81afc53f5e5de8ba7da5bd98/cleverhans/experimental/certification/nn.py#L161-L226 | def load_network_from_checkpoint(checkpoint, model_json, input_shape=None):
"""Function to read the weights from checkpoint based on json description.
Args:
checkpoint: tensorflow checkpoint with trained model to
verify
model_json: path of json file with model description of
the network list of dictionary items for each layer
containing 'type', 'weight_var', 'bias_var' and
'is_transpose' 'type'is one of {'ff', 'ff_relu' or
'conv'}; 'weight_var' is the name of tf variable for
weights of layer i; 'bias_var' is the name of tf
variable for bias of layer i; 'is_transpose' is set to
True if the weights have to be transposed as per
convention Note that last layer is always feedforward
net_weights: list of numpy matrices of weights of each layer
convention: x[i+1] = W[i] x[i]
net_biases: list of numpy arrays of biases of each layer
net_layer_types: type of each layer ['ff' or 'ff_relu' or 'ff_conv'
or 'ff_conv_relu']
'ff': Simple feedforward layer with no activations
'ff_relu': Simple feedforward layer with ReLU activations
'ff_conv': Convolution layer with no activation
'ff_conv_relu': Convolution layer with ReLU activation
Raises:
ValueError: If layer_types are invalid or variable names
not found in checkpoint
"""
# Load checkpoint
reader = tf.train.load_checkpoint(checkpoint)
variable_map = reader.get_variable_to_shape_map()
checkpoint_variable_names = variable_map.keys()
# Parse JSON file for names
with tf.gfile.Open(model_json) as f:
list_model_var = json.load(f)
net_layer_types = []
net_weights = []
net_biases = []
cnn_params = []
# Checking validity of the input and adding to list
for layer_model_var in list_model_var:
if layer_model_var['type'] not in {'ff', 'ff_relu', 'conv'}:
raise ValueError('Invalid layer type in description')
if (layer_model_var['weight_var'] not in checkpoint_variable_names or
layer_model_var['bias_var'] not in checkpoint_variable_names):
raise ValueError('Variable names not found in checkpoint')
net_layer_types.append(layer_model_var['type'])
layer_weight = reader.get_tensor(layer_model_var['weight_var'])
layer_bias = reader.get_tensor(layer_model_var['bias_var'])
# TODO(aditirag): is there a way to automatically check when to transpose
# We want weights W such that x^{i+1} = W^i x^i + b^i
# Can think of a hack involving matching shapes but if shapes are equal
# it can be ambiguous
if layer_model_var['type'] in {'ff', 'ff_relu'}:
layer_weight = np.transpose(layer_weight)
cnn_params.append(None)
if layer_model_var['type'] in {'conv'}:
if 'stride' not in layer_model_var or 'padding' not in layer_model_var:
raise ValueError('Please define stride and padding for conv layers.')
cnn_params.append({'stride': layer_model_var['stride'], 'padding': layer_model_var['padding']})
net_weights.append(layer_weight)
net_biases.append(np.reshape(layer_bias, (np.size(layer_bias), 1)))
return NeuralNetwork(net_weights, net_biases, net_layer_types, input_shape, cnn_params) | [
"def",
"load_network_from_checkpoint",
"(",
"checkpoint",
",",
"model_json",
",",
"input_shape",
"=",
"None",
")",
":",
"# Load checkpoint",
"reader",
"=",
"tf",
".",
"train",
".",
"load_checkpoint",
"(",
"checkpoint",
")",
"variable_map",
"=",
"reader",
".",
"get_variable_to_shape_map",
"(",
")",
"checkpoint_variable_names",
"=",
"variable_map",
".",
"keys",
"(",
")",
"# Parse JSON file for names",
"with",
"tf",
".",
"gfile",
".",
"Open",
"(",
"model_json",
")",
"as",
"f",
":",
"list_model_var",
"=",
"json",
".",
"load",
"(",
"f",
")",
"net_layer_types",
"=",
"[",
"]",
"net_weights",
"=",
"[",
"]",
"net_biases",
"=",
"[",
"]",
"cnn_params",
"=",
"[",
"]",
"# Checking validity of the input and adding to list",
"for",
"layer_model_var",
"in",
"list_model_var",
":",
"if",
"layer_model_var",
"[",
"'type'",
"]",
"not",
"in",
"{",
"'ff'",
",",
"'ff_relu'",
",",
"'conv'",
"}",
":",
"raise",
"ValueError",
"(",
"'Invalid layer type in description'",
")",
"if",
"(",
"layer_model_var",
"[",
"'weight_var'",
"]",
"not",
"in",
"checkpoint_variable_names",
"or",
"layer_model_var",
"[",
"'bias_var'",
"]",
"not",
"in",
"checkpoint_variable_names",
")",
":",
"raise",
"ValueError",
"(",
"'Variable names not found in checkpoint'",
")",
"net_layer_types",
".",
"append",
"(",
"layer_model_var",
"[",
"'type'",
"]",
")",
"layer_weight",
"=",
"reader",
".",
"get_tensor",
"(",
"layer_model_var",
"[",
"'weight_var'",
"]",
")",
"layer_bias",
"=",
"reader",
".",
"get_tensor",
"(",
"layer_model_var",
"[",
"'bias_var'",
"]",
")",
"# TODO(aditirag): is there a way to automatically check when to transpose",
"# We want weights W such that x^{i+1} = W^i x^i + b^i",
"# Can think of a hack involving matching shapes but if shapes are equal",
"# it can be ambiguous",
"if",
"layer_model_var",
"[",
"'type'",
"]",
"in",
"{",
"'ff'",
",",
"'ff_relu'",
"}",
":",
"layer_weight",
"=",
"np",
".",
"transpose",
"(",
"layer_weight",
")",
"cnn_params",
".",
"append",
"(",
"None",
")",
"if",
"layer_model_var",
"[",
"'type'",
"]",
"in",
"{",
"'conv'",
"}",
":",
"if",
"'stride'",
"not",
"in",
"layer_model_var",
"or",
"'padding'",
"not",
"in",
"layer_model_var",
":",
"raise",
"ValueError",
"(",
"'Please define stride and padding for conv layers.'",
")",
"cnn_params",
".",
"append",
"(",
"{",
"'stride'",
":",
"layer_model_var",
"[",
"'stride'",
"]",
",",
"'padding'",
":",
"layer_model_var",
"[",
"'padding'",
"]",
"}",
")",
"net_weights",
".",
"append",
"(",
"layer_weight",
")",
"net_biases",
".",
"append",
"(",
"np",
".",
"reshape",
"(",
"layer_bias",
",",
"(",
"np",
".",
"size",
"(",
"layer_bias",
")",
",",
"1",
")",
")",
")",
"return",
"NeuralNetwork",
"(",
"net_weights",
",",
"net_biases",
",",
"net_layer_types",
",",
"input_shape",
",",
"cnn_params",
")"
] | Function to read the weights from checkpoint based on json description.
Args:
checkpoint: tensorflow checkpoint with trained model to
verify
model_json: path of json file with model description of
the network list of dictionary items for each layer
containing 'type', 'weight_var', 'bias_var' and
'is_transpose' 'type'is one of {'ff', 'ff_relu' or
'conv'}; 'weight_var' is the name of tf variable for
weights of layer i; 'bias_var' is the name of tf
variable for bias of layer i; 'is_transpose' is set to
True if the weights have to be transposed as per
convention Note that last layer is always feedforward
net_weights: list of numpy matrices of weights of each layer
convention: x[i+1] = W[i] x[i]
net_biases: list of numpy arrays of biases of each layer
net_layer_types: type of each layer ['ff' or 'ff_relu' or 'ff_conv'
or 'ff_conv_relu']
'ff': Simple feedforward layer with no activations
'ff_relu': Simple feedforward layer with ReLU activations
'ff_conv': Convolution layer with no activation
'ff_conv_relu': Convolution layer with ReLU activation
Raises:
ValueError: If layer_types are invalid or variable names
not found in checkpoint | [
"Function",
"to",
"read",
"the",
"weights",
"from",
"checkpoint",
"based",
"on",
"json",
"description",
"."
] | python | train |
kevinconway/venvctrl | venvctrl/venv/command.py | https://github.com/kevinconway/venvctrl/blob/36d4e0e4d5ebced6385a6ade1198f4769ff2df41/venvctrl/venv/command.py#L73-L77 | def python(self, cmd):
"""Execute a python script using the virtual environment python."""
python_bin = self.cmd_path('python')
cmd = '{0} {1}'.format(python_bin, cmd)
return self._execute(cmd) | [
"def",
"python",
"(",
"self",
",",
"cmd",
")",
":",
"python_bin",
"=",
"self",
".",
"cmd_path",
"(",
"'python'",
")",
"cmd",
"=",
"'{0} {1}'",
".",
"format",
"(",
"python_bin",
",",
"cmd",
")",
"return",
"self",
".",
"_execute",
"(",
"cmd",
")"
] | Execute a python script using the virtual environment python. | [
"Execute",
"a",
"python",
"script",
"using",
"the",
"virtual",
"environment",
"python",
"."
] | python | train |
joferkington/mpldatacursor | mpldatacursor/pick_info.py | https://github.com/joferkington/mpldatacursor/blob/7dabc589ed02c35ac5d89de5931f91e0323aa795/mpldatacursor/pick_info.py#L61-L83 | def image_props(event):
"""
Get information for a pick event on an ``AxesImage`` artist. Returns a dict
of "i" & "j" index values of the image for the point clicked, and "z": the
(uninterpolated) value of the image at i,j.
Parameters
-----------
event : PickEvent
The pick event to process
Returns
--------
props : dict
A dict with keys: z, i, j
"""
x, y = event.mouseevent.xdata, event.mouseevent.ydata
i, j = _coords2index(event.artist, x, y)
z = event.artist.get_array()[i,j]
if z.size > 1:
# Override default numpy formatting for this specific case. Bad idea?
z = ', '.join('{:0.3g}'.format(item) for item in z)
return dict(z=z, i=i, j=j) | [
"def",
"image_props",
"(",
"event",
")",
":",
"x",
",",
"y",
"=",
"event",
".",
"mouseevent",
".",
"xdata",
",",
"event",
".",
"mouseevent",
".",
"ydata",
"i",
",",
"j",
"=",
"_coords2index",
"(",
"event",
".",
"artist",
",",
"x",
",",
"y",
")",
"z",
"=",
"event",
".",
"artist",
".",
"get_array",
"(",
")",
"[",
"i",
",",
"j",
"]",
"if",
"z",
".",
"size",
">",
"1",
":",
"# Override default numpy formatting for this specific case. Bad idea?",
"z",
"=",
"', '",
".",
"join",
"(",
"'{:0.3g}'",
".",
"format",
"(",
"item",
")",
"for",
"item",
"in",
"z",
")",
"return",
"dict",
"(",
"z",
"=",
"z",
",",
"i",
"=",
"i",
",",
"j",
"=",
"j",
")"
] | Get information for a pick event on an ``AxesImage`` artist. Returns a dict
of "i" & "j" index values of the image for the point clicked, and "z": the
(uninterpolated) value of the image at i,j.
Parameters
-----------
event : PickEvent
The pick event to process
Returns
--------
props : dict
A dict with keys: z, i, j | [
"Get",
"information",
"for",
"a",
"pick",
"event",
"on",
"an",
"AxesImage",
"artist",
".",
"Returns",
"a",
"dict",
"of",
"i",
"&",
"j",
"index",
"values",
"of",
"the",
"image",
"for",
"the",
"point",
"clicked",
"and",
"z",
":",
"the",
"(",
"uninterpolated",
")",
"value",
"of",
"the",
"image",
"at",
"i",
"j",
"."
] | python | train |
gunthercox/mathparse | mathparse/mathwords.py | https://github.com/gunthercox/mathparse/blob/8aadd40e7238febbfea19b29023583720e374ac0/mathparse/mathwords.py#L411-L423 | def words_for_language(language_code):
"""
Return the math words for a language code.
The language_code should be an ISO 639-2 language code.
https://www.loc.gov/standards/iso639-2/php/code_list.php
"""
word_groups = word_groups_for_language(language_code)
words = []
for group in word_groups:
words.extend(word_groups[group].keys())
return words | [
"def",
"words_for_language",
"(",
"language_code",
")",
":",
"word_groups",
"=",
"word_groups_for_language",
"(",
"language_code",
")",
"words",
"=",
"[",
"]",
"for",
"group",
"in",
"word_groups",
":",
"words",
".",
"extend",
"(",
"word_groups",
"[",
"group",
"]",
".",
"keys",
"(",
")",
")",
"return",
"words"
] | Return the math words for a language code.
The language_code should be an ISO 639-2 language code.
https://www.loc.gov/standards/iso639-2/php/code_list.php | [
"Return",
"the",
"math",
"words",
"for",
"a",
"language",
"code",
".",
"The",
"language_code",
"should",
"be",
"an",
"ISO",
"639",
"-",
"2",
"language",
"code",
".",
"https",
":",
"//",
"www",
".",
"loc",
".",
"gov",
"/",
"standards",
"/",
"iso639",
"-",
"2",
"/",
"php",
"/",
"code_list",
".",
"php"
] | python | train |
openstack/pyghmi | pyghmi/ipmi/console.py | https://github.com/openstack/pyghmi/blob/f710b1d30a8eed19a9e86f01f9351c737666f3e5/pyghmi/ipmi/console.py#L192-L197 | def _got_cons_input(self, handle):
"""Callback for handle events detected by ipmi session
"""
self._addpendingdata(handle.read())
if not self.awaitingack:
self._sendpendingoutput() | [
"def",
"_got_cons_input",
"(",
"self",
",",
"handle",
")",
":",
"self",
".",
"_addpendingdata",
"(",
"handle",
".",
"read",
"(",
")",
")",
"if",
"not",
"self",
".",
"awaitingack",
":",
"self",
".",
"_sendpendingoutput",
"(",
")"
] | Callback for handle events detected by ipmi session | [
"Callback",
"for",
"handle",
"events",
"detected",
"by",
"ipmi",
"session"
] | python | train |
SpriteLink/NIPAP | nipap/nipap/backend.py | https://github.com/SpriteLink/NIPAP/blob/f96069f11ab952d80b13cab06e0528f2d24b3de9/nipap/nipap/backend.py#L1130-L1139 | def _db_upgrade(self, db_name):
""" Upgrade nipap database schema
"""
current_db_version = self._get_db_version()
self._execute(db_schema.functions)
for i in range(current_db_version, nipap.__db_version__):
self._logger.info("Upgrading DB schema:", i, "to", i+1)
upgrade_sql = db_schema.upgrade[i-1] # 0 count on array
self._execute(upgrade_sql % (db_name))
self._execute(db_schema.triggers) | [
"def",
"_db_upgrade",
"(",
"self",
",",
"db_name",
")",
":",
"current_db_version",
"=",
"self",
".",
"_get_db_version",
"(",
")",
"self",
".",
"_execute",
"(",
"db_schema",
".",
"functions",
")",
"for",
"i",
"in",
"range",
"(",
"current_db_version",
",",
"nipap",
".",
"__db_version__",
")",
":",
"self",
".",
"_logger",
".",
"info",
"(",
"\"Upgrading DB schema:\"",
",",
"i",
",",
"\"to\"",
",",
"i",
"+",
"1",
")",
"upgrade_sql",
"=",
"db_schema",
".",
"upgrade",
"[",
"i",
"-",
"1",
"]",
"# 0 count on array",
"self",
".",
"_execute",
"(",
"upgrade_sql",
"%",
"(",
"db_name",
")",
")",
"self",
".",
"_execute",
"(",
"db_schema",
".",
"triggers",
")"
] | Upgrade nipap database schema | [
"Upgrade",
"nipap",
"database",
"schema"
] | python | train |
msmbuilder/msmbuilder | msmbuilder/utils/param_sweep.py | https://github.com/msmbuilder/msmbuilder/blob/556a93a170782f47be53f4a1e9d740fb1c8272b3/msmbuilder/utils/param_sweep.py#L13-L51 | def param_sweep(model, sequences, param_grid, n_jobs=1, verbose=0):
"""Fit a series of models over a range of parameters.
Parameters
----------
model : msmbuilder.BaseEstimator
An *instance* of an estimator to be used
to fit data.
sequences : list of array-like
List of sequences, or a single sequence. Each
sequence should be a 1D iterable of state
labels. Labels can be integers, strings, or
other orderable objects.
param_grid : dict or sklearn.grid_search.ParameterGrid
Parameter grid to specify models to fit. See
sklearn.grid_search.ParameterGrid for an explanation
n_jobs : int, optional
Number of jobs to run in parallel using joblib.Parallel
Returns
-------
models : list
List of models fit to the data according to
param_grid
"""
if isinstance(param_grid, dict):
param_grid = ParameterGrid(param_grid)
elif not isinstance(param_grid, ParameterGrid):
raise ValueError("param_grid must be a dict or ParamaterGrid instance")
# iterable with (model, sequence) as items
iter_args = ((clone(model).set_params(**params), sequences)
for params in param_grid)
models = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_param_sweep_helper)(args) for args in iter_args)
return models | [
"def",
"param_sweep",
"(",
"model",
",",
"sequences",
",",
"param_grid",
",",
"n_jobs",
"=",
"1",
",",
"verbose",
"=",
"0",
")",
":",
"if",
"isinstance",
"(",
"param_grid",
",",
"dict",
")",
":",
"param_grid",
"=",
"ParameterGrid",
"(",
"param_grid",
")",
"elif",
"not",
"isinstance",
"(",
"param_grid",
",",
"ParameterGrid",
")",
":",
"raise",
"ValueError",
"(",
"\"param_grid must be a dict or ParamaterGrid instance\"",
")",
"# iterable with (model, sequence) as items",
"iter_args",
"=",
"(",
"(",
"clone",
"(",
"model",
")",
".",
"set_params",
"(",
"*",
"*",
"params",
")",
",",
"sequences",
")",
"for",
"params",
"in",
"param_grid",
")",
"models",
"=",
"Parallel",
"(",
"n_jobs",
"=",
"n_jobs",
",",
"verbose",
"=",
"verbose",
")",
"(",
"delayed",
"(",
"_param_sweep_helper",
")",
"(",
"args",
")",
"for",
"args",
"in",
"iter_args",
")",
"return",
"models"
] | Fit a series of models over a range of parameters.
Parameters
----------
model : msmbuilder.BaseEstimator
An *instance* of an estimator to be used
to fit data.
sequences : list of array-like
List of sequences, or a single sequence. Each
sequence should be a 1D iterable of state
labels. Labels can be integers, strings, or
other orderable objects.
param_grid : dict or sklearn.grid_search.ParameterGrid
Parameter grid to specify models to fit. See
sklearn.grid_search.ParameterGrid for an explanation
n_jobs : int, optional
Number of jobs to run in parallel using joblib.Parallel
Returns
-------
models : list
List of models fit to the data according to
param_grid | [
"Fit",
"a",
"series",
"of",
"models",
"over",
"a",
"range",
"of",
"parameters",
"."
] | python | train |
openstack/horizon | horizon/utils/units.py | https://github.com/openstack/horizon/blob/5601ea9477323e599d9b766fcac1f8be742935b2/horizon/utils/units.py#L40-L53 | def is_larger(unit_1, unit_2):
"""Returns a boolean indicating whether unit_1 is larger than unit_2.
E.g:
>>> is_larger('KB', 'B')
True
>>> is_larger('min', 'day')
False
"""
unit_1 = functions.value_for_key(INFORMATION_UNITS, unit_1)
unit_2 = functions.value_for_key(INFORMATION_UNITS, unit_2)
return ureg.parse_expression(unit_1) > ureg.parse_expression(unit_2) | [
"def",
"is_larger",
"(",
"unit_1",
",",
"unit_2",
")",
":",
"unit_1",
"=",
"functions",
".",
"value_for_key",
"(",
"INFORMATION_UNITS",
",",
"unit_1",
")",
"unit_2",
"=",
"functions",
".",
"value_for_key",
"(",
"INFORMATION_UNITS",
",",
"unit_2",
")",
"return",
"ureg",
".",
"parse_expression",
"(",
"unit_1",
")",
">",
"ureg",
".",
"parse_expression",
"(",
"unit_2",
")"
] | Returns a boolean indicating whether unit_1 is larger than unit_2.
E.g:
>>> is_larger('KB', 'B')
True
>>> is_larger('min', 'day')
False | [
"Returns",
"a",
"boolean",
"indicating",
"whether",
"unit_1",
"is",
"larger",
"than",
"unit_2",
"."
] | python | train |
cggh/scikit-allel | allel/compat.py | https://github.com/cggh/scikit-allel/blob/3c979a57a100240ba959dd13f98839349530f215/allel/compat.py#L51-L66 | def memoryview_safe(x):
"""Make array safe to run in a Cython memoryview-based kernel. These
kernels typically break down with the error ``ValueError: buffer source
array is read-only`` when running in dask distributed.
See Also
--------
https://github.com/dask/distributed/issues/1978
https://github.com/cggh/scikit-allel/issues/206
"""
if not x.flags.writeable:
if not x.flags.owndata:
x = x.copy(order='A')
x.setflags(write=True)
return x | [
"def",
"memoryview_safe",
"(",
"x",
")",
":",
"if",
"not",
"x",
".",
"flags",
".",
"writeable",
":",
"if",
"not",
"x",
".",
"flags",
".",
"owndata",
":",
"x",
"=",
"x",
".",
"copy",
"(",
"order",
"=",
"'A'",
")",
"x",
".",
"setflags",
"(",
"write",
"=",
"True",
")",
"return",
"x"
] | Make array safe to run in a Cython memoryview-based kernel. These
kernels typically break down with the error ``ValueError: buffer source
array is read-only`` when running in dask distributed.
