repo
stringlengths 7
54
| path
stringlengths 4
192
| url
stringlengths 87
284
| code
stringlengths 78
104k
| code_tokens
list | docstring
stringlengths 1
46.9k
| docstring_tokens
list | language
stringclasses 1
value | partition
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
rraadd88/rohan | rohan/dandage/io_strs.py | https://github.com/rraadd88/rohan/blob/b0643a3582a2fffc0165ace69fb80880d92bfb10/rohan/dandage/io_strs.py#L130-L157 | def linebreaker(l,break_pt=16):
"""
used for adding labels in plots.
:param l: list of strings
:param break_pt: number, insert new line after this many letters
"""
l_out=[]
for i in l:
if len(i)>break_pt:
i_words=i.split(' ')
i_out=''
line_len=0
for w in i_words:
line_len+=len(w)+1
if i_words.index(w)==0:
i_out=w
elif line_len>break_pt:
line_len=0
i_out="%s\n%s" % (i_out,w)
else:
i_out="%s %s" % (i_out,w)
l_out.append(i_out)
# l_out.append("%s\n%s" % (i[:break_pt],i[break_pt:]))
else:
l_out.append(i)
return l_out | [
"def",
"linebreaker",
"(",
"l",
",",
"break_pt",
"=",
"16",
")",
":",
"l_out",
"=",
"[",
"]",
"for",
"i",
"in",
"l",
":",
"if",
"len",
"(",
"i",
")",
">",
"break_pt",
":",
"i_words",
"=",
"i",
".",
"split",
"(",
"' '",
")",
"i_out",
"=",
"''",
"line_len",
"=",
"0",
"for",
"w",
"in",
"i_words",
":",
"line_len",
"+=",
"len",
"(",
"w",
")",
"+",
"1",
"if",
"i_words",
".",
"index",
"(",
"w",
")",
"==",
"0",
":",
"i_out",
"=",
"w",
"elif",
"line_len",
">",
"break_pt",
":",
"line_len",
"=",
"0",
"i_out",
"=",
"\"%s\\n%s\"",
"%",
"(",
"i_out",
",",
"w",
")",
"else",
":",
"i_out",
"=",
"\"%s %s\"",
"%",
"(",
"i_out",
",",
"w",
")",
"l_out",
".",
"append",
"(",
"i_out",
")",
"# l_out.append(\"%s\\n%s\" % (i[:break_pt],i[break_pt:]))",
"else",
":",
"l_out",
".",
"append",
"(",
"i",
")",
"return",
"l_out"
]
| used for adding labels in plots.
:param l: list of strings
:param break_pt: number, insert new line after this many letters | [
"used",
"for",
"adding",
"labels",
"in",
"plots",
"."
]
| python | train |
python-rope/rope | rope/base/resources.py | https://github.com/python-rope/rope/blob/1c9f9cd5964b099a99a9111e998f0dc728860688/rope/base/resources.py#L147-L161 | def get_children(self):
"""Return the children of this folder"""
try:
children = os.listdir(self.real_path)
except OSError:
return []
result = []
for name in children:
try:
child = self.get_child(name)
except exceptions.ResourceNotFoundError:
continue
if not self.project.is_ignored(child):
result.append(self.get_child(name))
return result | [
"def",
"get_children",
"(",
"self",
")",
":",
"try",
":",
"children",
"=",
"os",
".",
"listdir",
"(",
"self",
".",
"real_path",
")",
"except",
"OSError",
":",
"return",
"[",
"]",
"result",
"=",
"[",
"]",
"for",
"name",
"in",
"children",
":",
"try",
":",
"child",
"=",
"self",
".",
"get_child",
"(",
"name",
")",
"except",
"exceptions",
".",
"ResourceNotFoundError",
":",
"continue",
"if",
"not",
"self",
".",
"project",
".",
"is_ignored",
"(",
"child",
")",
":",
"result",
".",
"append",
"(",
"self",
".",
"get_child",
"(",
"name",
")",
")",
"return",
"result"
]
| Return the children of this folder | [
"Return",
"the",
"children",
"of",
"this",
"folder"
]
| python | train |
saltstack/salt | salt/returners/mysql.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/returners/mysql.py#L386-L407 | def get_fun(fun):
'''
Return a dict of the last function called for all minions
'''
with _get_serv(ret=None, commit=True) as cur:
sql = '''SELECT s.id,s.jid, s.full_ret
FROM `salt_returns` s
JOIN ( SELECT MAX(`jid`) as jid
from `salt_returns` GROUP BY fun, id) max
ON s.jid = max.jid
WHERE s.fun = %s
'''
cur.execute(sql, (fun,))
data = cur.fetchall()
ret = {}
