repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
list | docstring
stringlengths 1
46.9k
| docstring_tokens
list | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
oscarbranson/latools | latools/latools.py | https://github.com/oscarbranson/latools/blob/cd25a650cfee318152f234d992708511f7047fbe/latools/latools.py#L2594-L2668 | def optimise_signal(self, analytes, min_points=5,
threshold_mode='kde_first_max',
threshold_mult=1., x_bias=0, filt=True,
weights=None, mode='minimise',
samples=None, subset=None):
"""
Optimise data selection based on specified analytes.
Identifies the longest possible contiguous data region in
the signal where the relative standard deviation (std) and
concentration of all analytes is minimised.
Optimisation is performed via a grid search of all possible
contiguous data regions. For each region, the mean std and
mean scaled analyte concentration ('amplitude') are calculated.
The size and position of the optimal data region are identified
using threshold std and amplitude values. Thresholds are derived
from all calculated stds and amplitudes using the method specified
by `threshold_mode`. For example, using the 'kde_max' method, a
probability density function (PDF) is calculated for std and
amplitude values, and the threshold is set as the maximum of the
PDF. These thresholds are then used to identify the size and position
of the longest contiguous region where the std is below the threshold,
and the amplitude is either below the threshold.
All possible regions of the data that have at least
`min_points` are considered.
For a graphical demonstration of the action of signal_optimiser,
use `optimisation_plot`.
Parameters
----------
d : latools.D object
An latools data object.
analytes : str or array-like
Which analytes to consider.
min_points : int
The minimum number of contiguous points to
consider.
threshold_mode : str
The method used to calculate the optimisation
thresholds. Can be 'mean', 'median', 'kde_max'
or 'bayes_mvs', or a custom function. If a
function, must take a 1D array, and return a
single, real number.
weights : array-like of length len(analytes)
An array of numbers specifying the importance of
each analyte considered. Larger number makes the
analyte have a greater effect on the optimisation.
Default is None.
"""
if samples is not None:
subset = self.make_subset(samples)
samples = self._get_samples(subset)
if isinstance(analytes, str):
analytes = [analytes]
self.minimal_analytes.update(analytes)
errs = []
with self.pbar.set(total=len(samples), desc='Optimising Data selection') as prog:
for s in samples:
e = self.data[s].signal_optimiser(analytes=analytes, min_points=min_points,
threshold_mode=threshold_mode, threshold_mult=threshold_mult,
x_bias=x_bias, weights=weights, filt=filt, mode=mode)
if e != '':
errs.append(e)
prog.update()
if len(errs) > 0:
print('\nA Few Problems:\n' + '\n'.join(errs) + '\n\n *** Check Optimisation Plots ***') | [
"def",
"optimise_signal",
"(",
"self",
",",
"analytes",
",",
"min_points",
"=",
"5",
",",
"threshold_mode",
"=",
"'kde_first_max'",
",",
"threshold_mult",
"=",
"1.",
",",
"x_bias",
"=",
"0",
",",
"filt",
"=",
"True",
",",
"weights",
"=",
"None",
",",
"mode",
"=",
"'minimise'",
",",
"samples",
"=",
"None",
",",
"subset",
"=",
"None",
")",
":",
"if",
"samples",
"is",
"not",
"None",
":",
"subset",
"=",
"self",
".",
"make_subset",
"(",
"samples",
")",
"samples",
"=",
"self",
".",
"_get_samples",
"(",
"subset",
")",
"if",
"isinstance",
"(",
"analytes",
",",
"str",
")",
":",
"analytes",
"=",
"[",
"analytes",
"]",
"self",
".",
"minimal_analytes",
".",
"update",
"(",
"analytes",
")",
"errs",
"=",
"[",
"]",
"with",
"self",
".",
"pbar",
".",
"set",
"(",
"total",
"=",
"len",
"(",
"samples",
")",
",",
"desc",
"=",
"'Optimising Data selection'",
")",
"as",
"prog",
":",
"for",
"s",
"in",
"samples",
":",
"e",
"=",
"self",
".",
"data",
"[",
"s",
"]",
".",
"signal_optimiser",
"(",
"analytes",
"=",
"analytes",
",",
"min_points",
"=",
"min_points",
",",
"threshold_mode",
"=",
"threshold_mode",
",",
"threshold_mult",
"=",
"threshold_mult",
",",
"x_bias",
"=",
"x_bias",
",",
"weights",
"=",
"weights",
",",
"filt",
"=",
"filt",
",",
"mode",
"=",
"mode",
")",
"if",
"e",
"!=",
"''",
":",
"errs",
".",
"append",
"(",
"e",
")",
"prog",
".",
"update",
"(",
")",
"if",
"len",
"(",
"errs",
")",
">",
"0",
":",
"print",
"(",
"'\\nA Few Problems:\\n'",
"+",
"'\\n'",
".",
"join",
"(",
"errs",
")",
"+",
"'\\n\\n *** Check Optimisation Plots ***'",
")"
] | Optimise data selection based on specified analytes.
Identifies the longest possible contiguous data region in
the signal where the relative standard deviation (std) and
concentration of all analytes is minimised.
Optimisation is performed via a grid search of all possible
contiguous data regions. For each region, the mean std and
mean scaled analyte concentration ('amplitude') are calculated.
The size and position of the optimal data region are identified
using threshold std and amplitude values. Thresholds are derived
from all calculated stds and amplitudes using the method specified
by `threshold_mode`. For example, using the 'kde_max' method, a
probability density function (PDF) is calculated for std and
amplitude values, and the threshold is set as the maximum of the
PDF. These thresholds are then used to identify the size and position
of the longest contiguous region where the std is below the threshold,
and the amplitude is either below the threshold.
All possible regions of the data that have at least
`min_points` are considered.
For a graphical demonstration of the action of signal_optimiser,
use `optimisation_plot`.
Parameters
----------
d : latools.D object
An latools data object.
analytes : str or array-like
Which analytes to consider.
min_points : int
The minimum number of contiguous points to
consider.
threshold_mode : str
The method used to calculate the optimisation
thresholds. Can be 'mean', 'median', 'kde_max'
or 'bayes_mvs', or a custom function. If a
function, must take a 1D array, and return a
single, real number.
weights : array-like of length len(analytes)
An array of numbers specifying the importance of
each analyte considered. Larger number makes the
analyte have a greater effect on the optimisation.
Default is None. | [
"Optimise",
"data",
"selection",
"based",
"on",
"specified",
"analytes",
"."
] | python | test |
apache/spark | python/pyspark/mllib/linalg/__init__.py | https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/linalg/__init__.py#L86-L118 | def _vector_size(v):
"""
Returns the size of the vector.
>>> _vector_size([1., 2., 3.])
3
>>> _vector_size((1., 2., 3.))
3
>>> _vector_size(array.array('d', [1., 2., 3.]))
3
>>> _vector_size(np.zeros(3))
3
>>> _vector_size(np.zeros((3, 1)))
3
>>> _vector_size(np.zeros((1, 3)))
Traceback (most recent call last):
...
ValueError: Cannot treat an ndarray of shape (1, 3) as a vector
"""
if isinstance(v, Vector):
return len(v)
elif type(v) in (array.array, list, tuple, xrange):
return len(v)
elif type(v) == np.ndarray:
if v.ndim == 1 or (v.ndim == 2 and v.shape[1] == 1):
return len(v)
else:
raise ValueError("Cannot treat an ndarray of shape %s as a vector" % str(v.shape))
elif _have_scipy and scipy.sparse.issparse(v):
assert v.shape[1] == 1, "Expected column vector"
return v.shape[0]
else:
raise TypeError("Cannot treat type %s as a vector" % type(v)) | [
"def",
"_vector_size",
"(",
"v",
")",
":",
"if",
"isinstance",
"(",
"v",
",",
"Vector",
")",
":",
"return",
"len",
"(",
"v",
")",
"elif",
"type",
"(",
"v",
")",
"in",
"(",
"array",
".",
"array",
",",
"list",
",",
"tuple",
",",
"xrange",
")",
":",
"return",
"len",
"(",
"v",
")",
"elif",
"type",
"(",
"v",
")",
"==",
"np",
".",
"ndarray",
":",
"if",
"v",
".",
"ndim",
"==",
"1",
"or",
"(",
"v",
".",
"ndim",
"==",
"2",
"and",
"v",
".",
"shape",
"[",
"1",
"]",
"==",
"1",
")",
":",
"return",
"len",
"(",
"v",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Cannot treat an ndarray of shape %s as a vector\"",
"%",
"str",
"(",
"v",
".",
"shape",
")",
")",
"elif",
"_have_scipy",
"and",
"scipy",
".",
"sparse",
".",
"issparse",
"(",
"v",
")",
":",
"assert",
"v",
".",
"shape",
"[",
"1",
"]",
"==",
"1",
",",
"\"Expected column vector\"",
"return",
"v",
".",
"shape",
"[",
"0",
"]",
"else",
":",
"raise",
"TypeError",
"(",
"\"Cannot treat type %s as a vector\"",
"%",
"type",
"(",
"v",
")",
")"
] | Returns the size of the vector.
>>> _vector_size([1., 2., 3.])
3
>>> _vector_size((1., 2., 3.))
3
>>> _vector_size(array.array('d', [1., 2., 3.]))
3
>>> _vector_size(np.zeros(3))
3
>>> _vector_size(np.zeros((3, 1)))
3
>>> _vector_size(np.zeros((1, 3)))
Traceback (most recent call last):
...
ValueError: Cannot treat an ndarray of shape (1, 3) as a vector | [
"Returns",
"the",
"size",
"of",
"the",
"vector",
"."
] | python | train |
onnx/onnx | onnx/__init__.py | https://github.com/onnx/onnx/blob/2f7dc10f03a072526d94b6820cedbf2a1ec5a2c4/onnx/__init__.py#L102-L122 | def load_model(f, format=None, load_external_data=True): # type: (Union[IO[bytes], Text], Optional[Any], bool) -> ModelProto
'''
Loads a serialized ModelProto into memory
@params
f can be a file-like object (has "read" function) or a string containing a file name
format is for future use
@return
Loaded in-memory ModelProto
'''
s = _load_bytes(f)
model = load_model_from_string(s, format=format)
if load_external_data:
model_filepath = _get_file_path(f)
if model_filepath:
base_dir = os.path.dirname(model_filepath)
load_external_data_for_model(model, base_dir)
return model | [
"def",
"load_model",
"(",
"f",
",",
"format",
"=",
"None",
",",
"load_external_data",
"=",
"True",
")",
":",
"# type: (Union[IO[bytes], Text], Optional[Any], bool) -> ModelProto",
"s",
"=",
"_load_bytes",
"(",
"f",
")",
"model",
"=",
"load_model_from_string",
"(",
"s",
",",
"format",
"=",
"format",
")",
"if",
"load_external_data",
":",
"model_filepath",
"=",
"_get_file_path",
"(",
"f",
")",
"if",
"model_filepath",
":",
"base_dir",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"model_filepath",
")",
"load_external_data_for_model",
"(",
"model",
",",
"base_dir",
")",
"return",
"model"
] | Loads a serialized ModelProto into memory
@params
f can be a file-like object (has "read" function) or a string containing a file name
format is for future use
@return
Loaded in-memory ModelProto | [
"Loads",
"a",
"serialized",
"ModelProto",
"into",
"memory"
] | python | train |
funilrys/PyFunceble | PyFunceble/generate.py | https://github.com/funilrys/PyFunceble/blob/cdf69cbde120199171f7158e1c33635753e6e2f5/PyFunceble/generate.py#L652-L706 | def _prints_status_screen(self):
"""
Logic behind the printing (on screen) when generating status file.
"""
if not PyFunceble.CONFIGURATION["quiet"]:
# The quiet mode is not activated.
if PyFunceble.CONFIGURATION["less"]:
# We have to print less information.
# We initiate the data to print.
to_print = [
self.tested,
self.domain_status,
PyFunceble.INTERN["http_code"],
]
if not PyFunceble.HTTP_CODE["active"]:
# The http status code is not activated.
# We replace the last element to print with
# the source.
to_print[-1] = self.source
# We print the informations on screen.
Prints(to_print, "Less").data()
else:
# We have to print all informations on screen.
if PyFunceble.HTTP_CODE["active"]:
# The http status code extraction is activated.
# We initiate the data to print.
data_to_print = [
self.tested,
self.domain_status,
self.expiration_date,
self.source,
PyFunceble.INTERN["http_code"],
]
else:
# The http status code extraction is not activated.
# We initiate the data to print.
data_to_print = [
self.tested,
self.domain_status,
self.expiration_date,
self.source,
PyFunceble.CURRENT_TIME,
]
# We print the information on screen.
Prints(data_to_print, "Generic").data() | [
"def",
"_prints_status_screen",
"(",
"self",
")",
":",
"if",
"not",
"PyFunceble",
".",
"CONFIGURATION",
"[",
"\"quiet\"",
"]",
":",
"# The quiet mode is not activated.",
"if",
"PyFunceble",
".",
"CONFIGURATION",
"[",
"\"less\"",
"]",
":",
"# We have to print less information.",
"# We initiate the data to print.",
"to_print",
"=",
"[",
"self",
".",
"tested",
",",
"self",
".",
"domain_status",
",",
"PyFunceble",
".",
"INTERN",
"[",
"\"http_code\"",
"]",
",",
"]",
"if",
"not",
"PyFunceble",
".",
"HTTP_CODE",
"[",
"\"active\"",
"]",
":",
"# The http status code is not activated.",
"# We replace the last element to print with",
"# the source.",
"to_print",
"[",
"-",
"1",
"]",
"=",
"self",
".",
"source",
"# We print the informations on screen.",
"Prints",
"(",
"to_print",
",",
"\"Less\"",
")",
".",
"data",
"(",
")",
"else",
":",
"# We have to print all informations on screen.",
"if",
"PyFunceble",
".",
"HTTP_CODE",
"[",
"\"active\"",
"]",
":",
"# The http status code extraction is activated.",
"# We initiate the data to print.",
"data_to_print",
"=",
"[",
"self",
".",
"tested",
",",
"self",
".",
"domain_status",
",",
"self",
".",
"expiration_date",
",",
"self",
".",
"source",
",",
"PyFunceble",
".",
"INTERN",
"[",
"\"http_code\"",
"]",
",",
"]",
"else",
":",
"# The http status code extraction is not activated.",
"# We initiate the data to print.",
"data_to_print",
"=",
"[",
"self",
".",
"tested",
",",
"self",
".",
"domain_status",
",",
"self",
".",
"expiration_date",
",",
"self",
".",
"source",
",",
"PyFunceble",
".",
"CURRENT_TIME",
",",
"]",
"# We print the information on screen.",
"Prints",
"(",
"data_to_print",
",",
"\"Generic\"",
")",
".",
"data",
"(",
")"
] | Logic behind the printing (on screen) when generating status file. | [
"Logic",
"behind",
"the",
"printing",
"(",
"on",
"screen",
")",
"when",
"generating",
"status",
"file",
"."
] | python | test |
theislab/scanpy | scanpy/plotting/_utils.py | https://github.com/theislab/scanpy/blob/9e4e5ee02e04cf618872d9b098e24f0542e8b227/scanpy/plotting/_utils.py#L27-L41 | def matrix(matrix, xlabel=None, ylabel=None, xticks=None, yticks=None,
title=None, colorbar_shrink=0.5, color_map=None, show=None,
save=None, ax=None):
"""Plot a matrix."""
if ax is None: ax = pl.gca()
img = ax.imshow(matrix, cmap=color_map)
if xlabel is not None: ax.set_xlabel(xlabel)
if ylabel is not None: ax.set_ylabel(ylabel)
if title is not None: ax.set_title(title)
if xticks is not None:
ax.set_xticks(range(len(xticks)), xticks, rotation='vertical')
if yticks is not None:
ax.set_yticks(range(len(yticks)), yticks)
pl.colorbar(img, shrink=colorbar_shrink, ax=ax) # need a figure instance for colorbar
savefig_or_show('matrix', show=show, save=save) | [
"def",
"matrix",
"(",
"matrix",
",",
"xlabel",
"=",
"None",
",",
"ylabel",
"=",
"None",
",",
"xticks",
"=",
"None",
",",
"yticks",
"=",
"None",
",",
"title",
"=",
"None",
",",
"colorbar_shrink",
"=",
"0.5",
",",
"color_map",
"=",
"None",
",",
"show",
"=",
"None",
",",
"save",
"=",
"None",
",",
"ax",
"=",
"None",
")",
":",
"if",
"ax",
"is",
"None",
":",
"ax",
"=",
"pl",
".",
"gca",
"(",
")",
"img",
"=",
"ax",
".",
"imshow",
"(",
"matrix",
",",
"cmap",
"=",
"color_map",
")",
"if",
"xlabel",
"is",
"not",
"None",
":",
"ax",
".",
"set_xlabel",
"(",
"xlabel",
")",
"if",
"ylabel",
"is",
"not",
"None",
":",
"ax",
".",
"set_ylabel",
"(",
"ylabel",
")",
"if",
"title",
"is",
"not",
"None",
":",
"ax",
".",
"set_title",
"(",
"title",
")",
"if",
"xticks",
"is",
"not",
"None",
":",
"ax",
".",
"set_xticks",
"(",
"range",
"(",
"len",
"(",
"xticks",
")",
")",
",",
"xticks",
",",
"rotation",
"=",
"'vertical'",
")",
"if",
"yticks",
"is",
"not",
"None",
":",
"ax",
".",
"set_yticks",
"(",
"range",
"(",
"len",
"(",
"yticks",
")",
")",
",",
"yticks",
")",
"pl",
".",
"colorbar",
"(",
"img",
",",
"shrink",
"=",
"colorbar_shrink",
",",
"ax",
"=",
"ax",
")",
"# need a figure instance for colorbar",
"savefig_or_show",
"(",
"'matrix'",
",",
"show",
"=",
"show",
",",
"save",
"=",
"save",
")"
] | Plot a matrix. | [
"Plot",
"a",
"matrix",
"."
] | python | train |
rndmcnlly/ansunit | ansunit/__init__.py | https://github.com/rndmcnlly/ansunit/blob/3d45e22ab1ae131b6eda25d5ae2ead2c5cfee02a/ansunit/__init__.py#L78-L95 | def canonicalize_spec(spec, parent_context):
"""Push all context declarations to the leaves of a nested test specification."""
test_specs = {k:v for (k,v) in spec.items() if k.startswith("Test")}
local_context = {k:v for (k,v) in spec.items() if not k.startswith("Test")}
context = reduce_contexts(parent_context, local_context)
if test_specs:
return {k: canonicalize_spec(v, context) for (k,v) in test_specs.items()}
else:
program_chunks = sum([resolve_module(m,context['Definitions']) for m in context['Modules']],[]) + [context['Program']]
test_spec = {
'Arguments': context['Arguments'],
'Program': "\n".join(program_chunks),
'Expect': context['Expect'],
}
return test_spec | [
"def",
"canonicalize_spec",
"(",
"spec",
",",
"parent_context",
")",
":",
"test_specs",
"=",
"{",
"k",
":",
"v",
"for",
"(",
"k",
",",
"v",
")",
"in",
"spec",
".",
"items",
"(",
")",
"if",
"k",
".",
"startswith",
"(",
"\"Test\"",
")",
"}",
"local_context",
"=",
"{",
"k",
":",
"v",
"for",
"(",
"k",
",",
"v",
")",
"in",
"spec",
".",
"items",
"(",
")",
"if",
"not",
"k",
".",
"startswith",
"(",
"\"Test\"",
")",
"}",
"context",
"=",
"reduce_contexts",
"(",
"parent_context",
",",
"local_context",
")",
"if",
"test_specs",
":",
"return",
"{",
"k",
":",
"canonicalize_spec",
"(",
"v",
",",
"context",
")",
"for",
"(",
"k",
",",
"v",
")",
"in",
"test_specs",
".",
"items",
"(",
")",
"}",
"else",
":",
"program_chunks",
"=",
"sum",
"(",
"[",
"resolve_module",
"(",
"m",
",",
"context",
"[",
"'Definitions'",
"]",
")",
"for",
"m",
"in",
"context",
"[",
"'Modules'",
"]",
"]",
",",
"[",
"]",
")",
"+",
"[",
"context",
"[",
"'Program'",
"]",
"]",
"test_spec",
"=",
"{",
"'Arguments'",
":",
"context",
"[",
"'Arguments'",
"]",
",",
"'Program'",
":",
"\"\\n\"",
".",
"join",
"(",
"program_chunks",
")",
",",
"'Expect'",
":",
"context",
"[",
"'Expect'",
"]",
",",
"}",
"return",
"test_spec"
] | Push all context declarations to the leaves of a nested test specification. | [
"Push",
"all",
"context",
"declarations",
"to",
"the",
"leaves",
"of",
"a",
"nested",
"test",
"specification",
"."
] | python | train |
geopy/geopy | geopy/geocoders/openmapquest.py | https://github.com/geopy/geopy/blob/02c838d965e76497f3c3d61f53808c86b5c58224/geopy/geocoders/openmapquest.py#L117-L129 | def _construct_url(self, base_api, params):
"""
Construct geocoding request url. Overridden.
:param str base_api: Geocoding function base address - self.api
or self.reverse_api.
:param dict params: Geocoding params.
:return: string URL.
"""
params['key'] = self.api_key
return super(OpenMapQuest, self)._construct_url(base_api, params) | [
"def",
"_construct_url",
"(",
"self",
",",
"base_api",
",",
"params",
")",
":",
"params",
"[",
"'key'",
"]",
"=",
"self",
".",
"api_key",
"return",
"super",
"(",
"OpenMapQuest",
",",
"self",
")",
".",
"_construct_url",
"(",
"base_api",
",",
"params",
")"
] | Construct geocoding request url. Overridden.
:param str base_api: Geocoding function base address - self.api
or self.reverse_api.
:param dict params: Geocoding params.
:return: string URL. | [
"Construct",
"geocoding",
"request",
"url",
".",
"Overridden",
"."
] | python | train |
DataBiosphere/toil | src/toil/provisioners/clusterScaler.py | https://github.com/DataBiosphere/toil/blob/a8252277ff814e7bee0971139c2344f88e44b644/src/toil/provisioners/clusterScaler.py#L565-L630 | def setNodeCount(self, nodeType, numNodes, preemptable=False, force=False):
"""
Attempt to grow or shrink the number of preemptable or non-preemptable worker nodes in
the cluster to the given value, or as close a value as possible, and, after performing
the necessary additions or removals of worker nodes, return the resulting number of
preemptable or non-preemptable nodes currently in the cluster.
:param str nodeType: The node type to add or remove.
:param int numNodes: Desired size of the cluster
:param bool preemptable: whether the added nodes will be preemptable, i.e. whether they
may be removed spontaneously by the underlying platform at any time.
:param bool force: If False, the provisioner is allowed to deviate from the given number
of nodes. For example, when downsizing a cluster, a provisioner might leave nodes
running if they have active jobs running on them.
:rtype: int :return: the number of worker nodes in the cluster after making the necessary
adjustments. This value should be, but is not guaranteed to be, close or equal to
the `numNodes` argument. It represents the closest possible approximation of the
actual cluster size at the time this method returns.
"""
for attempt in retry(predicate=self.provisioner.retryPredicate):
with attempt:
workerInstances = self.getNodes(preemptable=preemptable)
logger.debug("Cluster contains %i instances" % len(workerInstances))
# Reduce to nodes of the correct type
workerInstances = {node:workerInstances[node] for node in workerInstances if node.nodeType == nodeType}
ignoredNodes = [node for node in workerInstances if node.privateIP in self.ignoredNodes]
numIgnoredNodes = len(ignoredNodes)
numCurrentNodes = len(workerInstances)
logger.debug("Cluster contains %i instances of type %s (%i ignored and draining jobs until "
"they can be safely terminated)" % (numCurrentNodes, nodeType, numIgnoredNodes))
if not force:
delta = numNodes - (numCurrentNodes - numIgnoredNodes)
else:
delta = numNodes - numCurrentNodes
if delta > 0 and numIgnoredNodes > 0:
# We can un-ignore a few nodes to compensate for the additional nodes we want.
numNodesToUnignore = min(delta, numIgnoredNodes)
logger.debug('Unignoring %i nodes because we want to scale back up again.' % numNodesToUnignore)
delta -= numNodesToUnignore
for node in ignoredNodes[:numNodesToUnignore]:
self.ignoredNodes.remove(node.privateIP)
self.leader.batchSystem.unignoreNode(node.privateIP)
if delta > 0:
logger.info('Adding %i %s nodes to get to desired cluster size of %i.',
delta,
'preemptable' if preemptable else 'non-preemptable',
numNodes)
numNodes = numCurrentNodes + self._addNodes(nodeType, numNodes=delta,
preemptable=preemptable)
elif delta < 0:
logger.info('Removing %i %s nodes to get to desired cluster size of %i.', -delta, 'preemptable' if preemptable else 'non-preemptable', numNodes)
numNodes = numCurrentNodes - self._removeNodes(workerInstances,
nodeType = nodeType,
numNodes=-delta,
preemptable=preemptable,
force=force)
else:
if not force:
logger.debug('Cluster (minus ignored nodes) already at desired size of %i. Nothing to do.', numNodes)
else:
logger.debug('Cluster already at desired size of %i. Nothing to do.', numNodes)
return numNodes | [
"def",
"setNodeCount",
"(",
"self",
",",
"nodeType",
",",
"numNodes",
",",
"preemptable",
"=",
"False",
",",
"force",
"=",
"False",
")",
":",
"for",
"attempt",
"in",
"retry",
"(",
"predicate",
"=",
"self",
".",
"provisioner",
".",
"retryPredicate",
")",
":",
"with",
"attempt",
":",
"workerInstances",
"=",
"self",
".",
"getNodes",
"(",
"preemptable",
"=",
"preemptable",
")",
"logger",
".",
"debug",
"(",
"\"Cluster contains %i instances\"",
"%",
"len",
"(",
"workerInstances",
")",
")",
"# Reduce to nodes of the correct type",
"workerInstances",
"=",
"{",
"node",
":",
"workerInstances",
"[",
"node",
"]",
"for",
"node",
"in",
"workerInstances",
"if",
"node",
".",
"nodeType",
"==",
"nodeType",
"}",
"ignoredNodes",
"=",
"[",
"node",
"for",
"node",
"in",
"workerInstances",
"if",
"node",
".",
"privateIP",
"in",
"self",
".",
"ignoredNodes",
"]",
"numIgnoredNodes",
"=",
"len",
"(",
"ignoredNodes",
")",
"numCurrentNodes",
"=",
"len",
"(",
"workerInstances",
")",
"logger",
".",
"debug",
"(",
"\"Cluster contains %i instances of type %s (%i ignored and draining jobs until \"",
"\"they can be safely terminated)\"",
"%",
"(",
"numCurrentNodes",
",",
"nodeType",
",",
"numIgnoredNodes",
")",
")",
"if",
"not",
"force",
":",
"delta",
"=",
"numNodes",
"-",
"(",
"numCurrentNodes",
"-",
"numIgnoredNodes",
")",
"else",
":",
"delta",
"=",
"numNodes",
"-",
"numCurrentNodes",
"if",
"delta",
">",
"0",
"and",
"numIgnoredNodes",
">",
"0",
":",
"# We can un-ignore a few nodes to compensate for the additional nodes we want.",
"numNodesToUnignore",
"=",
"min",
"(",
"delta",
",",
"numIgnoredNodes",
")",
"logger",
".",
"debug",
"(",
"'Unignoring %i nodes because we want to scale back up again.'",
"%",
"numNodesToUnignore",
")",
"delta",
"-=",
"numNodesToUnignore",
"for",
"node",
"in",
"ignoredNodes",
"[",
":",
"numNodesToUnignore",
"]",
":",
"self",
".",
"ignoredNodes",
".",
"remove",
"(",
"node",
".",
"privateIP",
")",
"self",
".",
"leader",
".",
"batchSystem",
".",
"unignoreNode",
"(",
"node",
".",
"privateIP",
")",
"if",
"delta",
">",
"0",
":",
"logger",
".",
"info",
"(",
"'Adding %i %s nodes to get to desired cluster size of %i.'",
",",
"delta",
",",
"'preemptable'",
"if",
"preemptable",
"else",
"'non-preemptable'",
",",
"numNodes",
")",
"numNodes",
"=",
"numCurrentNodes",
"+",
"self",
".",
"_addNodes",
"(",
"nodeType",
",",
"numNodes",
"=",
"delta",
",",
"preemptable",
"=",
"preemptable",
")",
"elif",
"delta",
"<",
"0",
":",
"logger",
".",
"info",
"(",
"'Removing %i %s nodes to get to desired cluster size of %i.'",
",",
"-",
"delta",
",",
"'preemptable'",
"if",
"preemptable",
"else",
"'non-preemptable'",
",",
"numNodes",
")",
"numNodes",
"=",
"numCurrentNodes",
"-",
"self",
".",
"_removeNodes",
"(",
"workerInstances",
",",
"nodeType",
"=",
"nodeType",
",",
"numNodes",
"=",
"-",
"delta",
",",
"preemptable",
"=",
"preemptable",
",",
"force",
"=",
"force",
")",
"else",
":",
"if",
"not",
"force",
":",
"logger",
".",
"debug",
"(",
"'Cluster (minus ignored nodes) already at desired size of %i. Nothing to do.'",
",",
"numNodes",
")",
"else",
":",
"logger",
".",
"debug",
"(",
"'Cluster already at desired size of %i. Nothing to do.'",
",",
"numNodes",
")",
"return",
"numNodes"
] | Attempt to grow or shrink the number of preemptable or non-preemptable worker nodes in
the cluster to the given value, or as close a value as possible, and, after performing
the necessary additions or removals of worker nodes, return the resulting number of
preemptable or non-preemptable nodes currently in the cluster.
:param str nodeType: The node type to add or remove.
:param int numNodes: Desired size of the cluster
:param bool preemptable: whether the added nodes will be preemptable, i.e. whether they
may be removed spontaneously by the underlying platform at any time.
:param bool force: If False, the provisioner is allowed to deviate from the given number
of nodes. For example, when downsizing a cluster, a provisioner might leave nodes
running if they have active jobs running on them.
:rtype: int :return: the number of worker nodes in the cluster after making the necessary
adjustments. This value should be, but is not guaranteed to be, close or equal to
the `numNodes` argument. It represents the closest possible approximation of the
actual cluster size at the time this method returns. | [
"Attempt",
"to",
"grow",
"or",
"shrink",
"the",
"number",
"of",
"preemptable",
"or",
"non",
"-",
"preemptable",
"worker",
"nodes",
"in",
"the",
"cluster",
"to",
"the",
"given",
"value",
"or",
"as",
"close",
"a",
"value",
"as",
"possible",
"and",
"after",
"performing",
"the",
"necessary",
"additions",
"or",
"removals",
"of",
"worker",
"nodes",
"return",
"the",
"resulting",
"number",
"of",
"preemptable",
"or",
"non",
"-",
"preemptable",
"nodes",
"currently",
"in",
"the",
"cluster",
"."
] | python | train |
CityOfZion/neo-python | neo/Core/TX/InvocationTransaction.py | https://github.com/CityOfZion/neo-python/blob/fe90f62e123d720d4281c79af0598d9df9e776fb/neo/Core/TX/InvocationTransaction.py#L91-L101 | def ToJson(self):
"""
Convert object members to a dictionary that can be parsed as JSON.
Returns:
dict:
"""
jsn = super(InvocationTransaction, self).ToJson()
jsn['script'] = self.Script.hex()
jsn['gas'] = self.Gas.ToNeoJsonString()
return jsn | [
"def",
"ToJson",
"(",
"self",
")",
":",
"jsn",
"=",
"super",
"(",
"InvocationTransaction",
",",
"self",
")",
".",
"ToJson",
"(",
")",
"jsn",
"[",
"'script'",
"]",
"=",
"self",
".",
"Script",
".",
"hex",
"(",
")",
"jsn",
"[",
"'gas'",
"]",
"=",
"self",
".",
"Gas",
".",
"ToNeoJsonString",
"(",
")",
"return",
"jsn"
] | Convert object members to a dictionary that can be parsed as JSON.
Returns:
dict: | [
"Convert",
"object",
"members",
"to",
"a",
"dictionary",
"that",
"can",
"be",
"parsed",
"as",
"JSON",
"."
] | python | train |
astropy/astropy-healpix | astropy_healpix/core.py | https://github.com/astropy/astropy-healpix/blob/c7fbe36305aadda9946dd37969d5dcb9ff6b1440/astropy_healpix/core.py#L108-L130 | def nside_to_level(nside):
"""
Find the HEALPix level for a given nside.
This is given by ``level = log2(nside)``.
This function is the inverse of `level_to_nside`.
Parameters
----------
nside : int
The number of pixels on the side of one of the 12 'top-level' HEALPix tiles.
Must be a power of two.
Returns
-------
level : int
The level of the HEALPix cells
"""
nside = np.asarray(nside, dtype=np.int64)
_validate_nside(nside)
return np.log2(nside).astype(np.int64) | [
"def",
"nside_to_level",
"(",
"nside",
")",
":",
"nside",
"=",
"np",
".",
"asarray",
"(",
"nside",
",",
"dtype",
"=",
"np",
".",
"int64",
")",
"_validate_nside",
"(",
"nside",
")",
"return",
"np",
".",
"log2",
"(",
"nside",
")",
".",
"astype",
"(",
"np",
".",
"int64",
")"
] | Find the HEALPix level for a given nside.
This is given by ``level = log2(nside)``.
This function is the inverse of `level_to_nside`.
Parameters
----------
nside : int
The number of pixels on the side of one of the 12 'top-level' HEALPix tiles.
Must be a power of two.
Returns
-------
level : int
The level of the HEALPix cells | [
"Find",
"the",
"HEALPix",
"level",
"for",
"a",
"given",
"nside",
"."
] | python | train |
todddeluca/dones | dones.py | https://github.com/todddeluca/dones/blob/6ef56565556987e701fed797a405f0825fe2e15a/dones.py#L468-L476 | def remove(self, key):
'''
remove key from the namespace. it is fine to remove a key multiple times.
'''
encodedKey = json.dumps(key)
sql = 'DELETE FROM ' + self.table + ' WHERE name = %s'
with self.connect() as conn:
with doTransaction(conn):
return executeSQL(conn, sql, args=[encodedKey]) | [
"def",
"remove",
"(",
"self",
",",
"key",
")",
":",
"encodedKey",
"=",
"json",
".",
"dumps",
"(",
"key",
")",
"sql",
"=",
"'DELETE FROM '",
"+",
"self",
".",
"table",
"+",
"' WHERE name = %s'",
"with",
"self",
".",
"connect",
"(",
")",
"as",
"conn",
":",
"with",
"doTransaction",
"(",
"conn",
")",
":",
"return",
"executeSQL",
"(",
"conn",
",",
"sql",
",",
"args",
"=",
"[",
"encodedKey",
"]",
")"
] | remove key from the namespace. it is fine to remove a key multiple times. | [
"remove",
"key",
"from",
"the",
"namespace",
".",
"it",
"is",
"fine",
"to",
"remove",
"a",
"key",
"multiple",
"times",
"."