See Also
--------
https://github.com/dask/distributed/issues/1978
https://github.com/cggh/scikit-allel/issues/206 | [
"Make",
"array",
"safe",
"to",
"run",
"in",
"a",
"Cython",
"memoryview",
"-",
"based",
"kernel",
".",
"These",
"kernels",
"typically",
"break",
"down",
"with",
"the",
"error",
"ValueError",
":",
"buffer",
"source",
"array",
"is",
"read",
"-",
"only",
"when",
"running",
"in",
"dask",
"distributed",
"."
] | python | train |
CitrineInformatics/pypif-sdk | pypif_sdk/interop/mdf.py | https://github.com/CitrineInformatics/pypif-sdk/blob/8b01d10d9a1426d5eef12e4b2f31c4657aa0fe59/pypif_sdk/interop/mdf.py#L11-L56 | def query_to_mdf_records(query=None, dataset_id=None, mdf_acl=None):
"""Evaluate a query and return a list of MDF records
If a datasetID is specified by there is no query, a simple
whole dataset query is formed for the user
"""
if not query and not dataset_id:
raise ValueError("Either query or dataset_id must be specified")
if query and dataset_id:
raise ValueError("Both query and dataset_id were specified; pick one or the other.")
if not query:
query = PifSystemReturningQuery(
query=DataQuery(
dataset=DatasetQuery(
id=Filter(equal=dataset_id)
)
),
size = 10000 # Don't pull down all the results by default
)
client = get_client()
if not mdf_acl:
raise ValueError('Access controls (mdf_acl) must be specified. Use ["public"] for public access')
pif_result = client.pif_search(query)
if len(pif_result.hits) == 0:
return []
example_uid = pif_result.hits[0].system.uid
dataset_query = DatasetReturningQuery(
query=DataQuery(
system=PifSystemQuery(
uid=Filter(equal=example_uid)
)
),
size = 1 # we only expect one dataset to hit
)
dataset_result = client.dataset_search(dataset_query)
records = []
for hit in pif_result.hits:
records.append(pif_to_mdf_record(hit.system, dataset_result.hits[0], mdf_acl))
return records | [
"def",
"query_to_mdf_records",
"(",
"query",
"=",
"None",
",",
"dataset_id",
"=",
"None",
",",
"mdf_acl",
"=",
"None",
")",
":",
"if",
"not",
"query",
"and",
"not",
"dataset_id",
":",
"raise",
"ValueError",
"(",
"\"Either query or dataset_id must be specified\"",
")",
"if",
"query",
"and",
"dataset_id",
":",
"raise",
"ValueError",
"(",
"\"Both query and dataset_id were specified; pick one or the other.\"",
")",
"if",
"not",
"query",
":",
"query",
"=",
"PifSystemReturningQuery",
"(",
"query",
"=",
"DataQuery",
"(",
"dataset",
"=",
"DatasetQuery",
"(",
"id",
"=",
"Filter",
"(",
"equal",
"=",
"dataset_id",
")",
")",
")",
",",
"size",
"=",
"10000",
"# Don't pull down all the results by default",
")",
"client",
"=",
"get_client",
"(",
")",
"if",
"not",
"mdf_acl",
":",
"raise",
"ValueError",
"(",
"'Access controls (mdf_acl) must be specified. Use [\"public\"] for public access'",
")",
"pif_result",
"=",
"client",
".",
"pif_search",
"(",
"query",
")",
"if",
"len",
"(",
"pif_result",
".",
"hits",
")",
"==",
"0",
":",
"return",
"[",
"]",
"example_uid",
"=",
"pif_result",
".",
"hits",
"[",
"0",
"]",
".",
"system",
".",
"uid",
"dataset_query",
"=",
"DatasetReturningQuery",
"(",
"query",
"=",
"DataQuery",
"(",
"system",
"=",
"PifSystemQuery",
"(",
"uid",
"=",
"Filter",
"(",
"equal",
"=",
"example_uid",
")",
")",
")",
",",
"size",
"=",
"1",
"# we only expect one dataset to hit",
")",
"dataset_result",
"=",
"client",
".",
"dataset_search",
"(",
"dataset_query",
")",
"records",
"=",
"[",
"]",
"for",
"hit",
"in",
"pif_result",
".",
"hits",
":",
"records",
".",
"append",
"(",
"pif_to_mdf_record",
"(",
"hit",
".",
"system",
",",
"dataset_result",
".",
"hits",
"[",
"0",
"]",
",",
"mdf_acl",
")",
")",
"return",
"records"
] | Evaluate a query and return a list of MDF records
If a datasetID is specified by there is no query, a simple
whole dataset query is formed for the user | [
"Evaluate",
"a",
"query",
"and",
"return",
"a",
"list",
"of",
"MDF",
"records"
] | python | train |
brocade/pynos | pynos/versions/ver_6/ver_6_0_1/yang/brocade_preprovision.py | https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/brocade_preprovision.py#L26-L38 | def preprovision_rbridge_id_wwn(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
preprovision = ET.SubElement(config, "preprovision", xmlns="urn:brocade.com:mgmt:brocade-preprovision")
rbridge_id = ET.SubElement(preprovision, "rbridge-id")
rbridge_id_key = ET.SubElement(rbridge_id, "rbridge-id")
rbridge_id_key.text = kwargs.pop('rbridge_id')
wwn = ET.SubElement(rbridge_id, "wwn")
wwn.text = kwargs.pop('wwn')
callback = kwargs.pop('callback', self._callback)
return callback(config) | [
"def",
"preprovision_rbridge_id_wwn",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"ET",
".",
"Element",
"(",
"\"config\"",
")",
"preprovision",
"=",
"ET",
".",
"SubElement",
"(",
"config",
",",
"\"preprovision\"",
",",
"xmlns",
"=",
"\"urn:brocade.com:mgmt:brocade-preprovision\"",
")",
"rbridge_id",
"=",
"ET",
".",
"SubElement",
"(",
"preprovision",
",",
"\"rbridge-id\"",
")",
"rbridge_id_key",
"=",
"ET",
".",
"SubElement",
"(",
"rbridge_id",
",",
"\"rbridge-id\"",
")",
"rbridge_id_key",
".",
"text",
"=",
"kwargs",
".",
"pop",
"(",
"'rbridge_id'",
")",
"wwn",
"=",
"ET",
".",
"SubElement",
"(",
"rbridge_id",
",",
"\"wwn\"",
")",
"wwn",
".",
"text",
"=",
"kwargs",
".",
"pop",
"(",
"'wwn'",
")",
"callback",
"=",
"kwargs",
".",
"pop",
"(",
"'callback'",
",",
"self",
".",
"_callback",
")",
"return",
"callback",
"(",
"config",
")"
] | Auto Generated Code | [
"Auto",
"Generated",
"Code"
] | python | train |
odlgroup/odl | odl/solvers/functional/functional.py | https://github.com/odlgroup/odl/blob/b8443f6aca90e191ba36c91d32253c5a36249a6c/odl/solvers/functional/functional.py#L1070-L1104 | def convex_conj(self):
r"""Convex conjugate functional of the functional.
Notes
-----
Given a functional :math:`f`, the convex conjugate of a linearly
perturbed version :math:`f(x) + <y, x>` is given by a translation of
the convex conjugate of :math:`f`:
.. math::
(f + \langle y, \cdot \rangle)^* (x^*) = f^*(x^* - y).
For reference on the identity used, see `[KP2015]`_. Moreover, the
convex conjugate of :math:`f + c` is by definition
.. math::
(f + c)^* (x^*) = f^*(x^*) - c.
References
----------
[KP2015] Komodakis, N, and Pesquet, J-C. *Playing with Duality: An
overview of recent primal-dual approaches for solving large-scale
optimization problems*. IEEE Signal Processing Magazine, 32.6 (2015),
pp 31--54.
.. _[KP2015]: https://arxiv.org/abs/1406.5429
"""
if self.quadratic_coeff == 0:
cconj = self.functional.convex_conj.translated(self.linear_term)
if self.constant != 0:
cconj = cconj - self.constant
return cconj
else:
return super(FunctionalQuadraticPerturb, self).convex_conj | [
"def",
"convex_conj",
"(",
"self",
")",
":",
"if",
"self",
".",
"quadratic_coeff",
"==",
"0",
":",
"cconj",
"=",
"self",
".",
"functional",
".",
"convex_conj",
".",
"translated",
"(",
"self",
".",
"linear_term",
")",
"if",
"self",
".",
"constant",
"!=",
"0",
":",
"cconj",
"=",
"cconj",
"-",
"self",
".",
"constant",
"return",
"cconj",
"else",
":",
"return",
"super",
"(",
"FunctionalQuadraticPerturb",
",",
"self",
")",
".",
"convex_conj"
] | r"""Convex conjugate functional of the functional.
Notes
-----
Given a functional :math:`f`, the convex conjugate of a linearly
perturbed version :math:`f(x) + <y, x>` is given by a translation of
the convex conjugate of :math:`f`:
.. math::
(f + \langle y, \cdot \rangle)^* (x^*) = f^*(x^* - y).
For reference on the identity used, see `[KP2015]`_. Moreover, the
convex conjugate of :math:`f + c` is by definition
.. math::
(f + c)^* (x^*) = f^*(x^*) - c.
References
----------
[KP2015] Komodakis, N, and Pesquet, J-C. *Playing with Duality: An
overview of recent primal-dual approaches for solving large-scale
optimization problems*. IEEE Signal Processing Magazine, 32.6 (2015),
pp 31--54.
.. _[KP2015]: https://arxiv.org/abs/1406.5429 | [
"r",
"Convex",
"conjugate",
"functional",
"of",
"the",
"functional",
"."
] | python | train |
titusjan/argos | argos/repo/registry.py | https://github.com/titusjan/argos/blob/20d0a3cae26c36ea789a5d219c02ca7df21279dd/argos/repo/registry.py#L129-L136 | def getFileDialogFilter(self):
""" Returns a filter that can be used in open file dialogs,
for example: 'All files (*);;Txt (*.txt;*.text);;netCDF(*.nc;*.nc4)'
"""
filters = []
for regRti in self.items:
filters.append(regRti.getFileDialogFilter())
return ';;'.join(filters) | [
"def",
"getFileDialogFilter",
"(",
"self",
")",
":",
"filters",
"=",
"[",
"]",
"for",
"regRti",
"in",
"self",
".",
"items",
":",
"filters",
".",
"append",
"(",
"regRti",
".",
"getFileDialogFilter",
"(",
")",
")",
"return",
"';;'",
".",
"join",
"(",
"filters",
")"
] | Returns a filter that can be used in open file dialogs,
for example: 'All files (*);;Txt (*.txt;*.text);;netCDF(*.nc;*.nc4)' | [
"Returns",
"a",
"filter",
"that",
"can",
"be",
"used",
"in",
"open",
"file",
"dialogs",
"for",
"example",
":",
"All",
"files",
"(",
"*",
")",
";;",
"Txt",
"(",
"*",
".",
"txt",
";",
"*",
".",
"text",
")",
";;",
"netCDF",
"(",
"*",
".",
"nc",
";",
"*",
".",
"nc4",
")"
] | python | train |
pymc-devs/pymc | pymc/StepMethods.py | https://github.com/pymc-devs/pymc/blob/c6e530210bff4c0d7189b35b2c971bc53f93f7cd/pymc/StepMethods.py#L97-L130 | def assign_method(stochastic, scale=None, verbose=-1):
"""
Returns a step method instance to handle a
variable. If several methods have the same competence,
it picks one arbitrarily (using set.pop()).
"""
# Retrieve set of best candidates
best_candidates = pick_best_methods(stochastic)
# Randomly grab and appropriate method
method = best_candidates.pop()
failure_header = """Failed attempting to automatically assign step method class %s
to stochastic variable %s. Try setting %s's competence method to return 0
and manually assigning it when appropriate. See the user guide.
Error message: """ % (method.__name__, stochastic.__name__, method.__name__)
try:
if scale:
out = method(stochastic, scale=scale, verbose=verbose)
else:
out = method(stochastic, verbose=verbose)
except:
a, b, c = sys.exc_info()
try:
args = list(b.args)
except AttributeError:
args = []
args.append(failure_header)
b.args = args
six.reraise(a, b, c)
return out | [
"def",
"assign_method",
"(",
"stochastic",
",",
"scale",
"=",
"None",
",",
"verbose",
"=",
"-",
"1",
")",
":",
"# Retrieve set of best candidates",
"best_candidates",
"=",
"pick_best_methods",
"(",
"stochastic",
")",
"# Randomly grab and appropriate method",
"method",
"=",
"best_candidates",
".",
"pop",
"(",
")",
"failure_header",
"=",
"\"\"\"Failed attempting to automatically assign step method class %s\nto stochastic variable %s. Try setting %s's competence method to return 0\nand manually assigning it when appropriate. See the user guide.\n\nError message: \"\"\"",
"%",
"(",
"method",
".",
"__name__",
",",
"stochastic",
".",
"__name__",
",",
"method",
".",
"__name__",
")",
"try",
":",
"if",
"scale",
":",
"out",
"=",
"method",
"(",
"stochastic",
",",
"scale",
"=",
"scale",
",",
"verbose",
"=",
"verbose",
")",
"else",
":",
"out",
"=",
"method",
"(",
"stochastic",
",",
"verbose",
"=",
"verbose",
")",
"except",
":",
"a",
",",
"b",
",",
"c",
"=",
"sys",
".",
"exc_info",
"(",
")",
"try",
":",
"args",
"=",
"list",
"(",
"b",
".",
"args",
")",
"except",
"AttributeError",
":",
"args",
"=",
"[",
"]",
"args",
".",
"append",
"(",
"failure_header",
")",
"b",
".",
"args",
"=",
"args",
"six",
".",
"reraise",
"(",
"a",
",",
"b",
",",
"c",
")",
"return",
"out"
] | Returns a step method instance to handle a
variable. If several methods have the same competence,
it picks one arbitrarily (using set.pop()). | [
"Returns",
"a",
"step",
"method",
"instance",
"to",
"handle",
"a",
"variable",
".",
"If",
"several",
"methods",
"have",
"the",
"same",
"competence",
"it",
"picks",
"one",
"arbitrarily",
"(",
"using",
"set",
".",
"pop",
"()",
")",
"."
] | python | train |
MultipedRobotics/pyxl320 | pyxl320/utils.py | https://github.com/MultipedRobotics/pyxl320/blob/1a56540e208b028ee47d5fa0a7c7babcee0d9214/pyxl320/utils.py#L22-L38 | def listSerialPorts():
"""
http://pyserial.readthedocs.io/en/latest/shortintro.html
This calls the command line tool from pyserial to list the available
serial ports.
"""
cmd = 'python -m serial.tools.list_ports'
err, ret = commands.getstatusoutput(cmd)
if not err:
r = ret.split('\n')
ret = []
for line in r:
if line.find('/dev/') >= 0:
line = line.replace(' ', '')
ret.append(line)
return err, ret | [
"def",
"listSerialPorts",
"(",
")",
":",
"cmd",
"=",
"'python -m serial.tools.list_ports'",
"err",
",",
"ret",
"=",
"commands",
".",
"getstatusoutput",
"(",
"cmd",
")",
"if",
"not",
"err",
":",
"r",
"=",
"ret",
".",
"split",
"(",
"'\\n'",
")",
"ret",
"=",
"[",
"]",
"for",
"line",
"in",
"r",
":",
"if",
"line",
".",
"find",
"(",
"'/dev/'",
")",
">=",
"0",
":",
"line",
"=",
"line",
".",
"replace",
"(",
"' '",
",",
"''",
")",
"ret",
".",
"append",
"(",
"line",
")",
"return",
"err",
",",
"ret"
] | http://pyserial.readthedocs.io/en/latest/shortintro.html
This calls the command line tool from pyserial to list the available
serial ports. | [
"http",
":",
"//",
"pyserial",
".",
"readthedocs",
".",
"io",
"/",
"en",
"/",
"latest",
"/",
"shortintro",
".",
"html"
] | python | train |
django-crispy-forms/django-crispy-forms | crispy_forms/layout_slice.py | https://github.com/django-crispy-forms/django-crispy-forms/blob/cd476927a756133c667c199bb12120f877bf6b7e/crispy_forms/layout_slice.py#L118-L144 | def map(self, function):
"""
Iterates over layout objects pointed in `self.slice` executing `function` on them
It passes `function` last layout object
"""
if isinstance(self.slice, slice):
for i in range(*self.slice.indices(len(self.layout.fields))):
function(self.layout.fields[i])
elif isinstance(self.slice, list):
# A list of pointers Ex: [[[0, 0], 'div'], [[0, 2, 3], 'field_name']]
for pointer in self.slice:
position = pointer[0]
layout_object = self.layout.fields[position[0]]
for i in position[1:]:
previous_layout_object = layout_object
layout_object = layout_object.fields[i]
# If update_attrs is applied to a string, we call to its wrapping layout object
if (
function.__name__ == 'update_attrs'
and isinstance(layout_object, string_types)
):
function(previous_layout_object)
else:
function(layout_object) | [
"def",
"map",
"(",
"self",
",",
"function",
")",
":",
"if",
"isinstance",
"(",
"self",
".",
"slice",
",",
"slice",
")",
":",
"for",
"i",
"in",
"range",
"(",
"*",
"self",
".",
"slice",
".",
"indices",
"(",
"len",
"(",
"self",
".",
"layout",
".",
"fields",
")",
")",
")",
":",
"function",
"(",
"self",
".",
"layout",
".",
"fields",
"[",
"i",
"]",
")",
"elif",
"isinstance",
"(",
"self",
".",
"slice",
",",
"list",
")",
":",
"# A list of pointers Ex: [[[0, 0], 'div'], [[0, 2, 3], 'field_name']]",
"for",
"pointer",
"in",
"self",
".",
"slice",
":",
"position",
"=",
"pointer",
"[",
"0",
"]",
"layout_object",
"=",
"self",
".",
"layout",
".",
"fields",
"[",
"position",
"[",
"0",
"]",
"]",
"for",
"i",
"in",
"position",
"[",
"1",
":",
"]",
":",
"previous_layout_object",
"=",
"layout_object",
"layout_object",
"=",
"layout_object",
".",
"fields",
"[",
"i",
"]",
"# If update_attrs is applied to a string, we call to its wrapping layout object",
"if",
"(",
"function",
".",
"__name__",
"==",
"'update_attrs'",
"and",
"isinstance",
"(",
"layout_object",
",",
"string_types",
")",
")",
":",
"function",
"(",
"previous_layout_object",
")",
"else",
":",
"function",
"(",
"layout_object",
")"
] | Iterates over layout objects pointed in `self.slice` executing `function` on them
It passes `function` last layout object | [
"Iterates",
"over",
"layout",
"objects",
"pointed",
"in",
"self",
".",
"slice",
"executing",
"function",
"on",
"them",
"It",
"passes",
"function",
"last",
"layout",
"object"
] | python | train |
coleifer/walrus | walrus/containers.py | https://github.com/coleifer/walrus/blob/82bf15a6613487b5b5fefeb488f186d7e0106547/walrus/containers.py#L477-L489 | def interstore(self, dest, *others):
"""
Store the intersection of the current set and one or more
others in a new key.
:param dest: the name of the key to store intersection
:param others: One or more :py:class:`Set` instances
:returns: A :py:class:`Set` referencing ``dest``.
"""
keys = [self.key]
keys.extend([other.key for other in others])
self.database.sinterstore(dest, keys)
return self.database.Set(dest) | [
"def",
"interstore",
"(",
"self",
",",
"dest",
",",
"*",
"others",
")",
":",
"keys",
"=",
"[",
"self",
".",
"key",
"]",
"keys",
".",
"extend",
"(",
"[",
"other",
".",
"key",
"for",
"other",
"in",
"others",
"]",
")",
"self",
".",
"database",
".",
"sinterstore",
"(",
"dest",
",",
"keys",
")",
"return",
"self",
".",
"database",
".",
"Set",
"(",
"dest",
")"
] | Store the intersection of the current set and one or more
others in a new key.
:param dest: the name of the key to store intersection
:param others: One or more :py:class:`Set` instances
:returns: A :py:class:`Set` referencing ``dest``. | [
"Store",
"the",
"intersection",
"of",
"the",
"current",
"set",
"and",
"one",
"or",
"more",
"others",
"in",
"a",
"new",
"key",
"."
] | python | train |
Julian/jsonschema | jsonschema/validators.py | https://github.com/Julian/jsonschema/blob/a72332004cdc3ba456de7918bc32059822b2f69a/jsonschema/validators.py#L712-L730 | def resolving(self, ref):
"""
Resolve the given ``ref`` and enter its resolution scope.
Exits the scope on exit of this context manager.
Arguments:
ref (str):
The reference to resolve
"""
url, resolved = self.resolve(ref)
self.push_scope(url)
try:
yield resolved
finally:
self.pop_scope() | [
"def",
"resolving",
"(",
"self",
",",
"ref",
")",
":",
"url",
",",
"resolved",
"=",
"self",
".",
"resolve",
"(",
"ref",
")",
"self",
".",
"push_scope",
"(",
"url",
")",
"try",
":",
"yield",
"resolved",
"finally",
":",
"self",
".",
"pop_scope",
"(",
")"
] | Resolve the given ``ref`` and enter its resolution scope.
Exits the scope on exit of this context manager.