if data:
for minion, _, full_ret in data:
ret[minion] = salt.utils.json.loads(full_ret)
return ret | [
"def",
"get_fun",
"(",
"fun",
")",
":",
"with",
"_get_serv",
"(",
"ret",
"=",
"None",
",",
"commit",
"=",
"True",
")",
"as",
"cur",
":",
"sql",
"=",
"'''SELECT s.id,s.jid, s.full_ret\n FROM `salt_returns` s\n JOIN ( SELECT MAX(`jid`) as jid\n from `salt_returns` GROUP BY fun, id) max\n ON s.jid = max.jid\n WHERE s.fun = %s\n '''",
"cur",
".",
"execute",
"(",
"sql",
",",
"(",
"fun",
",",
")",
")",
"data",
"=",
"cur",
".",
"fetchall",
"(",
")",
"ret",
"=",
"{",
"}",
"if",
"data",
":",
"for",
"minion",
",",
"_",
",",
"full_ret",
"in",
"data",
":",
"ret",
"[",
"minion",
"]",
"=",
"salt",
".",
"utils",
".",
"json",
".",
"loads",
"(",
"full_ret",
")",
"return",
"ret"
]
| Return a dict of the last function called for all minions | [
"Return",
"a",
"dict",
"of",
"the",
"last",
"function",
"called",
"for",
"all",
"minions"
]
| python | train |
jaredLunde/vital-tools | vital/tools/__init__.py | https://github.com/jaredLunde/vital-tools/blob/ea924c9bbb6ec22aa66f8095f018b1ee0099ac04/vital/tools/__init__.py#L35-L67 | def import_from(name):
""" Imports a module, class or method from string and unwraps it
if wrapped by functools
@name: (#str) name of the python object
-> imported object
"""
obj = name
if isinstance(name, str) and len(name):
try:
obj = locate(name)
assert obj is not None
except (AttributeError, TypeError, AssertionError, ErrorDuringImport):
try:
name = name.split(".")
attr = name[-1]
name = ".".join(name[:-1])
mod = importlib.import_module(name)
obj = getattr(mod, attr)
except (SyntaxError, AttributeError, ImportError, ValueError):
try:
name = name.split(".")
attr_sup = name[-1]
name = ".".join(name[:-1])
mod = importlib.import_module(name)
obj = getattr(getattr(mod, attr_sup), attr)
except:
# We give up.
pass
obj = unwrap_obj(obj)
return obj | [
"def",
"import_from",
"(",
"name",
")",
":",
"obj",
"=",
"name",
"if",
"isinstance",
"(",
"name",
",",
"str",
")",
"and",
"len",
"(",
"name",
")",
":",
"try",
":",
"obj",
"=",
"locate",
"(",
"name",
")",
"assert",
"obj",
"is",
"not",
"None",
"except",
"(",
"AttributeError",
",",
"TypeError",
",",
"AssertionError",
",",
"ErrorDuringImport",
")",
":",
"try",
":",
"name",
"=",
"name",
".",
"split",
"(",
"\".\"",
")",
"attr",
"=",
"name",
"[",
"-",
"1",
"]",
"name",
"=",
"\".\"",
".",
"join",
"(",
"name",
"[",
":",
"-",
"1",
"]",
")",
"mod",
"=",
"importlib",
".",
"import_module",
"(",
"name",
")",
"obj",
"=",
"getattr",
"(",
"mod",
",",
"attr",
")",
"except",
"(",
"SyntaxError",
",",
"AttributeError",
",",
"ImportError",
",",
"ValueError",
")",
":",
"try",
":",
"name",
"=",
"name",
".",
"split",
"(",
"\".\"",
")",
"attr_sup",
"=",
"name",
"[",
"-",
"1",
"]",
"name",
"=",
"\".\"",
".",
"join",
"(",
"name",
"[",
":",
"-",
"1",
"]",
")",
"mod",
"=",
"importlib",
".",
"import_module",
"(",
"name",
")",
"obj",
"=",
"getattr",
"(",
"getattr",
"(",
"mod",
",",
"attr_sup",
")",
",",
"attr",
")",
"except",
":",
"# We give up.",
"pass",
"obj",
"=",
"unwrap_obj",
"(",
"obj",
")",
"return",
"obj"
]
| Imports a module, class or method from string and unwraps it
if wrapped by functools
@name: (#str) name of the python object
-> imported object | [
"Imports",
"a",
"module",
"class",
"or",
"method",
"from",
"string",
"and",
"unwraps",
"it",
"if",
"wrapped",
"by",
"functools"
]
| python | train |
orb-framework/orb | orb/core/schema.py | https://github.com/orb-framework/orb/blob/575be2689cb269e65a0a2678232ff940acc19e5a/orb/core/schema.py#L107-L120 | def ancestry(self):
"""
Returns the different inherited schemas for this instance.
:return [<TableSchema>, ..]
