repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
list | docstring
stringlengths 1
46.9k
| docstring_tokens
list | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
NYUCCL/psiTurk | psiturk/psiturk_shell.py | https://github.com/NYUCCL/psiTurk/blob/7170b992a0b5f56c165929cf87b3d3a1f3336c36/psiturk/psiturk_shell.py#L1163-L1170 | def tunnel_open(self):
''' Open tunnel '''
if (self.server.is_server_running() == 'no' or
self.server.is_server_running() == 'maybe'):
print("Error: Sorry, you need to have the server running to open a "
"tunnel. Try 'server on' first.")
else:
self.tunnel.open() | [
"def",
"tunnel_open",
"(",
"self",
")",
":",
"if",
"(",
"self",
".",
"server",
".",
"is_server_running",
"(",
")",
"==",
"'no'",
"or",
"self",
".",
"server",
".",
"is_server_running",
"(",
")",
"==",
"'maybe'",
")",
":",
"print",
"(",
"\"Error: Sorry, you need to have the server running to open a \"",
"\"tunnel. Try 'server on' first.\"",
")",
"else",
":",
"self",
".",
"tunnel",
".",
"open",
"(",
")"
]
| Open tunnel | [
"Open",
"tunnel"
]
| python | train |
ejeschke/ginga | ginga/ImageView.py | https://github.com/ejeschke/ginga/blob/a78c893ec6f37a837de851947e9bb4625c597915/ginga/ImageView.py#L1899-L1919 | def get_data_pct(self, xpct, ypct):
"""Calculate new data size for the given axis ratios.
See :meth:`get_limits`.
Parameters
----------
xpct, ypct : float
Ratio for X and Y, respectively, where 1 is 100%.
Returns
-------
x, y : int
Scaled dimensions.
"""
xy_mn, xy_mx = self.get_limits()
width = abs(xy_mx[0] - xy_mn[0])
height = abs(xy_mx[1] - xy_mn[1])
x, y = int(float(xpct) * width), int(float(ypct) * height)
return (x, y) | [
"def",
"get_data_pct",
"(",
"self",
",",
"xpct",
",",
"ypct",
")",
":",
"xy_mn",
",",
"xy_mx",
"=",
"self",
".",
"get_limits",
"(",
")",
"width",
"=",
"abs",
"(",
"xy_mx",
"[",
"0",
"]",
"-",
"xy_mn",
"[",
"0",
"]",
")",
"height",
"=",
"abs",
"(",
"xy_mx",
"[",
"1",
"]",
"-",
"xy_mn",
"[",
"1",
"]",
")",
"x",
",",
"y",
"=",
"int",
"(",
"float",
"(",
"xpct",
")",
"*",
"width",
")",
",",
"int",
"(",
"float",
"(",
"ypct",
")",
"*",
"height",
")",
"return",
"(",
"x",
",",
"y",
")"
]
| Calculate new data size for the given axis ratios.
See :meth:`get_limits`.
Parameters
----------
xpct, ypct : float
Ratio for X and Y, respectively, where 1 is 100%.
Returns
-------
x, y : int
Scaled dimensions. | [
"Calculate",
"new",
"data",
"size",
"for",
"the",
"given",
"axis",
"ratios",
".",
"See",
":",
"meth",
":",
"get_limits",
"."
]
| python | train |
pmacosta/pexdoc | pexdoc/pcontracts.py | https://github.com/pmacosta/pexdoc/blob/201ac243e5781347feb75896a4231429fe6da4b1/pexdoc/pcontracts.py#L164-L171 | def _get_custom_contract(param_contract):
"""Return True if parameter contract is a custom contract, False otherwise."""
if not isinstance(param_contract, str):
return None
for custom_contract in _CUSTOM_CONTRACTS:
if re.search(r"\b{0}\b".format(custom_contract), param_contract):
return custom_contract
return None | [
"def",
"_get_custom_contract",
"(",
"param_contract",
")",
":",
"if",
"not",
"isinstance",
"(",
"param_contract",
",",
"str",
")",
":",
"return",
"None",
"for",
"custom_contract",
"in",
"_CUSTOM_CONTRACTS",
":",
"if",
"re",
".",
"search",
"(",
"r\"\\b{0}\\b\"",
".",
"format",
"(",
"custom_contract",
")",
",",
"param_contract",
")",
":",
"return",
"custom_contract",
"return",
"None"
]
| Return True if parameter contract is a custom contract, False otherwise. | [
"Return",
"True",
"if",
"parameter",
"contract",
"is",
"a",
"custom",
"contract",
"False",
"otherwise",
"."
]
| python | train |
senaite/senaite.core | bika/lims/utils/__init__.py | https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/utils/__init__.py#L179-L194 | def formatDateParms(context, date_id):
""" Obtain and reformat the from and to dates
into a printable date parameter construct
"""
from_date = context.REQUEST.get('%s_fromdate' % date_id, None)
to_date = context.REQUEST.get('%s_todate' % date_id, None)
date_parms = {}
if from_date and to_date:
date_parms = 'from %s to %s' % (from_date, to_date)
elif from_date:
date_parms = 'from %s' % (from_date)
elif to_date:
date_parms = 'to %s' % (to_date)
return date_parms | [
"def",
"formatDateParms",
"(",
"context",
",",
"date_id",
")",
":",
"from_date",
"=",
"context",
".",
"REQUEST",
".",
"get",
"(",
"'%s_fromdate'",
"%",
"date_id",
",",
"None",
")",
"to_date",
"=",
"context",
".",
"REQUEST",
".",
"get",
"(",
"'%s_todate'",
"%",
"date_id",
",",
"None",
")",
"date_parms",
"=",
"{",
"}",
"if",
"from_date",
"and",
"to_date",
":",
"date_parms",
"=",
"'from %s to %s'",
"%",
"(",
"from_date",
",",
"to_date",
")",
"elif",
"from_date",
":",
"date_parms",
"=",
"'from %s'",
"%",
"(",
"from_date",
")",
"elif",
"to_date",
":",
"date_parms",
"=",
"'to %s'",
"%",
"(",
"to_date",
")",
"return",
"date_parms"
]
| Obtain and reformat the from and to dates
into a printable date parameter construct | [
"Obtain",
"and",
"reformat",
"the",
"from",
"and",
"to",
"dates",
"into",
"a",
"printable",
"date",
"parameter",
"construct"
]
| python | train |
ray-project/ray | python/ray/node.py | https://github.com/ray-project/ray/blob/4eade036a0505e244c976f36aaa2d64386b5129b/python/ray/node.py#L450-L463 | def start_raylet_monitor(self):
"""Start the raylet monitor."""
stdout_file, stderr_file = self.new_log_files("raylet_monitor")
process_info = ray.services.start_raylet_monitor(
self._redis_address,
stdout_file=stdout_file,
stderr_file=stderr_file,
redis_password=self._ray_params.redis_password,
config=self._config)
assert (ray_constants.PROCESS_TYPE_RAYLET_MONITOR not in
self.all_processes)
self.all_processes[ray_constants.PROCESS_TYPE_RAYLET_MONITOR] = [
process_info
] | [
"def",
"start_raylet_monitor",
"(",
"self",
")",
":",
"stdout_file",
",",
"stderr_file",
"=",
"self",
".",
"new_log_files",
"(",
"\"raylet_monitor\"",
")",
"process_info",
"=",
"ray",
".",
"services",
".",
"start_raylet_monitor",
"(",
"self",
".",
"_redis_address",
",",
"stdout_file",
"=",
"stdout_file",
",",
"stderr_file",
"=",
"stderr_file",
",",
"redis_password",
"=",
"self",
".",
"_ray_params",
".",
"redis_password",
",",
"config",
"=",
"self",
".",
"_config",
")",
"assert",
"(",
"ray_constants",
".",
"PROCESS_TYPE_RAYLET_MONITOR",
"not",
"in",
"self",
".",
"all_processes",
")",
"self",
".",
"all_processes",
"[",
"ray_constants",
".",
"PROCESS_TYPE_RAYLET_MONITOR",
"]",
"=",
"[",
"process_info",
"]"
]
| Start the raylet monitor. | [
"Start",
"the",
"raylet",
"monitor",
"."
]
| python | train |
bitesofcode/projexui | projexui/widgets/xtreewidget/xtreewidget.py | https://github.com/bitesofcode/projexui/blob/f18a73bec84df90b034ca69b9deea118dbedfc4d/projexui/widgets/xtreewidget/xtreewidget.py#L1160-L1211 | def lockToColumn(self, index):
"""
Sets the column that the tree view will lock to. If None is supplied,
then locking will be removed.
:param index | <int> || None
"""
self._lockColumn = index
if index is None:
self.__destroyLockedView()
return
else:
if not self._lockedView:
view = QtGui.QTreeView(self.parent())
view.setModel(self.model())
view.setSelectionModel(self.selectionModel())
view.setItemDelegate(self.itemDelegate())
view.setFrameShape(view.NoFrame)
view.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff)
view.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff)
view.setRootIsDecorated(self.rootIsDecorated())
view.setUniformRowHeights(True)
view.setFocusProxy(self)
view.header().setFocusProxy(self.header())
view.setStyleSheet(self.styleSheet())
view.setAutoScroll(False)
view.setSortingEnabled(self.isSortingEnabled())
view.setPalette(self.palette())
view.move(self.x(), self.y())
self.setAutoScroll(False)
self.setUniformRowHeights(True)
view.collapsed.connect(self.collapse)
view.expanded.connect(self.expand)
view.expanded.connect(self.__updateLockedView)
view.collapsed.connect(self.__updateLockedView)
view_head = view.header()
for i in range(self.columnCount()):
view_head.setResizeMode(i, self.header().resizeMode(i))
view.header().sectionResized.connect(self.__updateStandardSection)
self.header().sectionResized.connect(self.__updateLockedSection)
vbar = view.verticalScrollBar()
self.verticalScrollBar().valueChanged.connect(vbar.setValue)
self._lockedView = view
self.__updateLockedView() | [
"def",
"lockToColumn",
"(",
"self",
",",
"index",
")",
":",
"self",
".",
"_lockColumn",
"=",
"index",
"if",
"index",
"is",
"None",
":",
"self",
".",
"__destroyLockedView",
"(",
")",
"return",
"else",
":",
"if",
"not",
"self",
".",
"_lockedView",
":",
"view",
"=",
"QtGui",
".",
"QTreeView",
"(",
"self",
".",
"parent",
"(",
")",
")",
"view",
".",
"setModel",
"(",
"self",
".",
"model",
"(",
")",
")",
"view",
".",
"setSelectionModel",
"(",
"self",
".",
"selectionModel",
"(",
")",
")",
"view",
".",
"setItemDelegate",
"(",
"self",
".",
"itemDelegate",
"(",
")",
")",
"view",
".",
"setFrameShape",
"(",
"view",
".",
"NoFrame",
")",
"view",
".",
"setVerticalScrollBarPolicy",
"(",
"QtCore",
".",
"Qt",
".",
"ScrollBarAlwaysOff",
")",
"view",
".",
"setHorizontalScrollBarPolicy",
"(",
"QtCore",
".",
"Qt",
".",
"ScrollBarAlwaysOff",
")",
"view",
".",
"setRootIsDecorated",
"(",
"self",
".",
"rootIsDecorated",
"(",
")",
")",
"view",
".",
"setUniformRowHeights",
"(",
"True",
")",
"view",
".",
"setFocusProxy",
"(",
"self",
")",
"view",
".",
"header",
"(",
")",
".",
"setFocusProxy",
"(",
"self",
".",
"header",
"(",
")",
")",
"view",
".",
"setStyleSheet",
"(",
"self",
".",
"styleSheet",
"(",
")",
")",
"view",
".",
"setAutoScroll",
"(",
"False",
")",
"view",
".",
"setSortingEnabled",
"(",
"self",
".",
"isSortingEnabled",
"(",
")",
")",
"view",
".",
"setPalette",
"(",
"self",
".",
"palette",
"(",
")",
")",
"view",
".",
"move",
"(",
"self",
".",
"x",
"(",
")",
",",
"self",
".",
"y",
"(",
")",
")",
"self",
".",
"setAutoScroll",
"(",
"False",
")",
"self",
".",
"setUniformRowHeights",
"(",
"True",
")",
"view",
".",
"collapsed",
".",
"connect",
"(",
"self",
".",
"collapse",
")",
"view",
".",
"expanded",
".",
"connect",
"(",
"self",
".",
"expand",
")",
"view",
".",
"expanded",
".",
"connect",
"(",
"self",
".",
"__updateLockedView",
")",
"view",
".",
"collapsed",
".",
"connect",
"(",
"self",
".",
"__updateLockedView",
")",
"view_head",
"=",
"view",
".",
"header",
"(",
")",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"columnCount",
"(",
")",
")",
":",
"view_head",
".",
"setResizeMode",
"(",
"i",
",",
"self",
".",
"header",
"(",
")",
".",
"resizeMode",
"(",
"i",
")",
")",
"view",
".",
"header",
"(",
")",
".",
"sectionResized",
".",
"connect",
"(",
"self",
".",
"__updateStandardSection",
")",
"self",
".",
"header",
"(",
")",
".",
"sectionResized",
".",
"connect",
"(",
"self",
".",
"__updateLockedSection",
")",
"vbar",
"=",
"view",
".",
"verticalScrollBar",
"(",
")",
"self",
".",
"verticalScrollBar",
"(",
")",
".",
"valueChanged",
".",
"connect",
"(",
"vbar",
".",
"setValue",
")",
"self",
".",
"_lockedView",
"=",
"view",
"self",
".",
"__updateLockedView",
"(",
")"
]
| Sets the column that the tree view will lock to. If None is supplied,
then locking will be removed.
:param index | <int> || None | [
"Sets",
"the",
"column",
"that",
"the",
"tree",
"view",
"will",
"lock",
"to",
".",
"If",
"None",
"is",
"supplied",
"then",
"locking",
"will",
"be",
"removed",
".",
":",
"param",
"index",
"|",
"<int",
">",
"||",
"None"
]
| python | train |
robinandeer/puzzle | puzzle/cli/cases.py | https://github.com/robinandeer/puzzle/blob/9476f05b416d3a5135d25492cb31411fdf831c58/puzzle/cli/cases.py#L16-L39 | def cases(ctx, root):
"""
Show all cases in the database.
If no database was found run puzzle init first.
"""
root = root or ctx.obj.get('root') or os.path.expanduser("~/.puzzle")
if os.path.isfile(root):
logger.error("'root' can't be a file")
ctx.abort()
logger.info("Root directory is: {}".format(root))
db_path = os.path.join(root, 'puzzle_db.sqlite3')
logger.info("db path is: {}".format(db_path))
if not os.path.exists(db_path):
logger.warn("database not initialized, run 'puzzle init'")
ctx.abort()
store = SqlStore(db_path)
for case in store.cases():
click.echo(case) | [
"def",
"cases",
"(",
"ctx",
",",
"root",
")",
":",
"root",
"=",
"root",
"or",
"ctx",
".",
"obj",
".",
"get",
"(",
"'root'",
")",
"or",
"os",
".",
"path",
".",
"expanduser",
"(",
"\"~/.puzzle\"",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"root",
")",
":",
"logger",
".",
"error",
"(",
"\"'root' can't be a file\"",
")",
"ctx",
".",
"abort",
"(",
")",
"logger",
".",
"info",
"(",
"\"Root directory is: {}\"",
".",
"format",
"(",
"root",
")",
")",
"db_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"root",
",",
"'puzzle_db.sqlite3'",
")",
"logger",
".",
"info",
"(",
"\"db path is: {}\"",
".",
"format",
"(",
"db_path",
")",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"db_path",
")",
":",
"logger",
".",
"warn",
"(",
"\"database not initialized, run 'puzzle init'\"",
")",
"ctx",
".",
"abort",
"(",
")",
"store",
"=",
"SqlStore",
"(",
"db_path",
")",
"for",
"case",
"in",
"store",
".",
"cases",
"(",
")",
":",
"click",
".",
"echo",
"(",
"case",
")"
]
| Show all cases in the database.
If no database was found run puzzle init first. | [
"Show",
"all",
"cases",
"in",
"the",
"database",
"."
]
| python | train |
nicolargo/glances | glances/exports/glances_restful.py | https://github.com/nicolargo/glances/blob/5bd4d587a736e0d2b03170b56926841d2a3eb7ee/glances/exports/glances_restful.py#L57-L68 | def init(self):
"""Init the connection to the RESTful server."""
if not self.export_enable:
return None
# Build the RESTful URL where the stats will be posted
url = '{}://{}:{}{}'.format(self.protocol,
self.host,
self.port,
self.path)
logger.info(
"Stats will be exported to the RESTful endpoint {}".format(url))
return url | [
"def",
"init",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"export_enable",
":",
"return",
"None",
"# Build the RESTful URL where the stats will be posted",
"url",
"=",
"'{}://{}:{}{}'",
".",
"format",
"(",
"self",
".",
"protocol",
",",
"self",
".",
"host",
",",
"self",
".",
"port",
",",
"self",
".",
"path",
")",
"logger",
".",
"info",
"(",
"\"Stats will be exported to the RESTful endpoint {}\"",
".",
"format",
"(",
"url",
")",
")",
"return",
"url"
]
| Init the connection to the RESTful server. | [
"Init",
"the",
"connection",
"to",
"the",
"RESTful",
"server",
"."
]
| python | train |
orb-framework/orb | orb/core/schema.py | https://github.com/orb-framework/orb/blob/575be2689cb269e65a0a2678232ff940acc19e5a/orb/core/schema.py#L442-L451 | def setIndexes(self, indexes):
"""
Sets the list of indexed lookups for this schema to the inputted list.
:param indexes | [<orb.Index>, ..]
"""
self.__indexes = {}
for name, index in indexes.items():
self.__indexes[name] = index
index.setSchema(self) | [
"def",
"setIndexes",
"(",
"self",
",",
"indexes",
")",
":",
"self",
".",
"__indexes",
"=",
"{",
"}",
"for",
"name",
",",
"index",
"in",
"indexes",
".",
"items",
"(",
")",
":",
"self",
".",
"__indexes",
"[",
"name",
"]",
"=",
"index",
"index",
".",
"setSchema",
"(",
"self",
")"
]
| Sets the list of indexed lookups for this schema to the inputted list.
:param indexes | [<orb.Index>, ..] | [
"Sets",
"the",
"list",
"of",
"indexed",
"lookups",
"for",
"this",
"schema",
"to",
"the",
"inputted",
"list",
".",
":",
"param",
"indexes",
"|",
"[",
"<orb",
".",
"Index",
">",
"..",
"]"
]
| python | train |
uber/rides-python-sdk | uber_rides/auth.py | https://github.com/uber/rides-python-sdk/blob/76ecd75ab5235d792ec1010e36eca679ba285127/uber_rides/auth.py#L423-L444 | def get_session(self):
"""Create Session to store credentials.
Returns
(Session)
A Session object with OAuth 2.0 credentials.
"""
response = _request_access_token(
grant_type=auth.CLIENT_CREDENTIALS_GRANT,
client_id=self.client_id,
client_secret=self.client_secret,
scopes=self.scopes,
)
oauth2credential = OAuth2Credential.make_from_response(
response=response,
grant_type=auth.CLIENT_CREDENTIALS_GRANT,
client_id=self.client_id,
client_secret=self.client_secret,
)
return Session(oauth2credential=oauth2credential) | [
"def",
"get_session",
"(",
"self",
")",
":",
"response",
"=",
"_request_access_token",
"(",
"grant_type",
"=",
"auth",
".",
"CLIENT_CREDENTIALS_GRANT",
",",
"client_id",
"=",
"self",
".",
"client_id",
",",
"client_secret",
"=",
"self",
".",
"client_secret",
",",
"scopes",
"=",
"self",
".",
"scopes",
",",
")",
"oauth2credential",
"=",
"OAuth2Credential",
".",
"make_from_response",
"(",
"response",
"=",
"response",
",",
"grant_type",
"=",
"auth",
".",
"CLIENT_CREDENTIALS_GRANT",
",",
"client_id",
"=",
"self",
".",
"client_id",
",",
"client_secret",
"=",
"self",
".",
"client_secret",
",",
")",
"return",
"Session",
"(",
"oauth2credential",
"=",
"oauth2credential",
")"
]
| Create Session to store credentials.
Returns
(Session)
A Session object with OAuth 2.0 credentials. | [
"Create",
"Session",
"to",
"store",
"credentials",
"."
]
| python | train |
wbond/oscrypto | oscrypto/_win/symmetric.py | https://github.com/wbond/oscrypto/blob/af778bf1c88bf6c4a7342f5353b130686a5bbe1c/oscrypto/_win/symmetric.py#L556-L664 | def _advapi32_create_handles(cipher, key, iv):
"""
Creates an HCRYPTPROV and HCRYPTKEY for symmetric encryption/decryption. The
HCRYPTPROV must be released by close_context_handle() and the
HCRYPTKEY must be released by advapi32.CryptDestroyKey() when done.
:param cipher:
A unicode string of "aes", "des", "tripledes_2key", "tripledes_3key",
"rc2", "rc4"
:param key:
A byte string of the symmetric key
:param iv:
The initialization vector - a byte string - unused for RC4
:return:
A tuple of (HCRYPTPROV, HCRYPTKEY)
"""
context_handle = None
if cipher == 'aes':
algorithm_id = {
16: Advapi32Const.CALG_AES_128,
24: Advapi32Const.CALG_AES_192,
32: Advapi32Const.CALG_AES_256,
}[len(key)]
else:
algorithm_id = {
'des': Advapi32Const.CALG_DES,
'tripledes_2key': Advapi32Const.CALG_3DES_112,
'tripledes_3key': Advapi32Const.CALG_3DES,
'rc2': Advapi32Const.CALG_RC2,
'rc4': Advapi32Const.CALG_RC4,
}[cipher]
provider = Advapi32Const.MS_ENH_RSA_AES_PROV
context_handle = open_context_handle(provider, verify_only=False)
blob_header_pointer = struct(advapi32, 'BLOBHEADER')
blob_header = unwrap(blob_header_pointer)
blob_header.bType = Advapi32Const.PLAINTEXTKEYBLOB
blob_header.bVersion = Advapi32Const.CUR_BLOB_VERSION
blob_header.reserved = 0
blob_header.aiKeyAlg = algorithm_id
blob_struct_pointer = struct(advapi32, 'PLAINTEXTKEYBLOB')
blob_struct = unwrap(blob_struct_pointer)
blob_struct.hdr = blob_header
blob_struct.dwKeySize = len(key)
blob = struct_bytes(blob_struct_pointer) + key
flags = 0
if cipher in set(['rc2', 'rc4']) and len(key) == 5:
flags = Advapi32Const.CRYPT_NO_SALT
key_handle_pointer = new(advapi32, 'HCRYPTKEY *')
res = advapi32.CryptImportKey(
context_handle,
blob,
len(blob),
null(),
flags,
key_handle_pointer
)
handle_error(res)
key_handle = unwrap(key_handle_pointer)
if cipher == 'rc2':
buf = new(advapi32, 'DWORD *', len(key) * 8)
res = advapi32.CryptSetKeyParam(
key_handle,
Advapi32Const.KP_EFFECTIVE_KEYLEN,
buf,
0
)
handle_error(res)
if cipher != 'rc4':
res = advapi32.CryptSetKeyParam(
key_handle,
Advapi32Const.KP_IV,
iv,
0
)
handle_error(res)
buf = new(advapi32, 'DWORD *', Advapi32Const.CRYPT_MODE_CBC)
res = advapi32.CryptSetKeyParam(
key_handle,
Advapi32Const.KP_MODE,
buf,
0
)
handle_error(res)
buf = new(advapi32, 'DWORD *', Advapi32Const.PKCS5_PADDING)
res = advapi32.CryptSetKeyParam(
key_handle,
Advapi32Const.KP_PADDING,
buf,
0
)
handle_error(res)
return (context_handle, key_handle) | [
"def",
"_advapi32_create_handles",
"(",
"cipher",
",",
"key",
",",
"iv",
")",
":",
"context_handle",
"=",
"None",
"if",
"cipher",
"==",
"'aes'",
":",
"algorithm_id",
"=",
"{",
"16",
":",
"Advapi32Const",
".",
"CALG_AES_128",
",",
"24",
":",
"Advapi32Const",
".",
"CALG_AES_192",
",",
"32",
":",
"Advapi32Const",
".",
"CALG_AES_256",
",",
"}",
"[",
"len",
"(",
"key",
")",
"]",
"else",
":",
"algorithm_id",
"=",
"{",
"'des'",
":",
"Advapi32Const",
".",
"CALG_DES",
",",
"'tripledes_2key'",
":",
"Advapi32Const",
".",
"CALG_3DES_112",
",",
"'tripledes_3key'",
":",
"Advapi32Const",
".",
"CALG_3DES",
",",
"'rc2'",
":",
"Advapi32Const",
".",
"CALG_RC2",
",",
"'rc4'",
":",
"Advapi32Const",
".",
"CALG_RC4",
",",
"}",
"[",
"cipher",
"]",
"provider",
"=",
"Advapi32Const",
".",
"MS_ENH_RSA_AES_PROV",
"context_handle",
"=",
"open_context_handle",
"(",
"provider",
",",
"verify_only",
"=",
"False",
")",
"blob_header_pointer",
"=",
"struct",
"(",
"advapi32",
",",
"'BLOBHEADER'",
")",
"blob_header",
"=",
"unwrap",
"(",
"blob_header_pointer",
")",
"blob_header",
".",
"bType",
"=",
"Advapi32Const",
".",
"PLAINTEXTKEYBLOB",
"blob_header",
".",
"bVersion",
"=",
"Advapi32Const",
".",
"CUR_BLOB_VERSION",
"blob_header",
".",
"reserved",
"=",
"0",
"blob_header",
".",
"aiKeyAlg",
"=",
"algorithm_id",
"blob_struct_pointer",
"=",
"struct",
"(",
"advapi32",
",",
"'PLAINTEXTKEYBLOB'",
")",
"blob_struct",
"=",
"unwrap",
"(",
"blob_struct_pointer",
")",
"blob_struct",
".",
"hdr",
"=",
"blob_header",
"blob_struct",
".",
"dwKeySize",
"=",
"len",
"(",
"key",
")",
"blob",
"=",
"struct_bytes",
"(",
"blob_struct_pointer",
")",
"+",
"key",
"flags",
"=",
"0",
"if",
"cipher",
"in",
"set",
"(",
"[",
"'rc2'",
",",
"'rc4'",
"]",
")",
"and",
"len",
"(",
"key",
")",
"==",
"5",
":",
"flags",
"=",
"Advapi32Const",
".",
"CRYPT_NO_SALT",
"key_handle_pointer",
"=",
"new",
"(",
"advapi32",
",",
"'HCRYPTKEY *'",
")",
"res",
"=",
"advapi32",
".",
"CryptImportKey",
"(",
"context_handle",
",",
"blob",
",",
"len",
"(",
"blob",
")",
",",
"null",
"(",
")",
",",
"flags",
",",
"key_handle_pointer",
")",
"handle_error",
"(",
"res",
")",
"key_handle",
"=",
"unwrap",
"(",
"key_handle_pointer",
")",
"if",
"cipher",
"==",
"'rc2'",
":",
"buf",
"=",
"new",
"(",
"advapi32",
",",
"'DWORD *'",
",",
"len",
"(",
"key",
")",
"*",
"8",
")",
"res",
"=",
"advapi32",
".",
"CryptSetKeyParam",
"(",
"key_handle",
",",
"Advapi32Const",
".",
"KP_EFFECTIVE_KEYLEN",
",",
"buf",
",",
"0",
")",
"handle_error",
"(",
"res",
")",
"if",
"cipher",
"!=",
"'rc4'",
":",
"res",
"=",
"advapi32",
".",
"CryptSetKeyParam",
"(",
"key_handle",
",",
"Advapi32Const",
".",
"KP_IV",
",",
"iv",
",",
"0",
")",
"handle_error",
"(",
"res",
")",
"buf",
"=",
"new",
"(",
"advapi32",
",",
"'DWORD *'",
",",
"Advapi32Const",
".",
"CRYPT_MODE_CBC",
")",
"res",
"=",
"advapi32",
".",
"CryptSetKeyParam",
"(",
"key_handle",
",",
"Advapi32Const",
".",
"KP_MODE",
",",
"buf",
",",
"0",
")",
"handle_error",
"(",
"res",
")",
"buf",
"=",
"new",
"(",
"advapi32",
",",
"'DWORD *'",
",",
"Advapi32Const",
".",
"PKCS5_PADDING",
")",
"res",
"=",
"advapi32",
".",
"CryptSetKeyParam",
"(",
"key_handle",
",",
"Advapi32Const",
".",
"KP_PADDING",
",",
"buf",
",",
"0",
")",
"handle_error",
"(",
"res",
")",
"return",
"(",
"context_handle",
",",
"key_handle",
")"
]
| Creates an HCRYPTPROV and HCRYPTKEY for symmetric encryption/decryption. The
HCRYPTPROV must be released by close_context_handle() and the
HCRYPTKEY must be released by advapi32.CryptDestroyKey() when done.
:param cipher:
A unicode string of "aes", "des", "tripledes_2key", "tripledes_3key",
"rc2", "rc4"
:param key:
A byte string of the symmetric key
:param iv:
The initialization vector - a byte string - unused for RC4
:return:
A tuple of (HCRYPTPROV, HCRYPTKEY) | [
"Creates",
"an",
"HCRYPTPROV",
"and",
"HCRYPTKEY",
"for",
"symmetric",
"encryption",
"/",
"decryption",
".",
"The",
"HCRYPTPROV",
"must",
"be",
"released",
"by",
"close_context_handle",
"()",
"and",
"the",
"HCRYPTKEY",
"must",
"be",
"released",
"by",
"advapi32",
".",
"CryptDestroyKey",
"()",
"when",
"done",
"."
]
| python | valid |
dannyzed/julian | julian/julian.py | https://github.com/dannyzed/julian/blob/7ca7e25afe2704f072b38f8e464bc4e7d4d7d0d7/julian/julian.py#L84-L134 | def from_jd(jd: float, fmt: str = 'jd') -> datetime:
"""
Converts a Julian Date to a datetime object.
Algorithm is from Fliegel and van Flandern (1968)
Parameters
----------
jd: float
Julian Date as type specified in the string fmt
fmt: str
Returns
-------
dt: datetime
"""
jd, jdf = __from_format(jd, fmt)
l = jd+68569
n = 4*l//146097
l = l-(146097*n+3)//4
i = 4000*(l+1)//1461001
l = l-1461*i//4+31
j = 80*l//2447
k = l-2447*j//80
l = j//11
j = j+2-12*l
i = 100*(n-49)+i+l
year = int(i)
month = int(j)
day = int(k)
# in microseconds
frac_component = int(jdf * (1e6*24*3600))
hours = int(frac_component // (1e6*3600))
frac_component -= hours * 1e6*3600
minutes = int(frac_component // (1e6*60))
frac_component -= minutes * 1e6*60
seconds = int(frac_component // 1e6)
frac_component -= seconds*1e6
frac_component = int(frac_component)
dt = datetime(year=year, month=month, day=day,
hour=hours, minute=minutes, second=seconds, microsecond=frac_component)
return dt | [
"def",
"from_jd",
"(",
"jd",
":",
"float",
",",
"fmt",
":",
"str",
"=",
"'jd'",
")",
"->",
"datetime",
":",
"jd",
",",
"jdf",
"=",
"__from_format",
"(",
"jd",
",",
"fmt",
")",
"l",
"=",
"jd",
"+",
"68569",
"n",
"=",
"4",
"*",
"l",
"//",
"146097",
"l",
"=",
"l",
"-",
"(",
"146097",
"*",
"n",
"+",
"3",
")",
"//",
"4",
"i",
"=",
"4000",
"*",
"(",
"l",
"+",
"1",
")",
"//",
"1461001",
"l",
"=",
"l",
"-",
"1461",
"*",
"i",
"//",
"4",
"+",
"31",
"j",
"=",
"80",
"*",
"l",
"//",
"2447",
"k",
"=",
"l",
"-",
"2447",
"*",
"j",
"//",
"80",
"l",
"=",
"j",
"//",
"11",
"j",
"=",
"j",
"+",
"2",
"-",
"12",
"*",
"l",
"i",
"=",
"100",
"*",
"(",
"n",
"-",
"49",
")",
"+",
"i",
"+",
"l",
"year",
"=",
"int",
"(",
"i",
")",
"month",
"=",
"int",
"(",
"j",
")",
"day",
"=",
"int",
"(",
"k",
")",
"# in microseconds",
"frac_component",
"=",
"int",
"(",
"jdf",
"*",
"(",
"1e6",
"*",
"24",
"*",
"3600",
")",
")",
"hours",
"=",
"int",
"(",
"frac_component",
"//",
"(",
"1e6",
"*",
"3600",
")",
")",
"frac_component",
"-=",
"hours",
"*",
"1e6",
"*",
"3600",
"minutes",
"=",
"int",
"(",
"frac_component",
"//",
"(",
"1e6",
"*",
"60",
")",
")",
"frac_component",
"-=",
"minutes",
"*",
"1e6",
"*",
"60",
"seconds",
"=",
"int",
"(",
"frac_component",
"//",
"1e6",
")",
"frac_component",
"-=",
"seconds",
"*",
"1e6",
"frac_component",
"=",
"int",
"(",
"frac_component",
")",
"dt",
"=",
"datetime",
"(",
"year",
"=",
"year",
",",
"month",
"=",
"month",
",",
"day",
"=",
"day",
",",
"hour",
"=",
"hours",
",",
"minute",
"=",
"minutes",
",",
"second",
"=",
"seconds",
",",
"microsecond",
"=",
"frac_component",
")",
"return",
"dt"
]
| Converts a Julian Date to a datetime object.