Arguments:
ref (str):
The reference to resolve | [
"Resolve",
"the",
"given",
"ref",
"and",
"enter",
"its",
"resolution",
"scope",
"."
] | python | train |
ChrisCummins/labm8 | __init__.py | https://github.com/ChrisCummins/labm8/blob/dd10d67a757aefb180cb508f86696f99440c94f5/__init__.py#L26-L34 | def exit(status=0):
"""
Terminate the program with the given status code.
"""
if status == 0:
lab.io.printf(lab.io.Colours.GREEN, "Done.")
else:
lab.io.printf(lab.io.Colours.RED, "Error {0}".format(status))
sys.exit(status) | [
"def",
"exit",
"(",
"status",
"=",
"0",
")",
":",
"if",
"status",
"==",
"0",
":",
"lab",
".",
"io",
".",
"printf",
"(",
"lab",
".",
"io",
".",
"Colours",
".",
"GREEN",
",",
"\"Done.\"",
")",
"else",
":",
"lab",
".",
"io",
".",
"printf",
"(",
"lab",
".",
"io",
".",
"Colours",
".",
"RED",
",",
"\"Error {0}\"",
".",
"format",
"(",
"status",
")",
")",
"sys",
".",
"exit",
"(",
"status",
")"
] | Terminate the program with the given status code. | [
"Terminate",
"the",
"program",
"with",
"the",
"given",
"status",
"code",
"."
] | python | train |
ModisWorks/modis | modis/discord_modis/modules/music/_musicplayer.py | https://github.com/ModisWorks/modis/blob/1f1225c9841835ec1d1831fc196306527567db8b/modis/discord_modis/modules/music/_musicplayer.py#L1149-L1160 | async def setup_streamer(self):
"""Sets up basic defaults for the streamer"""
self.streamer.volume = self.volume / 100
self.streamer.start()
self.pause_time = None
self.vclient_starttime = self.vclient.loop.time()
# Cache next song
self.logger.debug("Caching next song")
dl_thread = threading.Thread(target=self.download_next_song_cache)
dl_thread.start() | [
"async",
"def",
"setup_streamer",
"(",
"self",
")",
":",
"self",
".",
"streamer",
".",
"volume",
"=",
"self",
".",
"volume",
"/",
"100",
"self",
".",
"streamer",
".",
"start",
"(",
")",
"self",
".",
"pause_time",
"=",
"None",
"self",
".",
"vclient_starttime",
"=",
"self",
".",
"vclient",
".",
"loop",
".",
"time",
"(",
")",
"# Cache next song",
"self",
".",
"logger",
".",
"debug",
"(",
"\"Caching next song\"",
")",
"dl_thread",
"=",
"threading",
".",
"Thread",
"(",
"target",
"=",
"self",
".",
"download_next_song_cache",
")",
"dl_thread",
".",
"start",
"(",
")"
] | Sets up basic defaults for the streamer | [
"Sets",
"up",
"basic",
"defaults",
"for",
"the",
"streamer"
] | python | train |
mobinrg/rpi_spark_drives | JMRPiSpark/Drives/Display/SSD1306.py | https://github.com/mobinrg/rpi_spark_drives/blob/e1602d8268a5ef48e9e0a8b37de89e0233f946ea/JMRPiSpark/Drives/Display/SSD1306.py#L225-L241 | def clear(self, fill = 0x00):
"""!
\~english
Clear buffer data and fill color into buffer
@param fill: a color value, it will fill into buffer.<br>
The SSD1306 only chosen two colors: <br>
0 (0x0): black <br>
1 (0x1): white <br>
\~chinese
清除缓冲区数据并在缓冲区中填充颜色
@param fill: 一个颜色值,它会填充到缓冲区中 <br>
SSD1306只能选择两种颜色: <br>
0(0x0):黑色 <br>
1(0x1):白色 <br>
"""
self._buffer = [ fill ] * ( self.width * self._mem_pages ) | [
"def",
"clear",
"(",
"self",
",",
"fill",
"=",
"0x00",
")",
":",
"self",
".",
"_buffer",
"=",
"[",
"fill",
"]",
"*",
"(",
"self",
".",
"width",
"*",
"self",
".",
"_mem_pages",
")"
] | !
\~english
Clear buffer data and fill color into buffer
@param fill: a color value, it will fill into buffer.<br>
The SSD1306 only chosen two colors: <br>
0 (0x0): black <br>
1 (0x1): white <br>
\~chinese
清除缓冲区数据并在缓冲区中填充颜色
@param fill: 一个颜色值,它会填充到缓冲区中 <br>
SSD1306只能选择两种颜色: <br>
0(0x0):黑色 <br>
1(0x1):白色 <br> | [
"!",
"\\",
"~english",
"Clear",
"buffer",
"data",
"and",
"fill",
"color",
"into",
"buffer",
"@param",
"fill",
":",
"a",
"color",
"value",
"it",
"will",
"fill",
"into",
"buffer",
".",
"<br",
">",
"The",
"SSD1306",
"only",
"chosen",
"two",
"colors",
":",
"<br",
">",
"0",
"(",
"0x0",
")",
":",
"black",
"<br",
">",
"1",
"(",
"0x1",
")",
":",
"white",
"<br",
">"
] | python | train |
trailofbits/manticore | manticore/native/cpu/bitwise.py | https://github.com/trailofbits/manticore/blob/54c5a15b1119c523ae54c09972413e8b97f11629/manticore/native/cpu/bitwise.py#L29-L46 | def GetNBits(value, nbits):
"""
Get the first `nbits` from `value`.
:param value: Source value from which to extract
:type value: int or long or BitVec
:param int nbits: How many bits to extract
:return: Low `nbits` bits of `value`.
:rtype int or long or BitVec
"""
# NOP if sizes are the same
if isinstance(value, int):
return Operators.EXTRACT(value, 0, nbits)
elif isinstance(value, BitVec):
if value.size < nbits:
return Operators.ZEXTEND(value, nbits)
else:
return Operators.EXTRACT(value, 0, nbits) | [
"def",
"GetNBits",
"(",
"value",
",",
"nbits",
")",
":",
"# NOP if sizes are the same",
"if",
"isinstance",
"(",
"value",
",",
"int",
")",
":",
"return",
"Operators",
".",
"EXTRACT",
"(",
"value",
",",
"0",
",",
"nbits",
")",
"elif",
"isinstance",
"(",
"value",
",",
"BitVec",
")",
":",
"if",
"value",
".",
"size",
"<",
"nbits",
":",
"return",
"Operators",
".",
"ZEXTEND",
"(",
"value",
",",
"nbits",
")",
"else",
":",
"return",
"Operators",
".",
"EXTRACT",
"(",
"value",
",",
"0",
",",
"nbits",
")"
] | Get the first `nbits` from `value`.
:param value: Source value from which to extract
:type value: int or long or BitVec
:param int nbits: How many bits to extract
:return: Low `nbits` bits of `value`.
:rtype int or long or BitVec | [
"Get",
"the",
"first",
"nbits",
"from",
"value",
"."
] | python | valid |
iotile/coretools | iotilegateway/iotilegateway/device.py | https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilegateway/iotilegateway/device.py#L214-L243 | async def connect(self, conn_id, connection_string):
"""Connect to a device.
See :meth:`AbstractDeviceAdapter.connect`.
"""
if connection_string.startswith('device/'):
adapter_id, local_conn = self._find_best_adapter(connection_string, conn_id)
translate_conn = True
elif connection_string.startswith('adapter/'):
adapter_str, _, local_conn = connection_string[8:].partition('/')
adapter_id = int(adapter_str)
translate_conn = False
else:
raise DeviceAdapterError(conn_id, 'connect', 'invalid connection string format')
if self.adapters[adapter_id].can_connect() is False:
raise DeviceAdapterError(conn_id, 'connect', 'chosen adapter cannot handle another connection')
# Make sure to set up the connection information before
# so there are no races with events coming soon after connect.
self._setup_connection(conn_id, local_conn)
self._track_property(conn_id, 'adapter', adapter_id)
self._track_property(conn_id, 'translate', translate_conn)
try:
await self.adapters[adapter_id].connect(conn_id, local_conn)
except:
self._teardown_connection(conn_id)
raise | [
"async",
"def",
"connect",
"(",
"self",
",",
"conn_id",
",",
"connection_string",
")",
":",
"if",
"connection_string",
".",
"startswith",
"(",
"'device/'",
")",
":",
"adapter_id",
",",
"local_conn",
"=",
"self",
".",
"_find_best_adapter",
"(",
"connection_string",
",",
"conn_id",
")",
"translate_conn",
"=",
"True",
"elif",
"connection_string",
".",
"startswith",
"(",
"'adapter/'",
")",
":",
"adapter_str",
",",
"_",
",",
"local_conn",
"=",
"connection_string",
"[",
"8",
":",
"]",
".",
"partition",
"(",
"'/'",
")",
"adapter_id",
"=",
"int",
"(",
"adapter_str",
")",
"translate_conn",
"=",
"False",
"else",
":",
"raise",
"DeviceAdapterError",
"(",
"conn_id",
",",
"'connect'",
",",
"'invalid connection string format'",
")",
"if",
"self",
".",
"adapters",
"[",
"adapter_id",
"]",
".",
"can_connect",
"(",
")",
"is",
"False",
":",
"raise",
"DeviceAdapterError",
"(",
"conn_id",
",",
"'connect'",
",",
"'chosen adapter cannot handle another connection'",
")",
"# Make sure to set up the connection information before",
"# so there are no races with events coming soon after connect.",
"self",
".",
"_setup_connection",
"(",
"conn_id",
",",
"local_conn",
")",
"self",
".",
"_track_property",
"(",
"conn_id",
",",
"'adapter'",
",",
"adapter_id",
")",
"self",
".",
"_track_property",
"(",
"conn_id",
",",
"'translate'",
",",
"translate_conn",
")",
"try",
":",
"await",
"self",
".",
"adapters",
"[",
"adapter_id",
"]",
".",
"connect",
"(",
"conn_id",
",",
"local_conn",
")",
"except",
":",
"self",
".",
"_teardown_connection",
"(",
"conn_id",
")",
"raise"
] | Connect to a device.
See :meth:`AbstractDeviceAdapter.connect`. | [
"Connect",
"to",
"a",
"device",
"."
] | python | train |
bitesofcode/projexui | projexui/widgets/xnodewidget/xnodewidget.py | https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/widgets/xnodewidget/xnodewidget.py#L129-L143 | def centerOnItems(self, items = None):
"""
Centers on the given items, if no items are supplied, then all
items will be centered on.
:param items | [<QGraphicsItem>, ..]
"""
if not items:
rect = self.scene().visibleItemsBoundingRect()
if not rect.width():
rect = self.scene().sceneRect()
self.centerOn(rect.center())
else:
self.centerOn(self.scene().calculateBoundingRect(items).center()) | [
"def",
"centerOnItems",
"(",
"self",
",",
"items",
"=",
"None",
")",
":",
"if",
"not",
"items",
":",
"rect",
"=",
"self",
".",
"scene",
"(",
")",
".",
"visibleItemsBoundingRect",
"(",
")",
"if",
"not",
"rect",
".",
"width",
"(",
")",
":",
"rect",
"=",
"self",
".",
"scene",
"(",
")",
".",
"sceneRect",
"(",
")",
"self",
".",
"centerOn",
"(",
"rect",
".",
"center",
"(",
")",
")",
"else",
":",
"self",
".",
"centerOn",
"(",
"self",
".",
"scene",
"(",
")",
".",
"calculateBoundingRect",
"(",
"items",
")",
".",
"center",
"(",
")",
")"
] | Centers on the given items, if no items are supplied, then all
items will be centered on.
:param items | [<QGraphicsItem>, ..] | [
"Centers",
"on",
"the",
"given",
"items",
"if",
"no",
"items",
"are",
"supplied",
"then",
"all",
"items",
"will",
"be",
"centered",
"on",
".",
":",
"param",
"items",
"|",
"[",
"<QGraphicsItem",
">",
"..",
"]"
] | python | train |
blackecho/Deep-Learning-TensorFlow | yadlt/core/supervised_model.py | https://github.com/blackecho/Deep-Learning-TensorFlow/blob/ddeb1f2848da7b7bee166ad2152b4afc46bb2086/yadlt/core/supervised_model.py#L29-L72 | def fit(self, train_X, train_Y, val_X=None, val_Y=None, graph=None):
"""Fit the model to the data.
Parameters
----------
train_X : array_like, shape (n_samples, n_features)
Training data.
train_Y : array_like, shape (n_samples, n_classes)
Training labels.
val_X : array_like, shape (N, n_features) optional, (default = None).
Validation data.
val_Y : array_like, shape (N, n_classes) optional, (default = None).
Validation labels.
graph : tf.Graph, optional (default = None)
Tensorflow Graph object.
Returns
-------
"""
if len(train_Y.shape) != 1:
num_classes = train_Y.shape[1]
else:
raise Exception("Please convert the labels with one-hot encoding.")
g = graph if graph is not None else self.tf_graph
with g.as_default():
# Build model
self.build_model(train_X.shape[1], num_classes)
with tf.Session() as self.tf_session:
# Initialize tf stuff
summary_objs = tf_utils.init_tf_ops(self.tf_session)
self.tf_merged_summaries = summary_objs[0]
self.tf_summary_writer = summary_objs[1]
self.tf_saver = summary_objs[2]
# Train model
self._train_model(train_X, train_Y, val_X, val_Y)
# Save model
self.tf_saver.save(self.tf_session, self.model_path) | [
"def",
"fit",
"(",
"self",
",",
"train_X",
",",
"train_Y",
",",
"val_X",
"=",
"None",
",",
"val_Y",
"=",
"None",
",",
"graph",
"=",
"None",
")",
":",
"if",
"len",
"(",
"train_Y",
".",
"shape",
")",
"!=",
"1",
":",
"num_classes",
"=",
"train_Y",
".",
"shape",
"[",
"1",
"]",
"else",
":",
"raise",
"Exception",
"(",
"\"Please convert the labels with one-hot encoding.\"",
")",
"g",
"=",
"graph",
"if",
"graph",
"is",
"not",
"None",
"else",
"self",
".",
"tf_graph",
"with",
"g",
".",
"as_default",
"(",
")",
":",
"# Build model",
"self",
".",
"build_model",
"(",
"train_X",
".",
"shape",
"[",
"1",
"]",
",",
"num_classes",
")",
"with",
"tf",
".",
"Session",
"(",
")",
"as",
"self",
".",
"tf_session",
":",
"# Initialize tf stuff",
"summary_objs",
"=",
"tf_utils",
".",
"init_tf_ops",
"(",
"self",
".",
"tf_session",
")",
"self",
".",
"tf_merged_summaries",
"=",
"summary_objs",
"[",
"0",
"]",
"self",
".",
"tf_summary_writer",
"=",
"summary_objs",
"[",
"1",
"]",
"self",
".",
"tf_saver",
"=",
"summary_objs",
"[",
"2",
"]",
"# Train model",
"self",
".",
"_train_model",
"(",
"train_X",
",",
"train_Y",
",",
"val_X",
",",
"val_Y",
")",
"# Save model",
"self",
".",
"tf_saver",
".",
"save",
"(",
"self",
".",
"tf_session",
",",
"self",
".",
"model_path",
")"
] | Fit the model to the data.
Parameters
----------
train_X : array_like, shape (n_samples, n_features)
Training data.
train_Y : array_like, shape (n_samples, n_classes)
Training labels.
val_X : array_like, shape (N, n_features) optional, (default = None).
Validation data.
val_Y : array_like, shape (N, n_classes) optional, (default = None).
Validation labels.
graph : tf.Graph, optional (default = None)
Tensorflow Graph object.
Returns
------- | [
"Fit",
"the",
"model",
"to",
"the",
"data",
"."
] | python | train |
acorg/dark-matter | dark/local_align.py | https://github.com/acorg/dark-matter/blob/c78a1bf262667fa5db3548fa7066c4ec14d0551d/dark/local_align.py#L201-L242 | def _cigarString(self, output):
"""
Return a cigar string of aligned sequences.
@param output: a C{tup} of strings (align1, align, align2)
@return: a C{str} containing the cigar string. Eg with input:
'GGCCCGCA' and 'GG-CTGCA', return 2=1D1=1X3=
"""
cigar = []
count = 0
align1 = output[0]
align2 = output[2]
for nt1, nt2 in zip(align1, align2):
if nt1 == nt2:
cigar.append('=')
elif nt1 == '-':
cigar.append('I')
elif nt2 == '-':
cigar.append('D')
else:
cigar.append('X')
# Initially create a list of characters,
# eg ['=', '=', 'D', '=', 'X', '=', '=', '=']
cigar.append('*')
# Append an arbitrary character to ensure parsing below functions
cigarString = ''
previousCharacter = ''
count = 0
first = True
for character in cigar:
if first:
previousCharacter = character
count += 1
first = False
else:
if character == previousCharacter:
count += 1
else:
cigarString += (str(count) + str(previousCharacter))
count = 1
previousCharacter = character
return cigarString | [
"def",
"_cigarString",
"(",
"self",
",",
"output",
")",
":",
"cigar",
"=",
"[",
"]",
"count",
"=",
"0",
"align1",
"=",
"output",
"[",
"0",
"]",
"align2",
"=",
"output",
"[",
"2",
"]",
"for",
"nt1",
",",
"nt2",
"in",
"zip",
"(",
"align1",
",",
"align2",
")",
":",
"if",
"nt1",
"==",
"nt2",
":",
"cigar",
".",
"append",
"(",
"'='",
")",
"elif",
"nt1",
"==",
"'-'",
":",
"cigar",
".",
"append",
"(",
"'I'",
")",
"elif",
"nt2",
"==",
"'-'",
":",
"cigar",
".",
"append",
"(",
"'D'",
")",
"else",
":",
"cigar",
".",
"append",
"(",
"'X'",
")",
"# Initially create a list of characters,",
"# eg ['=', '=', 'D', '=', 'X', '=', '=', '=']",
"cigar",
".",
"append",
"(",
"'*'",
")",
"# Append an arbitrary character to ensure parsing below functions",
"cigarString",
"=",
"''",
"previousCharacter",
"=",
"''",
"count",
"=",
"0",
"first",
"=",
"True",
"for",
"character",
"in",
"cigar",
":",
"if",
"first",
":",
"previousCharacter",
"=",
"character",
"count",
"+=",
"1",
"first",
"=",
"False",
"else",
":",
"if",
"character",
"==",
"previousCharacter",
":",
"count",
"+=",
"1",
"else",
":",
"cigarString",
"+=",
"(",
"str",
"(",
"count",
")",
"+",
"str",
"(",
"previousCharacter",
")",
")",
"count",
"=",
"1",
"previousCharacter",
"=",
"character",
"return",
"cigarString"
] | Return a cigar string of aligned sequences.
@param output: a C{tup} of strings (align1, align, align2)
@return: a C{str} containing the cigar string. Eg with input:
'GGCCCGCA' and 'GG-CTGCA', return 2=1D1=1X3= | [
"Return",
"a",
"cigar",
"string",
"of",
"aligned",
"sequences",
"."
] | python | train |
avirshup/DockerMake | dockermake/step.py | https://github.com/avirshup/DockerMake/blob/2173199904f086353ef539ea578788b99f6fea0a/dockermake/step.py#L85-L181 | def build(self, client, pull=False, usecache=True):
"""
Drives an individual build step. Build steps are separated by build_directory.
If a build has zero one or less build_directories, it will be built in a single
step.