"""
if not self.inherits():
return []
schema = orb.system.schema(self.inherits())
if not schema:
return []
return schema.ancestry() + [schema] | [
"def",
"ancestry",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"inherits",
"(",
")",
":",
"return",
"[",
"]",
"schema",
"=",
"orb",
".",
"system",
".",
"schema",
"(",
"self",
".",
"inherits",
"(",
")",
")",
"if",
"not",
"schema",
":",
"return",
"[",
"]",
"return",
"schema",
".",
"ancestry",
"(",
")",
"+",
"[",
"schema",
"]"
]
| Returns the different inherited schemas for this instance.
:return [<TableSchema>, ..] | [
"Returns",
"the",
"different",
"inherited",
"schemas",
"for",
"this",
"instance",
"."
]
| python | train |
MozillaSecurity/fuzzfetch | src/fuzzfetch/fetch.py | https://github.com/MozillaSecurity/fuzzfetch/blob/166cbfc71b679db019b9ac777dce12ccfdfc2c10/src/fuzzfetch/fetch.py#L72-L78 | def _si(number):
"""Format a number using base-2 SI prefixes"""
prefixes = ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']
while number > 1024:
number /= 1024.0
prefixes.pop(0)
return '%0.2f%s' % (number, prefixes.pop(0)) | [
"def",
"_si",
"(",
"number",
")",
":",
"prefixes",
"=",
"[",
"''",
",",
"'K'",
",",
"'M'",
",",
"'G'",
",",
"'T'",
",",
"'P'",
",",
"'E'",
",",
"'Z'",
",",
"'Y'",
"]",
"while",
"number",
">",
"1024",
":",
"number",
"/=",
"1024.0",
"prefixes",
".",
"pop",
"(",
"0",
")",
"return",
"'%0.2f%s'",
"%",
"(",
"number",
",",
"prefixes",
".",
"pop",
"(",
"0",
")",
")"
]
| Format a number using base-2 SI prefixes | [
"Format",
"a",
"number",
"using",
"base",
"-",
"2",
"SI",
"prefixes"
]
| python | train |
Dallinger/Dallinger | dallinger/experiment_server/experiment_server.py | https://github.com/Dallinger/Dallinger/blob/76ca8217c709989c116d0ebd8fca37bd22f591af/dallinger/experiment_server/experiment_server.py#L1386-L1425 | def node_transmissions(node_id):
"""Get all the transmissions of a node.
The node id must be specified in the url.
You can also pass direction (to/from/all) or status (all/pending/received)
as arguments.
"""
exp = Experiment(session)
# get the parameters
direction = request_parameter(parameter="direction", default="incoming")
status = request_parameter(parameter="status", default="all")
for x in [direction, status]:
if type(x) == Response:
return x
# check the node exists
node = models.Node.query.get(node_id)
if node is None:
return error_response(error_type="/node/transmissions, node does not exist")
# execute the request
transmissions = node.transmissions(direction=direction, status=status)
try:
if direction in ["incoming", "all"] and status in ["pending", "all"]:
node.receive()
session.commit()
# ping the experiment
exp.transmission_get_request(node=node, transmissions=transmissions)
session.commit()
except Exception:
return error_response(
error_type="/node/transmissions GET server error",
status=403,
participant=node.participant,
)
# return the data
return success_response(transmissions=[t.__json__() for t in transmissions]) | [
"def",
"node_transmissions",
"(",
"node_id",
")",
":",
"exp",
"=",
"Experiment",
"(",
"session",
")",
"# get the parameters",
"direction",
"=",
"request_parameter",
"(",
"parameter",
"=",
"\"direction\"",
",",
"default",
"=",
"\"incoming\"",
")",
"status",
"=",
"request_parameter",
"(",
"parameter",
"=",
"\"status\"",
",",
"default",
"=",
"\"all\"",
")",
"for",
"x",
"in",
"[",
"direction",
",",
"status",
"]",
":",
"if",
"type",
"(",
"x",
")",
"==",
"Response",
":",
"return",
"x",
"# check the node exists",
"node",
"=",
"models",
".",
"Node",
".",
"query",
".",
"get",
"(",
"node_id",
")",
"if",
"node",
"is",
"None",
":",
"return",
"error_response",
"(",
"error_type",
"=",
"\"/node/transmissions, node does not exist\"",
")",
"# execute the request",
"transmissions",
"=",
"node",
".",
"transmissions",
"(",
"direction",
"=",
"direction",
",",
"status",
"=",
"status",
")",
"try",
":",
"if",
"direction",
"in",
"[",
"\"incoming\"",
",",
"\"all\"",
"]",
"and",
"status",
"in",
"[",
"\"pending\"",
",",
"\"all\"",
"]",
":",
"node",
".",
"receive",
"(",
")",
"session",
".",
"commit",
"(",
")",
"# ping the experiment",
"exp",
".",
"transmission_get_request",
"(",
"node",
"=",
"node",
",",
"transmissions",
"=",
"transmissions",
")",
"session",
".",
"commit",
"(",
")",
"except",
"Exception",
":",
"return",
"error_response",
"(",
"error_type",
"=",
"\"/node/transmissions GET server error\"",
",",
"status",
"=",
"403",
",",
"participant",
"=",
"node",
".",
"participant",
",",
")",
"# return the data",
"return",
"success_response",
"(",
"transmissions",
"=",
"[",
"t",
".",
"__json__",
"(",
")",
"for",
"t",
"in",
"transmissions",
"]",
")"
]
| Get all the transmissions of a node.