Algorithm is from Fliegel and van Flandern (1968)
Parameters
----------
jd: float
Julian Date as type specified in the string fmt
fmt: str
Returns
-------
dt: datetime | [
"Converts",
"a",
"Julian",
"Date",
"to",
"a",
"datetime",
"object",
".",
"Algorithm",
"is",
"from",
"Fliegel",
"and",
"van",
"Flandern",
"(",
"1968",
")"
]
| python | train |
KnightHawk3/Hummingbird | hummingbird/__init__.py | https://github.com/KnightHawk3/Hummingbird/blob/10b918534b112c95a93f04dd76bfb7479c4f3f21/hummingbird/__init__.py#L124-L134 | def get_feed(self, username):
"""Gets a user's feed.
:param str username: User to fetch feed from.
"""
r = self._query_('/users/%s/feed' % username, 'GET')
results = [Story(item) for item in r.json()]
return results | [
"def",
"get_feed",
"(",
"self",
",",
"username",
")",
":",
"r",
"=",
"self",
".",
"_query_",
"(",
"'/users/%s/feed'",
"%",
"username",
",",
"'GET'",
")",
"results",
"=",
"[",
"Story",
"(",
"item",
")",
"for",
"item",
"in",
"r",
".",
"json",
"(",
")",
"]",
"return",
"results"
]
| Gets a user's feed.
:param str username: User to fetch feed from. | [
"Gets",
"a",
"user",
"s",
"feed",
"."
]
| python | train |
hover2pi/svo_filters | svo_filters/svo.py | https://github.com/hover2pi/svo_filters/blob/f0587c4908baf636d4bdf030fa95029e8f31b975/svo_filters/svo.py#L733-L760 | def wave_units(self, units):
"""
A setter for the wavelength units
Parameters
----------
units: str, astropy.units.core.PrefixUnit
The wavelength units
"""
# Make sure it's length units
if not units.is_equivalent(q.m):
raise ValueError(units, ": New wavelength units must be a length.")
# Update the units
self._wave_units = units
# Update all the wavelength values
self._wave = self.wave.to(self.wave_units).round(5)
self.wave_min = self.wave_min.to(self.wave_units).round(5)
self.wave_max = self.wave_max.to(self.wave_units).round(5)
self.wave_eff = self.wave_eff.to(self.wave_units).round(5)
self.wave_center = self.wave_center.to(self.wave_units).round(5)
self.wave_mean = self.wave_mean.to(self.wave_units).round(5)
self.wave_peak = self.wave_peak.to(self.wave_units).round(5)
self.wave_phot = self.wave_phot.to(self.wave_units).round(5)
self.wave_pivot = self.wave_pivot.to(self.wave_units).round(5)
self.width_eff = self.width_eff.to(self.wave_units).round(5)
self.fwhm = self.fwhm.to(self.wave_units).round(5) | [
"def",
"wave_units",
"(",
"self",
",",
"units",
")",
":",
"# Make sure it's length units",
"if",
"not",
"units",
".",
"is_equivalent",
"(",
"q",
".",
"m",
")",
":",
"raise",
"ValueError",
"(",
"units",
",",
"\": New wavelength units must be a length.\"",
")",
"# Update the units",
"self",
".",
"_wave_units",
"=",
"units",
"# Update all the wavelength values",
"self",
".",
"_wave",
"=",
"self",
".",
"wave",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"wave_min",
"=",
"self",
".",
"wave_min",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"wave_max",
"=",
"self",
".",
"wave_max",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"wave_eff",
"=",
"self",
".",
"wave_eff",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"wave_center",
"=",
"self",
".",
"wave_center",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"wave_mean",
"=",
"self",
".",
"wave_mean",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"wave_peak",
"=",
"self",
".",
"wave_peak",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"wave_phot",
"=",
"self",
".",
"wave_phot",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"wave_pivot",
"=",
"self",
".",
"wave_pivot",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"width_eff",
"=",
"self",
".",
"width_eff",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")",
"self",
".",
"fwhm",
"=",
"self",
".",
"fwhm",
".",
"to",
"(",
"self",
".",
"wave_units",
")",
".",
"round",
"(",
"5",
")"
]
| A setter for the wavelength units
Parameters
----------
units: str, astropy.units.core.PrefixUnit
The wavelength units | [
"A",
"setter",
"for",
"the",
"wavelength",
"units"
]
| python | train |
VingtCinq/python-resize-image | resizeimage/resizeimage.py | https://github.com/VingtCinq/python-resize-image/blob/a4e645792ef30c5fcc558df6da6de18b1ecb95ea/resizeimage/resizeimage.py#L11-L35 | def validate(validator):
"""
Return a decorator that validates arguments with provided `validator`
function.
This will also store the validator function as `func.validate`.
The decorator returned by this function, can bypass the validator
if `validate=False` is passed as argument otherwise the fucntion is
called directly.
The validator must raise an exception, if the function can not
be called.
"""
def decorator(func):
"""Bound decorator to a particular validator function"""
@wraps(func)
def wrapper(image, size, validate=True):
if validate:
validator(image, size)
return func(image, size)
return wrapper
return decorator | [
"def",
"validate",
"(",
"validator",
")",
":",
"def",
"decorator",
"(",
"func",
")",
":",
"\"\"\"Bound decorator to a particular validator function\"\"\"",
"@",
"wraps",
"(",
"func",
")",
"def",
"wrapper",
"(",
"image",
",",
"size",
",",
"validate",
"=",
"True",
")",
":",
"if",
"validate",
":",
"validator",
"(",
"image",
",",
"size",
")",
"return",
"func",
"(",
"image",
",",
"size",
")",
"return",
"wrapper",
"return",
"decorator"
]
| Return a decorator that validates arguments with provided `validator`
function.
This will also store the validator function as `func.validate`.
The decorator returned by this function, can bypass the validator
if `validate=False` is passed as argument otherwise the fucntion is
called directly.
The validator must raise an exception, if the function can not
be called. | [
"Return",
"a",
"decorator",
"that",
"validates",
"arguments",
"with",
"provided",
"validator",
"function",
"."
]
| python | test |
mdickinson/bigfloat | bigfloat/context.py | https://github.com/mdickinson/bigfloat/blob/e5fdd1048615191ed32a2b7460e14b3b3ff24662/bigfloat/context.py#L296-L327 | def _apply_function_in_context(cls, f, args, context):
""" Apply an MPFR function 'f' to the given arguments 'args', rounding to
the given context. Returns a new Mpfr object with precision taken from
the current context.
"""
rounding = context.rounding
bf = mpfr.Mpfr_t.__new__(cls)
mpfr.mpfr_init2(bf, context.precision)
args = (bf,) + args + (rounding,)
ternary = f(*args)
with _temporary_exponent_bounds(context.emin, context.emax):
ternary = mpfr.mpfr_check_range(bf, ternary, rounding)
if context.subnormalize:
# mpfr_subnormalize doesn't set underflow and
# subnormal flags, so we do that ourselves. We choose
# to set the underflow flag for *all* cases where the
# 'after rounding' result is smaller than the smallest
# normal number, even if that result is exact.
# if bf is zero but ternary is nonzero, the underflow
# flag will already have been set by mpfr_check_range;
underflow = (
mpfr.mpfr_number_p(bf) and
not mpfr.mpfr_zero_p(bf) and
mpfr.mpfr_get_exp(bf) < context.precision - 1 + context.emin)
if underflow:
mpfr.mpfr_set_underflow()
ternary = mpfr.mpfr_subnormalize(bf, ternary, rounding)
if ternary:
mpfr.mpfr_set_inexflag()
return bf | [
"def",
"_apply_function_in_context",
"(",
"cls",
",",
"f",
",",
"args",
",",
"context",
")",
":",
"rounding",
"=",
"context",
".",
"rounding",
"bf",
"=",
"mpfr",
".",
"Mpfr_t",
".",
"__new__",
"(",
"cls",
")",
"mpfr",
".",
"mpfr_init2",
"(",
"bf",
",",
"context",
".",
"precision",
")",
"args",
"=",
"(",
"bf",
",",
")",
"+",
"args",
"+",
"(",
"rounding",
",",
")",
"ternary",
"=",
"f",
"(",
"*",
"args",
")",
"with",
"_temporary_exponent_bounds",
"(",
"context",
".",
"emin",
",",
"context",
".",
"emax",
")",
":",
"ternary",
"=",
"mpfr",
".",
"mpfr_check_range",
"(",
"bf",
",",
"ternary",
",",
"rounding",
")",
"if",
"context",
".",
"subnormalize",
":",
"# mpfr_subnormalize doesn't set underflow and",
"# subnormal flags, so we do that ourselves. We choose",
"# to set the underflow flag for *all* cases where the",
"# 'after rounding' result is smaller than the smallest",
"# normal number, even if that result is exact.",
"# if bf is zero but ternary is nonzero, the underflow",
"# flag will already have been set by mpfr_check_range;",
"underflow",
"=",
"(",
"mpfr",
".",
"mpfr_number_p",
"(",
"bf",
")",
"and",
"not",
"mpfr",
".",
"mpfr_zero_p",
"(",
"bf",
")",
"and",
"mpfr",
".",
"mpfr_get_exp",
"(",
"bf",
")",
"<",
"context",
".",
"precision",
"-",
"1",
"+",
"context",
".",
"emin",
")",
"if",
"underflow",
":",
"mpfr",
".",
"mpfr_set_underflow",
"(",
")",
"ternary",
"=",
"mpfr",
".",
"mpfr_subnormalize",
"(",
"bf",
",",
"ternary",
",",
"rounding",
")",
"if",
"ternary",
":",
"mpfr",
".",
"mpfr_set_inexflag",
"(",
")",
"return",
"bf"
]
| Apply an MPFR function 'f' to the given arguments 'args', rounding to
the given context. Returns a new Mpfr object with precision taken from
the current context. | [
"Apply",
"an",
"MPFR",
"function",
"f",
"to",
"the",
"given",
"arguments",
"args",
"rounding",
"to",
"the",
"given",
"context",
".",
"Returns",
"a",
"new",
"Mpfr",
"object",
"with",
"precision",
"taken",
"from",
"the",
"current",
"context",
"."
]
| python | train |
markovmodel/PyEMMA | pyemma/plots/plots2d.py | https://github.com/markovmodel/PyEMMA/blob/5c3124398217de05ba5ce9c8fb01519222481ab8/pyemma/plots/plots2d.py#L157-L192 | def get_grid_data(xall, yall, zall, nbins=100, method='nearest'):
"""Interpolate unstructured two-dimensional data.
Parameters
----------
xall : ndarray(T)
Sample x-coordinates.
yall : ndarray(T)
Sample y-coordinates.
zall : ndarray(T)
Sample z-coordinates.
nbins : int, optional, default=100
Number of histogram bins used in x/y-dimensions.
method : str, optional, default='nearest'
Assignment method; scipy.interpolate.griddata supports the
methods 'nearest', 'linear', and 'cubic'.
Returns
-------
x : ndarray(nbins, nbins)
The bins' x-coordinates in meshgrid format.
y : ndarray(nbins, nbins)
The bins' y-coordinates in meshgrid format.
z : ndarray(nbins, nbins)
Interpolated z-data in meshgrid format.
"""
from scipy.interpolate import griddata
x, y = _np.meshgrid(
_np.linspace(xall.min(), xall.max(), nbins),
_np.linspace(yall.min(), yall.max(), nbins),
indexing='ij')
z = griddata(
_np.hstack([xall[:,None], yall[:,None]]),
zall, (x, y), method=method)
return x, y, z | [
"def",
"get_grid_data",
"(",
"xall",
",",
"yall",
",",
"zall",
",",
"nbins",
"=",
"100",
",",
"method",
"=",
"'nearest'",
")",
":",
"from",
"scipy",
".",
"interpolate",
"import",
"griddata",
"x",
",",
"y",
"=",
"_np",
".",
"meshgrid",
"(",
"_np",
".",
"linspace",
"(",
"xall",
".",
"min",
"(",
")",
",",
"xall",
".",
"max",
"(",
")",
",",
"nbins",
")",
",",
"_np",
".",
"linspace",
"(",
"yall",
".",
"min",
"(",
")",
",",
"yall",
".",
"max",
"(",
")",
",",
"nbins",
")",
",",
"indexing",
"=",
"'ij'",
")",
"z",
"=",
"griddata",
"(",
"_np",
".",
"hstack",
"(",
"[",
"xall",
"[",
":",
",",
"None",
"]",
",",
"yall",
"[",
":",
",",
"None",
"]",
"]",
")",
",",
"zall",
",",
"(",
"x",
",",
"y",
")",
",",
"method",
"=",
"method",
")",
"return",
"x",
",",
"y",
",",
"z"
]
| Interpolate unstructured two-dimensional data.
Parameters
----------
xall : ndarray(T)
Sample x-coordinates.
yall : ndarray(T)
Sample y-coordinates.
zall : ndarray(T)
Sample z-coordinates.
nbins : int, optional, default=100
Number of histogram bins used in x/y-dimensions.
method : str, optional, default='nearest'
Assignment method; scipy.interpolate.griddata supports the
methods 'nearest', 'linear', and 'cubic'.
Returns
-------
x : ndarray(nbins, nbins)
The bins' x-coordinates in meshgrid format.
y : ndarray(nbins, nbins)
The bins' y-coordinates in meshgrid format.
z : ndarray(nbins, nbins)
Interpolated z-data in meshgrid format. | [
"Interpolate",
"unstructured",
"two",
"-",
"dimensional",
"data",
"."
]
| python | train |
mushkevych/scheduler | synergy/supervisor/synergy_supervisor.py | https://github.com/mushkevych/scheduler/blob/6740331360f49083c208085fb5a60ce80ebf418b/synergy/supervisor/synergy_supervisor.py#L77-L98 | def _poll_process(self, box_config):
""" between killing a process and its actual termination lies poorly documented requirement -
<purging process' io pipes and reading exit status>.
this can be done either by os.wait() or process.wait() """
try:
p = psutil.Process(box_config.pid)
return_code = p.wait(timeout=0.01)
if return_code is None:
# process is already terminated
self.logger.info('Process {0} is terminated'.format(box_config.process_name))
return
else:
# process is terminated; possibly by OS
box_config.pid = None
self.bc_dao.update(box_config)
self.logger.info('Process {0} got terminated. Cleaning up'.format(box_config.process_name))
except TimeoutExpired:
# process is alive and OK
pass
except Exception:
self.logger.error('Exception on polling: {0}'.format(box_config.process_name), exc_info=True) | [
"def",
"_poll_process",
"(",
"self",
",",
"box_config",
")",
":",
"try",
":",
"p",
"=",
"psutil",
".",
"Process",
"(",
"box_config",
".",
"pid",
")",
"return_code",
"=",
"p",
".",
"wait",
"(",
"timeout",
"=",
"0.01",
")",
"if",
"return_code",
"is",
"None",
":",
"# process is already terminated",
"self",
".",
"logger",
".",
"info",
"(",
"'Process {0} is terminated'",
".",
"format",
"(",
"box_config",
".",
"process_name",
")",
")",
"return",
"else",
":",
"# process is terminated; possibly by OS",
"box_config",
".",
"pid",
"=",
"None",
"self",
".",
"bc_dao",
".",
"update",
"(",
"box_config",
")",
"self",
".",
"logger",
".",
"info",
"(",
"'Process {0} got terminated. Cleaning up'",
".",
"format",
"(",
"box_config",
".",
"process_name",
")",
")",
"except",
"TimeoutExpired",
":",
"# process is alive and OK",
"pass",
"except",
"Exception",
":",
"self",
".",
"logger",
".",
"error",
"(",
"'Exception on polling: {0}'",
".",
"format",
"(",
"box_config",
".",
"process_name",
")",
",",
"exc_info",
"=",
"True",
")"
]
| between killing a process and its actual termination lies poorly documented requirement -
<purging process' io pipes and reading exit status>.
this can be done either by os.wait() or process.wait() | [
"between",
"killing",
"a",
"process",
"and",
"its",
"actual",
"termination",
"lies",
"poorly",
"documented",
"requirement",
"-",
"<purging",
"process",
"io",
"pipes",
"and",
"reading",
"exit",
"status",
">",
".",
"this",
"can",
"be",
"done",
"either",
"by",
"os",
".",
"wait",
"()",
"or",
"process",
".",
"wait",
"()"
]
| python | train |
spyder-ide/spyder | spyder/plugins/editor/panels/codefolding.py | https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/plugins/editor/panels/codefolding.py#L630-L639 | def expand_all(self):
"""Expands all fold triggers."""
block = self.editor.document().firstBlock()
while block.isValid():
TextBlockHelper.set_collapsed(block, False)
block.setVisible(True)
block = block.next()
self._clear_block_deco()
self._refresh_editor_and_scrollbars()
self.expand_all_triggered.emit() | [
"def",
"expand_all",
"(",
"self",
")",
":",
"block",
"=",
"self",
".",
"editor",
".",
"document",
"(",
")",
".",
"firstBlock",
"(",
")",
"while",
"block",
".",
"isValid",
"(",
")",
":",
"TextBlockHelper",
".",
"set_collapsed",
"(",
"block",
",",
"False",
")",
"block",
".",
"setVisible",
"(",
"True",
")",
"block",
"=",
"block",
".",
"next",
"(",
")",
"self",
".",
"_clear_block_deco",
"(",
")",
"self",
".",
"_refresh_editor_and_scrollbars",
"(",
")",
"self",
".",
"expand_all_triggered",
".",
"emit",
"(",
")"
]
| Expands all fold triggers. | [
"Expands",
"all",
"fold",
"triggers",
"."
]
| python | train |
simion/pip-upgrader | pip_upgrader/packages_upgrader.py | https://github.com/simion/pip-upgrader/blob/716adca65d9ed56d4d416f94ede8a8e4fa8d640a/pip_upgrader/packages_upgrader.py#L30-L41 | def _update_package(self, package):
""" Update (install) the package in current environment, and if success, also replace version in file """
try:
if not self.dry_run and not self.skip_package_installation: # pragma: nocover
subprocess.check_call(['pip', 'install', '{}=={}'.format(package['name'], package['latest_version'])])
else:
print('[Dry Run]: skipping package installation:', package['name'])
# update only if installation success
self._update_requirements_package(package)
except CalledProcessError: # pragma: nocover
print(Color('{{autored}}Failed to install package "{}"{{/autored}}'.format(package['name']))) | [
"def",
"_update_package",
"(",
"self",
",",
"package",
")",
":",
"try",
":",
"if",
"not",
"self",
".",
"dry_run",
"and",
"not",
"self",
".",
"skip_package_installation",
":",
"# pragma: nocover",
"subprocess",
".",
"check_call",
"(",
"[",
"'pip'",
",",
"'install'",
",",
"'{}=={}'",
".",
"format",
"(",
"package",
"[",
"'name'",
"]",
",",
"package",
"[",
"'latest_version'",
"]",
")",
"]",
")",
"else",
":",
"print",
"(",
"'[Dry Run]: skipping package installation:'",
",",
"package",
"[",
"'name'",
"]",
")",
"# update only if installation success",
"self",
".",
"_update_requirements_package",
"(",
"package",
")",
"except",
"CalledProcessError",
":",
"# pragma: nocover",
"print",
"(",
"Color",
"(",
"'{{autored}}Failed to install package \"{}\"{{/autored}}'",
".",
"format",
"(",
"package",
"[",
"'name'",
"]",
")",
")",
")"
]
| Update (install) the package in current environment, and if success, also replace version in file | [
"Update",
"(",
"install",
")",
"the",
"package",
"in",
"current",
"environment",
"and",
"if",
"success",
"also",
"replace",
"version",
"in",
"file"
]
| python | test |
widdowquinn/pyani | pyani/pyani_tools.py | https://github.com/widdowquinn/pyani/blob/2b24ec971401e04024bba896e4011984fe3f53f0/pyani/pyani_tools.py#L131-L156 | def get_labels(filename, logger=None):
"""Returns a dictionary of alternative sequence labels, or None
- filename - path to file containing tab-separated table of labels
Input files should be formatted as <key>\t<label>, one pair per line.
"""
labeldict = {}
if filename is not None:
if logger:
logger.info("Reading labels from %s", filename)
with open(filename, "r") as ifh:
count = 0
for line in ifh.readlines():
count += 1
try:
key, label = line.strip().split("\t")
except ValueError:
if logger:
logger.warning("Problem with class file: %s", filename)
logger.warning("%d: %s", (count, line.strip()))
logger.warning("(skipping line)")
continue
else:
labeldict[key] = label
return labeldict | [
"def",
"get_labels",
"(",
"filename",
",",
"logger",
"=",
"None",
")",
":",
"labeldict",
"=",
"{",
"}",
"if",
"filename",
"is",
"not",
"None",
":",
"if",
"logger",
":",
"logger",
".",
"info",
"(",
"\"Reading labels from %s\"",
",",
"filename",
")",
"with",
"open",
"(",
"filename",
",",
"\"r\"",
")",
"as",
"ifh",
":",
"count",
"=",
"0",
"for",
"line",
"in",
"ifh",
".",
"readlines",
"(",
")",
":",
"count",
"+=",
"1",
"try",
":",
"key",
",",
"label",
"=",
"line",
".",
"strip",
"(",
")",
".",
"split",
"(",
"\"\\t\"",
")",
"except",
"ValueError",
":",
"if",
"logger",
":",
"logger",
".",
"warning",
"(",
"\"Problem with class file: %s\"",
",",
"filename",
")",
"logger",
".",
"warning",
"(",
"\"%d: %s\"",
",",
"(",
"count",
",",
"line",
".",
"strip",
"(",
")",
")",
")",
"logger",
".",
"warning",
"(",
"\"(skipping line)\"",
")",
"continue",
"else",
":",
"labeldict",
"[",
"key",
"]",
"=",
"label",
"return",
"labeldict"
]
| Returns a dictionary of alternative sequence labels, or None
- filename - path to file containing tab-separated table of labels
Input files should be formatted as <key>\t<label>, one pair per line. | [
"Returns",
"a",
"dictionary",
"of",
"alternative",
"sequence",
"labels",
"or",
"None"
]
| python | train |
kislyuk/aegea | aegea/packages/github3/repos/repo.py | https://github.com/kislyuk/aegea/blob/94957e9dba036eae3052e2662c208b259c08399a/aegea/packages/github3/repos/repo.py#L1401-L1411 | def iter_languages(self, number=-1, etag=None):
"""Iterate over the programming languages used in the repository.
:param int number: (optional), number of languages to return. Default:
-1 returns all used languages
:param str etag: (optional), ETag from a previous request to the same
endpoint
:returns: generator of tuples
"""
url = self._build_url('languages', base_url=self._api)
return self._iter(int(number), url, tuple, etag=etag) | [
"def",
"iter_languages",
"(",
"self",
",",
"number",
"=",
"-",
"1",
",",
"etag",
"=",
"None",
")",
":",
"url",
"=",
"self",
".",
"_build_url",
"(",
"'languages'",
",",
"base_url",
"=",
"self",
".",
"_api",
")",
"return",
"self",
".",
"_iter",
"(",
"int",
"(",
"number",
")",
",",
"url",
",",
"tuple",
",",
"etag",
"=",
"etag",
")"
]
| Iterate over the programming languages used in the repository.
:param int number: (optional), number of languages to return. Default:
-1 returns all used languages
:param str etag: (optional), ETag from a previous request to the same
endpoint
:returns: generator of tuples | [
"Iterate",
"over",
"the",
"programming",
"languages",
"used",
"in",
"the",
"repository",
"."
]
| python | train |
KartikTalwar/Duolingo | duolingo.py | https://github.com/KartikTalwar/Duolingo/blob/0f7e9a0d4bfa864ade82890fca3789679ef38bee/duolingo.py#L50-L63 | def _login(self):
"""
Authenticate through ``https://www.duolingo.com/login``.
"""
login_url = "https://www.duolingo.com/login"
data = {"login": self.username, "password": self.password}
request = self._make_req(login_url, data)
attempt = request.json()
if attempt.get('response') == 'OK':
self.jwt = request.headers['jwt']
return True
raise Exception("Login failed") | [
"def",
"_login",
"(",
"self",
")",
":",
"login_url",
"=",
"\"https://www.duolingo.com/login\"",
"data",
"=",
"{",
"\"login\"",
":",
"self",
".",
"username",
",",
"\"password\"",
":",
"self",
".",
"password",
"}",
"request",
"=",
"self",
".",
"_make_req",
"(",
"login_url",
",",
"data",
")",
"attempt",
"=",
"request",
".",
"json",
"(",
")",
"if",
"attempt",
".",
"get",
"(",
"'response'",
")",
"==",
"'OK'",
":",
"self",
".",
"jwt",
"=",
"request",
".",
"headers",
"[",
"'jwt'",
"]",
"return",
"True",
"raise",
"Exception",
"(",
"\"Login failed\"",
")"
]
| Authenticate through ``https://www.duolingo.com/login``. | [
"Authenticate",
"through",
"https",
":",
"//",
"www",
".",
"duolingo",
".",
"com",
"/",
"login",
"."
]
| python | train |
asascience-open/paegan-transport | paegan/transport/particles/particle.py | https://github.com/asascience-open/paegan-transport/blob/99a7f4ea24f0f42d9b34d1fb0e87ab2c49315bd3/paegan/transport/particles/particle.py#L176-L201 | def get_age(self, **kwargs):
"""
Returns the particlees age (how long it has been forced) in a variety of units.
Rounded to 8 decimal places.
Parameters:
units (optional) = 'days' (default), 'hours', 'minutes', or 'seconds'
"""
try:
units = kwargs.get('units', None)
if units is None:
return self._age
units = units.lower()
if units == "days":
z = self._age
elif units == "hours":
z = self._age * 24.
elif units == "minutes":
z = self._age * 24. * 60.
elif units == "seconds":
z = self._age * 24. * 60. * 60.
else:
raise
return round(z,8)
except StandardError:
raise KeyError("Could not return age of particle") | [
"def",
"get_age",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"try",
":",
"units",
"=",
"kwargs",
".",
"get",
"(",
"'units'",
",",
"None",
")",
"if",
"units",
"is",
"None",
":",
"return",
"self",
".",
"_age",
"units",
"=",
"units",
".",
"lower",
"(",
")",
"if",
"units",
"==",
"\"days\"",
":",
"z",
"=",
"self",
".",
"_age",
"elif",
"units",
"==",
"\"hours\"",
":",
"z",
"=",
"self",
".",
"_age",
"*",
"24.",
"elif",
"units",
"==",
"\"minutes\"",
":",
"z",
"=",
"self",
".",
"_age",
"*",
"24.",
"*",
"60.",
"elif",
"units",
"==",
"\"seconds\"",
":",
"z",
"=",
"self",
".",
"_age",
"*",
"24.",
"*",
"60.",
"*",
"60.",
"else",
":",
"raise",
"return",
"round",
"(",
"z",
",",
"8",
")",
"except",
"StandardError",
":",
"raise",
"KeyError",
"(",
"\"Could not return age of particle\"",
")"
]
| Returns the particlees age (how long it has been forced) in a variety of units.
Rounded to 8 decimal places.
Parameters:
units (optional) = 'days' (default), 'hours', 'minutes', or 'seconds' | [
"Returns",
"the",
"particlees",
"age",
"(",
"how",
"long",
"it",
"has",
"been",
"forced",
")",
"in",
"a",
"variety",
"of",
"units",
".",
"Rounded",
"to",
"8",
"decimal",
"places",
"."
]
| python | train |
matsui528/nanopq | nanopq/pq.py | https://github.com/matsui528/nanopq/blob/1ce68cad2e3cab62b409e6dd63f676ed7b443ee9/nanopq/pq.py#L114-L135 | def decode(self, codes):
"""Given PQ-codes, reconstruct original D-dimensional vectors
approximately by fetching the codewords.
Args:
codes (np.ndarray): PQ-cdoes with shape=(N, M) and dtype=self.code_dtype.
Each row is a PQ-code
Returns:
np.ndarray: Reconstructed vectors with shape=(N, D) and dtype=np.float32
"""
assert codes.ndim == 2
N, M = codes.shape
assert M == self.M
assert codes.dtype == self.code_dtype
vecs = np.empty((N, self.Ds * self.M), dtype=np.float32)
for m in range(self.M):
vecs[:, m * self.Ds : (m+1) * self.Ds] = self.codewords[m][codes[:, m], :]
return vecs | [
"def",
"decode",
"(",
"self",
",",
"codes",
")",
":",
"assert",
"codes",
".",
"ndim",
"==",
"2",
"N",
",",
"M",
"=",
"codes",
".",
"shape",
"assert",
"M",
"==",
"self",
".",
"M",
"assert",
"codes",
".",
"dtype",
"==",
"self",
".",
"code_dtype",
"vecs",
"=",
"np",
".",
"empty",
"(",
"(",
"N",
",",
"self",
".",
"Ds",
"*",
"self",
".",
"M",
")",
",",
"dtype",
"=",
"np",
".",
"float32",
")",
"for",
"m",
"in",
"range",
"(",
"self",
".",
"M",
")",
":",
"vecs",
"[",
":",
",",
"m",
"*",
"self",
".",
"Ds",
":",
"(",
"m",
"+",
"1",
")",
"*",
"self",
".",
"Ds",
"]",
"=",
"self",
".",
"codewords",
"[",
"m",
"]",
"[",
"codes",
"[",
":",
",",
"m",
"]",
",",
":",
"]",
"return",
"vecs"
]
| Given PQ-codes, reconstruct original D-dimensional vectors
approximately by fetching the codewords.
Args:
codes (np.ndarray): PQ-cdoes with shape=(N, M) and dtype=self.code_dtype.
Each row is a PQ-code
Returns:
np.ndarray: Reconstructed vectors with shape=(N, D) and dtype=np.float32 | [
"Given",
"PQ",
"-",
"codes",
"reconstruct",
"original",
"D",
"-",
"dimensional",
"vectors",
"approximately",
"by",
"fetching",
"the",
"codewords",
"."
]
| python | train |
pygridtools/gridmap | examples/map_reduce.py | https://github.com/pygridtools/gridmap/blob/be4fb1478ab8d19fa3acddecdf1a5d8bd3789127/examples/map_reduce.py#L39-L48 | def sleep_walk(secs):
'''
Pass the time by adding numbers until the specified number of seconds has
elapsed. Intended as a replacement for ``time.sleep`` that doesn't leave the
CPU idle (which will make the job seem like it's stalled).
'''
start_time = datetime.now()
num = 0
while (datetime.now() - start_time).seconds < secs:
num = num + 1 | [
"def",
"sleep_walk",
"(",
"secs",
")",
":",
"start_time",
"=",
"datetime",
".",
"now",
"(",
")",
"num",
"=",
"0",
"while",
"(",
"datetime",
".",
"now",
"(",
")",
"-",
"start_time",
")",
".",
"seconds",
"<",
"secs",
":",
"num",
"=",
"num",
"+",
"1"
]
| Pass the time by adding numbers until the specified number of seconds has
elapsed. Intended as a replacement for ``time.sleep`` that doesn't leave the
CPU idle (which will make the job seem like it's stalled). | [
"Pass",
"the",
"time",
"by",
"adding",
"numbers",
"until",
"the",
"specified",
"number",
"of",
"seconds",
"has",
"elapsed",
".",
"Intended",
"as",
"a",
"replacement",
"for",
"time",
".",
"sleep",
"that",
"doesn",
"t",
"leave",
"the",
"CPU",
"idle",
"(",
"which",
"will",
"make",
"the",
"job",
"seem",
"like",
"it",
"s",
"stalled",
")",
"."