] | python | train |
HumanBrainProject/hbp-service-client | hbp_service_client/request/request_builder.py | https://github.com/HumanBrainProject/hbp-service-client/blob/b338fb41a7f0e7b9d654ff28fcf13a56d03bff4d/hbp_service_client/request/request_builder.py#L115-L126 | def with_headers(self, headers):
'''Adds headers to the request
Args:
headers (dict): The headers to add the request headers
Returns:
The request builder instance in order to chain calls
'''
copy = headers.copy()
copy.update(self._headers)
return self.__copy_and_set('headers', copy) | [
"def",
"with_headers",
"(",
"self",
",",
"headers",
")",
":",
"copy",
"=",
"headers",
".",
"copy",
"(",
")",
"copy",
".",
"update",
"(",
"self",
".",
"_headers",
")",
"return",
"self",
".",
"__copy_and_set",
"(",
"'headers'",
",",
"copy",
")"
] | Adds headers to the request
Args:
headers (dict): The headers to add the request headers
Returns:
The request builder instance in order to chain calls | [
"Adds",
"headers",
"to",
"the",
"request"
] | python | test |
explosion/thinc | thinc/extra/_vendorized/keras_data_utils.py | https://github.com/explosion/thinc/blob/90129be5f0d6c665344245a7c37dbe1b8afceea2/thinc/extra/_vendorized/keras_data_utils.py#L146-L163 | def validate_file(fpath, md5_hash):
'''Validates a file against a MD5 hash
# Arguments
fpath: path to the file being validated
md5_hash: the MD5 hash being validated against
# Returns
Whether the file is valid
'''
hasher = hashlib.md5()
with open(fpath, 'rb') as f:
buf = f.read()
hasher.update(buf)
if str(hasher.hexdigest()) == str(md5_hash):
return True
else:
return False | [
"def",
"validate_file",
"(",
"fpath",
",",
"md5_hash",
")",
":",
"hasher",
"=",
"hashlib",
".",
"md5",
"(",
")",
"with",
"open",
"(",
"fpath",
",",
"'rb'",
")",
"as",
"f",
":",
"buf",
"=",
"f",
".",
"read",
"(",
")",
"hasher",
".",
"update",
"(",
"buf",
")",
"if",
"str",
"(",
"hasher",
".",
"hexdigest",
"(",
")",
")",
"==",
"str",
"(",
"md5_hash",
")",
":",
"return",
"True",
"else",
":",
"return",
"False"
] | Validates a file against a MD5 hash
# Arguments
fpath: path to the file being validated
md5_hash: the MD5 hash being validated against
# Returns
Whether the file is valid | [
"Validates",
"a",
"file",
"against",
"a",
"MD5",
"hash"
] | python | train |
mugurbil/gnm | gnm/gnm.py | https://github.com/mugurbil/gnm/blob/4f9711fb9d78cc02820c25234bc3ab9615014f11/gnm/gnm.py#L197-L222 | def dynamic(self, max_steps, opts={}):
"""
Dynamic Switch
Set the sampler parameters for dynamic back off
Inputs :
max_steps :
maximum back-off steps to be taken
Optional Inputs:
opts : ({})
dictionary containing fancy options
"""
self._dynamic = True
# begin checks
try :
self._max_steps = int(max_steps)
except :
raise TypeError("input 1 (max_steps) has to be an integer")
return 0
try :
assert self._max_steps >= 0
except :
raise Warning("input 1 (max_steps) has to be non-negative. Setting (max_steps) to 0.")
self._max_steps = 0
self._opts = opts | [
"def",
"dynamic",
"(",
"self",
",",
"max_steps",
",",
"opts",
"=",
"{",
"}",
")",
":",
"self",
".",
"_dynamic",
"=",
"True",
"# begin checks ",
"try",
":",
"self",
".",
"_max_steps",
"=",
"int",
"(",
"max_steps",
")",
"except",
":",
"raise",
"TypeError",
"(",
"\"input 1 (max_steps) has to be an integer\"",
")",
"return",
"0",
"try",
":",
"assert",
"self",
".",
"_max_steps",
">=",
"0",
"except",
":",
"raise",
"Warning",
"(",
"\"input 1 (max_steps) has to be non-negative. Setting (max_steps) to 0.\"",
")",
"self",
".",
"_max_steps",
"=",
"0",
"self",
".",
"_opts",
"=",
"opts"
] | Dynamic Switch
Set the sampler parameters for dynamic back off
Inputs :
max_steps :
maximum back-off steps to be taken
Optional Inputs:
opts : ({})
dictionary containing fancy options | [
"Dynamic",
"Switch",
"Set",
"the",
"sampler",
"parameters",
"for",
"dynamic",
"back",
"off",
"Inputs",
":",
"max_steps",
":",
"maximum",
"back",
"-",
"off",
"steps",
"to",
"be",
"taken",
"Optional",
"Inputs",
":",
"opts",
":",
"(",
"{}",
")",
"dictionary",
"containing",
"fancy",
"options"
] | python | train |
Wessie/hurler | hurler/filters.py | https://github.com/Wessie/hurler/blob/5719000237e24df9f24fb8229f1153ebfa684972/hurler/filters.py#L48-L61 | def check_filter(self, args, kwargs):
"""
Calls all filters in the :attr:`_filters` list and if all of them
return :const:`True` will return :const:`True`. If any of the filters
return :const:`False` will return :const:`True` instead.
This method is equal to the following snippet:
`all(f(*args, **kwargs) for f in self.filters)`
"""
for f in self._filters:
if not f(*args, **kwargs):
return False
return True | [
"def",
"check_filter",
"(",
"self",
",",
"args",
",",
"kwargs",
")",
":",
"for",
"f",
"in",
"self",
".",
"_filters",
":",
"if",
"not",
"f",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"False",
"return",
"True"
] | Calls all filters in the :attr:`_filters` list and if all of them
return :const:`True` will return :const:`True`. If any of the filters
return :const:`False` will return :const:`True` instead.
This method is equal to the following snippet:
`all(f(*args, **kwargs) for f in self.filters)` | [
"Calls",
"all",
"filters",
"in",
"the",
":",
"attr",
":",
"_filters",
"list",
"and",
"if",
"all",
"of",
"them",
"return",
":",
"const",
":",
"True",
"will",
"return",
":",
"const",
":",
"True",
".",
"If",
"any",
"of",
"the",
"filters",
"return",
":",
"const",
":",
"False",
"will",
"return",
":",
"const",
":",
"True",
"instead",
"."
] | python | train |
openego/eDisGo | edisgo/grid/network.py | https://github.com/openego/eDisGo/blob/e6245bdaf236f9c49dbda5a18c1c458290f41e2b/edisgo/grid/network.py#L2161-L2175 | def generation_dispatchable(self):
"""
Get generation time series of dispatchable generators (only active
power)
Returns
-------
:pandas:`pandas.DataFrame<dataframe>`
See class definition for details.
"""
try:
return self._generation_dispatchable.loc[[self.timeindex], :]
except:
return self._generation_dispatchable.loc[self.timeindex, :] | [
"def",
"generation_dispatchable",
"(",
"self",
")",
":",
"try",
":",
"return",
"self",
".",
"_generation_dispatchable",
".",
"loc",
"[",
"[",
"self",
".",
"timeindex",
"]",
",",
":",
"]",
"except",
":",
"return",
"self",
".",
"_generation_dispatchable",
".",
"loc",
"[",
"self",
".",
"timeindex",
",",
":",
"]"
] | Get generation time series of dispatchable generators (only active
power)
Returns
-------
:pandas:`pandas.DataFrame<dataframe>`
See class definition for details. | [
"Get",
"generation",
"time",
"series",
"of",
"dispatchable",
"generators",
"(",
"only",
"active",
"power",
")"
] | python | train |
shawnsilva/steamwebapi | steamwebapi/api.py | https://github.com/shawnsilva/steamwebapi/blob/dc16538ebe985cc7ea170f660169ebc2366efbf2/steamwebapi/api.py#L106-L120 | def get_friends_list(self, steamID, relationship='all', format=None):
"""Request the friends list of a given steam ID filtered by role.
steamID: The user ID
relationship: Type of friend to request (all, friend)
format: Return format. None defaults to json. (json, xml, vdf)
"""
parameters = {'steamid' : steamID, 'relationship' : relationship}
if format is not None:
parameters['format'] = format
url = self.create_request_url(self.interface, 'GetFriendsList', 1,
parameters)
data = self.retrieve_request(url)
return self.return_data(data, format=format) | [
"def",
"get_friends_list",
"(",
"self",
",",
"steamID",
",",
"relationship",
"=",
"'all'",
",",
"format",
"=",
"None",
")",
":",
"parameters",
"=",
"{",
"'steamid'",
":",
"steamID",
",",
"'relationship'",
":",
"relationship",
"}",
"if",
"format",
"is",
"not",
"None",
":",
"parameters",
"[",
"'format'",
"]",
"=",
"format",
"url",
"=",
"self",
".",
"create_request_url",
"(",
"self",
".",
"interface",
",",
"'GetFriendsList'",
",",
"1",
",",
"parameters",
")",
"data",
"=",
"self",
".",
"retrieve_request",
"(",
"url",
")",
"return",
"self",
".",
"return_data",
"(",
"data",
",",
"format",
"=",
"format",
")"
] | Request the friends list of a given steam ID filtered by role.
steamID: The user ID
relationship: Type of friend to request (all, friend)
format: Return format. None defaults to json. (json, xml, vdf) | [
"Request",
"the",
"friends",
"list",
"of",
"a",
"given",
"steam",
"ID",
"filtered",
"by",
"role",
"."
] | python | train |
softlayer/softlayer-python | SoftLayer/CLI/block/snapshot/list.py | https://github.com/softlayer/softlayer-python/blob/9f181be08cc3668353b05a6de0cb324f52cff6fa/SoftLayer/CLI/block/snapshot/list.py#L38-L53 | def cli(env, volume_id, sortby, columns):
"""List block storage snapshots."""
block_manager = SoftLayer.BlockStorageManager(env.client)
snapshots = block_manager.get_block_volume_snapshot_list(
volume_id,
mask=columns.mask()
)
table = formatting.Table(columns.columns)
table.sortby = sortby
for snapshot in snapshots:
table.add_row([value or formatting.blank()
for value in columns.row(snapshot)])
env.fout(table) | [
"def",
"cli",
"(",
"env",
",",
"volume_id",
",",
"sortby",
",",
"columns",
")",
":",
"block_manager",
"=",
"SoftLayer",
".",
"BlockStorageManager",
"(",
"env",
".",
"client",
")",
"snapshots",
"=",
"block_manager",
".",
"get_block_volume_snapshot_list",
"(",
"volume_id",
",",
"mask",
"=",
"columns",
".",
"mask",
"(",
")",
")",
"table",
"=",
"formatting",
".",
"Table",
"(",
"columns",
".",
"columns",
")",
"table",
".",
"sortby",
"=",
"sortby",
"for",
"snapshot",
"in",
"snapshots",
":",
"table",
".",
"add_row",
"(",
"[",
"value",
"or",
"formatting",
".",
"blank",
"(",
")",
"for",
"value",
"in",
"columns",
".",
"row",
"(",
"snapshot",
")",
"]",
")",
"env",
".",
"fout",
"(",
"table",
")"
] | List block storage snapshots. | [
"List",
"block",
"storage",
"snapshots",
"."
] | python | train |
fastai/fastai | old/fastai/plots.py | https://github.com/fastai/fastai/blob/9fb84a5cdefe5a766cdb792b8f5d8971737b7e67/old/fastai/plots.py#L119-L132 | def most_by_mask(self, mask, y, mult):
""" Extracts the first 4 most correct/incorrect indexes from the ordered list of probabilities
Arguments:
mask (numpy.ndarray): the mask of probabilities specific to the selected class; a boolean array with shape (num_of_samples,) which contains True where class==selected_class, and False everywhere else
y (int): the selected class
mult (int): sets the ordering; -1 descending, 1 ascending
Returns:
idxs (ndarray): An array of indexes of length 4
"""
idxs = np.where(mask)[0]
cnt = min(4, len(idxs))
return idxs[np.argsort(mult * self.probs[idxs,y])[:cnt]] | [
"def",
"most_by_mask",
"(",
"self",
",",
"mask",
",",
"y",
",",
"mult",
")",
":",
"idxs",
"=",
"np",
".",
"where",
"(",
"mask",
")",
"[",
"0",
"]",
"cnt",
"=",
"min",
"(",
"4",
",",
"len",
"(",
"idxs",
")",
")",
"return",
"idxs",
"[",
"np",
".",
"argsort",
"(",
"mult",
"*",
"self",
".",
"probs",
"[",
"idxs",
",",
"y",
"]",
")",
"[",
":",
"cnt",
"]",
"]"
] | Extracts the first 4 most correct/incorrect indexes from the ordered list of probabilities
Arguments:
mask (numpy.ndarray): the mask of probabilities specific to the selected class; a boolean array with shape (num_of_samples,) which contains True where class==selected_class, and False everywhere else
y (int): the selected class
mult (int): sets the ordering; -1 descending, 1 ascending
Returns:
idxs (ndarray): An array of indexes of length 4 | [
"Extracts",
"the",
"first",
"4",
"most",
"correct",
"/",
"incorrect",
"indexes",
"from",
"the",
"ordered",
"list",
"of",
"probabilities"
] | python | train |
bitesofcode/projexui | projexui/windows/xdkwindow/xdkwindow.py | https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/windows/xdkwindow/xdkwindow.py#L220-L244 | def addContentsWidget( self ):
"""
Adds a new contents widget tab into the contents tab.
:return <QWebView>
"""
curr_widget = self.currentContentsWidget()
widget = QWebView(self)
page = widget.page()
page.setLinkDelegationPolicy(page.DelegateAllLinks)
self.uiContentsTAB.blockSignals(True)
self.uiContentsTAB.addTab(widget, 'Documentation')
self.uiContentsTAB.setCurrentIndex(self.uiContentsTAB.count() - 1)
self.uiContentsTAB.blockSignals(False)
self._currentContentsIndex = self.uiContentsTAB.count() - 1
if curr_widget:
widget.setUrl(curr_widget.url())
widget.titleChanged.connect(self.refreshUi)
widget.linkClicked.connect(self.__gotoUrl)
return widget | [
"def",
"addContentsWidget",
"(",
"self",
")",
":",
"curr_widget",
"=",
"self",
".",
"currentContentsWidget",
"(",
")",
"widget",
"=",
"QWebView",
"(",
"self",
")",
"page",
"=",
"widget",
".",
"page",
"(",
")",
"page",
".",
"setLinkDelegationPolicy",
"(",
"page",
".",
"DelegateAllLinks",
")",
"self",
".",
"uiContentsTAB",
".",
"blockSignals",
"(",
"True",
")",
"self",
".",
"uiContentsTAB",
".",
"addTab",
"(",
"widget",
",",
"'Documentation'",
")",
"self",
".",
"uiContentsTAB",
".",
"setCurrentIndex",
"(",
"self",
".",
"uiContentsTAB",
".",
"count",
"(",
")",
"-",
"1",
")",
"self",
".",
"uiContentsTAB",
".",
"blockSignals",
"(",
"False",
")",
"self",
".",
"_currentContentsIndex",
"=",
"self",
".",
"uiContentsTAB",
".",
"count",
"(",
")",
"-",
"1",
"if",
"curr_widget",
":",
"widget",
".",
"setUrl",
"(",
"curr_widget",
".",
"url",
"(",
")",
")",
"widget",
".",
"titleChanged",
".",
"connect",
"(",
"self",
".",
"refreshUi",
")",
"widget",
".",
"linkClicked",
".",
"connect",
"(",
"self",
".",
"__gotoUrl",
")",
"return",
"widget"
] | Adds a new contents widget tab into the contents tab.
:return <QWebView> | [
"Adds",
"a",
"new",
"contents",
"widget",
"tab",
"into",
"the",
"contents",
"tab",
".",
":",
"return",
"<QWebView",
">"
] | python | train |
mlperf/training | translation/tensorflow/transformer/utils/metrics.py | https://github.com/mlperf/training/blob/1c6ae725a81d15437a2b2df05cac0673fde5c3a4/translation/tensorflow/transformer/utils/metrics.py#L288-L304 | def rouge_2_fscore(logits, labels):
"""ROUGE-2 F1 score computation between labels and predictions.
This is an approximate ROUGE scoring method since we do not glue word pieces
or decode the ids and tokenize the output.
Args:
logits: tensor, model predictions
labels: tensor, gold output.
Returns:
rouge2_fscore: approx rouge-2 f1 score.
"""
predictions = tf.to_int32(tf.argmax(logits, axis=-1))
# TODO: Look into removing use of py_func
rouge_2_f_score = tf.py_func(rouge_n, (predictions, labels), tf.float32)
return rouge_2_f_score, tf.constant(1.0) | [
"def",
"rouge_2_fscore",
"(",
"logits",
",",
"labels",
")",
":",
"predictions",
"=",
"tf",
".",
"to_int32",
"(",
"tf",
".",
"argmax",
"(",
"logits",
",",
"axis",
"=",
"-",
"1",
")",
")",
"# TODO: Look into removing use of py_func",
"rouge_2_f_score",
"=",
"tf",
".",
"py_func",
"(",
"rouge_n",
",",
"(",
"predictions",
",",
"labels",
")",
",",
"tf",
".",
"float32",
")",
"return",
"rouge_2_f_score",
",",
"tf",
".",
"constant",
"(",
"1.0",
")"
] | ROUGE-2 F1 score computation between labels and predictions.
This is an approximate ROUGE scoring method since we do not glue word pieces
or decode the ids and tokenize the output.
Args:
logits: tensor, model predictions
labels: tensor, gold output.
Returns:
rouge2_fscore: approx rouge-2 f1 score. | [
"ROUGE",
"-",
"2",
"F1",
"score",
"computation",
"between",
"labels",
"and",
"predictions",
"."
] | python | train |
mitsei/dlkit | dlkit/json_/authorization/sessions.py | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/authorization/sessions.py#L2113-L2134 | def unassign_authorization_from_vault(self, authorization_id, vault_id):
"""Removes an ``Authorization`` from a ``Vault``.
arg: authorization_id (osid.id.Id): the ``Id`` of the
``Authorization``
arg: vault_id (osid.id.Id): the ``Id`` of the ``Vault``
raise: NotFound - ``authorization_id`` or ``vault_id`` not
found or ``authorization_id`` not assigned to
``vault_id``
raise: NullArgument - ``authorization_id`` or ``vault_id`` is
``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceBinAssignmentSession.unassign_resource_from_bin
mgr = self._get_provider_manager('AUTHORIZATION', local=True)
lookup_session = mgr.get_vault_lookup_session(proxy=self._proxy)
lookup_session.get_vault(vault_id) # to raise NotFound
self._unassign_object_from_catalog(authorization_id, vault_id) | [
"def",
"unassign_authorization_from_vault",
"(",
"self",
",",
"authorization_id",
",",
"vault_id",
")",
":",
"# Implemented from template for",
"# osid.resource.ResourceBinAssignmentSession.unassign_resource_from_bin",
"mgr",
"=",
"self",
".",
"_get_provider_manager",
"(",
"'AUTHORIZATION'",
",",
"local",
"=",
"True",
")",
"lookup_session",
"=",
"mgr",
".",
"get_vault_lookup_session",
"(",
"proxy",
"=",
"self",
".",
"_proxy",
")",
"lookup_session",
".",
"get_vault",
"(",
"vault_id",
")",
"# to raise NotFound",
"self",
".",
"_unassign_object_from_catalog",
"(",
"authorization_id",
",",
"vault_id",
")"
] | Removes an ``Authorization`` from a ``Vault``.
arg: authorization_id (osid.id.Id): the ``Id`` of the
``Authorization``
arg: vault_id (osid.id.Id): the ``Id`` of the ``Vault``
raise: NotFound - ``authorization_id`` or ``vault_id`` not
found or ``authorization_id`` not assigned to
``vault_id``
raise: NullArgument - ``authorization_id`` or ``vault_id`` is
``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.* | [
"Removes",
"an",
"Authorization",
"from",
"a",
"Vault",
"."
] | python | train |
couchbase/couchbase-python-client | couchbase/subdocument.py | https://github.com/couchbase/couchbase-python-client/blob/a7bada167785bf79a29c39f820d932a433a6a535/couchbase/subdocument.py#L184-L200 | def array_prepend(path, *values, **kwargs):
"""
Add new values to the beginning of an array.
:param path: Path to the array. The path should contain the *array itself*
and not an element *within* the array
:param values: one or more values to append
:param create_parents: Create the array if it does not exist
This operation is only valid in :cb_bmeth:`mutate_in`.
.. seealso:: :func:`array_append`, :func:`upsert`
"""
return _gen_4spec(LCB_SDCMD_ARRAY_ADD_FIRST, path,
MultiValue(*values),
create_path=kwargs.pop('create_parents', False),
**kwargs) | [
"def",
"array_prepend",
"(",
"path",
",",
"*",
"values",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_gen_4spec",
"(",
"LCB_SDCMD_ARRAY_ADD_FIRST",
",",
"path",
",",
"MultiValue",
"(",
"*",
"values",
")",
",",
"create_path",
"=",
"kwargs",
".",
"pop",
"(",
"'create_parents'",
",",
"False",
")",
",",
"*",
"*",
"kwargs",
")"
] | Add new values to the beginning of an array.
:param path: Path to the array. The path should contain the *array itself*
and not an element *within* the array
:param values: one or more values to append
:param create_parents: Create the array if it does not exist
This operation is only valid in :cb_bmeth:`mutate_in`.
.. seealso:: :func:`array_append`, :func:`upsert` | [
"Add",
"new",
"values",
"to",
"the",
"beginning",
"of",
"an",
"array",
"."
] | python | train |
pysathq/pysat | pysat/solvers.py | https://github.com/pysathq/pysat/blob/522742e8f2d4c6ac50ecd9087f7a346206774c67/pysat/solvers.py#L3357-L3364 | def get_core(self):
"""
Get an unsatisfiable core if the formula was previously
unsatisfied.
"""
if self.minisat and self.status == False:
return pysolvers.minisatgh_core(self.minisat) | [
"def",
"get_core",
"(",
"self",
")",
":",
"if",
"self",
".",
"minisat",
"and",
"self",
".",
"status",
"==",
"False",
":",
"return",
"pysolvers",
".",
"minisatgh_core",
"(",
"self",
".",
"minisat",
")"
] | Get an unsatisfiable core if the formula was previously
unsatisfied. | [
"Get",
"an",
"unsatisfiable",
"core",
"if",
"the",
"formula",
"was",
"previously",
"unsatisfied",
"."
] | python | train |
stanfordnlp/stanza | stanza/research/config.py | https://github.com/stanfordnlp/stanza/blob/920c55d8eaa1e7105971059c66eb448a74c100d6/stanza/research/config.py#L88-L130 | def options(allow_partial=False, read=False):
'''
Get the object containing the values of the parsed command line options.
:param bool allow_partial: If `True`, ignore unrecognized arguments and allow
the options to be re-parsed next time `options` is called. This
also suppresses overwrite checking (the check is performed the first
time `options` is called with `allow_partial=False`).
:param bool read: If `True`, do not create or overwrite a `config.json`
file, and do not check whether such file already exists. Use for scripts
that read from the run directory rather than/in addition to writing to it.
:return argparse.Namespace: An object storing the values of the options specified
to the parser returned by `get_options_parser()`.
'''
global _options
if allow_partial:
opts, extras = _options_parser.parse_known_args()
if opts.run_dir:
mkdirp(opts.run_dir)
return opts
if _options is None:
# Add back in the help option (only show help and quit once arguments are finalized)
_options_parser.add_argument('-h', '--help', action='help', default=argparse.SUPPRESS,
help='show this help message and exit')
_options = _options_parser.parse_args()
if _options.run_dir:
mkdirp(_options.run_dir, overwrite=_options.overwrite or read)
if not read:
options_dump = vars(_options)
# People should be able to rerun an experiment with -C config.json safely.
# Don't include the overwrite option, since using a config from an experiment
# done with -O should still require passing -O for it to be overwritten again.
del options_dump['overwrite']
# And don't write the name of the other config file in this new one! It's
# probably harmless (config file interpretation can't be chained with the
# config option), but still confusing.
del options_dump['config']
dump_pretty(options_dump, 'config.json')
return _options | [
"def",
"options",
"(",
"allow_partial",
"=",
"False",
",",
"read",
"=",
"False",
")",
":",
"global",
"_options",
"if",
"allow_partial",
":",
"opts",
",",
"extras",
"=",
"_options_parser",
".",
"parse_known_args",
"(",
")",
"if",
"opts",
".",
"run_dir",
":",
"mkdirp",
"(",
"opts",
".",
"run_dir",
")",
"return",
"opts",
"if",
"_options",
"is",
"None",
":",
"# Add back in the help option (only show help and quit once arguments are finalized)",
"_options_parser",
".",
"add_argument",
"(",
"'-h'",
",",
"'--help'",
",",
"action",
"=",
"'help'",
",",
"default",
"=",
"argparse",
".",
"SUPPRESS",
",",
"help",
"=",
"'show this help message and exit'",
")",
"_options",
"=",
"_options_parser",
".",
"parse_args",
"(",
")",
"if",
"_options",
".",
"run_dir",
":",
"mkdirp",
"(",
"_options",
".",
"run_dir",
",",
"overwrite",
"=",
"_options",
".",
"overwrite",
"or",
"read",
")",
"if",
"not",
"read",
":",
"options_dump",
"=",
"vars",
"(",
"_options",
")",
"# People should be able to rerun an experiment with -C config.json safely.",
"# Don't include the overwrite option, since using a config from an experiment",
"# done with -O should still require passing -O for it to be overwritten again.",
"del",
"options_dump",
"[",
"'overwrite'",
"]",
"# And don't write the name of the other config file in this new one! It's",
"# probably harmless (config file interpretation can't be chained with the",
"# config option), but still confusing.",
"del",
"options_dump",
"[",
"'config'",
"]",
"dump_pretty",
"(",
"options_dump",
",",
"'config.json'",
")",
"return",
"_options"
] | Get the object containing the values of the parsed command line options.
:param bool allow_partial: If `True`, ignore unrecognized arguments and allow
the options to be re-parsed next time `options` is called. This
also suppresses overwrite checking (the check is performed the first
time `options` is called with `allow_partial=False`).
:param bool read: If `True`, do not create or overwrite a `config.json`
file, and do not check whether such file already exists. Use for scripts
that read from the run directory rather than/in addition to writing to it.
:return argparse.Namespace: An object storing the values of the options specified
to the parser returned by `get_options_parser()`. | [
"Get",
"the",
"object",
"containing",
"the",
"values",
"of",
"the",
"parsed",
"command",
"line",
"options",
"."
] | python | train |
kervi/kervi-devices | kervi/devices/gpio/MCP230XX.py | https://github.com/kervi/kervi-devices/blob/c6aaddc6da1d0bce0ea2b0c6eb8393ba10aefa56/kervi/devices/gpio/MCP230XX.py#L116-L125 | def pullup(self, pin, enabled):
"""Turn on the pull-up resistor for the specified pin if enabled is True,
otherwise turn off the pull-up resistor.
"""
self._validate_channel(pin)
if enabled:
self.gppu[int(pin/8)] |= 1 << (int(pin%8))
else:
self.gppu[int(pin/8)] &= ~(1 << (int(pin%8)))
self._write_gppu() | [
"def",
"pullup",
"(",
"self",
",",
"pin",
",",
"enabled",
")",
":",
"self",
".",
"_validate_channel",
"(",
"pin",
")",
"if",
"enabled",
":",
"self",
".",
"gppu",
"[",
"int",
"(",
"pin",
"/",
"8",
")",
"]",
"|=",
"1",
"<<",
"(",
"int",
"(",
"pin",
"%",
"8",
")",
")",
"else",
":",
"self",
".",
"gppu",
"[",
"int",
"(",
"pin",
"/",
"8",
")",
"]",
"&=",
"~",
"(",
"1",
"<<",
"(",
"int",
"(",
"pin",
"%",
"8",
")",
")",
")",
"self",
".",
"_write_gppu",
"(",
")"
] | Turn on the pull-up resistor for the specified pin if enabled is True,
otherwise turn off the pull-up resistor. | [
"Turn",
"on",
"the",
"pull",
"-",
"up",
"resistor",
"for",
"the",
"specified",
"pin",
"if",
"enabled",
"is",
"True",
"otherwise",
"turn",
"off",
"the",
"pull",
"-",
"up",
"resistor",
"."
] | python | train |
mitsei/dlkit | dlkit/json_/assessment_authoring/sessions.py | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/assessment_authoring/sessions.py#L2143-L2165 | def get_sequence_rules_by_genus_type(self, sequence_rule_genus_type):
"""Gets a ``SequenceRuleList`` corresponding to the given sequence rule genus ``Type`` which does not include sequence rule of genus types derived from the specified ``Type``.
arg: sequence_rule_genus_type (osid.type.Type): a sequence
rule genus type
return: (osid.assessment.authoring.SequenceRuleList) - the
returned ``SequenceRule`` list
raise: NullArgument - ``sequence_rule_genus_type`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceLookupSession.get_resources_by_genus_type
# NOTE: This implementation currently ignores plenary view
collection = JSONClientValidated('assessment_authoring',
collection='SequenceRule',
runtime=self._runtime)
result = collection.find(
dict({'genusTypeId': str(sequence_rule_genus_type)},
**self._view_filter())).sort('_id', DESCENDING)
return objects.SequenceRuleList(result, runtime=self._runtime, proxy=self._proxy) | [
"def",
"get_sequence_rules_by_genus_type",
"(",
"self",
",",
"sequence_rule_genus_type",
")",
":",
"# Implemented from template for",
"# osid.resource.ResourceLookupSession.get_resources_by_genus_type",
"# NOTE: This implementation currently ignores plenary view",
"collection",
"=",
"JSONClientValidated",
"(",
"'assessment_authoring'",
",",
"collection",
"=",
"'SequenceRule'",
",",
"runtime",
"=",
"self",
".",
"_runtime",
")",
"result",
"=",
"collection",
".",
"find",
"(",
"dict",
"(",
"{",
"'genusTypeId'",
":",
"str",
"(",
"sequence_rule_genus_type",
")",
"}",
",",
"*",
"*",
"self",
".",
"_view_filter",
"(",
")",
")",
")",
".",
"sort",
"(",
"'_id'",
",",
"DESCENDING",
")",
"return",
"objects",
".",
"SequenceRuleList",
"(",
"result",
",",
"runtime",
"=",
"self",
".",
"_runtime",
",",
"proxy",
"=",
"self",
".",
"_proxy",
")"
] | Gets a ``SequenceRuleList`` corresponding to the given sequence rule genus ``Type`` which does not include sequence rule of genus types derived from the specified ``Type``.
arg: sequence_rule_genus_type (osid.type.Type): a sequence
rule genus type
return: (osid.assessment.authoring.SequenceRuleList) - the
returned ``SequenceRule`` list
raise: NullArgument - ``sequence_rule_genus_type`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.* | [
"Gets",
"a",
"SequenceRuleList",
"corresponding",
"to",
"the",
"given",
"sequence",
"rule",
"genus",
"Type",
"which",
"does",
"not",
"include",
"sequence",
"rule",
"of",
"genus",
"types",
"derived",
"from",
"the",
"specified",
"Type",
"."
] | python | train |
coderholic/django-cities | cities/util.py | https://github.com/coderholic/django-cities/blob/5e1cf86ff1d05e2d325cb2770c6df279599f5f98/cities/util.py#L27-L34 | def geo_distance(a, b):
"""Distance between two geo points in km. (p.x = long, p.y = lat)"""
a_y = radians(a.y)
b_y = radians(b.y)
delta_x = radians(a.x - b.x)
cos_x = (sin(a_y) * sin(b_y) +
cos(a_y) * cos(b_y) * cos(delta_x))
return acos(cos_x) * earth_radius_km | [
"def",
"geo_distance",
"(",
"a",
",",
"b",
")",
":",
"a_y",
"=",
"radians",
"(",
"a",
".",
"y",
")",
"b_y",
"=",
"radians",
"(",
"b",
".",
"y",
")",
"delta_x",
"=",
"radians",
"(",
"a",
".",
"x",
"-",
"b",
".",
"x",
")",
"cos_x",
"=",
"(",
"sin",
"(",
"a_y",
")",
"*",
"sin",
"(",
"b_y",
")",
"+",
"cos",
"(",
"a_y",
")",
"*",
"cos",
"(",
"b_y",
")",
"*",
"cos",
"(",
"delta_x",
")",
")",
"return",
"acos",
"(",
"cos_x",
")",
"*",
"earth_radius_km"
] | Distance between two geo points in km. (p.x = long, p.y = lat) | [
"Distance",
"between",
"two",
"geo",
"points",
"in",
"km",
".",
"(",
"p",
".",
"x",
"=",
"long",
"p",
".",
"y",
"=",
"lat",
")"
] | python | train |
daniellawrence/graphitesend | graphitesend/graphitesend.py | https://github.com/daniellawrence/graphitesend/blob/02281263e642f9b6e146886d4544e1d7aebd7753/graphitesend/graphitesend.py#L221-L236 | def disconnect(self):
"""
Close the TCP connection with the graphite server.
"""
try:
self.socket.shutdown(1)
# If its currently a socket, set it to None
except AttributeError:
self.socket = None
except Exception:
self.socket = None
# Set the self.socket to None, no matter what.
finally:
self.socket = None | [
"def",
"disconnect",
"(",
"self",
")",
":",
"try",
":",
"self",
".",
"socket",
".",
"shutdown",
"(",
"1",
")",
"# If its currently a socket, set it to None",
"except",
"AttributeError",
":",
"self",
".",
"socket",
"=",
"None",
"except",
"Exception",
":",
"self",
".",
"socket",
"=",
"None",
"# Set the self.socket to None, no matter what.",
"finally",
":",
"self",
".",
"socket",
"=",
"None"
] | Close the TCP connection with the graphite server. | [
"Close",
"the",
"TCP",
"connection",
"with",
"the",
"graphite",
"server",
"."
] | python | train |
jupyterhub/kubespawner | kubespawner/spawner.py | https://github.com/jupyterhub/kubespawner/blob/46a4b109c5e657a4c3d5bfa8ea4731ec6564ea13/kubespawner/spawner.py#L1912-L1926 | def load_user_options(self):
"""Load user options from self.user_options dict
This can be set via POST to the API or via options_from_form
Only supported argument by default is 'profile'.
Override in subclasses to support other options.
"""
if self._profile_list is None:
if callable(self.profile_list):
self._profile_list = yield gen.maybe_future(self.profile_list(self))
else:
self._profile_list = self.profile_list
if self._profile_list:
yield self._load_profile(self.user_options.get('profile', None)) | [
"def",
"load_user_options",
"(",
"self",
")",
":",
"if",
"self",
".",
"_profile_list",
"is",
"None",
":",
"if",
"callable",
"(",
"self",
".",
"profile_list",
")",
":",
"self",
".",
"_profile_list",
"=",
"yield",
"gen",
".",
"maybe_future",
"(",
"self",
".",
"profile_list",
"(",
"self",
")",
")",
"else",
":",
"self",
".",
"_profile_list",
"=",
"self",
".",
"profile_list",
"if",
"self",
".",
"_profile_list",
":",
"yield",
"self",
".",
"_load_profile",
"(",
"self",
".",
"user_options",
".",
"get",
"(",
"'profile'",
",",
"None",
")",
")"
] | Load user options from self.user_options dict
This can be set via POST to the API or via options_from_form
Only supported argument by default is 'profile'.