Args:
client (docker.Client): docker client object that will build the image
pull (bool): whether to pull dependent layers from remote repositories
usecache (bool): whether to use cached layers or rebuild from scratch
"""
print(colored(' Building step', 'blue'),
colored(self.imagename, 'blue', attrs=['bold']),
colored('defined in', 'blue'),
colored(self.sourcefile, 'blue', attrs=['bold']))
if self.build_first and not self.build_first.built:
self.build_external_dockerfile(client, self.build_first)
if self.bust_cache:
usecache = False
if not usecache:
cprint(' Build cache disabled - this image will be rebuilt from scratch',
'yellow')
dockerfile = u'\n'.join(self.dockerfile_lines)
kwargs = dict(tag=self.buildname,
pull=pull,
nocache=not usecache,
decode=True, rm=True,
buildargs=self.buildargs,
squash=self.squash)
if usecache:
utils.set_build_cachefrom(self.cache_from, kwargs, client)
if self.build_dir is not None:
tempdir = self.write_dockerfile(dockerfile)
context_path = os.path.abspath(os.path.expanduser(self.build_dir))
kwargs.update(fileobj=None,
dockerfile=os.path.join(DOCKER_TMPDIR, 'Dockerfile'))
print(colored(' Build context:', 'blue'),
colored(os.path.relpath(context_path), 'blue', attrs=['bold']))
if not self.custom_exclude:
kwargs.update(path=context_path)
else:
print(colored(' Custom .dockerignore from:', 'blue'),
colored(os.path.relpath(self.ignoredefs_file), 'blue', attrs=['bold']))
# AMV - this is a brittle call to an apparently "private' docker sdk method
context = docker.utils.tar(self.build_dir,
exclude=self.custom_exclude,
dockerfile=(os.path.join(DOCKER_TMPDIR, 'Dockerfile'),
dockerfile),
gzip=False)
kwargs.update(fileobj=context,
custom_context=True)
else:
if sys.version_info.major == 2:
fileobj = StringIO(dockerfile)
else:
fileobj = BytesIO(dockerfile.encode('utf-8'))
kwargs.update(fileobj=fileobj,
path=None,
dockerfile=None)
tempdir = None
# start the build
stream = client.api.build(**kwargs)
try:
utils.stream_docker_logs(stream, self.buildname)
except docker.errors.APIError as e:
if self.squash and not client.version().get('Experimental', False):
raise errors.ExperimentalDaemonRequiredError(
'Docker error message:\n ' + str(e) +
'\n\nUsing `squash` and/or `secret_files` requires a docker'
" daemon with experimental features enabled. See\n"
" https://github.com/docker/docker-ce/blob/master/components/cli/"
"experimental/README.md")
else:
raise errors.BuildError(dockerfile, str(e), kwargs)
except ValueError as e:
raise errors.BuildError(dockerfile, str(e), kwargs)
if self.squash and not self.bust_cache:
self._resolve_squash_cache(client)
# remove the temporary dockerfile
if tempdir is not None:
os.unlink(os.path.join(tempdir, 'Dockerfile'))
os.rmdir(tempdir) | [
"def",
"build",
"(",
"self",
",",
"client",
",",
"pull",
"=",
"False",
",",
"usecache",
"=",
"True",
")",
":",
"print",
"(",
"colored",
"(",
"' Building step'",
",",
"'blue'",
")",
",",
"colored",
"(",
"self",
".",
"imagename",
",",
"'blue'",
",",
"attrs",
"=",
"[",
"'bold'",
"]",
")",
",",
"colored",
"(",
"'defined in'",
",",
"'blue'",
")",
",",
"colored",
"(",
"self",
".",
"sourcefile",
",",
"'blue'",
",",
"attrs",
"=",
"[",
"'bold'",
"]",
")",
")",
"if",
"self",
".",
"build_first",
"and",
"not",
"self",
".",
"build_first",
".",
"built",
":",
"self",
".",
"build_external_dockerfile",
"(",
"client",
",",
"self",
".",
"build_first",
")",
"if",
"self",
".",
"bust_cache",
":",
"usecache",
"=",
"False",
"if",
"not",
"usecache",
":",
"cprint",
"(",
"' Build cache disabled - this image will be rebuilt from scratch'",
",",
"'yellow'",
")",
"dockerfile",
"=",
"u'\\n'",
".",
"join",
"(",
"self",
".",
"dockerfile_lines",
")",
"kwargs",
"=",
"dict",
"(",
"tag",
"=",
"self",
".",
"buildname",
",",
"pull",
"=",
"pull",
",",
"nocache",
"=",
"not",
"usecache",
",",
"decode",
"=",
"True",
",",
"rm",
"=",
"True",
",",
"buildargs",
"=",
"self",
".",
"buildargs",
",",
"squash",
"=",
"self",
".",
"squash",
")",
"if",
"usecache",
":",
"utils",
".",
"set_build_cachefrom",
"(",
"self",
".",
"cache_from",
",",
"kwargs",
",",
"client",
")",
"if",
"self",
".",
"build_dir",
"is",
"not",
"None",
":",
"tempdir",
"=",
"self",
".",
"write_dockerfile",
"(",
"dockerfile",
")",
"context_path",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"os",
".",
"path",
".",
"expanduser",
"(",
"self",
".",
"build_dir",
")",
")",
"kwargs",
".",
"update",
"(",
"fileobj",
"=",
"None",
",",
"dockerfile",
"=",
"os",
".",
"path",
".",
"join",
"(",
"DOCKER_TMPDIR",
",",
"'Dockerfile'",
")",
")",
"print",
"(",
"colored",
"(",
"' Build context:'",
",",
"'blue'",
")",
",",
"colored",
"(",
"os",
".",
"path",
".",
"relpath",
"(",
"context_path",
")",
",",
"'blue'",
",",
"attrs",
"=",
"[",
"'bold'",
"]",
")",
")",
"if",
"not",
"self",
".",
"custom_exclude",
":",
"kwargs",
".",
"update",
"(",
"path",
"=",
"context_path",
")",
"else",
":",
"print",
"(",
"colored",
"(",
"' Custom .dockerignore from:'",
",",
"'blue'",
")",
",",
"colored",
"(",
"os",
".",
"path",
".",
"relpath",
"(",
"self",
".",
"ignoredefs_file",
")",
",",
"'blue'",
",",
"attrs",
"=",
"[",
"'bold'",
"]",
")",
")",
"# AMV - this is a brittle call to an apparently \"private' docker sdk method",
"context",
"=",
"docker",
".",
"utils",
".",
"tar",
"(",
"self",
".",
"build_dir",
",",
"exclude",
"=",
"self",
".",
"custom_exclude",
",",
"dockerfile",
"=",
"(",
"os",
".",
"path",
".",
"join",
"(",
"DOCKER_TMPDIR",
",",
"'Dockerfile'",
")",
",",
"dockerfile",
")",
",",
"gzip",
"=",
"False",
")",
"kwargs",
".",
"update",
"(",
"fileobj",
"=",
"context",
",",
"custom_context",
"=",
"True",
")",
"else",
":",
"if",
"sys",
".",
"version_info",
".",
"major",
"==",
"2",
":",
"fileobj",
"=",
"StringIO",
"(",
"dockerfile",
")",
"else",
":",
"fileobj",
"=",
"BytesIO",
"(",
"dockerfile",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"kwargs",
".",
"update",
"(",
"fileobj",
"=",
"fileobj",
",",
"path",
"=",
"None",
",",
"dockerfile",
"=",
"None",
")",
"tempdir",
"=",
"None",
"# start the build",
"stream",
"=",
"client",
".",
"api",
".",
"build",
"(",
"*",
"*",
"kwargs",
")",
"try",
":",
"utils",
".",
"stream_docker_logs",
"(",
"stream",
",",
"self",
".",
"buildname",
")",
"except",
"docker",
".",
"errors",
".",
"APIError",
"as",
"e",
":",
"if",
"self",
".",
"squash",
"and",
"not",
"client",
".",
"version",
"(",
")",
".",
"get",
"(",
"'Experimental'",
",",
"False",
")",
":",
"raise",
"errors",
".",
"ExperimentalDaemonRequiredError",
"(",
"'Docker error message:\\n '",
"+",
"str",
"(",
"e",
")",
"+",
"'\\n\\nUsing `squash` and/or `secret_files` requires a docker'",
"\" daemon with experimental features enabled. See\\n\"",
"\" https://github.com/docker/docker-ce/blob/master/components/cli/\"",
"\"experimental/README.md\"",
")",
"else",
":",
"raise",
"errors",
".",
"BuildError",
"(",
"dockerfile",
",",
"str",
"(",
"e",
")",
",",
"kwargs",
")",
"except",
"ValueError",
"as",
"e",
":",
"raise",
"errors",
".",
"BuildError",
"(",
"dockerfile",
",",
"str",
"(",
"e",
")",
",",
"kwargs",
")",
"if",
"self",
".",
"squash",
"and",
"not",
"self",
".",
"bust_cache",
":",
"self",
".",
"_resolve_squash_cache",
"(",
"client",
")",
"# remove the temporary dockerfile",
"if",
"tempdir",
"is",
"not",
"None",
":",
"os",
".",
"unlink",
"(",
"os",
".",
"path",
".",
"join",
"(",
"tempdir",
",",
"'Dockerfile'",
")",
")",
"os",
".",
"rmdir",
"(",
"tempdir",
")"
] | Drives an individual build step. Build steps are separated by build_directory.
If a build has zero one or less build_directories, it will be built in a single
step.
Args:
client (docker.Client): docker client object that will build the image
pull (bool): whether to pull dependent layers from remote repositories
usecache (bool): whether to use cached layers or rebuild from scratch | [
"Drives",
"an",
"individual",
"build",
"step",
".",
"Build",
"steps",
"are",
"separated",
"by",
"build_directory",
".",
"If",
"a",
"build",
"has",
"zero",
"one",
"or",
"less",
"build_directories",
"it",
"will",
"be",
"built",
"in",
"a",
"single",
"step",
"."
] | python | train |
Hypex/hyppy | hyppy/func.py | https://github.com/Hypex/hyppy/blob/a425619c2a102b0e598fd6cac8aa0f6b766f542d/hyppy/func.py#L19-L40 | def fleet_ttb(unit_type, quantity, factories, is_techno=False, is_dict=False, stasis_enabled=False):
"""
Calculate the time taken to construct a given fleet
"""
unit_weights = {
UNIT_SCOUT: 1,
UNIT_DESTROYER: 13,
UNIT_BOMBER: 10,
UNIT_CRUISER: 85,
UNIT_STARBASE: 1,
}
govt_weight = 80 if is_dict else 100
prod_weight = 85 if is_techno else 100
weighted_qty = unit_weights[unit_type] * quantity
ttb = (weighted_qty * govt_weight * prod_weight) * (2 * factories)
# TTB is 66% longer with stasis enabled
return ttb + (ttb * 0.66) if stasis_enabled else ttb | [
"def",
"fleet_ttb",
"(",
"unit_type",
",",
"quantity",
",",
"factories",
",",
"is_techno",
"=",
"False",
",",
"is_dict",
"=",
"False",
",",
"stasis_enabled",
"=",
"False",
")",
":",
"unit_weights",
"=",
"{",
"UNIT_SCOUT",
":",
"1",
",",
"UNIT_DESTROYER",
":",
"13",
",",
"UNIT_BOMBER",
":",
"10",
",",
"UNIT_CRUISER",
":",
"85",
",",
"UNIT_STARBASE",
":",
"1",
",",
"}",
"govt_weight",
"=",
"80",
"if",
"is_dict",
"else",
"100",
"prod_weight",
"=",
"85",
"if",
"is_techno",
"else",
"100",
"weighted_qty",
"=",
"unit_weights",
"[",
"unit_type",
"]",
"*",
"quantity",
"ttb",
"=",
"(",
"weighted_qty",
"*",
"govt_weight",
"*",
"prod_weight",
")",
"*",
"(",
"2",
"*",
"factories",
")",
"# TTB is 66% longer with stasis enabled",
"return",
"ttb",
"+",
"(",
"ttb",
"*",
"0.66",
")",
"if",
"stasis_enabled",
"else",
"ttb"
] | Calculate the time taken to construct a given fleet | [
"Calculate",
"the",
"time",
"taken",
"to",
"construct",
"a",
"given",
"fleet"
] | python | train |
binux/pyspider | pyspider/fetcher/tornado_fetcher.py | https://github.com/binux/pyspider/blob/3fccfabe2b057b7a56d4a4c79dc0dd6cd2239fe9/pyspider/fetcher/tornado_fetcher.py#L780-L787 | def quit(self):
'''Quit fetcher'''
self._running = False
self._quit = True
self.ioloop.add_callback(self.ioloop.stop)
if hasattr(self, 'xmlrpc_server'):
self.xmlrpc_ioloop.add_callback(self.xmlrpc_server.stop)
self.xmlrpc_ioloop.add_callback(self.xmlrpc_ioloop.stop) | [
"def",
"quit",
"(",
"self",
")",
":",
"self",
".",
"_running",
"=",
"False",
"self",
".",
"_quit",
"=",
"True",
"self",
".",
"ioloop",
".",
"add_callback",
"(",
"self",
".",
"ioloop",
".",
"stop",
")",
"if",
"hasattr",
"(",
"self",
",",
"'xmlrpc_server'",
")",
":",
"self",
".",
"xmlrpc_ioloop",
".",
"add_callback",
"(",
"self",
".",
"xmlrpc_server",
".",
"stop",
")",
"self",
".",
"xmlrpc_ioloop",
".",
"add_callback",
"(",
"self",
".",
"xmlrpc_ioloop",
".",
"stop",
")"
] | Quit fetcher | [
"Quit",
"fetcher"
] | python | train |
astroML/gatspy | gatspy/datasets/rrlyrae.py | https://github.com/astroML/gatspy/blob/a8f94082a3f27dfe9cb58165707b883bf28d9223/gatspy/datasets/rrlyrae.py#L175-L184 | def get_metadata(self, lcid):
"""Get the parameters derived from the fit for the given id.
This is table 2 of Sesar 2010
"""
if self._metadata is None:
self._metadata = fetch_rrlyrae_lc_params()
i = np.where(self._metadata['id'] == lcid)[0]
if len(i) == 0:
raise ValueError("invalid lcid: {0}".format(lcid))
return self._metadata[i[0]] | [
"def",
"get_metadata",
"(",
"self",
",",
"lcid",
")",
":",
"if",
"self",
".",
"_metadata",
"is",
"None",
":",
"self",
".",
"_metadata",
"=",
"fetch_rrlyrae_lc_params",
"(",
")",
"i",
"=",
"np",
".",
"where",
"(",
"self",
".",
"_metadata",
"[",
"'id'",
"]",
"==",
"lcid",
")",
"[",
"0",
"]",
"if",
"len",
"(",
"i",
")",
"==",
"0",
":",
"raise",
"ValueError",
"(",
"\"invalid lcid: {0}\"",
".",
"format",
"(",
"lcid",
")",
")",
"return",
"self",
".",
"_metadata",
"[",
"i",
"[",
"0",
"]",
"]"
] | Get the parameters derived from the fit for the given id.
This is table 2 of Sesar 2010 | [
"Get",
"the",
"parameters",
"derived",
"from",
"the",
"fit",
"for",
"the",
"given",
"id",
".",
"This",
"is",
"table",
"2",
"of",
"Sesar",
"2010"
] | python | train |
apache/spark | python/pyspark/mllib/clustering.py | https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/clustering.py#L856-L865 | def setRandomCenters(self, dim, weight, seed):
"""
Set the initial centres to be random samples from
a gaussian population with constant weights.
"""
rng = random.RandomState(seed)
clusterCenters = rng.randn(self._k, dim)
clusterWeights = tile(weight, self._k)
self._model = StreamingKMeansModel(clusterCenters, clusterWeights)
return self | [
"def",
"setRandomCenters",
"(",
"self",
",",
"dim",
",",
"weight",
",",
"seed",
")",
":",
"rng",
"=",
"random",
".",
"RandomState",
"(",
"seed",
")",
"clusterCenters",
"=",
"rng",
".",
"randn",
"(",
"self",
".",
"_k",
",",
"dim",
")",
"clusterWeights",
"=",
"tile",
"(",
"weight",
",",
"self",
".",
"_k",
")",
"self",
".",
"_model",
"=",
"StreamingKMeansModel",
"(",
"clusterCenters",
",",
"clusterWeights",
")",
"return",
"self"
] | Set the initial centres to be random samples from
a gaussian population with constant weights. | [
"Set",
"the",
"initial",
"centres",
"to",
"be",
"random",
"samples",
"from",
"a",
"gaussian",
"population",
"with",
"constant",
"weights",
"."
] | python | train |
pbrisk/timewave | timewave/engine.py | https://github.com/pbrisk/timewave/blob/cf641391d1607a424042724c8b990d43ee270ef6/timewave/engine.py#L280-L288 | def finalize(self):
"""
finalize simulation for consumer
"""
# todo sort self.result by path_num
if self.result:
self.result = sorted(self.result, key=lambda x: x[0])
p, r = map(list, zip(*self.result))
self.result = r | [
"def",
"finalize",
"(",
"self",
")",
":",
"# todo sort self.result by path_num",
"if",
"self",
".",
"result",
":",
"self",
".",
"result",
"=",
"sorted",
"(",
"self",
".",
"result",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"0",
"]",
")",
"p",
",",
"r",
"=",
"map",
"(",
"list",
",",
"zip",
"(",
"*",
"self",
".",
"result",
")",
")",
"self",
".",
"result",
"=",
"r"
] | finalize simulation for consumer | [
"finalize",
"simulation",
"for",
"consumer"
] | python | train |
PyCQA/pylint | pylint/utils/ast_walker.py | https://github.com/PyCQA/pylint/blob/2bf5c61a3ff6ae90613b81679de42c0f19aea600/pylint/utils/ast_walker.py#L58-L80 | def walk(self, astroid):
"""call visit events of astroid checkers for the given node, recurse on
its children, then leave events.
"""
cid = astroid.__class__.__name__.lower()
# Detect if the node is a new name for a deprecated alias.
# In this case, favour the methods for the deprecated
# alias if any, in order to maintain backwards
# compatibility.
visit_events = self.visit_events.get(cid, ())
leave_events = self.leave_events.get(cid, ())
if astroid.is_statement:
self.nbstatements += 1
# generate events for this node on each checker
for cb in visit_events or ():
cb(astroid)
# recurse on children
for child in astroid.get_children():
self.walk(child)
for cb in leave_events or ():
cb(astroid) | [
"def",
"walk",
"(",
"self",
",",
"astroid",
")",
":",
"cid",
"=",
"astroid",
".",
"__class__",
".",
"__name__",
".",
"lower",
"(",
")",
"# Detect if the node is a new name for a deprecated alias.",
"# In this case, favour the methods for the deprecated",
"# alias if any, in order to maintain backwards",
"# compatibility.",
"visit_events",
"=",
"self",
".",
"visit_events",
".",
"get",
"(",
"cid",
",",
"(",
")",
")",
"leave_events",
"=",
"self",
".",
"leave_events",
".",
"get",
"(",
"cid",
",",
"(",
")",
")",
"if",
"astroid",
".",
"is_statement",
":",
"self",
".",
"nbstatements",
"+=",
"1",
"# generate events for this node on each checker",
"for",
"cb",
"in",
"visit_events",
"or",
"(",
")",
":",
"cb",
"(",
"astroid",
")",
"# recurse on children",
"for",
"child",
"in",
"astroid",
".",
"get_children",
"(",
")",
":",
"self",
".",
"walk",
"(",
"child",
")",
"for",
"cb",
"in",
"leave_events",
"or",
"(",
")",
":",
"cb",
"(",
"astroid",
")"
] | call visit events of astroid checkers for the given node, recurse on
its children, then leave events. | [
"call",
"visit",
"events",
"of",
"astroid",
"checkers",
"for",
"the",
"given",
"node",
"recurse",
"on",
"its",
"children",
"then",
"leave",
"events",
"."
] | python | test |
rh-marketingops/dwm | dwm/dwmmain.py | https://github.com/rh-marketingops/dwm/blob/66c7d18db857afbe5d574478ceaaad6159ae7469/dwm/dwmmain.py#L291-L425 | def _derive(self, record, hist=None):
"""
Derivation filters like 'deriveValue' to replace given input values
from one or more fields. In case 'copyValue' copy value to the target
field from given an input value from one field. 'deriveRegex' replace
given an input value from one field, derive target field value using
regular expressions. If 'deriveIncludes' applies then given an input
value from one field, derive target field based on at least one of the
following: includes strings, excludes strings, starts with string,
ends with string
:param dict record: dictionary of values to validate
:param dict hist: existing input of history values
"""
def check_derive_options(option, derive_set_config):
"""
Check derive option is exist into options list and return relevant
flag.