]
| python | train |
cthorey/pdsimage | pdsimage/PDS_Extractor.py | https://github.com/cthorey/pdsimage/blob/f71de6dfddd3d538d76da229b4b9605c40f3fbac/pdsimage/PDS_Extractor.py#L276-L293 | def lat_id(self, line):
''' Return the corresponding latitude
Args:
line (int): Line number
Returns:
Correponding latitude in degree
'''
if self.grid == 'WAC':
lat = ((1 + self.LINE_PROJECTION_OFFSET - line) *
self.MAP_SCALE * 1e-3 / self.A_AXIS_RADIUS)
return lat * 180 / np.pi
else:
lat = float(self.CENTER_LATITUDE) - \
(line - float(self.LINE_PROJECTION_OFFSET) - 1)\
/ float(self.MAP_RESOLUTION)
return lat | [
"def",
"lat_id",
"(",
"self",
",",
"line",
")",
":",
"if",
"self",
".",
"grid",
"==",
"'WAC'",
":",
"lat",
"=",
"(",
"(",
"1",
"+",
"self",
".",
"LINE_PROJECTION_OFFSET",
"-",
"line",
")",
"*",
"self",
".",
"MAP_SCALE",
"*",
"1e-3",
"/",
"self",
".",
"A_AXIS_RADIUS",
")",
"return",
"lat",
"*",
"180",
"/",
"np",
".",
"pi",
"else",
":",
"lat",
"=",
"float",
"(",
"self",
".",
"CENTER_LATITUDE",
")",
"-",
"(",
"line",
"-",
"float",
"(",
"self",
".",
"LINE_PROJECTION_OFFSET",
")",
"-",
"1",
")",
"/",
"float",
"(",
"self",
".",
"MAP_RESOLUTION",
")",
"return",
"lat"
]
| Return the corresponding latitude
Args:
line (int): Line number
Returns:
Correponding latitude in degree | [
"Return",
"the",
"corresponding",
"latitude"
]
| python | train |
ethereum/py-trie | trie/utils/binaries.py | https://github.com/ethereum/py-trie/blob/d33108d21b54d59ee311f61d978496c84a6f1f8b/trie/utils/binaries.py#L56-L66 | def decode_to_bin_keypath(path):
"""
Decodes bytes into a sequence of 0s and 1s
Used in decoding key path of a KV-NODE
"""
path = encode_to_bin(path)
if path[0] == 1:
path = path[4:]
assert path[0:2] == PREFIX_00
padded_len = TWO_BITS.index(path[2:4])
return path[4+((4 - padded_len) % 4):] | [
"def",
"decode_to_bin_keypath",
"(",
"path",
")",
":",
"path",
"=",
"encode_to_bin",
"(",
"path",
")",
"if",
"path",
"[",
"0",
"]",
"==",
"1",
":",
"path",
"=",
"path",
"[",
"4",
":",
"]",
"assert",
"path",
"[",
"0",
":",
"2",
"]",
"==",
"PREFIX_00",
"padded_len",
"=",
"TWO_BITS",
".",
"index",
"(",
"path",
"[",
"2",
":",
"4",
"]",
")",
"return",
"path",
"[",
"4",
"+",
"(",
"(",
"4",
"-",
"padded_len",
")",
"%",
"4",
")",
":",
"]"
]
| Decodes bytes into a sequence of 0s and 1s
Used in decoding key path of a KV-NODE | [
"Decodes",
"bytes",
"into",
"a",
"sequence",
"of",
"0s",
"and",
"1s",
"Used",
"in",
"decoding",
"key",
"path",
"of",
"a",
"KV",
"-",
"NODE"
]
| python | train |
bwohlberg/sporco | sporco/dictlrn/prlcnscdl.py | https://github.com/bwohlberg/sporco/blob/8946a04331106f4e39904fbdf2dc7351900baa04/sporco/dictlrn/prlcnscdl.py#L205-L214 | def ccmod_xstep(k):
"""Do the X step of the ccmod stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables.
"""
YU = mp_D_Y - mp_D_U[k]
b = mp_ZSf[k] + mp_drho * sl.rfftn(YU, None, mp_cri.axisN)
Xf = sl.solvedbi_sm(mp_Zf[k], mp_drho, b, axis=mp_cri.axisM)
mp_D_X[k] = sl.irfftn(Xf, mp_cri.Nv, mp_cri.axisN) | [
"def",
"ccmod_xstep",
"(",
"k",
")",
":",
"YU",
"=",
"mp_D_Y",
"-",
"mp_D_U",
"[",
"k",
"]",
"b",
"=",
"mp_ZSf",
"[",
"k",
"]",
"+",
"mp_drho",
"*",
"sl",
".",
"rfftn",
"(",
"YU",
",",
"None",
",",
"mp_cri",
".",
"axisN",
")",
"Xf",
"=",
"sl",
".",
"solvedbi_sm",
"(",
"mp_Zf",
"[",
"k",
"]",
",",
"mp_drho",
",",
"b",
",",
"axis",
"=",
"mp_cri",
".",
"axisM",
")",
"mp_D_X",
"[",
"k",
"]",
"=",
"sl",
".",
"irfftn",
"(",
"Xf",
",",
"mp_cri",
".",
"Nv",
",",
"mp_cri",
".",
"axisN",
")"
]
| Do the X step of the ccmod stage. The only parameter is the slice
index `k` and there are no return values; all inputs and outputs are
from and to global variables. | [
"Do",
"the",
"X",
"step",
"of",
"the",
"ccmod",
"stage",
".",
"The",
"only",
"parameter",
"is",
"the",
"slice",
"index",
"k",
"and",
"there",
"are",
"no",
"return",
"values",
";",
"all",
"inputs",
"and",
"outputs",
"are",
"from",
"and",
"to",
"global",
"variables",
"."
]
| python | train |
Opentrons/opentrons | api/src/opentrons/drivers/smoothie_drivers/driver_3_0.py | https://github.com/Opentrons/opentrons/blob/a7c15cc2636ecb64ab56c7edc1d8a57163aaeadf/api/src/opentrons/drivers/smoothie_drivers/driver_3_0.py#L724-L742 | def _generate_current_command(self):
'''
Returns a constructed GCode string that contains this driver's
axis-current settings, plus a small delay to wait for those settings
to take effect.
'''
values = ['{}{}'.format(axis, value)
for axis, value in sorted(self.current.items())]
current_cmd = '{} {}'.format(
GCODES['SET_CURRENT'],
' '.join(values)
)
command = '{currents} {code}P{seconds}'.format(
currents=current_cmd,
code=GCODES['DWELL'],
seconds=CURRENT_CHANGE_DELAY
)
log.debug("_generate_current_command: {}".format(command))
return command | [
"def",
"_generate_current_command",
"(",
"self",
")",
":",
"values",
"=",
"[",
"'{}{}'",
".",
"format",
"(",
"axis",
",",
"value",
")",
"for",
"axis",
",",
"value",
"in",
"sorted",
"(",
"self",
".",
"current",
".",
"items",
"(",
")",
")",
"]",
"current_cmd",
"=",
"'{} {}'",
".",
"format",
"(",
"GCODES",
"[",
"'SET_CURRENT'",
"]",
",",
"' '",
".",
"join",
"(",
"values",
")",
")",
"command",
"=",
"'{currents} {code}P{seconds}'",
".",
"format",
"(",
"currents",
"=",
"current_cmd",
",",
"code",
"=",
"GCODES",
"[",
"'DWELL'",
"]",
",",
"seconds",
"=",
"CURRENT_CHANGE_DELAY",
")",
"log",
".",
"debug",
"(",
"\"_generate_current_command: {}\"",
".",
"format",
"(",
"command",
")",
")",
"return",
"command"
]
| Returns a constructed GCode string that contains this driver's
axis-current settings, plus a small delay to wait for those settings
to take effect. | [
"Returns",
"a",
"constructed",
"GCode",
"string",
"that",
"contains",
"this",
"driver",
"s",
"axis",
"-",
"current",
"settings",
"plus",
"a",
"small",
"delay",
"to",
"wait",
"for",
"those",
"settings",
"to",
"take",
"effect",
"."
]
| python | train |
APSL/transmanager | transmanager/manager.py | https://github.com/APSL/transmanager/blob/79157085840008e146b264521681913090197ed1/transmanager/manager.py#L647-L678 | def create_translations_for_item_and_its_children(self, item, languages=None):
"""
Creates the translations from an item and defined languages and return the id's of the created tasks
:param item: (master)
:param languages:
:return:
"""
if not self.master:
self.set_master(item)
if not languages:
languages = self.get_languages()
result_ids = []
# first process main object
fields = self._get_translated_field_names(item)
tasks = self.create_from_item(languages, item, fields)
if tasks:
result_ids += [task.pk for task in tasks]
# then process child objects from main
children = self.get_translatable_children(item)
for child in children:
fields = self._get_translated_field_names(child)
tasks = self.create_from_item(languages, child, fields)
if tasks:
result_ids += [task.pk for task in tasks]
return result_ids | [
"def",
"create_translations_for_item_and_its_children",
"(",
"self",
",",
"item",
",",
"languages",
"=",
"None",
")",
":",
"if",
"not",
"self",
".",
"master",
":",
"self",
".",
"set_master",
"(",
"item",
")",
"if",
"not",
"languages",
":",
"languages",
"=",
"self",
".",
"get_languages",
"(",
")",
"result_ids",
"=",
"[",
"]",
"# first process main object",
"fields",
"=",
"self",
".",
"_get_translated_field_names",
"(",
"item",
")",
"tasks",
"=",
"self",
".",
"create_from_item",
"(",
"languages",
",",
"item",
",",
"fields",
")",
"if",
"tasks",
":",
"result_ids",
"+=",
"[",
"task",
".",
"pk",
"for",
"task",
"in",
"tasks",
"]",
"# then process child objects from main",
"children",
"=",
"self",
".",
"get_translatable_children",
"(",
"item",
")",
"for",
"child",
"in",
"children",
":",
"fields",
"=",
"self",
".",
"_get_translated_field_names",
"(",
"child",
")",
"tasks",
"=",
"self",
".",
"create_from_item",
"(",
"languages",
",",
"child",
",",
"fields",
")",
"if",
"tasks",
":",
"result_ids",
"+=",
"[",
"task",
".",
"pk",
"for",
"task",
"in",
"tasks",
"]",
"return",
"result_ids"
]
| Creates the translations from an item and defined languages and return the id's of the created tasks
:param item: (master)
:param languages:
:return: | [
"Creates",
"the",
"translations",
"from",
"an",
"item",
"and",
"defined",
"languages",
"and",
"return",
"the",
"id",
"s",
"of",
"the",
"created",
"tasks"
]
| python | train |
ecell/ecell4 | ecell4/util/decorator.py | https://github.com/ecell/ecell4/blob/a4a1229661c39b2059adbbacae9090e5ba664e01/ecell4/util/decorator.py#L143-L194 | def get_model(is_netfree=False, without_reset=False, seeds=None, effective=False):
"""
Generate a model with parameters in the global scope, ``SPECIES_ATTRIBUTES``
and ``REACTIONRULES``.
Parameters
----------
is_netfree : bool, optional
Return ``NetfreeModel`` if True, and ``NetworkModel`` if else.
Default is False.
without_reset : bool, optional
Do not reset the global variables after the generation if True.
Default is False.
seeds : list, optional
A list of seed ``Species`` for expanding the model.
If this is not None, generate a ``NetfreeModel`` once, and return a
``NetworkModel``, which is an expanded form of that with the given seeds.
Default is None.
effective : bool, optional
See ``NetfreeModel.effective`` and ``Netfree.set_effective``.
Only meaningfull with option ``is_netfree=True``.
Default is False
Returns
-------
model : NetworkModel, NetfreeModel
"""
try:
if seeds is not None or is_netfree:
m = ecell4_base.core.NetfreeModel()
else:
m = ecell4_base.core.NetworkModel()
for sp in SPECIES_ATTRIBUTES:
m.add_species_attribute(sp)
for rr in REACTION_RULES:
m.add_reaction_rule(rr)
if not without_reset:
reset_model()
if seeds is not None:
return m.expand(seeds)
if isinstance(m, ecell4_base.core.NetfreeModel):
m.set_effective(effective)
except Exception as e:
reset_model()
raise e
return m | [
"def",
"get_model",
"(",
"is_netfree",
"=",
"False",
",",
"without_reset",
"=",
"False",
",",
"seeds",
"=",
"None",
",",
"effective",
"=",
"False",
")",
":",
"try",
":",
"if",
"seeds",
"is",
"not",
"None",
"or",
"is_netfree",
":",
"m",
"=",
"ecell4_base",
".",
"core",
".",
"NetfreeModel",
"(",
")",
"else",
":",
"m",
"=",
"ecell4_base",
".",
"core",
".",
"NetworkModel",
"(",
")",
"for",
"sp",
"in",
"SPECIES_ATTRIBUTES",
":",
"m",
".",
"add_species_attribute",
"(",
"sp",
")",
"for",
"rr",
"in",
"REACTION_RULES",
":",
"m",
".",
"add_reaction_rule",
"(",
"rr",
")",
"if",
"not",
"without_reset",
":",
"reset_model",
"(",
")",
"if",
"seeds",
"is",
"not",
"None",
":",
"return",
"m",
".",
"expand",
"(",
"seeds",
")",
"if",
"isinstance",
"(",
"m",
",",
"ecell4_base",
".",
"core",
".",
"NetfreeModel",
")",
":",
"m",
".",
"set_effective",
"(",
"effective",
")",
"except",
"Exception",
"as",
"e",
":",
"reset_model",
"(",
")",
"raise",
"e",
"return",
"m"
]
| Generate a model with parameters in the global scope, ``SPECIES_ATTRIBUTES``
and ``REACTIONRULES``.
Parameters
----------
is_netfree : bool, optional
Return ``NetfreeModel`` if True, and ``NetworkModel`` if else.
Default is False.
without_reset : bool, optional
Do not reset the global variables after the generation if True.
Default is False.
seeds : list, optional
A list of seed ``Species`` for expanding the model.
If this is not None, generate a ``NetfreeModel`` once, and return a
``NetworkModel``, which is an expanded form of that with the given seeds.
Default is None.
effective : bool, optional
See ``NetfreeModel.effective`` and ``Netfree.set_effective``.
Only meaningfull with option ``is_netfree=True``.
Default is False
Returns
-------
model : NetworkModel, NetfreeModel | [
"Generate",
"a",
"model",
"with",
"parameters",
"in",
"the",
"global",
"scope",
"SPECIES_ATTRIBUTES",
"and",
"REACTIONRULES",
"."
]
| python | train |
PyCQA/astroid | astroid/brain/brain_functools.py | https://github.com/PyCQA/astroid/blob/e0a298df55b15abcb77c2a93253f5ab7be52d0fb/astroid/brain/brain_functools.py#L121-L130 | def _looks_like_lru_cache(node):
"""Check if the given function node is decorated with lru_cache."""
if not node.decorators:
return False
for decorator in node.decorators.nodes:
if not isinstance(decorator, astroid.Call):
continue
if _looks_like_functools_member(decorator, "lru_cache"):
return True
return False | [
"def",
"_looks_like_lru_cache",
"(",
"node",
")",
":",
"if",
"not",
"node",
".",
"decorators",
":",
"return",
"False",
"for",
"decorator",
"in",
"node",
".",
"decorators",
".",
"nodes",
":",
"if",
"not",
"isinstance",
"(",
"decorator",
",",
"astroid",
".",
"Call",
")",
":",
"continue",
"if",
"_looks_like_functools_member",
"(",
"decorator",
",",
"\"lru_cache\"",
")",
":",
"return",
"True",
"return",
"False"
]
| Check if the given function node is decorated with lru_cache. | [
"Check",
"if",
"the",
"given",
"function",
"node",
"is",
"decorated",
"with",
"lru_cache",
"."
]
| python | train |
numba/llvmlite | llvmlite/binding/module.py | https://github.com/numba/llvmlite/blob/fcadf8af11947f3fd041c5d6526c5bf231564883/llvmlite/binding/module.py#L30-L45 | def parse_bitcode(bitcode, context=None):
"""
Create Module from a LLVM *bitcode* (a bytes object).
"""
if context is None:
context = get_global_context()
buf = c_char_p(bitcode)
bufsize = len(bitcode)
with ffi.OutputString() as errmsg:
mod = ModuleRef(ffi.lib.LLVMPY_ParseBitcode(
context, buf, bufsize, errmsg), context)
if errmsg:
mod.close()
raise RuntimeError(
"LLVM bitcode parsing error\n{0}".format(errmsg))
return mod | [
"def",
"parse_bitcode",
"(",
"bitcode",
",",
"context",
"=",
"None",
")",
":",
"if",
"context",
"is",
"None",
":",
"context",
"=",
"get_global_context",
"(",
")",
"buf",
"=",
"c_char_p",
"(",
"bitcode",
")",
"bufsize",
"=",
"len",
"(",
"bitcode",
")",
"with",
"ffi",
".",
"OutputString",
"(",
")",
"as",
"errmsg",
":",
"mod",
"=",
"ModuleRef",
"(",
"ffi",
".",
"lib",
".",
"LLVMPY_ParseBitcode",
"(",
"context",
",",
"buf",
",",
"bufsize",
",",
"errmsg",
")",
",",
"context",
")",
"if",
"errmsg",
":",
"mod",
".",
"close",
"(",
")",
"raise",
"RuntimeError",
"(",
"\"LLVM bitcode parsing error\\n{0}\"",
".",
"format",
"(",
"errmsg",
")",
")",
"return",
"mod"
]
| Create Module from a LLVM *bitcode* (a bytes object). | [
"Create",
"Module",
"from",
"a",
"LLVM",
"*",
"bitcode",
"*",
"(",
"a",
"bytes",
"object",
")",
"."
]
| python | train |
argaen/aiocache | aiocache/serializers/serializers.py | https://github.com/argaen/aiocache/blob/fdd282f37283ca04e22209f4d2ae4900f29e1688/aiocache/serializers/serializers.py#L178-L188 | def loads(self, value):
"""
Deserialize value using ``msgpack.loads``.
:param value: bytes
:returns: obj
"""
raw = False if self.encoding == "utf-8" else True
if value is None:
return None
return msgpack.loads(value, raw=raw, use_list=self.use_list) | [
"def",
"loads",
"(",
"self",
",",
"value",
")",
":",
"raw",
"=",
"False",
"if",
"self",
".",
"encoding",
"==",
"\"utf-8\"",
"else",
"True",
"if",
"value",
"is",
"None",
":",
"return",
"None",
"return",
"msgpack",
".",
"loads",
"(",
"value",
",",
"raw",
"=",
"raw",
",",
"use_list",
"=",
"self",
".",
"use_list",
")"
]
| Deserialize value using ``msgpack.loads``.
:param value: bytes
:returns: obj | [
"Deserialize",
"value",
"using",
"msgpack",
".",
"loads",
"."
]
| python | train |
jxtech/wechatpy | wechatpy/client/api/card.py | https://github.com/jxtech/wechatpy/blob/4df0da795618c0895a10f1c2cde9e9d5c0a93aaa/wechatpy/client/api/card.py#L453-L471 | def update_movie_ticket(self, code, ticket_class, show_time, duration,
screening_room, seat_number, card_id=None):
"""
更新电影票
"""
ticket = {
'code': code,
'ticket_class': ticket_class,
'show_time': show_time,
'duration': duration,
'screening_room': screening_room,
'seat_number': seat_number
}
if card_id:
ticket['card_id'] = card_id
return self._post(
'card/movieticket/updateuser',
data=ticket
) | [
"def",
"update_movie_ticket",
"(",
"self",
",",
"code",
",",
"ticket_class",
",",
"show_time",
",",
"duration",
",",
"screening_room",
",",
"seat_number",
",",
"card_id",
"=",
"None",
")",
":",
"ticket",
"=",
"{",
"'code'",
":",
"code",
",",
"'ticket_class'",
":",
"ticket_class",
",",
"'show_time'",
":",
"show_time",
",",
"'duration'",
":",
"duration",
",",
"'screening_room'",
":",
"screening_room",
",",
"'seat_number'",
":",
"seat_number",
"}",
"if",
"card_id",
":",
"ticket",
"[",
"'card_id'",
"]",
"=",
"card_id",
"return",
"self",
".",
"_post",
"(",
"'card/movieticket/updateuser'",
",",
"data",
"=",
"ticket",
")"
]
| 更新电影票 | [
"更新电影票"
]
| python | train |
westonplatter/fast_arrow | fast_arrow/resources/option_position.py | https://github.com/westonplatter/fast_arrow/blob/514cbca4994f52a97222058167830a302e313d04/fast_arrow/resources/option_position.py#L47-L61 | def mergein_marketdata_list(cls, client, option_positions):
"""
Fetch and merge in Marketdata for each option position
"""
ids = cls._extract_ids(option_positions)
mds = OptionMarketdata.quotes_by_instrument_ids(client, ids)
results = []
for op in option_positions:
# @TODO optimize this so it's better than O(n^2)
md = [x for x in mds if x['instrument'] == op['option']][0]
# there is no overlap in keys so this is fine
merged_dict = dict(list(op.items()) + list(md.items()))
results.append(merged_dict)
return results | [
"def",
"mergein_marketdata_list",
"(",
"cls",
",",
"client",
",",
"option_positions",
")",
":",
"ids",
"=",
"cls",
".",
"_extract_ids",
"(",
"option_positions",
")",
"mds",
"=",
"OptionMarketdata",
".",
"quotes_by_instrument_ids",
"(",
"client",
",",
"ids",
")",
"results",
"=",
"[",
"]",
"for",
"op",
"in",
"option_positions",
":",
"# @TODO optimize this so it's better than O(n^2)",
"md",
"=",
"[",
"x",
"for",
"x",
"in",
"mds",
"if",
"x",
"[",
"'instrument'",
"]",
"==",
"op",
"[",
"'option'",
"]",
"]",
"[",
"0",
"]",
"# there is no overlap in keys so this is fine",
"merged_dict",
"=",
"dict",
"(",
"list",
"(",
"op",
".",
"items",
"(",
")",
")",
"+",
"list",
"(",
"md",
".",
"items",
"(",
")",
")",
")",
"results",
".",
"append",
"(",
"merged_dict",
")",
"return",
"results"
]
| Fetch and merge in Marketdata for each option position | [
"Fetch",
"and",
"merge",
"in",
"Marketdata",
"for",
"each",
"option",
"position"
]
| python | train |
sibirrer/lenstronomy | lenstronomy/LensModel/single_plane.py | https://github.com/sibirrer/lenstronomy/blob/4edb100a4f3f4fdc4fac9b0032d2b0283d0aa1d6/lenstronomy/LensModel/single_plane.py#L171-L189 | def mass_3d(self, r, kwargs, bool_list=None):
"""
computes the mass within a 3d sphere of radius r
:param r: radius (in angular units)
:param kwargs: list of keyword arguments of lens model parameters matching the lens model classes
:param bool_list: list of bools that are part of the output
:return: mass (in angular units, modulo epsilon_crit)
"""
bool_list = self._bool_list(bool_list)
mass_3d = 0
for i, func in enumerate(self.func_list):
if bool_list[i] is True:
kwargs_i = {k:v for k, v in kwargs[i].items() if not k in ['center_x', 'center_y']}
mass_3d_i = func.mass_3d_lens(r, **kwargs_i)
mass_3d += mass_3d_i
#except:
# raise ValueError('Lens profile %s does not support a 3d mass function!' % self.model_list[i])
return mass_3d | [
"def",
"mass_3d",
"(",
"self",
",",
"r",
",",
"kwargs",
",",
"bool_list",
"=",
"None",
")",
":",
"bool_list",
"=",
"self",
".",
"_bool_list",
"(",
"bool_list",
")",
"mass_3d",
"=",
"0",
"for",
"i",
",",
"func",
"in",
"enumerate",
"(",
"self",
".",
"func_list",
")",
":",
"if",
"bool_list",
"[",
"i",
"]",
"is",
"True",
":",
"kwargs_i",
"=",
"{",
"k",
":",
"v",
"for",
"k",
",",
"v",
"in",
"kwargs",
"[",
"i",
"]",
".",
"items",
"(",
")",
"if",
"not",
"k",
"in",
"[",
"'center_x'",
",",
"'center_y'",
"]",
"}",
"mass_3d_i",
"=",
"func",
".",
"mass_3d_lens",
"(",
"r",
",",
"*",
"*",
"kwargs_i",
")",
"mass_3d",
"+=",
"mass_3d_i",
"#except:",
"# raise ValueError('Lens profile %s does not support a 3d mass function!' % self.model_list[i])",
"return",
"mass_3d"
]
| computes the mass within a 3d sphere of radius r
:param r: radius (in angular units)
:param kwargs: list of keyword arguments of lens model parameters matching the lens model classes
:param bool_list: list of bools that are part of the output
:return: mass (in angular units, modulo epsilon_crit) | [
"computes",
"the",
"mass",
"within",
"a",
"3d",
"sphere",
"of",
"radius",
"r"
]
| python | train |
mozilla/treeherder | treeherder/seta/update_job_priority.py | https://github.com/mozilla/treeherder/blob/cc47bdec872e5c668d0f01df89517390a164cda3/treeherder/seta/update_job_priority.py#L38-L46 | def _unique_key(job):
"""Return a key to query our uniqueness mapping system.
This makes sure that we use a consistent key between our code and selecting jobs from the
table.
"""
return unique_key(testtype=str(job['testtype']),
buildtype=str(job['platform_option']),
platform=str(job['platform'])) | [
"def",
"_unique_key",
"(",
"job",
")",
":",
"return",
"unique_key",
"(",
"testtype",
"=",
"str",
"(",
"job",
"[",
"'testtype'",
"]",
")",
",",
"buildtype",
"=",
"str",
"(",
"job",
"[",
"'platform_option'",
"]",
")",
",",
"platform",
"=",
"str",
"(",
"job",
"[",
"'platform'",
"]",
")",
")"
]
| Return a key to query our uniqueness mapping system.
This makes sure that we use a consistent key between our code and selecting jobs from the
table. | [
"Return",
"a",
"key",
"to",
"query",
"our",
"uniqueness",
"mapping",
"system",
"."
]
| python | train |
yougov/solr-doc-manager | mongo_connector/doc_managers/solr_doc_manager.py | https://github.com/yougov/solr-doc-manager/blob/1978bf6f3387b1afd6dd6b41a1bbaea9932d60fd/mongo_connector/doc_managers/solr_doc_manager.py#L320-L326 | def remove(self, document_id, namespace, timestamp):
"""Removes documents from Solr
The input is a python dictionary that represents a mongo document.
"""
self.solr.delete(id=u(document_id),
commit=(self.auto_commit_interval == 0)) | [
"def",
"remove",
"(",
"self",
",",
"document_id",
",",
"namespace",
",",
"timestamp",
")",
":",
"self",
".",
"solr",
".",
"delete",
"(",
"id",
"=",
"u",
"(",
"document_id",
")",
",",
"commit",
"=",
"(",
"self",
".",
"auto_commit_interval",
"==",
"0",
")",
")"
]
| Removes documents from Solr
The input is a python dictionary that represents a mongo document. | [
"Removes",
"documents",
"from",
"Solr"
]
| python | train |
hugapi/hug | hug/output_format.py | https://github.com/hugapi/hug/blob/080901c81576657f82e2432fd4a82f1d0d2f370c/hug/output_format.py#L83-L92 | def json_convert(*kinds):
"""Registers the wrapped method as a JSON converter for the provided types.
NOTE: custom converters are always globally applied
"""
def register_json_converter(function):
for kind in kinds:
json_converters[kind] = function
return function
return register_json_converter | [
"def",
"json_convert",
"(",
"*",
"kinds",
")",
":",
"def",
"register_json_converter",
"(",
"function",
")",
":",
"for",
"kind",
"in",
"kinds",
":",
"json_converters",
"[",
"kind",
"]",
"=",
"function",
"return",
"function",
"return",
"register_json_converter"
]
| Registers the wrapped method as a JSON converter for the provided types.
NOTE: custom converters are always globally applied | [
"Registers",
"the",
"wrapped",
"method",
"as",
"a",
"JSON",
"converter",
"for",
"the",
"provided",
"types",
"."
]
| python | train |
reingart/pyafipws | wslpg.py | https://github.com/reingart/pyafipws/blob/ee87cfe4ac12285ab431df5fec257f103042d1ab/wslpg.py#L2620-L2650 | def ConsultarTiposOperacion(self, sep="||"):
"Consulta tipo de Operación por Actividad."
ops = []
ret = self.client.tipoActividadConsultar(
auth={
'token': self.Token, 'sign': self.Sign,
'cuit': self.Cuit, },
)['tipoActividadReturn']
self.__analizar_errores(ret)
for it_act in ret.get('tiposActividad', []):
ret = self.client.tipoOperacionXActividadConsultar(
auth={
'token': self.Token, 'sign': self.Sign,
'cuit': self.Cuit, },
nroActLiquida=it_act['codigoDescripcion']['codigo'],
)['tipoOperacionReturn']
self.__analizar_errores(ret)
array = ret.get('tiposOperacion', [])
if sep:
ops.extend([("%s %%s %s %%s %s %%s %s" % (sep, sep, sep, sep)) %
(it_act['codigoDescripcion']['codigo'],
it['codigoDescripcion']['codigo'],
it['codigoDescripcion']['descripcion'])
for it in array])
else:
ops.extend([(it_act['codigoDescripcion']['codigo'],
it['codigoDescripcion']['codigo'],
it['codigoDescripcion']['descripcion'])
for it in array])
return ops | [
"def",
"ConsultarTiposOperacion",
"(",
"self",
",",
"sep",
"=",
"\"||\"",
")",
":",
"ops",
"=",
"[",
"]",
"ret",
"=",
"self",
".",
"client",
".",
"tipoActividadConsultar",
"(",
"auth",
"=",
"{",
"'token'",
":",
"self",
".",
"Token",
",",
"'sign'",
":",
"self",
".",
"Sign",
",",
"'cuit'",
":",
"self",
".",
"Cuit",
",",
"}",
",",
")",
"[",
"'tipoActividadReturn'",
"]",
"self",
".",
"__analizar_errores",
"(",
"ret",
")",
"for",
"it_act",
"in",
"ret",
".",
"get",
"(",
"'tiposActividad'",
",",
"[",
"]",
")",
":",
"ret",
"=",
"self",
".",
"client",
".",
"tipoOperacionXActividadConsultar",
"(",
"auth",
"=",
"{",
"'token'",
":",
"self",
".",
"Token",
",",
"'sign'",
":",
"self",
".",
"Sign",
",",
"'cuit'",
":",
"self",
".",
"Cuit",
",",
"}",
",",
"nroActLiquida",
"=",
"it_act",
"[",
"'codigoDescripcion'",
"]",
"[",
"'codigo'",
"]",
",",
")",
"[",
"'tipoOperacionReturn'",
"]",
"self",
".",
"__analizar_errores",
"(",
"ret",
")",
"array",
"=",
"ret",
".",
"get",
"(",
"'tiposOperacion'",
",",
"[",
"]",
")",
"if",
"sep",
":",
"ops",
".",
"extend",
"(",
"[",
"(",
"\"%s %%s %s %%s %s %%s %s\"",
"%",
"(",
"sep",
",",
"sep",
",",
"sep",
",",
"sep",
")",
")",
"%",
"(",
"it_act",
"[",
"'codigoDescripcion'",
"]",
"[",
"'codigo'",
"]",
",",
"it",
"[",
"'codigoDescripcion'",
"]",
"[",
"'codigo'",
"]",
",",
"it",
"[",
"'codigoDescripcion'",
"]",
"[",
"'descripcion'",
"]",
")",
"for",
"it",
"in",
"array",
"]",
")",
"else",
":",
"ops",
".",
"extend",
"(",
"[",
"(",
"it_act",
"[",
"'codigoDescripcion'",
"]",
"[",
"'codigo'",
"]",
",",
"it",
"[",
"'codigoDescripcion'",
"]",
"[",
"'codigo'",
"]",
",",
"it",
"[",
"'codigoDescripcion'",
"]",
"[",
"'descripcion'",
"]",
")",
"for",
"it",
"in",
"array",
"]",
")",
"return",
"ops"
]
| Consulta tipo de Operación por Actividad. | [
"Consulta",
"tipo",
"de",
"Operación",
"por",
"Actividad",
"."
]
| python | train |
mitsei/dlkit | dlkit/records/assessment/mecqbank/mecqbank_base_records.py | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/records/assessment/mecqbank/mecqbank_base_records.py#L199-L224 | def _init_metadata(self):
"""stub"""
super(SimpleDifficultyItemFormRecord, self)._init_metadata()
self._min_string_length = None
self._max_string_length = None
self._difficulty_metadata = {
'element_id': Id(self.my_osid_object_form._authority,
self.my_osid_object_form._namespace,
'text'),
'element_label': 'Text',
'instructions': 'enter a text string',
'required': False,
'read_only': False,
'linked': False,
'array': False,
'default_string_values': [{
'text': '',
'languageTypeId': str(DEFAULT_LANGUAGE_TYPE),
'scriptTypeId': str(DEFAULT_SCRIPT_TYPE),
'formatTypeId': str(DEFAULT_FORMAT_TYPE),
}],
'syntax': 'STRING',
'minimum_string_length': self._min_string_length,
'maximum_string_length': self._max_string_length,
'string_set': []
} | [
"def",
"_init_metadata",
"(",
"self",
")",
":",
"super",
"(",
"SimpleDifficultyItemFormRecord",
",",
"self",
")",
".",
"_init_metadata",
"(",
")",
"self",
".",
"_min_string_length",
"=",
"None",
"self",
".",
"_max_string_length",
"=",
"None",
"self",
".",
"_difficulty_metadata",
"=",
"{",
"'element_id'",
":",
"Id",
"(",
"self",
".",
"my_osid_object_form",
".",
"_authority",
",",
"self",
".",
"my_osid_object_form",
".",
"_namespace",
",",
"'text'",
")",
",",
"'element_label'",
":",
"'Text'",
",",
"'instructions'",
":",
"'enter a text string'",
",",
"'required'",
":",
"False",
",",
"'read_only'",
":",
"False",
",",
"'linked'",
":",
"False",
",",
"'array'",
":",
"False",
",",
"'default_string_values'",
":",
"[",
"{",
"'text'",
":",
"''",
",",
"'languageTypeId'",
":",
"str",
"(",
"DEFAULT_LANGUAGE_TYPE",
")",
",",
"'scriptTypeId'",
":",
"str",
"(",
"DEFAULT_SCRIPT_TYPE",
")",
",",
"'formatTypeId'",
":",
"str",
"(",
"DEFAULT_FORMAT_TYPE",
")",
",",
"}",
"]",
",",
"'syntax'",
":",
"'STRING'",
",",
"'minimum_string_length'",
":",
"self",
".",
"_min_string_length",
",",
"'maximum_string_length'",
":",
"self",
".",
"_max_string_length",
",",
"'string_set'",
":",
"[",
"]",
"}"
]
| stub | [
"stub"
]
| python | train |
FujiMakoto/IPS-Vagrant | ips_vagrant/commands/enable/__init__.py | https://github.com/FujiMakoto/IPS-Vagrant/blob/7b1d6d095034dd8befb026d9315ecc6494d52269/ips_vagrant/commands/enable/__init__.py#L14-L40 | def cli(ctx, dname, site):
"""
Enable the <site> under the specified <domain>
"""
assert isinstance(ctx, Context)
dname = domain_parse(dname).hostname
domain = Session.query(Domain).filter(Domain.name == dname).first()
if not domain:
click.secho('No such domain: {dn}'.format(dn=dname), fg='red', bold=True, err=True)
return
site_name = site
site = Site.get(domain, site_name)
if not site:
click.secho('No such site: {site}'.format(site=site_name), fg='red', bold=True, err=True)
return
p = Echo('Constructing paths and configuration files...')
site.enable()
p.done()
# Restart Nginx
p = Echo('Restarting web server...')