Override in subclasses to support other options. | [
"Load",
"user",
"options",
"from",
"self",
".",
"user_options",
"dict"
] | python | train |
resonai/ybt | yabt/builders/cpp.py | https://github.com/resonai/ybt/blob/5b40df0922ef3383eb85f2b04a26a2db4b81b3fd/yabt/builders/cpp.py#L268-L304 | def link_cpp_artifacts(build_context, target, workspace_dir,
include_objects: bool):
"""Link required artifacts from dependencies under target workspace dir.
Return list of object files of dependencies (if `include_objects`).
Includes:
- Generated code from proto dependencies
- Header files from all dependencies
- Generated header files from all dependencies
- If `include_objects` is True, also object files from all dependencies
(these will be returned without linking)
"""
# include the source & header files of the current target
# add objects of all dependencies (direct & transitive), if needed
source_files = target.props.sources + target.props.headers
generated_srcs = {}
objects = []
# add headers of dependencies
for dep in build_context.generate_all_deps(target):
source_files.extend(dep.props.get('headers', []))
link_files(source_files, workspace_dir, None, build_context.conf)
# add generated headers and collect objects of dependencies
for dep in build_context.generate_all_deps(target):
dep.artifacts.link_types(workspace_dir, [AT.gen_h], build_context.conf)
if include_objects:
objects.extend(dep.artifacts.get(AT.object).values())
# add generated code from proto dependencies
for proto_dep_name in target.props.protos:
proto_dep = build_context.targets[proto_dep_name]
proto_dep.artifacts.link_types(workspace_dir, [AT.gen_cc],
build_context.conf)
return objects | [
"def",
"link_cpp_artifacts",
"(",
"build_context",
",",
"target",
",",
"workspace_dir",
",",
"include_objects",
":",
"bool",
")",
":",
"# include the source & header files of the current target",
"# add objects of all dependencies (direct & transitive), if needed",
"source_files",
"=",
"target",
".",
"props",
".",
"sources",
"+",
"target",
".",
"props",
".",
"headers",
"generated_srcs",
"=",
"{",
"}",
"objects",
"=",
"[",
"]",
"# add headers of dependencies",
"for",
"dep",
"in",
"build_context",
".",
"generate_all_deps",
"(",
"target",
")",
":",
"source_files",
".",
"extend",
"(",
"dep",
".",
"props",
".",
"get",
"(",
"'headers'",
",",
"[",
"]",
")",
")",
"link_files",
"(",
"source_files",
",",
"workspace_dir",
",",
"None",
",",
"build_context",
".",
"conf",
")",
"# add generated headers and collect objects of dependencies",
"for",
"dep",
"in",
"build_context",
".",
"generate_all_deps",
"(",
"target",
")",
":",
"dep",
".",
"artifacts",
".",
"link_types",
"(",
"workspace_dir",
",",
"[",
"AT",
".",
"gen_h",
"]",
",",
"build_context",
".",
"conf",
")",
"if",
"include_objects",
":",
"objects",
".",
"extend",
"(",
"dep",
".",
"artifacts",
".",
"get",
"(",
"AT",
".",
"object",
")",
".",
"values",
"(",
")",
")",
"# add generated code from proto dependencies",
"for",
"proto_dep_name",
"in",
"target",
".",
"props",
".",
"protos",
":",
"proto_dep",
"=",
"build_context",
".",
"targets",
"[",
"proto_dep_name",
"]",
"proto_dep",
".",
"artifacts",
".",
"link_types",
"(",
"workspace_dir",
",",
"[",
"AT",
".",
"gen_cc",
"]",
",",
"build_context",
".",
"conf",
")",
"return",
"objects"
] | Link required artifacts from dependencies under target workspace dir.
Return list of object files of dependencies (if `include_objects`).
Includes:
- Generated code from proto dependencies
- Header files from all dependencies
- Generated header files from all dependencies
- If `include_objects` is True, also object files from all dependencies
(these will be returned without linking) | [
"Link",
"required",
"artifacts",
"from",
"dependencies",
"under",
"target",
"workspace",
"dir",
".",
"Return",
"list",
"of",
"object",
"files",
"of",
"dependencies",
"(",
"if",
"include_objects",
")",
"."
] | python | train |
Kozea/pygal | pygal/graph/dot.py | https://github.com/Kozea/pygal/blob/5e25c98a59a0642eecd9fcc5dbfeeb2190fbb5e7/pygal/graph/dot.py#L126-L133 | def _plot(self):
"""Plot all dots for series"""
r_max = min(
self.view.x(1) - self.view.x(0),
(self.view.y(0) or 0) - self.view.y(1)
) / (2 * 1.05)
for serie in self.series:
self.dot(serie, r_max) | [
"def",
"_plot",
"(",
"self",
")",
":",
"r_max",
"=",
"min",
"(",
"self",
".",
"view",
".",
"x",
"(",
"1",
")",
"-",
"self",
".",
"view",
".",
"x",
"(",
"0",
")",
",",
"(",
"self",
".",
"view",
".",
"y",
"(",
"0",
")",
"or",
"0",
")",
"-",
"self",
".",
"view",
".",
"y",
"(",
"1",
")",
")",
"/",
"(",
"2",
"*",
"1.05",
")",
"for",
"serie",
"in",
"self",
".",
"series",
":",
"self",
".",
"dot",
"(",
"serie",
",",
"r_max",
")"
] | Plot all dots for series | [
"Plot",
"all",
"dots",
"for",
"series"
] | python | train |
google/grr | grr/server/grr_response_server/databases/mysql_clients.py | https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/server/grr_response_server/databases/mysql_clients.py#L440-L479 | def MultiReadClientFullInfo(self, client_ids, min_last_ping=None,
cursor=None):
"""Reads full client information for a list of clients."""
if not client_ids:
return {}
query = (
"SELECT "
"c.client_id, c.fleetspeak_enabled, c.certificate, "
"UNIX_TIMESTAMP(c.last_ping), UNIX_TIMESTAMP(c.last_clock), "
"c.last_ip, UNIX_TIMESTAMP(c.last_foreman), "
"UNIX_TIMESTAMP(c.first_seen), "
"UNIX_TIMESTAMP(c.last_snapshot_timestamp), "
"UNIX_TIMESTAMP(c.last_crash_timestamp), "
"UNIX_TIMESTAMP(c.last_startup_timestamp), "
"h.client_snapshot, s.startup_info, s_last.startup_info, "
"l.owner_username, l.label "
"FROM clients as c "
"FORCE INDEX (PRIMARY) "
"LEFT JOIN client_snapshot_history as h FORCE INDEX (PRIMARY) ON ( "
"c.client_id = h.client_id AND "
"h.timestamp = c.last_snapshot_timestamp) "
"LEFT JOIN client_startup_history as s FORCE INDEX (PRIMARY) ON ( "
"c.client_id = s.client_id AND "
"s.timestamp = c.last_snapshot_timestamp) "
"LEFT JOIN client_startup_history as s_last FORCE INDEX (PRIMARY) ON ( "
"c.client_id = s_last.client_id "
"AND s_last.timestamp = c.last_startup_timestamp) "
"LEFT JOIN client_labels AS l FORCE INDEX (PRIMARY) "
"ON (c.client_id = l.client_id) ")
query += "WHERE c.client_id IN (%s) " % ", ".join(["%s"] * len(client_ids))
values = [db_utils.ClientIDToInt(cid) for cid in client_ids]
if min_last_ping is not None:
query += "AND c.last_ping >= FROM_UNIXTIME(%s)"
values.append(mysql_utils.RDFDatetimeToTimestamp(min_last_ping))
cursor.execute(query, values)
return dict(self._ResponseToClientsFullInfo(cursor.fetchall())) | [
"def",
"MultiReadClientFullInfo",
"(",
"self",
",",
"client_ids",
",",
"min_last_ping",
"=",
"None",
",",
"cursor",
"=",
"None",
")",
":",
"if",
"not",
"client_ids",
":",
"return",
"{",
"}",
"query",
"=",
"(",
"\"SELECT \"",
"\"c.client_id, c.fleetspeak_enabled, c.certificate, \"",
"\"UNIX_TIMESTAMP(c.last_ping), UNIX_TIMESTAMP(c.last_clock), \"",
"\"c.last_ip, UNIX_TIMESTAMP(c.last_foreman), \"",
"\"UNIX_TIMESTAMP(c.first_seen), \"",
"\"UNIX_TIMESTAMP(c.last_snapshot_timestamp), \"",
"\"UNIX_TIMESTAMP(c.last_crash_timestamp), \"",
"\"UNIX_TIMESTAMP(c.last_startup_timestamp), \"",
"\"h.client_snapshot, s.startup_info, s_last.startup_info, \"",
"\"l.owner_username, l.label \"",
"\"FROM clients as c \"",
"\"FORCE INDEX (PRIMARY) \"",
"\"LEFT JOIN client_snapshot_history as h FORCE INDEX (PRIMARY) ON ( \"",
"\"c.client_id = h.client_id AND \"",
"\"h.timestamp = c.last_snapshot_timestamp) \"",
"\"LEFT JOIN client_startup_history as s FORCE INDEX (PRIMARY) ON ( \"",
"\"c.client_id = s.client_id AND \"",
"\"s.timestamp = c.last_snapshot_timestamp) \"",
"\"LEFT JOIN client_startup_history as s_last FORCE INDEX (PRIMARY) ON ( \"",
"\"c.client_id = s_last.client_id \"",
"\"AND s_last.timestamp = c.last_startup_timestamp) \"",
"\"LEFT JOIN client_labels AS l FORCE INDEX (PRIMARY) \"",
"\"ON (c.client_id = l.client_id) \"",
")",
"query",
"+=",
"\"WHERE c.client_id IN (%s) \"",
"%",
"\", \"",
".",
"join",
"(",
"[",
"\"%s\"",
"]",
"*",
"len",
"(",
"client_ids",
")",
")",
"values",
"=",
"[",
"db_utils",
".",
"ClientIDToInt",
"(",
"cid",
")",
"for",
"cid",
"in",
"client_ids",
"]",
"if",
"min_last_ping",
"is",
"not",
"None",
":",
"query",
"+=",
"\"AND c.last_ping >= FROM_UNIXTIME(%s)\"",
"values",
".",
"append",
"(",
"mysql_utils",
".",
"RDFDatetimeToTimestamp",
"(",
"min_last_ping",
")",
")",
"cursor",
".",
"execute",
"(",
"query",
",",
"values",
")",
"return",
"dict",
"(",
"self",
".",
"_ResponseToClientsFullInfo",
"(",
"cursor",
".",
"fetchall",
"(",
")",
")",
")"
] | Reads full client information for a list of clients. | [
"Reads",
"full",
"client",
"information",
"for",
"a",
"list",
"of",
"clients",
"."
] | python | train |
bennylope/pygeocodio | geocodio/client.py | https://github.com/bennylope/pygeocodio/blob/4c33d3d34f6b63d4b8fe85fe571ae02b9f67d6c3/geocodio/client.py#L242-L254 | def batch_reverse(self, points, **kwargs):
"""
Method for identifying the addresses from a list of lat/lng tuples
"""
fields = ",".join(kwargs.pop("fields", []))
response = self._req(
"post", verb="reverse", params={"fields": fields}, data=json_points(points)
)
if response.status_code != 200:
return error_response(response)
logger.debug(response)
return LocationCollection(response.json()["results"]) | [
"def",
"batch_reverse",
"(",
"self",
",",
"points",
",",
"*",
"*",
"kwargs",
")",
":",
"fields",
"=",
"\",\"",
".",
"join",
"(",
"kwargs",
".",
"pop",
"(",
"\"fields\"",
",",
"[",
"]",
")",
")",
"response",
"=",
"self",
".",
"_req",
"(",
"\"post\"",
",",
"verb",
"=",
"\"reverse\"",
",",
"params",
"=",
"{",
"\"fields\"",
":",
"fields",
"}",
",",
"data",
"=",
"json_points",
"(",
"points",
")",
")",
"if",
"response",
".",
"status_code",
"!=",
"200",
":",
"return",
"error_response",
"(",
"response",
")",
"logger",
".",
"debug",
"(",
"response",
")",
"return",
"LocationCollection",
"(",
"response",
".",
"json",
"(",
")",
"[",
"\"results\"",
"]",
")"
] | Method for identifying the addresses from a list of lat/lng tuples | [
"Method",
"for",
"identifying",
"the",
"addresses",
"from",
"a",
"list",
"of",
"lat",
"/",
"lng",
"tuples"
] | python | train |
maas/python-libmaas | maas/client/viscera/sshkeys.py | https://github.com/maas/python-libmaas/blob/4092c68ef7fb1753efc843569848e2bcc3415002/maas/client/viscera/sshkeys.py#L25-L34 | async def create(cls, key: str):
"""
Create an SSH key in MAAS with the content in `key`.
:param key: The content of the SSH key
:type key: `str`
:returns: The created SSH key
:rtype: `SSHKey`
"""
return cls._object(await cls._handler.create(key=key)) | [
"async",
"def",
"create",
"(",
"cls",
",",
"key",
":",
"str",
")",
":",
"return",
"cls",
".",
"_object",
"(",
"await",
"cls",
".",
"_handler",
".",
"create",
"(",
"key",
"=",
"key",
")",
")"
] | Create an SSH key in MAAS with the content in `key`.
:param key: The content of the SSH key
:type key: `str`
:returns: The created SSH key
:rtype: `SSHKey` | [
"Create",
"an",
"SSH",
"key",
"in",
"MAAS",
"with",
"the",
"content",
"in",
"key",
"."
] | python | train |
inasafe/inasafe | safe/definitions/earthquake.py | https://github.com/inasafe/inasafe/blob/831d60abba919f6d481dc94a8d988cc205130724/safe/definitions/earthquake.py#L300-L354 | def erf(z):
"""Approximation to ERF.
:param z: Input array or scalar to perform erf on.
:type z: numpy.ndarray, float
:returns: The approximate error.
:rtype: numpy.ndarray, float
Note:
from:
http://www.cs.princeton.edu/introcs/21function/ErrorFunction.java.html
Implements the Gauss error function.
erf(z) = 2 / sqrt(pi) * integral(exp(-t*t), t = 0..z)
Fractional error in math formula less than 1.2 * 10 ^ -7.
although subject to catastrophic cancellation when z in very close to 0
from Chebyshev fitting formula for erf(z) from Numerical Recipes, 6.2
Source:
http://stackoverflow.com/questions/457408/
is-there-an-easily-available-implementation-of-erf-for-python
"""
# Input check
try:
len(z)
except TypeError:
scalar = True
z = [z]
else:
scalar = False
z = numpy.array(z)
# Begin algorithm
t = 1.0 / (1.0 + 0.5 * numpy.abs(z))
# Use Horner's method
ans = 1 - t * numpy.exp(
-z * z - 1.26551223 + t * (
1.00002368 + t * (0.37409196 + t * (
0.09678418 + t * (
-0.18628806 + t * (
0.27886807 + t * (
-1.13520398 + t * (
1.48851587 + t * (
-0.82215223 + t * 0.17087277)))))))))
neg = (z < 0.0) # Mask for negative input values
ans[neg] = -ans[neg]
if scalar:
return ans[0]
else:
return ans | [
"def",
"erf",
"(",
"z",
")",
":",
"# Input check",
"try",
":",
"len",
"(",
"z",
")",
"except",
"TypeError",
":",
"scalar",
"=",
"True",
"z",
"=",
"[",
"z",
"]",
"else",
":",
"scalar",
"=",
"False",
"z",
"=",
"numpy",
".",
"array",
"(",
"z",
")",
"# Begin algorithm",
"t",
"=",
"1.0",
"/",
"(",
"1.0",
"+",
"0.5",
"*",
"numpy",
".",
"abs",
"(",
"z",
")",
")",
"# Use Horner's method",
"ans",
"=",
"1",
"-",
"t",
"*",
"numpy",
".",
"exp",
"(",
"-",
"z",
"*",
"z",
"-",
"1.26551223",
"+",
"t",
"*",
"(",
"1.00002368",
"+",
"t",
"*",
"(",
"0.37409196",
"+",
"t",
"*",
"(",
"0.09678418",
"+",
"t",
"*",
"(",
"-",
"0.18628806",
"+",
"t",
"*",
"(",
"0.27886807",
"+",
"t",
"*",
"(",
"-",
"1.13520398",
"+",
"t",
"*",
"(",
"1.48851587",
"+",
"t",
"*",
"(",
"-",
"0.82215223",
"+",
"t",
"*",
"0.17087277",
")",
")",
")",
")",
")",
")",
")",
")",
")",
"neg",
"=",
"(",
"z",
"<",
"0.0",
")",
"# Mask for negative input values",
"ans",
"[",
"neg",
"]",
"=",
"-",
"ans",
"[",
"neg",
"]",
"if",
"scalar",
":",
"return",
"ans",
"[",
"0",
"]",
"else",
":",
"return",
"ans"
] | Approximation to ERF.
:param z: Input array or scalar to perform erf on.
:type z: numpy.ndarray, float
:returns: The approximate error.
:rtype: numpy.ndarray, float
Note:
from:
http://www.cs.princeton.edu/introcs/21function/ErrorFunction.java.html
Implements the Gauss error function.
erf(z) = 2 / sqrt(pi) * integral(exp(-t*t), t = 0..z)
Fractional error in math formula less than 1.2 * 10 ^ -7.
although subject to catastrophic cancellation when z in very close to 0
from Chebyshev fitting formula for erf(z) from Numerical Recipes, 6.2
Source:
http://stackoverflow.com/questions/457408/
is-there-an-easily-available-implementation-of-erf-for-python | [
"Approximation",
"to",
"ERF",
"."
] | python | train |
mikedh/trimesh | trimesh/ray/ray_pyembree.py | https://github.com/mikedh/trimesh/blob/25e059bf6d4caa74f62ffd58ce4f61a90ee4e518/trimesh/ray/ray_pyembree.py#L254-L274 | def intersects_any(self,
ray_origins,
ray_directions):
"""
Check if a list of rays hits the surface.
Parameters
----------
ray_origins: (n,3) float, origins of rays
ray_directions: (n,3) float, direction (vector) of rays
Returns
----------
hit: (n,) bool, did each ray hit the surface
"""
first = self.intersects_first(ray_origins=ray_origins,
ray_directions=ray_directions)
hit = first != -1
return hit | [
"def",
"intersects_any",
"(",
"self",
",",
"ray_origins",
",",
"ray_directions",
")",
":",
"first",
"=",
"self",
".",
"intersects_first",
"(",
"ray_origins",
"=",
"ray_origins",
",",
"ray_directions",
"=",
"ray_directions",
")",
"hit",
"=",
"first",
"!=",
"-",
"1",
"return",
"hit"
] | Check if a list of rays hits the surface.
Parameters
----------
ray_origins: (n,3) float, origins of rays
ray_directions: (n,3) float, direction (vector) of rays
Returns
----------
hit: (n,) bool, did each ray hit the surface | [
"Check",
"if",
"a",
"list",
"of",
"rays",
"hits",
"the",
"surface",
"."
] | python | train |
inspirehep/harvesting-kit | harvestingkit/utils.py | https://github.com/inspirehep/harvesting-kit/blob/33a7f8aa9dade1d863110c6d8b27dfd955cb471f/harvestingkit/utils.py#L189-L210 | def add_nations_field(authors_subfields):
"""Add correct nations field according to mapping in NATIONS_DEFAULT_MAP."""
from .config import NATIONS_DEFAULT_MAP
result = []
for field in authors_subfields:
if field[0] == 'v':
values = [x.replace('.', '') for x in field[1].split(', ')]
possible_affs = filter(lambda x: x is not None,
map(NATIONS_DEFAULT_MAP.get, values))
if 'CERN' in possible_affs and 'Switzerland' in possible_affs:
# Don't use remove in case of multiple Switzerlands
possible_affs = [x for x in possible_affs
if x != 'Switzerland']
result.extend(possible_affs)
result = sorted(list(set(result)))
if result:
authors_subfields.extend([('w', res) for res in result])
else:
authors_subfields.append(('w', 'HUMAN CHECK')) | [
"def",
"add_nations_field",
"(",
"authors_subfields",
")",
":",
"from",
".",
"config",
"import",
"NATIONS_DEFAULT_MAP",
"result",
"=",
"[",
"]",
"for",
"field",
"in",
"authors_subfields",
":",
"if",
"field",
"[",
"0",
"]",
"==",
"'v'",
":",
"values",
"=",
"[",
"x",
".",
"replace",
"(",
"'.'",
",",
"''",
")",
"for",
"x",
"in",
"field",
"[",
"1",
"]",
".",
"split",
"(",
"', '",
")",
"]",
"possible_affs",
"=",
"filter",
"(",
"lambda",
"x",
":",
"x",
"is",
"not",
"None",
",",
"map",
"(",
"NATIONS_DEFAULT_MAP",
".",
"get",
",",
"values",
")",
")",
"if",
"'CERN'",
"in",
"possible_affs",
"and",
"'Switzerland'",
"in",
"possible_affs",
":",
"# Don't use remove in case of multiple Switzerlands",
"possible_affs",
"=",
"[",
"x",
"for",
"x",
"in",
"possible_affs",
"if",
"x",
"!=",
"'Switzerland'",
"]",
"result",
".",
"extend",
"(",
"possible_affs",
")",
"result",
"=",
"sorted",
"(",
"list",
"(",
"set",
"(",
"result",
")",
")",
")",
"if",
"result",
":",
"authors_subfields",
".",
"extend",
"(",
"[",
"(",
"'w'",
",",
"res",
")",
"for",
"res",
"in",
"result",
"]",
")",
"else",
":",
"authors_subfields",
".",
"append",
"(",
"(",
"'w'",
",",
"'HUMAN CHECK'",
")",
")"
] | Add correct nations field according to mapping in NATIONS_DEFAULT_MAP. | [
"Add",
"correct",
"nations",
"field",
"according",
"to",
"mapping",
"in",
"NATIONS_DEFAULT_MAP",
"."
] | python | valid |
msmbuilder/msmbuilder | msmbuilder/cluster/agglomerative.py | https://github.com/msmbuilder/msmbuilder/blob/556a93a170782f47be53f4a1e9d740fb1c8272b3/msmbuilder/cluster/agglomerative.py#L165-L232 | def fit(self, X, y=None):
"""
Compute agglomerative clustering.
Parameters
----------
X : array-like, shape=(n_samples, n_features)
Returns
-------
self
"""
if self.max_landmarks is not None:
if self.n_clusters > self.n_landmarks:
self.n_landmarks = self.max_landmarks
if self.n_landmarks is None:
distances = pdist(X, self.metric)
tree = linkage(distances, method=self.linkage)
self.landmark_labels_ = fcluster(tree, criterion='maxclust',
t=self.n_clusters) - 1
self.cardinality_ = np.bincount(self.landmark_labels_)
self.squared_distances_within_cluster_ = np.zeros(self.n_clusters)
n = len(X)
for k in range(len(distances)):
i = int(n - 2 - np.floor(np.sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5))
j = int(k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2)
if self.landmark_labels_[i] == self.landmark_labels_[j]:
self.squared_distances_within_cluster_[
self.landmark_labels_[i]] += distances[k] ** 2
self.landmarks_ = X
else:
if self.landmark_strategy == 'random':
land_indices = check_random_state(self.random_state).randint(
len(X), size=self.n_landmarks)
else:
land_indices = np.arange(len(X))[::(len(X) //
self.n_landmarks)][:self.n_landmarks]
distances = pdist(X[land_indices], self.metric)
tree = linkage(distances, method=self.linkage)
self.landmark_labels_ = fcluster(tree, criterion='maxclust',
t=self.n_clusters) - 1
self.cardinality_ = np.bincount(self.landmark_labels_)
self.squared_distances_within_cluster_ = np.zeros(self.n_clusters)
n = len(X[land_indices])
for k in range(len(distances)):
i = int(n - 2 - np.floor(np.sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5))
j = int(k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2)
if self.landmark_labels_[i] == self.landmark_labels_[j]:
self.squared_distances_within_cluster_[
self.landmark_labels_[i]] += distances[k] ** 2
self.landmarks_ = X[land_indices]
if self.metric != 'rmsd':
cluster_centers_ = []
for i in range(self.n_clusters):
temp = list(np.mean(self.landmarks_[self.landmark_labels_==i], axis=0))
cluster_centers_.append(temp)
self.cluster_centers_ = np.array(cluster_centers_)
return self | [
"def",
"fit",
"(",
"self",
",",
"X",
",",
"y",
"=",
"None",
")",
":",
"if",
"self",
".",
"max_landmarks",
"is",
"not",
"None",
":",
"if",
"self",
".",
"n_clusters",
">",
"self",
".",
"n_landmarks",
":",
"self",
".",
"n_landmarks",
"=",
"self",
".",
"max_landmarks",
"if",
"self",
".",
"n_landmarks",
"is",
"None",
":",
"distances",
"=",
"pdist",
"(",
"X",
",",
"self",
".",
"metric",
")",
"tree",
"=",
"linkage",
"(",
"distances",
",",
"method",
"=",
"self",
".",
"linkage",
")",
"self",
".",
"landmark_labels_",
"=",
"fcluster",
"(",
"tree",
",",
"criterion",
"=",
"'maxclust'",
",",
"t",
"=",
"self",
".",
"n_clusters",
")",
"-",
"1",
"self",
".",
"cardinality_",
"=",
"np",
".",
"bincount",
"(",
"self",
".",
"landmark_labels_",
")",
"self",
".",
"squared_distances_within_cluster_",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"n_clusters",
")",
"n",
"=",
"len",
"(",
"X",
")",
"for",
"k",
"in",
"range",
"(",
"len",
"(",
"distances",
")",
")",
":",
"i",
"=",
"int",
"(",
"n",
"-",
"2",
"-",
"np",
".",
"floor",
"(",
"np",
".",
"sqrt",
"(",
"-",
"8",
"*",
"k",
"+",
"4",
"*",
"n",
"*",
"(",
"n",
"-",
"1",
")",
"-",
"7",
")",
"/",
"2.0",
"-",
"0.5",
")",
")",
"j",
"=",
"int",
"(",
"k",
"+",
"i",
"+",
"1",
"-",
"n",
"*",
"(",
"n",
"-",
"1",
")",
"/",
"2",
"+",
"(",
"n",
"-",
"i",
")",
"*",
"(",
"(",
"n",
"-",
"i",
")",
"-",
"1",
")",
"/",
"2",
")",
"if",
"self",
".",
"landmark_labels_",
"[",
"i",
"]",
"==",
"self",
".",
"landmark_labels_",
"[",
"j",
"]",
":",
"self",
".",
"squared_distances_within_cluster_",
"[",
"self",
".",
"landmark_labels_",
"[",
"i",
"]",
"]",
"+=",
"distances",
"[",
"k",
"]",
"**",
"2",
"self",
".",
"landmarks_",
"=",
"X",
"else",
":",
"if",
"self",
".",
"landmark_strategy",
"==",
"'random'",
":",
"land_indices",
"=",
"check_random_state",
"(",
"self",
".",
"random_state",
")",
".",
"randint",
"(",
"len",
"(",
"X",
")",
",",
"size",
"=",
"self",
".",
"n_landmarks",
")",
"else",
":",
"land_indices",
"=",
"np",
".",
"arange",
"(",
"len",
"(",
"X",
")",
")",
"[",
":",
":",
"(",
"len",
"(",
"X",
")",
"//",
"self",
".",
"n_landmarks",
")",
"]",
"[",
":",
"self",
".",
"n_landmarks",
"]",
"distances",
"=",
"pdist",
"(",
"X",
"[",
"land_indices",
"]",
",",
"self",
".",
"metric",
")",
"tree",
"=",
"linkage",
"(",
"distances",
",",
"method",
"=",
"self",
".",
"linkage",
")",
"self",
".",
"landmark_labels_",
"=",
"fcluster",
"(",
"tree",
",",
"criterion",
"=",
"'maxclust'",
",",
"t",
"=",
"self",
".",
"n_clusters",
")",
"-",
"1",
"self",
".",
"cardinality_",
"=",
"np",
".",
"bincount",
"(",
"self",
".",
"landmark_labels_",
")",
"self",
".",
"squared_distances_within_cluster_",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"n_clusters",
")",
"n",
"=",
"len",
"(",
"X",
"[",
"land_indices",
"]",
")",
"for",
"k",
"in",
"range",
"(",
"len",
"(",
"distances",
")",
")",
":",
"i",
"=",
"int",
"(",
"n",
"-",
"2",
"-",
"np",
".",
"floor",
"(",
"np",
".",
"sqrt",
"(",
"-",
"8",
"*",
"k",
"+",
"4",
"*",
"n",
"*",
"(",
"n",
"-",
"1",
")",
"-",
"7",
")",
"/",
"2.0",
"-",
"0.5",
")",
")",
"j",
"=",
"int",
"(",
"k",
"+",
"i",
"+",
"1",
"-",
"n",
"*",
"(",
"n",
"-",
"1",
")",
"/",
"2",
"+",
"(",
"n",
"-",
"i",
")",
"*",
"(",
"(",
"n",
"-",
"i",
")",
"-",
"1",
")",
"/",
"2",
")",
"if",
"self",
".",
"landmark_labels_",
"[",
"i",
"]",
"==",
"self",
".",
"landmark_labels_",
"[",
"j",
"]",
":",
"self",
".",
"squared_distances_within_cluster_",
"[",
"self",
".",
"landmark_labels_",
"[",
"i",
"]",
"]",
"+=",
"distances",
"[",
"k",
"]",
"**",
"2",
"self",
".",
"landmarks_",
"=",
"X",
"[",
"land_indices",
"]",
"if",
"self",
".",
"metric",
"!=",
"'rmsd'",
":",
"cluster_centers_",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"n_clusters",
")",
":",
"temp",
"=",
"list",
"(",
"np",
".",
"mean",
"(",
"self",
".",
"landmarks_",
"[",
"self",
".",
"landmark_labels_",
"==",
"i",
"]",
",",
"axis",
"=",
"0",
")",
")",
"cluster_centers_",
".",
"append",
"(",
"temp",
")",
"self",
".",
"cluster_centers_",
"=",
"np",
".",
"array",
"(",
"cluster_centers_",
")",
"return",
"self"
] | Compute agglomerative clustering.
Parameters
----------
X : array-like, shape=(n_samples, n_features)
Returns
-------
self | [
"Compute",
"agglomerative",
"clustering",
"."
] | python | train |
koszullab/metaTOR | metator/scripts/hicstuff.py | https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L479-L489 | def GC_partial(portion):
"""Manually compute GC content percentage in a DNA string, taking
ambiguous values into account (according to standard IUPAC notation).
"""
sequence_count = collections.Counter(portion)
gc = ((sum([sequence_count[i] for i in 'gGcCsS']) +
sum([sequence_count[i] for i in 'DdHh']) / 3.0 +
2 * sum([sequence_count[i] for i in 'VvBb']) / 3.0 +
sum([sequence_count[i] for i in 'NnYyRrKkMm']) / 2.0) / len(portion))
return 0 or 100 * gc | [
"def",
"GC_partial",
"(",
"portion",
")",
":",
"sequence_count",
"=",
"collections",
".",
"Counter",
"(",
"portion",
")",
"gc",
"=",
"(",
"(",
"sum",
"(",
"[",
"sequence_count",
"[",
"i",
"]",
"for",
"i",
"in",
"'gGcCsS'",
"]",
")",
"+",
"sum",
"(",
"[",
"sequence_count",
"[",
"i",
"]",
"for",
"i",
"in",
"'DdHh'",
"]",
")",
"/",
"3.0",
"+",
"2",
"*",
"sum",
"(",
"[",
"sequence_count",
"[",
"i",
"]",
"for",
"i",
"in",
"'VvBb'",
"]",
")",
"/",
"3.0",
"+",
"sum",
"(",
"[",
"sequence_count",
"[",
"i",
"]",
"for",
"i",
"in",
"'NnYyRrKkMm'",
"]",
")",
"/",
"2.0",
")",
"/",
"len",
"(",
"portion",
")",
")",
"return",
"0",
"or",
"100",
"*",
"gc"
] | Manually compute GC content percentage in a DNA string, taking
ambiguous values into account (according to standard IUPAC notation). | [
"Manually",
"compute",
"GC",
"content",
"percentage",
"in",
"a",
"DNA",
"string",
"taking",
"ambiguous",
"values",
"into",
"account",
"(",
"according",
"to",
"standard",
"IUPAC",
"notation",
")",
"."
] | python | train |
pvlib/pvlib-python | pvlib/pvsystem.py | https://github.com/pvlib/pvlib-python/blob/2e844a595b820b43d1170269781fa66bd0ccc8a3/pvlib/pvsystem.py#L2467-L2552 | def i_from_v(resistance_shunt, resistance_series, nNsVth, voltage,
saturation_current, photocurrent, method='lambertw'):
'''
Device current at the given device voltage for the single diode model.
Uses the single diode model (SDM) as described in, e.g.,
Jain and Kapoor 2004 [1].
The solution is per Eq 2 of [1] except when resistance_series=0,
in which case the explict solution for current is used.
Ideal device parameters are specified by resistance_shunt=np.inf and
resistance_series=0.
Inputs to this function can include scalars and pandas.Series, but it is
the caller's responsibility to ensure that the arguments are all float64
and within the proper ranges.
Parameters
----------
resistance_shunt : numeric
Shunt resistance in ohms under desired IV curve conditions.
Often abbreviated ``Rsh``.
0 < resistance_shunt <= numpy.inf
resistance_series : numeric
Series resistance in ohms under desired IV curve conditions.
Often abbreviated ``Rs``.
0 <= resistance_series < numpy.inf
nNsVth : numeric
The product of three components. 1) The usual diode ideal factor
(n), 2) the number of cells in series (Ns), and 3) the cell
thermal voltage under the desired IV curve conditions (Vth). The
thermal voltage of the cell (in volts) may be calculated as
``k*temp_cell/q``, where k is Boltzmann's constant (J/K),
temp_cell is the temperature of the p-n junction in Kelvin, and
q is the charge of an electron (coulombs).
0 < nNsVth
voltage : numeric
The voltage in Volts under desired IV curve conditions.
saturation_current : numeric
Diode saturation current in amperes under desired IV curve
conditions. Often abbreviated ``I_0``.
0 < saturation_current
photocurrent : numeric
Light-generated current (photocurrent) in amperes under desired
IV curve conditions. Often abbreviated ``I_L``.
0 <= photocurrent
method : str
Method to use: ``'lambertw'``, ``'newton'``, or ``'brentq'``. *Note*:
``'brentq'`` is limited to 1st quadrant only.
Returns
-------
current : np.ndarray or scalar
References
----------
[1] A. Jain, A. Kapoor, "Exact analytical solutions of the
parameters of real solar cells using Lambert W-function", Solar
Energy Materials and Solar Cells, 81 (2004) 269-277.