:param str option: drive options value
:param list derive_set_config: options list
:return boolean: True or False based on option exist into options
list
"""
return option in derive_set_config
hist_obj = {}
if hist is None:
hist = {}
for field in record:
field_val_new = field_val = record[field]
if field in self.fields:
for derive_set in self.fields[field]['derive']:
check_match = False
derive_set_config = derive_set
if set.issubset(set(derive_set_config['fieldSet']),
record.keys()):
# sorting here to ensure sub document match from
# query
derive_input = {val: record[val] for val in
derive_set_config['fieldSet']}
if derive_set_config['type'] == 'deriveValue':
overwrite_flag = check_derive_options(
'overwrite',
derive_set_config["options"])
blank_if_no_match_flag = check_derive_options(
'blankIfNoMatch',
derive_set_config["options"])
field_val_new, hist_obj, check_match = \
DeriveDataLookup(
fieldName=field,
db=self.mongo,
deriveInput=derive_input,
overwrite=overwrite_flag,
fieldVal=record[field],
histObj=hist,
blankIfNoMatch=blank_if_no_match_flag)
elif derive_set_config['type'] == 'copyValue':
overwrite_flag = check_derive_options(
'overwrite',
derive_set_config["options"])
field_val_new, hist_obj, check_match = \
DeriveDataCopyValue(
fieldName=field,
deriveInput=derive_input,
overwrite=overwrite_flag,
fieldVal=record[field],
histObj=hist)
elif derive_set_config['type'] == 'deriveRegex':
overwrite_flag = check_derive_options(
'overwrite',
derive_set_config["options"])
blank_if_no_match_flag = check_derive_options(
'blankIfNoMatch',
derive_set_config["options"])
field_val_new, hist_obj, check_match = \
DeriveDataRegex(
fieldName=field,
db=self.mongo,
deriveInput=derive_input,
overwrite=overwrite_flag,
fieldVal=record[field],
histObj=hist,
blankIfNoMatch=blank_if_no_match_flag)
elif derive_set_config['type'] == 'deriveIncludes':
overwrite_flag = check_derive_options(
'overwrite',
derive_set_config["options"])
blank_if_no_match_flag = check_derive_options(
'blankIfNoMatch',
derive_set_config["options"])
field_val_new, hist_obj, check_match = \
IncludesLookup(
fieldVal=record[field],
lookupType='deriveIncludes',
deriveFieldName= \
derive_set_config['fieldSet'][0],
deriveInput=derive_input,
db=self.mongo,
fieldName=field,
histObj=hist,
overwrite=overwrite_flag,
blankIfNoMatch=blank_if_no_match_flag)
if check_match or field_val_new != field_val:
record[field] = field_val_new
break
return record, hist_obj | [
"def",
"_derive",
"(",
"self",
",",
"record",
",",
"hist",
"=",
"None",
")",
":",
"def",
"check_derive_options",
"(",
"option",
",",
"derive_set_config",
")",
":",
"\"\"\"\n Check derive option is exist into options list and return relevant\n flag.\n :param str option: drive options value\n :param list derive_set_config: options list\n :return boolean: True or False based on option exist into options\n list\n \"\"\"",
"return",
"option",
"in",
"derive_set_config",
"hist_obj",
"=",
"{",
"}",
"if",
"hist",
"is",
"None",
":",
"hist",
"=",
"{",
"}",
"for",
"field",
"in",
"record",
":",
"field_val_new",
"=",
"field_val",
"=",
"record",
"[",
"field",
"]",
"if",
"field",
"in",
"self",
".",
"fields",
":",
"for",
"derive_set",
"in",
"self",
".",
"fields",
"[",
"field",
"]",
"[",
"'derive'",
"]",
":",
"check_match",
"=",
"False",
"derive_set_config",
"=",
"derive_set",
"if",
"set",
".",
"issubset",
"(",
"set",
"(",
"derive_set_config",
"[",
"'fieldSet'",
"]",
")",
",",
"record",
".",
"keys",
"(",
")",
")",
":",
"# sorting here to ensure sub document match from",
"# query",
"derive_input",
"=",
"{",
"val",
":",
"record",
"[",
"val",
"]",
"for",
"val",
"in",
"derive_set_config",
"[",
"'fieldSet'",
"]",
"}",
"if",
"derive_set_config",
"[",
"'type'",
"]",
"==",
"'deriveValue'",
":",
"overwrite_flag",
"=",
"check_derive_options",
"(",
"'overwrite'",
",",
"derive_set_config",
"[",
"\"options\"",
"]",
")",
"blank_if_no_match_flag",
"=",
"check_derive_options",
"(",
"'blankIfNoMatch'",
",",
"derive_set_config",
"[",
"\"options\"",
"]",
")",
"field_val_new",
",",
"hist_obj",
",",
"check_match",
"=",
"DeriveDataLookup",
"(",
"fieldName",
"=",
"field",
",",
"db",
"=",
"self",
".",
"mongo",
",",
"deriveInput",
"=",
"derive_input",
",",
"overwrite",
"=",
"overwrite_flag",
",",
"fieldVal",
"=",
"record",
"[",
"field",
"]",
",",
"histObj",
"=",
"hist",
",",
"blankIfNoMatch",
"=",
"blank_if_no_match_flag",
")",
"elif",
"derive_set_config",
"[",
"'type'",
"]",
"==",
"'copyValue'",
":",
"overwrite_flag",
"=",
"check_derive_options",
"(",
"'overwrite'",
",",
"derive_set_config",
"[",
"\"options\"",
"]",
")",
"field_val_new",
",",
"hist_obj",
",",
"check_match",
"=",
"DeriveDataCopyValue",
"(",
"fieldName",
"=",
"field",
",",
"deriveInput",
"=",
"derive_input",
",",
"overwrite",
"=",
"overwrite_flag",
",",
"fieldVal",
"=",
"record",
"[",
"field",
"]",
",",
"histObj",
"=",
"hist",
")",
"elif",
"derive_set_config",
"[",
"'type'",
"]",
"==",
"'deriveRegex'",
":",
"overwrite_flag",
"=",
"check_derive_options",
"(",
"'overwrite'",
",",
"derive_set_config",
"[",
"\"options\"",
"]",
")",
"blank_if_no_match_flag",
"=",
"check_derive_options",
"(",
"'blankIfNoMatch'",
",",
"derive_set_config",
"[",
"\"options\"",
"]",
")",
"field_val_new",
",",
"hist_obj",
",",
"check_match",
"=",
"DeriveDataRegex",
"(",
"fieldName",
"=",
"field",
",",
"db",
"=",
"self",
".",
"mongo",
",",
"deriveInput",
"=",
"derive_input",
",",
"overwrite",
"=",
"overwrite_flag",
",",
"fieldVal",
"=",
"record",
"[",
"field",
"]",
",",
"histObj",
"=",
"hist",
",",
"blankIfNoMatch",
"=",
"blank_if_no_match_flag",
")",
"elif",
"derive_set_config",
"[",
"'type'",
"]",
"==",
"'deriveIncludes'",
":",
"overwrite_flag",
"=",
"check_derive_options",
"(",
"'overwrite'",
",",
"derive_set_config",
"[",
"\"options\"",
"]",
")",
"blank_if_no_match_flag",
"=",
"check_derive_options",
"(",
"'blankIfNoMatch'",
",",
"derive_set_config",
"[",
"\"options\"",
"]",
")",
"field_val_new",
",",
"hist_obj",
",",
"check_match",
"=",
"IncludesLookup",
"(",
"fieldVal",
"=",
"record",
"[",
"field",
"]",
",",
"lookupType",
"=",
"'deriveIncludes'",
",",
"deriveFieldName",
"=",
"derive_set_config",
"[",
"'fieldSet'",
"]",
"[",
"0",
"]",
",",
"deriveInput",
"=",
"derive_input",
",",
"db",
"=",
"self",
".",
"mongo",
",",
"fieldName",
"=",
"field",
",",
"histObj",
"=",
"hist",
",",
"overwrite",
"=",
"overwrite_flag",
",",
"blankIfNoMatch",
"=",
"blank_if_no_match_flag",
")",
"if",
"check_match",
"or",
"field_val_new",
"!=",
"field_val",
":",
"record",
"[",
"field",
"]",
"=",
"field_val_new",
"break",
"return",
"record",
",",
"hist_obj"
] | Derivation filters like 'deriveValue' to replace given input values
from one or more fields. In case 'copyValue' copy value to the target
field from given an input value from one field. 'deriveRegex' replace
given an input value from one field, derive target field value using
regular expressions. If 'deriveIncludes' applies then given an input
value from one field, derive target field based on at least one of the
following: includes strings, excludes strings, starts with string,
ends with string
:param dict record: dictionary of values to validate
:param dict hist: existing input of history values | [
"Derivation",
"filters",
"like",
"deriveValue",
"to",
"replace",
"given",
"input",
"values",
"from",
"one",
"or",
"more",
"fields",
".",
"In",
"case",
"copyValue",
"copy",
"value",
"to",
"the",
"target",
"field",
"from",
"given",
"an",
"input",
"value",
"from",
"one",
"field",
".",
"deriveRegex",
"replace",
"given",
"an",
"input",
"value",
"from",
"one",
"field",
"derive",
"target",
"field",
"value",
"using",
"regular",
"expressions",
".",
"If",
"deriveIncludes",
"applies",
"then",
"given",
"an",
"input",
"value",
"from",
"one",
"field",
"derive",
"target",
"field",
"based",
"on",
"at",
"least",
"one",
"of",
"the",
"following",
":",
"includes",
"strings",
"excludes",
"strings",
"starts",
"with",
"string",
"ends",
"with",
"string"
] | python | train |
horazont/aioxmpp | aioxmpp/pep/service.py | https://github.com/horazont/aioxmpp/blob/22a68e5e1d23f2a4dee470092adbd4672f9ef061/aioxmpp/pep/service.py#L193-L249 | def publish(self, node, data, *, id_=None, access_model=None):
"""
Publish an item `data` in the PubSub node `node` on the
PEP service associated with the user's JID.
:param node: The PubSub node to publish to.
:param data: The item to publish.
:type data: An XSO representing the paylaod.
:param id_: The id the published item shall have.
:param access_model: The access model to enforce on the node. Defaults
to not enforcing any access model.
:returns: The PubSub id of the published item or
:data:`None` if it is unknown.
:raises RuntimeError: if PEP is not supported.
:raises RuntimeError: if `access_model` is set and `publish_options` is
not supported by the server
If no `id_` is given it is generated by the server (and may be
returned).
`access_model` defines a pre-condition on the access model used for the
`node`. The valid values depend on the service; commonly useful
``"presence"`` (the default for PEP; allows access to anyone who can
receive the presence) and ``"whitelist"`` (allows access only to a
whitelist (which defaults to the own account only)).
"""
publish_options = None
def autocreate_publish_options():
nonlocal publish_options
if publish_options is None:
publish_options = aioxmpp.forms.Data(
aioxmpp.forms.DataType.SUBMIT
)
publish_options.fields.append(
aioxmpp.forms.Field(
type_=aioxmpp.forms.FieldType.HIDDEN,
var="FORM_TYPE",
values=[
"http://jabber.org/protocol/pubsub#publish-options"
]
)
)
return publish_options
if access_model is not None:
autocreate_publish_options()
publish_options.fields.append(aioxmpp.forms.Field(
var="pubsub#access_model",
values=[access_model],
))
yield from self._check_for_pep()
return (yield from self._pubsub.publish(
None, node, data, id_=id_,
publish_options=publish_options
)) | [
"def",
"publish",
"(",
"self",
",",
"node",
",",
"data",
",",
"*",
",",
"id_",
"=",
"None",
",",
"access_model",
"=",
"None",
")",
":",
"publish_options",
"=",
"None",
"def",
"autocreate_publish_options",
"(",
")",
":",
"nonlocal",
"publish_options",
"if",
"publish_options",
"is",
"None",
":",
"publish_options",
"=",
"aioxmpp",
".",
"forms",
".",
"Data",
"(",
"aioxmpp",
".",
"forms",
".",
"DataType",
".",
"SUBMIT",
")",
"publish_options",
".",
"fields",
".",
"append",
"(",
"aioxmpp",
".",
"forms",
".",
"Field",
"(",
"type_",
"=",
"aioxmpp",
".",
"forms",
".",
"FieldType",
".",
"HIDDEN",
",",
"var",
"=",
"\"FORM_TYPE\"",
",",
"values",
"=",
"[",
"\"http://jabber.org/protocol/pubsub#publish-options\"",
"]",
")",
")",
"return",
"publish_options",
"if",
"access_model",
"is",
"not",
"None",
":",
"autocreate_publish_options",
"(",
")",
"publish_options",
".",
"fields",
".",
"append",
"(",
"aioxmpp",
".",
"forms",
".",
"Field",
"(",
"var",
"=",
"\"pubsub#access_model\"",
",",
"values",
"=",
"[",
"access_model",
"]",
",",
")",
")",
"yield",
"from",
"self",
".",
"_check_for_pep",
"(",
")",
"return",
"(",
"yield",
"from",
"self",
".",
"_pubsub",
".",
"publish",
"(",
"None",
",",
"node",
",",
"data",
",",
"id_",
"=",
"id_",
",",
"publish_options",
"=",
"publish_options",
")",
")"
] | Publish an item `data` in the PubSub node `node` on the
PEP service associated with the user's JID.
:param node: The PubSub node to publish to.
:param data: The item to publish.
:type data: An XSO representing the paylaod.
:param id_: The id the published item shall have.
:param access_model: The access model to enforce on the node. Defaults
to not enforcing any access model.
:returns: The PubSub id of the published item or
:data:`None` if it is unknown.
:raises RuntimeError: if PEP is not supported.
:raises RuntimeError: if `access_model` is set and `publish_options` is
not supported by the server
If no `id_` is given it is generated by the server (and may be
returned).
`access_model` defines a pre-condition on the access model used for the
`node`. The valid values depend on the service; commonly useful
``"presence"`` (the default for PEP; allows access to anyone who can
receive the presence) and ``"whitelist"`` (allows access only to a
whitelist (which defaults to the own account only)). | [
"Publish",
"an",
"item",
"data",
"in",
"the",
"PubSub",
"node",
"node",
"on",
"the",
"PEP",
"service",
"associated",
"with",
"the",
"user",
"s",
"JID",
"."
] | python | train |
StanfordVL/robosuite | robosuite/wrappers/ik_wrapper.py | https://github.com/StanfordVL/robosuite/blob/65cd16810e2ed647e3ec88746af3412065b7f278/robosuite/wrappers/ik_wrapper.py#L53-L59 | def set_robot_joint_positions(self, positions):
"""
Overrides the function to set the joint positions directly, since we need to notify
the IK controller of the change.
"""
self.env.set_robot_joint_positions(positions)
self.controller.sync_state() | [
"def",
"set_robot_joint_positions",
"(",
"self",
",",
"positions",
")",
":",
"self",
".",
"env",
".",
"set_robot_joint_positions",
"(",
"positions",
")",
"self",
".",
"controller",
".",
"sync_state",
"(",
")"
] | Overrides the function to set the joint positions directly, since we need to notify
the IK controller of the change. | [
"Overrides",
"the",
"function",
"to",
"set",
"the",
"joint",
"positions",
"directly",
"since",
"we",
"need",
"to",
"notify",
"the",
"IK",
"controller",
"of",
"the",
"change",
"."
] | python | train |
log2timeline/dfvfs | dfvfs/resolver/cache.py | https://github.com/log2timeline/dfvfs/blob/2b3ccd115f9901d89f383397d4a1376a873c83c4/dfvfs/resolver/cache.py#L195-L210 | def RemoveObject(self, identifier):
"""Removes a cached object based on the identifier.
This method ignores the cache value reference count.
Args:
identifier (str): VFS object identifier.
Raises:
KeyError: if the VFS object is not found in the cache.
"""
if identifier not in self._values:
raise KeyError('Missing cached object for identifier: {0:s}'.format(
identifier))
del self._values[identifier] | [
"def",
"RemoveObject",
"(",
"self",
",",
"identifier",
")",
":",
"if",
"identifier",
"not",
"in",
"self",
".",
"_values",
":",
"raise",
"KeyError",
"(",
"'Missing cached object for identifier: {0:s}'",
".",
"format",
"(",
"identifier",
")",
")",
"del",
"self",
".",
"_values",
"[",
"identifier",
"]"
] | Removes a cached object based on the identifier.
This method ignores the cache value reference count.
Args:
identifier (str): VFS object identifier.
Raises:
KeyError: if the VFS object is not found in the cache. | [
"Removes",
"a",
"cached",
"object",
"based",
"on",
"the",
"identifier",
"."
] | python | train |
ucfopen/canvasapi | canvasapi/canvas.py | https://github.com/ucfopen/canvasapi/blob/319064b5fc97ba54250af683eb98723ef3f76cf8/canvasapi/canvas.py#L450-L468 | def get_group_category(self, category):
"""
Get a single group category.
:calls: `GET /api/v1/group_categories/:group_category_id \
<https://canvas.instructure.com/doc/api/group_categories.html#method.group_categories.show>`_
:param category: The object or ID of the category.
:type category: :class:`canvasapi.group.GroupCategory` or int
:rtype: :class:`canvasapi.group.GroupCategory`
"""
category_id = obj_or_id(category, "category", (GroupCategory,))
response = self.__requester.request(
'GET',
'group_categories/{}'.format(category_id)
)
return GroupCategory(self.__requester, response.json()) | [
"def",
"get_group_category",
"(",
"self",
",",
"category",
")",
":",
"category_id",
"=",
"obj_or_id",
"(",
"category",
",",
"\"category\"",
",",
"(",
"GroupCategory",
",",
")",
")",
"response",
"=",
"self",
".",
"__requester",
".",
"request",
"(",
"'GET'",
",",
"'group_categories/{}'",
".",
"format",
"(",
"category_id",
")",
")",
"return",
"GroupCategory",
"(",
"self",
".",
"__requester",
",",
"response",
".",
"json",
"(",
")",
")"
] | Get a single group category.
:calls: `GET /api/v1/group_categories/:group_category_id \
<https://canvas.instructure.com/doc/api/group_categories.html#method.group_categories.show>`_
:param category: The object or ID of the category.
:type category: :class:`canvasapi.group.GroupCategory` or int
:rtype: :class:`canvasapi.group.GroupCategory` | [
"Get",
"a",
"single",
"group",
"category",
"."
] | python | train |
secdev/scapy | scapy/layers/dns.py | https://github.com/secdev/scapy/blob/3ffe757c184017dd46464593a8f80f85abc1e79a/scapy/layers/dns.py#L550-L599 | def RRlist2bitmap(lst):
"""
Encode a list of integers representing Resource Records to a bitmap field
used in the NSEC Resource Record.
"""
# RFC 4034, 4.1.2. The Type Bit Maps Field
import math
bitmap = b""
lst = [abs(x) for x in sorted(set(lst)) if x <= 65535]
# number of window blocks
max_window_blocks = int(math.ceil(lst[-1] / 256.))
min_window_blocks = int(math.floor(lst[0] / 256.))
if min_window_blocks == max_window_blocks:
max_window_blocks += 1
for wb in range(min_window_blocks, max_window_blocks + 1):
# First, filter out RR not encoded in the current window block
# i.e. keep everything between 256*wb <= 256*(wb+1)
rrlist = sorted(x for x in lst if 256 * wb <= x < 256 * (wb + 1))
if not rrlist:
continue
# Compute the number of bytes used to store the bitmap
if rrlist[-1] == 0: # only one element in the list
bytes_count = 1
else:
max = rrlist[-1] - 256 * wb
bytes_count = int(math.ceil(max // 8)) + 1 # use at least 1 byte
if bytes_count > 32: # Don't encode more than 256 bits / values
bytes_count = 32
bitmap += struct.pack("BB", wb, bytes_count)
# Generate the bitmap
# The idea is to remove out of range Resource Records with these steps
# 1. rescale to fit into 8 bits
# 2. x gives the bit position ; compute the corresponding value
# 3. sum everything
bitmap += b"".join(
struct.pack(
b"B",
sum(2 ** (7 - (x - 256 * wb) + (tmp * 8)) for x in rrlist
if 256 * wb + 8 * tmp <= x < 256 * wb + 8 * tmp + 8),
) for tmp in range(bytes_count)
)
return bitmap | [
"def",
"RRlist2bitmap",
"(",
"lst",
")",
":",
"# RFC 4034, 4.1.2. The Type Bit Maps Field",
"import",
"math",
"bitmap",
"=",
"b\"\"",
"lst",
"=",
"[",
"abs",
"(",
"x",
")",
"for",
"x",
"in",
"sorted",
"(",
"set",
"(",
"lst",
")",
")",
"if",
"x",
"<=",
"65535",
"]",
"# number of window blocks",
"max_window_blocks",
"=",
"int",
"(",
"math",
".",
"ceil",
"(",
"lst",
"[",
"-",
"1",
"]",
"/",
"256.",
")",
")",
"min_window_blocks",
"=",
"int",
"(",
"math",
".",
"floor",
"(",
"lst",
"[",
"0",
"]",
"/",
"256.",
")",
")",
"if",
"min_window_blocks",
"==",
"max_window_blocks",
":",
"max_window_blocks",
"+=",
"1",
"for",
"wb",
"in",
"range",
"(",
"min_window_blocks",
",",
"max_window_blocks",
"+",
"1",
")",
":",
"# First, filter out RR not encoded in the current window block",
"# i.e. keep everything between 256*wb <= 256*(wb+1)",
"rrlist",
"=",
"sorted",
"(",
"x",
"for",
"x",
"in",
"lst",
"if",
"256",
"*",
"wb",
"<=",
"x",
"<",
"256",
"*",
"(",
"wb",
"+",
"1",
")",
")",
"if",
"not",
"rrlist",
":",
"continue",
"# Compute the number of bytes used to store the bitmap",
"if",
"rrlist",
"[",
"-",
"1",
"]",
"==",
"0",
":",
"# only one element in the list",
"bytes_count",
"=",
"1",
"else",
":",
"max",
"=",
"rrlist",
"[",
"-",
"1",
"]",
"-",
"256",
"*",
"wb",
"bytes_count",
"=",
"int",
"(",
"math",
".",
"ceil",
"(",
"max",
"//",
"8",
")",
")",
"+",
"1",
"# use at least 1 byte",
"if",
"bytes_count",
">",
"32",
":",
"# Don't encode more than 256 bits / values",
"bytes_count",
"=",
"32",
"bitmap",
"+=",
"struct",
".",
"pack",
"(",
"\"BB\"",
",",
"wb",
",",
"bytes_count",
")",
"# Generate the bitmap",
"# The idea is to remove out of range Resource Records with these steps",
"# 1. rescale to fit into 8 bits",
"# 2. x gives the bit position ; compute the corresponding value",
"# 3. sum everything",
"bitmap",
"+=",
"b\"\"",
".",
"join",
"(",
"struct",
".",
"pack",
"(",
"b\"B\"",
",",
"sum",
"(",
"2",
"**",
"(",
"7",
"-",
"(",
"x",
"-",
"256",
"*",
"wb",
")",
"+",
"(",
"tmp",
"*",
"8",
")",
")",
"for",
"x",
"in",
"rrlist",
"if",
"256",
"*",
"wb",
"+",
"8",
"*",
"tmp",
"<=",
"x",
"<",
"256",
"*",
"wb",
"+",
"8",
"*",
"tmp",
"+",
"8",
")",
",",
")",
"for",
"tmp",
"in",
"range",
"(",
"bytes_count",
")",
")",
"return",
"bitmap"
] | Encode a list of integers representing Resource Records to a bitmap field
used in the NSEC Resource Record. | [
"Encode",
"a",
"list",
"of",
"integers",
"representing",
"Resource",
"Records",
"to",
"a",
"bitmap",
"field",
"used",
"in",
"the",
"NSEC",
"Resource",
"Record",
"."