The node id must be specified in the url.
You can also pass direction (to/from/all) or status (all/pending/received)
as arguments. | [
"Get",
"all",
"the",
"transmissions",
"of",
"a",
"node",
"."
]
| python | train |
jgoodlet/punter | punter/helpers.py | https://github.com/jgoodlet/punter/blob/605ee52a1e5019b360dd643f4bf6861aefa93812/punter/helpers.py#L38-L56 | def get_query_type(query):
"""Gets the type of query in use (email or url).
In order to provide a proper API endpoint it is necessary to first
determine the type of query the client is using. There are only two
options currently: 1) domain or 2) email.
:param query: Search query provided by client.
"""
if URL_RE.match(query):
query_type = 'domain'
elif EMAIL_RE.match(query):
query_type = 'email'
else:
query_type = ''
return query_type | [
"def",
"get_query_type",
"(",
"query",
")",
":",
"if",
"URL_RE",
".",
"match",
"(",
"query",
")",
":",
"query_type",
"=",
"'domain'",
"elif",
"EMAIL_RE",
".",
"match",
"(",
"query",
")",
":",
"query_type",
"=",
"'email'",
"else",
":",
"query_type",
"=",
"''",
"return",
"query_type"
]
| Gets the type of query in use (email or url).
In order to provide a proper API endpoint it is necessary to first
determine the type of query the client is using. There are only two
options currently: 1) domain or 2) email.
:param query: Search query provided by client. | [
"Gets",
"the",
"type",
"of",
"query",
"in",
"use",
"(",
"email",
"or",
"url",
")",
"."
]
| python | train |
ClericPy/torequests | torequests/main.py | https://github.com/ClericPy/torequests/blob/1793261688d7a47e1c3a0830d83f8552f5e3e5d9/torequests/main.py#L182-L200 | def submit(self, func, *args, **kwargs):
"""Submit a function to the pool, `self.submit(function,arg1,arg2,arg3=3)`"""
with self._shutdown_lock:
if self._shutdown:
raise RuntimeError("cannot schedule new futures after shutdown")
callback = kwargs.pop("callback", self.default_callback)
future = NewFuture(
self._timeout,
args,
kwargs,
callback=callback,
catch_exception=self.catch_exception,
)
w = _WorkItem(future, func, args, kwargs)
self._work_queue.put(w)
self._adjust_thread_count()
self._all_futures.add(future)
return future | [
"def",
"submit",
"(",
"self",
",",
"func",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"with",
"self",
".",
"_shutdown_lock",
":",
"if",
"self",
".",
"_shutdown",
":",
"raise",
"RuntimeError",
"(",
"\"cannot schedule new futures after shutdown\"",
")",
"callback",
"=",
"kwargs",
".",
"pop",
"(",
"\"callback\"",
",",
"self",
".",
"default_callback",
")",
"future",
"=",
"NewFuture",
"(",
"self",
".",
"_timeout",
",",
"args",
",",
"kwargs",
",",
"callback",
"=",
"callback",
",",
"catch_exception",
"=",
"self",
".",
"catch_exception",
",",
")",
"w",
"=",
"_WorkItem",
"(",
"future",
",",
"func",
",",
"args",
",",
"kwargs",
")",
"self",
".",
"_work_queue",
".",
"put",
"(",
"w",
")",
"self",
".",
"_adjust_thread_count",
"(",
")",
"self",
".",
"_all_futures",
".",
"add",
"(",
"future",
")",
"return",
"future"
]
| Submit a function to the pool, `self.submit(function,arg1,arg2,arg3=3)` | [
"Submit",
"a",
"function",
"to",
"the",
"pool",
"self",
".",
"submit",
"(",
"function",
"arg1",
"arg2",
"arg3",
"=",
"3",
")"
]
| python | train |
craffel/mir_eval | mir_eval/pattern.py | https://github.com/craffel/mir_eval/blob/f41c8dafaea04b411252a516d1965af43c7d531b/mir_eval/pattern.py#L390-L520 | def three_layer_FPR(reference_patterns, estimated_patterns):
"""Three Layer F1 Score, Precision and Recall. As described by Meridith.