'''
if method.lower() == 'lambertw':
return _singlediode._lambertw_i_from_v(
resistance_shunt, resistance_series, nNsVth, voltage,
saturation_current, photocurrent
)
else:
# Calculate points on the IV curve using either 'newton' or 'brentq'
# methods. Voltages are determined by first solving the single diode
# equation for the diode voltage V_d then backing out voltage
args = (voltage, photocurrent, saturation_current, resistance_series,
resistance_shunt, nNsVth)
I = _singlediode.bishop88_i_from_v(*args, method=method.lower())
# find the right size and shape for returns
size, shape = _singlediode._get_size_and_shape(args)
if size <= 1:
if shape is not None:
I = np.tile(I, shape)
if np.isnan(I).any() and size <= 1:
I = np.repeat(I, size)
if shape is not None:
I = I.reshape(shape)
return I | [
"def",
"i_from_v",
"(",
"resistance_shunt",
",",
"resistance_series",
",",
"nNsVth",
",",
"voltage",
",",
"saturation_current",
",",
"photocurrent",
",",
"method",
"=",
"'lambertw'",
")",
":",
"if",
"method",
".",
"lower",
"(",
")",
"==",
"'lambertw'",
":",
"return",
"_singlediode",
".",
"_lambertw_i_from_v",
"(",
"resistance_shunt",
",",
"resistance_series",
",",
"nNsVth",
",",
"voltage",
",",
"saturation_current",
",",
"photocurrent",
")",
"else",
":",
"# Calculate points on the IV curve using either 'newton' or 'brentq'",
"# methods. Voltages are determined by first solving the single diode",
"# equation for the diode voltage V_d then backing out voltage",
"args",
"=",
"(",
"voltage",
",",
"photocurrent",
",",
"saturation_current",
",",
"resistance_series",
",",
"resistance_shunt",
",",
"nNsVth",
")",
"I",
"=",
"_singlediode",
".",
"bishop88_i_from_v",
"(",
"*",
"args",
",",
"method",
"=",
"method",
".",
"lower",
"(",
")",
")",
"# find the right size and shape for returns",
"size",
",",
"shape",
"=",
"_singlediode",
".",
"_get_size_and_shape",
"(",
"args",
")",
"if",
"size",
"<=",
"1",
":",
"if",
"shape",
"is",
"not",
"None",
":",
"I",
"=",
"np",
".",
"tile",
"(",
"I",
",",
"shape",
")",
"if",
"np",
".",
"isnan",
"(",
"I",
")",
".",
"any",
"(",
")",
"and",
"size",
"<=",
"1",
":",
"I",
"=",
"np",
".",
"repeat",
"(",
"I",
",",
"size",
")",
"if",
"shape",
"is",
"not",
"None",
":",
"I",
"=",
"I",
".",
"reshape",
"(",
"shape",
")",
"return",
"I"
] | Device current at the given device voltage for the single diode model.
Uses the single diode model (SDM) as described in, e.g.,
Jain and Kapoor 2004 [1].
The solution is per Eq 2 of [1] except when resistance_series=0,
in which case the explict solution for current is used.
Ideal device parameters are specified by resistance_shunt=np.inf and
resistance_series=0.
Inputs to this function can include scalars and pandas.Series, but it is
the caller's responsibility to ensure that the arguments are all float64
and within the proper ranges.
Parameters
----------
resistance_shunt : numeric
Shunt resistance in ohms under desired IV curve conditions.
Often abbreviated ``Rsh``.
0 < resistance_shunt <= numpy.inf
resistance_series : numeric
Series resistance in ohms under desired IV curve conditions.
Often abbreviated ``Rs``.
0 <= resistance_series < numpy.inf
nNsVth : numeric
The product of three components. 1) The usual diode ideal factor
(n), 2) the number of cells in series (Ns), and 3) the cell
thermal voltage under the desired IV curve conditions (Vth). The
thermal voltage of the cell (in volts) may be calculated as
``k*temp_cell/q``, where k is Boltzmann's constant (J/K),
temp_cell is the temperature of the p-n junction in Kelvin, and
q is the charge of an electron (coulombs).
0 < nNsVth
voltage : numeric
The voltage in Volts under desired IV curve conditions.
saturation_current : numeric
Diode saturation current in amperes under desired IV curve
conditions. Often abbreviated ``I_0``.
0 < saturation_current
photocurrent : numeric
Light-generated current (photocurrent) in amperes under desired
IV curve conditions. Often abbreviated ``I_L``.
0 <= photocurrent
method : str
Method to use: ``'lambertw'``, ``'newton'``, or ``'brentq'``. *Note*:
``'brentq'`` is limited to 1st quadrant only.
Returns
-------
current : np.ndarray or scalar
References
----------
[1] A. Jain, A. Kapoor, "Exact analytical solutions of the
parameters of real solar cells using Lambert W-function", Solar
Energy Materials and Solar Cells, 81 (2004) 269-277. | [
"Device",
"current",
"at",
"the",
"given",
"device",
"voltage",
"for",
"the",
"single",
"diode",
"model",
"."
] | python | train |
zero-os/0-core | client/py-client/zeroos/core0/client/client.py | https://github.com/zero-os/0-core/blob/69f6ce845ab8b8ad805a79a415227e7ac566c218/client/py-client/zeroos/core0/client/client.py#L2378-L2389 | def resume(self, uuid):
"""
Resume a kvm domain by uuid
:param uuid: uuid of the kvm container (same as the used in create)
:return:
"""
args = {
'uuid': uuid,
}
self._domain_action_chk.check(args)
self._client.sync('kvm.resume', args) | [
"def",
"resume",
"(",
"self",
",",
"uuid",
")",
":",
"args",
"=",
"{",
"'uuid'",
":",
"uuid",
",",
"}",
"self",
".",
"_domain_action_chk",
".",
"check",
"(",
"args",
")",
"self",
".",
"_client",
".",
"sync",
"(",
"'kvm.resume'",
",",
"args",
")"
] | Resume a kvm domain by uuid
:param uuid: uuid of the kvm container (same as the used in create)
:return: | [
"Resume",
"a",
"kvm",
"domain",
"by",
"uuid",
":",
"param",
"uuid",
":",
"uuid",
"of",
"the",
"kvm",
"container",
"(",
"same",
"as",
"the",
"used",
"in",
"create",
")",
":",
"return",
":"
] | python | train |
mitsei/dlkit | dlkit/json_/repository/sessions.py | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/repository/sessions.py#L5601-L5620 | def is_child_of_repository(self, id_, repository_id):
"""Tests if a node is a direct child of another.
arg: id (osid.id.Id): an ``Id``
arg: repository_id (osid.id.Id): the ``Id`` of a repository
return: (boolean) - ``true`` if the ``id`` is a child of
``repository_id,`` ``false`` otherwise
raise: NotFound - ``repository_id`` not found
raise: NullArgument - ``repository_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.*
*implementation notes*: If ``id`` not found return ``false``.
"""
# Implemented from template for
# osid.resource.BinHierarchySession.is_child_of_bin
if self._catalog_session is not None:
return self._catalog_session.is_child_of_catalog(id_=id_, catalog_id=repository_id)
return self._hierarchy_session.is_child(id_=repository_id, child_id=id_) | [
"def",
"is_child_of_repository",
"(",
"self",
",",
"id_",
",",
"repository_id",
")",
":",
"# Implemented from template for",
"# osid.resource.BinHierarchySession.is_child_of_bin",
"if",
"self",
".",
"_catalog_session",
"is",
"not",
"None",
":",
"return",
"self",
".",
"_catalog_session",
".",
"is_child_of_catalog",
"(",
"id_",
"=",
"id_",
",",
"catalog_id",
"=",
"repository_id",
")",
"return",
"self",
".",
"_hierarchy_session",
".",
"is_child",
"(",
"id_",
"=",
"repository_id",
",",
"child_id",
"=",
"id_",
")"
] | Tests if a node is a direct child of another.
arg: id (osid.id.Id): an ``Id``
arg: repository_id (osid.id.Id): the ``Id`` of a repository
return: (boolean) - ``true`` if the ``id`` is a child of
``repository_id,`` ``false`` otherwise
raise: NotFound - ``repository_id`` not found
raise: NullArgument - ``repository_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.*
*implementation notes*: If ``id`` not found return ``false``. | [
"Tests",
"if",
"a",
"node",
"is",
"a",
"direct",
"child",
"of",
"another",
"."
] | python | train |
broadinstitute/fiss | firecloud/fiss.py | https://github.com/broadinstitute/fiss/blob/dddf91547479506dbbafb69ec84d44dcc4a94ab4/firecloud/fiss.py#L395-L404 | def meth_new(args):
""" Submit a new workflow (or update) to the methods repository. """
r = fapi.update_repository_method(args.namespace, args.method,
args.synopsis, args.wdl, args.doc,
args.comment)
fapi._check_response_code(r, 201)
if fcconfig.verbosity:
print("Method %s installed to project %s" % (args.method,
args.namespace))
return 0 | [
"def",
"meth_new",
"(",
"args",
")",
":",
"r",
"=",
"fapi",
".",
"update_repository_method",
"(",
"args",
".",
"namespace",
",",
"args",
".",
"method",
",",
"args",
".",
"synopsis",
",",
"args",
".",
"wdl",
",",
"args",
".",
"doc",
",",
"args",
".",
"comment",
")",
"fapi",
".",
"_check_response_code",
"(",
"r",
",",
"201",
")",
"if",
"fcconfig",
".",
"verbosity",
":",
"print",
"(",
"\"Method %s installed to project %s\"",
"%",
"(",
"args",
".",
"method",
",",
"args",
".",
"namespace",
")",
")",
"return",
"0"
] | Submit a new workflow (or update) to the methods repository. | [
"Submit",
"a",
"new",
"workflow",
"(",
"or",
"update",
")",
"to",
"the",
"methods",
"repository",
"."
] | python | train |
dereneaton/ipyrad | ipyrad/analysis/baba.py | https://github.com/dereneaton/ipyrad/blob/5eeb8a178160f45faf71bf47cec4abe998a575d1/ipyrad/analysis/baba.py#L200-L282 | def plot(self,
show_test_labels=True,
use_edge_lengths=True,
collapse_outgroup=False,
pct_tree_x=0.5,
pct_tree_y=0.2,
subset_tests=None,
#toytree_kwargs=None,
*args,
**kwargs):
"""
Draw a multi-panel figure with tree, tests, and results
Parameters:
-----------
height: int
...
width: int
...
show_test_labels: bool
...
use_edge_lengths: bool
...
collapse_outgroups: bool
...
pct_tree_x: float
...
pct_tree_y: float
...
subset_tests: list
...
...
"""
## check for attributes
if not self.newick:
raise IPyradError("baba plot requires a newick treefile")
if not self.tests:
raise IPyradError("baba plot must have a .tests attribute")
## ensure tests is a list
if isinstance(self.tests, dict):
self.tests = [self.tests]
## re-decompose the tree
ttree = toytree.tree(
self.newick,
orient='down',
use_edge_lengths=use_edge_lengths,
)
## subset test to show fewer
if subset_tests != None:
#tests = self.tests[subset_tests]
tests = [self.tests[i] for i in subset_tests]
boots = self.results_boots[subset_tests]
else:
tests = self.tests
boots = self.results_boots
## make the plot
canvas, axes, panel = baba_panel_plot(
ttree=ttree,
tests=tests,
boots=boots,
show_test_labels=show_test_labels,
use_edge_lengths=use_edge_lengths,
collapse_outgroup=collapse_outgroup,
pct_tree_x=pct_tree_x,
pct_tree_y=pct_tree_y,
*args,
**kwargs)
return canvas, axes, panel | [
"def",
"plot",
"(",
"self",
",",
"show_test_labels",
"=",
"True",
",",
"use_edge_lengths",
"=",
"True",
",",
"collapse_outgroup",
"=",
"False",
",",
"pct_tree_x",
"=",
"0.5",
",",
"pct_tree_y",
"=",
"0.2",
",",
"subset_tests",
"=",
"None",
",",
"#toytree_kwargs=None,",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"## check for attributes",
"if",
"not",
"self",
".",
"newick",
":",
"raise",
"IPyradError",
"(",
"\"baba plot requires a newick treefile\"",
")",
"if",
"not",
"self",
".",
"tests",
":",
"raise",
"IPyradError",
"(",
"\"baba plot must have a .tests attribute\"",
")",
"## ensure tests is a list",
"if",
"isinstance",
"(",
"self",
".",
"tests",
",",
"dict",
")",
":",
"self",
".",
"tests",
"=",
"[",
"self",
".",
"tests",
"]",
"## re-decompose the tree",
"ttree",
"=",
"toytree",
".",
"tree",
"(",
"self",
".",
"newick",
",",
"orient",
"=",
"'down'",
",",
"use_edge_lengths",
"=",
"use_edge_lengths",
",",
")",
"## subset test to show fewer",
"if",
"subset_tests",
"!=",
"None",
":",
"#tests = self.tests[subset_tests]",
"tests",
"=",
"[",
"self",
".",
"tests",
"[",
"i",
"]",
"for",
"i",
"in",
"subset_tests",
"]",
"boots",
"=",
"self",
".",
"results_boots",
"[",
"subset_tests",
"]",
"else",
":",
"tests",
"=",
"self",
".",
"tests",
"boots",
"=",
"self",
".",
"results_boots",
"## make the plot",
"canvas",
",",
"axes",
",",
"panel",
"=",
"baba_panel_plot",
"(",
"ttree",
"=",
"ttree",
",",
"tests",
"=",
"tests",
",",
"boots",
"=",
"boots",
",",
"show_test_labels",
"=",
"show_test_labels",
",",
"use_edge_lengths",
"=",
"use_edge_lengths",
",",
"collapse_outgroup",
"=",
"collapse_outgroup",
",",
"pct_tree_x",
"=",
"pct_tree_x",
",",
"pct_tree_y",
"=",
"pct_tree_y",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"canvas",
",",
"axes",
",",
"panel"
] | Draw a multi-panel figure with tree, tests, and results
Parameters:
-----------
height: int
...
width: int
...
show_test_labels: bool
...
use_edge_lengths: bool
...
collapse_outgroups: bool
...
pct_tree_x: float
...
pct_tree_y: float
...
subset_tests: list
...
... | [
"Draw",
"a",
"multi",
"-",
"panel",
"figure",
"with",
"tree",
"tests",
"and",
"results",
"Parameters",
":",
"-----------",
"height",
":",
"int",
"..."
] | python | valid |
DMSC-Instrument-Data/lewis | src/lewis/devices/__init__.py | https://github.com/DMSC-Instrument-Data/lewis/blob/931d96b8c761550a6a58f6e61e202690db04233a/src/lewis/devices/__init__.py#L177-L191 | def _override_data(self, overrides):
"""
This method overrides data members of the class, but does not allow for adding new members.
:param overrides: Dict with data overrides.
"""
if overrides is not None:
for name, val in overrides.items():
self.log.debug('Trying to override initial data (%s=%s)', name, val)
if name not in dir(self):
raise AttributeError(
'Can not override non-existing attribute'
'\'{}\' of class \'{}\'.'.format(name, type(self).__name__))
setattr(self, name, val) | [
"def",
"_override_data",
"(",
"self",
",",
"overrides",
")",
":",
"if",
"overrides",
"is",
"not",
"None",
":",
"for",
"name",
",",
"val",
"in",
"overrides",
".",
"items",
"(",
")",
":",
"self",
".",
"log",
".",
"debug",
"(",
"'Trying to override initial data (%s=%s)'",
",",
"name",
",",
"val",
")",
"if",
"name",
"not",
"in",
"dir",
"(",
"self",
")",
":",
"raise",
"AttributeError",
"(",
"'Can not override non-existing attribute'",
"'\\'{}\\' of class \\'{}\\'.'",
".",
"format",
"(",
"name",
",",
"type",
"(",
"self",
")",
".",
"__name__",
")",
")",
"setattr",
"(",
"self",
",",
"name",
",",
"val",
")"
] | This method overrides data members of the class, but does not allow for adding new members.
:param overrides: Dict with data overrides. | [
"This",
"method",
"overrides",
"data",
"members",
"of",
"the",
"class",
"but",
"does",
"not",
"allow",
"for",
"adding",
"new",
"members",
"."
] | python | train |
DerwenAI/pytextrank | pytextrank/pytextrank.py | https://github.com/DerwenAI/pytextrank/blob/181ea41375d29922eb96768cf6550e57a77a0c95/pytextrank/pytextrank.py#L315-L328 | def write_dot (graph, ranks, path="graph.dot"):
"""
output the graph in Dot file format
"""
dot = Digraph()
for node in graph.nodes():
dot.node(node, "%s %0.3f" % (node, ranks[node]))
for edge in graph.edges():
dot.edge(edge[0], edge[1], constraint="false")
with open(path, 'w') as f:
f.write(dot.source) | [
"def",
"write_dot",
"(",
"graph",
",",
"ranks",
",",
"path",
"=",
"\"graph.dot\"",
")",
":",
"dot",
"=",
"Digraph",
"(",
")",
"for",
"node",
"in",
"graph",
".",
"nodes",
"(",
")",
":",
"dot",
".",
"node",
"(",
"node",
",",
"\"%s %0.3f\"",
"%",
"(",
"node",
",",
"ranks",
"[",
"node",
"]",
")",
")",
"for",
"edge",
"in",
"graph",
".",
"edges",
"(",
")",
":",
"dot",
".",
"edge",
"(",
"edge",
"[",
"0",
"]",
",",
"edge",
"[",
"1",
"]",
",",
"constraint",
"=",
"\"false\"",
")",
"with",
"open",
"(",
"path",
",",
"'w'",
")",
"as",
"f",
":",
"f",
".",
"write",
"(",
"dot",
".",
"source",
")"
] | output the graph in Dot file format | [
"output",
"the",
"graph",
"in",
"Dot",
"file",
"format"
] | python | valid |
Miserlou/Zappa | zappa/cli.py | https://github.com/Miserlou/Zappa/blob/3ccf7490a8d8b8fa74a61ee39bf44234f3567739/zappa/cli.py#L1141-L1151 | def update_cognito_triggers(self):
"""
Update any cognito triggers
"""
if self.cognito:
user_pool = self.cognito.get('user_pool')
triggers = self.cognito.get('triggers', [])
lambda_configs = set()
for trigger in triggers:
lambda_configs.add(trigger['source'].split('_')[0])
self.zappa.update_cognito(self.lambda_name, user_pool, lambda_configs, self.lambda_arn) | [
"def",
"update_cognito_triggers",
"(",
"self",
")",
":",
"if",
"self",
".",
"cognito",
":",
"user_pool",
"=",
"self",
".",
"cognito",
".",
"get",
"(",
"'user_pool'",
")",
"triggers",
"=",
"self",
".",
"cognito",
".",
"get",
"(",
"'triggers'",
",",
"[",
"]",
")",
"lambda_configs",
"=",
"set",
"(",
")",
"for",
"trigger",
"in",
"triggers",
":",
"lambda_configs",
".",
"add",
"(",
"trigger",
"[",
"'source'",
"]",
".",
"split",
"(",
"'_'",
")",
"[",
"0",
"]",
")",
"self",
".",
"zappa",
".",
"update_cognito",
"(",
"self",
".",
"lambda_name",
",",
"user_pool",
",",
"lambda_configs",
",",
"self",
".",
"lambda_arn",
")"
] | Update any cognito triggers | [
"Update",
"any",
"cognito",
"triggers"
] | python | train |
PGower/PyCanvas | pycanvas/apis/appointment_groups.py | https://github.com/PGower/PyCanvas/blob/68520005382b440a1e462f9df369f54d364e21e8/pycanvas/apis/appointment_groups.py#L341-L359 | def get_next_appointment(self, appointment_group_ids=None):
"""
Get next appointment.
Return the next appointment available to sign up for. The appointment
is returned in a one-element array. If no future appointments are
available, an empty array is returned.
"""
path = {}
data = {}
params = {}
# OPTIONAL - appointment_group_ids
"""List of ids of appointment groups to search."""
if appointment_group_ids is not None:
params["appointment_group_ids"] = appointment_group_ids
self.logger.debug("GET /api/v1/appointment_groups/next_appointment with query params: {params} and form data: {data}".format(params=params, data=data, **path))
return self.generic_request("GET", "/api/v1/appointment_groups/next_appointment".format(**path), data=data, params=params, all_pages=True) | [
"def",
"get_next_appointment",
"(",
"self",
",",
"appointment_group_ids",
"=",
"None",
")",
":",
"path",
"=",
"{",
"}",
"data",
"=",
"{",
"}",
"params",
"=",
"{",
"}",
"# OPTIONAL - appointment_group_ids\r",
"\"\"\"List of ids of appointment groups to search.\"\"\"",
"if",
"appointment_group_ids",
"is",
"not",
"None",
":",
"params",
"[",
"\"appointment_group_ids\"",
"]",
"=",
"appointment_group_ids",
"self",
".",
"logger",
".",
"debug",
"(",
"\"GET /api/v1/appointment_groups/next_appointment with query params: {params} and form data: {data}\"",
".",
"format",
"(",
"params",
"=",
"params",
",",
"data",
"=",
"data",
",",
"*",
"*",
"path",
")",
")",
"return",
"self",
".",
"generic_request",
"(",
"\"GET\"",
",",
"\"/api/v1/appointment_groups/next_appointment\"",
".",
"format",
"(",
"*",
"*",
"path",
")",
",",
"data",
"=",
"data",
",",
"params",
"=",
"params",
",",
"all_pages",
"=",
"True",
")"
] | Get next appointment.
Return the next appointment available to sign up for. The appointment
is returned in a one-element array. If no future appointments are
available, an empty array is returned. | [
"Get",
"next",
"appointment",
".",
"Return",
"the",
"next",
"appointment",
"available",
"to",
"sign",
"up",
"for",
".",
"The",
"appointment",
"is",
"returned",
"in",
"a",
"one",
"-",
"element",
"array",
".",
"If",
"no",
"future",
"appointments",
"are",
"available",
"an",
"empty",
"array",
"is",
"returned",
"."
] | python | train |
quantmind/pulsar | pulsar/async/clients.py | https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/pulsar/async/clients.py#L180-L188 | def close(self, discard=False):
'''Close this pool connection by releasing the underlying
:attr:`connection` back to the :attr:`pool`.
'''
if self.pool is not None:
self.pool._put(self.connection, discard)
self.pool = None
conn, self.connection = self.connection, None
return conn | [
"def",
"close",
"(",
"self",
",",
"discard",
"=",
"False",
")",
":",
"if",
"self",
".",
"pool",
"is",
"not",
"None",
":",
"self",
".",
"pool",
".",
"_put",
"(",
"self",
".",
"connection",
",",
"discard",
")",
"self",
".",
"pool",
"=",
"None",
"conn",
",",
"self",
".",
"connection",
"=",
"self",
".",
"connection",
",",
"None",
"return",
"conn"
] | Close this pool connection by releasing the underlying
:attr:`connection` back to the :attr:`pool`. | [
"Close",
"this",
"pool",
"connection",
"by",
"releasing",
"the",
"underlying",
":",
"attr",
":",
"connection",
"back",
"to",
"the",
":",
"attr",
":",
"pool",
"."
] | python | train |
flashingpumpkin/django-socialregistration | socialregistration/views.py | https://github.com/flashingpumpkin/django-socialregistration/blob/9da9fb83c9bf79997ff81fe1378ab5ca3074b32b/socialregistration/views.py#L202-L218 | def post(self, request):
"""
Create a client, store it in the user's session and redirect the user
to the API provider to authorize our app and permissions.
"""
request.session['next'] = self.get_next(request)
client = self.get_client()()
request.session[self.get_client().get_session_key()] = client
url = client.get_redirect_url(request=request)
logger.debug("Redirecting to %s", url)
try:
return HttpResponseRedirect(url)
except OAuthError, error:
return self.error_to_response(request, {'error': error})
except socket.timeout:
return self.error_to_response(request, {'error':
_('Could not connect to service (timed out)')}) | [
"def",
"post",
"(",
"self",
",",
"request",
")",
":",
"request",
".",
"session",
"[",
"'next'",
"]",
"=",
"self",
".",
"get_next",
"(",
"request",
")",
"client",
"=",
"self",
".",
"get_client",
"(",
")",
"(",
")",
"request",
".",
"session",
"[",
"self",
".",
"get_client",
"(",
")",
".",
"get_session_key",
"(",
")",
"]",
"=",
"client",
"url",
"=",
"client",
".",
"get_redirect_url",
"(",
"request",
"=",
"request",
")",
"logger",
".",
"debug",
"(",
"\"Redirecting to %s\"",
",",
"url",
")",
"try",
":",
"return",
"HttpResponseRedirect",
"(",
"url",
")",
"except",
"OAuthError",
",",
"error",
":",
"return",
"self",
".",
"error_to_response",
"(",
"request",
",",
"{",
"'error'",
":",
"error",
"}",
")",
"except",
"socket",
".",
"timeout",
":",
"return",
"self",
".",
"error_to_response",
"(",
"request",
",",
"{",
"'error'",
":",
"_",
"(",
"'Could not connect to service (timed out)'",
")",
"}",
")"
] | Create a client, store it in the user's session and redirect the user
to the API provider to authorize our app and permissions. | [
"Create",
"a",
"client",
"store",
"it",
"in",
"the",
"user",
"s",
"session",
"and",
"redirect",
"the",
"user",
"to",
"the",
"API",
"provider",
"to",
"authorize",
"our",
"app",
"and",
"permissions",
"."
] | python | train |
rosshamish/catanlog | catanlog.py | https://github.com/rosshamish/catanlog/blob/6f204920d9b67fd53fc6ff6a1c7b6a756b009bf0/catanlog.py#L51-L57 | def _log(self, content):
"""
Write a string to the log
"""
self._buffer += content
if self._auto_flush:
self.flush() | [
"def",
"_log",
"(",
"self",
",",
"content",
")",
":",
"self",
".",
"_buffer",
"+=",
"content",
"if",
"self",
".",
"_auto_flush",
":",
"self",
".",
"flush",
"(",
")"
] | Write a string to the log | [
"Write",
"a",
"string",
"to",
"the",
"log"
] | python | train |
saltstack/salt | salt/runners/manage.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/runners/manage.py#L341-L364 | def joined(subset=None, show_ip=False, show_ipv4=None):
'''
.. versionadded:: 2015.8.0
.. versionchanged:: 2019.2.0
The 'show_ipv4' argument has been renamed to 'show_ip' as it now
includes IPv6 addresses for IPv6-connected minions.
Print a list of all minions that are up according to Salt's presence
detection (no commands will be sent to minions)
subset : None
Pass in a CIDR range to filter minions by IP address.
show_ip : False
Also show the IP address each minion is connecting from.
CLI Example:
.. code-block:: bash
salt-run manage.joined
'''
show_ip = _show_ip_migration(show_ip, show_ipv4)
return list_state(subset=subset, show_ip=show_ip) | [
"def",
"joined",
"(",
"subset",
"=",
"None",
",",
"show_ip",
"=",
"False",
",",
"show_ipv4",
"=",
"None",
")",
":",
"show_ip",
"=",
"_show_ip_migration",
"(",
"show_ip",
",",
"show_ipv4",
")",
"return",
"list_state",
"(",
"subset",
"=",
"subset",
",",
"show_ip",
"=",
"show_ip",
")"
] | .. versionadded:: 2015.8.0
.. versionchanged:: 2019.2.0
The 'show_ipv4' argument has been renamed to 'show_ip' as it now
includes IPv6 addresses for IPv6-connected minions.
Print a list of all minions that are up according to Salt's presence
detection (no commands will be sent to minions)
subset : None
Pass in a CIDR range to filter minions by IP address.
show_ip : False
Also show the IP address each minion is connecting from.
CLI Example:
.. code-block:: bash
salt-run manage.joined | [
"..",
"versionadded",
"::",
"2015",
".",
"8",
".",
"0",
"..",
"versionchanged",
"::",
"2019",
".",
"2",
".",
"0",
"The",
"show_ipv4",
"argument",
"has",
"been",
"renamed",
"to",
"show_ip",
"as",
"it",
"now",
"includes",
"IPv6",
"addresses",
"for",
"IPv6",
"-",
"connected",
"minions",
"."
] | python | train |
orangain/scrapy-s3pipeline | s3pipeline/pipelines.py | https://github.com/orangain/scrapy-s3pipeline/blob/6301a3a057da6407b04a09c717498026f88706a4/s3pipeline/pipelines.py#L104-L125 | def _make_fileobj(self):
"""
Build file object from items.
"""
bio = BytesIO()
f = gzip.GzipFile(mode='wb', fileobj=bio) if self.use_gzip else bio
# Build file object using ItemExporter
exporter = JsonLinesItemExporter(f)
exporter.start_exporting()
for item in self.items:
exporter.export_item(item)
exporter.finish_exporting()
if f is not bio:
f.close() # Close the file if GzipFile
# Seek to the top of file to be read later
bio.seek(0)
return bio | [
"def",
"_make_fileobj",
"(",
"self",
")",
":",
"bio",
"=",
"BytesIO",
"(",
")",
"f",
"=",
"gzip",
".",
"GzipFile",
"(",
"mode",
"=",
"'wb'",
",",
"fileobj",
"=",
"bio",
")",
"if",
"self",
".",
"use_gzip",
"else",
"bio",
"# Build file object using ItemExporter",
"exporter",
"=",
"JsonLinesItemExporter",
"(",
"f",
")",
"exporter",
".",
"start_exporting",
"(",
")",
"for",
"item",
"in",
"self",
".",
"items",
":",
"exporter",
".",
"export_item",
"(",
"item",
")",
"exporter",
".",
"finish_exporting",
"(",
")",
"if",
"f",
"is",
"not",
"bio",
":",
"f",
".",
"close",
"(",
")",
"# Close the file if GzipFile",
"# Seek to the top of file to be read later",
"bio",
".",
"seek",
"(",
"0",
")",
"return",
"bio"
] | Build file object from items. | [
"Build",
"file",
"object",
"from",
"items",
"."
] | python | test |
rchatterjee/pwmodels | src/pwmodel/models.py | https://github.com/rchatterjee/pwmodels/blob/e277411f8ebaf4ad1c208d2b035b4b68f7471517/src/pwmodel/models.py#L441-L444 | def normalize(pw):
""" Lower case, and change the symbols to closest characters"""
pw_lower = pw.lower()
return ''.join(helper.L33T.get(c, c) for c in pw_lower) | [
"def",
"normalize",
"(",
"pw",
")",
":",
"pw_lower",
"=",
"pw",
".",
"lower",
"(",
")",
"return",
"''",
".",
"join",
"(",
"helper",
".",
"L33T",
".",
"get",
"(",
"c",
",",
"c",
")",
"for",
"c",
"in",
"pw_lower",
")"
] | Lower case, and change the symbols to closest characters | [
"Lower",
"case",
"and",
"change",
"the",
"symbols",
"to",
"closest",
"characters"
] | python | train |
roclark/sportsreference | sportsreference/ncaab/boxscore.py | https://github.com/roclark/sportsreference/blob/ea0bae432be76450e137671d2998eb38f962dffd/sportsreference/ncaab/boxscore.py#L1744-L1791 | def _get_team_names(self, game):
"""
Find the names and abbreviations for both teams in a game.
Using the HTML contents in a boxscore, find the name and abbreviation
for both teams and determine wether or not this is a matchup between
two Division-I teams.
Parameters
----------
game : PyQuery object
A PyQuery object of a single boxscore containing information about
both teams.
Returns
-------
tuple
Returns a tuple containing the names and abbreviations of both
teams in the following order: Away Name, Away Abbreviation, Away
Score, Away Ranking, Home Name, Home Abbreviation, Home Score, Home
Ranking, a boolean which evaluates to True if either team does not
participate in Division-I athletics, and a boolean which evalutes
to True if either team is currently ranked.
"""
# Grab the first <td...> tag for each <tr> row in the boxscore,
# representing the name for each participating team.
links = [g('td:first') for g in game('tr').items()]
# The away team is the first link in the boxscore
away = links[0]
# The home team is the last (3rd) link in the boxscore
home = links[-1]
non_di = False
scores = re.findall(r'<td class="right">\d+</td>', str(game))
away_score = None
home_score = None
# If the game hasn't started or hasn't been updated on sports-reference
# yet, no score will be shown and therefore can't be parsed.
if len(scores) == 2:
away_score = self._get_score(scores[0])
home_score = self._get_score(scores[1])
away_name, away_abbr, away_non_di = self._get_name(away('a'))
home_name, home_abbr, home_non_di = self._get_name(home('a'))
non_di = away_non_di or home_non_di
away_rank = self._get_rank(away)
home_rank = self._get_rank(home)
top_25 = bool(away_rank or home_rank)
return (away_name, away_abbr, away_score, away_rank, home_name,
home_abbr, home_score, home_rank, non_di, top_25) | [
"def",
"_get_team_names",
"(",
"self",
",",
"game",
")",
":",
"# Grab the first <td...> tag for each <tr> row in the boxscore,",
"# representing the name for each participating team.",
"links",
"=",
"[",
"g",
"(",
"'td:first'",
")",
"for",
"g",
"in",
"game",
"(",
"'tr'",
")",
".",
"items",
"(",
")",
"]",
"# The away team is the first link in the boxscore",
"away",
"=",
"links",
"[",
"0",
"]",
"# The home team is the last (3rd) link in the boxscore",
"home",
"=",
"links",
"[",
"-",
"1",
"]",
"non_di",
"=",
"False",
"scores",
"=",
"re",
".",
"findall",
"(",
"r'<td class=\"right\">\\d+</td>'",
",",
"str",
"(",
"game",
")",
")",
"away_score",
"=",
"None",
"home_score",
"=",
"None",
"# If the game hasn't started or hasn't been updated on sports-reference",
"# yet, no score will be shown and therefore can't be parsed.",
"if",
"len",
"(",
"scores",
")",
"==",
"2",
":",
"away_score",
"=",
"self",
".",
"_get_score",
"(",
"scores",
"[",
"0",
"]",
")",
"home_score",
"=",
"self",
".",
"_get_score",
"(",
"scores",
"[",
"1",
"]",
")",
"away_name",
",",
"away_abbr",
",",
"away_non_di",
"=",
"self",
".",
"_get_name",
"(",
"away",
"(",
"'a'",
")",
")",
"home_name",
",",
"home_abbr",
",",
"home_non_di",
"=",
"self",
".",
"_get_name",
"(",
"home",
"(",
"'a'",
")",
")",
"non_di",
"=",
"away_non_di",
"or",
"home_non_di",
"away_rank",
"=",
"self",
".",
"_get_rank",
"(",
"away",
")",
"home_rank",
"=",
"self",
".",
"_get_rank",
"(",
"home",
")",
"top_25",
"=",
"bool",
"(",
"away_rank",
"or",
"home_rank",
")",
"return",
"(",
"away_name",
",",
"away_abbr",
",",
"away_score",
",",
"away_rank",
",",
"home_name",
",",
"home_abbr",
",",
"home_score",
",",
"home_rank",
",",
"non_di",
",",
"top_25",
")"
] | Find the names and abbreviations for both teams in a game.
Using the HTML contents in a boxscore, find the name and abbreviation
for both teams and determine wether or not this is a matchup between
two Division-I teams.