] | python | train |
onnx/onnx | onnx/external_data_helper.py | https://github.com/onnx/onnx/blob/2f7dc10f03a072526d94b6820cedbf2a1ec5a2c4/onnx/external_data_helper.py#L174-L181 | def _get_attribute_tensors(onnx_model_proto): # type: (ModelProto) -> Iterable[TensorProto]
"""Create an iterator of tensors from node attributes of an ONNX model."""
for node in onnx_model_proto.graph.node:
for attribute in node.attribute:
if attribute.HasField("t"):
yield attribute.t
for tensor in attribute.tensors:
yield tensor | [
"def",
"_get_attribute_tensors",
"(",
"onnx_model_proto",
")",
":",
"# type: (ModelProto) -> Iterable[TensorProto]",
"for",
"node",
"in",
"onnx_model_proto",
".",
"graph",
".",
"node",
":",
"for",
"attribute",
"in",
"node",
".",
"attribute",
":",
"if",
"attribute",
".",
"HasField",
"(",
"\"t\"",
")",
":",
"yield",
"attribute",
".",
"t",
"for",
"tensor",
"in",
"attribute",
".",
"tensors",
":",
"yield",
"tensor"
] | Create an iterator of tensors from node attributes of an ONNX model. | [
"Create",
"an",
"iterator",
"of",
"tensors",
"from",
"node",
"attributes",
"of",
"an",
"ONNX",
"model",
"."
] | python | train |
toomore/grs | grs/twseno.py | https://github.com/toomore/grs/blob/a1285cb57878284a886952968be9e31fbfa595dd/grs/twseno.py#L55-L64 | def __industry_code(self):
''' import industry_code '''
csv_path = os.path.join(os.path.dirname(__file__),
self.industry_code_files)
with open(csv_path) as csv_file:
csv_data = csv.reader(csv_file)
result = {}
for i in csv_data:
result[i[0]] = i[1].decode('utf-8')
return result | [
"def",
"__industry_code",
"(",
"self",
")",
":",
"csv_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"os",
".",
"path",
".",
"dirname",
"(",
"__file__",
")",
",",
"self",
".",
"industry_code_files",
")",
"with",
"open",
"(",
"csv_path",
")",
"as",
"csv_file",
":",
"csv_data",
"=",
"csv",
".",
"reader",
"(",
"csv_file",
")",
"result",
"=",
"{",
"}",
"for",
"i",
"in",
"csv_data",
":",
"result",
"[",
"i",
"[",
"0",
"]",
"]",
"=",
"i",
"[",
"1",
"]",
".",
"decode",
"(",
"'utf-8'",
")",
"return",
"result"
] | import industry_code | [
"import",
"industry_code"
] | python | train |
bitesofcode/projexui | projexui/widgets/xorbtreewidget/xorbtreewidget.py | https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/widgets/xorbtreewidget/xorbtreewidget.py#L2179-L2210 | def setTableType(self, tableType):
"""
Defines the table class type that this tree will be displaying.
:param table | <subclass of orb.Table>
"""
if tableType == self._tableType:
return
# clear all the information
blocked = self.signalsBlocked()
self.blockAllSignals(True)
# only clear if necessary
if self._tableType:
self.clearAll()
# update the table type data
self._tableType = tableType
if tableType:
self._tableTypeName = tableType.__name__
else:
self._tableTypeName = ''
self.initializeColumns()
self.blockAllSignals(blocked)
if not self.signalsBlocked():
self.tableTypeChanged.emit()
self.recordsChanged.emit() | [
"def",
"setTableType",
"(",
"self",
",",
"tableType",
")",
":",
"if",
"tableType",
"==",
"self",
".",
"_tableType",
":",
"return",
"# clear all the information\r",
"blocked",
"=",
"self",
".",
"signalsBlocked",
"(",
")",
"self",
".",
"blockAllSignals",
"(",
"True",
")",
"# only clear if necessary\r",
"if",
"self",
".",
"_tableType",
":",
"self",
".",
"clearAll",
"(",
")",
"# update the table type data\r",
"self",
".",
"_tableType",
"=",
"tableType",
"if",
"tableType",
":",
"self",
".",
"_tableTypeName",
"=",
"tableType",
".",
"__name__",
"else",
":",
"self",
".",
"_tableTypeName",
"=",
"''",
"self",
".",
"initializeColumns",
"(",
")",
"self",
".",
"blockAllSignals",
"(",
"blocked",
")",
"if",
"not",
"self",
".",
"signalsBlocked",
"(",
")",
":",
"self",
".",
"tableTypeChanged",
".",
"emit",
"(",
")",
"self",
".",
"recordsChanged",
".",
"emit",
"(",
")"
] | Defines the table class type that this tree will be displaying.
:param table | <subclass of orb.Table> | [
"Defines",
"the",
"table",
"class",
"type",
"that",
"this",
"tree",
"will",
"be",
"displaying",
".",
":",
"param",
"table",
"|",
"<subclass",
"of",
"orb",
".",
"Table",
">"
] | python | train |
apple/turicreate | src/unity/python/turicreate/util/_cloudpickle.py | https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/src/unity/python/turicreate/util/_cloudpickle.py#L1134-L1141 | def _rehydrate_skeleton_class(skeleton_class, class_dict):
"""Put attributes from `class_dict` back on `skeleton_class`.
See CloudPickler.save_dynamic_class for more info.
"""
for attrname, attr in class_dict.items():
setattr(skeleton_class, attrname, attr)
return skeleton_class | [
"def",
"_rehydrate_skeleton_class",
"(",
"skeleton_class",
",",
"class_dict",
")",
":",
"for",
"attrname",
",",
"attr",
"in",
"class_dict",
".",
"items",
"(",
")",
":",
"setattr",
"(",
"skeleton_class",
",",
"attrname",
",",
"attr",
")",
"return",
"skeleton_class"
] | Put attributes from `class_dict` back on `skeleton_class`.
See CloudPickler.save_dynamic_class for more info. | [
"Put",
"attributes",
"from",
"class_dict",
"back",
"on",
"skeleton_class",
"."
] | python | train |
Crunch-io/crunch-cube | src/cr/cube/crunch_cube.py | https://github.com/Crunch-io/crunch-cube/blob/a837840755690eb14b2ec8e8d93b4104e01c854f/src/cr/cube/crunch_cube.py#L525-L613 | def proportions(
self,
axis=None,
weighted=True,
include_transforms_for_dims=None,
include_mr_cat=False,
prune=False,
):
"""Return percentage values for cube as `numpy.ndarray`.
This function calculates the proportions across the selected axis
of a crunch cube. For most variable types, it means the value divided
by the margin value. For a multiple-response variable, the value is
divided by the sum of selected and non-selected slices.
*axis* (int): base axis of proportions calculation. If no axis is
provided, calculations are done across the entire table.
*weighted* (bool): Specifies weighted or non-weighted proportions.
*include_transforms_for_dims* (list): Also include headings and
subtotals transformations for the provided dimensions. If the
dimensions have the transformations, they'll be included in the
resulting numpy array. If the dimensions don't have the
transformations, nothing will happen (the result will be the same as
if the argument weren't provided).
*include_transforms_for_dims* (list): Include headers and subtotals
(H&S) across various dimensions. The dimensions are provided as list
elements. For example: "include_transforms_for_dims=[0, 1]" instructs
the CrunchCube to return H&S for both rows and columns (if it's a 2D
cube).
*include_mr_cat* (bool): Include MR categories.
*prune* (bool): Instructs the CrunchCube to prune empty rows/cols.
Emptiness is determined by the state of the margin (if it's either
0 or nan at certain index). If it is, the corresponding row/col is
not included in the result.
Example 1::
>>> cube = CrunchCube(fixt_cat_x_cat)
np.array([
[5, 2],
[5, 3],
])
>>> cube.proportions()
np.array([
[0.3333333, 0.1333333],
[0.3333333, 0.2000000],
])
Example 2::
>>> cube = CrunchCube(fixt_cat_x_cat)
np.array([
[5, 2],
[5, 3],
])
>>> cube.proportions(axis=0)
np.array([
[0.5, 0.4],
[0.5, 0.6],
])
"""
# Calculate numerator from table (include all H&S dimensions).
table = self._measure(weighted).raw_cube_array
num = self._apply_subtotals(
self._apply_missings(table), include_transforms_for_dims
)
proportions = num / self._denominator(
weighted, include_transforms_for_dims, axis
)
if not include_mr_cat:
proportions = self._drop_mr_cat_dims(proportions)
# Apply correct mask (based on the as_array shape)
arr = self.as_array(
prune=prune, include_transforms_for_dims=include_transforms_for_dims
)
if isinstance(arr, np.ma.core.MaskedArray):
proportions = np.ma.masked_array(proportions, arr.mask)
return proportions | [
"def",
"proportions",
"(",
"self",
",",
"axis",
"=",
"None",
",",
"weighted",
"=",
"True",
",",
"include_transforms_for_dims",
"=",
"None",
",",
"include_mr_cat",
"=",
"False",
",",
"prune",
"=",
"False",
",",
")",
":",
"# Calculate numerator from table (include all H&S dimensions).",
"table",
"=",
"self",
".",
"_measure",
"(",
"weighted",
")",
".",
"raw_cube_array",
"num",
"=",
"self",
".",
"_apply_subtotals",
"(",
"self",
".",
"_apply_missings",
"(",
"table",
")",
",",
"include_transforms_for_dims",
")",
"proportions",
"=",
"num",
"/",
"self",
".",
"_denominator",
"(",
"weighted",
",",
"include_transforms_for_dims",
",",
"axis",
")",
"if",
"not",
"include_mr_cat",
":",
"proportions",
"=",
"self",
".",
"_drop_mr_cat_dims",
"(",
"proportions",
")",
"# Apply correct mask (based on the as_array shape)",
"arr",
"=",
"self",
".",
"as_array",
"(",
"prune",
"=",
"prune",
",",
"include_transforms_for_dims",
"=",
"include_transforms_for_dims",
")",
"if",
"isinstance",
"(",
"arr",
",",
"np",
".",
"ma",
".",
"core",
".",
"MaskedArray",
")",
":",
"proportions",
"=",
"np",
".",
"ma",
".",
"masked_array",
"(",
"proportions",
",",
"arr",
".",
"mask",
")",
"return",
"proportions"
] | Return percentage values for cube as `numpy.ndarray`.
This function calculates the proportions across the selected axis
of a crunch cube. For most variable types, it means the value divided
by the margin value. For a multiple-response variable, the value is
divided by the sum of selected and non-selected slices.
*axis* (int): base axis of proportions calculation. If no axis is
provided, calculations are done across the entire table.
*weighted* (bool): Specifies weighted or non-weighted proportions.
*include_transforms_for_dims* (list): Also include headings and
subtotals transformations for the provided dimensions. If the
dimensions have the transformations, they'll be included in the
resulting numpy array. If the dimensions don't have the
transformations, nothing will happen (the result will be the same as
if the argument weren't provided).
*include_transforms_for_dims* (list): Include headers and subtotals
(H&S) across various dimensions. The dimensions are provided as list
elements. For example: "include_transforms_for_dims=[0, 1]" instructs
the CrunchCube to return H&S for both rows and columns (if it's a 2D
cube).
*include_mr_cat* (bool): Include MR categories.
*prune* (bool): Instructs the CrunchCube to prune empty rows/cols.
Emptiness is determined by the state of the margin (if it's either
0 or nan at certain index). If it is, the corresponding row/col is
not included in the result.
Example 1::
>>> cube = CrunchCube(fixt_cat_x_cat)
np.array([
[5, 2],
[5, 3],
])
>>> cube.proportions()
np.array([
[0.3333333, 0.1333333],
[0.3333333, 0.2000000],
])
Example 2::
>>> cube = CrunchCube(fixt_cat_x_cat)
np.array([
[5, 2],
[5, 3],
])
>>> cube.proportions(axis=0)
np.array([
[0.5, 0.4],
[0.5, 0.6],
]) | [
"Return",
"percentage",
"values",
"for",
"cube",
"as",
"numpy",
".",
"ndarray",
"."
] | python | train |
dwwkelly/note | note/server.py | https://github.com/dwwkelly/note/blob/b41d5fe1e4a3b67b50285168dd58f903bf219e6c/note/server.py#L48-L71 | def Handle_Events(self, events):
"""
Handle events from poll()
:events: A list of tuples form zmq.poll()
:type events: list
:returns: None
"""
for e in events:
sock = e[0]
event_type = e[1]
if event_type == zmq.POLLIN:
msg = sock.recv()
reply = self.Handle_Receive(msg)
sock.send(reply)
elif event_type == zmq.POLLOUT:
pass # FIXME -- handle this correctly
elif event_type == zmq.POLLERR:
pass # FIXME -- handle this correctly
else:
pass | [
"def",
"Handle_Events",
"(",
"self",
",",
"events",
")",
":",
"for",
"e",
"in",
"events",
":",
"sock",
"=",
"e",
"[",
"0",
"]",
"event_type",
"=",
"e",
"[",
"1",
"]",
"if",
"event_type",
"==",
"zmq",
".",
"POLLIN",
":",
"msg",
"=",
"sock",
".",
"recv",
"(",
")",
"reply",
"=",
"self",
".",
"Handle_Receive",
"(",
"msg",
")",
"sock",
".",
"send",
"(",
"reply",
")",
"elif",
"event_type",
"==",
"zmq",
".",
"POLLOUT",
":",
"pass",
"# FIXME -- handle this correctly",
"elif",
"event_type",
"==",
"zmq",
".",
"POLLERR",
":",
"pass",
"# FIXME -- handle this correctly",
"else",
":",
"pass"
] | Handle events from poll()
:events: A list of tuples form zmq.poll()
:type events: list
:returns: None | [
"Handle",
"events",
"from",
"poll",
"()"
] | python | train |
bcbio/bcbio-nextgen | bcbio/pipeline/datadict.py | https://github.com/bcbio/bcbio-nextgen/blob/6a9348c0054ccd5baffd22f1bb7d0422f6978b20/bcbio/pipeline/datadict.py#L223-L235 | def get_input_sequence_files(data, default=None):
"""
returns the input sequencing files, these can be single or paired FASTQ
files or BAM files
"""
if "files" not in data or data.get("files") is None:
file1, file2 = None, None
elif len(data["files"]) == 2:
file1, file2 = data["files"]
else:
assert len(data["files"]) == 1, data["files"]
file1, file2 = data["files"][0], None
return file1, file2 | [
"def",
"get_input_sequence_files",
"(",
"data",
",",
"default",
"=",
"None",
")",
":",
"if",
"\"files\"",
"not",
"in",
"data",
"or",
"data",
".",
"get",
"(",
"\"files\"",
")",
"is",
"None",
":",
"file1",
",",
"file2",
"=",
"None",
",",
"None",
"elif",
"len",
"(",
"data",
"[",
"\"files\"",
"]",
")",
"==",
"2",
":",
"file1",
",",
"file2",
"=",
"data",
"[",
"\"files\"",
"]",
"else",
":",
"assert",
"len",
"(",
"data",
"[",
"\"files\"",
"]",
")",
"==",
"1",
",",
"data",
"[",
"\"files\"",
"]",
"file1",
",",
"file2",
"=",
"data",
"[",
"\"files\"",
"]",
"[",
"0",
"]",
",",
"None",
"return",
"file1",
",",
"file2"
] | returns the input sequencing files, these can be single or paired FASTQ
files or BAM files | [
"returns",
"the",
"input",
"sequencing",
"files",
"these",
"can",
"be",
"single",
"or",
"paired",
"FASTQ",
"files",
"or",
"BAM",
"files"
] | python | train |
asifpy/django-crudbuilder | crudbuilder/views.py | https://github.com/asifpy/django-crudbuilder/blob/9de1c6fa555086673dd7ccc351d4b771c6192489/crudbuilder/views.py#L85-L111 | def generate_list_view(self):
"""Generate class based view for ListView"""
name = model_class_form(self.model + 'ListView')
list_args = dict(
model=self.get_model_class,
context_object_name=plural(self.model),
template_name=self.get_template('list'),
table_class=self.get_actual_table(),
context_table_name='table_objects',
crud=self.crud,
permissions=self.view_permission('list'),
permission_required=self.check_permission_required,
login_required=self.check_login_required,
table_pagination={'per_page': self.tables2_pagination or 10},
custom_queryset=self.custom_queryset,
custom_context=self.custom_context,
custom_postfix_url=self.custom_postfix_url
)
list_class = type(
name,
(BaseListViewMixin, SingleTableView),
list_args
)
self.classes[name] = list_class
return list_class | [
"def",
"generate_list_view",
"(",
"self",
")",
":",
"name",
"=",
"model_class_form",
"(",
"self",
".",
"model",
"+",
"'ListView'",
")",
"list_args",
"=",
"dict",
"(",
"model",
"=",
"self",
".",
"get_model_class",
",",
"context_object_name",
"=",
"plural",
"(",
"self",
".",
"model",
")",
",",
"template_name",
"=",
"self",
".",
"get_template",
"(",
"'list'",
")",
",",
"table_class",
"=",
"self",
".",
"get_actual_table",
"(",
")",
",",
"context_table_name",
"=",
"'table_objects'",
",",
"crud",
"=",
"self",
".",
"crud",
",",
"permissions",
"=",
"self",
".",
"view_permission",
"(",
"'list'",
")",
",",
"permission_required",
"=",
"self",
".",
"check_permission_required",
",",
"login_required",
"=",
"self",
".",
"check_login_required",
",",
"table_pagination",
"=",
"{",
"'per_page'",
":",
"self",
".",
"tables2_pagination",
"or",
"10",
"}",
",",
"custom_queryset",
"=",
"self",
".",
"custom_queryset",
",",
"custom_context",
"=",
"self",
".",
"custom_context",
",",
"custom_postfix_url",
"=",
"self",
".",
"custom_postfix_url",
")",
"list_class",
"=",
"type",
"(",
"name",
",",
"(",
"BaseListViewMixin",
",",
"SingleTableView",
")",
",",
"list_args",
")",
"self",
".",
"classes",
"[",
"name",
"]",
"=",
"list_class",
"return",
"list_class"
] | Generate class based view for ListView | [
"Generate",
"class",
"based",
"view",
"for",
"ListView"
] | python | train |
cgrok/cr-async | crasync/core.py | https://github.com/cgrok/cr-async/blob/f65a968e54704168706d137d1ba662f55f8ab852/crasync/core.py#L82-L91 | async def get_profile(self, *tags):
'''Get a profile object using tag(s)'''
url = '{0.BASE}/profile/{1}'.format(self, ','.join(tags))
data = await self.request(url)
if isinstance(data, list):
return [Profile(self, c) for c in data]
else:
return Profile(self, data) | [
"async",
"def",
"get_profile",
"(",
"self",
",",
"*",
"tags",
")",
":",
"url",
"=",
"'{0.BASE}/profile/{1}'",
".",
"format",
"(",
"self",
",",
"','",
".",
"join",
"(",
"tags",
")",
")",
"data",
"=",
"await",
"self",
".",
"request",
"(",
"url",
")",
"if",
"isinstance",
"(",
"data",
",",
"list",
")",
":",
"return",
"[",
"Profile",
"(",
"self",
",",
"c",
")",
"for",
"c",
"in",
"data",
"]",
"else",
":",
"return",
"Profile",
"(",
"self",
",",
"data",
")"
] | Get a profile object using tag(s) | [
"Get",
"a",
"profile",
"object",
"using",
"tag",
"(",
"s",
")"
] | python | train |
SMTG-UCL/sumo | sumo/plotting/__init__.py | https://github.com/SMTG-UCL/sumo/blob/47aec6bbfa033a624435a65bd4edabd18bfb437f/sumo/plotting/__init__.py#L145-L157 | def power_tick(val, pos, times_sign=r'\times'):
"""Custom power ticker function. """
if val == 0:
return r'$\mathregular{0}$'
elif val < 0:
exponent = int(np.log10(-val))
else:
exponent = int(np.log10(val))
coeff = val / 10**exponent
return r'$\mathregular{{{:.1f} {} 10^{:2d}}}$'.format(coeff,
times_sign,
exponent) | [
"def",
"power_tick",
"(",
"val",
",",
"pos",
",",
"times_sign",
"=",
"r'\\times'",
")",
":",
"if",
"val",
"==",
"0",
":",
"return",
"r'$\\mathregular{0}$'",
"elif",
"val",
"<",
"0",
":",
"exponent",
"=",
"int",
"(",
"np",
".",
"log10",
"(",
"-",
"val",
")",
")",
"else",
":",
"exponent",
"=",
"int",
"(",
"np",
".",
"log10",
"(",
"val",
")",
")",
"coeff",
"=",
"val",
"/",
"10",
"**",
"exponent",
"return",
"r'$\\mathregular{{{:.1f} {} 10^{:2d}}}$'",
".",
"format",
"(",
"coeff",
",",
"times_sign",
",",
"exponent",
")"
] | Custom power ticker function. | [
"Custom",
"power",
"ticker",
"function",
"."