Examples
--------
>>> ref_patterns = mir_eval.io.load_patterns("ref_pattern.txt")
>>> est_patterns = mir_eval.io.load_patterns("est_pattern.txt")
>>> F, P, R = mir_eval.pattern.three_layer_FPR(ref_patterns,
... est_patterns)
Parameters
----------
reference_patterns : list
The reference patterns in the format returned by
:func:`mir_eval.io.load_patterns()`
estimated_patterns : list
The estimated patterns in the same format
Returns
-------
f_measure : float
The three-layer F1 Score
precision : float
The three-layer Precision
recall : float
The three-layer Recall
"""
validate(reference_patterns, estimated_patterns)
def compute_first_layer_PR(ref_occs, est_occs):
"""Computes the first layer Precision and Recall values given the
set of occurrences in the reference and the set of occurrences in the
estimation.
Parameters
----------
ref_occs :
est_occs :
Returns
-------
"""
# Find the length of the intersection between reference and estimation
s = len(_occurrence_intersection(ref_occs, est_occs))
# Compute the first layer scores
precision = s / float(len(ref_occs))
recall = s / float(len(est_occs))
return precision, recall
def compute_second_layer_PR(ref_pattern, est_pattern):
"""Computes the second layer Precision and Recall values given the
set of occurrences in the reference and the set of occurrences in the
estimation.
Parameters
----------
ref_pattern :
est_pattern :
Returns
-------
"""
# Compute the first layer scores
F_1 = compute_layer(ref_pattern, est_pattern)
# Compute the second layer scores
precision = np.mean(np.max(F_1, axis=0))
recall = np.mean(np.max(F_1, axis=1))
return precision, recall
def compute_layer(ref_elements, est_elements, layer=1):
"""Computes the F-measure matrix for a given layer. The reference and
estimated elements can be either patters or occurrences, depending
on the layer.
For layer 1, the elements must be occurrences.
For layer 2, the elements must be patterns.
Parameters
----------
ref_elements :
est_elements :
layer :
(Default value = 1)
Returns
-------
"""
if layer != 1 and layer != 2:
raise ValueError("Layer (%d) must be an integer between 1 and 2"
% layer)
nP = len(ref_elements) # Number of elements in reference
nQ = len(est_elements) # Number of elements in estimation
F = np.zeros((nP, nQ)) # F-measure matrix for the given layer
for iP in range(nP):
for iQ in range(nQ):
if layer == 1:
func = compute_first_layer_PR
elif layer == 2:
func = compute_second_layer_PR
# Compute layer scores
precision, recall = func(ref_elements[iP], est_elements[iQ])
F[iP, iQ] = util.f_measure(precision, recall)
return F
# If no patterns were provided, metric is zero
if _n_onset_midi(reference_patterns) == 0 or \
_n_onset_midi(estimated_patterns) == 0:
return 0., 0., 0.
# Compute the second layer (it includes the first layer)
F_2 = compute_layer(reference_patterns, estimated_patterns, layer=2)
# Compute the final scores (third layer)
precision_3 = np.mean(np.max(F_2, axis=0))
recall_3 = np.mean(np.max(F_2, axis=1))
f_measure_3 = util.f_measure(precision_3, recall_3)
return f_measure_3, precision_3, recall_3 | [
"def",
"three_layer_FPR",
"(",
"reference_patterns",
",",
"estimated_patterns",
")",
":",
"validate",
"(",
"reference_patterns",
",",
"estimated_patterns",
")",
"def",
"compute_first_layer_PR",
"(",
"ref_occs",
",",
"est_occs",
")",
":",
"\"\"\"Computes the first layer Precision and Recall values given the\n set of occurrences in the reference and the set of occurrences in the\n estimation.\n\n Parameters\n ----------\n ref_occs :\n\n est_occs :\n\n\n Returns\n -------\n\n \"\"\"",
"# Find the length of the intersection between reference and estimation",
"s",
"=",
"len",
"(",
"_occurrence_intersection",
"(",
"ref_occs",
",",
"est_occs",
")",
")",
"# Compute the first layer scores",
"precision",
"=",
"s",
"/",
"float",
"(",
"len",
"(",
"ref_occs",
")",
")",
"recall",
"=",
"s",
"/",
"float",
"(",
"len",
"(",
"est_occs",
")",
")",
"return",
"precision",
",",
"recall",
"def",
"compute_second_layer_PR",
"(",
"ref_pattern",
",",
"est_pattern",
")",
":",
"\"\"\"Computes the second layer Precision and Recall values given the\n set of occurrences in the reference and the set of occurrences in the\n estimation.\n\n Parameters\n ----------\n ref_pattern :\n\n est_pattern :\n\n\n Returns\n -------\n\n \"\"\"",