FNULL = open(os.devnull, 'w')
subprocess.check_call(['service', 'nginx', 'restart'], stdout=FNULL, stderr=subprocess.STDOUT)
p.done() | [
"def",
"cli",
"(",
"ctx",
",",
"dname",
",",
"site",
")",
":",
"assert",
"isinstance",
"(",
"ctx",
",",
"Context",
")",
"dname",
"=",
"domain_parse",
"(",
"dname",
")",
".",
"hostname",
"domain",
"=",
"Session",
".",
"query",
"(",
"Domain",
")",
".",
"filter",
"(",
"Domain",
".",
"name",
"==",
"dname",
")",
".",
"first",
"(",
")",
"if",
"not",
"domain",
":",
"click",
".",
"secho",
"(",
"'No such domain: {dn}'",
".",
"format",
"(",
"dn",
"=",
"dname",
")",
",",
"fg",
"=",
"'red'",
",",
"bold",
"=",
"True",
",",
"err",
"=",
"True",
")",
"return",
"site_name",
"=",
"site",
"site",
"=",
"Site",
".",
"get",
"(",
"domain",
",",
"site_name",
")",
"if",
"not",
"site",
":",
"click",
".",
"secho",
"(",
"'No such site: {site}'",
".",
"format",
"(",
"site",
"=",
"site_name",
")",
",",
"fg",
"=",
"'red'",
",",
"bold",
"=",
"True",
",",
"err",
"=",
"True",
")",
"return",
"p",
"=",
"Echo",
"(",
"'Constructing paths and configuration files...'",
")",
"site",
".",
"enable",
"(",
")",
"p",
".",
"done",
"(",
")",
"# Restart Nginx",
"p",
"=",
"Echo",
"(",
"'Restarting web server...'",
")",
"FNULL",
"=",
"open",
"(",
"os",
".",
"devnull",
",",
"'w'",
")",
"subprocess",
".",
"check_call",
"(",
"[",
"'service'",
",",
"'nginx'",
",",
"'restart'",
"]",
",",
"stdout",
"=",
"FNULL",
",",
"stderr",
"=",
"subprocess",
".",
"STDOUT",
")",
"p",
".",
"done",
"(",
")"
]
| Enable the <site> under the specified <domain> | [
"Enable",
"the",
"<site",
">",
"under",
"the",
"specified",
"<domain",
">"
]
| python | train |
dmbee/seglearn | seglearn/split.py | https://github.com/dmbee/seglearn/blob/d8d7039e92c4c6571a70350c03298aceab8dbeec/seglearn/split.py#L132-L184 | def temporal_split(X, y, test_size=0.25):
'''
Split time series or sequence data along the time axis.
Test data is drawn from the end of each series / sequence
Parameters
----------
X : array-like, shape [n_series, ...]
Time series data and (optionally) contextual data
y : array-like shape [n_series, ]
target vector
test_size : float
between 0 and 1, amount to allocate to test
Returns
-------
X_train : array-like, shape [n_series, ]
X_test : array-like, shape [n_series, ]
y_train : array-like, shape [n_series, ]
y_test : array-like, shape [n_series, ]
'''
if test_size <= 0. or test_size >= 1.:
raise ValueError("temporal_split: test_size must be >= 0.0 and <= 1.0"
" (was %.1f)" %test_size)
Ns = len(y) # number of series
check_ts_data(X, y)
Xt, Xc = get_ts_data_parts(X)
train_size = 1. - test_size
train_ind = [np.arange(0, int(train_size * len(Xt[i]))) for i in range(Ns)]
test_ind = [np.arange(len(train_ind[i]), len(Xt[i])) for i in range(Ns)]
X_train = [Xt[i][train_ind[i]] for i in range(Ns)]
X_test = [Xt[i][test_ind[i]] for i in range(Ns)]
if Xc is not None:
X_train = TS_Data(X_train, Xc)
X_test = TS_Data(X_test, Xc)
if len(np.atleast_1d(y[0])) == len(Xt[0]):
# y is a time series
y_train = [y[i][train_ind[i]] for i in range(Ns)]
y_test = [y[i][test_ind[i]] for i in range(Ns)]
else:
# y is contextual
y_train = y
y_test = y
return X_train, X_test, y_train, y_test | [
"def",
"temporal_split",
"(",
"X",
",",
"y",
",",
"test_size",
"=",
"0.25",
")",
":",
"if",
"test_size",
"<=",
"0.",
"or",
"test_size",
">=",
"1.",
":",
"raise",
"ValueError",
"(",
"\"temporal_split: test_size must be >= 0.0 and <= 1.0\"",
"\" (was %.1f)\"",
"%",
"test_size",
")",
"Ns",
"=",
"len",
"(",
"y",
")",
"# number of series",
"check_ts_data",
"(",
"X",
",",
"y",
")",
"Xt",
",",
"Xc",
"=",
"get_ts_data_parts",
"(",
"X",
")",
"train_size",
"=",
"1.",
"-",
"test_size",
"train_ind",
"=",
"[",
"np",
".",
"arange",
"(",
"0",
",",
"int",
"(",
"train_size",
"*",
"len",
"(",
"Xt",
"[",
"i",
"]",
")",
")",
")",
"for",
"i",
"in",
"range",
"(",
"Ns",
")",
"]",
"test_ind",
"=",
"[",
"np",
".",
"arange",
"(",
"len",
"(",
"train_ind",
"[",
"i",
"]",
")",
",",
"len",
"(",
"Xt",
"[",
"i",
"]",
")",
")",
"for",
"i",
"in",
"range",
"(",
"Ns",
")",
"]",
"X_train",
"=",
"[",
"Xt",
"[",
"i",
"]",
"[",
"train_ind",
"[",
"i",
"]",
"]",
"for",
"i",
"in",
"range",
"(",
"Ns",
")",
"]",
"X_test",
"=",
"[",
"Xt",
"[",
"i",
"]",
"[",
"test_ind",
"[",
"i",
"]",
"]",
"for",
"i",
"in",
"range",
"(",
"Ns",
")",
"]",
"if",
"Xc",
"is",
"not",
"None",
":",
"X_train",
"=",
"TS_Data",
"(",
"X_train",
",",
"Xc",
")",
"X_test",
"=",
"TS_Data",
"(",
"X_test",
",",
"Xc",
")",
"if",
"len",
"(",
"np",
".",
"atleast_1d",
"(",
"y",
"[",
"0",
"]",
")",
")",
"==",
"len",
"(",
"Xt",
"[",
"0",
"]",
")",
":",
"# y is a time series",
"y_train",
"=",
"[",
"y",
"[",
"i",
"]",
"[",
"train_ind",
"[",
"i",
"]",
"]",
"for",
"i",
"in",
"range",
"(",
"Ns",
")",
"]",
"y_test",
"=",
"[",
"y",
"[",
"i",
"]",
"[",
"test_ind",
"[",
"i",
"]",
"]",
"for",
"i",
"in",
"range",
"(",
"Ns",
")",
"]",
"else",
":",
"# y is contextual",
"y_train",
"=",
"y",
"y_test",
"=",
"y",
"return",
"X_train",
",",
"X_test",
",",
"y_train",
",",
"y_test"
]
| Split time series or sequence data along the time axis.
Test data is drawn from the end of each series / sequence
Parameters
----------
X : array-like, shape [n_series, ...]
Time series data and (optionally) contextual data
y : array-like shape [n_series, ]
target vector
test_size : float
between 0 and 1, amount to allocate to test
Returns
-------
X_train : array-like, shape [n_series, ]
X_test : array-like, shape [n_series, ]
y_train : array-like, shape [n_series, ]
y_test : array-like, shape [n_series, ] | [
"Split",
"time",
"series",
"or",
"sequence",
"data",
"along",
"the",
"time",
"axis",
".",
"Test",
"data",
"is",
"drawn",
"from",
"the",
"end",
"of",
"each",
"series",
"/",
"sequence"
]
| python | train |
couchbase/couchbase-python-client | couchbase/mutation_state.py | https://github.com/couchbase/couchbase-python-client/blob/a7bada167785bf79a29c39f820d932a433a6a535/couchbase/mutation_state.py#L100-L108 | def decode(cls, s):
"""
Create a :class:`MutationState` from the encoded string
:param s: The encoded string
:return: A new MutationState restored from the string
"""
d = couchbase._from_json(s)
o = MutationState()
o._sv = d | [
"def",
"decode",
"(",
"cls",
",",
"s",
")",
":",
"d",
"=",
"couchbase",
".",
"_from_json",
"(",
"s",
")",
"o",
"=",
"MutationState",
"(",
")",
"o",
".",
"_sv",
"=",
"d"
]
| Create a :class:`MutationState` from the encoded string
:param s: The encoded string
:return: A new MutationState restored from the string | [
"Create",
"a",
":",
"class",
":",
"MutationState",
"from",
"the",
"encoded",
"string",
":",
"param",
"s",
":",
"The",
"encoded",
"string",
":",
"return",
":",
"A",
"new",
"MutationState",
"restored",
"from",
"the",
"string"
]
| python | train |
lvieirajr/mongorest | mongorest/collection.py | https://github.com/lvieirajr/mongorest/blob/00f4487ded33254434bc51ff09d48c7a936bd465/mongorest/collection.py#L228-L262 | def delete(self, **kwargs):
"""
Deletes the document if it is saved in the collection.
"""
if self.is_valid:
if '_id' in self._document:
to_delete = self.find_one({'_id': self._id})
if to_delete:
before = self.before_delete()
if before:
return before
try:
self.delete_one({'_id': self._id})
self.after_delete()
return self._document
except PyMongoException as exc:
return PyMongoError(
error_message=exc.details.get(
'errmsg', exc.details.get(
'err', 'PyMongoError.'
)
),
operation='delete', collection=type(self).__name__,
document=self._document,
)
else:
return DocumentNotFoundError(type(self).__name__, self._id)
else:
return UnidentifiedDocumentError(
type(self).__name__, self._document
) | [
"def",
"delete",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"self",
".",
"is_valid",
":",
"if",
"'_id'",
"in",
"self",
".",
"_document",
":",
"to_delete",
"=",
"self",
".",
"find_one",
"(",
"{",
"'_id'",
":",
"self",
".",
"_id",
"}",
")",
"if",
"to_delete",
":",
"before",
"=",
"self",
".",
"before_delete",
"(",
")",
"if",
"before",
":",
"return",
"before",
"try",
":",
"self",
".",
"delete_one",
"(",
"{",
"'_id'",
":",
"self",
".",
"_id",
"}",
")",
"self",
".",
"after_delete",
"(",
")",
"return",
"self",
".",
"_document",
"except",
"PyMongoException",
"as",
"exc",
":",
"return",
"PyMongoError",
"(",
"error_message",
"=",
"exc",
".",
"details",
".",
"get",
"(",
"'errmsg'",
",",
"exc",
".",
"details",
".",
"get",
"(",
"'err'",
",",
"'PyMongoError.'",
")",
")",
",",
"operation",
"=",
"'delete'",
",",
"collection",
"=",
"type",
"(",
"self",
")",
".",
"__name__",
",",
"document",
"=",
"self",
".",
"_document",
",",
")",
"else",
":",
"return",
"DocumentNotFoundError",
"(",
"type",
"(",
"self",
")",
".",
"__name__",
",",
"self",
".",
"_id",
")",
"else",
":",
"return",
"UnidentifiedDocumentError",
"(",
"type",
"(",
"self",
")",
".",
"__name__",
",",
"self",
".",
"_document",
")"
]
| Deletes the document if it is saved in the collection. | [
"Deletes",
"the",
"document",
"if",
"it",
"is",
"saved",
"in",
"the",
"collection",
"."
]
| python | train |
uploadcare/pyuploadcare | pyuploadcare/ucare_cli/__init__.py | https://github.com/uploadcare/pyuploadcare/blob/cefddc0306133a71e37b18e8700df5948ef49b37/pyuploadcare/ucare_cli/__init__.py#L38-L59 | def _list(api_list_class, arg_namespace, **extra):
""" A common function for building methods of the "list showing".
"""
if arg_namespace.starting_point:
ordering_field = (arg_namespace.ordering or '').lstrip('-')
if ordering_field in ('', 'datetime_uploaded', 'datetime_created'):
arg_namespace.starting_point = parser.parse(
arg_namespace.starting_point)
items = api_list_class(
starting_point=arg_namespace.starting_point,
ordering=arg_namespace.ordering,
limit=arg_namespace.limit,
request_limit=arg_namespace.request_limit,
**extra
)
items.constructor = lambda x: x
try:
pprint(list(items))
except ValueError as e:
print(e) | [
"def",
"_list",
"(",
"api_list_class",
",",
"arg_namespace",
",",
"*",
"*",
"extra",
")",
":",
"if",
"arg_namespace",
".",
"starting_point",
":",
"ordering_field",
"=",
"(",
"arg_namespace",
".",
"ordering",
"or",
"''",
")",
".",
"lstrip",
"(",
"'-'",
")",
"if",
"ordering_field",
"in",
"(",
"''",
",",
"'datetime_uploaded'",
",",
"'datetime_created'",
")",
":",
"arg_namespace",
".",
"starting_point",
"=",
"parser",
".",
"parse",
"(",
"arg_namespace",
".",
"starting_point",
")",
"items",
"=",
"api_list_class",
"(",
"starting_point",
"=",
"arg_namespace",
".",
"starting_point",
",",
"ordering",
"=",
"arg_namespace",
".",
"ordering",
",",
"limit",
"=",
"arg_namespace",
".",
"limit",
",",
"request_limit",
"=",
"arg_namespace",
".",
"request_limit",
",",
"*",
"*",
"extra",
")",
"items",
".",
"constructor",
"=",
"lambda",
"x",
":",
"x",
"try",
":",
"pprint",
"(",
"list",
"(",
"items",
")",
")",
"except",
"ValueError",
"as",
"e",
":",
"print",
"(",
"e",
")"
]
| A common function for building methods of the "list showing". | [
"A",
"common",
"function",
"for",
"building",
"methods",
"of",
"the",
"list",
"showing",
"."
]
| python | test |
reingart/pyafipws | wslpg.py | https://github.com/reingart/pyafipws/blob/ee87cfe4ac12285ab431df5fec257f103042d1ab/wslpg.py#L2605-L2618 | def BuscarLocalidades(self, cod_prov, cod_localidad=None, consultar=True):
"Devuelve la localidad o la consulta en AFIP (uso interno)"
# si no se especifíca cod_localidad, es util para reconstruir la cache
import wslpg_datos as datos
if not str(cod_localidad) in datos.LOCALIDADES and consultar:
d = self.ConsultarLocalidadesPorProvincia(cod_prov, sep=None)
try:
# actualizar el diccionario persistente (shelve)
datos.LOCALIDADES.update(d)
except Exception, e:
print "EXCEPCION CAPTURADA", e
# capturo errores por permisos (o por concurrencia)
datos.LOCALIDADES = d
return datos.LOCALIDADES.get(str(cod_localidad), "") | [
"def",
"BuscarLocalidades",
"(",
"self",
",",
"cod_prov",
",",
"cod_localidad",
"=",
"None",
",",
"consultar",
"=",
"True",
")",
":",
"# si no se especifíca cod_localidad, es util para reconstruir la cache",
"import",
"wslpg_datos",
"as",
"datos",
"if",
"not",
"str",
"(",
"cod_localidad",
")",
"in",
"datos",
".",
"LOCALIDADES",
"and",
"consultar",
":",
"d",
"=",
"self",
".",
"ConsultarLocalidadesPorProvincia",
"(",
"cod_prov",
",",
"sep",
"=",
"None",
")",
"try",
":",
"# actualizar el diccionario persistente (shelve)",
"datos",
".",
"LOCALIDADES",
".",
"update",
"(",
"d",
")",
"except",
"Exception",
",",
"e",
":",
"print",
"\"EXCEPCION CAPTURADA\"",
",",
"e",
"# capturo errores por permisos (o por concurrencia)",
"datos",
".",
"LOCALIDADES",
"=",
"d",
"return",
"datos",
".",
"LOCALIDADES",
".",
"get",
"(",
"str",
"(",
"cod_localidad",
")",
",",
"\"\"",
")"
]
| Devuelve la localidad o la consulta en AFIP (uso interno) | [
"Devuelve",
"la",
"localidad",
"o",
"la",
"consulta",
"en",
"AFIP",
"(",
"uso",
"interno",
")"
]
| python | train |
matthew-sochor/transfer | transfer/project.py | https://github.com/matthew-sochor/transfer/blob/c1931a16459275faa7a5e9860fbed079a4848b80/transfer/project.py#L20-L143 | def configure():
'''
Configure the transfer environment and store
'''
completer = Completer()
readline.set_completer_delims('\t')
readline.parse_and_bind('tab: complete')
readline.set_completer(completer.path_completer)
home = os.path.expanduser('~')
if os.path.isfile(os.path.join(home, '.transfer', 'config.yaml')):
with open(os.path.join(home, '.transfer', 'config.yaml'), 'r') as fp:
config = yaml.load(fp.read())
else:
config = []
project_name = input('Name your project: ')
existing_project = None
for project in config:
if project_name == project['name']:
existing_project = project_name
if existing_project is not None:
print(colored('Project ' + project_name + ' already exists', 'red'))
overwrite = str_input('Would you like to overwrite this project? (yes or no) ', ['yes', 'no'])
if overwrite == 'no':
return
else:
config = [project for project in config if project_name != project['name']]
image_path = os.path.expanduser(input('Select parent directory for your images: '))
path_unset = True
while path_unset:
project_path = os.path.expanduser(input('Select destination for your project: '))
if (project_path.find(image_path) == 0):
print('Project destination should not be same or within image directory!')
else:
path_unset = False
print('Select architecture:')
print('[0] resnet50')
print('[1] xception')
print('[2] inception_v3')
architecture = int_input('choice', 0, 2, show_range = False)
if architecture == 0:
arch = 'resnet50'
img_dim = 224
conv_dim = 7
final_cutoff = 80
elif architecture == 1:
arch = 'xception'
img_dim = 299
conv_dim = 10
final_cutoff = 80
else:
arch = 'inception_v3'
img_dim = 299
conv_dim = 8
final_cutoff = 80
api_port = int_input('port for local prediction API (suggested: 5000)', 1024, 49151)
kfold = int_input('number of folds to use (suggested: 5)', 3, 10)
kfold_every = bool_input('Fit a model for every fold? (if false, just fit one)')
print('Warning: if working on a remote computer, you may not be able to plot!')
plot_cm = bool_input('Plot a confusion matrix after training?')
batch_size = int_input('batch size (suggested: 8)', 1, 64)
learning_rate = float_input('learning rate (suggested: 0.001)', 0, 1)
learning_rate_decay = float_input('learning decay rate (suggested: 0.000001)', 0, 1)
cycle = int_input('number of cycles before resetting the learning rate (suggested: 3)', 1, 10)
num_rounds = int_input('number of rounds (suggested: 3)', 1, 100)
print('Select image resolution:')
print('[0] low (' + str(img_dim) + ' px)')
print('[1] mid (' + str(img_dim * 2) + ' px)')
print('[2] high (' + str(img_dim * 4) + ' px)')
img_resolution_index = int_input('choice', 0, 2, show_range = False)
if img_resolution_index == 0:
img_size = 1
elif img_resolution_index == 1:
img_size = 2
else:
img_size = 4
use_augmentation = str_input('Would you like to add image augmentation? (yes or no) ', ['yes', 'no'])
if use_augmentation == 'yes':
augmentations = select_augmentations()
else:
augmentations = None
project = {'name': project_name,
'img_path': image_path,
'path': project_path,
'plot': plot_cm,
'api_port': api_port,
'kfold': kfold,
'kfold_every': kfold_every,
'cycle': cycle,
'seed': np.random.randint(9999),
'batch_size': batch_size,
'learning_rate': learning_rate,
'learning_rate_decay': learning_rate_decay,
'final_cutoff': final_cutoff,
'rounds': num_rounds,
'img_size': img_size,
'augmentations': augmentations,
'architecture': arch,
'img_dim': img_dim,
'conv_dim': conv_dim,
'is_split': False,
'is_array': False,
'is_augmented': False,
'is_pre_model': False,
'is_final': False,
'model_round': 0,
'server_weights': None,
'last_weights': None,
'best_weights': None}
config.append(project)
store_config(config)
print('')
print(colored('Project configure saved!', 'cyan'))
print('')
print('To run project:')
print('')
print(colored(' transfer --run --project ' + project_name, 'green'))
print('or')
print(colored(' transfer -r -p ' + project_name, 'green')) | [
"def",
"configure",
"(",
")",
":",
"completer",
"=",
"Completer",
"(",
")",
"readline",
".",
"set_completer_delims",
"(",
"'\\t'",
")",
"readline",
".",
"parse_and_bind",
"(",
"'tab: complete'",
")",
"readline",
".",
"set_completer",
"(",
"completer",
".",
"path_completer",
")",
"home",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"'~'",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"os",
".",
"path",
".",
"join",
"(",
"home",
",",
"'.transfer'",
",",
"'config.yaml'",
")",
")",
":",
"with",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"home",
",",
"'.transfer'",
",",
"'config.yaml'",
")",
",",
"'r'",
")",
"as",
"fp",
":",
"config",
"=",
"yaml",
".",
"load",
"(",
"fp",
".",
"read",
"(",
")",
")",
"else",
":",
"config",
"=",
"[",
"]",
"project_name",
"=",
"input",
"(",
"'Name your project: '",
")",
"existing_project",
"=",
"None",
"for",
"project",
"in",
"config",
":",
"if",
"project_name",
"==",
"project",
"[",
"'name'",
"]",
":",
"existing_project",
"=",
"project_name",
"if",
"existing_project",
"is",
"not",
"None",
":",
"print",
"(",
"colored",
"(",
"'Project '",
"+",
"project_name",
"+",
"' already exists'",
",",
"'red'",
")",
")",
"overwrite",
"=",
"str_input",
"(",
"'Would you like to overwrite this project? (yes or no) '",
",",
"[",
"'yes'",
",",
"'no'",
"]",
")",
"if",
"overwrite",
"==",
"'no'",
":",
"return",
"else",
":",
"config",
"=",
"[",
"project",
"for",
"project",
"in",
"config",
"if",
"project_name",
"!=",
"project",
"[",
"'name'",
"]",
"]",
"image_path",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"input",
"(",
"'Select parent directory for your images: '",
")",
")",
"path_unset",
"=",
"True",
"while",
"path_unset",
":",
"project_path",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"input",
"(",
"'Select destination for your project: '",
")",
")",
"if",
"(",
"project_path",
".",
"find",
"(",
"image_path",
")",
"==",
"0",
")",
":",
"print",
"(",
"'Project destination should not be same or within image directory!'",
")",
"else",
":",
"path_unset",
"=",
"False",
"print",
"(",
"'Select architecture:'",
")",
"print",
"(",
"'[0] resnet50'",
")",
"print",
"(",
"'[1] xception'",
")",
"print",
"(",
"'[2] inception_v3'",
")",
"architecture",
"=",
"int_input",
"(",
"'choice'",
",",
"0",
",",
"2",
",",
"show_range",
"=",
"False",
")",
"if",
"architecture",
"==",
"0",
":",
"arch",
"=",
"'resnet50'",
"img_dim",
"=",
"224",
"conv_dim",
"=",
"7",
"final_cutoff",
"=",
"80",
"elif",
"architecture",
"==",
"1",
":",
"arch",
"=",
"'xception'",
"img_dim",
"=",
"299",
"conv_dim",
"=",
"10",
"final_cutoff",
"=",
"80",
"else",
":",
"arch",
"=",
"'inception_v3'",
"img_dim",
"=",
"299",
"conv_dim",
"=",
"8",
"final_cutoff",
"=",
"80",
"api_port",
"=",
"int_input",
"(",
"'port for local prediction API (suggested: 5000)'",
",",
"1024",
",",
"49151",
")",
"kfold",
"=",
"int_input",
"(",
"'number of folds to use (suggested: 5)'",
",",
"3",
",",
"10",
")",
"kfold_every",
"=",
"bool_input",
"(",
"'Fit a model for every fold? (if false, just fit one)'",
")",
"print",
"(",
"'Warning: if working on a remote computer, you may not be able to plot!'",
")",
"plot_cm",
"=",
"bool_input",
"(",
"'Plot a confusion matrix after training?'",
")",
"batch_size",
"=",
"int_input",
"(",
"'batch size (suggested: 8)'",
",",
"1",
",",
"64",
")",
"learning_rate",
"=",
"float_input",
"(",
"'learning rate (suggested: 0.001)'",
",",
"0",
",",
"1",
")",
"learning_rate_decay",
"=",
"float_input",
"(",
"'learning decay rate (suggested: 0.000001)'",
",",
"0",
",",
"1",
")",
"cycle",
"=",
"int_input",
"(",
"'number of cycles before resetting the learning rate (suggested: 3)'",
",",
"1",
",",
"10",
")",
"num_rounds",
"=",
"int_input",
"(",
"'number of rounds (suggested: 3)'",
",",
"1",
",",
"100",
")",
"print",
"(",
"'Select image resolution:'",
")",
"print",
"(",
"'[0] low ('",
"+",
"str",
"(",
"img_dim",
")",
"+",
"' px)'",
")",
"print",
"(",
"'[1] mid ('",
"+",
"str",
"(",
"img_dim",
"*",
"2",
")",
"+",
"' px)'",
")",
"print",
"(",
"'[2] high ('",
"+",
"str",
"(",
"img_dim",
"*",
"4",
")",
"+",
"' px)'",
")",
"img_resolution_index",
"=",
"int_input",
"(",
"'choice'",
",",
"0",
",",
"2",
",",
"show_range",
"=",
"False",
")",
"if",
"img_resolution_index",
"==",
"0",
":",
"img_size",
"=",
"1",
"elif",
"img_resolution_index",
"==",
"1",
":",
"img_size",
"=",
"2",
"else",
":",
"img_size",
"=",
"4",
"use_augmentation",
"=",
"str_input",
"(",
"'Would you like to add image augmentation? (yes or no) '",
",",
"[",
"'yes'",
",",
"'no'",
"]",
")",
"if",
"use_augmentation",
"==",
"'yes'",
":",
"augmentations",
"=",
"select_augmentations",
"(",
")",
"else",
":",
"augmentations",
"=",
"None",
"project",
"=",
"{",
"'name'",
":",
"project_name",
",",
"'img_path'",
":",
"image_path",
",",
"'path'",
":",
"project_path",
",",
"'plot'",
":",
"plot_cm",
",",
"'api_port'",
":",
"api_port",
",",
"'kfold'",
":",
"kfold",
",",
"'kfold_every'",
":",
"kfold_every",
",",
"'cycle'",
":",
"cycle",
",",
"'seed'",
":",
"np",
".",
"random",
".",
"randint",
"(",
"9999",
")",
",",
"'batch_size'",
":",
"batch_size",
",",
"'learning_rate'",
":",
"learning_rate",
",",
"'learning_rate_decay'",
":",
"learning_rate_decay",
",",
"'final_cutoff'",
":",
"final_cutoff",
",",
"'rounds'",
":",
"num_rounds",
",",
"'img_size'",
":",
"img_size",
",",
"'augmentations'",
":",
"augmentations",
",",
"'architecture'",
":",
"arch",
",",
"'img_dim'",
":",
"img_dim",
",",
"'conv_dim'",
":",
"conv_dim",
",",
"'is_split'",
":",
"False",
",",
"'is_array'",
":",
"False",
",",
"'is_augmented'",
":",
"False",
",",
"'is_pre_model'",
":",
"False",
",",
"'is_final'",
":",
"False",
",",
"'model_round'",
":",
"0",
",",
"'server_weights'",
":",
"None",
",",
"'last_weights'",
":",
"None",
",",
"'best_weights'",
":",
"None",
"}",
"config",
".",
"append",
"(",
"project",
")",
"store_config",
"(",
"config",
")",
"print",
"(",
"''",
")",
"print",
"(",
"colored",
"(",
"'Project configure saved!'",
",",
"'cyan'",
")",
")",
"print",
"(",
"''",
")",
"print",
"(",
"'To run project:'",
")",
"print",
"(",
"''",
")",
"print",
"(",
"colored",
"(",
"' transfer --run --project '",
"+",
"project_name",
",",
"'green'",
")",
")",
"print",
"(",
"'or'",
")",
"print",
"(",
"colored",
"(",
"' transfer -r -p '",
"+",
"project_name",
",",
"'green'",
")",
")"
]
| Configure the transfer environment and store | [
"Configure",
"the",
"transfer",
"environment",
"and",
"store"
]
| python | train |
heroku/sf-suds | suds/sudsobject.py | https://github.com/heroku/sf-suds/blob/44b6743a45ff4447157605d6fecc9bf5922ce68a/suds/sudsobject.py#L379-L390 | def exclude(self, d, item):
""" check metadata for excluded items """
try:
md = d.__metadata__
pmd = getattr(md, '__print__', None)
if pmd is None:
return False
excludes = getattr(pmd, 'excludes', [])
return ( item[0] in excludes )
except:
pass
return False | [
"def",
"exclude",
"(",
"self",
",",
"d",
",",
"item",
")",
":",
"try",
":",
"md",
"=",
"d",
".",
"__metadata__",
"pmd",
"=",
"getattr",
"(",
"md",
",",
"'__print__'",
",",
"None",
")",
"if",
"pmd",
"is",
"None",
":",
"return",
"False",
"excludes",
"=",
"getattr",
"(",
"pmd",
",",
"'excludes'",
",",
"[",
"]",
")",
"return",
"(",
"item",
"[",
"0",
"]",
"in",
"excludes",
")",
"except",
":",
"pass",
"return",
"False"
]
| check metadata for excluded items | [
"check",
"metadata",
"for",
"excluded",
"items"
]
| python | train |
gbiggs/rtctree | rtctree/component.py | https://github.com/gbiggs/rtctree/blob/bd725a47ac87c259c8bce06156ccc9ab71111c26/rtctree/component.py#L440-L448 | def members(self):
'''Member components if this component is composite.'''
with self._mutex:
if not self._members:
self._members = {}
for o in self.organisations:
# TODO: Search for these in the tree
self._members[o.org_id] = o.obj.get_members()
return self._members | [
"def",
"members",
"(",
"self",
")",
":",
"with",
"self",
".",
"_mutex",
":",
"if",
"not",
"self",
".",
"_members",
":",
"self",
".",
"_members",
"=",
"{",
"}",
"for",
"o",
"in",
"self",
".",
"organisations",
":",
"# TODO: Search for these in the tree",
"self",
".",
"_members",
"[",
"o",
".",
"org_id",
"]",
"=",
"o",
".",
"obj",
".",
"get_members",
"(",
")",
"return",
"self",
".",
"_members"
]
| Member components if this component is composite. | [
"Member",
"components",
"if",
"this",
"component",
"is",
"composite",
"."
]
| python | train |
ubyssey/dispatch | dispatch/modules/integrations/integrations.py | https://github.com/ubyssey/dispatch/blob/8da6084fe61726f20e9cf675190480cfc45ee764/dispatch/modules/integrations/integrations.py#L91-L119 | def callback(cls, user, query):
"""Receive OAuth callback request from Facebook."""