] | python | train |
saltstack/salt | salt/modules/keystone.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/keystone.py#L232-L255 | def ec2_credentials_delete(user_id=None, name=None, access_key=None,
profile=None, **connection_args):
'''
Delete EC2-compatible credentials
CLI Examples:
.. code-block:: bash
salt '*' keystone.ec2_credentials_delete \
860f8c2c38ca4fab989f9bc56a061a64 access_key=5f66d2f24f604b8bb9cd28886106f442
salt '*' keystone.ec2_credentials_delete name=admin \
access_key=5f66d2f24f604b8bb9cd28886106f442
'''
kstone = auth(profile, **connection_args)
if name:
user_id = user_get(name=name, profile=None, **connection_args)[name]['id']
if not user_id:
return {'Error': 'Could not resolve User ID'}
kstone.ec2.delete(user_id, access_key)
return 'ec2 key "{0}" deleted under user id "{1}"'.format(access_key,
user_id) | [
"def",
"ec2_credentials_delete",
"(",
"user_id",
"=",
"None",
",",
"name",
"=",
"None",
",",
"access_key",
"=",
"None",
",",
"profile",
"=",
"None",
",",
"*",
"*",
"connection_args",
")",
":",
"kstone",
"=",
"auth",
"(",
"profile",
",",
"*",
"*",
"connection_args",
")",
"if",
"name",
":",
"user_id",
"=",
"user_get",
"(",
"name",
"=",
"name",
",",
"profile",
"=",
"None",
",",
"*",
"*",
"connection_args",
")",
"[",
"name",
"]",
"[",
"'id'",
"]",
"if",
"not",
"user_id",
":",
"return",
"{",
"'Error'",
":",
"'Could not resolve User ID'",
"}",
"kstone",
".",
"ec2",
".",
"delete",
"(",
"user_id",
",",
"access_key",
")",
"return",
"'ec2 key \"{0}\" deleted under user id \"{1}\"'",
".",
"format",
"(",
"access_key",
",",
"user_id",
")"
] | Delete EC2-compatible credentials
CLI Examples:
.. code-block:: bash
salt '*' keystone.ec2_credentials_delete \
860f8c2c38ca4fab989f9bc56a061a64 access_key=5f66d2f24f604b8bb9cd28886106f442
salt '*' keystone.ec2_credentials_delete name=admin \
access_key=5f66d2f24f604b8bb9cd28886106f442 | [
"Delete",
"EC2",
"-",
"compatible",
"credentials"
] | python | train |
ckan/losser | losser/cli.py | https://github.com/ckan/losser/blob/fd0832d9fa93cabe9ce9a9153dc923f2cf39cb5f/losser/cli.py#L153-L211 | def make_parser(add_help=True, exclude_args=None):
"""Return an argparse.ArgumentParser object with losser's arguments.
Other projects can call this to get an ArgumentParser with losser's
command line interface to use as a parent parser for their own parser.
For example::
parent_parser = losser.cli.make_parser(
add_help=False, exclude_args=["-i"])
parser = argparse.ArgumentParser(
description="Export datasets from a CKAN site to JSON or CSV.",
parents=[parent_parser])
parser.add_argument(...
:param add_help: Whether or not to add losser's help text to the parser.
Pass add_help=False if you want to use your own help text in a child
parser.
:type add_help: bool
:param exclude_args: List of losser command-line arguments to exclude, use
this to exclude any default losser arguments that you don't want in
your own command. For example: exclude_args=["-i", "--max-length"].
:type exclude_args: list of strings
"""
if exclude_args is None:
exclude_args = []
parser = argparse.ArgumentParser(add_help=add_help)
parser.description = ("Filter, transform and export a list of JSON "
"objects on stdin to JSON or CSV on stdout")
if "--columns" not in exclude_args:
parser.add_argument(
"--columns", dest="columns_file",
help="the JSON file specifying the columns to be output",
)
if ("-i" not in exclude_args) and ("--input" not in exclude_args):
parser.add_argument(
"-i", "--input",
help="read input from the given file instead of from stdin",
dest='input_data', # Because input is a Python builtin.
)
if ("-c" not in exclude_args) and ("--column" not in exclude_args):
parser.add_argument("-c", "--column", action=ColumnsAction)
if "--pattern" not in exclude_args:
parser.add_argument("--pattern", action=ColumnsAction, nargs='+')
if "--max-length" not in exclude_args:
parser.add_argument("--max-length", action=ColumnsAction)
if "--strip" not in exclude_args:
parser.add_argument("--strip", nargs="?", action=ColumnsAction)
if "--deduplicate" not in exclude_args:
parser.add_argument("--deduplicate", nargs='?', action=ColumnsAction)
if "--case-sensitive" not in exclude_args:
parser.add_argument(
"--case-sensitive", nargs='?', action=ColumnsAction)
if "--unique" not in exclude_args:
parser.add_argument("--unique", nargs="?", action=ColumnsAction)
if ("-p" not in exclude_args) and ("--pretty" not in exclude_args):
parser.add_argument("-p", "--pretty", action="store_true")
return parser | [
"def",
"make_parser",
"(",
"add_help",
"=",
"True",
",",
"exclude_args",
"=",
"None",
")",
":",
"if",
"exclude_args",
"is",
"None",
":",
"exclude_args",
"=",
"[",
"]",
"parser",
"=",
"argparse",
".",
"ArgumentParser",
"(",
"add_help",
"=",
"add_help",
")",
"parser",
".",
"description",
"=",
"(",
"\"Filter, transform and export a list of JSON \"",
"\"objects on stdin to JSON or CSV on stdout\"",
")",
"if",
"\"--columns\"",
"not",
"in",
"exclude_args",
":",
"parser",
".",
"add_argument",
"(",
"\"--columns\"",
",",
"dest",
"=",
"\"columns_file\"",
",",
"help",
"=",
"\"the JSON file specifying the columns to be output\"",
",",
")",
"if",
"(",
"\"-i\"",
"not",
"in",
"exclude_args",
")",
"and",
"(",
"\"--input\"",
"not",
"in",
"exclude_args",
")",
":",
"parser",
".",
"add_argument",
"(",
"\"-i\"",
",",
"\"--input\"",
",",
"help",
"=",
"\"read input from the given file instead of from stdin\"",
",",
"dest",
"=",
"'input_data'",
",",
"# Because input is a Python builtin.",
")",
"if",
"(",
"\"-c\"",
"not",
"in",
"exclude_args",
")",
"and",
"(",
"\"--column\"",
"not",
"in",
"exclude_args",
")",
":",
"parser",
".",
"add_argument",
"(",
"\"-c\"",
",",
"\"--column\"",
",",
"action",
"=",
"ColumnsAction",
")",
"if",
"\"--pattern\"",
"not",
"in",
"exclude_args",
":",
"parser",
".",
"add_argument",
"(",
"\"--pattern\"",
",",
"action",
"=",
"ColumnsAction",
",",
"nargs",
"=",
"'+'",
")",
"if",
"\"--max-length\"",
"not",
"in",
"exclude_args",
":",
"parser",
".",
"add_argument",
"(",
"\"--max-length\"",
",",
"action",
"=",
"ColumnsAction",
")",
"if",
"\"--strip\"",
"not",
"in",
"exclude_args",
":",
"parser",
".",
"add_argument",
"(",
"\"--strip\"",
",",
"nargs",
"=",
"\"?\"",
",",
"action",
"=",
"ColumnsAction",
")",
"if",
"\"--deduplicate\"",
"not",
"in",
"exclude_args",
":",
"parser",
".",
"add_argument",
"(",
"\"--deduplicate\"",
",",
"nargs",
"=",
"'?'",
",",
"action",
"=",
"ColumnsAction",
")",
"if",
"\"--case-sensitive\"",
"not",
"in",
"exclude_args",
":",
"parser",
".",
"add_argument",
"(",
"\"--case-sensitive\"",
",",
"nargs",
"=",
"'?'",
",",
"action",
"=",
"ColumnsAction",
")",
"if",
"\"--unique\"",
"not",
"in",
"exclude_args",
":",
"parser",
".",
"add_argument",
"(",
"\"--unique\"",
",",
"nargs",
"=",
"\"?\"",
",",
"action",
"=",
"ColumnsAction",
")",
"if",
"(",
"\"-p\"",
"not",
"in",
"exclude_args",
")",
"and",
"(",
"\"--pretty\"",
"not",
"in",
"exclude_args",
")",
":",
"parser",
".",
"add_argument",
"(",
"\"-p\"",
",",
"\"--pretty\"",
",",
"action",
"=",
"\"store_true\"",
")",
"return",
"parser"
] | Return an argparse.ArgumentParser object with losser's arguments.
Other projects can call this to get an ArgumentParser with losser's
command line interface to use as a parent parser for their own parser.
For example::
parent_parser = losser.cli.make_parser(
add_help=False, exclude_args=["-i"])
parser = argparse.ArgumentParser(
description="Export datasets from a CKAN site to JSON or CSV.",
parents=[parent_parser])
parser.add_argument(...
:param add_help: Whether or not to add losser's help text to the parser.
Pass add_help=False if you want to use your own help text in a child
parser.
:type add_help: bool
:param exclude_args: List of losser command-line arguments to exclude, use
this to exclude any default losser arguments that you don't want in
your own command. For example: exclude_args=["-i", "--max-length"].
:type exclude_args: list of strings | [
"Return",
"an",
"argparse",
".",
"ArgumentParser",
"object",
"with",
"losser",
"s",
"arguments",
"."
] | python | train |
Gandi/gandi.cli | gandi/cli/commands/disk.py | https://github.com/Gandi/gandi.cli/blob/6ee5b8fc8ec44b0a6c232043ca610606ad8f693d/gandi/cli/commands/disk.py#L355-L402 | def migrate(gandi, resource, force, background):
""" Migrate a disk to another datacenter. """
# check it's not attached
source_info = gandi.disk.info(resource)
if source_info['vms_id']:
click.echo('Cannot start the migration: disk %s is attached. '
'Please detach the disk before starting the migration.'
% resource)
return
disk_datacenter = source_info['datacenter_id']
dc_choices = gandi.datacenter.list_migration_choice(disk_datacenter)
if not dc_choices:
click.echo('No datacenter is available for migration')
return
elif len(dc_choices) == 1:
# use the only one available
datacenter_id = dc_choices[0]['id']
else:
choice_list = [dc['dc_code'] for dc in dc_choices]
dc_choice = click.Choice(choice_list)
dc_chosen = click.prompt('Select a datacenter [%s]' % '|'.join(choice_list), # noqa
type=dc_choice,
show_default=True)
datacenter_id = [dc['id'] for dc in dc_choices
if dc['dc_code'] == dc_chosen][0]
if not force:
proceed = click.confirm('Are you sure you want to migrate disk %s ?'
% resource)
if not proceed:
return
datacenters = gandi.datacenter.list()
dc_from = [dc['dc_code']
for dc in datacenters if dc['id'] == disk_datacenter][0]
dc_to = [dc['dc_code']
for dc in datacenters if dc['id'] == datacenter_id][0]
migration_msg = ('* Starting the migration of disk %s from datacenter %s '
'to %s' % (resource, dc_from, dc_to))
gandi.echo(migration_msg)
output_keys = ['id', 'type', 'step']
oper = gandi.disk.migrate(resource, datacenter_id, background)
if background:
output_generic(gandi, oper, output_keys)
return oper | [
"def",
"migrate",
"(",
"gandi",
",",
"resource",
",",
"force",
",",
"background",
")",
":",
"# check it's not attached",
"source_info",
"=",
"gandi",
".",
"disk",
".",
"info",
"(",
"resource",
")",
"if",
"source_info",
"[",
"'vms_id'",
"]",
":",
"click",
".",
"echo",
"(",
"'Cannot start the migration: disk %s is attached. '",
"'Please detach the disk before starting the migration.'",
"%",
"resource",
")",
"return",
"disk_datacenter",
"=",
"source_info",
"[",
"'datacenter_id'",
"]",
"dc_choices",
"=",
"gandi",
".",
"datacenter",
".",
"list_migration_choice",
"(",
"disk_datacenter",
")",
"if",
"not",
"dc_choices",
":",
"click",
".",
"echo",
"(",
"'No datacenter is available for migration'",
")",
"return",
"elif",
"len",
"(",
"dc_choices",
")",
"==",
"1",
":",
"# use the only one available",
"datacenter_id",
"=",
"dc_choices",
"[",
"0",
"]",
"[",
"'id'",
"]",
"else",
":",
"choice_list",
"=",
"[",
"dc",
"[",
"'dc_code'",
"]",
"for",
"dc",
"in",
"dc_choices",
"]",
"dc_choice",
"=",
"click",
".",
"Choice",
"(",
"choice_list",
")",
"dc_chosen",
"=",
"click",
".",
"prompt",
"(",
"'Select a datacenter [%s]'",
"%",
"'|'",
".",
"join",
"(",
"choice_list",
")",
",",
"# noqa",
"type",
"=",
"dc_choice",
",",
"show_default",
"=",
"True",
")",
"datacenter_id",
"=",
"[",
"dc",
"[",
"'id'",
"]",
"for",
"dc",
"in",
"dc_choices",
"if",
"dc",
"[",
"'dc_code'",
"]",
"==",
"dc_chosen",
"]",
"[",
"0",
"]",
"if",
"not",
"force",
":",
"proceed",
"=",
"click",
".",
"confirm",
"(",
"'Are you sure you want to migrate disk %s ?'",
"%",
"resource",
")",
"if",
"not",
"proceed",
":",
"return",
"datacenters",
"=",
"gandi",
".",
"datacenter",
".",
"list",
"(",
")",
"dc_from",
"=",
"[",
"dc",
"[",
"'dc_code'",
"]",
"for",
"dc",
"in",
"datacenters",
"if",
"dc",
"[",
"'id'",
"]",
"==",
"disk_datacenter",
"]",
"[",
"0",
"]",
"dc_to",
"=",
"[",
"dc",
"[",
"'dc_code'",
"]",
"for",
"dc",
"in",
"datacenters",
"if",
"dc",
"[",
"'id'",
"]",
"==",
"datacenter_id",
"]",
"[",
"0",
"]",
"migration_msg",
"=",
"(",
"'* Starting the migration of disk %s from datacenter %s '",
"'to %s'",
"%",
"(",
"resource",
",",
"dc_from",
",",
"dc_to",
")",
")",
"gandi",
".",
"echo",
"(",
"migration_msg",
")",
"output_keys",
"=",
"[",
"'id'",
",",
"'type'",
",",
"'step'",
"]",
"oper",
"=",
"gandi",
".",
"disk",
".",
"migrate",
"(",
"resource",
",",
"datacenter_id",
",",
"background",
")",
"if",
"background",
":",
"output_generic",
"(",
"gandi",
",",
"oper",
",",
"output_keys",
")",
"return",
"oper"
] | Migrate a disk to another datacenter. | [
"Migrate",
"a",
"disk",
"to",
"another",
"datacenter",
"."
] | python | train |
yyuu/botornado | boto/__init__.py | https://github.com/yyuu/botornado/blob/fffb056f5ff2324d1d5c1304014cfb1d899f602e/boto/__init__.py#L250-L262 | def connect_rds(aws_access_key_id=None, aws_secret_access_key=None, **kwargs):
"""
:type aws_access_key_id: string
:param aws_access_key_id: Your AWS Access Key ID
:type aws_secret_access_key: string
:param aws_secret_access_key: Your AWS Secret Access Key
:rtype: :class:`boto.rds.RDSConnection`
:return: A connection to RDS
"""
from boto.rds import RDSConnection
return RDSConnection(aws_access_key_id, aws_secret_access_key, **kwargs) | [
"def",
"connect_rds",
"(",
"aws_access_key_id",
"=",
"None",
",",
"aws_secret_access_key",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
"boto",
".",
"rds",
"import",
"RDSConnection",
"return",
"RDSConnection",
"(",
"aws_access_key_id",
",",
"aws_secret_access_key",
",",
"*",
"*",
"kwargs",
")"
] | :type aws_access_key_id: string
:param aws_access_key_id: Your AWS Access Key ID
:type aws_secret_access_key: string
:param aws_secret_access_key: Your AWS Secret Access Key
:rtype: :class:`boto.rds.RDSConnection`
:return: A connection to RDS | [
":",
"type",
"aws_access_key_id",
":",
"string",
":",
"param",
"aws_access_key_id",
":",
"Your",
"AWS",
"Access",
"Key",
"ID"
] | python | train |
klen/aioauth-client | aioauth_client.py | https://github.com/klen/aioauth-client/blob/54f58249496c26965adb4f752f2b24cfe18d0084/aioauth_client.py#L472-L480 | def user_parse(data):
"""Parse information from the provider."""
user_ = data.get('user', {})
yield 'id', data.get('user_nsid') or user_.get('id')
yield 'username', user_.get('username', {}).get('_content')
first_name, _, last_name = data.get(
'fullname', {}).get('_content', '').partition(' ')
yield 'first_name', first_name
yield 'last_name', last_name | [
"def",
"user_parse",
"(",
"data",
")",
":",
"user_",
"=",
"data",
".",
"get",
"(",
"'user'",
",",
"{",
"}",
")",
"yield",
"'id'",
",",
"data",
".",
"get",
"(",
"'user_nsid'",
")",
"or",
"user_",
".",
"get",
"(",
"'id'",
")",
"yield",
"'username'",
",",
"user_",
".",
"get",
"(",
"'username'",
",",
"{",
"}",
")",
".",
"get",
"(",
"'_content'",
")",
"first_name",
",",
"_",
",",
"last_name",
"=",
"data",
".",
"get",
"(",
"'fullname'",
",",
"{",
"}",
")",
".",
"get",
"(",
"'_content'",
",",
"''",
")",
".",
"partition",
"(",
"' '",
")",
"yield",
"'first_name'",
",",
"first_name",
"yield",
"'last_name'",
",",
"last_name"
] | Parse information from the provider. | [
"Parse",
"information",
"from",
"the",
"provider",
"."
] | python | train |
cimm-kzn/CGRtools | CGRtools/containers/molecule.py | https://github.com/cimm-kzn/CGRtools/blob/15a19b04f6e4e1d0dab8e0d32a0877c7f7d70f34/CGRtools/containers/molecule.py#L112-L125 | def substructure(self, atoms, meta=False, as_view=True):
"""
create substructure containing atoms from nbunch list
:param atoms: list of atoms numbers of substructure
:param meta: if True metadata will be copied to substructure
:param as_view: If True, the returned graph-view provides a read-only view
of the original structure scaffold without actually copying any data.
"""
s = super().substructure(atoms, meta, as_view)
if as_view:
s.check_valence = s.explicify_hydrogens = s.implicify_hydrogens = s.reset_query_marks = frozen
s.standardize = s.aromatize = frozen
return s | [
"def",
"substructure",
"(",
"self",
",",
"atoms",
",",
"meta",
"=",
"False",
",",
"as_view",
"=",
"True",
")",
":",
"s",
"=",
"super",
"(",
")",
".",
"substructure",
"(",
"atoms",
",",
"meta",
",",
"as_view",
")",
"if",
"as_view",
":",
"s",
".",
"check_valence",
"=",
"s",
".",
"explicify_hydrogens",
"=",
"s",
".",
"implicify_hydrogens",
"=",
"s",
".",
"reset_query_marks",
"=",
"frozen",
"s",
".",
"standardize",
"=",
"s",
".",
"aromatize",
"=",
"frozen",
"return",
"s"
] | create substructure containing atoms from nbunch list
:param atoms: list of atoms numbers of substructure
:param meta: if True metadata will be copied to substructure
:param as_view: If True, the returned graph-view provides a read-only view
of the original structure scaffold without actually copying any data. | [
"create",
"substructure",
"containing",
"atoms",
"from",
"nbunch",
"list"
] | python | train |
siznax/wptools | wptools/category.py | https://github.com/siznax/wptools/blob/100eaea585c34aa9ad87a9eda8982bb4898f6ec9/wptools/category.py#L92-L102 | def _query(self, action, qobj):
"""
Form query to enumerate category
"""
title = self.params.get('title')
pageid = self.params.get('pageid')
if action == 'random':
return qobj.random(namespace=14)
elif action == 'category':
return qobj.category(title, pageid, self._continue_params()) | [
"def",
"_query",
"(",
"self",
",",
"action",
",",
"qobj",
")",
":",
"title",
"=",
"self",
".",
"params",
".",
"get",
"(",
"'title'",
")",
"pageid",
"=",
"self",
".",
"params",
".",
"get",
"(",
"'pageid'",
")",
"if",
"action",
"==",
"'random'",
":",
"return",
"qobj",
".",
"random",
"(",
"namespace",
"=",
"14",
")",
"elif",
"action",
"==",
"'category'",
":",
"return",
"qobj",
".",
"category",
"(",
"title",
",",
"pageid",
",",
"self",
".",
"_continue_params",
"(",
")",
")"
] | Form query to enumerate category | [
"Form",
"query",
"to",
"enumerate",
"category"
] | python | train |
apple/turicreate | deps/src/boost_1_68_0/tools/build/src/build/virtual_target.py | https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/deps/src/boost_1_68_0/tools/build/src/build/virtual_target.py#L532-L584 | def __adjust_name(self, specified_name):
"""Given the target name specified in constructor, returns the
name which should be really used, by looking at the <tag> properties.
The tag properties come in two flavour:
- <tag>value,
- <tag>@rule-name
In the first case, value is just added to name
In the second case, the specified rule is called with specified name,
target type and properties and should return the new name.
If not <tag> property is specified, or the rule specified by
<tag> returns nothing, returns the result of calling
virtual-target.add-suffix"""
assert isinstance(specified_name, basestring)
if self.action_:
ps = self.action_.properties()
else:
ps = property_set.empty()
# FIXME: I'm not sure how this is used, need to check with
# Rene to figure out how to implement
#~ We add ourselves to the properties so that any tag rule can get
#~ more direct information about the target than just that available
#~ through the properties. This is useful in implementing
#~ name changes based on the sources of the target. For example to
#~ make unique names of object files based on the source file.