"# Compute the first layer scores",
"F_1",
"=",
"compute_layer",
"(",
"ref_pattern",
",",
"est_pattern",
")",
"# Compute the second layer scores",
"precision",
"=",
"np",
".",
"mean",
"(",
"np",
".",
"max",
"(",
"F_1",
",",
"axis",
"=",
"0",
")",
")",
"recall",
"=",
"np",
".",
"mean",
"(",
"np",
".",
"max",
"(",
"F_1",
",",
"axis",
"=",
"1",
")",
")",
"return",
"precision",
",",
"recall",
"def",
"compute_layer",
"(",
"ref_elements",
",",
"est_elements",
",",
"layer",
"=",
"1",
")",
":",
"\"\"\"Computes the F-measure matrix for a given layer. The reference and\n estimated elements can be either patters or occurrences, depending\n on the layer.\n\n For layer 1, the elements must be occurrences.\n For layer 2, the elements must be patterns.\n\n Parameters\n ----------\n ref_elements :\n\n est_elements :\n\n layer :\n (Default value = 1)\n\n Returns\n -------\n\n \"\"\"",
"if",
"layer",
"!=",
"1",
"and",
"layer",
"!=",
"2",
":",
"raise",
"ValueError",
"(",
"\"Layer (%d) must be an integer between 1 and 2\"",
"%",
"layer",
")",
"nP",
"=",
"len",
"(",
"ref_elements",
")",
"# Number of elements in reference",
"nQ",
"=",
"len",
"(",
"est_elements",
")",
"# Number of elements in estimation",
"F",
"=",
"np",
".",
"zeros",
"(",
"(",
"nP",
",",
"nQ",
")",
")",
"# F-measure matrix for the given layer",
"for",
"iP",
"in",
"range",
"(",
"nP",
")",
":",
"for",
"iQ",
"in",
"range",
"(",
"nQ",
")",
":",
"if",
"layer",
"==",
"1",
":",
"func",
"=",
"compute_first_layer_PR",
"elif",
"layer",
"==",
"2",
":",
"func",
"=",
"compute_second_layer_PR",
"# Compute layer scores",
"precision",
",",
"recall",
"=",
"func",
"(",
"ref_elements",
"[",
"iP",
"]",
",",
"est_elements",
"[",
"iQ",
"]",
")",
"F",
"[",
"iP",
",",
"iQ",
"]",
"=",
"util",
".",
"f_measure",
"(",
"precision",
",",
"recall",
")",
"return",
"F",
"# If no patterns were provided, metric is zero",
"if",
"_n_onset_midi",
"(",
"reference_patterns",
")",
"==",
"0",
"or",
"_n_onset_midi",
"(",
"estimated_patterns",
")",
"==",
"0",
":",
"return",
"0.",
",",
"0.",
",",
"0.",
"# Compute the second layer (it includes the first layer)",
"F_2",
"=",
"compute_layer",
"(",
"reference_patterns",
",",
"estimated_patterns",
",",
"layer",
"=",
"2",
")",
"# Compute the final scores (third layer)",
"precision_3",
"=",
"np",
".",
"mean",
"(",
"np",
".",
"max",
"(",
"F_2",
",",
"axis",
"=",
"0",
")",
")",
"recall_3",
"=",
"np",
".",
"mean",
"(",
"np",
".",
"max",
"(",
"F_2",
",",
"axis",
"=",
"1",
")",
")",
"f_measure_3",
"=",
"util",
".",
"f_measure",
"(",
"precision_3",
",",
"recall_3",
")",
"return",
"f_measure_3",
",",
"precision_3",
",",
"recall_3"
]
| Three Layer F1 Score, Precision and Recall. As described by Meridith.
Examples
--------
>>> ref_patterns = mir_eval.io.load_patterns("ref_pattern.txt")
>>> est_patterns = mir_eval.io.load_patterns("est_pattern.txt")
>>> F, P, R = mir_eval.pattern.three_layer_FPR(ref_patterns,
... est_patterns)
Parameters
----------
reference_patterns : list
The reference patterns in the format returned by
:func:`mir_eval.io.load_patterns()`
estimated_patterns : list
The estimated patterns in the same format
Returns
-------
f_measure : float
The three-layer F1 Score
precision : float
The three-layer Precision
recall : float
The three-layer Recall | [
"Three",
"Layer",
"F1",
"Score",
"Precision",
"and",
"Recall",
".",
"As",
"described",
"by",
"Meridith",
"."
]
| python | train |
jssimporter/python-jss | jss/distribution_point.py | https://github.com/jssimporter/python-jss/blob/b95185d74e0c0531b0b563f280d4129e21d5fe5d/jss/distribution_point.py#L399-L408 | def _copy(self, filename, destination):
"""Copy a file or folder to the repository.
Will mount if needed.
Args:
filename: Path to copy.
destination: Remote path to copy file to.
"""
super(MountedRepository, self)._copy(filename, destination) | [
"def",
"_copy",
"(",
"self",
",",
"filename",
",",
"destination",
")",
":",
"super",
"(",
"MountedRepository",
",",
"self",
")",
".",
"_copy",
"(",
"filename",
",",
"destination",
")"
]
| Copy a file or folder to the repository.
Will mount if needed.