Parameters
----------
game : PyQuery object
A PyQuery object of a single boxscore containing information about
both teams.
Returns
-------
tuple
Returns a tuple containing the names and abbreviations of both
teams in the following order: Away Name, Away Abbreviation, Away
Score, Away Ranking, Home Name, Home Abbreviation, Home Score, Home
Ranking, a boolean which evaluates to True if either team does not
participate in Division-I athletics, and a boolean which evalutes
to True if either team is currently ranked. | [
"Find",
"the",
"names",
"and",
"abbreviations",
"for",
"both",
"teams",
"in",
"a",
"game",
"."
] | python | train |
PmagPy/PmagPy | dialogs/drop_down_menus2.py | https://github.com/PmagPy/PmagPy/blob/c7984f8809bf40fe112e53dcc311a33293b62d0b/dialogs/drop_down_menus2.py#L126-L138 | def add_method_drop_down(self, col_number, col_label):
"""
Add drop-down-menu options for magic_method_codes columns
"""
if self.data_type == 'age':
method_list = vocab.age_methods
elif '++' in col_label:
method_list = vocab.pmag_methods
elif self.data_type == 'result':
method_list = vocab.pmag_methods
else:
method_list = vocab.er_methods
self.choices[col_number] = (method_list, True) | [
"def",
"add_method_drop_down",
"(",
"self",
",",
"col_number",
",",
"col_label",
")",
":",
"if",
"self",
".",
"data_type",
"==",
"'age'",
":",
"method_list",
"=",
"vocab",
".",
"age_methods",
"elif",
"'++'",
"in",
"col_label",
":",
"method_list",
"=",
"vocab",
".",
"pmag_methods",
"elif",
"self",
".",
"data_type",
"==",
"'result'",
":",
"method_list",
"=",
"vocab",
".",
"pmag_methods",
"else",
":",
"method_list",
"=",
"vocab",
".",
"er_methods",
"self",
".",
"choices",
"[",
"col_number",
"]",
"=",
"(",
"method_list",
",",
"True",
")"
] | Add drop-down-menu options for magic_method_codes columns | [
"Add",
"drop",
"-",
"down",
"-",
"menu",
"options",
"for",
"magic_method_codes",
"columns"
] | python | train |
apache/spark | python/pyspark/mllib/clustering.py | https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/mllib/clustering.py#L976-L989 | def load(cls, sc, path):
"""Load the LDAModel from disk.
:param sc:
SparkContext.
:param path:
Path to where the model is stored.
"""
if not isinstance(sc, SparkContext):
raise TypeError("sc should be a SparkContext, got type %s" % type(sc))
if not isinstance(path, basestring):
raise TypeError("path should be a basestring, got type %s" % type(path))
model = callMLlibFunc("loadLDAModel", sc, path)
return LDAModel(model) | [
"def",
"load",
"(",
"cls",
",",
"sc",
",",
"path",
")",
":",
"if",
"not",
"isinstance",
"(",
"sc",
",",
"SparkContext",
")",
":",
"raise",
"TypeError",
"(",
"\"sc should be a SparkContext, got type %s\"",
"%",
"type",
"(",
"sc",
")",
")",
"if",
"not",
"isinstance",
"(",
"path",
",",
"basestring",
")",
":",
"raise",
"TypeError",
"(",
"\"path should be a basestring, got type %s\"",
"%",
"type",
"(",
"path",
")",
")",
"model",
"=",
"callMLlibFunc",
"(",
"\"loadLDAModel\"",
",",
"sc",
",",
"path",
")",
"return",
"LDAModel",
"(",
"model",
")"
] | Load the LDAModel from disk.
:param sc:
SparkContext.
:param path:
Path to where the model is stored. | [
"Load",
"the",
"LDAModel",
"from",
"disk",
"."
] | python | train |
flowersteam/explauto | explauto/models/dataset.py | https://github.com/flowersteam/explauto/blob/cf0f81ecb9f6412f7276a95bd27359000e1e26b6/explauto/models/dataset.py#L73-L78 | def _build_tree(self):
"""Build the KDTree for the observed data
"""
if not self.nn_ready:
self.kdtree = scipy.spatial.cKDTree(self.data)
self.nn_ready = True | [
"def",
"_build_tree",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"nn_ready",
":",
"self",
".",
"kdtree",
"=",
"scipy",
".",
"spatial",
".",
"cKDTree",
"(",
"self",
".",
"data",
")",
"self",
".",
"nn_ready",
"=",
"True"
] | Build the KDTree for the observed data | [
"Build",
"the",
"KDTree",
"for",
"the",
"observed",
"data"
] | python | train |
Kortemme-Lab/klab | klab/stats/dataframe.py | https://github.com/Kortemme-Lab/klab/blob/6d410ad08f1bd9f7cbbb28d7d946e94fbaaa2b6b/klab/stats/dataframe.py#L236-L255 | def get_series_names(self, column_indices = [], column_names = []):
'''Returns the series' names corresponding to column_indices and column_names.
"names" here are:
- strings for single-indexed dataframes; or
- tuples for multi-indexed dataframes.
If both parameters are empty then all column names are returned.
'''
n = []
if not column_indices and not column_names:
for k, v in sorted(self.series_names.iteritems()):
# Iterate by index to preserve document order
if v != self.reference_series:
n.append(k)
else:
s = set([self.series_names[x] for x in column_indices])
t = set([self.series_index[x] for x in column_names])
n = sorted(s.union(t))
assert(n)
return [self.series_names[x] for x in n] | [
"def",
"get_series_names",
"(",
"self",
",",
"column_indices",
"=",
"[",
"]",
",",
"column_names",
"=",
"[",
"]",
")",
":",
"n",
"=",
"[",
"]",
"if",
"not",
"column_indices",
"and",
"not",
"column_names",
":",
"for",
"k",
",",
"v",
"in",
"sorted",
"(",
"self",
".",
"series_names",
".",
"iteritems",
"(",
")",
")",
":",
"# Iterate by index to preserve document order",
"if",
"v",
"!=",
"self",
".",
"reference_series",
":",
"n",
".",
"append",
"(",
"k",
")",
"else",
":",
"s",
"=",
"set",
"(",
"[",
"self",
".",
"series_names",
"[",
"x",
"]",
"for",
"x",
"in",
"column_indices",
"]",
")",
"t",
"=",
"set",
"(",
"[",
"self",
".",
"series_index",
"[",
"x",
"]",
"for",
"x",
"in",
"column_names",
"]",
")",
"n",
"=",
"sorted",
"(",
"s",
".",
"union",
"(",
"t",
")",
")",
"assert",
"(",
"n",
")",
"return",
"[",
"self",
".",
"series_names",
"[",
"x",
"]",
"for",
"x",
"in",
"n",
"]"
] | Returns the series' names corresponding to column_indices and column_names.
"names" here are:
- strings for single-indexed dataframes; or
- tuples for multi-indexed dataframes.
If both parameters are empty then all column names are returned. | [
"Returns",
"the",
"series",
"names",
"corresponding",
"to",
"column_indices",
"and",
"column_names",
".",
"names",
"here",
"are",
":",
"-",
"strings",
"for",
"single",
"-",
"indexed",
"dataframes",
";",
"or",
"-",
"tuples",
"for",
"multi",
"-",
"indexed",
"dataframes",
"."
] | python | train |
glitchassassin/lackey | lackey/PlatformManagerDarwin.py | https://github.com/glitchassassin/lackey/blob/7adadfacd7f45d81186710be992f5668b15399fe/lackey/PlatformManagerDarwin.py#L354-L357 | def _get_window_list(self):
""" Returns a dictionary of details about open windows """
window_list = Quartz.CGWindowListCopyWindowInfo(Quartz.kCGWindowListExcludeDesktopElements, Quartz.kCGNullWindowID)
return window_list | [
"def",
"_get_window_list",
"(",
"self",
")",
":",
"window_list",
"=",
"Quartz",
".",
"CGWindowListCopyWindowInfo",
"(",
"Quartz",
".",
"kCGWindowListExcludeDesktopElements",
",",
"Quartz",
".",
"kCGNullWindowID",
")",
"return",
"window_list"
] | Returns a dictionary of details about open windows | [
"Returns",
"a",
"dictionary",
"of",
"details",
"about",
"open",
"windows"
] | python | train |
ejeschke/ginga | ginga/util/wcsmod/common.py | https://github.com/ejeschke/ginga/blob/a78c893ec6f37a837de851947e9bb4625c597915/ginga/util/wcsmod/common.py#L291-L307 | def fix_bad_headers(self):
"""
Fix up bad headers that cause problems for the wrapped WCS
module.
Subclass can override this method to fix up issues with the
header for problem FITS files.
"""
# WCSLIB doesn't like "nonstandard" units
unit = self.header.get('CUNIT1', 'deg')
if unit.upper() == 'DEGREE':
# self.header.update('CUNIT1', 'deg')
self.header['CUNIT1'] = 'deg'
unit = self.header.get('CUNIT2', 'deg')
if unit.upper() == 'DEGREE':
# self.header.update('CUNIT2', 'deg')
self.header['CUNIT2'] = 'deg' | [
"def",
"fix_bad_headers",
"(",
"self",
")",
":",
"# WCSLIB doesn't like \"nonstandard\" units",
"unit",
"=",
"self",
".",
"header",
".",
"get",
"(",
"'CUNIT1'",
",",
"'deg'",
")",
"if",
"unit",
".",
"upper",
"(",
")",
"==",
"'DEGREE'",
":",
"# self.header.update('CUNIT1', 'deg')",
"self",
".",
"header",
"[",
"'CUNIT1'",
"]",
"=",
"'deg'",
"unit",
"=",
"self",
".",
"header",
".",
"get",
"(",
"'CUNIT2'",
",",
"'deg'",
")",
"if",
"unit",
".",
"upper",
"(",
")",
"==",
"'DEGREE'",
":",
"# self.header.update('CUNIT2', 'deg')",
"self",
".",
"header",
"[",
"'CUNIT2'",
"]",
"=",
"'deg'"
] | Fix up bad headers that cause problems for the wrapped WCS
module.
Subclass can override this method to fix up issues with the
header for problem FITS files. | [
"Fix",
"up",
"bad",
"headers",
"that",
"cause",
"problems",
"for",
"the",
"wrapped",
"WCS",
"module",
"."
] | python | train |
openstack/networking-cisco | networking_cisco/plugins/cisco/db/l3/ha_db.py | https://github.com/openstack/networking-cisco/blob/aa58a30aec25b86f9aa5952b0863045975debfa9/networking_cisco/plugins/cisco/db/l3/ha_db.py#L202-L232 | def _ensure_create_ha_compliant(self, router, router_type):
"""To be called in create_router() BEFORE router is created in DB."""
details = router.pop(ha.DETAILS, {})
if details == ATTR_NOT_SPECIFIED:
details = {}
res = {ha.ENABLED: router.pop(ha.ENABLED, ATTR_NOT_SPECIFIED),
ha.DETAILS: details}
if not is_attr_set(res[ha.ENABLED]):
res[ha.ENABLED] = router_type['ha_enabled_by_default']
if res[ha.ENABLED] and not cfg.CONF.ha.ha_support_enabled:
raise ha.HADisabled()
if not res[ha.ENABLED]:
return res
if not is_attr_set(details.get(ha.TYPE, ATTR_NOT_SPECIFIED)):
details[ha.TYPE] = cfg.CONF.ha.default_ha_mechanism
if details[ha.TYPE] in cfg.CONF.ha.disabled_ha_mechanisms:
raise ha.HADisabledHAType(ha_type=details[ha.TYPE])
if not is_attr_set(details.get(ha.REDUNDANCY_LEVEL,
ATTR_NOT_SPECIFIED)):
details[ha.REDUNDANCY_LEVEL] = (
cfg.CONF.ha.default_ha_redundancy_level)
if not is_attr_set(details.get(ha.PROBE_CONNECTIVITY,
ATTR_NOT_SPECIFIED)):
details[ha.PROBE_CONNECTIVITY] = (
cfg.CONF.ha.connectivity_probing_enabled_by_default)
if not is_attr_set(details.get(ha.PROBE_TARGET, ATTR_NOT_SPECIFIED)):
details[ha.PROBE_TARGET] = cfg.CONF.ha.default_probe_target
if not is_attr_set(details.get(ha.PROBE_INTERVAL, ATTR_NOT_SPECIFIED)):
details[ha.PROBE_INTERVAL] = cfg.CONF.ha.default_ping_interval
return res | [
"def",
"_ensure_create_ha_compliant",
"(",
"self",
",",
"router",
",",
"router_type",
")",
":",
"details",
"=",
"router",
".",
"pop",
"(",
"ha",
".",
"DETAILS",
",",
"{",
"}",
")",
"if",
"details",
"==",
"ATTR_NOT_SPECIFIED",
":",
"details",
"=",
"{",
"}",
"res",
"=",
"{",
"ha",
".",
"ENABLED",
":",
"router",
".",
"pop",
"(",
"ha",
".",
"ENABLED",
",",
"ATTR_NOT_SPECIFIED",
")",
",",
"ha",
".",
"DETAILS",
":",
"details",
"}",
"if",
"not",
"is_attr_set",
"(",
"res",
"[",
"ha",
".",
"ENABLED",
"]",
")",
":",
"res",
"[",
"ha",
".",
"ENABLED",
"]",
"=",
"router_type",
"[",
"'ha_enabled_by_default'",
"]",
"if",
"res",
"[",
"ha",
".",
"ENABLED",
"]",
"and",
"not",
"cfg",
".",
"CONF",
".",
"ha",
".",
"ha_support_enabled",
":",
"raise",
"ha",
".",
"HADisabled",
"(",
")",
"if",
"not",
"res",
"[",
"ha",
".",
"ENABLED",
"]",
":",
"return",
"res",
"if",
"not",
"is_attr_set",
"(",
"details",
".",
"get",
"(",
"ha",
".",
"TYPE",
",",
"ATTR_NOT_SPECIFIED",
")",
")",
":",
"details",
"[",
"ha",
".",
"TYPE",
"]",
"=",
"cfg",
".",
"CONF",
".",
"ha",
".",
"default_ha_mechanism",
"if",
"details",
"[",
"ha",
".",
"TYPE",
"]",
"in",
"cfg",
".",
"CONF",
".",
"ha",
".",
"disabled_ha_mechanisms",
":",
"raise",
"ha",
".",
"HADisabledHAType",
"(",
"ha_type",
"=",
"details",
"[",
"ha",
".",
"TYPE",
"]",
")",
"if",
"not",
"is_attr_set",
"(",
"details",
".",
"get",
"(",
"ha",
".",
"REDUNDANCY_LEVEL",
",",
"ATTR_NOT_SPECIFIED",
")",
")",
":",
"details",
"[",
"ha",
".",
"REDUNDANCY_LEVEL",
"]",
"=",
"(",
"cfg",
".",
"CONF",
".",
"ha",
".",
"default_ha_redundancy_level",
")",
"if",
"not",
"is_attr_set",
"(",
"details",
".",
"get",
"(",
"ha",
".",
"PROBE_CONNECTIVITY",
",",
"ATTR_NOT_SPECIFIED",
")",
")",
":",
"details",
"[",
"ha",
".",
"PROBE_CONNECTIVITY",
"]",
"=",
"(",
"cfg",
".",
"CONF",
".",
"ha",
".",
"connectivity_probing_enabled_by_default",
")",
"if",
"not",
"is_attr_set",
"(",
"details",
".",
"get",
"(",
"ha",
".",
"PROBE_TARGET",
",",
"ATTR_NOT_SPECIFIED",
")",
")",
":",
"details",
"[",
"ha",
".",
"PROBE_TARGET",
"]",
"=",
"cfg",
".",
"CONF",
".",
"ha",
".",
"default_probe_target",
"if",
"not",
"is_attr_set",
"(",
"details",
".",
"get",
"(",
"ha",
".",
"PROBE_INTERVAL",
",",
"ATTR_NOT_SPECIFIED",
")",
")",
":",
"details",
"[",
"ha",
".",
"PROBE_INTERVAL",
"]",
"=",
"cfg",
".",
"CONF",
".",
"ha",
".",
"default_ping_interval",
"return",
"res"
] | To be called in create_router() BEFORE router is created in DB. | [
"To",
"be",
"called",
"in",
"create_router",
"()",
"BEFORE",
"router",
"is",
"created",
"in",
"DB",
"."
] | python | train |
dnephin/PyStaticConfiguration | staticconf/validation.py | https://github.com/dnephin/PyStaticConfiguration/blob/229733270bc0dc0d9690ba850dbfb470e535c212/staticconf/validation.py#L90-L101 | def _validate_iterable(iterable_type, value):
"""Convert the iterable to iterable_type, or raise a Configuration
exception.
"""
if isinstance(value, six.string_types):
msg = "Invalid iterable of type(%s): %s"
raise ValidationError(msg % (type(value), value))
try:
return iterable_type(value)
except TypeError:
raise ValidationError("Invalid iterable: %s" % (value)) | [
"def",
"_validate_iterable",
"(",
"iterable_type",
",",
"value",
")",
":",
"if",
"isinstance",
"(",
"value",
",",
"six",
".",
"string_types",
")",
":",
"msg",
"=",
"\"Invalid iterable of type(%s): %s\"",
"raise",
"ValidationError",
"(",
"msg",
"%",
"(",
"type",
"(",
"value",
")",
",",
"value",
")",
")",
"try",
":",
"return",
"iterable_type",
"(",
"value",
")",
"except",
"TypeError",
":",
"raise",
"ValidationError",
"(",
"\"Invalid iterable: %s\"",
"%",
"(",
"value",
")",
")"
] | Convert the iterable to iterable_type, or raise a Configuration
exception. | [
"Convert",
"the",
"iterable",
"to",
"iterable_type",
"or",
"raise",
"a",
"Configuration",
"exception",
"."
] | python | train |
mcs07/ChemDataExtractor | chemdataextractor/nlp/corpus.py | https://github.com/mcs07/ChemDataExtractor/blob/349a3bea965f2073141d62043b89319222e46af1/chemdataextractor/nlp/corpus.py#L60-L69 | def _make_bound_method(func, self):
"""Magic for creating bound methods (used for _unload)."""
class Foo(object):
def meth(self): pass
f = Foo()
bound_method = type(f.meth)
try:
return bound_method(func, self, self.__class__)
except TypeError: # python3
return bound_method(func, self) | [
"def",
"_make_bound_method",
"(",
"func",
",",
"self",
")",
":",
"class",
"Foo",
"(",
"object",
")",
":",
"def",
"meth",
"(",
"self",
")",
":",
"pass",
"f",
"=",
"Foo",
"(",
")",
"bound_method",
"=",
"type",
"(",
"f",
".",
"meth",
")",
"try",
":",
"return",
"bound_method",
"(",
"func",
",",
"self",
",",
"self",
".",
"__class__",
")",
"except",
"TypeError",
":",
"# python3",
"return",
"bound_method",
"(",
"func",
",",
"self",
")"
] | Magic for creating bound methods (used for _unload). | [
"Magic",
"for",
"creating",
"bound",
"methods",
"(",
"used",
"for",
"_unload",
")",
"."
] | python | train |
trustar/trustar-python | trustar/indicator_client.py | https://github.com/trustar/trustar-python/blob/707d51adc58d68aed7de12a4ca37949cb75cf122/trustar/indicator_client.py#L209-L253 | def search_indicators_page(self, search_term=None,
enclave_ids=None,
from_time=None,
to_time=None,
indicator_types=None,
tags=None,
excluded_tags=None,
page_size=None,
page_number=None):
"""
Search for indicators containing a search term.
:param str search_term: The term to search for. If empty, no search term will be applied. Otherwise, must
be at least 3 characters.
:param list(str) enclave_ids: list of enclave ids used to restrict to indicators found in reports in specific
enclaves (optional - by default reports from all of the user's enclaves are used)
:param int from_time: start of time window in milliseconds since epoch (optional)
:param int to_time: end of time window in milliseconds since epoch (optional)
:param list(str) indicator_types: a list of indicator types to filter by (optional)
:param list(str) tags: Name (or list of names) of tag(s) to filter indicators by. Only indicators containing
ALL of these tags will be returned. (optional)
:param list(str) excluded_tags: Indicators containing ANY of these tags will be excluded from the results.
:param int page_number: the page number to get.
:param int page_size: the size of the page to be returned.
:return: a |Page| of |Indicator| objects.
"""
body = {
'searchTerm': search_term
}
params = {
'enclaveIds': enclave_ids,
'from': from_time,
'to': to_time,
'entityTypes': indicator_types,
'tags': tags,
'excludedTags': excluded_tags,
'pageSize': page_size,
'pageNumber': page_number
}
resp = self._client.post("indicators/search", params=params, data=json.dumps(body))
return Page.from_dict(resp.json(), content_type=Indicator) | [
"def",
"search_indicators_page",
"(",
"self",
",",
"search_term",
"=",
"None",
",",
"enclave_ids",
"=",
"None",
",",
"from_time",
"=",
"None",
",",
"to_time",
"=",
"None",
",",
"indicator_types",
"=",
"None",
",",
"tags",
"=",
"None",
",",
"excluded_tags",
"=",
"None",
",",
"page_size",
"=",
"None",
",",
"page_number",
"=",
"None",
")",
":",
"body",
"=",
"{",
"'searchTerm'",
":",
"search_term",
"}",
"params",
"=",
"{",
"'enclaveIds'",
":",
"enclave_ids",
",",
"'from'",
":",
"from_time",
",",
"'to'",
":",
"to_time",
",",
"'entityTypes'",
":",
"indicator_types",
",",
"'tags'",
":",
"tags",
",",
"'excludedTags'",
":",
"excluded_tags",
",",
"'pageSize'",
":",
"page_size",
",",
"'pageNumber'",
":",
"page_number",
"}",
"resp",
"=",
"self",
".",
"_client",
".",
"post",
"(",
"\"indicators/search\"",
",",
"params",
"=",
"params",
",",
"data",
"=",
"json",
".",
"dumps",
"(",
"body",
")",
")",
"return",
"Page",
".",
"from_dict",
"(",
"resp",
".",
"json",
"(",
")",
",",
"content_type",
"=",
"Indicator",
")"
] | Search for indicators containing a search term.
:param str search_term: The term to search for. If empty, no search term will be applied. Otherwise, must
be at least 3 characters.
:param list(str) enclave_ids: list of enclave ids used to restrict to indicators found in reports in specific
enclaves (optional - by default reports from all of the user's enclaves are used)
:param int from_time: start of time window in milliseconds since epoch (optional)
:param int to_time: end of time window in milliseconds since epoch (optional)
:param list(str) indicator_types: a list of indicator types to filter by (optional)
:param list(str) tags: Name (or list of names) of tag(s) to filter indicators by. Only indicators containing
ALL of these tags will be returned. (optional)
:param list(str) excluded_tags: Indicators containing ANY of these tags will be excluded from the results.
:param int page_number: the page number to get.
:param int page_size: the size of the page to be returned.
:return: a |Page| of |Indicator| objects. | [
"Search",
"for",
"indicators",
"containing",
"a",
"search",
"term",
"."
] | python | train |
ForensicArtifacts/artifacts | tools/validator.py | https://github.com/ForensicArtifacts/artifacts/blob/044a63bfb4448af33d085c69066c80f9505ae7ca/tools/validator.py#L303-L379 | def CheckFile(self, filename):
"""Validates the artifacts definition in a specific file.
Args:
filename (str): name of the artifacts definition file.
Returns:
bool: True if the file contains valid artifacts definitions.
"""
result = True
artifact_reader = reader.YamlArtifactsReader()
try:
for artifact_definition in artifact_reader.ReadFile(filename):
try:
self._artifact_registry.RegisterDefinition(artifact_definition)
except KeyError:
logging.warning(
'Duplicate artifact definition: {0:s} in file: {1:s}'.format(
artifact_definition.name, filename))
result = False
artifact_definition_supports_macos = (
definitions.SUPPORTED_OS_DARWIN in (
artifact_definition.supported_os))
artifact_definition_supports_windows = (
definitions.SUPPORTED_OS_WINDOWS in (
artifact_definition.supported_os))
for source in artifact_definition.sources:
if source.type_indicator in (
definitions.TYPE_INDICATOR_FILE, definitions.TYPE_INDICATOR_PATH):
if (definitions.SUPPORTED_OS_DARWIN in source.supported_os or (
artifact_definition_supports_macos and
not source.supported_os)):
if not self._CheckMacOSPaths(
filename, artifact_definition, source, source.paths):
result = False
elif (artifact_definition_supports_windows or
definitions.SUPPORTED_OS_WINDOWS in source.supported_os):
for path in source.paths:
if not self._CheckWindowsPath(
filename, artifact_definition, source, path):
result = False
elif source.type_indicator == (
definitions.TYPE_INDICATOR_WINDOWS_REGISTRY_KEY):
# Exempt the legacy file from duplicate checking because it has
# duplicates intentionally.
if (filename != self.LEGACY_PATH and
self._HasDuplicateRegistryKeyPaths(
filename, artifact_definition, source)):
result = False
for key_path in source.keys:
if not self._CheckWindowsRegistryKeyPath(
filename, artifact_definition, key_path):
result = False
elif source.type_indicator == (
definitions.TYPE_INDICATOR_WINDOWS_REGISTRY_VALUE):
for key_value_pair in source.key_value_pairs:
if not self._CheckWindowsRegistryKeyPath(
filename, artifact_definition, key_value_pair['key']):
result = False
except errors.FormatError as exception:
logging.warning(
'Unable to validate file: {0:s} with error: {1!s}'.format(
filename, exception))
result = False
return result | [
"def",
"CheckFile",
"(",
"self",
",",
"filename",
")",
":",
"result",
"=",
"True",
"artifact_reader",
"=",
"reader",
".",
"YamlArtifactsReader",
"(",
")",
"try",
":",
"for",
"artifact_definition",
"in",
"artifact_reader",
".",
"ReadFile",
"(",
"filename",
")",
":",
"try",
":",
"self",
".",
"_artifact_registry",
".",
"RegisterDefinition",
"(",
"artifact_definition",
")",
"except",
"KeyError",
":",
"logging",
".",
"warning",
"(",
"'Duplicate artifact definition: {0:s} in file: {1:s}'",
".",
"format",
"(",
"artifact_definition",
".",
"name",
",",
"filename",
")",
")",
"result",
"=",
"False",
"artifact_definition_supports_macos",
"=",
"(",
"definitions",
".",
"SUPPORTED_OS_DARWIN",
"in",
"(",
"artifact_definition",
".",
"supported_os",
")",
")",
"artifact_definition_supports_windows",
"=",
"(",
"definitions",
".",
"SUPPORTED_OS_WINDOWS",
"in",
"(",
"artifact_definition",
".",
"supported_os",
")",
")",
"for",
"source",
"in",
"artifact_definition",
".",
"sources",
":",
"if",
"source",
".",
"type_indicator",
"in",
"(",
"definitions",
".",
"TYPE_INDICATOR_FILE",
",",
"definitions",
".",
"TYPE_INDICATOR_PATH",
")",
":",
"if",
"(",
"definitions",
".",
"SUPPORTED_OS_DARWIN",
"in",
"source",
".",
"supported_os",
"or",
"(",
"artifact_definition_supports_macos",
"and",
"not",
"source",
".",
"supported_os",
")",
")",
":",
"if",
"not",
"self",
".",
"_CheckMacOSPaths",
"(",
"filename",
",",
"artifact_definition",
",",
"source",
",",
"source",
".",
"paths",
")",
":",
"result",
"=",
"False",
"elif",
"(",
"artifact_definition_supports_windows",
"or",
"definitions",
".",
"SUPPORTED_OS_WINDOWS",
"in",
"source",
".",
"supported_os",
")",
":",
"for",
"path",
"in",
"source",
".",
"paths",
":",
"if",
"not",
"self",
".",
"_CheckWindowsPath",
"(",
"filename",
",",
"artifact_definition",
",",
"source",
",",
"path",
")",
":",
"result",
"=",
"False",
"elif",
"source",
".",
"type_indicator",
"==",
"(",
"definitions",
".",
"TYPE_INDICATOR_WINDOWS_REGISTRY_KEY",
")",
":",
"# Exempt the legacy file from duplicate checking because it has",
"# duplicates intentionally.",
"if",
"(",
"filename",
"!=",
"self",
".",
"LEGACY_PATH",
"and",
"self",
".",
"_HasDuplicateRegistryKeyPaths",
"(",
"filename",
",",
"artifact_definition",
",",
"source",
")",
")",
":",
"result",
"=",
"False",
"for",
"key_path",
"in",
"source",
".",
"keys",
":",
"if",
"not",
"self",
".",
"_CheckWindowsRegistryKeyPath",
"(",
"filename",
",",
"artifact_definition",
",",
"key_path",
")",
":",
"result",
"=",
"False",
"elif",
"source",
".",
"type_indicator",
"==",
"(",
"definitions",
".",
"TYPE_INDICATOR_WINDOWS_REGISTRY_VALUE",
")",
":",
"for",
"key_value_pair",
"in",
"source",
".",
"key_value_pairs",
":",
"if",
"not",
"self",
".",
"_CheckWindowsRegistryKeyPath",
"(",
"filename",
",",
"artifact_definition",
",",
"key_value_pair",
"[",
"'key'",
"]",
")",
":",
"result",
"=",
"False",
"except",
"errors",
".",
"FormatError",
"as",
"exception",
":",
"logging",
".",
"warning",
"(",
"'Unable to validate file: {0:s} with error: {1!s}'",
".",
"format",
"(",
"filename",
",",
"exception",
")",
")",
"result",
"=",
"False",
"return",
"result"
] | Validates the artifacts definition in a specific file.
Args:
filename (str): name of the artifacts definition file.
Returns:
bool: True if the file contains valid artifacts definitions. | [
"Validates",
"the",
"artifacts",
"definition",
"in",
"a",
"specific",
"file",
"."
] | python | train |
Othernet-Project/bottle-fdsend | fdsend/rangewrapper.py | https://github.com/Othernet-Project/bottle-fdsend/blob/5ff27e605e8cf878e24c71c1446dcf5c8caf4898/fdsend/rangewrapper.py#L44-L58 | def force_seek(fd, offset, chunk=CHUNK):
""" Force adjustment of read cursort to specified offset
This function takes a file descriptor ``fd`` and tries to seek to position
specified by ``offset`` argument. If the descriptor does not support the
``seek()`` method, it will fall back to ``emulate_seek()``.
The optional ``chunk`` argument can be used to adjust the chunk size for
``emulate_seek()``.
"""
try:
fd.seek(offset)
except (AttributeError, io.UnsupportedOperation):
# This file handle probably has no seek()
emulate_seek(fd, offset, chunk) | [
"def",
"force_seek",
"(",
"fd",
",",
"offset",
",",
"chunk",
"=",
"CHUNK",
")",
":",
"try",
":",
"fd",
".",
"seek",
"(",
"offset",
")",
"except",
"(",
"AttributeError",
",",
"io",
".",
"UnsupportedOperation",
")",
":",
"# This file handle probably has no seek()",
"emulate_seek",
"(",
"fd",
",",
"offset",
",",
"chunk",
")"
] | Force adjustment of read cursort to specified offset
This function takes a file descriptor ``fd`` and tries to seek to position
specified by ``offset`` argument. If the descriptor does not support the
``seek()`` method, it will fall back to ``emulate_seek()``.
The optional ``chunk`` argument can be used to adjust the chunk size for
``emulate_seek()``. | [
"Force",
"adjustment",
"of",
"read",
"cursort",
"to",
"specified",
"offset"
] | python | train |
geronimp/graftM | graftm/pplacer.py | https://github.com/geronimp/graftM/blob/c82576517290167f605fd0bc4facd009cee29f48/graftm/pplacer.py#L145-L244 | def place(self, reverse_pipe, seqs_list, resolve_placements, files, args,
slash_endings, tax_descr, clusterer):
'''
placement - This is the placement pipeline in GraftM, in aligned reads
are placed into phylogenetic trees, and the results interpreted.
If reverse reads are used, this is where the comparisons are made
between placements, for the summary tables to be build in the
next stage.