#~ --grafik
#ps = property_set.create(ps.raw() + ["<target>%s" % "XXXX"])
#ps = [ property-set.create [ $(ps).raw ] <target>$(__name__) ] ;
tag = ps.get("<tag>")
if tag:
if len(tag) > 1:
get_manager().errors()(
"""<tag>@rulename is present but is not the only <tag> feature""")
tag = tag[0]
if callable(tag):
self.name_ = tag(specified_name, self.type_, ps)
else:
if not tag[0] == '@':
self.manager_.errors()("""The value of the <tag> feature must be '@rule-nane'""")
exported_ps = b2.util.value_to_jam(ps, methods=True)
self.name_ = b2.util.call_jam_function(
tag[1:], specified_name, self.type_, exported_ps)
if self.name_:
self.name_ = self.name_[0]
# If there's no tag or the tag rule returned nothing.
if not tag or not self.name_:
self.name_ = add_prefix_and_suffix(specified_name, self.type_, ps) | [
"def",
"__adjust_name",
"(",
"self",
",",
"specified_name",
")",
":",
"assert",
"isinstance",
"(",
"specified_name",
",",
"basestring",
")",
"if",
"self",
".",
"action_",
":",
"ps",
"=",
"self",
".",
"action_",
".",
"properties",
"(",
")",
"else",
":",
"ps",
"=",
"property_set",
".",
"empty",
"(",
")",
"# FIXME: I'm not sure how this is used, need to check with",
"# Rene to figure out how to implement",
"#~ We add ourselves to the properties so that any tag rule can get",
"#~ more direct information about the target than just that available",
"#~ through the properties. This is useful in implementing",
"#~ name changes based on the sources of the target. For example to",
"#~ make unique names of object files based on the source file.",
"#~ --grafik",
"#ps = property_set.create(ps.raw() + [\"<target>%s\" % \"XXXX\"])",
"#ps = [ property-set.create [ $(ps).raw ] <target>$(__name__) ] ;",
"tag",
"=",
"ps",
".",
"get",
"(",
"\"<tag>\"",
")",
"if",
"tag",
":",
"if",
"len",
"(",
"tag",
")",
">",
"1",
":",
"get_manager",
"(",
")",
".",
"errors",
"(",
")",
"(",
"\"\"\"<tag>@rulename is present but is not the only <tag> feature\"\"\"",
")",
"tag",
"=",
"tag",
"[",
"0",
"]",
"if",
"callable",
"(",
"tag",
")",
":",
"self",
".",
"name_",
"=",
"tag",
"(",
"specified_name",
",",
"self",
".",
"type_",
",",
"ps",
")",
"else",
":",
"if",
"not",
"tag",
"[",
"0",
"]",
"==",
"'@'",
":",
"self",
".",
"manager_",
".",
"errors",
"(",
")",
"(",
"\"\"\"The value of the <tag> feature must be '@rule-nane'\"\"\"",
")",
"exported_ps",
"=",
"b2",
".",
"util",
".",
"value_to_jam",
"(",
"ps",
",",
"methods",
"=",
"True",
")",
"self",
".",
"name_",
"=",
"b2",
".",
"util",
".",
"call_jam_function",
"(",
"tag",
"[",
"1",
":",
"]",
",",
"specified_name",
",",
"self",
".",
"type_",
",",
"exported_ps",
")",
"if",
"self",
".",
"name_",
":",
"self",
".",
"name_",
"=",
"self",
".",
"name_",
"[",
"0",
"]",
"# If there's no tag or the tag rule returned nothing.",
"if",
"not",
"tag",
"or",
"not",
"self",
".",
"name_",
":",
"self",
".",
"name_",
"=",
"add_prefix_and_suffix",
"(",
"specified_name",
",",
"self",
".",
"type_",
",",
"ps",
")"
] | Given the target name specified in constructor, returns the
name which should be really used, by looking at the <tag> properties.
The tag properties come in two flavour:
- <tag>value,
- <tag>@rule-name
In the first case, value is just added to name
In the second case, the specified rule is called with specified name,
target type and properties and should return the new name.
If not <tag> property is specified, or the rule specified by
<tag> returns nothing, returns the result of calling
virtual-target.add-suffix | [
"Given",
"the",
"target",
"name",
"specified",
"in",
"constructor",
"returns",
"the",
"name",
"which",
"should",
"be",
"really",
"used",
"by",
"looking",
"at",
"the",
"<tag",
">",
"properties",
".",
"The",
"tag",
"properties",
"come",
"in",
"two",
"flavour",
":",
"-",
"<tag",
">",
"value",
"-",
"<tag",
">"
] | python | train |
learningequality/iceqube | src/iceqube/common/utils.py | https://github.com/learningequality/iceqube/blob/97ac9e0f65bfedb0efa9f94638bcb57c7926dea2/src/iceqube/common/utils.py#L134-L146 | def main_loop(self, timeout=None):
"""
Check if self.trigger_event is set. If it is, then run our function. If not, return early.
:param timeout: How long to wait for a trigger event. Defaults to 0.
:return:
"""
if self.trigger_event.wait(timeout):
try:
self.func()
except Exception as e:
self.logger.warning("Got an exception running {func}: {e}".format(func=self.func, e=str(e)))
finally:
self.trigger_event.clear() | [
"def",
"main_loop",
"(",
"self",
",",
"timeout",
"=",
"None",
")",
":",
"if",
"self",
".",
"trigger_event",
".",
"wait",
"(",
"timeout",
")",
":",
"try",
":",
"self",
".",
"func",
"(",
")",
"except",
"Exception",
"as",
"e",
":",
"self",
".",
"logger",
".",
"warning",
"(",
"\"Got an exception running {func}: {e}\"",
".",
"format",
"(",
"func",
"=",
"self",
".",
"func",
",",
"e",
"=",
"str",
"(",
"e",
")",
")",
")",
"finally",
":",
"self",
".",
"trigger_event",
".",
"clear",
"(",
")"
] | Check if self.trigger_event is set. If it is, then run our function. If not, return early.
:param timeout: How long to wait for a trigger event. Defaults to 0.
:return: | [
"Check",
"if",
"self",
".",
"trigger_event",
"is",
"set",
".",
"If",
"it",
"is",
"then",
"run",
"our",
"function",
".",
"If",
"not",
"return",
"early",
".",
":",
"param",
"timeout",
":",
"How",
"long",
"to",
"wait",
"for",
"a",
"trigger",
"event",
".",
"Defaults",
"to",
"0",
".",
":",
"return",
":"
] | python | train |
jhshi/wltrace | wltrace/utils.py | https://github.com/jhshi/wltrace/blob/4c8441162f7cddd47375da2effc52c95b97dc81d/wltrace/utils.py#L23-L43 | def calc_padding(fmt, align):
"""Calculate how many padding bytes needed for ``fmt`` to be aligned to
``align``.
Args:
fmt (str): :mod:`struct` format.
align (int): alignment (2, 4, 8, etc.)
Returns:
str: padding format (e.g., various number of 'x').
>>> calc_padding('b', 2)
'x'
>>> calc_padding('b', 3)
'xx'
"""
remain = struct.calcsize(fmt) % align
if remain == 0:
return ""
return 'x' * (align - remain) | [
"def",
"calc_padding",
"(",
"fmt",
",",
"align",
")",
":",
"remain",
"=",
"struct",
".",
"calcsize",
"(",
"fmt",
")",
"%",
"align",
"if",
"remain",
"==",
"0",
":",
"return",
"\"\"",
"return",
"'x'",
"*",
"(",
"align",
"-",
"remain",
")"
] | Calculate how many padding bytes needed for ``fmt`` to be aligned to
``align``.
Args:
fmt (str): :mod:`struct` format.
align (int): alignment (2, 4, 8, etc.)
Returns:
str: padding format (e.g., various number of 'x').
>>> calc_padding('b', 2)
'x'
>>> calc_padding('b', 3)
'xx' | [
"Calculate",
"how",
"many",
"padding",
"bytes",
"needed",
"for",
"fmt",
"to",
"be",
"aligned",
"to",
"align",
"."
] | python | train |
twilio/twilio-python | twilio/rest/api/v2010/account/usage/record/all_time.py | https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/api/v2010/account/usage/record/all_time.py#L185-L194 | def get_instance(self, payload):
"""
Build an instance of AllTimeInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.api.v2010.account.usage.record.all_time.AllTimeInstance
:rtype: twilio.rest.api.v2010.account.usage.record.all_time.AllTimeInstance
"""
return AllTimeInstance(self._version, payload, account_sid=self._solution['account_sid'], ) | [
"def",
"get_instance",
"(",
"self",
",",
"payload",
")",
":",
"return",
"AllTimeInstance",
"(",
"self",
".",
"_version",
",",
"payload",
",",
"account_sid",
"=",
"self",
".",
"_solution",
"[",
"'account_sid'",
"]",
",",
")"
] | Build an instance of AllTimeInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.api.v2010.account.usage.record.all_time.AllTimeInstance
:rtype: twilio.rest.api.v2010.account.usage.record.all_time.AllTimeInstance | [
"Build",
"an",
"instance",
"of",
"AllTimeInstance"
] | python | train |
brocade/pynos | pynos/versions/base/yang/brocade_sflow.py | https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/base/yang/brocade_sflow.py#L61-L70 | def sflow_polling_interval(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
sflow = ET.SubElement(config, "sflow", xmlns="urn:brocade.com:mgmt:brocade-sflow")
polling_interval = ET.SubElement(sflow, "polling-interval")
polling_interval.text = kwargs.pop('polling_interval')
callback = kwargs.pop('callback', self._callback)
return callback(config) | [
"def",
"sflow_polling_interval",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"ET",
".",
"Element",
"(",
"\"config\"",
")",
"sflow",
"=",
"ET",
".",
"SubElement",
"(",
"config",
",",
"\"sflow\"",
",",
"xmlns",
"=",
"\"urn:brocade.com:mgmt:brocade-sflow\"",
")",
"polling_interval",
"=",
"ET",
".",
"SubElement",
"(",
"sflow",
",",
"\"polling-interval\"",
")",
"polling_interval",
".",
"text",
"=",
"kwargs",
".",
"pop",
"(",
"'polling_interval'",
")",
"callback",
"=",
"kwargs",
".",
"pop",
"(",
"'callback'",
",",
"self",
".",
"_callback",
")",
"return",
"callback",
"(",
"config",
")"
] | Auto Generated Code | [
"Auto",
"Generated",
"Code"
] | python | train |
bitesofcode/projexui | projexui/wizards/xscaffoldwizard/xscaffoldwizard.py | https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/wizards/xscaffoldwizard/xscaffoldwizard.py#L166-L203 | def validatePage(self):
"""
Validates the page against the scaffold information, setting the
values along the way.
"""
widgets = self.propertyWidgetMap()
failed = ''
for prop, widget in widgets.items():
val, success = projexui.widgetValue(widget)
if success:
# ensure we have the required values
if not val and not (prop.type == 'bool' and val is False):
if prop.default:
val = prop.default
elif prop.required:
msg = '{0} is a required value'.format(prop.label)
failed = msg
break
# ensure the values match the required expression
elif prop.regex and not re.match(prop.regex, nativestring(val)):
msg = '{0} needs to be in the format {1}'.format(prop.label,
prop.regex)
failed = msg
break
prop.value = val
else:
msg = 'Failed to get a proper value for {0}'.format(prop.label)
failed = msg
break
if failed:
QtGui.QMessageBox.warning(None, 'Properties Failed', failed)
return False
return True | [
"def",
"validatePage",
"(",
"self",
")",
":",
"widgets",
"=",
"self",
".",
"propertyWidgetMap",
"(",
")",
"failed",
"=",
"''",
"for",
"prop",
",",
"widget",
"in",
"widgets",
".",
"items",
"(",
")",
":",
"val",
",",
"success",
"=",
"projexui",
".",
"widgetValue",
"(",
"widget",
")",
"if",
"success",
":",
"# ensure we have the required values\r",
"if",
"not",
"val",
"and",
"not",
"(",
"prop",
".",
"type",
"==",
"'bool'",
"and",
"val",
"is",
"False",
")",
":",
"if",
"prop",
".",
"default",
":",
"val",
"=",
"prop",
".",
"default",
"elif",
"prop",
".",
"required",
":",
"msg",
"=",
"'{0} is a required value'",
".",
"format",
"(",
"prop",
".",
"label",
")",
"failed",
"=",
"msg",
"break",
"# ensure the values match the required expression\r",
"elif",
"prop",
".",
"regex",
"and",
"not",
"re",
".",
"match",
"(",
"prop",
".",
"regex",
",",
"nativestring",
"(",
"val",
")",
")",
":",
"msg",
"=",
"'{0} needs to be in the format {1}'",
".",
"format",
"(",
"prop",
".",
"label",
",",
"prop",
".",
"regex",
")",
"failed",
"=",
"msg",
"break",
"prop",
".",
"value",
"=",
"val",
"else",
":",
"msg",
"=",
"'Failed to get a proper value for {0}'",
".",
"format",
"(",
"prop",
".",
"label",
")",
"failed",
"=",
"msg",
"break",
"if",
"failed",
":",
"QtGui",
".",
"QMessageBox",
".",
"warning",
"(",
"None",
",",
"'Properties Failed'",
",",
"failed",
")",
"return",
"False",
"return",
"True"
] | Validates the page against the scaffold information, setting the
values along the way. | [
"Validates",
"the",
"page",
"against",
"the",
"scaffold",
"information",
"setting",
"the",
"values",
"along",
"the",
"way",
"."
] | python | train |
CalebBell/fluids | fluids/units.py | https://github.com/CalebBell/fluids/blob/57f556752e039f1d3e5a822f408c184783db2828/fluids/units.py#L116-L134 | def check_args_order(func):
'''Reads a numpydoc function and compares the Parameters and
Other Parameters with the input arguments of the actual function signature.
Raises an exception if not correctly defined.
>>> check_args_order(fluids.core.Reynolds)
'''
argspec = inspect.getargspec(func)
parsed_data = parse_numpydoc_variables_units(func)
# compare the parsed arguments with those actually defined
parsed_units = parsed_data['Parameters']['units']
parsed_parameters = parsed_data['Parameters']['vars']
if 'Other Parameters' in parsed_data:
parsed_parameters += parsed_data['Other Parameters']['vars']
parsed_units += parsed_data['Other Parameters']['units']
if argspec.args != parsed_parameters: # pragma: no cover
raise Exception('Function %s signature is not the same as the documentation'
' signature = %s; documentation = %s' %(func.__name__, argspec.args, parsed_parameters)) | [
"def",
"check_args_order",
"(",
"func",
")",
":",
"argspec",
"=",
"inspect",
".",
"getargspec",
"(",
"func",
")",
"parsed_data",
"=",
"parse_numpydoc_variables_units",
"(",
"func",
")",
"# compare the parsed arguments with those actually defined",
"parsed_units",
"=",
"parsed_data",
"[",
"'Parameters'",
"]",
"[",
"'units'",
"]",
"parsed_parameters",
"=",
"parsed_data",
"[",
"'Parameters'",
"]",
"[",
"'vars'",
"]",
"if",
"'Other Parameters'",
"in",
"parsed_data",
":",
"parsed_parameters",
"+=",
"parsed_data",
"[",
"'Other Parameters'",
"]",
"[",
"'vars'",
"]",
"parsed_units",
"+=",
"parsed_data",
"[",
"'Other Parameters'",
"]",
"[",
"'units'",
"]",
"if",
"argspec",
".",
"args",
"!=",
"parsed_parameters",
":",
"# pragma: no cover",
"raise",
"Exception",
"(",
"'Function %s signature is not the same as the documentation'",
"' signature = %s; documentation = %s'",
"%",
"(",
"func",
".",
"__name__",
",",
"argspec",
".",
"args",
",",
"parsed_parameters",
")",
")"
] | Reads a numpydoc function and compares the Parameters and
Other Parameters with the input arguments of the actual function signature.
Raises an exception if not correctly defined.
>>> check_args_order(fluids.core.Reynolds) | [
"Reads",
"a",
"numpydoc",
"function",
"and",
"compares",
"the",
"Parameters",
"and",
"Other",
"Parameters",
"with",
"the",
"input",
"arguments",
"of",
"the",
"actual",
"function",
"signature",
".",
"Raises",
"an",
"exception",
"if",
"not",
"correctly",
"defined",
".",
">>>",
"check_args_order",
"(",
"fluids",
".",
"core",
".",
"Reynolds",
")"
] | python | train |
brocade/pynos | pynos/versions/ver_6/ver_6_0_1/yang/brocade_ras_ext.py | https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/ver_6/ver_6_0_1/yang/brocade_ras_ext.py#L66-L79 | def show_raslog_output_show_all_raslog_raslog_entries_index(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
show_raslog = ET.Element("show_raslog")
config = show_raslog
output = ET.SubElement(show_raslog, "output")
show_all_raslog = ET.SubElement(output, "show-all-raslog")
raslog_entries = ET.SubElement(show_all_raslog, "raslog-entries")
index = ET.SubElement(raslog_entries, "index")
index.text = kwargs.pop('index')
callback = kwargs.pop('callback', self._callback)
return callback(config) | [
"def",
"show_raslog_output_show_all_raslog_raslog_entries_index",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"config",
"=",
"ET",
".",
"Element",
"(",
"\"config\"",
")",
"show_raslog",
"=",
"ET",
".",
"Element",
"(",
"\"show_raslog\"",
")",
"config",
"=",
"show_raslog",
"output",
"=",
"ET",
".",
"SubElement",
"(",
"show_raslog",
",",
"\"output\"",
")",
"show_all_raslog",
"=",
"ET",
".",
"SubElement",
"(",
"output",
",",
"\"show-all-raslog\"",
")",
"raslog_entries",
"=",
"ET",
".",
"SubElement",
"(",
"show_all_raslog",
",",
"\"raslog-entries\"",
")",
"index",
"=",
"ET",
".",
"SubElement",
"(",
"raslog_entries",
",",
"\"index\"",
")",
"index",
".",
"text",
"=",
"kwargs",
".",
"pop",
"(",
"'index'",
")",
"callback",
"=",
"kwargs",
".",
"pop",
"(",
"'callback'",
",",
"self",
".",
"_callback",
")",
"return",
"callback",
"(",
"config",
")"
] | Auto Generated Code | [
"Auto",
"Generated",
"Code"
] | python | train |
ansible/tower-cli | tower_cli/resources/workflow.py | https://github.com/ansible/tower-cli/blob/a2b151fed93c47725018d3034848cb3a1814bed7/tower_cli/resources/workflow.py#L266-L306 | def schema(self, wfjt, node_network=None):
"""
Convert YAML/JSON content into workflow node objects if
node_network param is given.
If not, print a YAML representation of the node network.
=====API DOCS=====
Convert YAML/JSON content into workflow node objects if ``node_network`` param is given. If not,
print a YAML representation of the node network.
:param wfjt: Primary key or name of the workflow job template to run schema against.
:type wfjt: str
:param node_network: JSON- or YAML-formatted string representing the topology of the workflow job
template be updated to.
:type node_network: str
:returns: The latest topology (possibly after modification) of the workflow job template.
:rtype: dict
=====API DOCS=====
"""
existing_network = self._get_schema(wfjt)
if not isinstance(existing_network, list):
existing_network = []
if node_network is None:
if settings.format == 'human':
settings.format = 'yaml'
return existing_network
if hasattr(node_network, 'read'):
node_network = node_network.read()
node_network = string_to_dict(
node_network, allow_kv=False, require_dict=False)
if not isinstance(node_network, list):
node_network = []
_update_workflow([TreeNode(x, wfjt, include_id=True) for x in existing_network],
[TreeNode(x, wfjt) for x in node_network])
if settings.format == 'human':
settings.format = 'yaml'
return self._get_schema(wfjt) | [
"def",
"schema",
"(",
"self",
",",
"wfjt",
",",
"node_network",
"=",
"None",
")",
":",
"existing_network",
"=",
"self",
".",
"_get_schema",
"(",
"wfjt",
")",
"if",
"not",
"isinstance",
"(",
"existing_network",
",",
"list",
")",
":",
"existing_network",
"=",
"[",
"]",
"if",
"node_network",
"is",
"None",
":",
"if",
"settings",
".",
"format",
"==",
"'human'",
":",
"settings",
".",
"format",
"=",
"'yaml'",
"return",
"existing_network",
"if",
"hasattr",
"(",
"node_network",
",",
"'read'",
")",
":",
"node_network",
"=",
"node_network",
".",
"read",
"(",
")",
"node_network",
"=",
"string_to_dict",
"(",
"node_network",
",",
"allow_kv",
"=",
"False",
",",
"require_dict",
"=",
"False",
")",
"if",
"not",
"isinstance",
"(",
"node_network",
",",
"list",
")",
":",
"node_network",
"=",
"[",
"]",
"_update_workflow",
"(",
"[",
"TreeNode",
"(",
"x",
",",
"wfjt",
",",
"include_id",
"=",
"True",
")",
"for",
"x",
"in",
"existing_network",
"]",
",",
"[",
"TreeNode",
"(",
"x",
",",
"wfjt",
")",
"for",
"x",
"in",
"node_network",
"]",
")",
"if",
"settings",
".",
"format",
"==",
"'human'",
":",
"settings",
".",
"format",
"=",
"'yaml'",
"return",
"self",
".",
"_get_schema",
"(",
"wfjt",
")"
] | Convert YAML/JSON content into workflow node objects if
node_network param is given.
If not, print a YAML representation of the node network.
=====API DOCS=====
Convert YAML/JSON content into workflow node objects if ``node_network`` param is given. If not,
print a YAML representation of the node network.
:param wfjt: Primary key or name of the workflow job template to run schema against.
:type wfjt: str
:param node_network: JSON- or YAML-formatted string representing the topology of the workflow job
template be updated to.
:type node_network: str
:returns: The latest topology (possibly after modification) of the workflow job template.
:rtype: dict
=====API DOCS===== | [
"Convert",
"YAML",
"/",
"JSON",
"content",
"into",
"workflow",
"node",
"objects",
"if",
"node_network",
"param",
"is",
"given",
".",
"If",
"not",
"print",
"a",
"YAML",
"representation",
"of",
"the",
"node",
"network",
"."
] | python | valid |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.