Args:
filename: Path to copy.
destination: Remote path to copy file to. | [
"Copy",
"a",
"file",
"or",
"folder",
"to",
"the",
"repository",
"."
]
| python | train |
briancappello/flask-unchained | flask_unchained/string_utils.py | https://github.com/briancappello/flask-unchained/blob/4d536cb90e2cc4829c1c05f2c74d3e22901a1399/flask_unchained/string_utils.py#L72-L84 | def slugify(string):
"""
Converts a string to a valid slug. For example::
slugify('Hello World') -> 'hello-world'
"""
if not string:
return string
string = re.sub(r'[^\w\s-]', '',
unicodedata.normalize('NFKD', de_camel(string, '-'))
.encode('ascii', 'ignore')
.decode('ascii')).strip()
return re.sub(r'[-_\s]+', '-', string).strip('-').lower() | [
"def",
"slugify",
"(",
"string",
")",
":",
"if",
"not",
"string",
":",
"return",
"string",
"string",
"=",
"re",
".",
"sub",
"(",
"r'[^\\w\\s-]'",
",",
"''",
",",
"unicodedata",
".",
"normalize",
"(",
"'NFKD'",
",",
"de_camel",
"(",
"string",
",",
"'-'",
")",
")",
".",
"encode",
"(",
"'ascii'",
",",
"'ignore'",
")",
".",
"decode",
"(",
"'ascii'",
")",
")",
".",
"strip",
"(",
")",
"return",
"re",
".",
"sub",
"(",
"r'[-_\\s]+'",
",",
"'-'",
",",
"string",
")",
".",
"strip",
"(",
"'-'",
")",
".",
"lower",
"(",
")"
]
| Converts a string to a valid slug. For example::
slugify('Hello World') -> 'hello-world' | [
"Converts",
"a",
"string",
"to",
"a",
"valid",
"slug",
".",
"For",
"example",
"::"
]
| python | train |
dswah/pyGAM | pygam/utils.py | https://github.com/dswah/pyGAM/blob/b3e5c3cd580f0a3ad69f9372861624f67760c325/pygam/utils.py#L432-L453 | def round_to_n_decimal_places(array, n=3):
"""
tool to keep round a float to n decimal places.
n=3 by default
Parameters
----------
array : np.array
n : int. number of decimal places to keep
Returns
-------
array : rounded np.array
"""
# check if in scientific notation
if issubclass(array.__class__, float) and '%.e'%array == str(array):
return array # do nothing
shape = np.shape(array)
out = ((np.atleast_1d(array) * 10**n).round().astype('int') / (10.**n))
return out.reshape(shape) | [
"def",
"round_to_n_decimal_places",
"(",
"array",
",",
"n",
"=",
"3",
")",
":",
"# check if in scientific notation",
"if",
"issubclass",
"(",
"array",
".",
"__class__",
",",
"float",
")",
"and",
"'%.e'",
"%",
"array",
"==",
"str",
"(",
"array",
")",
":",
"return",
"array",
"# do nothing",
"shape",
"=",
"np",
".",
"shape",
"(",
"array",
")",
"out",
"=",
"(",
"(",
"np",
".",
"atleast_1d",
"(",
"array",
")",
"*",
"10",
"**",
"n",
")",
".",
"round",
"(",
")",
".",
"astype",
"(",
"'int'",
")",
"/",
"(",
"10.",
"**",
"n",
")",
")",
"return",
"out",
".",
"reshape",
"(",
"shape",
")"
]
| tool to keep round a float to n decimal places.
n=3 by default
Parameters
----------
array : np.array
n : int. number of decimal places to keep
Returns
-------
array : rounded np.array | [
"tool",
"to",
"keep",
"round",
"a",
"float",
"to",
"n",
"decimal",
"places",
"."
]
| python | train |
log2timeline/plaso | plaso/parsers/dpkg.py | https://github.com/log2timeline/plaso/blob/9c564698d2da3ffbe23607a3c54c0582ea18a6cc/plaso/parsers/dpkg.py#L167-L185 | def VerifyStructure(self, parser_mediator, line):
"""Verifies if a line from a text file is in the expected format.
Args:
parser_mediator (ParserMediator): parser mediator.
line (str): line from a text file.
Returns:
bool: True if the line is in the expected format, False if not.
"""
try:
structure = self._DPKG_LOG_LINE.parseString(line)
except pyparsing.ParseException as exception:
logger.debug(
'Unable to parse Debian dpkg.log file with error: {0!s}'.format(
exception))
return False
return 'date_time' in structure and 'body' in structure | [
"def",
"VerifyStructure",
"(",
"self",
",",
"parser_mediator",
",",
"line",
")",
":",
"try",
":",
"structure",
"=",
"self",
".",
"_DPKG_LOG_LINE",
".",
"parseString",
"(",
"line",
")",
"except",
"pyparsing",
".",
"ParseException",
"as",
"exception",
":",
"logger",
".",
"debug",
"(",
"'Unable to parse Debian dpkg.log file with error: {0!s}'",
".",
"format",
"(",
"exception",
")",
")",
"return",
"False",
"return",
"'date_time'",
"in",
"structure",
"and",
"'body'",
"in",
"structure"
]
| Verifies if a line from a text file is in the expected format.