# Get settings for this integration
settings = cls.get_settings(show_hidden=True)
fb = Facebook()
payload = {
'client_id': settings['client_id'],
'client_secret': settings['client_secret'],
'code': query['code'],
'redirect_uri': cls.REDIRECT_URI
}
try:
# Authenticate with Facebook
fb.get_access_token(payload)
# Fetch pages belonging to authenticated user
pages = fb.list_pages('me')
except FacebookAPIError, e:
raise IntegrationCallbackError(e.message)
return {
'pages': pages
} | [
"def",
"callback",
"(",
"cls",
",",
"user",
",",
"query",
")",
":",
"# Get settings for this integration",
"settings",
"=",
"cls",
".",
"get_settings",
"(",
"show_hidden",
"=",
"True",
")",
"fb",
"=",
"Facebook",
"(",
")",
"payload",
"=",
"{",
"'client_id'",
":",
"settings",
"[",
"'client_id'",
"]",
",",
"'client_secret'",
":",
"settings",
"[",
"'client_secret'",
"]",
",",
"'code'",
":",
"query",
"[",
"'code'",
"]",
",",
"'redirect_uri'",
":",
"cls",
".",
"REDIRECT_URI",
"}",
"try",
":",
"# Authenticate with Facebook",
"fb",
".",
"get_access_token",
"(",
"payload",
")",
"# Fetch pages belonging to authenticated user",
"pages",
"=",
"fb",
".",
"list_pages",
"(",
"'me'",
")",
"except",
"FacebookAPIError",
",",
"e",
":",
"raise",
"IntegrationCallbackError",
"(",
"e",
".",
"message",
")",
"return",
"{",
"'pages'",
":",
"pages",
"}"
]
| Receive OAuth callback request from Facebook. | [
"Receive",
"OAuth",
"callback",
"request",
"from",
"Facebook",
"."
]
| python | test |
rootpy/rootpy | rootpy/tree/cut.py | https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/tree/cut.py#L250-L262 | def latex(self):
"""
Returns a string representation for use in LaTeX
"""
if not self:
return ""
s = str(self)
s = s.replace("==", " = ")
s = s.replace("<=", " \leq ")
s = s.replace(">=", " \geq ")
s = s.replace("&&", r" \text{ and } ")
s = s.replace("||", r" \text{ or } ")
return s | [
"def",
"latex",
"(",
"self",
")",
":",
"if",
"not",
"self",
":",
"return",
"\"\"",
"s",
"=",
"str",
"(",
"self",
")",
"s",
"=",
"s",
".",
"replace",
"(",
"\"==\"",
",",
"\" = \"",
")",
"s",
"=",
"s",
".",
"replace",
"(",
"\"<=\"",
",",
"\" \\leq \"",
")",
"s",
"=",
"s",
".",
"replace",
"(",
"\">=\"",
",",
"\" \\geq \"",
")",
"s",
"=",
"s",
".",
"replace",
"(",
"\"&&\"",
",",
"r\" \\text{ and } \"",
")",
"s",
"=",
"s",
".",
"replace",
"(",
"\"||\"",
",",
"r\" \\text{ or } \"",
")",
"return",
"s"
]
| Returns a string representation for use in LaTeX | [
"Returns",
"a",
"string",
"representation",
"for",
"use",
"in",
"LaTeX"
]
| python | train |
JasonKessler/scattertext | scattertext/TermDocMatrix.py | https://github.com/JasonKessler/scattertext/blob/cacf1f687d218ee8cae3fc05cc901db824bb1b81/scattertext/TermDocMatrix.py#L733-L751 | def use_categories_as_metadata_and_replace_terms(self):
'''
Returns a TermDocMatrix which is identical to self except the metadata values are now identical to the
categories present and term-doc-matrix is now the metadata matrix.
:return: TermDocMatrix
'''
new_metadata_factory = CSRMatrixFactory()
for i, category_idx in enumerate(self.get_category_ids()):
new_metadata_factory[i, category_idx] = 1
new_metadata = new_metadata_factory.get_csr_matrix()
new_tdm = self._make_new_term_doc_matrix(self._mX,
new_metadata,
self._y,
self._metadata_idx_store,
self._category_idx_store,
copy(self._category_idx_store),
self._y == self._y)
return new_tdm | [
"def",
"use_categories_as_metadata_and_replace_terms",
"(",
"self",
")",
":",
"new_metadata_factory",
"=",
"CSRMatrixFactory",
"(",
")",
"for",
"i",
",",
"category_idx",
"in",
"enumerate",
"(",
"self",
".",
"get_category_ids",
"(",
")",
")",
":",
"new_metadata_factory",
"[",
"i",
",",
"category_idx",
"]",
"=",
"1",
"new_metadata",
"=",
"new_metadata_factory",
".",
"get_csr_matrix",
"(",
")",
"new_tdm",
"=",
"self",
".",
"_make_new_term_doc_matrix",
"(",
"self",
".",
"_mX",
",",
"new_metadata",
",",
"self",
".",
"_y",
",",
"self",
".",
"_metadata_idx_store",
",",
"self",
".",
"_category_idx_store",
",",
"copy",
"(",
"self",
".",
"_category_idx_store",
")",
",",
"self",
".",
"_y",
"==",
"self",
".",
"_y",
")",
"return",
"new_tdm"
]
| Returns a TermDocMatrix which is identical to self except the metadata values are now identical to the
categories present and term-doc-matrix is now the metadata matrix.
:return: TermDocMatrix | [
"Returns",
"a",
"TermDocMatrix",
"which",
"is",
"identical",
"to",
"self",
"except",
"the",
"metadata",
"values",
"are",
"now",
"identical",
"to",
"the",
"categories",
"present",
"and",
"term",
"-",
"doc",
"-",
"matrix",
"is",
"now",
"the",
"metadata",
"matrix",
"."
]
| python | train |
bcbio/bcbio-nextgen | bcbio/distributed/runfn.py | https://github.com/bcbio/bcbio-nextgen/blob/6a9348c0054ccd5baffd22f1bb7d0422f6978b20/bcbio/distributed/runfn.py#L124-L143 | def _add_resources(data, runtime):
"""Merge input resources with current CWL runtime parameters.
"""
if "config" not in data:
data["config"] = {}
# Convert input resources, which may be a JSON string
resources = data.get("resources", {}) or {}
if isinstance(resources, six.string_types) and resources.startswith(("{", "[")):
resources = json.loads(resources)
data["resources"] = resources
assert isinstance(resources, dict), (resources, data)
data["config"]["resources"] = resources
# Add in memory and core usage from CWL
memory = int(float(runtime["ram"]) / float(runtime["cores"]))
data["config"]["resources"].update({"default": {"cores": int(runtime["cores"]),
"memory": "%sM" % memory,
"jvm_opts": ["-Xms%sm" % min(1000, memory // 2),
"-Xmx%sm" % memory]}})
data["config"]["algorithm"]["num_cores"] = int(runtime["cores"])
return data | [
"def",
"_add_resources",
"(",
"data",
",",
"runtime",
")",
":",
"if",
"\"config\"",
"not",
"in",
"data",
":",
"data",
"[",
"\"config\"",
"]",
"=",
"{",
"}",
"# Convert input resources, which may be a JSON string",
"resources",
"=",
"data",
".",
"get",
"(",
"\"resources\"",
",",
"{",
"}",
")",
"or",
"{",
"}",
"if",
"isinstance",
"(",
"resources",
",",
"six",
".",
"string_types",
")",
"and",
"resources",
".",
"startswith",
"(",
"(",
"\"{\"",
",",
"\"[\"",
")",
")",
":",
"resources",
"=",
"json",
".",
"loads",
"(",
"resources",
")",
"data",
"[",
"\"resources\"",
"]",
"=",
"resources",
"assert",
"isinstance",
"(",
"resources",
",",
"dict",
")",
",",
"(",
"resources",
",",
"data",
")",
"data",
"[",
"\"config\"",
"]",
"[",
"\"resources\"",
"]",
"=",
"resources",
"# Add in memory and core usage from CWL",
"memory",
"=",
"int",
"(",
"float",
"(",
"runtime",
"[",
"\"ram\"",
"]",
")",
"/",
"float",
"(",
"runtime",
"[",
"\"cores\"",
"]",
")",
")",
"data",
"[",
"\"config\"",
"]",
"[",
"\"resources\"",
"]",
".",
"update",
"(",
"{",
"\"default\"",
":",
"{",
"\"cores\"",
":",
"int",
"(",
"runtime",
"[",
"\"cores\"",
"]",
")",
",",
"\"memory\"",
":",
"\"%sM\"",
"%",
"memory",
",",
"\"jvm_opts\"",
":",
"[",
"\"-Xms%sm\"",
"%",
"min",
"(",
"1000",
",",
"memory",
"//",
"2",
")",
",",
"\"-Xmx%sm\"",
"%",
"memory",
"]",
"}",
"}",
")",
"data",
"[",
"\"config\"",
"]",
"[",
"\"algorithm\"",
"]",
"[",
"\"num_cores\"",
"]",
"=",
"int",
"(",
"runtime",
"[",
"\"cores\"",
"]",
")",
"return",
"data"
]
| Merge input resources with current CWL runtime parameters. | [
"Merge",
"input",
"resources",
"with",
"current",
"CWL",
"runtime",
"parameters",
"."
]
| python | train |
gem/oq-engine | openquake/hazardlib/gsim/abrahamson_2015.py | https://github.com/gem/oq-engine/blob/8294553a0b8aba33fd96437a35065d03547d0040/openquake/hazardlib/gsim/abrahamson_2015.py#L355-L365 | def _compute_forearc_backarc_term(self, C, sites, dists):
"""
Computes the forearc/backarc scaling term given by equation (4).
"""
f_faba = np.zeros_like(dists.rhypo)
# Term only applies to backarc sites (F_FABA = 0. for forearc)
max_dist = dists.rhypo[sites.backarc]
max_dist[max_dist < 85.0] = 85.0
f_faba[sites.backarc] = C['theta7'] +\
(C['theta8'] * np.log(max_dist / 40.0))
return f_faba | [
"def",
"_compute_forearc_backarc_term",
"(",
"self",
",",
"C",
",",
"sites",
",",
"dists",
")",
":",
"f_faba",
"=",
"np",
".",
"zeros_like",
"(",
"dists",
".",
"rhypo",
")",
"# Term only applies to backarc sites (F_FABA = 0. for forearc)",
"max_dist",
"=",
"dists",
".",
"rhypo",
"[",
"sites",
".",
"backarc",
"]",
"max_dist",
"[",
"max_dist",
"<",
"85.0",
"]",
"=",
"85.0",
"f_faba",
"[",
"sites",
".",
"backarc",
"]",
"=",
"C",
"[",
"'theta7'",
"]",
"+",
"(",
"C",
"[",
"'theta8'",
"]",
"*",
"np",
".",
"log",
"(",
"max_dist",
"/",
"40.0",
")",
")",
"return",
"f_faba"
]
| Computes the forearc/backarc scaling term given by equation (4). | [
"Computes",
"the",
"forearc",
"/",
"backarc",
"scaling",
"term",
"given",
"by",
"equation",
"(",
"4",
")",
"."
]
| python | train |
anchore/anchore | anchore/cli/__init__.py | https://github.com/anchore/anchore/blob/8a4d5b9708e27856312d303aae3f04f3c72039d6/anchore/cli/__init__.py#L101-L186 | def main_entry(ctx, verbose, debug, quiet, json, plain, html, config_override):
"""
Anchore is a tool to analyze, query, and curate container images. The options at this top level
control stdout and stderr verbosity and format.
After installation, the first command run should be: 'anchore feeds
list' to initialize the system and load feed data.
High-level example flows:
Initialize the system and sync the by-default subscribed feed 'vulnerabilties':
\b
anchore feeds list
anchore feeds sync
Analyze an image
docker pull nginx:latest
anchore analyze --image nginx:latest --imagetype base
Generate a summary report on all analyzed images
anchore audit report
Check gate output for nginx:latest:
anchore gate --image nginx:latest
"""
# Load the config into the context object
logfile = None
debug_logfile = None
try:
try:
config_overrides = {}
if config_override:
for el in config_override:
try:
(key, val) = el.split('=')
if not key or not val:
raise Exception("could not split by '='")
config_overrides[key] = val
except:
click.echo("Error: specified --config_override param cannot be parsed (should be <config_opt>=<value>): " + str(el))
exit(1)
args = {'verbose': verbose, 'debug': debug, 'json': json, 'plain': plain, 'html': html, 'quiet': quiet, 'config_overrides':config_overrides}
anchore_conf = AnchoreConfiguration(cliargs=args)
except Exception as err:
click.echo("Error setting up/reading Anchore configuration", err=True)
click.echo("Info: "+str(err), err=True)
import traceback
traceback.print_exc()
sys.exit(1)
try:
logfile = anchore_conf.data['log_file'] if 'log_file' in anchore_conf.data else None
debug_logfile = anchore_conf.data['debug_log_file'] if 'debug_log_file' in anchore_conf.data else None
except Exception, e:
click.echo(str(e))
ctx.obj = anchore_conf
except:
if ctx.invoked_subcommand != 'system':
click.echo('Expected, but did not find configuration file at %s' % os.path.join(AnchoreConfiguration.DEFAULT_CONFIG_FILE), err=True)
exit(1)
try:
init_output_format(json, plain, debug, verbose, quiet, log_filepath=logfile, debug_log_filepath=debug_logfile)
except Exception, e:
click.echo('Error initializing logging: %s' % str(e))
exit(2)
if not anchore_pre_flight_check(ctx):
anchore_print_err("Error running pre-flight checks")
exit(1)
try:
if not anchore.anchore_utils.anchore_common_context_setup(ctx.obj):
anchore_print_err("Error setting up common data based on configuration")
exit(1)
except ValueError as err:
print "ERROR: " + str(err)
exit(1) | [
"def",
"main_entry",
"(",
"ctx",
",",
"verbose",
",",
"debug",
",",
"quiet",
",",
"json",
",",
"plain",
",",
"html",
",",
"config_override",
")",
":",
"# Load the config into the context object",
"logfile",
"=",
"None",
"debug_logfile",
"=",
"None",
"try",
":",
"try",
":",
"config_overrides",
"=",
"{",
"}",
"if",
"config_override",
":",
"for",
"el",
"in",
"config_override",
":",
"try",
":",
"(",
"key",
",",
"val",
")",
"=",
"el",
".",
"split",
"(",
"'='",
")",
"if",
"not",
"key",
"or",
"not",
"val",
":",
"raise",
"Exception",
"(",
"\"could not split by '='\"",
")",
"config_overrides",
"[",
"key",
"]",
"=",
"val",
"except",
":",
"click",
".",
"echo",
"(",
"\"Error: specified --config_override param cannot be parsed (should be <config_opt>=<value>): \"",
"+",
"str",
"(",
"el",
")",
")",
"exit",
"(",
"1",
")",
"args",
"=",
"{",
"'verbose'",
":",
"verbose",
",",
"'debug'",
":",
"debug",
",",
"'json'",
":",
"json",
",",
"'plain'",
":",
"plain",
",",
"'html'",
":",
"html",
",",
"'quiet'",
":",
"quiet",
",",
"'config_overrides'",
":",
"config_overrides",
"}",
"anchore_conf",
"=",
"AnchoreConfiguration",
"(",
"cliargs",
"=",
"args",
")",
"except",
"Exception",
"as",
"err",
":",
"click",
".",
"echo",
"(",
"\"Error setting up/reading Anchore configuration\"",
",",
"err",
"=",
"True",
")",
"click",
".",
"echo",
"(",
"\"Info: \"",
"+",
"str",
"(",
"err",
")",
",",
"err",
"=",
"True",
")",
"import",
"traceback",
"traceback",
".",
"print_exc",
"(",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"try",
":",
"logfile",
"=",
"anchore_conf",
".",
"data",
"[",
"'log_file'",
"]",
"if",
"'log_file'",
"in",
"anchore_conf",
".",
"data",
"else",
"None",
"debug_logfile",
"=",
"anchore_conf",
".",
"data",
"[",
"'debug_log_file'",
"]",
"if",
"'debug_log_file'",
"in",
"anchore_conf",
".",
"data",
"else",
"None",
"except",
"Exception",
",",
"e",
":",
"click",
".",
"echo",
"(",
"str",
"(",
"e",
")",
")",
"ctx",
".",
"obj",
"=",
"anchore_conf",
"except",
":",
"if",
"ctx",
".",
"invoked_subcommand",
"!=",
"'system'",
":",
"click",
".",
"echo",
"(",
"'Expected, but did not find configuration file at %s'",
"%",
"os",
".",
"path",
".",
"join",
"(",
"AnchoreConfiguration",
".",
"DEFAULT_CONFIG_FILE",
")",
",",
"err",
"=",
"True",
")",
"exit",
"(",
"1",
")",
"try",
":",
"init_output_format",
"(",
"json",
",",
"plain",
",",
"debug",
",",
"verbose",
",",
"quiet",
",",
"log_filepath",
"=",
"logfile",
",",
"debug_log_filepath",
"=",
"debug_logfile",
")",
"except",
"Exception",
",",
"e",
":",
"click",
".",
"echo",
"(",
"'Error initializing logging: %s'",
"%",
"str",
"(",
"e",
")",
")",
"exit",
"(",
"2",
")",
"if",
"not",
"anchore_pre_flight_check",
"(",
"ctx",
")",
":",
"anchore_print_err",
"(",
"\"Error running pre-flight checks\"",
")",
"exit",
"(",
"1",
")",
"try",
":",
"if",
"not",
"anchore",
".",
"anchore_utils",
".",
"anchore_common_context_setup",
"(",
"ctx",
".",
"obj",
")",
":",
"anchore_print_err",
"(",
"\"Error setting up common data based on configuration\"",
")",
"exit",
"(",
"1",
")",
"except",
"ValueError",
"as",
"err",
":",
"print",
"\"ERROR: \"",
"+",
"str",
"(",
"err",
")",
"exit",
"(",
"1",
")"
]
| Anchore is a tool to analyze, query, and curate container images. The options at this top level
control stdout and stderr verbosity and format.
After installation, the first command run should be: 'anchore feeds
list' to initialize the system and load feed data.
High-level example flows:
Initialize the system and sync the by-default subscribed feed 'vulnerabilties':
\b
anchore feeds list
anchore feeds sync
Analyze an image
docker pull nginx:latest
anchore analyze --image nginx:latest --imagetype base
Generate a summary report on all analyzed images
anchore audit report
Check gate output for nginx:latest:
anchore gate --image nginx:latest | [
"Anchore",
"is",
"a",
"tool",
"to",
"analyze",
"query",
"and",
"curate",
"container",
"images",
".",
"The",
"options",
"at",
"this",
"top",
"level",
"control",
"stdout",
"and",
"stderr",
"verbosity",
"and",
"format",
"."
]
| python | train |
saltstack/salt | salt/log/handlers/__init__.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/log/handlers/__init__.py#L73-L87 | def sync_with_handlers(self, handlers=()):
'''
Sync the stored log records to the provided log handlers.
'''
if not handlers:
return
while self.__messages:
record = self.__messages.pop(0)
for handler in handlers:
if handler.level > record.levelno:
# If the handler's level is higher than the log record one,
# it should not handle the log record
continue
handler.handle(record) | [
"def",
"sync_with_handlers",
"(",
"self",
",",
"handlers",
"=",
"(",
")",
")",
":",
"if",
"not",
"handlers",
":",
"return",
"while",
"self",
".",
"__messages",
":",
"record",
"=",
"self",
".",
"__messages",
".",
"pop",
"(",
"0",
")",
"for",
"handler",
"in",
"handlers",
":",
"if",
"handler",
".",
"level",
">",
"record",
".",
"levelno",
":",
"# If the handler's level is higher than the log record one,",
"# it should not handle the log record",
"continue",
"handler",
".",
"handle",
"(",
"record",
")"
]
| Sync the stored log records to the provided log handlers. | [
"Sync",
"the",
"stored",
"log",
"records",
"to",
"the",
"provided",
"log",
"handlers",
"."
]
| python | train |
Erotemic/utool | utool/util_iter.py | https://github.com/Erotemic/utool/blob/3b27e1f4e6e6fb23cd8744af7b7195b57d99e03a/utool/util_iter.py#L17-L24 | def wrap_iterable(obj):
"""
Returns:
wrapped_obj, was_scalar
"""
was_scalar = not isiterable(obj)
wrapped_obj = [obj] if was_scalar else obj
return wrapped_obj, was_scalar | [
"def",
"wrap_iterable",
"(",
"obj",
")",
":",
"was_scalar",
"=",
"not",
"isiterable",
"(",
"obj",
")",
"wrapped_obj",
"=",
"[",
"obj",
"]",
"if",
"was_scalar",
"else",
"obj",
"return",
"wrapped_obj",
",",
"was_scalar"
]
| Returns:
wrapped_obj, was_scalar | [
"Returns",
":",
"wrapped_obj",
"was_scalar"
]
| python | train |
nugget/python-insteonplm | insteonplm/messages/messageFlags.py | https://github.com/nugget/python-insteonplm/blob/65548041f1b0729ae1ae904443dd81b0c6cbf1bf/insteonplm/messages/messageFlags.py#L256-L275 | def _normalize(self, flags):
"""Take any format of flags and turn it into a hex string."""
norm = None
if isinstance(flags, MessageFlags):
norm = flags.bytes
elif isinstance(flags, bytearray):
norm = binascii.hexlify(flags)
elif isinstance(flags, int):
norm = bytes([flags])
elif isinstance(flags, bytes):
norm = binascii.hexlify(flags)
elif isinstance(flags, str):
flags = flags[0:2]
norm = binascii.hexlify(binascii.unhexlify(flags.lower()))
elif flags is None:
norm = None
else:
_LOGGER.warning('MessageFlags with unknown type %s: %r',
type(flags), flags)
return norm | [
"def",
"_normalize",
"(",
"self",
",",
"flags",
")",
":",
"norm",
"=",
"None",
"if",
"isinstance",
"(",
"flags",
",",
"MessageFlags",
")",
":",
"norm",
"=",
"flags",
".",
"bytes",
"elif",
"isinstance",
"(",
"flags",
",",
"bytearray",
")",
":",
"norm",
"=",
"binascii",
".",
"hexlify",
"(",
"flags",
")",
"elif",
"isinstance",
"(",
"flags",
",",
"int",
")",
":",
"norm",
"=",
"bytes",
"(",
"[",
"flags",
"]",
")",
"elif",
"isinstance",
"(",
"flags",
",",
"bytes",
")",
":",
"norm",
"=",
"binascii",
".",
"hexlify",
"(",
"flags",
")",
"elif",
"isinstance",
"(",
"flags",
",",
"str",
")",
":",
"flags",
"=",
"flags",
"[",
"0",
":",
"2",
"]",
"norm",
"=",
"binascii",
".",
"hexlify",
"(",
"binascii",
".",
"unhexlify",
"(",
"flags",
".",
"lower",
"(",
")",
")",
")",
"elif",
"flags",
"is",
"None",
":",
"norm",
"=",
"None",
"else",
":",
"_LOGGER",
".",
"warning",
"(",
"'MessageFlags with unknown type %s: %r'",
",",
"type",
"(",
"flags",
")",
",",
"flags",
")",
"return",
"norm"
]
| Take any format of flags and turn it into a hex string. | [
"Take",
"any",
"format",
"of",
"flags",
"and",
"turn",
"it",
"into",
"a",
"hex",
"string",
"."
]
| python | train |
matthieugouel/gibica | gibica/parser.py | https://github.com/matthieugouel/gibica/blob/65f937f7a6255078cc22eb7691a2897466032909/gibica/parser.py#L218-L230 | def logical_or_expr(self):
"""
logical_or_expr: logical_and_expr ('or' logical_and_expr)*
"""
node = self.logical_and_expr()
while self.token.nature == Nature.OR:
token = self.token
self._process(Nature.OR)
node = BinaryOperation(left=node, op=token, right=self.logical_and_expr())
return node | [
"def",
"logical_or_expr",
"(",
"self",
")",
":",
"node",
"=",
"self",
".",
"logical_and_expr",
"(",
")",
"while",
"self",
".",
"token",
".",
"nature",
"==",
"Nature",
".",
"OR",
":",
"token",
"=",
"self",
".",
"token",
"self",
".",
"_process",
"(",
"Nature",
".",
"OR",
")",
"node",
"=",
"BinaryOperation",
"(",
"left",
"=",
"node",
",",
"op",
"=",
"token",
",",
"right",
"=",
"self",
".",
"logical_and_expr",
"(",
")",
")",
"return",
"node"
]
| logical_or_expr: logical_and_expr ('or' logical_and_expr)* | [
"logical_or_expr",
":",
"logical_and_expr",
"(",
"or",
"logical_and_expr",
")",
"*"
]
| python | train |
KnowledgeLinks/rdfframework | rdfframework/rml/rmlmanager.py | https://github.com/KnowledgeLinks/rdfframework/blob/9ec32dcc4bed51650a4b392cc5c15100fef7923a/rdfframework/rml/rmlmanager.py#L59-L105 | def register_rml_def(self,
location_type,
location,
filename=None,
**kwargs):
"""
Registers the rml file locations for easy access
Args:
-----
location_type: ['package_all',
'package_file',
'directory',
'filepath']
location: The correlated location string based on the location_type
filename: Optional, associated with 'package_file' location_type
kwargs:
-------
include_subfolders: Boolean
"""
if location_type == 'directory':
self.register_directory(location, **kwargs)
elif location_type == 'filepath':
if not os.path.exists(location):
raise OSError("File not found", location)
if os.path.isfile(location):
self.register_rml(location)
elif filename:
new_loc = os.path.join(location, filename)
if not os.path.exists(new_loc):
raise OSError("File not found", new_loc)
elif os.path.isfile(new_loc):
self.register_rml(new_loc)
else:
raise OSError("File not found", location)
elif location_type.startswith('package'):
pkg_path = \
importlib.util.find_spec(\
location).submodule_search_locations[0]
if location_type.endswith('_all'):
self.register_directory(pkg_path, **kwargs)
elif location_type.endswith('_file'):
filepath = os.path.join(pkg_path, filename)
self.register_rml(filepath, **kwargs)
else:
raise NotImplementedError | [
"def",
"register_rml_def",
"(",
"self",
",",
"location_type",
",",
"location",
",",
"filename",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"location_type",
"==",
"'directory'",
":",
"self",
".",
"register_directory",
"(",
"location",
",",
"*",
"*",
"kwargs",
")",
"elif",
"location_type",
"==",
"'filepath'",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"location",
")",
":",
"raise",
"OSError",
"(",
"\"File not found\"",
",",
"location",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"location",
")",
":",
"self",
".",
"register_rml",
"(",
"location",
")",
"elif",
"filename",
":",
"new_loc",
"=",
"os",
".",
"path",
".",
"join",
"(",
"location",
",",
"filename",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"new_loc",
")",
":",
"raise",
"OSError",
"(",
"\"File not found\"",
",",
"new_loc",
")",
"elif",
"os",
".",
"path",
".",
"isfile",
"(",
"new_loc",
")",
":",
"self",
".",
"register_rml",
"(",
"new_loc",
")",
"else",
":",
"raise",
"OSError",
"(",
"\"File not found\"",
",",
"location",
")",
"elif",
"location_type",
".",
"startswith",
"(",
"'package'",
")",
":",
"pkg_path",
"=",
"importlib",
".",
"util",
".",
"find_spec",
"(",
"location",
")",
".",
"submodule_search_locations",
"[",
"0",
"]",
"if",
"location_type",
".",
"endswith",
"(",
"'_all'",
")",
":",
"self",
".",
"register_directory",
"(",
"pkg_path",
",",
"*",
"*",
"kwargs",
")",
"elif",
"location_type",
".",
"endswith",
"(",
"'_file'",
")",
":",
"filepath",
"=",
"os",
".",
"path",
".",
"join",
"(",
"pkg_path",
",",
"filename",
")",
"self",
".",
"register_rml",
"(",
"filepath",
",",
"*",
"*",
"kwargs",
")",
"else",
":",
"raise",
"NotImplementedError"
]
| Registers the rml file locations for easy access
Args:
-----
location_type: ['package_all',
'package_file',
'directory',
'filepath']
location: The correlated location string based on the location_type
filename: Optional, associated with 'package_file' location_type
kwargs:
-------
include_subfolders: Boolean | [
"Registers",
"the",
"rml",
"file",
"locations",
"for",
"easy",
"access"
]
| python | train |
soasme/rio | rio/models/utils.py | https://github.com/soasme/rio/blob/f722eb0ff4b0382bceaff77737f0b87cb78429e7/rio/models/utils.py#L143-L150 | def get_data_by_slug_or_404(model, slug, kind='', **kwargs):
"""Wrap get_data_by_slug, abort 404 if missing data."""
data = get_data_by_slug(model, slug, kind, **kwargs)
if not data:
abort(404)
return data | [
"def",
"get_data_by_slug_or_404",
"(",
"model",
",",
"slug",
",",
"kind",
"=",
"''",
",",
"*",
"*",
"kwargs",
")",
":",
"data",
"=",
"get_data_by_slug",
"(",
"model",
",",
"slug",
",",
"kind",
",",
"*",
"*",
"kwargs",
")",
"if",
"not",
"data",
":",
"abort",
"(",
"404",
")",
"return",
"data"
]
| Wrap get_data_by_slug, abort 404 if missing data. | [
"Wrap",
"get_data_by_slug",
"abort",
"404",
"if",
"missing",
"data",
"."
]
| python | train |
fmfn/BayesianOptimization | examples/sklearn_example.py | https://github.com/fmfn/BayesianOptimization/blob/8ce2292895137477963cf1bafa4e71fa20b2ce49/examples/sklearn_example.py#L21-L33 | def svc_cv(C, gamma, data, targets):
"""SVC cross validation.
This function will instantiate a SVC classifier with parameters C and
gamma. Combined with data and targets this will in turn be used to perform
cross validation. The result of cross validation is returned.
Our goal is to find combinations of C and gamma that maximizes the roc_auc
metric.
"""
estimator = SVC(C=C, gamma=gamma, random_state=2)
cval = cross_val_score(estimator, data, targets, scoring='roc_auc', cv=4)
return cval.mean() | [
"def",
"svc_cv",
"(",
"C",
",",
"gamma",
",",
"data",
",",
"targets",
")",
":",
"estimator",
"=",
"SVC",
"(",
"C",
"=",
"C",
",",
"gamma",
"=",
"gamma",
",",
"random_state",
"=",
"2",
")",
"cval",
"=",
"cross_val_score",
"(",
"estimator",
",",
"data",
",",
"targets",
",",
"scoring",
"=",
"'roc_auc'",
",",
"cv",
"=",
"4",
")",
"return",
"cval",
".",
"mean",
"(",
")"
]
| SVC cross validation.
This function will instantiate a SVC classifier with parameters C and
gamma. Combined with data and targets this will in turn be used to perform
cross validation. The result of cross validation is returned.
Our goal is to find combinations of C and gamma that maximizes the roc_auc
metric. | [
"SVC",
"cross",
"validation",
"."
]
| python | train |
synw/gencharts | gencharts/__init__.py | https://github.com/synw/gencharts/blob/fa35604a9445b399bb4f91bc91af488e8e8208fd/gencharts/__init__.py#L89-L100 | def _patch_json(self, json_data):
"""
Patch the Altair generated json to the newest Vega Lite spec
"""
json_data = json.loads(json_data)
# add schema
json_data["$schema"] = "https://vega.github.io/schema/vega-lite/2.0.0-beta.15.json"
# add top level width and height
json_data["width"] = json_data["config"]["cell"]["width"]
json_data["height"] = json_data["config"]["cell"]["height"]
del(json_data["config"]["cell"])
return json.dumps(json_data) | [
"def",
"_patch_json",
"(",
"self",
",",
"json_data",
")",
":",
"json_data",
"=",
"json",
".",
"loads",
"(",
"json_data",
")",
"# add schema",
"json_data",
"[",
"\"$schema\"",
"]",
"=",
"\"https://vega.github.io/schema/vega-lite/2.0.0-beta.15.json\"",
"# add top level width and height",
"json_data",
"[",
"\"width\"",
"]",
"=",
"json_data",
"[",
"\"config\"",
"]",
"[",
"\"cell\"",
"]",
"[",
"\"width\"",
"]",
"json_data",
"[",
"\"height\"",
"]",
"=",
"json_data",
"[",
"\"config\"",
"]",
"[",
"\"cell\"",
"]",
"[",
"\"height\"",
"]",
"del",
"(",
"json_data",
"[",
"\"config\"",
"]",
"[",
"\"cell\"",
"]",
")",
"return",
"json",
".",
"dumps",
"(",
"json_data",
")"
]
| Patch the Altair generated json to the newest Vega Lite spec | [
"Patch",
"the",
"Altair",
"generated",
"json",
"to",
"the",
"newest",
"Vega",
"Lite",
"spec"
]
| python | test |
nugget/python-insteonplm | insteonplm/states/onOff.py | https://github.com/nugget/python-insteonplm/blob/65548041f1b0729ae1ae904443dd81b0c6cbf1bf/insteonplm/states/onOff.py#L751-L778 | def _set_status_data(self, userdata):
"""Set status properties from userdata response.