Parameters
----------
reverse_pipe : bool
True: reverse reads are placed separately
False: no reverse reads to place.
seqs_list : list
list of paths to alignment fastas to be placed into the tree
resolve_placements : bool
True:resolve placements to their most trusted taxonomy
False: classify reads to their most trusted taxonomy, until the
confidence cutoff is reached.
files : list
graftM output file name object
args : obj
argparse object
Returns
-------
trusted_placements : dict
dictionary of reads and their trusted placements
'''
trusted_placements = {}
files_to_delete = []
# Merge the alignments so they can all be placed at once.
alias_hash = self.alignment_merger(seqs_list, files.comb_aln_fa())
files_to_delete += seqs_list
files_to_delete.append(files.comb_aln_fa())
if os.path.getsize(files.comb_aln_fa()) == 0:
logging.debug("Combined alignment file has 0 size, not running pplacer")
to_return = {}
for idx, file in enumerate(seqs_list):
base_file=os.path.basename(file).replace('_forward_hits.aln.fa', '')
to_return[base_file] = {}
return to_return
# Run pplacer on merged file
jplace = self.pplacer(files.jplace_output_path(), args.output_directory, files.comb_aln_fa(), args.threads)
files_to_delete.append(jplace)
logging.info("Placements finished")
#Read the json of refpkg
logging.info("Reading classifications")
classifications=Classify(tax_descr).assignPlacement(
jplace,
args.placements_cutoff,
resolve_placements
)
logging.info("Reads classified")
# If the reverse pipe has been specified, run the comparisons between the two pipelines. If not then just return.
for idx, file in enumerate(seqs_list):
if reverse_pipe:
base_file=os.path.basename(file).replace('_forward_hits.aln.fa', '')
forward_gup=classifications.pop(sorted(classifications.keys())[0])
reverse_gup=classifications.pop(sorted(classifications.keys())[0])
seqs_list.pop(idx+1)
placements_hash = Compare().compare_placements(
forward_gup,
reverse_gup,
args.placements_cutoff,
slash_endings,
base_file
)
trusted_placements[base_file]=placements_hash['trusted_placements']
else: # Set the trusted placements as
base_file=os.path.basename(file).replace('_hits.aln.fa', '')
trusted_placements[base_file]={}
if str(idx) in classifications:
for read, entry in classifications[str(idx)].items():
trusted_placements[base_file][read] = entry['placement']
# Split the original jplace file
# and write split jplaces to separate file directories
with open(jplace) as f: jplace_json = json.load(f)
cluster_dict = self.convert_cluster_dict_keys_to_aliases(clusterer.seq_library,
alias_hash)
hash_with_placements = self.jplace_split(jplace_json,
cluster_dict)
for file_alias, placement_entries_list in hash_with_placements.items():
alias_hash[file_alias]['place'] = placement_entries_list
for k in alias_hash.keys():
if 'place' not in alias_hash[k]:
alias_hash[k]['place'] = []
self.write_jplace(jplace_json,
alias_hash)
self.hk.delete(files_to_delete)# Remove combined split, not really useful
return trusted_placements | [
"def",
"place",
"(",
"self",
",",
"reverse_pipe",
",",
"seqs_list",
",",
"resolve_placements",
",",
"files",
",",
"args",
",",
"slash_endings",
",",
"tax_descr",
",",
"clusterer",
")",
":",
"trusted_placements",
"=",
"{",
"}",
"files_to_delete",
"=",
"[",
"]",
"# Merge the alignments so they can all be placed at once.",
"alias_hash",
"=",
"self",
".",
"alignment_merger",
"(",
"seqs_list",
",",
"files",
".",
"comb_aln_fa",
"(",
")",
")",
"files_to_delete",
"+=",
"seqs_list",
"files_to_delete",
".",
"append",
"(",
"files",
".",
"comb_aln_fa",
"(",
")",
")",
"if",
"os",
".",
"path",
".",
"getsize",
"(",
"files",
".",
"comb_aln_fa",
"(",
")",
")",
"==",
"0",
":",
"logging",
".",
"debug",
"(",
"\"Combined alignment file has 0 size, not running pplacer\"",
")",
"to_return",
"=",
"{",
"}",
"for",
"idx",
",",
"file",
"in",
"enumerate",
"(",
"seqs_list",
")",
":",
"base_file",
"=",
"os",
".",
"path",
".",
"basename",
"(",
"file",
")",
".",
"replace",
"(",
"'_forward_hits.aln.fa'",
",",
"''",
")",
"to_return",
"[",
"base_file",
"]",
"=",
"{",
"}",
"return",
"to_return",
"# Run pplacer on merged file",
"jplace",
"=",
"self",
".",
"pplacer",
"(",
"files",
".",
"jplace_output_path",
"(",
")",
",",
"args",
".",
"output_directory",
",",
"files",
".",
"comb_aln_fa",
"(",
")",
",",
"args",
".",
"threads",
")",
"files_to_delete",
".",
"append",
"(",
"jplace",
")",
"logging",
".",
"info",
"(",
"\"Placements finished\"",
")",
"#Read the json of refpkg",
"logging",
".",
"info",
"(",
"\"Reading classifications\"",
")",
"classifications",
"=",
"Classify",
"(",
"tax_descr",
")",
".",
"assignPlacement",
"(",
"jplace",
",",
"args",
".",
"placements_cutoff",
",",
"resolve_placements",
")",
"logging",
".",
"info",
"(",
"\"Reads classified\"",
")",
"# If the reverse pipe has been specified, run the comparisons between the two pipelines. If not then just return.",
"for",
"idx",
",",
"file",
"in",
"enumerate",
"(",
"seqs_list",
")",
":",
"if",
"reverse_pipe",
":",
"base_file",
"=",
"os",
".",
"path",
".",
"basename",
"(",
"file",
")",
".",
"replace",
"(",
"'_forward_hits.aln.fa'",
",",
"''",
")",
"forward_gup",
"=",
"classifications",
".",
"pop",
"(",
"sorted",
"(",
"classifications",
".",
"keys",
"(",
")",
")",
"[",
"0",
"]",
")",
"reverse_gup",
"=",
"classifications",
".",
"pop",
"(",
"sorted",
"(",
"classifications",
".",
"keys",
"(",
")",
")",
"[",
"0",
"]",
")",
"seqs_list",
".",
"pop",
"(",
"idx",
"+",
"1",
")",
"placements_hash",
"=",
"Compare",
"(",
")",
".",
"compare_placements",
"(",
"forward_gup",
",",
"reverse_gup",
",",
"args",
".",
"placements_cutoff",
",",
"slash_endings",
",",
"base_file",
")",
"trusted_placements",
"[",
"base_file",
"]",
"=",
"placements_hash",
"[",
"'trusted_placements'",
"]",
"else",
":",
"# Set the trusted placements as",
"base_file",
"=",
"os",
".",
"path",
".",
"basename",
"(",
"file",
")",
".",
"replace",
"(",
"'_hits.aln.fa'",
",",
"''",
")",
"trusted_placements",
"[",
"base_file",
"]",
"=",
"{",
"}",
"if",
"str",
"(",
"idx",
")",
"in",
"classifications",
":",
"for",
"read",
",",
"entry",
"in",
"classifications",
"[",
"str",
"(",
"idx",
")",
"]",
".",
"items",
"(",
")",
":",
"trusted_placements",
"[",
"base_file",
"]",
"[",
"read",
"]",
"=",
"entry",
"[",
"'placement'",
"]",
"# Split the original jplace file",
"# and write split jplaces to separate file directories",
"with",
"open",
"(",
"jplace",
")",
"as",
"f",
":",
"jplace_json",
"=",
"json",
".",
"load",
"(",
"f",
")",
"cluster_dict",
"=",
"self",
".",
"convert_cluster_dict_keys_to_aliases",
"(",
"clusterer",
".",
"seq_library",
",",
"alias_hash",
")",
"hash_with_placements",
"=",
"self",
".",
"jplace_split",
"(",
"jplace_json",
",",
"cluster_dict",
")",
"for",
"file_alias",
",",
"placement_entries_list",
"in",
"hash_with_placements",
".",
"items",
"(",
")",
":",
"alias_hash",
"[",
"file_alias",
"]",
"[",
"'place'",
"]",
"=",
"placement_entries_list",
"for",
"k",
"in",
"alias_hash",
".",
"keys",
"(",
")",
":",
"if",
"'place'",
"not",
"in",
"alias_hash",
"[",
"k",
"]",
":",
"alias_hash",
"[",
"k",
"]",
"[",
"'place'",
"]",
"=",
"[",
"]",
"self",
".",
"write_jplace",
"(",
"jplace_json",
",",
"alias_hash",
")",
"self",
".",
"hk",
".",
"delete",
"(",
"files_to_delete",
")",
"# Remove combined split, not really useful",
"return",
"trusted_placements"
] | placement - This is the placement pipeline in GraftM, in aligned reads
are placed into phylogenetic trees, and the results interpreted.
If reverse reads are used, this is where the comparisons are made
between placements, for the summary tables to be build in the
next stage.
Parameters
----------
reverse_pipe : bool
True: reverse reads are placed separately
False: no reverse reads to place.
seqs_list : list
list of paths to alignment fastas to be placed into the tree
resolve_placements : bool
True:resolve placements to their most trusted taxonomy
False: classify reads to their most trusted taxonomy, until the
confidence cutoff is reached.
files : list
graftM output file name object
args : obj
argparse object
Returns
-------
trusted_placements : dict
dictionary of reads and their trusted placements | [
"placement",
"-",
"This",
"is",
"the",
"placement",
"pipeline",
"in",
"GraftM",
"in",
"aligned",
"reads",
"are",
"placed",
"into",
"phylogenetic",
"trees",
"and",
"the",
"results",
"interpreted",
".",
"If",
"reverse",
"reads",
"are",
"used",
"this",
"is",
"where",
"the",
"comparisons",
"are",
"made",
"between",
"placements",
"for",
"the",
"summary",
"tables",
"to",
"be",
"build",
"in",
"the",
"next",
"stage",
"."
] | python | train |
KelSolaar/Umbra | umbra/reporter.py | https://github.com/KelSolaar/Umbra/blob/66f45f08d9d723787f1191989f8b0dda84b412ce/umbra/reporter.py#L687-L712 | def report_exception_to_crittercism(self, *args):
"""
Reports given exception to Crittercism.
:param \*args: Arguments.
:type \*args: \*
:return: Method success.
:rtype: bool
"""
if foundations.common.is_internet_available():
cls, instance, trcback = args
title = re.escape("".join(map(lambda x: x.strip(), traceback.format_exception_only(cls, instance))))
file = trcback.tb_frame.f_code.co_filename
line_number = trcback.tb_lineno
stack = repr(map(str, self.formatTextException(cls, instance, trcback)))
javascript = "Crittercism.logExternalException(\"{0}\", \"{1}\", {2}, {3});".format(
title, file, line_number, stack)
self.__evaluate_javascript(javascript)
LOGGER.info("{0} | Exception report sent to Crittercism!".format(self.__class__.__name__))
return True
else:
LOGGER.warning("!> {0} | Failed sending exception report to Crittercism!".format(self.__class__.__name__))
return False | [
"def",
"report_exception_to_crittercism",
"(",
"self",
",",
"*",
"args",
")",
":",
"if",
"foundations",
".",
"common",
".",
"is_internet_available",
"(",
")",
":",
"cls",
",",
"instance",
",",
"trcback",
"=",
"args",
"title",
"=",
"re",
".",
"escape",
"(",
"\"\"",
".",
"join",
"(",
"map",
"(",
"lambda",
"x",
":",
"x",
".",
"strip",
"(",
")",
",",
"traceback",
".",
"format_exception_only",
"(",
"cls",
",",
"instance",
")",
")",
")",
")",
"file",
"=",
"trcback",
".",
"tb_frame",
".",
"f_code",
".",
"co_filename",
"line_number",
"=",
"trcback",
".",
"tb_lineno",
"stack",
"=",
"repr",
"(",
"map",
"(",
"str",
",",
"self",
".",
"formatTextException",
"(",
"cls",
",",
"instance",
",",
"trcback",
")",
")",
")",
"javascript",
"=",
"\"Crittercism.logExternalException(\\\"{0}\\\", \\\"{1}\\\", {2}, {3});\"",
".",
"format",
"(",
"title",
",",
"file",
",",
"line_number",
",",
"stack",
")",
"self",
".",
"__evaluate_javascript",
"(",
"javascript",
")",
"LOGGER",
".",
"info",
"(",
"\"{0} | Exception report sent to Crittercism!\"",
".",
"format",
"(",
"self",
".",
"__class__",
".",
"__name__",
")",
")",
"return",
"True",
"else",
":",
"LOGGER",
".",
"warning",
"(",
"\"!> {0} | Failed sending exception report to Crittercism!\"",
".",
"format",
"(",
"self",
".",
"__class__",
".",
"__name__",
")",
")",
"return",
"False"
] | Reports given exception to Crittercism.
:param \*args: Arguments.
:type \*args: \*
:return: Method success.
:rtype: bool | [
"Reports",
"given",
"exception",
"to",
"Crittercism",
"."
] | python | train |
orbingol/NURBS-Python | geomdl/_utilities.py | https://github.com/orbingol/NURBS-Python/blob/b1c6a8b51cf143ff58761438e93ba6baef470627/geomdl/_utilities.py#L46-L54 | def pool_context(*args, **kwargs):
""" Context manager for multiprocessing.Pool class (for compatibility with Python 2.7.x) """
pool = Pool(*args, **kwargs)
try:
yield pool
except Exception as e:
raise e
finally:
pool.terminate() | [
"def",
"pool_context",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"pool",
"=",
"Pool",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"try",
":",
"yield",
"pool",
"except",
"Exception",
"as",
"e",
":",
"raise",
"e",
"finally",
":",
"pool",
".",
"terminate",
"(",
")"
] | Context manager for multiprocessing.Pool class (for compatibility with Python 2.7.x) | [
"Context",
"manager",
"for",
"multiprocessing",
".",
"Pool",
"class",
"(",
"for",
"compatibility",
"with",
"Python",
"2",
".",
"7",
".",
"x",
")"
] | python | train |
Clinical-Genomics/scout | scout/server/blueprints/variants/views.py | https://github.com/Clinical-Genomics/scout/blob/90a551e2e1653a319e654c2405c2866f93d0ebb9/scout/server/blueprints/variants/views.py#L312-L364 | def variant_update(institute_id, case_name, variant_id):
"""Update user-defined information about a variant: manual rank & ACMG."""
institute_obj, case_obj = institute_and_case(store, institute_id, case_name)
variant_obj = store.variant(variant_id)
user_obj = store.user(current_user.email)
link = request.referrer
manual_rank = request.form.get('manual_rank')
if manual_rank:
new_manual_rank = int(manual_rank) if manual_rank != '-1' else None
store.update_manual_rank(institute_obj, case_obj, user_obj, link, variant_obj,
new_manual_rank)
if new_manual_rank:
flash("updated variant tag: {}".format(new_manual_rank), 'info')
else:
flash("reset variant tag: {}".format(variant_obj.get('manual_rank', 'NA')), 'info')
elif request.form.get('acmg_classification'):
new_acmg = request.form['acmg_classification']
acmg_classification = variant_obj.get('acmg_classification')
if isinstance(acmg_classification, int) and (new_acmg == ACMG_MAP[acmg_classification]):
new_acmg = None
store.update_acmg(institute_obj, case_obj, user_obj, link, variant_obj, new_acmg)
flash("updated ACMG classification: {}".format(new_acmg), 'info')
new_dismiss = request.form.getlist('dismiss_variant')
if request.form.getlist('dismiss_variant'):
store.update_dismiss_variant(institute_obj, case_obj, user_obj, link, variant_obj,
new_dismiss)
if new_dismiss:
flash("Dismissed variant: {}".format(new_dismiss), 'info')
if variant_obj.get('dismiss_variant') and not new_dismiss:
if 'dismiss' in request.form:
store.update_dismiss_variant(institute_obj, case_obj, user_obj, link, variant_obj,
new_dismiss)
flash("Reset variant dismissal: {}".format(variant_obj.get('dismiss_variant')), 'info')
else:
log.debug("DO NOT reset variant dismissal: {}".format(variant_obj.get('dismiss_variant')), 'info')
mosaic_tags = request.form.getlist('mosaic_tags')
if mosaic_tags:
store.update_mosaic_tags(institute_obj, case_obj, user_obj, link, variant_obj,
mosaic_tags)
if new_dismiss:
flash("Added mosaic tags: {}".format(mosaic_tags), 'info')
if variant_obj.get('mosaic_tags') and not mosaic_tags:
if 'mosaic' in request.form:
store.update_mosaic_tags(institute_obj, case_obj, user_obj, link, variant_obj,
mosaic_tags)
flash("Reset mosaic tags: {}".format(variant_obj.get('mosaic_tags')), 'info')
return redirect(request.referrer) | [
"def",
"variant_update",
"(",
"institute_id",
",",
"case_name",
",",
"variant_id",
")",
":",
"institute_obj",
",",
"case_obj",
"=",
"institute_and_case",
"(",
"store",
",",
"institute_id",
",",
"case_name",
")",
"variant_obj",
"=",
"store",
".",
"variant",
"(",
"variant_id",
")",
"user_obj",
"=",
"store",
".",
"user",
"(",
"current_user",
".",
"email",
")",
"link",
"=",
"request",
".",
"referrer",
"manual_rank",
"=",
"request",
".",
"form",
".",
"get",
"(",
"'manual_rank'",
")",
"if",
"manual_rank",
":",
"new_manual_rank",
"=",
"int",
"(",
"manual_rank",
")",
"if",
"manual_rank",
"!=",
"'-1'",
"else",
"None",
"store",
".",
"update_manual_rank",
"(",
"institute_obj",
",",
"case_obj",
",",
"user_obj",
",",
"link",
",",
"variant_obj",
",",
"new_manual_rank",
")",
"if",
"new_manual_rank",
":",
"flash",
"(",
"\"updated variant tag: {}\"",
".",
"format",
"(",
"new_manual_rank",
")",
",",
"'info'",
")",
"else",
":",
"flash",
"(",
"\"reset variant tag: {}\"",
".",
"format",
"(",
"variant_obj",
".",
"get",
"(",
"'manual_rank'",
",",
"'NA'",
")",
")",
",",
"'info'",
")",
"elif",
"request",
".",
"form",
".",
"get",
"(",
"'acmg_classification'",
")",
":",
"new_acmg",
"=",
"request",
".",
"form",
"[",
"'acmg_classification'",
"]",
"acmg_classification",
"=",
"variant_obj",
".",
"get",
"(",
"'acmg_classification'",
")",
"if",
"isinstance",
"(",
"acmg_classification",
",",
"int",
")",
"and",
"(",
"new_acmg",
"==",
"ACMG_MAP",
"[",
"acmg_classification",
"]",
")",
":",
"new_acmg",
"=",
"None",
"store",
".",
"update_acmg",
"(",
"institute_obj",
",",
"case_obj",
",",
"user_obj",
",",
"link",
",",
"variant_obj",
",",
"new_acmg",
")",
"flash",
"(",
"\"updated ACMG classification: {}\"",
".",
"format",
"(",
"new_acmg",
")",
",",
"'info'",
")",
"new_dismiss",
"=",
"request",
".",
"form",
".",
"getlist",
"(",
"'dismiss_variant'",
")",
"if",
"request",
".",
"form",
".",
"getlist",
"(",
"'dismiss_variant'",
")",
":",
"store",
".",
"update_dismiss_variant",
"(",
"institute_obj",
",",
"case_obj",
",",
"user_obj",
",",
"link",
",",
"variant_obj",
",",
"new_dismiss",
")",
"if",
"new_dismiss",
":",
"flash",
"(",
"\"Dismissed variant: {}\"",
".",
"format",
"(",
"new_dismiss",
")",
",",
"'info'",
")",
"if",
"variant_obj",
".",
"get",
"(",
"'dismiss_variant'",
")",
"and",
"not",
"new_dismiss",
":",
"if",
"'dismiss'",
"in",
"request",
".",
"form",
":",
"store",
".",
"update_dismiss_variant",
"(",
"institute_obj",
",",
"case_obj",
",",
"user_obj",
",",
"link",
",",
"variant_obj",
",",
"new_dismiss",
")",
"flash",
"(",
"\"Reset variant dismissal: {}\"",
".",
"format",
"(",
"variant_obj",
".",
"get",
"(",
"'dismiss_variant'",
")",
")",
",",
"'info'",
")",
"else",
":",
"log",
".",
"debug",
"(",
"\"DO NOT reset variant dismissal: {}\"",
".",
"format",
"(",
"variant_obj",
".",
"get",
"(",
"'dismiss_variant'",
")",
")",
",",
"'info'",
")",
"mosaic_tags",
"=",
"request",
".",
"form",
".",
"getlist",
"(",
"'mosaic_tags'",
")",
"if",
"mosaic_tags",
":",
"store",
".",
"update_mosaic_tags",
"(",
"institute_obj",
",",
"case_obj",
",",
"user_obj",
",",
"link",
",",
"variant_obj",
",",
"mosaic_tags",
")",
"if",
"new_dismiss",
":",
"flash",
"(",
"\"Added mosaic tags: {}\"",
".",
"format",
"(",
"mosaic_tags",
")",
",",
"'info'",
")",
"if",
"variant_obj",
".",
"get",
"(",
"'mosaic_tags'",
")",
"and",
"not",
"mosaic_tags",
":",
"if",
"'mosaic'",
"in",
"request",
".",
"form",
":",
"store",
".",
"update_mosaic_tags",
"(",
"institute_obj",
",",
"case_obj",
",",
"user_obj",
",",
"link",
",",
"variant_obj",
",",
"mosaic_tags",
")",
"flash",
"(",
"\"Reset mosaic tags: {}\"",
".",
"format",
"(",
"variant_obj",
".",
"get",
"(",
"'mosaic_tags'",
")",
")",
",",
"'info'",
")",
"return",
"redirect",
"(",
"request",
".",
"referrer",
")"
] | Update user-defined information about a variant: manual rank & ACMG. | [
"Update",
"user",
"-",
"defined",
"information",
"about",
"a",
"variant",
":",
"manual",
"rank",
"&",
"ACMG",
"."
] | python | test |
treycucco/bidon | bidon/util/terminal.py | https://github.com/treycucco/bidon/blob/d9f24596841d0e69e8ac70a1d1a1deecea95e340/bidon/util/terminal.py#L86-L88 | def ratio_and_percentage(current, total, time_remaining):
"""Returns the progress ratio and percentage."""
return "{} / {} ({}% completed)".format(current, total, int(current / total * 100)) | [
"def",
"ratio_and_percentage",
"(",
"current",
",",
"total",
",",
"time_remaining",
")",
":",
"return",
"\"{} / {} ({}% completed)\"",
".",
"format",
"(",
"current",
",",
"total",
",",
"int",
"(",
"current",
"/",
"total",
"*",
"100",
")",
")"
] | Returns the progress ratio and percentage. | [
"Returns",
"the",
"progress",
"ratio",
"and",
"percentage",
"."
] | python | train |
DEIB-GECO/PyGMQL | gmql/dataset/GMQLDataset.py | https://github.com/DEIB-GECO/PyGMQL/blob/e58b2f9402a86056dcda484a32e3de0bb06ed991/gmql/dataset/GMQLDataset.py#L678-L692 | def summit_cover(self, minAcc, maxAcc, groupBy=None, new_reg_fields=None):
"""
*Wrapper of* ``COVER``
Variant of the function :meth:`~.cover` that returns only those portions of the COVER
result where the maximum number of regions overlap (this is done by returning only
regions that start from a position after which the number of overlaps does not
increase, and stop at a position where either the number of overlapping regions decreases
or violates the maximum accumulation index).
Equivalent to calling::
cover("summit", ...)
"""
return self.cover(minAcc, maxAcc, groupBy, new_reg_fields, cover_type="summit") | [
"def",
"summit_cover",
"(",
"self",
",",
"minAcc",
",",
"maxAcc",
",",
"groupBy",
"=",
"None",
",",
"new_reg_fields",
"=",
"None",
")",
":",
"return",
"self",
".",
"cover",
"(",
"minAcc",
",",
"maxAcc",
",",
"groupBy",
",",
"new_reg_fields",
",",
"cover_type",
"=",
"\"summit\"",
")"
] | *Wrapper of* ``COVER``
Variant of the function :meth:`~.cover` that returns only those portions of the COVER
result where the maximum number of regions overlap (this is done by returning only
regions that start from a position after which the number of overlaps does not
increase, and stop at a position where either the number of overlapping regions decreases
or violates the maximum accumulation index).
Equivalent to calling::
cover("summit", ...) | [
"*",
"Wrapper",
"of",
"*",
"COVER"
] | python | train |
fabioz/PyDev.Debugger | pydevd_attach_to_process/winappdbg/thread.py | https://github.com/fabioz/PyDev.Debugger/blob/ed9c4307662a5593b8a7f1f3389ecd0e79b8c503/pydevd_attach_to_process/winappdbg/thread.py#L364-L385 | def kill(self, dwExitCode = 0):
"""
Terminates the thread execution.
@note: If the C{lpInjectedMemory} member contains a valid pointer,
the memory is freed.
@type dwExitCode: int
@param dwExitCode: (Optional) Thread exit code.
"""
hThread = self.get_handle(win32.THREAD_TERMINATE)
win32.TerminateThread(hThread, dwExitCode)
# Ugliest hack ever, won't work if many pieces of code are injected.
# Seriously, what was I thinking? Lame! :(
if self.pInjectedMemory is not None:
try:
self.get_process().free(self.pInjectedMemory)
self.pInjectedMemory = None
except Exception:
## raise # XXX DEBUG
pass | [
"def",
"kill",
"(",
"self",
",",
"dwExitCode",
"=",
"0",
")",
":",
"hThread",
"=",
"self",
".",
"get_handle",
"(",
"win32",
".",
"THREAD_TERMINATE",
")",
"win32",
".",
"TerminateThread",
"(",
"hThread",
",",
"dwExitCode",
")",
"# Ugliest hack ever, won't work if many pieces of code are injected.",
"# Seriously, what was I thinking? Lame! :(",
"if",
"self",
".",
"pInjectedMemory",
"is",
"not",
"None",
":",
"try",
":",
"self",
".",
"get_process",
"(",
")",
".",
"free",
"(",
"self",
".",
"pInjectedMemory",
")",
"self",
".",
"pInjectedMemory",
"=",
"None",
"except",
"Exception",
":",
"## raise # XXX DEBUG",
"pass"
] | Terminates the thread execution.
@note: If the C{lpInjectedMemory} member contains a valid pointer,
the memory is freed.
@type dwExitCode: int
@param dwExitCode: (Optional) Thread exit code. | [
"Terminates",
"the",
"thread",
"execution",
"."
] | python | train |
PMEAL/OpenPNM | openpnm/utils/misc.py | https://github.com/PMEAL/OpenPNM/blob/0547b5724ffedc0a593aae48639d36fe10e0baed/openpnm/utils/misc.py#L313-L356 | def models_to_table(obj, params=True):
r"""
Converts a ModelsDict object to a ReST compatible table
Parameters
----------
obj : OpenPNM object
Any object that has a ``models`` attribute
params : boolean
Indicates whether or not to include a list of parameter
values in the table. Set to False for just a list of models, and
True for a more verbose table with all parameter values.
"""
if not hasattr(obj, 'models'):
raise Exception('Received object does not have any models')
row = '+' + '-'*4 + '+' + '-'*22 + '+' + '-'*18 + '+' + '-'*26 + '+'
fmt = '{0:1s} {1:2s} {2:1s} {3:20s} {4:1s} {5:16s} {6:1s} {7:24s} {8:1s}'
lines = []
lines.append(row)
lines.append(fmt.format('|', '#', '|', 'Property Name', '|', 'Parameter',
'|', 'Value', '|'))
lines.append(row.replace('-', '='))
for i, item in enumerate(obj.models.keys()):
prop = item
if len(prop) > 20:
prop = item[:17] + "..."
temp = obj.models[item].copy()
model = str(temp.pop('model')).split(' ')[1]
lines.append(fmt.format('|', str(i+1), '|', prop, '|', 'model:',
'|', model, '|'))
lines.append(row)
if params:
for param in temp.keys():
p1 = param
if len(p1) > 16:
p1 = p1[:14] + '...'
p2 = str(temp[param])
if len(p2) > 24:
p2 = p2[:21] + '...'
lines.append(fmt.format('|', '', '|', '', '|', p1, '|',
p2, '|'))
lines.append(row)
return '\n'.join(lines) | [
"def",
"models_to_table",
"(",
"obj",
",",
"params",
"=",
"True",
")",
":",
"if",
"not",
"hasattr",
"(",
"obj",
",",
"'models'",
")",
":",
"raise",
"Exception",
"(",
"'Received object does not have any models'",
")",
"row",
"=",
"'+'",
"+",
"'-'",
"*",
"4",
"+",
"'+'",
"+",
"'-'",
"*",
"22",
"+",
"'+'",
"+",
"'-'",
"*",
"18",
"+",
"'+'",
"+",
"'-'",
"*",
"26",
"+",
"'+'",
"fmt",
"=",
"'{0:1s} {1:2s} {2:1s} {3:20s} {4:1s} {5:16s} {6:1s} {7:24s} {8:1s}'",
"lines",
"=",
"[",
"]",
"lines",
".",
"append",
"(",
"row",
")",
"lines",
".",
"append",
"(",
"fmt",
".",
"format",
"(",
"'|'",
",",
"'#'",
",",
"'|'",
",",
"'Property Name'",
",",
"'|'",
",",
"'Parameter'",
",",
"'|'",
",",
"'Value'",
",",
"'|'",
")",
")",
"lines",
".",
"append",
"(",
"row",
".",
"replace",
"(",
"'-'",
",",
"'='",
")",
")",
"for",
"i",
",",
"item",
"in",
"enumerate",
"(",
"obj",
".",
"models",
".",
"keys",
"(",
")",
")",
":",
"prop",
"=",
"item",
"if",
"len",
"(",
"prop",
")",
">",
"20",
":",
"prop",
"=",
"item",
"[",
":",
"17",
"]",
"+",
"\"...\"",
"temp",
"=",
"obj",
".",
"models",
"[",
"item",
"]",
".",
"copy",
"(",
")",
"model",
"=",
"str",
"(",
"temp",
".",
"pop",
"(",
"'model'",
")",
")",
".",
"split",
"(",
"' '",
")",
"[",
"1",
"]",
"lines",
".",
"append",
"(",
"fmt",
".",
"format",
"(",
"'|'",
",",
"str",
"(",
"i",
"+",
"1",
")",
",",
"'|'",
",",
"prop",
",",
"'|'",
",",
"'model:'",
",",
"'|'",
",",
"model",
",",
"'|'",
")",
")",
"lines",
".",
"append",
"(",
"row",
")",
"if",
"params",
":",
"for",
"param",
"in",
"temp",
".",
"keys",
"(",
")",
":",
"p1",
"=",
"param",
"if",
"len",
"(",
"p1",
")",
">",
"16",
":",
"p1",
"=",
"p1",
"[",
":",
"14",
"]",
"+",
"'...'",
"p2",
"=",
"str",
"(",
"temp",
"[",
"param",
"]",
")",
"if",
"len",
"(",
"p2",
")",
">",
"24",
":",
"p2",
"=",
"p2",
"[",
":",
"21",
"]",
"+",
"'...'",
"lines",
".",
"append",
"(",
"fmt",
".",
"format",
"(",
"'|'",
",",
"''",
",",
"'|'",
",",
"''",
",",
"'|'",
",",
"p1",
",",
"'|'",
",",
"p2",
",",
"'|'",
")",
")",
"lines",
".",
"append",
"(",
"row",
")",
"return",
"'\\n'",
".",
"join",
"(",
"lines",
")"
] | r"""
Converts a ModelsDict object to a ReST compatible table
Parameters
----------
obj : OpenPNM object
Any object that has a ``models`` attribute
params : boolean
Indicates whether or not to include a list of parameter
values in the table. Set to False for just a list of models, and
True for a more verbose table with all parameter values. | [
"r",
"Converts",
"a",
"ModelsDict",
"object",
"to",
"a",
"ReST",
"compatible",
"table"
] | python | train |
moderngl/moderngl | moderngl/context.py | https://github.com/moderngl/moderngl/blob/a8f5dce8dc72ae84a2f9523887fb5f6b620049b9/moderngl/context.py#L1072-L1089 | def core_profile_check(self) -> None:
'''
Core profile check.
FOR DEBUG PURPOSES ONLY
'''
profile_mask = self.info['GL_CONTEXT_PROFILE_MASK']
if profile_mask != 1:
warnings.warn('The window should request a CORE OpenGL profile')
version_code = self.version_code
if not version_code:
major, minor = map(int, self.info['GL_VERSION'].split('.', 2)[:2])
version_code = major * 100 + minor * 10
if version_code < 330:
warnings.warn('The window should support OpenGL 3.3+ (version_code=%d)' % version_code) | [
"def",
"core_profile_check",
"(",
"self",
")",
"->",
"None",
":",
"profile_mask",
"=",
"self",
".",
"info",
"[",
"'GL_CONTEXT_PROFILE_MASK'",
"]",
"if",
"profile_mask",
"!=",
"1",
":",
"warnings",
".",
"warn",
"(",
"'The window should request a CORE OpenGL profile'",
")",
"version_code",
"=",
"self",
".",
"version_code",
"if",
"not",
"version_code",
":",
"major",
",",
"minor",
"=",
"map",
"(",
"int",
",",
"self",
".",
"info",
"[",
"'GL_VERSION'",
"]",
".",
"split",
"(",
"'.'",
",",
"2",
")",
"[",
":",
"2",
"]",
")",
"version_code",
"=",
"major",
"*",
"100",
"+",
"minor",
"*",
"10",
"if",
"version_code",
"<",
"330",
":",
"warnings",
".",
"warn",
"(",
"'The window should support OpenGL 3.3+ (version_code=%d)'",
"%",
"version_code",
")"
] | Core profile check.
FOR DEBUG PURPOSES ONLY | [
"Core",
"profile",
"check",
"."
] | python | train |
PSPC-SPAC-buyandsell/von_anchor | von_anchor/anchor/base.py | https://github.com/PSPC-SPAC-buyandsell/von_anchor/blob/78ac1de67be42a676274f4bf71fe12f66e72f309/von_anchor/anchor/base.py#L461-L490 | async def _submit(self, req_json: str) -> str:
"""
Submit (json) request to ledger; return (json) result.
Raise AbsentPool for no pool, ClosedPool if pool is not yet open, or BadLedgerTxn on failure.
:param req_json: json of request to sign and submit
:return: json response
"""
LOGGER.debug('BaseAnchor._submit >>> req_json: %s', req_json)
if not self.pool:
LOGGER.debug('BaseAnchor._submit <!< absent pool')
raise AbsentPool('Cannot submit request: absent pool')
if not self.pool.handle:
LOGGER.debug('BaseAnchor._submit <!< closed pool %s', self.pool.name)
raise ClosedPool('Cannot submit request to closed pool {}'.format(self.pool.name))
rv_json = await ledger.submit_request(self.pool.handle, req_json)
await asyncio.sleep(0)
resp = json.loads(rv_json)
if resp.get('op', '') in ('REQNACK', 'REJECT'):
LOGGER.debug('BaseAnchor._submit <!< ledger rejected request: %s', resp['reason'])
raise BadLedgerTxn('Ledger rejected transaction request: {}'.format(resp['reason']))
LOGGER.debug('BaseAnchor._submit <<< %s', rv_json)
return rv_json | [
"async",
"def",
"_submit",
"(",
"self",
",",
"req_json",
":",
"str",
")",
"->",
"str",
":",
"LOGGER",
".",
"debug",
"(",
"'BaseAnchor._submit >>> req_json: %s'",
",",
"req_json",
")",
"if",
"not",
"self",
".",
"pool",
":",
"LOGGER",
".",
"debug",
"(",
"'BaseAnchor._submit <!< absent pool'",
")",
"raise",
"AbsentPool",
"(",
"'Cannot submit request: absent pool'",
")",
"if",
"not",
"self",
".",
"pool",
".",
"handle",
":",
"LOGGER",
".",
"debug",
"(",
"'BaseAnchor._submit <!< closed pool %s'",
",",
"self",
".",
"pool",
".",
"name",
")",
"raise",
"ClosedPool",
"(",
"'Cannot submit request to closed pool {}'",
".",
"format",
"(",
"self",
".",
"pool",
".",
"name",
")",
")",
"rv_json",
"=",
"await",
"ledger",
".",
"submit_request",
"(",
"self",
".",
"pool",
".",
"handle",
",",
"req_json",
")",
"await",
"asyncio",
".",
"sleep",
"(",
"0",
")",
"resp",
"=",
"json",
".",
"loads",
"(",
"rv_json",
")",
"if",
"resp",
".",
"get",
"(",
"'op'",
",",
"''",
")",
"in",
"(",
"'REQNACK'",
",",
"'REJECT'",
")",
":",
"LOGGER",
".",
"debug",
"(",
"'BaseAnchor._submit <!< ledger rejected request: %s'",
",",
"resp",
"[",
"'reason'",
"]",
")",
"raise",
"BadLedgerTxn",
"(",
"'Ledger rejected transaction request: {}'",
".",
"format",
"(",
"resp",
"[",
"'reason'",
"]",
")",
")",
"LOGGER",
".",
"debug",
"(",
"'BaseAnchor._submit <<< %s'",
",",
"rv_json",
")",
"return",
"rv_json"
] | Submit (json) request to ledger; return (json) result.
Raise AbsentPool for no pool, ClosedPool if pool is not yet open, or BadLedgerTxn on failure.
:param req_json: json of request to sign and submit
:return: json response | [
"Submit",
"(",
"json",
")",
"request",
"to",
"ledger",
";",
"return",
"(",
"json",
")",
"result",
"."