Response values:
d3: On Mask
d4: Off Mask
d5: X10 House Code
d6: X10 Unit
d7: Ramp Rate
d8: On-Level
d9: LED Brightness
d10: Non-Toggle Mask
d11: LED Bit Mask
d12: X10 ALL Bit Mask
d13: On/Off Bit Mask
"""
self._on_mask = userdata['d3']
self._off_mask = userdata['d4']
self._x10_house_code = userdata['d5']
self._x10_unit = userdata['d6']
self._ramp_rate = userdata['d7']
self._on_level = userdata['d8']
self._led_brightness = userdata['d9']
self._non_toggle_mask = userdata['d10']
self._led_bit_mask = userdata['d11']
self._x10_all_bit_mask = userdata['d12']
self._on_off_bit_mask = userdata['d13']
self._trigger_group_bit_mask = userdata['d14'] | [
"def",
"_set_status_data",
"(",
"self",
",",
"userdata",
")",
":",
"self",
".",
"_on_mask",
"=",
"userdata",
"[",
"'d3'",
"]",
"self",
".",
"_off_mask",
"=",
"userdata",
"[",
"'d4'",
"]",
"self",
".",
"_x10_house_code",
"=",
"userdata",
"[",
"'d5'",
"]",
"self",
".",
"_x10_unit",
"=",
"userdata",
"[",
"'d6'",
"]",
"self",
".",
"_ramp_rate",
"=",
"userdata",
"[",
"'d7'",
"]",
"self",
".",
"_on_level",
"=",
"userdata",
"[",
"'d8'",
"]",
"self",
".",
"_led_brightness",
"=",
"userdata",
"[",
"'d9'",
"]",
"self",
".",
"_non_toggle_mask",
"=",
"userdata",
"[",
"'d10'",
"]",
"self",
".",
"_led_bit_mask",
"=",
"userdata",
"[",
"'d11'",
"]",
"self",
".",
"_x10_all_bit_mask",
"=",
"userdata",
"[",
"'d12'",
"]",
"self",
".",
"_on_off_bit_mask",
"=",
"userdata",
"[",
"'d13'",
"]",
"self",
".",
"_trigger_group_bit_mask",
"=",
"userdata",
"[",
"'d14'",
"]"
]
| Set status properties from userdata response.
Response values:
d3: On Mask
d4: Off Mask
d5: X10 House Code
d6: X10 Unit
d7: Ramp Rate
d8: On-Level
d9: LED Brightness
d10: Non-Toggle Mask
d11: LED Bit Mask
d12: X10 ALL Bit Mask
d13: On/Off Bit Mask | [
"Set",
"status",
"properties",
"from",
"userdata",
"response",
"."
]
| python | train |
yinkaisheng/Python-UIAutomation-for-Windows | uiautomation/uiautomation.py | https://github.com/yinkaisheng/Python-UIAutomation-for-Windows/blob/2cc91060982cc8b777152e698d677cc2989bf263/uiautomation/uiautomation.py#L5665-L5685 | def GetCachedPattern(self, patternId: int, cache: bool):
"""
Get a pattern by patternId.
patternId: int, a value in class `PatternId`.
Return a pattern if it supports the pattern else None.
cache: bool, if True, store the pattern for later use, if False, get a new pattern by `self.GetPattern`.
"""
if cache:
pattern = self._supportedPatterns.get(patternId, None)
if pattern:
return pattern
else:
pattern = self.GetPattern(patternId)
if pattern:
self._supportedPatterns[patternId] = pattern
return pattern
else:
pattern = self.GetPattern(patternId)
if pattern:
self._supportedPatterns[patternId] = pattern
return pattern | [
"def",
"GetCachedPattern",
"(",
"self",
",",
"patternId",
":",
"int",
",",
"cache",
":",
"bool",
")",
":",
"if",
"cache",
":",
"pattern",
"=",
"self",
".",
"_supportedPatterns",
".",
"get",
"(",
"patternId",
",",
"None",
")",
"if",
"pattern",
":",
"return",
"pattern",
"else",
":",
"pattern",
"=",
"self",
".",
"GetPattern",
"(",
"patternId",
")",
"if",
"pattern",
":",
"self",
".",
"_supportedPatterns",
"[",
"patternId",
"]",
"=",
"pattern",
"return",
"pattern",
"else",
":",
"pattern",
"=",
"self",
".",
"GetPattern",
"(",
"patternId",
")",
"if",
"pattern",
":",
"self",
".",
"_supportedPatterns",
"[",
"patternId",
"]",
"=",
"pattern",
"return",
"pattern"
]
| Get a pattern by patternId.
patternId: int, a value in class `PatternId`.
Return a pattern if it supports the pattern else None.
cache: bool, if True, store the pattern for later use, if False, get a new pattern by `self.GetPattern`. | [
"Get",
"a",
"pattern",
"by",
"patternId",
".",
"patternId",
":",
"int",
"a",
"value",
"in",
"class",
"PatternId",
".",
"Return",
"a",
"pattern",
"if",
"it",
"supports",
"the",
"pattern",
"else",
"None",
".",
"cache",
":",
"bool",
"if",
"True",
"store",
"the",
"pattern",
"for",
"later",
"use",
"if",
"False",
"get",
"a",
"new",
"pattern",
"by",
"self",
".",
"GetPattern",
"."
]
| python | valid |
twilio/twilio-python | twilio/rest/preview/sync/service/sync_map/sync_map_item.py | https://github.com/twilio/twilio-python/blob/c867895f55dcc29f522e6e8b8868d0d18483132f/twilio/rest/preview/sync/service/sync_map/sync_map_item.py#L391-L406 | def _proxy(self):
"""
Generate an instance context for the instance, the context is capable of
performing various actions. All instance actions are proxied to the context
:returns: SyncMapItemContext for this SyncMapItemInstance
:rtype: twilio.rest.preview.sync.service.sync_map.sync_map_item.SyncMapItemContext
"""
if self._context is None:
self._context = SyncMapItemContext(
self._version,
service_sid=self._solution['service_sid'],
map_sid=self._solution['map_sid'],
key=self._solution['key'],
)
return self._context | [
"def",
"_proxy",
"(",
"self",
")",
":",
"if",
"self",
".",
"_context",
"is",
"None",
":",
"self",
".",
"_context",
"=",
"SyncMapItemContext",
"(",
"self",
".",
"_version",
",",
"service_sid",
"=",
"self",
".",
"_solution",
"[",
"'service_sid'",
"]",
",",
"map_sid",
"=",
"self",
".",
"_solution",
"[",
"'map_sid'",
"]",
",",
"key",
"=",
"self",
".",
"_solution",
"[",
"'key'",
"]",
",",
")",
"return",
"self",
".",
"_context"
]
| Generate an instance context for the instance, the context is capable of
performing various actions. All instance actions are proxied to the context
:returns: SyncMapItemContext for this SyncMapItemInstance
:rtype: twilio.rest.preview.sync.service.sync_map.sync_map_item.SyncMapItemContext | [
"Generate",
"an",
"instance",
"context",
"for",
"the",
"instance",
"the",
"context",
"is",
"capable",
"of",
"performing",
"various",
"actions",
".",
"All",
"instance",
"actions",
"are",
"proxied",
"to",
"the",
"context"
]
| python | train |
limodou/uliweb | uliweb/utils/common.py | https://github.com/limodou/uliweb/blob/34472f25e4bc0b954a35346672f94e84ef18b076/uliweb/utils/common.py#L147-L187 | def walk_dirs(path, include=None, include_ext=None, exclude=None,
exclude_ext=None, recursion=True, file_only=False,
use_default_pattern=True, patterns=None):
"""
path directory path
resursion True will extract all sub module of mod
"""
default_exclude = ['.svn', '_svn', '.git']
default_exclude_ext = ['.pyc', '.pyo', '.bak', '.tmp']
exclude = exclude or []
exclude_ext = exclude_ext or []
include_ext = include_ext or []
include = include or []
if not os.path.exists(path):
raise StopIteration
for r in os.listdir(path):
if match(r, exclude) or (use_default_pattern and r in default_exclude):
continue
if include and r not in include:
continue
fpath = os.path.join(path, r)
if os.path.isdir(fpath):
if not file_only:
if patterns and match(r, patterns):
yield os.path.normpath(fpath).replace('\\', '/')
if recursion:
for f in walk_dirs(fpath, include, include_ext, exclude,
exclude_ext, recursion, file_only, use_default_pattern, patterns):
yield os.path.normpath(f).replace('\\', '/')
else:
ext = os.path.splitext(fpath)[1]
if ext in exclude_ext or (use_default_pattern and ext in default_exclude_ext):
continue
if include_ext and ext not in include_ext:
continue
if patterns:
if not match(r, patterns):
continue
yield os.path.normpath(fpath).replace('\\', '/') | [
"def",
"walk_dirs",
"(",
"path",
",",
"include",
"=",
"None",
",",
"include_ext",
"=",
"None",
",",
"exclude",
"=",
"None",
",",
"exclude_ext",
"=",
"None",
",",
"recursion",
"=",
"True",
",",
"file_only",
"=",
"False",
",",
"use_default_pattern",
"=",
"True",
",",
"patterns",
"=",
"None",
")",
":",
"default_exclude",
"=",
"[",
"'.svn'",
",",
"'_svn'",
",",
"'.git'",
"]",
"default_exclude_ext",
"=",
"[",
"'.pyc'",
",",
"'.pyo'",
",",
"'.bak'",
",",
"'.tmp'",
"]",
"exclude",
"=",
"exclude",
"or",
"[",
"]",
"exclude_ext",
"=",
"exclude_ext",
"or",
"[",
"]",
"include_ext",
"=",
"include_ext",
"or",
"[",
"]",
"include",
"=",
"include",
"or",
"[",
"]",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"path",
")",
":",
"raise",
"StopIteration",
"for",
"r",
"in",
"os",
".",
"listdir",
"(",
"path",
")",
":",
"if",
"match",
"(",
"r",
",",
"exclude",
")",
"or",
"(",
"use_default_pattern",
"and",
"r",
"in",
"default_exclude",
")",
":",
"continue",
"if",
"include",
"and",
"r",
"not",
"in",
"include",
":",
"continue",
"fpath",
"=",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"r",
")",
"if",
"os",
".",
"path",
".",
"isdir",
"(",
"fpath",
")",
":",
"if",
"not",
"file_only",
":",
"if",
"patterns",
"and",
"match",
"(",
"r",
",",
"patterns",
")",
":",
"yield",
"os",
".",
"path",
".",
"normpath",
"(",
"fpath",
")",
".",
"replace",
"(",
"'\\\\'",
",",
"'/'",
")",
"if",
"recursion",
":",
"for",
"f",
"in",
"walk_dirs",
"(",
"fpath",
",",
"include",
",",
"include_ext",
",",
"exclude",
",",
"exclude_ext",
",",
"recursion",
",",
"file_only",
",",
"use_default_pattern",
",",
"patterns",
")",
":",
"yield",
"os",
".",
"path",
".",
"normpath",
"(",
"f",
")",
".",
"replace",
"(",
"'\\\\'",
",",
"'/'",
")",
"else",
":",
"ext",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"fpath",
")",
"[",
"1",
"]",
"if",
"ext",
"in",
"exclude_ext",
"or",
"(",
"use_default_pattern",
"and",
"ext",
"in",
"default_exclude_ext",
")",
":",
"continue",
"if",
"include_ext",
"and",
"ext",
"not",
"in",
"include_ext",
":",
"continue",
"if",
"patterns",
":",
"if",
"not",
"match",
"(",
"r",
",",
"patterns",
")",
":",
"continue",
"yield",
"os",
".",
"path",
".",
"normpath",
"(",
"fpath",
")",
".",
"replace",
"(",
"'\\\\'",
",",
"'/'",
")"
]
| path directory path
resursion True will extract all sub module of mod | [
"path",
"directory",
"path",
"resursion",
"True",
"will",
"extract",
"all",
"sub",
"module",
"of",
"mod"
]
| python | train |
O365/python-o365 | O365/excel.py | https://github.com/O365/python-o365/blob/02a71cf3775cc6a3c042e003365d6a07c8c75a73/O365/excel.py#L1402-L1410 | def _get_range(self, endpoint_name):
""" Returns a Range based on the endpoint name """
url = self.build_url(self._endpoints.get(endpoint_name))
response = self.session.get(url)
if not response:
return None
data = response.json()
return self.range_constructor(parent=self, **{self._cloud_data_key: data}) | [
"def",
"_get_range",
"(",
"self",
",",
"endpoint_name",
")",
":",
"url",
"=",
"self",
".",
"build_url",
"(",
"self",
".",
"_endpoints",
".",
"get",
"(",
"endpoint_name",
")",
")",
"response",
"=",
"self",
".",
"session",
".",
"get",
"(",
"url",
")",
"if",
"not",
"response",
":",
"return",
"None",
"data",
"=",
"response",
".",
"json",
"(",
")",
"return",
"self",
".",
"range_constructor",
"(",
"parent",
"=",
"self",
",",
"*",
"*",
"{",
"self",
".",
"_cloud_data_key",
":",
"data",
"}",
")"
]
| Returns a Range based on the endpoint name | [
"Returns",
"a",
"Range",
"based",
"on",
"the",
"endpoint",
"name"
]
| python | train |
markovmodel/msmtools | msmtools/estimation/api.py | https://github.com/markovmodel/msmtools/blob/54dc76dd2113a0e8f3d15d5316abab41402941be/msmtools/estimation/api.py#L458-L510 | def largest_connected_set(C, directed=True):
r"""Largest connected component for a directed graph with edge-weights
given by the count matrix.
Parameters
----------
C : scipy.sparse matrix
Count matrix specifying edge weights.
directed : bool, optional
Whether to compute connected components for a directed or
undirected graph. Default is True.
Returns
-------
lcc : array of integers
The largest connected component of the directed graph.
See also
--------
connected_sets
Notes
-----
Viewing the count matrix as the adjacency matrix of a (directed)
graph the largest connected set is the largest connected set of
nodes of the corresponding graph. The largest connected set of a graph
can be efficiently computed using Tarjan's algorithm.
References
----------
.. [1] Tarjan, R E. 1972. Depth-first search and linear graph
algorithms. SIAM Journal on Computing 1 (2): 146-160.
Examples
--------
>>> import numpy as np
>>> from msmtools.estimation import largest_connected_set
>>> C = np.array([[10, 1, 0], [2, 0, 3], [0, 0, 4]])
>>> lcc_directed = largest_connected_set(C)
>>> lcc_directed
array([0, 1])
>>> lcc_undirected = largest_connected_set(C, directed=False)
>>> lcc_undirected
array([0, 1, 2])
"""
if isdense(C):
return sparse.connectivity.largest_connected_set(csr_matrix(C), directed=directed)
else:
return sparse.connectivity.largest_connected_set(C, directed=directed) | [
"def",
"largest_connected_set",
"(",
"C",
",",
"directed",
"=",
"True",
")",
":",
"if",
"isdense",
"(",
"C",
")",
":",
"return",
"sparse",
".",
"connectivity",
".",
"largest_connected_set",
"(",
"csr_matrix",
"(",
"C",
")",
",",
"directed",
"=",
"directed",
")",
"else",
":",
"return",
"sparse",
".",
"connectivity",
".",
"largest_connected_set",
"(",
"C",
",",
"directed",
"=",
"directed",
")"
]
| r"""Largest connected component for a directed graph with edge-weights
given by the count matrix.
Parameters
----------
C : scipy.sparse matrix
Count matrix specifying edge weights.
directed : bool, optional
Whether to compute connected components for a directed or
undirected graph. Default is True.
Returns
-------
lcc : array of integers
The largest connected component of the directed graph.
See also
--------
connected_sets
Notes
-----
Viewing the count matrix as the adjacency matrix of a (directed)
graph the largest connected set is the largest connected set of
nodes of the corresponding graph. The largest connected set of a graph
can be efficiently computed using Tarjan's algorithm.
References
----------
.. [1] Tarjan, R E. 1972. Depth-first search and linear graph
algorithms. SIAM Journal on Computing 1 (2): 146-160.
Examples
--------
>>> import numpy as np
>>> from msmtools.estimation import largest_connected_set
>>> C = np.array([[10, 1, 0], [2, 0, 3], [0, 0, 4]])
>>> lcc_directed = largest_connected_set(C)
>>> lcc_directed
array([0, 1])
>>> lcc_undirected = largest_connected_set(C, directed=False)
>>> lcc_undirected
array([0, 1, 2]) | [
"r",
"Largest",
"connected",
"component",
"for",
"a",
"directed",
"graph",
"with",
"edge",
"-",
"weights",
"given",
"by",
"the",
"count",
"matrix",
"."
]
| python | train |
DLR-RM/RAFCON | source/rafcon/gui/controllers/menu_bar.py | https://github.com/DLR-RM/RAFCON/blob/24942ef1a904531f49ab8830a1dbb604441be498/source/rafcon/gui/controllers/menu_bar.py#L379-L388 | def remove_all_callbacks(self):
"""
Remove all callbacks registered to the shortcut manager
:return:
"""
for action in self.registered_shortcut_callbacks.keys():
for callback in self.registered_shortcut_callbacks[action]:
self.shortcut_manager.remove_callback_for_action(action, callback)
# delete all registered shortcut callbacks
self.registered_shortcut_callbacks = {} | [
"def",
"remove_all_callbacks",
"(",
"self",
")",
":",
"for",
"action",
"in",
"self",
".",
"registered_shortcut_callbacks",
".",
"keys",
"(",
")",
":",
"for",
"callback",
"in",
"self",
".",
"registered_shortcut_callbacks",
"[",
"action",
"]",
":",
"self",
".",
"shortcut_manager",
".",
"remove_callback_for_action",
"(",
"action",
",",
"callback",
")",
"# delete all registered shortcut callbacks",
"self",
".",
"registered_shortcut_callbacks",
"=",
"{",
"}"
]
| Remove all callbacks registered to the shortcut manager
:return: | [
"Remove",
"all",
"callbacks",
"registered",
"to",
"the",
"shortcut",
"manager",
":",
"return",
":"
]
| python | train |
m32/endesive | endesive/pdf/fpdf/fpdf.py | https://github.com/m32/endesive/blob/973091dc69847fe2df594c80ac9235a8d08460ff/endesive/pdf/fpdf/fpdf.py#L1037-L1042 | def set_x(self, x):
"Set x position"
if(x>=0):
self.x=x
else:
self.x=self.w+x | [
"def",
"set_x",
"(",
"self",
",",
"x",
")",
":",
"if",
"(",
"x",
">=",
"0",
")",
":",
"self",
".",
"x",
"=",
"x",
"else",
":",
"self",
".",
"x",
"=",
"self",
".",
"w",
"+",
"x"
]
| Set x position | [
"Set",
"x",
"position"
]
| python | train |
ska-sa/katcp-python | katcp/core.py | https://github.com/ska-sa/katcp-python/blob/9127c826a1d030c53b84d0e95743e20e5c5ea153/katcp/core.py#L295-L312 | def format_argument(self, arg):
"""Format a Message argument to a string"""
if isinstance(arg, float):
return repr(arg)
elif isinstance(arg, bool):
return str(int(arg))
else:
try:
return str(arg)
except UnicodeEncodeError:
# unicode characters will break the str cast, so
# try to encode to ascii and replace the offending characters
# with a '?' character
logger.error("Error casting message argument to str! "
"Trying to encode argument to ascii.")
if not isinstance(arg, unicode):
arg = arg.decode('utf-8')
return arg.encode('ascii', 'replace') | [
"def",
"format_argument",
"(",
"self",
",",
"arg",
")",
":",
"if",
"isinstance",
"(",
"arg",
",",
"float",
")",
":",
"return",
"repr",
"(",
"arg",
")",
"elif",
"isinstance",
"(",
"arg",
",",
"bool",
")",
":",
"return",
"str",
"(",
"int",
"(",
"arg",
")",
")",
"else",
":",
"try",
":",
"return",
"str",
"(",
"arg",
")",
"except",
"UnicodeEncodeError",
":",
"# unicode characters will break the str cast, so",
"# try to encode to ascii and replace the offending characters",
"# with a '?' character",
"logger",
".",
"error",
"(",
"\"Error casting message argument to str! \"",
"\"Trying to encode argument to ascii.\"",
")",
"if",
"not",
"isinstance",
"(",
"arg",
",",
"unicode",
")",
":",
"arg",
"=",
"arg",
".",
"decode",
"(",
"'utf-8'",
")",
"return",
"arg",
".",
"encode",
"(",
"'ascii'",
",",
"'replace'",
")"
]
| Format a Message argument to a string | [
"Format",
"a",
"Message",
"argument",
"to",
"a",
"string"
]
| python | train |
SoCo/SoCo | soco/data_structures.py | https://github.com/SoCo/SoCo/blob/671937e07d7973b78c0cbee153d4f3ad68ec48c6/soco/data_structures.py#L151-L189 | def from_element(cls, element):
"""Set the resource properties from a ``<res>`` element.
Args:
element (~xml.etree.ElementTree.Element): The ``<res>``
element
"""
def _int_helper(name):
"""Try to convert the name attribute to an int, or None."""
result = element.get(name)
if result is not None:
try:
return int(result)
except ValueError:
raise DIDLMetadataError(
'Could not convert {0} to an integer'.format(name))
else:
return None
content = {}
# required
content['protocol_info'] = element.get('protocolInfo')
if content['protocol_info'] is None:
raise DIDLMetadataError('Could not create Resource from Element: '
'protocolInfo not found (required).')
# Optional
content['import_uri'] = element.get('importUri')
content['size'] = _int_helper('size')
content['duration'] = element.get('duration')
content['bitrate'] = _int_helper('bitrate')
content['sample_frequency'] = _int_helper('sampleFrequency')
content['bits_per_sample'] = _int_helper('bitsPerSample')
content['nr_audio_channels'] = _int_helper('nrAudioChannels')
content['resolution'] = element.get('resolution')
content['color_depth'] = _int_helper('colorDepth')
content['protection'] = element.get('protection')
content['uri'] = element.text
return cls(**content) | [
"def",
"from_element",
"(",
"cls",
",",
"element",
")",
":",
"def",
"_int_helper",
"(",
"name",
")",
":",
"\"\"\"Try to convert the name attribute to an int, or None.\"\"\"",
"result",
"=",
"element",
".",
"get",
"(",
"name",
")",
"if",
"result",
"is",
"not",
"None",
":",
"try",
":",
"return",
"int",
"(",
"result",
")",
"except",
"ValueError",
":",
"raise",
"DIDLMetadataError",
"(",
"'Could not convert {0} to an integer'",
".",
"format",
"(",
"name",
")",
")",
"else",
":",
"return",
"None",
"content",
"=",
"{",
"}",
"# required",
"content",
"[",
"'protocol_info'",
"]",
"=",
"element",
".",
"get",
"(",
"'protocolInfo'",
")",
"if",
"content",
"[",
"'protocol_info'",
"]",
"is",
"None",
":",
"raise",
"DIDLMetadataError",
"(",
"'Could not create Resource from Element: '",
"'protocolInfo not found (required).'",
")",
"# Optional",
"content",
"[",
"'import_uri'",
"]",
"=",
"element",
".",
"get",
"(",
"'importUri'",
")",
"content",
"[",
"'size'",
"]",
"=",
"_int_helper",
"(",
"'size'",
")",
"content",
"[",
"'duration'",
"]",
"=",
"element",
".",
"get",
"(",
"'duration'",
")",
"content",
"[",
"'bitrate'",
"]",
"=",
"_int_helper",
"(",
"'bitrate'",
")",
"content",
"[",
"'sample_frequency'",
"]",
"=",
"_int_helper",
"(",
"'sampleFrequency'",
")",
"content",
"[",
"'bits_per_sample'",
"]",
"=",
"_int_helper",
"(",
"'bitsPerSample'",
")",
"content",
"[",
"'nr_audio_channels'",
"]",
"=",
"_int_helper",
"(",
"'nrAudioChannels'",
")",
"content",
"[",
"'resolution'",
"]",
"=",
"element",
".",
"get",
"(",
"'resolution'",
")",
"content",
"[",
"'color_depth'",
"]",
"=",
"_int_helper",
"(",
"'colorDepth'",
")",
"content",
"[",
"'protection'",
"]",
"=",
"element",
".",
"get",
"(",
"'protection'",
")",
"content",
"[",
"'uri'",
"]",
"=",
"element",
".",
"text",
"return",
"cls",
"(",
"*",
"*",
"content",
")"
]
| Set the resource properties from a ``<res>`` element.
Args:
element (~xml.etree.ElementTree.Element): The ``<res>``
element | [
"Set",
"the",
"resource",
"properties",
"from",
"a",
"<res",
">",
"element",
"."
]
| python | train |
angr/angr | angr/engines/soot/values/thisref.py | https://github.com/angr/angr/blob/4e2f97d56af5419ee73bdb30482c8dd8ff5f3e40/angr/engines/soot/values/thisref.py#L74-L86 | def load_field(self, state, field_name, field_type):
"""
Load a field of a given object, without resolving hierachy
:param state: angr state where we want to load the object attribute
:type SimState
:param field_name: name of the attribute
:type str
:param field_type: type of the attribute
:type str
"""
field_ref = SimSootValue_InstanceFieldRef(self.heap_alloc_id, self.type, field_name, field_type)
return state.memory.load(field_ref, none_if_missing=False) | [
"def",
"load_field",
"(",
"self",
",",
"state",
",",
"field_name",
",",
"field_type",
")",
":",
"field_ref",
"=",
"SimSootValue_InstanceFieldRef",
"(",
"self",
".",
"heap_alloc_id",
",",
"self",
".",
"type",
",",
"field_name",
",",
"field_type",
")",
"return",
"state",
".",
"memory",
".",
"load",
"(",
"field_ref",
",",
"none_if_missing",
"=",
"False",
")"
]
| Load a field of a given object, without resolving hierachy
:param state: angr state where we want to load the object attribute
:type SimState
:param field_name: name of the attribute
:type str
:param field_type: type of the attribute
:type str | [
"Load",
"a",
"field",
"of",
"a",
"given",
"object",
"without",
"resolving",
"hierachy"
]
| python | train |
google/grr | grr/server/grr_response_server/aff4_objects/cronjobs.py | https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/server/grr_response_server/aff4_objects/cronjobs.py#L138-L164 | def RunOnce(self, token=None, force=False, names=None):
"""Tries to lock and run cron jobs.
Args:
token: security token
force: If True, force a run
names: List of job names to run. If unset, run them all
"""
names = names or self.ListJobs(token=token)
urns = [self.CRON_JOBS_PATH.Add(name) for name in names]
for cron_job_urn in urns:
try:
with aff4.FACTORY.OpenWithLock(
cron_job_urn, blocking=False, token=token,
lease_time=600) as cron_job:
try:
logging.info("Running cron job: %s", cron_job.urn)
cron_job.Run(force=force)
except Exception as e: # pylint: disable=broad-except
logging.exception("Error processing cron job %s: %s", cron_job.urn,
e)
stats_collector_instance.Get().IncrementCounter(
"cron_internal_error")
except aff4.LockError:
pass | [
"def",
"RunOnce",
"(",
"self",
",",
"token",
"=",
"None",
",",
"force",
"=",
"False",
",",
"names",
"=",
"None",
")",
":",
"names",
"=",
"names",
"or",
"self",
".",
"ListJobs",
"(",
"token",
"=",
"token",
")",
"urns",
"=",
"[",
"self",
".",
"CRON_JOBS_PATH",
".",
"Add",
"(",
"name",
")",
"for",
"name",
"in",
"names",
"]",
"for",
"cron_job_urn",
"in",
"urns",
":",
"try",
":",
"with",
"aff4",
".",
"FACTORY",
".",
"OpenWithLock",
"(",
"cron_job_urn",
",",
"blocking",
"=",
"False",
",",
"token",
"=",
"token",
",",
"lease_time",
"=",
"600",
")",
"as",
"cron_job",
":",
"try",
":",
"logging",
".",
"info",
"(",
"\"Running cron job: %s\"",
",",
"cron_job",
".",
"urn",
")",
"cron_job",
".",
"Run",
"(",
"force",
"=",
"force",
")",
"except",
"Exception",
"as",
"e",
":",
"# pylint: disable=broad-except",
"logging",
".",
"exception",
"(",
"\"Error processing cron job %s: %s\"",
",",
"cron_job",
".",
"urn",
",",
"e",
")",
"stats_collector_instance",
".",
"Get",
"(",
")",
".",
"IncrementCounter",
"(",
"\"cron_internal_error\"",
")",
"except",
"aff4",
".",
"LockError",
":",
"pass"
]
| Tries to lock and run cron jobs.
Args:
token: security token
force: If True, force a run
names: List of job names to run. If unset, run them all | [
"Tries",
"to",
"lock",
"and",
"run",
"cron",
"jobs",
"."
]
| python | train |
nickmckay/LiPD-utilities | Python/lipd/lpd_noaa.py | https://github.com/nickmckay/LiPD-utilities/blob/5dab6bbeffc5effd68e3a6beaca6b76aa928e860/Python/lipd/lpd_noaa.py#L889-L918 | def __get_overall_data(self, x):
"""
(recursive) Collect all "sensorGenus" and "sensorSpecies" fields, set data to self
:param any x: Any data type
:return none:
"""
if isinstance(x, dict):
if "sensorGenus" in x:
if x["sensorGenus"] and x["sensorGenus"] not in self.lsts_tmp["genus"]:
self.lsts_tmp["genus"].append(x["sensorGenus"])
if "sensorSpecies" in x:
if x["sensorSpecies"] and x["sensorSpecies"] not in self.lsts_tmp["species"]:
self.lsts_tmp["species"].append(x["sensorSpecies"])
if "archiveType" in x:
if x["archiveType"] and x["archiveType"] not in self.lsts_tmp["archive"]:
self.lsts_tmp["archive"].append(x["archiveType"])
if "QCnotes" in x:
if x["QCnotes"] and x["QCnotes"] not in self.lsts_tmp["qc"]:
self.lsts_tmp["qc"].append(x["QCnotes"])
for k, v in x.items():
if isinstance(v, dict):
self.__get_overall_data(v)
elif isinstance(v, list):
self.__get_overall_data(v)
elif isinstance(x, list):
for i in x:
self.__get_overall_data(i)
return x | [
"def",
"__get_overall_data",
"(",
"self",
",",
"x",
")",
":",
"if",
"isinstance",
"(",
"x",
",",
"dict",
")",
":",
"if",
"\"sensorGenus\"",
"in",
"x",
":",
"if",
"x",
"[",
"\"sensorGenus\"",
"]",
"and",
"x",
"[",
"\"sensorGenus\"",
"]",
"not",
"in",
"self",
".",
"lsts_tmp",
"[",
"\"genus\"",
"]",
":",
"self",
".",
"lsts_tmp",
"[",
"\"genus\"",
"]",
".",
"append",
"(",
"x",
"[",
"\"sensorGenus\"",
"]",
")",
"if",
"\"sensorSpecies\"",
"in",
"x",
":",
"if",
"x",
"[",
"\"sensorSpecies\"",
"]",
"and",
"x",
"[",
"\"sensorSpecies\"",
"]",
"not",
"in",
"self",
".",
"lsts_tmp",
"[",
"\"species\"",
"]",
":",
"self",
".",
"lsts_tmp",
"[",
"\"species\"",
"]",
".",
"append",
"(",
"x",
"[",
"\"sensorSpecies\"",
"]",
")",
"if",
"\"archiveType\"",
"in",
"x",
":",
"if",
"x",
"[",
"\"archiveType\"",
"]",
"and",
"x",
"[",
"\"archiveType\"",
"]",
"not",
"in",
"self",
".",
"lsts_tmp",
"[",
"\"archive\"",
"]",
":",
"self",
".",
"lsts_tmp",
"[",
"\"archive\"",
"]",
".",
"append",
"(",
"x",
"[",
"\"archiveType\"",
"]",
")",
"if",
"\"QCnotes\"",
"in",
"x",
":",
"if",
"x",
"[",
"\"QCnotes\"",
"]",
"and",
"x",
"[",
"\"QCnotes\"",
"]",
"not",
"in",
"self",
".",
"lsts_tmp",
"[",
"\"qc\"",
"]",
":",
"self",
".",
"lsts_tmp",
"[",
"\"qc\"",
"]",
".",
"append",
"(",
"x",
"[",
"\"QCnotes\"",
"]",
")",
"for",
"k",
",",
"v",
"in",
"x",
".",
"items",
"(",
")",
":",
"if",
"isinstance",
"(",
"v",
",",
"dict",
")",
":",
"self",
".",
"__get_overall_data",
"(",
"v",
")",
"elif",
"isinstance",
"(",
"v",
",",
"list",
")",
":",
"self",
".",
"__get_overall_data",
"(",
"v",
")",
"elif",
"isinstance",
"(",
"x",
",",
"list",
")",
":",
"for",
"i",
"in",
"x",
":",
"self",
".",
"__get_overall_data",
"(",
"i",
")",
"return",
"x"
]
| (recursive) Collect all "sensorGenus" and "sensorSpecies" fields, set data to self
:param any x: Any data type
:return none: | [
"(",
"recursive",
")",
"Collect",
"all",
"sensorGenus",
"and",
"sensorSpecies",
"fields",
"set",
"data",
"to",
"self",
":",
"param",
"any",
"x",
":",
"Any",
"data",
"type",
":",
"return",
"none",
":"
]
| python | train |
trailofbits/manticore | manticore/ethereum/detectors.py | https://github.com/trailofbits/manticore/blob/54c5a15b1119c523ae54c09972413e8b97f11629/manticore/ethereum/detectors.py#L377-L392 | def _unsigned_sub_overflow(state, a, b):
"""
Sign extend the value to 512 bits and check the result can be represented
in 256. Following there is a 32 bit excerpt of this condition:
a - b ffffffff bfffffff 80000001 00000000 00000001 3ffffffff 7fffffff
ffffffff True True True False True True True
bfffffff True True True False False True True
80000001 True True True False False True True
00000000 False False False False False True False
00000001 True False False False False True False
ffffffff True True True True True True True
7fffffff True True True False False True False
"""
cond = Operators.UGT(b, a)
return cond | [
"def",
"_unsigned_sub_overflow",
"(",
"state",
",",
"a",
",",
"b",
")",
":",
"cond",
"=",
"Operators",
".",
"UGT",
"(",
"b",
",",
"a",
")",
"return",
"cond"
]
| Sign extend the value to 512 bits and check the result can be represented
in 256. Following there is a 32 bit excerpt of this condition:
a - b ffffffff bfffffff 80000001 00000000 00000001 3ffffffff 7fffffff
ffffffff True True True False True True True
bfffffff True True True False False True True
80000001 True True True False False True True
00000000 False False False False False True False
00000001 True False False False False True False
ffffffff True True True True True True True
7fffffff True True True False False True False | [
"Sign",
"extend",
"the",
"value",
"to",
"512",
"bits",
"and",
"check",
"the",
"result",
"can",
"be",
"represented",
"in",
"256",
".",
"Following",
"there",
"is",
"a",
"32",
"bit",
"excerpt",
"of",
"this",
"condition",
":"
]
| python | valid |
apache/incubator-heron | third_party/python/cpplint/cpplint.py | https://github.com/apache/incubator-heron/blob/ad10325a0febe89ad337e561ebcbe37ec5d9a5ac/third_party/python/cpplint/cpplint.py#L5059-L5085 | def CheckPrintf(filename, clean_lines, linenum, error):
"""Check for printf related issues.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found.