] | python | train |
RJT1990/pyflux | pyflux/garch/garch.py | https://github.com/RJT1990/pyflux/blob/297f2afc2095acd97c12e827dd500e8ea5da0c0f/pyflux/garch/garch.py#L529-L577 | def predict_is(self, h=5, fit_once=True, fit_method='MLE', intervals=False, **kwargs):
""" Makes dynamic in-sample predictions with the estimated model
Parameters
----------
h : int (default : 5)
How many steps would you like to forecast?
fit_once : boolean
(default: True) Fits only once before the in-sample prediction; if False, fits after every new datapoint
fit_method : string
Which method to fit the model with
intervals: boolean
Whether to return prediction intervals
Returns
----------
- pd.DataFrame with predicted values
"""
predictions = []
for t in range(0,h):
x = GARCH(p=self.p, q=self.q, data=self.data[0:-h+t])
if fit_once is False:
x.fit(method=fit_method, printer=False)
if t == 0:
if fit_once is True:
x.fit(method=fit_method, printer=False)
saved_lvs = x.latent_variables
predictions = x.predict(1, intervals=intervals)
else:
if fit_once is True:
x.latent_variables = saved_lvs
predictions = pd.concat([predictions,x.predict(1, intervals=intervals)])
if intervals is True:
predictions.rename(columns={0:self.data_name, 1: "1% Prediction Interval",
2: "5% Prediction Interval", 3: "95% Prediction Interval", 4: "99% Prediction Interval"}, inplace=True)
else:
predictions.rename(columns={0:self.data_name}, inplace=True)
predictions.index = self.index[-h:]
return predictions | [
"def",
"predict_is",
"(",
"self",
",",
"h",
"=",
"5",
",",
"fit_once",
"=",
"True",
",",
"fit_method",
"=",
"'MLE'",
",",
"intervals",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"predictions",
"=",
"[",
"]",
"for",
"t",
"in",
"range",
"(",
"0",
",",
"h",
")",
":",
"x",
"=",
"GARCH",
"(",
"p",
"=",
"self",
".",
"p",
",",
"q",
"=",
"self",
".",
"q",
",",
"data",
"=",
"self",
".",
"data",
"[",
"0",
":",
"-",
"h",
"+",
"t",
"]",
")",
"if",
"fit_once",
"is",
"False",
":",
"x",
".",
"fit",
"(",
"method",
"=",
"fit_method",
",",
"printer",
"=",
"False",
")",
"if",
"t",
"==",
"0",
":",
"if",
"fit_once",
"is",
"True",
":",
"x",
".",
"fit",
"(",
"method",
"=",
"fit_method",
",",
"printer",
"=",
"False",
")",
"saved_lvs",
"=",
"x",
".",
"latent_variables",
"predictions",
"=",
"x",
".",
"predict",
"(",
"1",
",",
"intervals",
"=",
"intervals",
")",
"else",
":",
"if",
"fit_once",
"is",
"True",
":",
"x",
".",
"latent_variables",
"=",
"saved_lvs",
"predictions",
"=",
"pd",
".",
"concat",
"(",
"[",
"predictions",
",",
"x",
".",
"predict",
"(",
"1",
",",
"intervals",
"=",
"intervals",
")",
"]",
")",
"if",
"intervals",
"is",
"True",
":",
"predictions",
".",
"rename",
"(",
"columns",
"=",
"{",
"0",
":",
"self",
".",
"data_name",
",",
"1",
":",
"\"1% Prediction Interval\"",
",",
"2",
":",
"\"5% Prediction Interval\"",
",",
"3",
":",
"\"95% Prediction Interval\"",
",",
"4",
":",
"\"99% Prediction Interval\"",
"}",
",",
"inplace",
"=",
"True",
")",
"else",
":",
"predictions",
".",
"rename",
"(",
"columns",
"=",
"{",
"0",
":",
"self",
".",
"data_name",
"}",
",",
"inplace",
"=",
"True",
")",
"predictions",
".",
"index",
"=",
"self",
".",
"index",
"[",
"-",
"h",
":",
"]",
"return",
"predictions"
] | Makes dynamic in-sample predictions with the estimated model
Parameters
----------
h : int (default : 5)
How many steps would you like to forecast?
fit_once : boolean
(default: True) Fits only once before the in-sample prediction; if False, fits after every new datapoint
fit_method : string
Which method to fit the model with
intervals: boolean
Whether to return prediction intervals
Returns
----------
- pd.DataFrame with predicted values | [
"Makes",
"dynamic",
"in",
"-",
"sample",
"predictions",
"with",
"the",
"estimated",
"model"
] | python | train |
PX4/pyulog | pyulog/ulog2kml.py | https://github.com/PX4/pyulog/blob/3bc4f9338d30e2e0a0dfbed58f54d200967e5056/pyulog/ulog2kml.py#L120-L140 | def _kml_add_camera_triggers(kml, ulog, camera_trigger_topic_name, altitude_offset):
"""
Add camera trigger points to the map
"""
data = ulog.data_list
topic_instance = 0
cur_dataset = [elem for elem in data
if elem.name == camera_trigger_topic_name and elem.multi_id == topic_instance]
if len(cur_dataset) > 0:
cur_dataset = cur_dataset[0]
pos_lon = cur_dataset.data['lon']
pos_lat = cur_dataset.data['lat']
pos_alt = cur_dataset.data['alt']
sequence = cur_dataset.data['seq']
for i in range(len(pos_lon)):
pnt = kml.newpoint(name='Camera Trigger '+str(sequence[i]))
pnt.coords = [(pos_lon[i], pos_lat[i], pos_alt[i] + altitude_offset)] | [
"def",
"_kml_add_camera_triggers",
"(",
"kml",
",",
"ulog",
",",
"camera_trigger_topic_name",
",",
"altitude_offset",
")",
":",
"data",
"=",
"ulog",
".",
"data_list",
"topic_instance",
"=",
"0",
"cur_dataset",
"=",
"[",
"elem",
"for",
"elem",
"in",
"data",
"if",
"elem",
".",
"name",
"==",
"camera_trigger_topic_name",
"and",
"elem",
".",
"multi_id",
"==",
"topic_instance",
"]",
"if",
"len",
"(",
"cur_dataset",
")",
">",
"0",
":",
"cur_dataset",
"=",
"cur_dataset",
"[",
"0",
"]",
"pos_lon",
"=",
"cur_dataset",
".",
"data",
"[",
"'lon'",
"]",
"pos_lat",
"=",
"cur_dataset",
".",
"data",
"[",
"'lat'",
"]",
"pos_alt",
"=",
"cur_dataset",
".",
"data",
"[",
"'alt'",
"]",
"sequence",
"=",
"cur_dataset",
".",
"data",
"[",
"'seq'",
"]",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"pos_lon",
")",
")",
":",
"pnt",
"=",
"kml",
".",
"newpoint",
"(",
"name",
"=",
"'Camera Trigger '",
"+",
"str",
"(",
"sequence",
"[",
"i",
"]",
")",
")",
"pnt",
".",
"coords",
"=",
"[",
"(",
"pos_lon",
"[",
"i",
"]",
",",
"pos_lat",
"[",
"i",
"]",
",",
"pos_alt",
"[",
"i",
"]",
"+",
"altitude_offset",
")",
"]"
] | Add camera trigger points to the map | [
"Add",
"camera",
"trigger",
"points",
"to",
"the",
"map"
] | python | train |
Kraymer/high | high/__init__.py | https://github.com/Kraymer/high/blob/11bb86733875ec708264ffb92bf5ef09a9d2f08c/high/__init__.py#L37-L54 | def contacts(github, logins):
"""Extract public contact info from users.
"""
printmp('Fetching contacts')
users = [github.user(login).as_dict() for login in logins]
mails = set()
blogs = set()
for user in users:
contact = user.get('name', 'login')
if user['email']:
contact += ' <%s>' % user['email']
mails.add(contact)
elif user['blog']:
contact += ' <%s>' % user['blog']
blogs.add(contact)
else:
continue
return mails, blogs | [
"def",
"contacts",
"(",
"github",
",",
"logins",
")",
":",
"printmp",
"(",
"'Fetching contacts'",
")",
"users",
"=",
"[",
"github",
".",
"user",
"(",
"login",
")",
".",
"as_dict",
"(",
")",
"for",
"login",
"in",
"logins",
"]",
"mails",
"=",
"set",
"(",
")",
"blogs",
"=",
"set",
"(",
")",
"for",
"user",
"in",
"users",
":",
"contact",
"=",
"user",
".",
"get",
"(",
"'name'",
",",
"'login'",
")",
"if",
"user",
"[",
"'email'",
"]",
":",
"contact",
"+=",
"' <%s>'",
"%",
"user",
"[",
"'email'",
"]",
"mails",
".",
"add",
"(",
"contact",
")",
"elif",
"user",
"[",
"'blog'",
"]",
":",
"contact",
"+=",
"' <%s>'",
"%",
"user",
"[",
"'blog'",
"]",
"blogs",
".",
"add",
"(",
"contact",
")",
"else",
":",
"continue",
"return",
"mails",
",",
"blogs"
] | Extract public contact info from users. | [
"Extract",
"public",
"contact",
"info",
"from",
"users",
"."
] | python | train |
django-danceschool/django-danceschool | danceschool/core/views.py | https://github.com/django-danceschool/django-danceschool/blob/bb08cbf39017a812a5a94bdb4ea34170bf1a30ba/danceschool/core/views.py#L611-L652 | def get_form_kwargs(self, **kwargs):
'''
Get the list of recent months and recent series to pass to the form
'''
numMonths = 12
lastStart = (
Event.objects.annotate(Min('eventoccurrence__startTime'))
.order_by('-eventoccurrence__startTime__min')
.values_list('eventoccurrence__startTime__min', flat=True)
.first()
)
if lastStart:
month = lastStart.month
year = lastStart.year
else:
month = timezone.now().month
year = timezone.now().year
months = [('', _('None'))]
for i in range(0, numMonths):
newmonth = (month - i - 1) % 12 + 1
newyear = year
if month - i - 1 < 0:
newyear = year - 1
newdate = datetime(year=newyear, month=newmonth, day=1)
newdateStr = newdate.strftime("%m-%Y")
monthStr = newdate.strftime("%B, %Y")
months.append((newdateStr, monthStr))
cutoff = timezone.now() - timedelta(days=120)
allEvents = Event.objects.filter(startTime__gte=cutoff).order_by('-startTime')
recentSeries = [('', 'None')] + [(x.id, '%s %s: %s' % (month_name[x.month], x.year, x.name)) for x in allEvents]
kwargs = super(SendEmailView, self).get_form_kwargs(**kwargs)
kwargs.update({
"months": months,
"recentseries": recentSeries,
"customers": self.customers,
})
return kwargs | [
"def",
"get_form_kwargs",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"numMonths",
"=",
"12",
"lastStart",
"=",
"(",
"Event",
".",
"objects",
".",
"annotate",
"(",
"Min",
"(",
"'eventoccurrence__startTime'",
")",
")",
".",
"order_by",
"(",
"'-eventoccurrence__startTime__min'",
")",
".",
"values_list",
"(",
"'eventoccurrence__startTime__min'",
",",
"flat",
"=",
"True",
")",
".",
"first",
"(",
")",
")",
"if",
"lastStart",
":",
"month",
"=",
"lastStart",
".",
"month",
"year",
"=",
"lastStart",
".",
"year",
"else",
":",
"month",
"=",
"timezone",
".",
"now",
"(",
")",
".",
"month",
"year",
"=",
"timezone",
".",
"now",
"(",
")",
".",
"year",
"months",
"=",
"[",
"(",
"''",
",",
"_",
"(",
"'None'",
")",
")",
"]",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"numMonths",
")",
":",
"newmonth",
"=",
"(",
"month",
"-",
"i",
"-",
"1",
")",
"%",
"12",
"+",
"1",
"newyear",
"=",
"year",
"if",
"month",
"-",
"i",
"-",
"1",
"<",
"0",
":",
"newyear",
"=",
"year",
"-",
"1",
"newdate",
"=",
"datetime",
"(",
"year",
"=",
"newyear",
",",
"month",
"=",
"newmonth",
",",
"day",
"=",
"1",
")",
"newdateStr",
"=",
"newdate",
".",
"strftime",
"(",
"\"%m-%Y\"",
")",
"monthStr",
"=",
"newdate",
".",
"strftime",
"(",
"\"%B, %Y\"",
")",
"months",
".",
"append",
"(",
"(",
"newdateStr",
",",
"monthStr",
")",
")",
"cutoff",
"=",
"timezone",
".",
"now",
"(",
")",
"-",
"timedelta",
"(",
"days",
"=",
"120",
")",
"allEvents",
"=",
"Event",
".",
"objects",
".",
"filter",
"(",
"startTime__gte",
"=",
"cutoff",
")",
".",
"order_by",
"(",
"'-startTime'",
")",
"recentSeries",
"=",
"[",
"(",
"''",
",",
"'None'",
")",
"]",
"+",
"[",
"(",
"x",
".",
"id",
",",
"'%s %s: %s'",
"%",
"(",
"month_name",
"[",
"x",
".",
"month",
"]",
",",
"x",
".",
"year",
",",
"x",
".",
"name",
")",
")",
"for",
"x",
"in",
"allEvents",
"]",
"kwargs",
"=",
"super",
"(",
"SendEmailView",
",",
"self",
")",
".",
"get_form_kwargs",
"(",
"*",
"*",
"kwargs",
")",
"kwargs",
".",
"update",
"(",
"{",
"\"months\"",
":",
"months",
",",
"\"recentseries\"",
":",
"recentSeries",
",",
"\"customers\"",
":",
"self",
".",
"customers",
",",
"}",
")",
"return",
"kwargs"
] | Get the list of recent months and recent series to pass to the form | [
"Get",
"the",
"list",
"of",
"recent",
"months",
"and",
"recent",
"series",
"to",
"pass",
"to",
"the",
"form"
] | python | train |
openego/ding0 | ding0/core/__init__.py | https://github.com/openego/ding0/blob/e2d6528f96255e4bb22ba15514a4f1883564ed5d/ding0/core/__init__.py#L106-L268 | def run_ding0(self, session, mv_grid_districts_no=None, debug=False, export_figures=False):
""" Let DING0 run by shouting at this method (or just call
it from NetworkDing0 instance). This method is a wrapper
for the main functionality of DING0.
Parameters
----------
session : sqlalchemy.orm.session.Session
Database session
mv_grid_districts_no : List of Integers
List of MV grid_districts/stations to be imported (if empty,
all grid_districts & stations are imported)
debug : bool, defaults to False
If True, information is printed during process
export_figures : bool, defaults to False
If True, figures are shown or exported (default path: ~/.ding0/) during run.
Returns
-------
msg : str
Message of invalidity of a grid district
Notes
-----
The steps performed in this method are to be kept in the given order
since there are hard dependencies between them. Short description of
all steps performed:
* STEP 1: Import MV Grid Districts and subjacent objects
Imports MV Grid Districts, HV-MV stations, Load Areas, LV Grid Districts
and MV-LV stations, instantiates and initiates objects.
* STEP 2: Import generators
Conventional and renewable generators of voltage levels 4..7 are imported
and added to corresponding grid.
* STEP 3: Parametrize grid
Parameters of MV grid are set such as voltage level and cable/line types
according to MV Grid District's characteristics.
* STEP 4: Validate MV Grid Districts
Tests MV grid districts for validity concerning imported data such as
count of Load Areas.
* STEP 5: Build LV grids
Builds LV grids for every non-aggregated LA in every MV Grid District
using model grids.
* STEP 6: Build MV grids
Builds MV grid by performing a routing on Load Area centres to build
ring topology.
* STEP 7: Connect MV and LV generators
Generators are connected to grids, used approach depends on voltage
level.
* STEP 8: Set IDs for all branches in MV and LV grids
While IDs of imported objects can be derived from dataset's ID, branches
are created in steps 5+6 and need unique IDs (e.g. for PF calculation).
* STEP 9: Relocate switch disconnectors in MV grid
Switch disconnectors are set during routing process (step 6) according
to the load distribution within a ring. After further modifications of
the grid within step 6+7 they have to be relocated (note: switch
disconnectors are called circuit breakers in DING0 for historical reasons).
* STEP 10: Open all switch disconnectors in MV grid
Under normal conditions, rings are operated in open state (half-rings).
Furthermore, this is required to allow powerflow for MV grid.
* STEP 11: Do power flow analysis of MV grid
The technically working MV grid created in step 6 was extended by satellite
loads and generators. It is finally tested again using powerflow calculation.
* STEP 12: Reinforce MV grid
MV grid is eventually reinforced persuant to results from step 11.
STEP 13: Close all switch disconnectors in MV grid
The rings are finally closed to hold a complete graph (if the SDs are open,
the edges adjacent to a SD will not be exported!)
"""
if debug:
start = time.time()
# STEP 1: Import MV Grid Districts and subjacent objects
self.import_mv_grid_districts(session,
mv_grid_districts_no=mv_grid_districts_no)
# STEP 2: Import generators
self.import_generators(session, debug=debug)
# STEP 3: Parametrize MV grid
self.mv_parametrize_grid(debug=debug)
# STEP 4: Validate MV Grid Districts
msg = self.validate_grid_districts()
# STEP 5: Build LV grids
self.build_lv_grids()
# STEP 6: Build MV grids
self.mv_routing(debug=False)
if export_figures:
grid = self._mv_grid_districts[0].mv_grid
plot_mv_topology(grid, subtitle='Routing completed', filename='1_routing_completed.png')
# STEP 7: Connect MV and LV generators
self.connect_generators(debug=False)
if export_figures:
plot_mv_topology(grid, subtitle='Generators connected', filename='2_generators_connected.png')
# STEP 8: Set IDs for all branches in MV and LV grids
self.set_branch_ids()
# STEP 9: Relocate switch disconnectors in MV grid
self.set_circuit_breakers(debug=debug)
if export_figures:
plot_mv_topology(grid, subtitle='Circuit breakers relocated', filename='3_circuit_breakers_relocated.png')
# STEP 10: Open all switch disconnectors in MV grid
self.control_circuit_breakers(mode='open')
# STEP 11: Do power flow analysis of MV grid
self.run_powerflow(session, method='onthefly', export_pypsa=False, debug=debug)
if export_figures:
plot_mv_topology(grid, subtitle='PF result (load case)',
filename='4_PF_result_load.png',
line_color='loading', node_color='voltage', testcase='load')
plot_mv_topology(grid, subtitle='PF result (feedin case)',
filename='5_PF_result_feedin.png',
line_color='loading', node_color='voltage', testcase='feedin')
# STEP 12: Reinforce MV grid
self.reinforce_grid()
# STEP 13: Close all switch disconnectors in MV grid
self.control_circuit_breakers(mode='close')
if export_figures:
plot_mv_topology(grid, subtitle='Final grid PF result (load case)',
filename='6_final_grid_PF_result_load.png',
line_color='loading', node_color='voltage', testcase='load')
plot_mv_topology(grid, subtitle='Final grid PF result (feedin case)',
filename='7_final_grid_PF_result_feedin.png',
line_color='loading', node_color='voltage', testcase='feedin')
if debug:
logger.info('Elapsed time for {0} MV Grid Districts (seconds): {1}'.format(
str(len(mv_grid_districts_no)), time.time() - start))
return msg | [
"def",
"run_ding0",
"(",
"self",
",",
"session",
",",
"mv_grid_districts_no",
"=",
"None",
",",
"debug",
"=",
"False",
",",
"export_figures",
"=",
"False",
")",
":",
"if",
"debug",
":",
"start",
"=",
"time",
".",
"time",
"(",
")",
"# STEP 1: Import MV Grid Districts and subjacent objects",
"self",
".",
"import_mv_grid_districts",
"(",
"session",
",",
"mv_grid_districts_no",
"=",
"mv_grid_districts_no",
")",
"# STEP 2: Import generators",
"self",
".",
"import_generators",
"(",
"session",
",",
"debug",
"=",
"debug",
")",
"# STEP 3: Parametrize MV grid",
"self",
".",
"mv_parametrize_grid",
"(",
"debug",
"=",
"debug",
")",
"# STEP 4: Validate MV Grid Districts",
"msg",
"=",
"self",
".",
"validate_grid_districts",
"(",
")",
"# STEP 5: Build LV grids",
"self",
".",
"build_lv_grids",
"(",
")",
"# STEP 6: Build MV grids",
"self",
".",
"mv_routing",
"(",
"debug",
"=",
"False",
")",
"if",
"export_figures",
":",
"grid",
"=",
"self",
".",
"_mv_grid_districts",
"[",
"0",
"]",
".",
"mv_grid",
"plot_mv_topology",
"(",
"grid",
",",
"subtitle",
"=",
"'Routing completed'",
",",
"filename",
"=",
"'1_routing_completed.png'",
")",
"# STEP 7: Connect MV and LV generators",
"self",
".",
"connect_generators",
"(",
"debug",
"=",
"False",
")",
"if",
"export_figures",
":",
"plot_mv_topology",
"(",
"grid",
",",
"subtitle",
"=",
"'Generators connected'",
",",
"filename",
"=",
"'2_generators_connected.png'",
")",
"# STEP 8: Set IDs for all branches in MV and LV grids",
"self",
".",
"set_branch_ids",
"(",
")",
"# STEP 9: Relocate switch disconnectors in MV grid",
"self",
".",
"set_circuit_breakers",
"(",
"debug",
"=",
"debug",
")",
"if",
"export_figures",
":",
"plot_mv_topology",
"(",
"grid",
",",
"subtitle",
"=",
"'Circuit breakers relocated'",
",",
"filename",
"=",
"'3_circuit_breakers_relocated.png'",
")",
"# STEP 10: Open all switch disconnectors in MV grid",
"self",
".",
"control_circuit_breakers",
"(",
"mode",
"=",
"'open'",
")",
"# STEP 11: Do power flow analysis of MV grid",
"self",
".",
"run_powerflow",
"(",
"session",
",",
"method",
"=",
"'onthefly'",
",",
"export_pypsa",
"=",
"False",
",",
"debug",
"=",
"debug",
")",
"if",
"export_figures",
":",
"plot_mv_topology",
"(",
"grid",
",",
"subtitle",
"=",
"'PF result (load case)'",
",",
"filename",
"=",
"'4_PF_result_load.png'",
",",
"line_color",
"=",
"'loading'",
",",
"node_color",
"=",
"'voltage'",
",",
"testcase",
"=",
"'load'",
")",
"plot_mv_topology",
"(",
"grid",
",",
"subtitle",
"=",
"'PF result (feedin case)'",
",",
"filename",
"=",
"'5_PF_result_feedin.png'",
",",
"line_color",
"=",
"'loading'",
",",
"node_color",
"=",
"'voltage'",
",",
"testcase",
"=",
"'feedin'",
")",
"# STEP 12: Reinforce MV grid",
"self",
".",
"reinforce_grid",
"(",
")",
"# STEP 13: Close all switch disconnectors in MV grid",
"self",
".",
"control_circuit_breakers",
"(",
"mode",
"=",
"'close'",
")",
"if",
"export_figures",
":",
"plot_mv_topology",
"(",
"grid",
",",
"subtitle",
"=",
"'Final grid PF result (load case)'",
",",
"filename",
"=",
"'6_final_grid_PF_result_load.png'",
",",
"line_color",
"=",
"'loading'",
",",
"node_color",
"=",
"'voltage'",
",",
"testcase",
"=",
"'load'",
")",
"plot_mv_topology",
"(",
"grid",
",",
"subtitle",
"=",
"'Final grid PF result (feedin case)'",
",",
"filename",
"=",
"'7_final_grid_PF_result_feedin.png'",
",",
"line_color",
"=",
"'loading'",
",",
"node_color",
"=",
"'voltage'",
",",
"testcase",
"=",
"'feedin'",
")",
"if",
"debug",
":",
"logger",
".",
"info",
"(",
"'Elapsed time for {0} MV Grid Districts (seconds): {1}'",
".",
"format",
"(",
"str",
"(",
"len",
"(",
"mv_grid_districts_no",
")",
")",
",",
"time",
".",
"time",
"(",
")",
"-",
"start",
")",
")",
"return",
"msg"
] | Let DING0 run by shouting at this method (or just call
it from NetworkDing0 instance). This method is a wrapper
for the main functionality of DING0.
Parameters
----------
session : sqlalchemy.orm.session.Session
Database session
mv_grid_districts_no : List of Integers
List of MV grid_districts/stations to be imported (if empty,
all grid_districts & stations are imported)
debug : bool, defaults to False
If True, information is printed during process
export_figures : bool, defaults to False
If True, figures are shown or exported (default path: ~/.ding0/) during run.
Returns
-------
msg : str
Message of invalidity of a grid district
Notes
-----
The steps performed in this method are to be kept in the given order
since there are hard dependencies between them. Short description of
all steps performed:
* STEP 1: Import MV Grid Districts and subjacent objects
Imports MV Grid Districts, HV-MV stations, Load Areas, LV Grid Districts
and MV-LV stations, instantiates and initiates objects.
* STEP 2: Import generators
Conventional and renewable generators of voltage levels 4..7 are imported
and added to corresponding grid.
* STEP 3: Parametrize grid
Parameters of MV grid are set such as voltage level and cable/line types
according to MV Grid District's characteristics.
* STEP 4: Validate MV Grid Districts
Tests MV grid districts for validity concerning imported data such as
count of Load Areas.
* STEP 5: Build LV grids
Builds LV grids for every non-aggregated LA in every MV Grid District
using model grids.
* STEP 6: Build MV grids
Builds MV grid by performing a routing on Load Area centres to build
ring topology.
* STEP 7: Connect MV and LV generators
Generators are connected to grids, used approach depends on voltage
level.
* STEP 8: Set IDs for all branches in MV and LV grids
While IDs of imported objects can be derived from dataset's ID, branches
are created in steps 5+6 and need unique IDs (e.g. for PF calculation).
* STEP 9: Relocate switch disconnectors in MV grid
Switch disconnectors are set during routing process (step 6) according
to the load distribution within a ring. After further modifications of
the grid within step 6+7 they have to be relocated (note: switch
disconnectors are called circuit breakers in DING0 for historical reasons).
* STEP 10: Open all switch disconnectors in MV grid
Under normal conditions, rings are operated in open state (half-rings).
Furthermore, this is required to allow powerflow for MV grid.
* STEP 11: Do power flow analysis of MV grid
The technically working MV grid created in step 6 was extended by satellite
loads and generators. It is finally tested again using powerflow calculation.
* STEP 12: Reinforce MV grid
MV grid is eventually reinforced persuant to results from step 11.
STEP 13: Close all switch disconnectors in MV grid
The rings are finally closed to hold a complete graph (if the SDs are open,
the edges adjacent to a SD will not be exported!) | [
"Let",
"DING0",
"run",
"by",
"shouting",
"at",
"this",
"method",
"(",
"or",
"just",
"call",
"it",
"from",
"NetworkDing0",
"instance",
")",
".",
"This",
"method",
"is",
"a",
"wrapper",
"for",
"the",
"main",
"functionality",
"of",
"DING0",
"."
] | python | train |
rigetti/pyquil | pyquil/quil.py | https://github.com/rigetti/pyquil/blob/ec98e453084b0037d69d8c3245f6822a5422593d/pyquil/quil.py#L1002-L1021 | def percolate_declares(program: Program) -> Program:
"""
Move all the DECLARE statements to the top of the program. Return a fresh obejct.
:param program: Perhaps jumbled program.
:return: Program with DECLAREs all at the top and otherwise the same sorted contents.
"""
declare_program = Program()
instrs_program = Program()
for instr in program:
if isinstance(instr, Declare):
declare_program += instr
else:
instrs_program += instr
p = declare_program + instrs_program
p._defined_gates = program._defined_gates
return p | [
"def",
"percolate_declares",
"(",
"program",
":",
"Program",
")",
"->",
"Program",
":",
"declare_program",
"=",
"Program",
"(",
")",
"instrs_program",
"=",
"Program",
"(",
")",
"for",
"instr",
"in",
"program",
":",
"if",
"isinstance",
"(",
"instr",
",",
"Declare",
")",
":",
"declare_program",
"+=",
"instr",
"else",
":",
"instrs_program",
"+=",
"instr",
"p",
"=",
"declare_program",
"+",
"instrs_program",
"p",
".",
"_defined_gates",
"=",
"program",
".",
"_defined_gates",
"return",
"p"
] | Move all the DECLARE statements to the top of the program. Return a fresh obejct.
:param program: Perhaps jumbled program.
:return: Program with DECLAREs all at the top and otherwise the same sorted contents. | [
"Move",
"all",
"the",
"DECLARE",
"statements",
"to",
"the",
"top",
"of",
"the",
"program",
".",
"Return",
"a",
"fresh",
"obejct",
"."
] | python | train |
rbuffat/pyepw | pyepw/epw.py | https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5968-L5998 | def dew_point_temperature(self, value=99.9):
"""Corresponds to IDD Field `dew_point_temperature`
Args:
value (float): value for IDD Field `dew_point_temperature`
Unit: C
value > -70.0
value < 70.0
Missing value: 99.9
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
"""
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError(
'value {} need to be of type float '
'for field `dew_point_temperature`'.format(value))
if value <= -70.0:
raise ValueError('value need to be greater -70.0 '
'for field `dew_point_temperature`')
if value >= 70.0:
raise ValueError('value need to be smaller 70.0 '
'for field `dew_point_temperature`')
self._dew_point_temperature = value | [
"def",
"dew_point_temperature",
"(",
"self",
",",
"value",
"=",
"99.9",
")",
":",
"if",
"value",
"is",
"not",
"None",
":",
"try",
":",
"value",
"=",
"float",
"(",
"value",
")",
"except",
"ValueError",
":",
"raise",
"ValueError",
"(",
"'value {} need to be of type float '",
"'for field `dew_point_temperature`'",
".",
"format",
"(",
"value",
")",
")",
"if",
"value",
"<=",
"-",
"70.0",
":",
"raise",
"ValueError",
"(",
"'value need to be greater -70.0 '",
"'for field `dew_point_temperature`'",
")",
"if",
"value",
">=",
"70.0",
":",
"raise",
"ValueError",
"(",
"'value need to be smaller 70.0 '",
"'for field `dew_point_temperature`'",
")",
"self",
".",
"_dew_point_temperature",
"=",
"value"
] | Corresponds to IDD Field `dew_point_temperature`
Args:
value (float): value for IDD Field `dew_point_temperature`
Unit: C
value > -70.0
value < 70.0
Missing value: 99.9
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value | [
"Corresponds",
"to",
"IDD",
"Field",
"dew_point_temperature"
] | python | train |
saeschdivara/ArangoPy | arangodb/query/simple.py | https://github.com/saeschdivara/ArangoPy/blob/b924cc57bed71520fc2ef528b917daeb98e10eca/arangodb/query/simple.py#L281-L310 | def range(cls, collection, attribute, left, right, closed, index_id, skip=None, limit=None):
"""
This will find all documents within a given range. In order to execute a range query, a
skip-list index on the queried attribute must be present.
:param collection Collection instance
:param attribute The attribute path to check
:param left The lower bound
:param right The upper bound
:param closed If true, use interval including left and right, otherwise exclude right, but include left
:param index_id ID of the index which should be used for the query
:param skip The number of documents to skip in the query
:param limit The maximal amount of documents to return. The skip is applied before the limit restriction.
:returns Document list
"""
kwargs = {
'index': index_id,
'attribute': attribute,
'left': left,
'right': right,
'closed': closed,
'skip': skip,
'limit': limit,
}
return cls._construct_query(name='range',
collection=collection, multiple=True,
**kwargs) | [
"def",
"range",
"(",
"cls",
",",
"collection",
",",
"attribute",
",",
"left",
",",
"right",
",",
"closed",
",",
"index_id",
",",
"skip",
"=",
"None",
",",
"limit",
"=",
"None",
")",
":",
"kwargs",
"=",
"{",
"'index'",
":",
"index_id",
",",
"'attribute'",
":",
"attribute",
",",
"'left'",
":",
"left",
",",
"'right'",
":",
"right",
",",
"'closed'",
":",
"closed",
",",
"'skip'",
":",
"skip",
",",
"'limit'",
":",
"limit",
",",
"}",
"return",
"cls",
".",
"_construct_query",
"(",
"name",
"=",
"'range'",
",",
"collection",
"=",
"collection",
",",
"multiple",
"=",
"True",
",",
"*",
"*",
"kwargs",
")"
] | This will find all documents within a given range. In order to execute a range query, a
skip-list index on the queried attribute must be present.
:param collection Collection instance
:param attribute The attribute path to check
:param left The lower bound
:param right The upper bound
:param closed If true, use interval including left and right, otherwise exclude right, but include left
:param index_id ID of the index which should be used for the query
:param skip The number of documents to skip in the query
:param limit The maximal amount of documents to return. The skip is applied before the limit restriction.
:returns Document list | [
"This",
"will",
"find",
"all",
"documents",
"within",
"a",
"given",
"range",
".",
"In",
"order",
"to",
"execute",
"a",
"range",
"query",
"a",
"skip",
"-",
"list",
"index",
"on",
"the",
"queried",
"attribute",
"must",
"be",
"present",
"."
] | python | train |
Jajcus/pyxmpp2 | pyxmpp2/ext/register.py | https://github.com/Jajcus/pyxmpp2/blob/14a40a3950910a9cd008b55f0d8905aa0186ce18/pyxmpp2/ext/register.py#L175-L198 | def complete_xml_element(self, xmlnode, doc):
"""Complete the XML node with `self` content.
:Parameters:
- `xmlnode`: XML node with the element being built. It has already
right name and namespace, but no attributes or content.
- `doc`: document to which the element belongs.
:Types:
- `xmlnode`: `libxml2.xmlNode`
- `doc`: `libxml2.xmlDoc`"""
ns = xmlnode.ns()
if self.instructions is not None:
xmlnode.newTextChild(ns, "instructions", to_utf8(self.instructions))
if self.form:
self.form.as_xml(xmlnode, doc)
if self.remove:
xmlnode.newChild(ns, "remove", None)
else:
if self.registered:
xmlnode.newChild(ns, "registered", None)
for field in legacy_fields:
value = getattr(self, field)
if value is not None:
xmlnode.newTextChild(ns, field, to_utf8(value)) | [
"def",
"complete_xml_element",
"(",
"self",
",",
"xmlnode",
",",
"doc",
")",
":",
"ns",
"=",
"xmlnode",
".",
"ns",
"(",
")",
"if",
"self",
".",
"instructions",
"is",
"not",
"None",
":",
"xmlnode",
".",
"newTextChild",
"(",
"ns",
",",
"\"instructions\"",
",",
"to_utf8",
"(",
"self",
".",
"instructions",
")",
")",
"if",
"self",
".",
"form",
":",
"self",
".",
"form",
".",
"as_xml",
"(",
"xmlnode",
",",
"doc",
")",
"if",
"self",
".",
"remove",
":",
"xmlnode",
".",
"newChild",
"(",
"ns",
",",
"\"remove\"",
",",
"None",
")",
"else",
":",
"if",
"self",
".",
"registered",
":",
"xmlnode",
".",
"newChild",
"(",
"ns",
",",
"\"registered\"",
",",
"None",
")",
"for",
"field",
"in",
"legacy_fields",
":",
"value",
"=",
"getattr",
"(",
"self",
",",
"field",
")",
"if",
"value",
"is",
"not",
"None",
":",
"xmlnode",
".",
"newTextChild",
"(",
"ns",
",",
"field",
",",
"to_utf8",
"(",
"value",
")",
")"
] | Complete the XML node with `self` content.
:Parameters:
- `xmlnode`: XML node with the element being built. It has already
right name and namespace, but no attributes or content.