"""
line = clean_lines.elided[linenum]
# When snprintf is used, the second argument shouldn't be a literal.
match = Search(r'snprintf\s*\(([^,]*),\s*([0-9]*)\s*,', line)
if match and match.group(2) != '0':
# If 2nd arg is zero, snprintf is used to calculate size.
error(filename, linenum, 'runtime/printf', 3,
'If you can, use sizeof(%s) instead of %s as the 2nd arg '
'to snprintf.' % (match.group(1), match.group(2)))
# Check if some verboten C functions are being used.
if Search(r'\bsprintf\s*\(', line):
error(filename, linenum, 'runtime/printf', 5,
'Never use sprintf. Use snprintf instead.')
match = Search(r'\b(strcpy|strcat)\s*\(', line)
if match:
error(filename, linenum, 'runtime/printf', 4,
'Almost always, snprintf is better than %s' % match.group(1)) | [
"def",
"CheckPrintf",
"(",
"filename",
",",
"clean_lines",
",",
"linenum",
",",
"error",
")",
":",
"line",
"=",
"clean_lines",
".",
"elided",
"[",
"linenum",
"]",
"# When snprintf is used, the second argument shouldn't be a literal.",
"match",
"=",
"Search",
"(",
"r'snprintf\\s*\\(([^,]*),\\s*([0-9]*)\\s*,'",
",",
"line",
")",
"if",
"match",
"and",
"match",
".",
"group",
"(",
"2",
")",
"!=",
"'0'",
":",
"# If 2nd arg is zero, snprintf is used to calculate size.",
"error",
"(",
"filename",
",",
"linenum",
",",
"'runtime/printf'",
",",
"3",
",",
"'If you can, use sizeof(%s) instead of %s as the 2nd arg '",
"'to snprintf.'",
"%",
"(",
"match",
".",
"group",
"(",
"1",
")",
",",
"match",
".",
"group",
"(",
"2",
")",
")",
")",
"# Check if some verboten C functions are being used.",
"if",
"Search",
"(",
"r'\\bsprintf\\s*\\('",
",",
"line",
")",
":",
"error",
"(",
"filename",
",",
"linenum",
",",
"'runtime/printf'",
",",
"5",
",",
"'Never use sprintf. Use snprintf instead.'",
")",
"match",
"=",
"Search",
"(",
"r'\\b(strcpy|strcat)\\s*\\('",
",",
"line",
")",
"if",
"match",
":",
"error",
"(",
"filename",
",",
"linenum",
",",
"'runtime/printf'",
",",
"4",
",",
"'Almost always, snprintf is better than %s'",
"%",
"match",
".",
"group",
"(",
"1",
")",
")"
]
| Check for printf related issues.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found. | [
"Check",
"for",
"printf",
"related",
"issues",
"."
]
| python | valid |
BerkeleyAutomation/autolab_core | autolab_core/transformations.py | https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/transformations.py#L1649-L1662 | def concatenate_matrices(*matrices):
"""Return concatenation of series of transformation matrices.
>>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
>>> numpy.allclose(M, concatenate_matrices(M))
True
>>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
True
"""
M = numpy.identity(4)
for i in matrices:
M = numpy.dot(M, i)
return M | [
"def",
"concatenate_matrices",
"(",
"*",
"matrices",
")",
":",
"M",
"=",
"numpy",
".",
"identity",
"(",
"4",
")",
"for",
"i",
"in",
"matrices",
":",
"M",
"=",
"numpy",
".",
"dot",
"(",
"M",
",",
"i",
")",
"return",
"M"
]
| Return concatenation of series of transformation matrices.
>>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
>>> numpy.allclose(M, concatenate_matrices(M))
True
>>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
True | [
"Return",
"concatenation",
"of",
"series",
"of",
"transformation",
"matrices",
"."
]
| python | train |
raphaelvallat/pingouin | pingouin/plotting.py | https://github.com/raphaelvallat/pingouin/blob/58b19fa4fffbfe09d58b456e3926a148249e4d9b/pingouin/plotting.py#L321-L486 | def qqplot(x, dist='norm', sparams=(), confidence=.95, figsize=(5, 4),
ax=None):
"""Quantile-Quantile plot.
Parameters
----------
x : array_like
Sample data.
dist : str or stats.distributions instance, optional
Distribution or distribution function name. The default is 'norm' for a
normal probability plot. Objects that look enough like a
`scipy.stats.distributions` instance (i.e. they have a ``ppf`` method)
are also accepted.
sparams : tuple, optional
Distribution-specific shape parameters (shape parameters, location,
and scale). See :py:func:`scipy.stats.probplot` for more details.
confidence : float
Confidence level (.95 = 95%) for point-wise confidence envelope.
Pass False for no envelope.
figsize : tuple
Figsize in inches
ax : matplotlib axes
Axis on which to draw the plot
Returns
-------
ax : Matplotlib Axes instance
Returns the Axes object with the plot for further tweaking.
Notes
-----
This function returns a scatter plot of the quantile of the sample data `x`
against the theoretical quantiles of the distribution given in `dist`
(default = 'norm').
The points plotted in a Q–Q plot are always non-decreasing when viewed
from left to right. If the two distributions being compared are identical,
the Q–Q plot follows the 45° line y = x. If the two distributions agree
after linearly transforming the values in one of the distributions,
then the Q–Q plot follows some line, but not necessarily the line y = x.
If the general trend of the Q–Q plot is flatter than the line y = x,
the distribution plotted on the horizontal axis is more dispersed than
the distribution plotted on the vertical axis. Conversely, if the general
trend of the Q–Q plot is steeper than the line y = x, the distribution
plotted on the vertical axis is more dispersed than the distribution
plotted on the horizontal axis. Q–Q plots are often arced, or "S" shaped,
indicating that one of the distributions is more skewed than the other,
or that one of the distributions has heavier tails than the other.
In addition, the function also plots a best-fit line (linear regression)
for the data and annotates the plot with the coefficient of
determination :math:`R^2`. Note that the intercept and slope of the
linear regression between the quantiles gives a measure of the relative
location and relative scale of the samples.
References
----------
.. [1] https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
.. [2] https://github.com/cran/car/blob/master/R/qqPlot.R
.. [3] Fox, J. (2008), Applied Regression Analysis and Generalized Linear
Models, 2nd Ed., Sage Publications, Inc.
Examples
--------
Q-Q plot using a normal theoretical distribution:
.. plot::
>>> import numpy as np
>>> import pingouin as pg
>>> np.random.seed(123)
>>> x = np.random.normal(size=50)
>>> ax = pg.qqplot(x, dist='norm')
Two Q-Q plots using two separate axes:
.. plot::
>>> import numpy as np
>>> import pingouin as pg
>>> import matplotlib.pyplot as plt
>>> np.random.seed(123)
>>> x = np.random.normal(size=50)
>>> x_exp = np.random.exponential(size=50)
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4))
>>> ax1 = pg.qqplot(x, dist='norm', ax=ax1, confidence=False)
>>> ax2 = pg.qqplot(x_exp, dist='expon', ax=ax2)
Using custom location / scale parameters as well as another Seaborn style
.. plot::
>>> import numpy as np
>>> import seaborn as sns
>>> import pingouin as pg
>>> import matplotlib.pyplot as plt
>>> np.random.seed(123)
>>> x = np.random.normal(size=50)
>>> mean, std = 0, 0.8
>>> sns.set_style('darkgrid')
>>> ax = pg.qqplot(x, dist='norm', sparams=(mean, std))
"""
if isinstance(dist, str):
dist = getattr(stats, dist)
x = np.asarray(x)
x = x[~np.isnan(x)] # NaN are automatically removed
# Extract quantiles and regression
quantiles = stats.probplot(x, sparams=sparams, dist=dist, fit=False)
theor, observed = quantiles[0], quantiles[1]
fit_params = dist.fit(x)
loc = fit_params[-2]
scale = fit_params[-1]
shape = fit_params[0] if len(fit_params) == 3 else None
# Observed values to observed quantiles
if loc != 0 and scale != 1:
observed = (np.sort(observed) - fit_params[-2]) / fit_params[-1]
# Linear regression
slope, intercept, r, _, _ = stats.linregress(theor, observed)
# Start the plot
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.plot(theor, observed, 'bo')
stats.morestats._add_axis_labels_title(ax,
xlabel='Theoretical quantiles',
ylabel='Ordered quantiles',
title='Q-Q Plot')
# Add diagonal line
end_pts = [ax.get_xlim(), ax.get_ylim()]
end_pts[0] = min(end_pts[0])
end_pts[1] = max(end_pts[1])
ax.plot(end_pts, end_pts, color='slategrey', lw=1.5)
ax.set_xlim(end_pts)
ax.set_ylim(end_pts)
# Add regression line and annotate R2
fit_val = slope * theor + intercept
ax.plot(theor, fit_val, 'r-', lw=2)
posx = end_pts[0] + 0.60 * (end_pts[1] - end_pts[0])
posy = end_pts[0] + 0.10 * (end_pts[1] - end_pts[0])
ax.text(posx, posy, "$R^2=%.3f$" % r**2)
if confidence is not False:
# Confidence envelope
n = x.size
P = _ppoints(n)
crit = stats.norm.ppf(1 - (1 - confidence) / 2)
pdf = dist.pdf(theor) if shape is None else dist.pdf(theor, shape)
se = (slope / pdf) * np.sqrt(P * (1 - P) / n)
upper = fit_val + crit * se
lower = fit_val - crit * se
ax.plot(theor, upper, 'r--', lw=1.25)
ax.plot(theor, lower, 'r--', lw=1.25)
return ax | [
"def",
"qqplot",
"(",
"x",
",",
"dist",
"=",
"'norm'",
",",
"sparams",
"=",
"(",
")",
",",
"confidence",
"=",
".95",
",",
"figsize",
"=",
"(",
"5",
",",
"4",
")",
",",
"ax",
"=",
"None",
")",
":",
"if",
"isinstance",
"(",
"dist",
",",
"str",
")",
":",
"dist",
"=",
"getattr",
"(",
"stats",
",",
"dist",
")",
"x",
"=",
"np",
".",
"asarray",
"(",
"x",
")",
"x",
"=",
"x",
"[",
"~",
"np",
".",
"isnan",
"(",
"x",
")",
"]",
"# NaN are automatically removed",
"# Extract quantiles and regression",
"quantiles",
"=",
"stats",
".",
"probplot",
"(",
"x",
",",
"sparams",
"=",
"sparams",
",",
"dist",
"=",
"dist",
",",
"fit",
"=",
"False",
")",
"theor",
",",
"observed",
"=",
"quantiles",
"[",
"0",
"]",
",",
"quantiles",
"[",
"1",
"]",
"fit_params",
"=",
"dist",
".",
"fit",
"(",
"x",
")",
"loc",
"=",
"fit_params",
"[",
"-",
"2",
"]",
"scale",
"=",
"fit_params",
"[",
"-",
"1",
"]",
"shape",
"=",
"fit_params",
"[",
"0",
"]",
"if",
"len",
"(",
"fit_params",
")",
"==",
"3",
"else",
"None",
"# Observed values to observed quantiles",
"if",
"loc",
"!=",
"0",
"and",
"scale",
"!=",
"1",
":",
"observed",
"=",
"(",
"np",
".",
"sort",
"(",
"observed",
")",
"-",
"fit_params",
"[",
"-",
"2",
"]",
")",
"/",
"fit_params",
"[",
"-",
"1",
"]",
"# Linear regression",
"slope",
",",
"intercept",
",",
"r",
",",
"_",
",",
"_",
"=",
"stats",
".",
"linregress",
"(",
"theor",
",",
"observed",
")",
"# Start the plot",
"if",
"ax",
"is",
"None",
":",
"fig",
",",
"ax",
"=",
"plt",
".",
"subplots",
"(",
"1",
",",
"1",
",",
"figsize",
"=",
"figsize",
")",
"ax",
".",
"plot",
"(",
"theor",
",",
"observed",
",",
"'bo'",
")",
"stats",
".",
"morestats",
".",
"_add_axis_labels_title",
"(",
"ax",
",",
"xlabel",
"=",
"'Theoretical quantiles'",
",",
"ylabel",
"=",
"'Ordered quantiles'",
",",
"title",
"=",
"'Q-Q Plot'",
")",
"# Add diagonal line",
"end_pts",
"=",
"[",
"ax",
".",
"get_xlim",
"(",
")",
",",
"ax",
".",
"get_ylim",
"(",
")",
"]",
"end_pts",
"[",
"0",
"]",
"=",
"min",
"(",
"end_pts",
"[",
"0",
"]",
")",
"end_pts",
"[",
"1",
"]",
"=",
"max",
"(",
"end_pts",
"[",
"1",
"]",
")",
"ax",
".",
"plot",
"(",
"end_pts",
",",
"end_pts",
",",
"color",
"=",
"'slategrey'",
",",
"lw",
"=",
"1.5",
")",
"ax",
".",
"set_xlim",
"(",
"end_pts",
")",
"ax",
".",
"set_ylim",
"(",
"end_pts",
")",
"# Add regression line and annotate R2",
"fit_val",
"=",
"slope",
"*",
"theor",
"+",
"intercept",
"ax",
".",
"plot",
"(",
"theor",
",",
"fit_val",
",",
"'r-'",
",",
"lw",
"=",
"2",
")",
"posx",
"=",
"end_pts",
"[",
"0",
"]",
"+",
"0.60",
"*",
"(",
"end_pts",
"[",
"1",
"]",
"-",
"end_pts",
"[",
"0",
"]",
")",
"posy",
"=",
"end_pts",
"[",
"0",
"]",
"+",
"0.10",
"*",
"(",
"end_pts",
"[",
"1",
"]",
"-",
"end_pts",
"[",
"0",
"]",
")",
"ax",
".",
"text",
"(",
"posx",
",",
"posy",
",",
"\"$R^2=%.3f$\"",
"%",
"r",
"**",
"2",
")",
"if",
"confidence",
"is",
"not",
"False",
":",
"# Confidence envelope",
"n",
"=",
"x",
".",
"size",
"P",
"=",
"_ppoints",
"(",
"n",
")",
"crit",
"=",
"stats",
".",
"norm",
".",
"ppf",
"(",
"1",
"-",
"(",
"1",
"-",
"confidence",
")",
"/",
"2",
")",
"pdf",
"=",
"dist",
".",
"pdf",
"(",
"theor",
")",
"if",
"shape",
"is",
"None",
"else",
"dist",
".",
"pdf",
"(",
"theor",
",",
"shape",
")",
"se",
"=",
"(",
"slope",
"/",
"pdf",
")",
"*",
"np",
".",
"sqrt",
"(",
"P",
"*",
"(",
"1",
"-",
"P",
")",
"/",
"n",
")",
"upper",
"=",
"fit_val",
"+",
"crit",
"*",
"se",
"lower",
"=",
"fit_val",
"-",
"crit",
"*",
"se",
"ax",
".",
"plot",
"(",
"theor",
",",
"upper",
",",
"'r--'",
",",
"lw",
"=",
"1.25",
")",
"ax",
".",
"plot",
"(",
"theor",
",",
"lower",
",",
"'r--'",
",",
"lw",
"=",
"1.25",
")",
"return",
"ax"
]
| Quantile-Quantile plot.
Parameters
----------
x : array_like
Sample data.
dist : str or stats.distributions instance, optional
Distribution or distribution function name. The default is 'norm' for a
normal probability plot. Objects that look enough like a
`scipy.stats.distributions` instance (i.e. they have a ``ppf`` method)
are also accepted.
sparams : tuple, optional
Distribution-specific shape parameters (shape parameters, location,
and scale). See :py:func:`scipy.stats.probplot` for more details.
confidence : float
Confidence level (.95 = 95%) for point-wise confidence envelope.
Pass False for no envelope.
figsize : tuple
Figsize in inches
ax : matplotlib axes
Axis on which to draw the plot
Returns
-------
ax : Matplotlib Axes instance
Returns the Axes object with the plot for further tweaking.
Notes
-----
This function returns a scatter plot of the quantile of the sample data `x`
against the theoretical quantiles of the distribution given in `dist`
(default = 'norm').
The points plotted in a Q–Q plot are always non-decreasing when viewed
from left to right. If the two distributions being compared are identical,
the Q–Q plot follows the 45° line y = x. If the two distributions agree
after linearly transforming the values in one of the distributions,
then the Q–Q plot follows some line, but not necessarily the line y = x.
If the general trend of the Q–Q plot is flatter than the line y = x,
the distribution plotted on the horizontal axis is more dispersed than
the distribution plotted on the vertical axis. Conversely, if the general
trend of the Q–Q plot is steeper than the line y = x, the distribution
plotted on the vertical axis is more dispersed than the distribution
plotted on the horizontal axis. Q–Q plots are often arced, or "S" shaped,
indicating that one of the distributions is more skewed than the other,
or that one of the distributions has heavier tails than the other.
In addition, the function also plots a best-fit line (linear regression)
for the data and annotates the plot with the coefficient of
determination :math:`R^2`. Note that the intercept and slope of the
linear regression between the quantiles gives a measure of the relative
location and relative scale of the samples.
References
----------
.. [1] https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
.. [2] https://github.com/cran/car/blob/master/R/qqPlot.R
.. [3] Fox, J. (2008), Applied Regression Analysis and Generalized Linear
Models, 2nd Ed., Sage Publications, Inc.
Examples
--------
Q-Q plot using a normal theoretical distribution:
.. plot::
>>> import numpy as np
>>> import pingouin as pg
>>> np.random.seed(123)
>>> x = np.random.normal(size=50)
>>> ax = pg.qqplot(x, dist='norm')
Two Q-Q plots using two separate axes:
.. plot::
>>> import numpy as np
>>> import pingouin as pg
>>> import matplotlib.pyplot as plt
>>> np.random.seed(123)
>>> x = np.random.normal(size=50)
>>> x_exp = np.random.exponential(size=50)
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(9, 4))
>>> ax1 = pg.qqplot(x, dist='norm', ax=ax1, confidence=False)
>>> ax2 = pg.qqplot(x_exp, dist='expon', ax=ax2)
Using custom location / scale parameters as well as another Seaborn style
.. plot::
>>> import numpy as np
>>> import seaborn as sns
>>> import pingouin as pg
>>> import matplotlib.pyplot as plt
>>> np.random.seed(123)
>>> x = np.random.normal(size=50)
>>> mean, std = 0, 0.8
>>> sns.set_style('darkgrid')
>>> ax = pg.qqplot(x, dist='norm', sparams=(mean, std)) | [
"Quantile",
"-",
"Quantile",
"plot",
"."
]
| python | train |
quantumlib/Cirq | cirq/circuits/text_diagram_drawer.py | https://github.com/quantumlib/Cirq/blob/0827da80dd7880e5b923eb69407e980ed9bc0bd2/cirq/circuits/text_diagram_drawer.py#L239-L307 | def render(self,
horizontal_spacing: int = 1,
vertical_spacing: int = 1,
crossing_char: str = None,
use_unicode_characters: bool = True) -> str:
"""Outputs text containing the diagram."""
block_diagram = BlockDiagramDrawer()
w = self.width()
h = self.height()
# Communicate padding into block diagram.
for x in range(0, w - 1):
block_diagram.set_col_min_width(
x*2 + 1,
# Horizontal separation looks narrow, so partials round up.
int(np.ceil(self.horizontal_padding.get(x, horizontal_spacing)))
)
block_diagram.set_col_min_width(x*2, 1)
for y in range(0, h - 1):
block_diagram.set_row_min_height(
y*2 + 1,
# Vertical separation looks wide, so partials round down.
int(np.floor(self.vertical_padding.get(y, vertical_spacing)))
)
block_diagram.set_row_min_height(y*2, 1)
# Draw vertical lines.
for x_b, y1_b, y2_b, emphasize in self.vertical_lines:
x = int(x_b * 2)
y1, y2 = int(min(y1_b, y2_b) * 2), int(max(y1_b, y2_b) * 2)
charset = pick_charset(use_unicode_characters, emphasize)
# Caps.
block_diagram.mutable_block(x, y1).draw_curve(
charset, bottom=True)
block_diagram.mutable_block(x, y2).draw_curve(
charset, top=True)
# Span.
for y in range(y1 + 1, y2):
block_diagram.mutable_block(x, y).draw_curve(
charset, top=True, bottom=True)
# Draw horizontal lines.
for y_b, x1_b, x2_b, emphasize in self.horizontal_lines:
y = int(y_b * 2)
x1, x2 = int(min(x1_b, x2_b) * 2), int(max(x1_b, x2_b) * 2)
charset = pick_charset(use_unicode_characters, emphasize)
# Caps.
block_diagram.mutable_block(x1, y).draw_curve(
charset, right=True)
block_diagram.mutable_block(x2, y).draw_curve(
charset, left=True)
# Span.
for x in range(x1 + 1, x2):
block_diagram.mutable_block(x, y).draw_curve(
charset, left=True, right=True, crossing_char=crossing_char)
# Place entries.
for (x, y), v in self.entries.items():
x *= 2
y *= 2
block_diagram.mutable_block(x, y).content = v.text
return block_diagram.render() | [
"def",
"render",
"(",
"self",
",",
"horizontal_spacing",
":",
"int",
"=",
"1",
",",
"vertical_spacing",
":",
"int",
"=",
"1",
",",
"crossing_char",
":",
"str",
"=",
"None",
",",
"use_unicode_characters",
":",
"bool",
"=",
"True",
")",
"->",
"str",
":",
"block_diagram",
"=",
"BlockDiagramDrawer",
"(",
")",
"w",
"=",
"self",
".",
"width",
"(",
")",
"h",
"=",
"self",
".",
"height",
"(",
")",
"# Communicate padding into block diagram.",
"for",
"x",
"in",
"range",
"(",
"0",
",",
"w",
"-",
"1",
")",
":",
"block_diagram",
".",
"set_col_min_width",
"(",
"x",
"*",
"2",
"+",
"1",
",",
"# Horizontal separation looks narrow, so partials round up.",
"int",
"(",
"np",
".",
"ceil",
"(",
"self",
".",
"horizontal_padding",
".",
"get",
"(",
"x",
",",
"horizontal_spacing",
")",
")",
")",
")",
"block_diagram",
".",
"set_col_min_width",
"(",
"x",
"*",
"2",
",",
"1",
")",
"for",
"y",
"in",
"range",
"(",
"0",
",",
"h",
"-",
"1",
")",
":",
"block_diagram",
".",
"set_row_min_height",
"(",
"y",
"*",
"2",
"+",
"1",
",",
"# Vertical separation looks wide, so partials round down.",
"int",
"(",
"np",
".",
"floor",
"(",
"self",
".",
"vertical_padding",
".",
"get",
"(",
"y",
",",
"vertical_spacing",
")",
")",
")",
")",
"block_diagram",
".",
"set_row_min_height",
"(",
"y",
"*",
"2",
",",
"1",
")",
"# Draw vertical lines.",
"for",
"x_b",
",",
"y1_b",
",",
"y2_b",
",",
"emphasize",
"in",
"self",
".",
"vertical_lines",
":",
"x",
"=",
"int",
"(",
"x_b",
"*",
"2",
")",
"y1",
",",
"y2",
"=",
"int",
"(",
"min",
"(",
"y1_b",
",",
"y2_b",
")",
"*",
"2",
")",
",",
"int",
"(",
"max",
"(",
"y1_b",
",",
"y2_b",
")",
"*",
"2",
")",
"charset",
"=",
"pick_charset",
"(",
"use_unicode_characters",
",",
"emphasize",
")",
"# Caps.",
"block_diagram",
".",
"mutable_block",
"(",
"x",
",",
"y1",
")",
".",
"draw_curve",
"(",
"charset",
",",
"bottom",
"=",
"True",
")",
"block_diagram",
".",
"mutable_block",
"(",
"x",
",",
"y2",
")",
".",
"draw_curve",
"(",
"charset",
",",
"top",
"=",
"True",
")",
"# Span.",
"for",
"y",
"in",
"range",
"(",
"y1",
"+",
"1",
",",
"y2",
")",
":",
"block_diagram",
".",
"mutable_block",
"(",
"x",
",",
"y",
")",
".",
"draw_curve",
"(",
"charset",
",",
"top",
"=",
"True",
",",
"bottom",
"=",
"True",
")",
"# Draw horizontal lines.",
"for",
"y_b",
",",
"x1_b",
",",
"x2_b",
",",
"emphasize",
"in",
"self",
".",
"horizontal_lines",
":",
"y",
"=",
"int",
"(",
"y_b",
"*",
"2",
")",
"x1",
",",
"x2",
"=",
"int",
"(",
"min",
"(",
"x1_b",
",",
"x2_b",
")",
"*",
"2",
")",
",",
"int",
"(",
"max",
"(",
"x1_b",
",",
"x2_b",
")",
"*",
"2",
")",
"charset",
"=",
"pick_charset",
"(",
"use_unicode_characters",
",",
"emphasize",
")",
"# Caps.",
"block_diagram",
".",
"mutable_block",
"(",
"x1",
",",
"y",
")",
".",
"draw_curve",
"(",
"charset",
",",
"right",
"=",
"True",
")",
"block_diagram",
".",
"mutable_block",
"(",
"x2",
",",
"y",
")",
".",
"draw_curve",
"(",
"charset",
",",
"left",
"=",
"True",
")",
"# Span.",
"for",
"x",
"in",
"range",
"(",
"x1",
"+",
"1",
",",
"x2",
")",
":",
"block_diagram",
".",
"mutable_block",
"(",
"x",
",",
"y",
")",
".",
"draw_curve",
"(",
"charset",
",",
"left",
"=",
"True",
",",
"right",
"=",
"True",
",",
"crossing_char",
"=",
"crossing_char",
")",
"# Place entries.",
"for",
"(",
"x",
",",
"y",
")",
",",
"v",
"in",
"self",
".",
"entries",
".",
"items",
"(",
")",
":",
"x",
"*=",
"2",
"y",
"*=",
"2",
"block_diagram",
".",
"mutable_block",
"(",
"x",
",",
"y",
")",
".",
"content",
"=",
"v",
".",
"text",
"return",
"block_diagram",
".",
"render",
"(",
")"
]
| Outputs text containing the diagram. | [
"Outputs",
"text",
"containing",
"the",
"diagram",
"."
]
| python | train |
HazardDede/dictmentor | dictmentor/extensions.py | https://github.com/HazardDede/dictmentor/blob/f50ca26ed04f7a924cde6e4d464c4f6ccba4e320/dictmentor/extensions.py#L220-L225 | def _config(self) -> ExtensionConfig:
"""
Tells the processor to look for the specified pattern in node key only.
Returns: The scanner configuration.
"""
return dict(pattern=self.__pattern__, search_in_keys=True, search_in_values=False) | [
"def",
"_config",
"(",
"self",
")",
"->",
"ExtensionConfig",
":",
"return",
"dict",
"(",
"pattern",
"=",
"self",
".",
"__pattern__",
",",
"search_in_keys",
"=",
"True",
",",
"search_in_values",
"=",
"False",
")"
]
| Tells the processor to look for the specified pattern in node key only.
Returns: The scanner configuration. | [
"Tells",
"the",
"processor",
"to",
"look",
"for",
"the",
"specified",
"pattern",
"in",
"node",
"key",
"only",
".",
"Returns",
":",
"The",
"scanner",
"configuration",
"."
]
| python | train |
sernst/cauldron | cauldron/session/exposed.py | https://github.com/sernst/cauldron/blob/4086aec9c038c402ea212c79fe8bd0d27104f9cf/cauldron/session/exposed.py#L50-L52 | def shared(self) -> typing.Union[None, SharedCache]:
"""The shared display object associated with this project."""
return self._project.shared if self._project else None | [
"def",
"shared",
"(",
"self",
")",
"->",
"typing",
".",
"Union",
"[",
"None",
",",
"SharedCache",
"]",
":",
"return",
"self",
".",
"_project",
".",
"shared",
"if",
"self",
".",
"_project",
"else",
"None"
]
| The shared display object associated with this project. | [
"The",
"shared",
"display",
"object",
"associated",
"with",
"this",
"project",
"."
]
| python | train |
git-afsantos/bonsai | bonsai/model.py | https://github.com/git-afsantos/bonsai/blob/aa5af3f535b3b506bfc95c107c501fc9c4bcd072/bonsai/model.py#L1350-L1354 | def get_branches(self):
"""Return a list with the conditional branch and the default branch."""
if self.else_branch:
return [self.then_branch, self.else_branch]
return [self.then_branch] | [
"def",
"get_branches",
"(",
"self",
")",
":",
"if",
"self",
".",
"else_branch",
":",
"return",
"[",
"self",
".",
"then_branch",
",",
"self",
".",
"else_branch",
"]",
"return",
"[",
"self",
".",
"then_branch",
"]"
]
| Return a list with the conditional branch and the default branch. | [
"Return",
"a",
"list",
"with",
"the",
"conditional",
"branch",
"and",
"the",
"default",
"branch",
"."
]
| python | train |
softlayer/softlayer-python | SoftLayer/CLI/file/snapshot/order.py | https://github.com/softlayer/softlayer-python/blob/9f181be08cc3668353b05a6de0cb324f52cff6fa/SoftLayer/CLI/file/snapshot/order.py#L27-L53 | def cli(env, volume_id, capacity, tier, upgrade):
"""Order snapshot space for a file storage volume."""
file_manager = SoftLayer.FileStorageManager(env.client)
if tier is not None:
tier = float(tier)
try:
order = file_manager.order_snapshot_space(
volume_id,
capacity=capacity,
tier=tier,
upgrade=upgrade
)
except ValueError as ex:
raise exceptions.ArgumentError(str(ex))
if 'placedOrder' in order.keys():
click.echo("Order #{0} placed successfully!".format(
order['placedOrder']['id']))
for item in order['placedOrder']['items']:
click.echo(" > %s" % item['description'])
if 'status' in order['placedOrder'].keys():
click.echo(" > Order status: %s" % order['placedOrder']['status'])
else:
click.echo("Order could not be placed! Please verify your options " +
"and try again.") | [
"def",
"cli",
"(",
"env",
",",
"volume_id",
",",
"capacity",
",",
"tier",
",",
"upgrade",
")",
":",
"file_manager",
"=",
"SoftLayer",
".",
"FileStorageManager",
"(",
"env",
".",
"client",
")",
"if",
"tier",
"is",
"not",
"None",
":",
"tier",
"=",
"float",
"(",
"tier",
")",
"try",
":",
"order",
"=",
"file_manager",
".",
"order_snapshot_space",
"(",
"volume_id",
",",
"capacity",
"=",
"capacity",
",",
"tier",
"=",
"tier",
",",
"upgrade",
"=",
"upgrade",
")",
"except",
"ValueError",
"as",
"ex",
":",
"raise",
"exceptions",
".",
"ArgumentError",
"(",
"str",
"(",
"ex",
")",
")",
"if",
"'placedOrder'",
"in",
"order",
".",
"keys",
"(",
")",
":",
"click",
".",
"echo",
"(",
"\"Order #{0} placed successfully!\"",
".",
"format",
"(",
"order",
"[",
"'placedOrder'",
"]",
"[",
"'id'",
"]",
")",
")",
"for",
"item",
"in",
"order",
"[",
"'placedOrder'",
"]",
"[",
"'items'",
"]",
":",
"click",
".",
"echo",
"(",
"\" > %s\"",
"%",
"item",
"[",
"'description'",
"]",
")",
"if",
"'status'",
"in",
"order",
"[",
"'placedOrder'",
"]",
".",
"keys",
"(",
")",
":",
"click",
".",
"echo",
"(",
"\" > Order status: %s\"",
"%",
"order",
"[",
"'placedOrder'",
"]",
"[",
"'status'",
"]",
")",
"else",
":",
"click",
".",
"echo",
"(",
"\"Order could not be placed! Please verify your options \"",
"+",
"\"and try again.\"",
")"
]
| Order snapshot space for a file storage volume. | [
"Order",
"snapshot",
"space",
"for",
"a",
"file",
"storage",
"volume",
"."