- `doc`: document to which the element belongs.
:Types:
- `xmlnode`: `libxml2.xmlNode`
- `doc`: `libxml2.xmlDoc` | [
"Complete",
"the",
"XML",
"node",
"with",
"self",
"content",
"."
] | python | valid |
iotile/coretools | iotilesensorgraph/iotile/sg/scripts/iotile_sgrun.py | https://github.com/iotile/coretools/blob/2d794f5f1346b841b0dcd16c9d284e9bf2f3c6ec/iotilesensorgraph/iotile/sg/scripts/iotile_sgrun.py#L77-L114 | def process_mock_rpc(input_string):
"""Process a mock RPC argument.
Args:
input_string (str): The input string that should be in the format
<slot id>:<rpc id> = value
"""
spec, equals, value = input_string.partition(u'=')
if len(equals) == 0:
print("Could not parse mock RPC argument: {}".format(input_string))
sys.exit(1)
try:
value = int(value.strip(), 0)
except ValueError as exc:
print("Could not parse mock RPC value: {}".format(str(exc)))
sys.exit(1)
slot, part, rpc_id = spec.partition(u":")
if len(part) == 0:
print("Could not parse mock RPC slot/rpc definition: {}".format(spec))
sys.exit(1)
try:
slot = SlotIdentifier.FromString(slot)
except ArgumentError as exc:
print("Could not parse slot id in mock RPC definition: {}".format(exc.msg))
sys.exit(1)
try:
rpc_id = int(rpc_id, 0)
except ValueError as exc:
print("Could not parse mock RPC number: {}".format(str(exc)))
sys.exit(1)
return slot, rpc_id, value | [
"def",
"process_mock_rpc",
"(",
"input_string",
")",
":",
"spec",
",",
"equals",
",",
"value",
"=",
"input_string",
".",
"partition",
"(",
"u'='",
")",
"if",
"len",
"(",
"equals",
")",
"==",
"0",
":",
"print",
"(",
"\"Could not parse mock RPC argument: {}\"",
".",
"format",
"(",
"input_string",
")",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"try",
":",
"value",
"=",
"int",
"(",
"value",
".",
"strip",
"(",
")",
",",
"0",
")",
"except",
"ValueError",
"as",
"exc",
":",
"print",
"(",
"\"Could not parse mock RPC value: {}\"",
".",
"format",
"(",
"str",
"(",
"exc",
")",
")",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"slot",
",",
"part",
",",
"rpc_id",
"=",
"spec",
".",
"partition",
"(",
"u\":\"",
")",
"if",
"len",
"(",
"part",
")",
"==",
"0",
":",
"print",
"(",
"\"Could not parse mock RPC slot/rpc definition: {}\"",
".",
"format",
"(",
"spec",
")",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"try",
":",
"slot",
"=",
"SlotIdentifier",
".",
"FromString",
"(",
"slot",
")",
"except",
"ArgumentError",
"as",
"exc",
":",
"print",
"(",
"\"Could not parse slot id in mock RPC definition: {}\"",
".",
"format",
"(",
"exc",
".",
"msg",
")",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"try",
":",
"rpc_id",
"=",
"int",
"(",
"rpc_id",
",",
"0",
")",
"except",
"ValueError",
"as",
"exc",
":",
"print",
"(",
"\"Could not parse mock RPC number: {}\"",
".",
"format",
"(",
"str",
"(",
"exc",
")",
")",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"return",
"slot",
",",
"rpc_id",
",",
"value"
] | Process a mock RPC argument.
Args:
input_string (str): The input string that should be in the format
<slot id>:<rpc id> = value | [
"Process",
"a",
"mock",
"RPC",
"argument",
"."
] | python | train |
pymc-devs/pymc | pymc/distributions.py | https://github.com/pymc-devs/pymc/blob/c6e530210bff4c0d7189b35b2c971bc53f93f7cd/pymc/distributions.py#L2365-L2404 | def rtruncated_poisson(mu, k, size=None):
"""
Random truncated Poisson variates with minimum value k, generated
using rejection sampling.
"""
# Calculate m
try:
m = max(0, np.floor(k - mu))
except (TypeError, ValueError):
# More than one mu
return np.array([rtruncated_poisson(x, i)
for x, i in zip(mu, np.resize(k, np.size(mu)))]).squeeze()
k -= 1
# Calculate constant for acceptance probability
C = np.exp(flib.factln(k + 1) - flib.factln(k + 1 - m))
# Empty array to hold random variates
rvs = np.empty(0, int)
total_size = np.prod(size or 1)
while(len(rvs) < total_size):
# Propose values by sampling from untruncated Poisson with mean mu + m
proposals = np.random.poisson(
mu + m, (total_size * 4, np.size(m))).squeeze()
# Acceptance probability
a = C * np.array([np.exp(flib.factln(y - m) - flib.factln(y))
for y in proposals])
a *= proposals > k
# Uniform random variates
u = np.random.random(total_size * 4)
rvs = np.append(rvs, proposals[u < a])
return np.reshape(rvs[:total_size], size) | [
"def",
"rtruncated_poisson",
"(",
"mu",
",",
"k",
",",
"size",
"=",
"None",
")",
":",
"# Calculate m",
"try",
":",
"m",
"=",
"max",
"(",
"0",
",",
"np",
".",
"floor",
"(",
"k",
"-",
"mu",
")",
")",
"except",
"(",
"TypeError",
",",
"ValueError",
")",
":",
"# More than one mu",
"return",
"np",
".",
"array",
"(",
"[",
"rtruncated_poisson",
"(",
"x",
",",
"i",
")",
"for",
"x",
",",
"i",
"in",
"zip",
"(",
"mu",
",",
"np",
".",
"resize",
"(",
"k",
",",
"np",
".",
"size",
"(",
"mu",
")",
")",
")",
"]",
")",
".",
"squeeze",
"(",
")",
"k",
"-=",
"1",
"# Calculate constant for acceptance probability",
"C",
"=",
"np",
".",
"exp",
"(",
"flib",
".",
"factln",
"(",
"k",
"+",
"1",
")",
"-",
"flib",
".",
"factln",
"(",
"k",
"+",
"1",
"-",
"m",
")",
")",
"# Empty array to hold random variates",
"rvs",
"=",
"np",
".",
"empty",
"(",
"0",
",",
"int",
")",
"total_size",
"=",
"np",
".",
"prod",
"(",
"size",
"or",
"1",
")",
"while",
"(",
"len",
"(",
"rvs",
")",
"<",
"total_size",
")",
":",
"# Propose values by sampling from untruncated Poisson with mean mu + m",
"proposals",
"=",
"np",
".",
"random",
".",
"poisson",
"(",
"mu",
"+",
"m",
",",
"(",
"total_size",
"*",
"4",
",",
"np",
".",
"size",
"(",
"m",
")",
")",
")",
".",
"squeeze",
"(",
")",
"# Acceptance probability",
"a",
"=",
"C",
"*",
"np",
".",
"array",
"(",
"[",
"np",
".",
"exp",
"(",
"flib",
".",
"factln",
"(",
"y",
"-",
"m",
")",
"-",
"flib",
".",
"factln",
"(",
"y",
")",
")",
"for",
"y",
"in",
"proposals",
"]",
")",
"a",
"*=",
"proposals",
">",
"k",
"# Uniform random variates",
"u",
"=",
"np",
".",
"random",
".",
"random",
"(",
"total_size",
"*",
"4",
")",
"rvs",
"=",
"np",
".",
"append",
"(",
"rvs",
",",
"proposals",
"[",
"u",
"<",
"a",
"]",
")",
"return",
"np",
".",
"reshape",
"(",
"rvs",
"[",
":",
"total_size",
"]",
",",
"size",
")"
] | Random truncated Poisson variates with minimum value k, generated
using rejection sampling. | [
"Random",
"truncated",
"Poisson",
"variates",
"with",
"minimum",
"value",
"k",
"generated",
"using",
"rejection",
"sampling",
"."
] | python | train |
SylvanasSun/python-common-cache | common_cache/__init__.py | https://github.com/SylvanasSun/python-common-cache/blob/f113eb3cd751eed5ab5373e8610a31a444220cf8/common_cache/__init__.py#L521-L534 | def set_capacity(self, new_capacity, only_read=False):
"""
>>> cache = Cache(log_level=logging.WARNING)
>>> cache.set_capacity(100)
>>> cache.capacity
100
>>> cache.set_capacity('haha')
>>> cache.capacity
100
"""
if not isinstance(new_capacity, int) or new_capacity <= 0:
self.logger.warning('Parameter new_capacity %s must be greater than 0 and is an integer' % new_capacity)
return
self.capacity = new_capacity | [
"def",
"set_capacity",
"(",
"self",
",",
"new_capacity",
",",
"only_read",
"=",
"False",
")",
":",
"if",
"not",
"isinstance",
"(",
"new_capacity",
",",
"int",
")",
"or",
"new_capacity",
"<=",
"0",
":",
"self",
".",
"logger",
".",
"warning",
"(",
"'Parameter new_capacity %s must be greater than 0 and is an integer'",
"%",
"new_capacity",
")",
"return",
"self",
".",
"capacity",
"=",
"new_capacity"
] | >>> cache = Cache(log_level=logging.WARNING)
>>> cache.set_capacity(100)
>>> cache.capacity
100
>>> cache.set_capacity('haha')
>>> cache.capacity
100 | [
">>>",
"cache",
"=",
"Cache",
"(",
"log_level",
"=",
"logging",
".",
"WARNING",
")",
">>>",
"cache",
".",
"set_capacity",
"(",
"100",
")",
">>>",
"cache",
".",
"capacity",
"100",
">>>",
"cache",
".",
"set_capacity",
"(",
"haha",
")",
">>>",
"cache",
".",
"capacity",
"100"
] | python | train |
rraadd88/rohan | rohan/dandage/io_strs.py | https://github.com/rraadd88/rohan/blob/b0643a3582a2fffc0165ace69fb80880d92bfb10/rohan/dandage/io_strs.py#L174-L181 | def get_time():
"""
Gets current time in a form of a formated string. Used in logger function.
"""
import datetime
time=make_pathable_string('%s' % datetime.datetime.now())
return time.replace('-','_').replace(':','_').replace('.','_') | [
"def",
"get_time",
"(",
")",
":",
"import",
"datetime",
"time",
"=",
"make_pathable_string",
"(",
"'%s'",
"%",
"datetime",
".",
"datetime",
".",
"now",
"(",
")",
")",
"return",
"time",
".",
"replace",
"(",
"'-'",
",",
"'_'",
")",
".",
"replace",
"(",
"':'",
",",
"'_'",
")",
".",
"replace",
"(",
"'.'",
",",
"'_'",
")"
] | Gets current time in a form of a formated string. Used in logger function. | [
"Gets",
"current",
"time",
"in",
"a",
"form",
"of",
"a",
"formated",
"string",
".",
"Used",
"in",
"logger",
"function",
"."
] | python | train |
facelessuser/backrefs | backrefs/uniprops/__init__.py | https://github.com/facelessuser/backrefs/blob/3b3d60f5d57b02044f880aa29c9c5add0e31a34f/backrefs/uniprops/__init__.py#L369-L380 | def get_block_property(value, is_bytes=False):
"""Get `BLK` property."""
obj = unidata.ascii_blocks if is_bytes else unidata.unicode_blocks
if value.startswith('^'):
negated = value[1:]
value = '^' + unidata.unicode_alias['block'].get(negated, negated)
else:
value = unidata.unicode_alias['block'].get(value, value)
return obj[value] | [
"def",
"get_block_property",
"(",
"value",
",",
"is_bytes",
"=",
"False",
")",
":",
"obj",
"=",
"unidata",
".",
"ascii_blocks",
"if",
"is_bytes",
"else",
"unidata",
".",
"unicode_blocks",
"if",
"value",
".",
"startswith",
"(",
"'^'",
")",
":",
"negated",
"=",
"value",
"[",
"1",
":",
"]",
"value",
"=",
"'^'",
"+",
"unidata",
".",
"unicode_alias",
"[",
"'block'",
"]",
".",
"get",
"(",
"negated",
",",
"negated",
")",
"else",
":",
"value",
"=",
"unidata",
".",
"unicode_alias",
"[",
"'block'",
"]",
".",
"get",
"(",
"value",
",",
"value",
")",
"return",
"obj",
"[",
"value",
"]"
] | Get `BLK` property. | [
"Get",
"BLK",
"property",
"."
] | python | train |
saltstack/salt | salt/modules/bcache.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/bcache.py#L404-L448 | def status(stats=False, config=False, internals=False, superblock=False, alldevs=False):
'''
Show the full status of the BCache system and optionally all it's involved devices
CLI example:
.. code-block:: bash
salt '*' bcache.status
salt '*' bcache.status stats=True
salt '*' bcache.status internals=True alldevs=True
:param stats: include statistics
:param config: include settings
:param internals: include internals
:param superblock: include superblock
'''
bdevs = []
for _, links, _ in salt.utils.path.os_walk('/sys/block/'):
for block in links:
if 'bcache' in block:
continue
for spath, sdirs, _ in salt.utils.path.os_walk('/sys/block/{0}'.format(block), followlinks=False):
if 'bcache' in sdirs:
bdevs.append(os.path.basename(spath))
statii = {}
for bcache in bdevs:
statii[bcache] = device(bcache, stats, config, internals, superblock)
cuuid = uuid()
cdev = _bdev()
if cdev:
count = 0
for dev in statii:
if dev != cdev:
# it's a backing dev
if statii[dev]['cache'] == cuuid:
count += 1
statii[cdev]['attached_backing_devices'] = count
if not alldevs:
statii = statii[cdev]
return statii | [
"def",
"status",
"(",
"stats",
"=",
"False",
",",
"config",
"=",
"False",
",",
"internals",
"=",
"False",
",",
"superblock",
"=",
"False",
",",
"alldevs",
"=",
"False",
")",
":",
"bdevs",
"=",
"[",
"]",
"for",
"_",
",",
"links",
",",
"_",
"in",
"salt",
".",
"utils",
".",
"path",
".",
"os_walk",
"(",
"'/sys/block/'",
")",
":",
"for",
"block",
"in",
"links",
":",
"if",
"'bcache'",
"in",
"block",
":",
"continue",
"for",
"spath",
",",
"sdirs",
",",
"_",
"in",
"salt",
".",
"utils",
".",
"path",
".",
"os_walk",
"(",
"'/sys/block/{0}'",
".",
"format",
"(",
"block",
")",
",",
"followlinks",
"=",
"False",
")",
":",
"if",
"'bcache'",
"in",
"sdirs",
":",
"bdevs",
".",
"append",
"(",
"os",
".",
"path",
".",
"basename",
"(",
"spath",
")",
")",
"statii",
"=",
"{",
"}",
"for",
"bcache",
"in",
"bdevs",
":",
"statii",
"[",
"bcache",
"]",
"=",
"device",
"(",
"bcache",
",",
"stats",
",",
"config",
",",
"internals",
",",
"superblock",
")",
"cuuid",
"=",
"uuid",
"(",
")",
"cdev",
"=",
"_bdev",
"(",
")",
"if",
"cdev",
":",
"count",
"=",
"0",
"for",
"dev",
"in",
"statii",
":",
"if",
"dev",
"!=",
"cdev",
":",
"# it's a backing dev",
"if",
"statii",
"[",
"dev",
"]",
"[",
"'cache'",
"]",
"==",
"cuuid",
":",
"count",
"+=",
"1",
"statii",
"[",
"cdev",
"]",
"[",
"'attached_backing_devices'",
"]",
"=",
"count",
"if",
"not",
"alldevs",
":",
"statii",
"=",
"statii",
"[",
"cdev",
"]",
"return",
"statii"
] | Show the full status of the BCache system and optionally all it's involved devices
CLI example:
.. code-block:: bash
salt '*' bcache.status
salt '*' bcache.status stats=True
salt '*' bcache.status internals=True alldevs=True
:param stats: include statistics
:param config: include settings
:param internals: include internals
:param superblock: include superblock | [
"Show",
"the",
"full",
"status",
"of",
"the",
"BCache",
"system",
"and",
"optionally",
"all",
"it",
"s",
"involved",
"devices"
] | python | train |
kytos/kytos-utils | kytos/utils/napps.py | https://github.com/kytos/kytos-utils/blob/b4750c618d15cff75970ea6124bda4d2b9a33578/kytos/utils/napps.py#L415-L430 | def create_ui_structure(cls, username, napp_name, ui_templates_path,
context):
"""Create the ui directory structure."""
for section in ['k-info-panel', 'k-toolbar', 'k-action-menu']:
os.makedirs(os.path.join(username, napp_name, 'ui', section))
templates = os.listdir(ui_templates_path)
for tmp in templates:
fname = os.path.join(username, napp_name, 'ui',
tmp.rsplit('.template')[0])
with open(fname, 'w') as file:
content = cls.render_template(ui_templates_path, tmp,
context)
file.write(content) | [
"def",
"create_ui_structure",
"(",
"cls",
",",
"username",
",",
"napp_name",
",",
"ui_templates_path",
",",
"context",
")",
":",
"for",
"section",
"in",
"[",
"'k-info-panel'",
",",
"'k-toolbar'",
",",
"'k-action-menu'",
"]",
":",
"os",
".",
"makedirs",
"(",
"os",
".",
"path",
".",
"join",
"(",
"username",
",",
"napp_name",
",",
"'ui'",
",",
"section",
")",
")",
"templates",
"=",
"os",
".",
"listdir",
"(",
"ui_templates_path",
")",
"for",
"tmp",
"in",
"templates",
":",
"fname",
"=",
"os",
".",
"path",
".",
"join",
"(",
"username",
",",
"napp_name",
",",
"'ui'",
",",
"tmp",
".",
"rsplit",
"(",
"'.template'",
")",
"[",
"0",
"]",
")",
"with",
"open",
"(",
"fname",
",",
"'w'",
")",
"as",
"file",
":",
"content",
"=",
"cls",
".",
"render_template",
"(",
"ui_templates_path",
",",
"tmp",
",",
"context",
")",
"file",
".",
"write",
"(",
"content",
")"
] | Create the ui directory structure. | [
"Create",
"the",
"ui",
"directory",
"structure",
"."
] | python | train |
tensorflow/tensor2tensor | tensor2tensor/layers/common_layers.py | https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_layers.py#L660-L675 | def layer_norm_compute(x, epsilon, scale, bias, layer_collection=None):
"""Layer norm raw computation."""
# Save these before they get converted to tensors by the casting below
params = (scale, bias)
epsilon, scale, bias = [cast_like(t, x) for t in [epsilon, scale, bias]]
mean = tf.reduce_mean(x, axis=[-1], keepdims=True)
variance = tf.reduce_mean(
tf.squared_difference(x, mean), axis=[-1], keepdims=True)
norm_x = (x - mean) * tf.rsqrt(variance + epsilon)
output = norm_x * scale + bias
return output | [
"def",
"layer_norm_compute",
"(",
"x",
",",
"epsilon",
",",
"scale",
",",
"bias",
",",
"layer_collection",
"=",
"None",
")",
":",
"# Save these before they get converted to tensors by the casting below",
"params",
"=",
"(",
"scale",
",",
"bias",
")",
"epsilon",
",",
"scale",
",",
"bias",
"=",
"[",
"cast_like",
"(",
"t",
",",
"x",
")",
"for",
"t",
"in",
"[",
"epsilon",
",",
"scale",
",",
"bias",
"]",
"]",
"mean",
"=",
"tf",
".",
"reduce_mean",
"(",
"x",
",",
"axis",
"=",
"[",
"-",
"1",
"]",
",",
"keepdims",
"=",
"True",
")",
"variance",
"=",
"tf",
".",
"reduce_mean",
"(",
"tf",
".",
"squared_difference",
"(",
"x",
",",
"mean",
")",
",",
"axis",
"=",
"[",
"-",
"1",
"]",
",",
"keepdims",
"=",
"True",
")",
"norm_x",
"=",
"(",
"x",
"-",
"mean",
")",
"*",
"tf",
".",
"rsqrt",
"(",
"variance",
"+",
"epsilon",
")",
"output",
"=",
"norm_x",
"*",
"scale",
"+",
"bias",
"return",
"output"
] | Layer norm raw computation. | [
"Layer",
"norm",
"raw",
"computation",
"."
] | python | train |
eonpatapon/contrail-api-cli | contrail_api_cli/utils.py | https://github.com/eonpatapon/contrail-api-cli/blob/1571bf523fa054f3d6bf83dba43a224fea173a73/contrail_api_cli/utils.py#L307-L342 | def format_table(rows, sep=' '):
"""Format table
:param sep: separator between columns
:type sep: unicode on python2 | str on python3
Given the table::
table = [
['foo', 'bar', 'foo'],
[1, 2, 3],
['54a5a05d-c83b-4bb5-bd95-d90d6ea4a878'],
['foo', 45, 'bar', 2345]
]
`format_table` will return::
foo bar foo
1 2 3
54a5a05d-c83b-4bb5-bd95-d90d6ea4a878
foo 45 bar 2345
"""
max_col_length = [0] * 100
# calculate max length for each col
for row in rows:
for index, (col, length) in enumerate(zip(row, max_col_length)):
if len(text_type(col)) > length:
max_col_length[index] = len(text_type(col))
formated_rows = []
for row in rows:
format_str = sep.join([
'{:<%s}' % l if i < (len(row) - 1) else '{}'
for i, (c, l) in enumerate(zip(row, max_col_length))
])
formated_rows.append(format_str.format(*row))
return '\n'.join(formated_rows) | [
"def",
"format_table",
"(",
"rows",
",",
"sep",
"=",
"' '",
")",
":",
"max_col_length",
"=",
"[",
"0",
"]",
"*",
"100",
"# calculate max length for each col",
"for",
"row",
"in",
"rows",
":",
"for",
"index",
",",
"(",
"col",
",",
"length",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"row",
",",
"max_col_length",
")",
")",
":",
"if",
"len",
"(",
"text_type",
"(",
"col",
")",
")",
">",
"length",
":",
"max_col_length",
"[",
"index",
"]",
"=",
"len",
"(",
"text_type",
"(",
"col",
")",
")",
"formated_rows",
"=",
"[",
"]",
"for",
"row",
"in",
"rows",
":",
"format_str",
"=",
"sep",
".",
"join",
"(",
"[",
"'{:<%s}'",
"%",
"l",
"if",
"i",
"<",
"(",
"len",
"(",
"row",
")",
"-",
"1",
")",
"else",
"'{}'",
"for",
"i",
",",
"(",
"c",
",",
"l",
")",
"in",
"enumerate",
"(",
"zip",
"(",
"row",
",",
"max_col_length",
")",
")",
"]",
")",
"formated_rows",
".",
"append",
"(",
"format_str",
".",
"format",
"(",
"*",
"row",
")",
")",
"return",
"'\\n'",
".",
"join",
"(",
"formated_rows",
")"
] | Format table
:param sep: separator between columns
:type sep: unicode on python2 | str on python3
Given the table::
table = [
['foo', 'bar', 'foo'],
[1, 2, 3],
['54a5a05d-c83b-4bb5-bd95-d90d6ea4a878'],
['foo', 45, 'bar', 2345]
]
`format_table` will return::
foo bar foo
1 2 3
54a5a05d-c83b-4bb5-bd95-d90d6ea4a878
foo 45 bar 2345 | [
"Format",
"table"
] | python | train |
buriburisuri/sugartensor | sugartensor/sg_transform.py | https://github.com/buriburisuri/sugartensor/blob/d2c039954777c7fbe3eb0c2ae40c45c9854deb40/sugartensor/sg_transform.py#L582-L620 | def sg_periodic_shuffle(tensor, opt):
r""" Periodic shuffle transformation for SubPixel CNN.
(see [Shi et al. 2016](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf)
Args:
tensor: A tensor (automatically given by chain).
opt:
factor: factor to multiply shape by. Default is 2.
name : If provided, it replaces current tensor's name.
Returns:
A tensor
"""
# default factor
opt += tf.sg_opt(factor=2)
# get current shape
batch, row, col, channel = tensor.get_shape().as_list()
# get target channel num
channel_target = channel // (opt.factor * opt.factor)
channel_factor = channel // channel_target
# intermediate shape for shuffling
shape_1 = [batch, row, col, channel_factor // opt.factor, channel_factor // opt.factor]
shape_2 = [batch, row * opt.factor, col * opt.factor, 1]
# reshape and transpose for periodic shuffling for each channel
out = []
for i in range(channel_target):
out.append((tensor[:, :, :, i*channel_factor:(i+1)*channel_factor])
.sg_reshape(shape=shape_1)
.sg_transpose(perm=(0, 1, 3, 2, 4))
.sg_reshape(shape=shape_2))
# final output
out = tf.concat(out, 3)
return tf.identity(out, name=opt.name) | [
"def",
"sg_periodic_shuffle",
"(",
"tensor",
",",
"opt",
")",
":",
"# default factor",
"opt",
"+=",
"tf",
".",
"sg_opt",
"(",
"factor",
"=",
"2",
")",
"# get current shape",
"batch",
",",
"row",
",",
"col",
",",
"channel",
"=",
"tensor",
".",
"get_shape",
"(",
")",
".",
"as_list",
"(",
")",
"# get target channel num",
"channel_target",
"=",
"channel",
"//",
"(",
"opt",
".",
"factor",
"*",
"opt",
".",
"factor",
")",
"channel_factor",
"=",
"channel",
"//",
"channel_target",
"# intermediate shape for shuffling",
"shape_1",
"=",
"[",
"batch",
",",
"row",
",",
"col",
",",
"channel_factor",
"//",
"opt",
".",
"factor",
",",
"channel_factor",
"//",
"opt",
".",
"factor",
"]",
"shape_2",
"=",
"[",
"batch",
",",
"row",
"*",
"opt",
".",
"factor",
",",
"col",
"*",
"opt",
".",
"factor",
",",
"1",
"]",
"# reshape and transpose for periodic shuffling for each channel",
"out",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"channel_target",
")",
":",
"out",
".",
"append",
"(",
"(",
"tensor",
"[",
":",
",",
":",
",",
":",
",",
"i",
"*",
"channel_factor",
":",
"(",
"i",
"+",
"1",
")",
"*",
"channel_factor",
"]",
")",
".",
"sg_reshape",
"(",
"shape",
"=",
"shape_1",
")",
".",
"sg_transpose",
"(",
"perm",
"=",
"(",
"0",
",",
"1",
",",
"3",
",",
"2",
",",
"4",
")",
")",
".",
"sg_reshape",
"(",
"shape",
"=",
"shape_2",
")",
")",
"# final output",
"out",
"=",
"tf",
".",
"concat",
"(",
"out",
",",
"3",
")",
"return",
"tf",
".",
"identity",
"(",
"out",
",",
"name",
"=",
"opt",
".",
"name",
")"
] | r""" Periodic shuffle transformation for SubPixel CNN.
(see [Shi et al. 2016](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Shi_Real-Time_Single_Image_CVPR_2016_paper.pdf)
Args:
tensor: A tensor (automatically given by chain).
opt:
factor: factor to multiply shape by. Default is 2.
name : If provided, it replaces current tensor's name.
Returns:
A tensor | [
"r",
"Periodic",
"shuffle",
"transformation",
"for",
"SubPixel",
"CNN",
".",
"(",
"see",
"[",
"Shi",
"et",
"al",
".",
"2016",
"]",
"(",
"http",
":",
"//",
"www",
".",
"cv",
"-",
"foundation",
".",
"org",
"/",
"openaccess",
"/",
"content_cvpr_2016",
"/",
"papers",
"/",
"Shi_Real",
"-",
"Time_Single_Image_CVPR_2016_paper",
".",
"pdf",
")",
"Args",
":",
"tensor",
":",
"A",
"tensor",
"(",
"automatically",
"given",
"by",
"chain",
")",
".",
"opt",
":",
"factor",
":",
"factor",
"to",
"multiply",
"shape",
"by",
".",
"Default",
"is",
"2",
".",
"name",
":",
"If",
"provided",
"it",
"replaces",
"current",
"tensor",
"s",
"name",
"."
] | python | train |
chemlab/chemlab | chemlab/mviewer/api/selections.py | https://github.com/chemlab/chemlab/blob/c8730966316d101e24f39ac3b96b51282aba0abe/chemlab/mviewer/api/selections.py#L137-L150 | def unhide_selected():
'''Unhide the selected objects'''
hidden_state = current_representation().hidden_state
selection_state = current_representation().selection_state
res = {}
# Take the hidden state and flip the selected atoms bits.
for k in selection_state:
visible = hidden_state[k].invert()
visible_and_selected = visible.add(selection_state[k]) # Add some atoms to be visible
res[k] = visible_and_selected.invert()
current_representation().hide(res) | [
"def",
"unhide_selected",
"(",
")",
":",
"hidden_state",
"=",
"current_representation",
"(",
")",
".",
"hidden_state",
"selection_state",
"=",
"current_representation",
"(",
")",
".",
"selection_state",
"res",
"=",
"{",
"}",
"# Take the hidden state and flip the selected atoms bits.",
"for",
"k",
"in",
"selection_state",
":",
"visible",
"=",
"hidden_state",
"[",
"k",
"]",
".",
"invert",
"(",
")",
"visible_and_selected",
"=",
"visible",
".",
"add",
"(",
"selection_state",
"[",
"k",
"]",
")",
"# Add some atoms to be visible",
"res",
"[",
"k",
"]",
"=",
"visible_and_selected",
".",
"invert",
"(",
")",
"current_representation",
"(",
")",
".",
"hide",
"(",
"res",
")"
] | Unhide the selected objects | [
"Unhide",
"the",
"selected",
"objects"
] | python | train |
mfcloud/python-zvm-sdk | zvmsdk/volumeop.py | https://github.com/mfcloud/python-zvm-sdk/blob/de9994ceca764f5460ce51bd74237986341d8e3c/zvmsdk/volumeop.py#L565-L586 | def _detach(self, fcp, assigner_id, target_wwpn, target_lun,
multipath, os_version, mount_point):
"""Detach a volume from a guest"""
LOG.info('Start to detach device from %s' % assigner_id)
connections = self.fcp_mgr.decrease_fcp_usage(fcp, assigner_id)
try:
self._remove_disk(fcp, assigner_id, target_wwpn, target_lun,
multipath, os_version, mount_point)
if not connections:
self._undedicate_fcp(fcp, assigner_id)
except (exception.SDKBaseException,
exception.SDKSMTRequestFailed) as err:
errmsg = 'rollback detach because error:' + err.format_message()
LOG.error(errmsg)
self.fcp_mgr.increase_fcp_usage(fcp, assigner_id)
with zvmutils.ignore_errors():
self._add_disk(fcp, assigner_id, target_wwpn, target_lun,
multipath, os_version, mount_point)
raise exception.SDKBaseException(msg=errmsg)
LOG.info('Detaching device to %s is done.' % assigner_id) | [
"def",
"_detach",
"(",
"self",
",",
"fcp",
",",
"assigner_id",
",",
"target_wwpn",
",",
"target_lun",
",",
"multipath",
",",
"os_version",
",",
"mount_point",
")",
":",
"LOG",
".",
"info",
"(",
"'Start to detach device from %s'",
"%",
"assigner_id",
")",
"connections",
"=",
"self",
".",
"fcp_mgr",
".",
"decrease_fcp_usage",
"(",
"fcp",
",",
"assigner_id",
")",
"try",
":",
"self",
".",
"_remove_disk",
"(",
"fcp",
",",
"assigner_id",
",",
"target_wwpn",
",",
"target_lun",
",",
"multipath",
",",
"os_version",
",",
"mount_point",
")",
"if",
"not",
"connections",
":",
"self",
".",
"_undedicate_fcp",
"(",
"fcp",
",",
"assigner_id",
")",
"except",
"(",
"exception",
".",
"SDKBaseException",
",",
"exception",
".",
"SDKSMTRequestFailed",
")",
"as",
"err",
":",
"errmsg",
"=",
"'rollback detach because error:'",
"+",
"err",
".",
"format_message",
"(",
")",
"LOG",
".",
"error",
"(",
"errmsg",
")",
"self",
".",
"fcp_mgr",
".",
"increase_fcp_usage",
"(",
"fcp",
",",
"assigner_id",
")",
"with",
"zvmutils",
".",
"ignore_errors",
"(",
")",
":",
"self",
".",
"_add_disk",
"(",
"fcp",
",",
"assigner_id",
",",
"target_wwpn",
",",
"target_lun",
",",
"multipath",
",",
"os_version",
",",
"mount_point",
")",
"raise",
"exception",
".",
"SDKBaseException",
"(",
"msg",
"=",
"errmsg",
")",
"LOG",
".",
"info",
"(",
"'Detaching device to %s is done.'",
"%",
"assigner_id",
")"
] | Detach a volume from a guest | [
"Detach",
"a",
"volume",
"from",
"a",
"guest"
] | python | train |
odlgroup/odl | odl/space/fspace.py | https://github.com/odlgroup/odl/blob/b8443f6aca90e191ba36c91d32253c5a36249a6c/odl/space/fspace.py#L638-L658 | def one(self):
"""Function mapping anything to one."""
# See zero() for remarks
def one_vec(x, out=None, **kwargs):
"""One function, vectorized."""
if is_valid_input_meshgrid(x, self.domain.ndim):
scalar_out_shape = out_shape_from_meshgrid(x)
elif is_valid_input_array(x, self.domain.ndim):
scalar_out_shape = out_shape_from_array(x)
else:
raise TypeError('invalid input type')
out_shape = self.out_shape + scalar_out_shape
if out is None:
return np.ones(out_shape, dtype=self.scalar_out_dtype)
else:
fill_value = np.ones(1, dtype=self.scalar_out_dtype)[0]
out.fill(fill_value)
return self.element_type(self, one_vec) | [
"def",
"one",
"(",
"self",
")",
":",
"# See zero() for remarks",
"def",
"one_vec",
"(",
"x",
",",
"out",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"\"\"\"One function, vectorized.\"\"\"",
"if",
"is_valid_input_meshgrid",
"(",
"x",
",",
"self",
".",
"domain",
".",
"ndim",
")",
":",
"scalar_out_shape",
"=",
"out_shape_from_meshgrid",
"(",
"x",
")",
"elif",
"is_valid_input_array",
"(",
"x",
",",
"self",
".",
"domain",
".",
"ndim",
")",
":",
"scalar_out_shape",
"=",
"out_shape_from_array",
"(",
"x",
")",
"else",
":",
"raise",
"TypeError",
"(",
"'invalid input type'",
")",
"out_shape",
"=",
"self",
".",
"out_shape",
"+",
"scalar_out_shape",
"if",
"out",
"is",
"None",
":",
"return",
"np",
".",
"ones",
"(",
"out_shape",
",",
"dtype",
"=",
"self",
".",
"scalar_out_dtype",
")",
"else",
":",
"fill_value",
"=",
"np",
".",
"ones",
"(",
"1",
",",
"dtype",
"=",
"self",
".",
"scalar_out_dtype",
")",
"[",
"0",
"]",
"out",
".",
"fill",
"(",
"fill_value",
")",
"return",
"self",
".",
"element_type",
"(",
"self",
",",
"one_vec",
")"
] | Function mapping anything to one. | [
"Function",
"mapping",
"anything",
"to",
"one",
"."
] | python | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.