]
| python | train |
Azure/azure-cli-extensions | src/interactive/azext_interactive/azclishell/app.py | https://github.com/Azure/azure-cli-extensions/blob/3d4854205b0f0d882f688cfa12383d14506c2e35/src/interactive/azext_interactive/azclishell/app.py#L431-L468 | def example_repl(self, text, example, start_index, continue_flag):
""" REPL for interactive tutorials """
if start_index:
start_index = start_index + 1
cmd = ' '.join(text.split()[:start_index])
example_cli = CommandLineInterface(
application=self.create_application(
full_layout=False),
eventloop=create_eventloop())
example_cli.buffers['example_line'].reset(
initial_document=Document(u'{}\n'.format(
add_new_lines(example)))
)
while start_index < len(text.split()):
if self.default_command:
cmd = cmd.replace(self.default_command + ' ', '')
example_cli.buffers[DEFAULT_BUFFER].reset(
initial_document=Document(
u'{}'.format(cmd),
cursor_position=len(cmd)))
example_cli.request_redraw()
answer = example_cli.run()
if not answer:
return "", True
answer = answer.text
if answer.strip('\n') == cmd.strip('\n'):
continue
else:
if len(answer.split()) > 1:
start_index += 1
cmd += " " + answer.split()[-1] + " " +\
u' '.join(text.split()[start_index:start_index + 1])
example_cli.exit()
del example_cli
else:
cmd = text
return cmd, continue_flag | [
"def",
"example_repl",
"(",
"self",
",",
"text",
",",
"example",
",",
"start_index",
",",
"continue_flag",
")",
":",
"if",
"start_index",
":",
"start_index",
"=",
"start_index",
"+",
"1",
"cmd",
"=",
"' '",
".",
"join",
"(",
"text",
".",
"split",
"(",
")",
"[",
":",
"start_index",
"]",
")",
"example_cli",
"=",
"CommandLineInterface",
"(",
"application",
"=",
"self",
".",
"create_application",
"(",
"full_layout",
"=",
"False",
")",
",",
"eventloop",
"=",
"create_eventloop",
"(",
")",
")",
"example_cli",
".",
"buffers",
"[",
"'example_line'",
"]",
".",
"reset",
"(",
"initial_document",
"=",
"Document",
"(",
"u'{}\\n'",
".",
"format",
"(",
"add_new_lines",
"(",
"example",
")",
")",
")",
")",
"while",
"start_index",
"<",
"len",
"(",
"text",
".",
"split",
"(",
")",
")",
":",
"if",
"self",
".",
"default_command",
":",
"cmd",
"=",
"cmd",
".",
"replace",
"(",
"self",
".",
"default_command",
"+",
"' '",
",",
"''",
")",
"example_cli",
".",
"buffers",
"[",
"DEFAULT_BUFFER",
"]",
".",
"reset",
"(",
"initial_document",
"=",
"Document",
"(",
"u'{}'",
".",
"format",
"(",
"cmd",
")",
",",
"cursor_position",
"=",
"len",
"(",
"cmd",
")",
")",
")",
"example_cli",
".",
"request_redraw",
"(",
")",
"answer",
"=",
"example_cli",
".",
"run",
"(",
")",
"if",
"not",
"answer",
":",
"return",
"\"\"",
",",
"True",
"answer",
"=",
"answer",
".",
"text",
"if",
"answer",
".",
"strip",
"(",
"'\\n'",
")",
"==",
"cmd",
".",
"strip",
"(",
"'\\n'",
")",
":",
"continue",
"else",
":",
"if",
"len",
"(",
"answer",
".",
"split",
"(",
")",
")",
">",
"1",
":",
"start_index",
"+=",
"1",
"cmd",
"+=",
"\" \"",
"+",
"answer",
".",
"split",
"(",
")",
"[",
"-",
"1",
"]",
"+",
"\" \"",
"+",
"u' '",
".",
"join",
"(",
"text",
".",
"split",
"(",
")",
"[",
"start_index",
":",
"start_index",
"+",
"1",
"]",
")",
"example_cli",
".",
"exit",
"(",
")",
"del",
"example_cli",
"else",
":",
"cmd",
"=",
"text",
"return",
"cmd",
",",
"continue_flag"
]
| REPL for interactive tutorials | [
"REPL",
"for",
"interactive",
"tutorials"
]
| python | train |
apache/spark | python/pyspark/ml/param/__init__.py | https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/ml/param/__init__.py#L138-L146 | def toListInt(value):
"""
Convert a value to list of ints, if possible.
"""
if TypeConverters._can_convert_to_list(value):
value = TypeConverters.toList(value)
if all(map(lambda v: TypeConverters._is_integer(v), value)):
return [int(v) for v in value]
raise TypeError("Could not convert %s to list of ints" % value) | [
"def",
"toListInt",
"(",
"value",
")",
":",
"if",
"TypeConverters",
".",
"_can_convert_to_list",
"(",
"value",
")",
":",
"value",
"=",
"TypeConverters",
".",
"toList",
"(",
"value",
")",
"if",
"all",
"(",
"map",
"(",
"lambda",
"v",
":",
"TypeConverters",
".",
"_is_integer",
"(",
"v",
")",
",",
"value",
")",
")",
":",
"return",
"[",
"int",
"(",
"v",
")",
"for",
"v",
"in",
"value",
"]",
"raise",
"TypeError",
"(",
"\"Could not convert %s to list of ints\"",
"%",
"value",
")"
]
| Convert a value to list of ints, if possible. | [
"Convert",
"a",
"value",
"to",
"list",
"of",
"ints",
"if",
"possible",
"."
]
| python | train |
apple/turicreate | deps/src/libxml2-2.9.1/python/libxml2.py | https://github.com/apple/turicreate/blob/74514c3f99e25b46f22c6e02977fe3da69221c2e/deps/src/libxml2-2.9.1/python/libxml2.py#L7333-L7337 | def xpathEval(self, str):
"""Evaluate the XPath Location Path in the given context. """
ret = libxml2mod.xmlXPathEval(str, self._o)
if ret is None:raise xpathError('xmlXPathEval() failed')
return xpathObjectRet(ret) | [
"def",
"xpathEval",
"(",
"self",
",",
"str",
")",
":",
"ret",
"=",
"libxml2mod",
".",
"xmlXPathEval",
"(",
"str",
",",
"self",
".",
"_o",
")",
"if",
"ret",
"is",
"None",
":",
"raise",
"xpathError",
"(",
"'xmlXPathEval() failed'",
")",
"return",
"xpathObjectRet",
"(",
"ret",
")"
]
| Evaluate the XPath Location Path in the given context. | [
"Evaluate",
"the",
"XPath",
"Location",
"Path",
"in",
"the",
"given",
"context",
"."
]
| python | train |
aws/aws-encryption-sdk-python | src/aws_encryption_sdk/internal/formatting/deserialize.py | https://github.com/aws/aws-encryption-sdk-python/blob/d182155d5fb1ef176d9e7d0647679737d5146495/src/aws_encryption_sdk/internal/formatting/deserialize.py#L52-L73 | def validate_header(header, header_auth, raw_header, data_key):
"""Validates the header using the header authentication data.
:param header: Deserialized header
:type header: aws_encryption_sdk.structures.MessageHeader
:param header_auth: Deserialized header auth
:type header_auth: aws_encryption_sdk.internal.structures.MessageHeaderAuthentication
:type stream: io.BytesIO
:param bytes raw_header: Raw header bytes
:param bytes data_key: Data key with which to perform validation
:raises SerializationError: if header authorization fails
"""
_LOGGER.debug("Starting header validation")
try:
decrypt(
algorithm=header.algorithm,
key=data_key,
encrypted_data=EncryptedData(header_auth.iv, b"", header_auth.tag),
associated_data=raw_header,
)
except InvalidTag:
raise SerializationError("Header authorization failed") | [
"def",
"validate_header",
"(",
"header",
",",
"header_auth",
",",
"raw_header",
",",
"data_key",
")",
":",
"_LOGGER",
".",
"debug",
"(",
"\"Starting header validation\"",
")",
"try",
":",
"decrypt",
"(",
"algorithm",
"=",
"header",
".",
"algorithm",
",",
"key",
"=",
"data_key",
",",
"encrypted_data",
"=",
"EncryptedData",
"(",
"header_auth",
".",
"iv",
",",
"b\"\"",
",",
"header_auth",
".",
"tag",
")",
",",
"associated_data",
"=",
"raw_header",
",",
")",
"except",
"InvalidTag",
":",
"raise",
"SerializationError",
"(",
"\"Header authorization failed\"",
")"
]
| Validates the header using the header authentication data.
:param header: Deserialized header
:type header: aws_encryption_sdk.structures.MessageHeader
:param header_auth: Deserialized header auth
:type header_auth: aws_encryption_sdk.internal.structures.MessageHeaderAuthentication
:type stream: io.BytesIO
:param bytes raw_header: Raw header bytes
:param bytes data_key: Data key with which to perform validation
:raises SerializationError: if header authorization fails | [
"Validates",
"the",
"header",
"using",
"the",
"header",
"authentication",
"data",
"."
]
| python | train |
fulfilio/python-magento | magento/catalog.py | https://github.com/fulfilio/python-magento/blob/720ec136a6e438a9ee4ee92848a9820b91732750/magento/catalog.py#L253-L270 | def info(self, product, store_view=None, attributes=None,
identifierType=None):
"""
Retrieve product data
:param product: ID or SKU of product
:param store_view: ID or Code of store view
:param attributes: List of fields required
:param identifierType: Defines whether the product or SKU value is
passed in the "product" parameter.
:return: `dict` of values
"""
return self.call(
'catalog_product.info', [
product, store_view, attributes, identifierType
]
) | [
"def",
"info",
"(",
"self",
",",
"product",
",",
"store_view",
"=",
"None",
",",
"attributes",
"=",
"None",
",",
"identifierType",
"=",
"None",
")",
":",
"return",
"self",
".",
"call",
"(",
"'catalog_product.info'",
",",
"[",
"product",
",",
"store_view",
",",
"attributes",
",",
"identifierType",
"]",
")"
]
| Retrieve product data
:param product: ID or SKU of product
:param store_view: ID or Code of store view
:param attributes: List of fields required
:param identifierType: Defines whether the product or SKU value is
passed in the "product" parameter.
:return: `dict` of values | [
"Retrieve",
"product",
"data"
]
| python | train |
dereneaton/ipyrad | ipyrad/analysis/tetrad2.py | https://github.com/dereneaton/ipyrad/blob/5eeb8a178160f45faf71bf47cec4abe998a575d1/ipyrad/analysis/tetrad2.py#L1169-L1278 | def store_equal(self):
"""
Takes a tetrad class object and populates array with random
quartets sampled equally among splits of the tree so that
deep splits are not overrepresented relative to rare splits,
like those near the tips.
"""
with h5py.File(self.database.input, 'a') as io5:
fillsets = io5["quartets"]
## require guidetree
if not os.path.exists(self.files.tree):
raise IPyradWarningExit(
"To use sampling method 'equal' requires a guidetree")
tre = ete3.Tree(self.files.tree)
tre.unroot()
tre.resolve_polytomy(recursive=True)
## randomly sample internals splits
splits = [([self.samples.index(z.name) for z in i],
[self.samples.index(z.name) for z in j]) \
for (i, j) in tre.get_edges()]
## only keep internal splits, not single tip edges
splits = [i for i in splits if all([len(j) > 1 for j in i])]
## how many min quartets shoudl be equally sampled from each split
squarts = self.params.nquartets // len(splits)
## keep track of how many iterators are saturable.
saturable = 0
## turn each into an iterable split sampler
## if the nquartets for that split is small, then sample all,
## if it is big then make it a random sampler for that split.
qiters = []
## iterate over splits sampling quartets evenly
for idx, split in enumerate(splits):
## if small number at this split then sample all possible sets
## we will exhaust this quickly and then switch to random for
## the larger splits.
total = n_choose_k(len(split[0]), 2) * n_choose_k(len(split[1]), 2)
if total < squarts*2:
qiter = (i+j for (i, j) in itertools.product(
itertools.combinations(split[0], 2),
itertools.combinations(split[1], 2)))
saturable += 1
## else create random sampler across that split, this is slower
## because it can propose the same split repeatedly and so we
## have to check it against the 'sampled' set.
else:
qiter = (random_product(split[0], split[1]) for _ \
in xrange(self.params.nquartets))
## store all iterators into a list
qiters.append((idx, qiter))
## create infinite cycler of qiters
qitercycle = itertools.cycle(qiters)
## store visited quartets
sampled = set()
## fill chunksize at a time
i = 0
empty = set()
edge_targeted = 0
random_targeted = 0
## keep filling quartets until nquartets are sampled.
while i < self.params.nquartets:
## grab the next iterator
cycle, qiter = qitercycle.next()
## sample from iterators, store sorted set.
try:
qrtsamp = tuple(sorted(qiter.next()))
if qrtsamp not in sampled:
sampled.add(qrtsamp)
edge_targeted += 1
i += 1
## print progress bar update to engine stdout
if not i % self._chunksize:
print(min(i, self.params.nquartets))
except StopIteration:
empty.add(cycle)
if len(empty) == saturable:
break
## if array is not full then add random samples
while i <= self.params.nquartets:
newset = tuple(sorted(np.random.choice(
range(len(self.samples)), 4, replace=False)))
if newset not in sampled:
sampled.add(newset)
random_targeted += 1
i += 1
## print progress bar update to engine stdout
if not i % self._chunksize:
print(min(i, self.params.nquartets))
## store into database
print(self.params.nquartets)
fillsets[:] = np.array(tuple(sampled))
del sampled | [
"def",
"store_equal",
"(",
"self",
")",
":",
"with",
"h5py",
".",
"File",
"(",
"self",
".",
"database",
".",
"input",
",",
"'a'",
")",
"as",
"io5",
":",
"fillsets",
"=",
"io5",
"[",
"\"quartets\"",
"]",
"## require guidetree",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"self",
".",
"files",
".",
"tree",
")",
":",
"raise",
"IPyradWarningExit",
"(",
"\"To use sampling method 'equal' requires a guidetree\"",
")",
"tre",
"=",
"ete3",
".",
"Tree",
"(",
"self",
".",
"files",
".",
"tree",
")",
"tre",
".",
"unroot",
"(",
")",
"tre",
".",
"resolve_polytomy",
"(",
"recursive",
"=",
"True",
")",
"## randomly sample internals splits",
"splits",
"=",
"[",
"(",
"[",
"self",
".",
"samples",
".",
"index",
"(",
"z",
".",
"name",
")",
"for",
"z",
"in",
"i",
"]",
",",
"[",
"self",
".",
"samples",
".",
"index",
"(",
"z",
".",
"name",
")",
"for",
"z",
"in",
"j",
"]",
")",
"for",
"(",
"i",
",",
"j",
")",
"in",
"tre",
".",
"get_edges",
"(",
")",
"]",
"## only keep internal splits, not single tip edges",
"splits",
"=",
"[",
"i",
"for",
"i",
"in",
"splits",
"if",
"all",
"(",
"[",
"len",
"(",
"j",
")",
">",
"1",
"for",
"j",
"in",
"i",
"]",
")",
"]",
"## how many min quartets shoudl be equally sampled from each split",
"squarts",
"=",
"self",
".",
"params",
".",
"nquartets",
"//",
"len",
"(",
"splits",
")",
"## keep track of how many iterators are saturable.",
"saturable",
"=",
"0",
"## turn each into an iterable split sampler",
"## if the nquartets for that split is small, then sample all, ",
"## if it is big then make it a random sampler for that split.",
"qiters",
"=",
"[",
"]",
"## iterate over splits sampling quartets evenly",
"for",
"idx",
",",
"split",
"in",
"enumerate",
"(",
"splits",
")",
":",
"## if small number at this split then sample all possible sets",
"## we will exhaust this quickly and then switch to random for ",
"## the larger splits.",
"total",
"=",
"n_choose_k",
"(",
"len",
"(",
"split",
"[",
"0",
"]",
")",
",",
"2",
")",
"*",
"n_choose_k",
"(",
"len",
"(",
"split",
"[",
"1",
"]",
")",
",",
"2",
")",
"if",
"total",
"<",
"squarts",
"*",
"2",
":",
"qiter",
"=",
"(",
"i",
"+",
"j",
"for",
"(",
"i",
",",
"j",
")",
"in",
"itertools",
".",
"product",
"(",
"itertools",
".",
"combinations",
"(",
"split",
"[",
"0",
"]",
",",
"2",
")",
",",
"itertools",
".",
"combinations",
"(",
"split",
"[",
"1",
"]",
",",
"2",
")",
")",
")",
"saturable",
"+=",
"1",
"## else create random sampler across that split, this is slower",
"## because it can propose the same split repeatedly and so we ",
"## have to check it against the 'sampled' set.",
"else",
":",
"qiter",
"=",
"(",
"random_product",
"(",
"split",
"[",
"0",
"]",
",",
"split",
"[",
"1",
"]",
")",
"for",
"_",
"in",
"xrange",
"(",
"self",
".",
"params",
".",
"nquartets",
")",
")",
"## store all iterators into a list",
"qiters",
".",
"append",
"(",
"(",
"idx",
",",
"qiter",
")",
")",
"## create infinite cycler of qiters",
"qitercycle",
"=",
"itertools",
".",
"cycle",
"(",
"qiters",
")",
"## store visited quartets",
"sampled",
"=",
"set",
"(",
")",
"## fill chunksize at a time",
"i",
"=",
"0",
"empty",
"=",
"set",
"(",
")",
"edge_targeted",
"=",
"0",
"random_targeted",
"=",
"0",
"## keep filling quartets until nquartets are sampled.",
"while",
"i",
"<",
"self",
".",
"params",
".",
"nquartets",
":",
"## grab the next iterator",
"cycle",
",",
"qiter",
"=",
"qitercycle",
".",
"next",
"(",
")",
"## sample from iterators, store sorted set.",
"try",
":",
"qrtsamp",
"=",
"tuple",
"(",
"sorted",
"(",
"qiter",
".",
"next",
"(",
")",
")",
")",
"if",
"qrtsamp",
"not",
"in",
"sampled",
":",
"sampled",
".",
"add",
"(",
"qrtsamp",
")",
"edge_targeted",
"+=",
"1",
"i",
"+=",
"1",
"## print progress bar update to engine stdout",
"if",
"not",
"i",
"%",
"self",
".",
"_chunksize",
":",
"print",
"(",
"min",
"(",
"i",
",",
"self",
".",
"params",
".",
"nquartets",
")",
")",
"except",
"StopIteration",
":",
"empty",
".",
"add",
"(",
"cycle",
")",
"if",
"len",
"(",
"empty",
")",
"==",
"saturable",
":",
"break",
"## if array is not full then add random samples",
"while",
"i",
"<=",
"self",
".",
"params",
".",
"nquartets",
":",
"newset",
"=",
"tuple",
"(",
"sorted",
"(",
"np",
".",
"random",
".",
"choice",
"(",
"range",
"(",
"len",
"(",
"self",
".",
"samples",
")",
")",
",",
"4",
",",
"replace",
"=",
"False",
")",
")",
")",
"if",
"newset",
"not",
"in",
"sampled",
":",
"sampled",
".",
"add",
"(",
"newset",
")",
"random_targeted",
"+=",
"1",
"i",
"+=",
"1",
"## print progress bar update to engine stdout",
"if",
"not",
"i",
"%",
"self",
".",
"_chunksize",
":",
"print",
"(",
"min",
"(",
"i",
",",
"self",
".",
"params",
".",
"nquartets",
")",
")",
"## store into database",
"print",
"(",
"self",
".",
"params",
".",
"nquartets",
")",
"fillsets",
"[",
":",
"]",
"=",
"np",
".",
"array",
"(",
"tuple",
"(",
"sampled",
")",
")",
"del",
"sampled"
]
| Takes a tetrad class object and populates array with random
quartets sampled equally among splits of the tree so that
deep splits are not overrepresented relative to rare splits,
like those near the tips. | [
"Takes",
"a",
"tetrad",
"class",
"object",
"and",
"populates",
"array",
"with",
"random",
"quartets",
"sampled",
"equally",
"among",
"splits",
"of",
"the",
"tree",
"so",
"that",
"deep",
"splits",
"are",
"not",
"overrepresented",
"relative",
"to",
"rare",
"splits",
"like",
"those",
"near",
"the",
"tips",
"."
]
| python | valid |
adafruit/Adafruit_Python_MCP9808 | Adafruit_MCP9808/MCP9808.py | https://github.com/adafruit/Adafruit_Python_MCP9808/blob/5524605a15cfce5668f259de72c88d5be74565f4/Adafruit_MCP9808/MCP9808.py#L67-L76 | def begin(self):
"""Start taking temperature measurements. Returns True if the device is
intialized, False otherwise.
"""
# Check manufacturer and device ID match expected values.
mid = self._device.readU16BE(MCP9808_REG_MANUF_ID)
did = self._device.readU16BE(MCP9808_REG_DEVICE_ID)
self._logger.debug('Read manufacturer ID: {0:04X}'.format(mid))
self._logger.debug('Read device ID: {0:04X}'.format(did))
return mid == 0x0054 and did == 0x0400 | [
"def",
"begin",
"(",
"self",
")",
":",
"# Check manufacturer and device ID match expected values.",
"mid",
"=",
"self",
".",
"_device",
".",
"readU16BE",
"(",
"MCP9808_REG_MANUF_ID",
")",
"did",
"=",
"self",
".",
"_device",
".",
"readU16BE",
"(",
"MCP9808_REG_DEVICE_ID",
")",
"self",
".",
"_logger",
".",
"debug",
"(",
"'Read manufacturer ID: {0:04X}'",
".",
"format",
"(",
"mid",
")",
")",
"self",
".",
"_logger",
".",
"debug",
"(",
"'Read device ID: {0:04X}'",
".",
"format",
"(",
"did",
")",
")",
"return",
"mid",
"==",
"0x0054",
"and",
"did",
"==",
"0x0400"
]
| Start taking temperature measurements. Returns True if the device is
intialized, False otherwise. | [
"Start",
"taking",
"temperature",
"measurements",
".",
"Returns",
"True",
"if",
"the",
"device",
"is",
"intialized",
"False",
"otherwise",
"."
]
| python | train |
yougov/pmxbot | pmxbot/commands.py | https://github.com/yougov/pmxbot/blob/5da84a3258a0fd73cb35b60e39769a5d7bfb2ba7/pmxbot/commands.py#L28-L51 | def google(rest):
"Look up a phrase on google"
API_URL = 'https://www.googleapis.com/customsearch/v1?'
try:
key = pmxbot.config['Google API key']
except KeyError:
return "Configure 'Google API key' in config"
# Use a custom search that searches everything normally
# http://stackoverflow.com/a/11206266/70170
custom_search = '004862762669074674786:hddvfu0gyg0'
params = dict(
key=key,
cx=custom_search,
q=rest.strip(),
)
url = API_URL + urllib.parse.urlencode(params)
resp = requests.get(url)
resp.raise_for_status()
results = resp.json()
hit1 = next(iter(results['items']))
return ' - '.join((
urllib.parse.unquote(hit1['link']),
hit1['title'],
)) | [
"def",
"google",
"(",
"rest",
")",
":",
"API_URL",
"=",
"'https://www.googleapis.com/customsearch/v1?'",
"try",
":",
"key",
"=",
"pmxbot",
".",
"config",
"[",
"'Google API key'",
"]",
"except",
"KeyError",
":",
"return",
"\"Configure 'Google API key' in config\"",
"# Use a custom search that searches everything normally",
"# http://stackoverflow.com/a/11206266/70170",
"custom_search",
"=",
"'004862762669074674786:hddvfu0gyg0'",
"params",
"=",
"dict",
"(",
"key",
"=",
"key",
",",
"cx",
"=",
"custom_search",
",",
"q",
"=",
"rest",
".",
"strip",
"(",
")",
",",
")",
"url",
"=",
"API_URL",
"+",
"urllib",
".",
"parse",
".",
"urlencode",
"(",
"params",
")",
"resp",
"=",
"requests",
".",
"get",
"(",
"url",
")",
"resp",
".",
"raise_for_status",
"(",
")",
"results",
"=",
"resp",
".",
"json",
"(",
")",
"hit1",
"=",
"next",
"(",
"iter",
"(",
"results",
"[",
"'items'",
"]",
")",
")",
"return",
"' - '",
".",
"join",
"(",
"(",
"urllib",
".",
"parse",
".",
"unquote",
"(",
"hit1",
"[",
"'link'",
"]",
")",
",",
"hit1",
"[",
"'title'",
"]",
",",
")",
")"
]
| Look up a phrase on google | [
"Look",
"up",
"a",
"phrase",
"on",
"google"
]
| python | train |
timstaley/voeventdb | voeventdb/server/database/models.py | https://github.com/timstaley/voeventdb/blob/e37b176d65fced4ca4f059109a95d6974bb8a091/voeventdb/server/database/models.py#L18-L26 | def _grab_xpath(root, xpath, converter=lambda x: x):
"""
XML convenience - grabs the first element at xpath if present, else returns None.
"""
elements = root.xpath(xpath)
if elements:
return converter(str(elements[0]))
else:
return None | [
"def",
"_grab_xpath",
"(",
"root",
",",
"xpath",
",",
"converter",
"=",
"lambda",
"x",
":",
"x",
")",
":",
"elements",
"=",
"root",
".",
"xpath",
"(",
"xpath",
")",
"if",
"elements",
":",
"return",
"converter",
"(",
"str",
"(",
"elements",
"[",
"0",
"]",
")",
")",
"else",
":",
"return",
"None"
]
| XML convenience - grabs the first element at xpath if present, else returns None. | [
"XML",
"convenience",
"-",
"grabs",
"the",
"first",
"element",
"at",
"xpath",
"if",
"present",
"else",
"returns",
"None",
"."
]
| python | train |
vinci1it2000/schedula | schedula/utils/dsp.py | https://github.com/vinci1it2000/schedula/blob/addb9fd685be81544b796c51383ac00a31543ce9/schedula/utils/dsp.py#L275-L334 | def selector(keys, dictionary, copy=False, output_type='dict',
allow_miss=False):
"""
Selects the chosen dictionary keys from the given dictionary.
:param keys:
Keys to select.
:type keys: list, tuple, set
:param dictionary:
A dictionary.
:type dictionary: dict
:param copy:
If True the output contains deep-copies of the values.
:type copy: bool
:param output_type:
Type of function output:
+ 'list': a list with all values listed in `keys`.
+ 'dict': a dictionary with any outputs listed in `keys`.
+ 'values': if output length == 1 return a single value otherwise a
tuple with all values listed in `keys`.
:type output_type: str, optional
:param allow_miss:
If True it does not raise when some key is missing in the dictionary.
:type allow_miss: bool
:return:
A dictionary with chosen dictionary keys if present in the sequence of
dictionaries. These are combined with :func:`combine_dicts`.
:rtype: dict
Example::
>>> from functools import partial
>>> fun = partial(selector, ['a', 'b'])
>>> sorted(fun({'a': 1, 'b': 2, 'c': 3}).items())
[('a', 1), ('b', 2)]
"""
if not allow_miss:
# noinspection PyUnusedLocal
def check(key):
return True
else:
def check(key):
return key in dictionary
if output_type == 'list': # Select as list.
res = [dictionary[k] for k in keys if check(k)]
return _copy.deepcopy(res) if copy else res
elif output_type == 'values':
return bypass(*[dictionary[k] for k in keys if check(k)], copy=copy)
# Select as dict.
return bypass({k: dictionary[k] for k in keys if check(k)}, copy=copy) | [
"def",
"selector",
"(",
"keys",
",",
"dictionary",
",",
"copy",
"=",
"False",
",",
"output_type",
"=",
"'dict'",
",",
"allow_miss",
"=",
"False",
")",
":",
"if",
"not",
"allow_miss",
":",
"# noinspection PyUnusedLocal",
"def",
"check",
"(",
"key",
")",
":",
"return",
"True",
"else",
":",
"def",
"check",
"(",
"key",
")",
":",
"return",
"key",
"in",
"dictionary",
"if",
"output_type",
"==",
"'list'",
":",
"# Select as list.",
"res",
"=",
"[",
"dictionary",
"[",
"k",
"]",
"for",
"k",
"in",
"keys",
"if",
"check",
"(",
"k",
")",
"]",
"return",
"_copy",
".",
"deepcopy",
"(",
"res",
")",
"if",
"copy",
"else",
"res",
"elif",
"output_type",
"==",
"'values'",
":",
"return",
"bypass",
"(",
"*",
"[",
"dictionary",
"[",
"k",
"]",
"for",
"k",
"in",
"keys",
"if",
"check",
"(",
"k",
")",
"]",
",",
"copy",
"=",
"copy",
")",
"# Select as dict.",
"return",
"bypass",
"(",
"{",
"k",
":",
"dictionary",
"[",
"k",
"]",
"for",
"k",
"in",
"keys",
"if",
"check",
"(",
"k",
")",
"}",
",",
"copy",
"=",
"copy",
")"
]
| Selects the chosen dictionary keys from the given dictionary.
:param keys:
Keys to select.
:type keys: list, tuple, set
:param dictionary:
A dictionary.
:type dictionary: dict
:param copy:
If True the output contains deep-copies of the values.
:type copy: bool
:param output_type:
Type of function output:
+ 'list': a list with all values listed in `keys`.
+ 'dict': a dictionary with any outputs listed in `keys`.
+ 'values': if output length == 1 return a single value otherwise a
tuple with all values listed in `keys`.
:type output_type: str, optional
:param allow_miss:
If True it does not raise when some key is missing in the dictionary.
:type allow_miss: bool
:return:
A dictionary with chosen dictionary keys if present in the sequence of
dictionaries. These are combined with :func:`combine_dicts`.
:rtype: dict
Example::
>>> from functools import partial
>>> fun = partial(selector, ['a', 'b'])
>>> sorted(fun({'a': 1, 'b': 2, 'c': 3}).items())
[('a', 1), ('b', 2)] | [
"Selects",
"the",
"chosen",
"dictionary",
"keys",
"from",
"the",
"given",
"dictionary",
"."
]
| python | train |
LLNL/scraper | scraper/util.py | https://github.com/LLNL/scraper/blob/881a316e4c04dfa5a9cf491b7c7f9f997a7c56ea/scraper/util.py#L209-L220 | def _prune_dict_null_str(dictionary):
"""
Prune the "None" or emptry string values from dictionary items
"""
for key, value in list(dictionary.items()):
if value is None or str(value) == '':
del dictionary[key]
if isinstance(value, dict):
dictionary[key] = _prune_dict_null_str(dictionary[key])
return dictionary | [
"def",
"_prune_dict_null_str",
"(",
"dictionary",
")",
":",
"for",
"key",
",",
"value",
"in",
"list",
"(",
"dictionary",
".",
"items",
"(",
")",
")",
":",
"if",
"value",
"is",
"None",
"or",
"str",
"(",
"value",
")",
"==",
"''",
":",
"del",
"dictionary",
"[",
"key",
"]",
"if",
"isinstance",
"(",
"value",
",",
"dict",
")",
":",
"dictionary",
"[",
"key",
"]",
"=",
"_prune_dict_null_str",
"(",
"dictionary",
"[",
"key",
"]",
")",
"return",
"dictionary"
]
| Prune the "None" or emptry string values from dictionary items | [
"Prune",
"the",
"None",
"or",
"emptry",
"string",
"values",
"from",
"dictionary",
"items"
]
| python | test |
elifesciences/elife-tools | elifetools/utils.py | https://github.com/elifesciences/elife-tools/blob/4b9e38cbe485c61a4ed7cbd8970c6b318334fd86/elifetools/utils.py#L268-L282 | def node_contents_str(tag):
"""
Return the contents of a tag, including it's children, as a string.
Does not include the root/parent of the tag.
"""
if not tag:
return None
tag_string = ''
for child_tag in tag.children:
if isinstance(child_tag, Comment):
# BeautifulSoup does not preserve comment tags, add them back
tag_string += '<!--%s-->' % unicode_value(child_tag)
else:
tag_string += unicode_value(child_tag)
return tag_string if tag_string != '' else None | [
"def",
"node_contents_str",
"(",
"tag",
")",
":",
"if",
"not",
"tag",
":",
"return",
"None",
"tag_string",
"=",
"''",
"for",
"child_tag",
"in",
"tag",
".",
"children",
":",
"if",
"isinstance",
"(",
"child_tag",
",",
"Comment",
")",
":",
"# BeautifulSoup does not preserve comment tags, add them back",
"tag_string",
"+=",
"'<!--%s-->'",
"%",
"unicode_value",
"(",
"child_tag",
")",
"else",
":",
"tag_string",
"+=",
"unicode_value",
"(",
"child_tag",
")",
"return",
"tag_string",
"if",
"tag_string",
"!=",
"''",
"else",
"None"
]
| Return the contents of a tag, including it's children, as a string.
Does not include the root/parent of the tag. | [
"Return",
"the",
"contents",
"of",
"a",
"tag",
"including",
"it",
"s",
"children",
"as",
"a",
"string",
".",
"Does",
"not",
"include",
"the",
"root",
"/",
"parent",
"of",
"the",
"tag",
"."
]
| python | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.