Args:
parser_mediator (ParserMediator): parser mediator.
line (str): line from a text file.
Returns:
bool: True if the line is in the expected format, False if not. | [
"Verifies",
"if",
"a",
"line",
"from",
"a",
"text",
"file",
"is",
"in",
"the",
"expected",
"format",
"."
]
| python | train |
spyder-ide/spyder | spyder/plugins/editor/utils/editor.py | https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/plugins/editor/utils/editor.py#L1103-L1119 | def with_wait_cursor(func):
"""
Show a wait cursor while the wrapped function is running. The cursor is
restored as soon as the function exits.
:param func: wrapped function
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
QApplication.setOverrideCursor(
QCursor(Qt.WaitCursor))
try:
ret_val = func(*args, **kwargs)
finally:
QApplication.restoreOverrideCursor()
return ret_val
return wrapper | [
"def",
"with_wait_cursor",
"(",
"func",
")",
":",
"@",
"functools",
".",
"wraps",
"(",
"func",
")",
"def",
"wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"QApplication",
".",
"setOverrideCursor",
"(",
"QCursor",
"(",
"Qt",
".",
"WaitCursor",
")",
")",
"try",
":",
"ret_val",
"=",
"func",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"finally",
":",
"QApplication",
".",
"restoreOverrideCursor",
"(",
")",
"return",
"ret_val",
"return",
"wrapper"
]
| Show a wait cursor while the wrapped function is running. The cursor is
restored as soon as the function exits.
:param func: wrapped function | [
"Show",
"a",
"wait",
"cursor",
"while",
"the",
"wrapped",
"function",
"is",
"running",
".",
"The",
"cursor",
"is",
"restored",
"as",
"soon",
"as",
"the",
"function",
"exits",
"."
]
| python | train |
drericstrong/pypbe | pypbe/core.py | https://github.com/drericstrong/pypbe/blob/0911caedb2e4b3932ad3e27c8c171cb67f1c0df9/pypbe/core.py#L401-L425 | def plot_histogram(self, title_prefix="", title_override="",
figsize=(8, 6)):
"""
Plots a histogram of the results after the Monte Carlo simulation is
run. NOTE- This method must be called AFTER "roll_mc".
:param title_prefix: If desired, prefix the title (such as "Alg 1")
:param title_override: Override the title string entirely
:param figsize: The size of the histogram plot
:return: a seaborn figure of the histogram
"""
# Check that roll_mc has been called
if not self.arr_res:
raise ValueError("Call roll_mc before plotting the histogram.")
# Find a title using either the override or _construct_title method
if title_override:
title = title_override
else:
title = title_prefix + PBE._construct_title(self.num_dice,
self.dice_type, self.add_val, self.num_attribute,
self.keep_attribute, self.keep_dice, self.reroll,
self.num_arrays)
# Construct the histogram
f = self._plot_hist(self.arr_res, self.pbe_res, title, figsize)
return f | [
"def",
"plot_histogram",
"(",
"self",
",",
"title_prefix",
"=",
"\"\"",
",",
"title_override",
"=",
"\"\"",
",",
"figsize",
"=",
"(",
"8",
",",
"6",
")",
")",
":",
"# Check that roll_mc has been called\r",
"if",
"not",
"self",
".",
"arr_res",
":",
"raise",
"ValueError",
"(",
"\"Call roll_mc before plotting the histogram.\"",
")",
"# Find a title using either the override or _construct_title method\r",
"if",
"title_override",
":",
"title",
"=",
"title_override",
"else",
":",
"title",
"=",
"title_prefix",
"+",
"PBE",
".",
"_construct_title",
"(",
"self",
".",
"num_dice",
",",
"self",
".",
"dice_type",
",",
"self",
".",
"add_val",
",",
"self",
".",
"num_attribute",
",",
"self",
".",
"keep_attribute",
",",
"self",
".",
"keep_dice",
",",
"self",
".",
"reroll",
",",
"self",
".",
"num_arrays",
")",
"# Construct the histogram\r",
"f",
"=",
"self",
".",
"_plot_hist",
"(",
"self",
".",
"arr_res",
",",
"self",
".",
"pbe_res",
",",
"title",
",",
"figsize",
")",
"return",
"f"
]
| Plots a histogram of the results after the Monte Carlo simulation is
run. NOTE- This method must be called AFTER "roll_mc".
:param title_prefix: If desired, prefix the title (such as "Alg 1")
:param title_override: Override the title string entirely
:param figsize: The size of the histogram plot
:return: a seaborn figure of the histogram | [
"Plots",
"a",
"histogram",
"of",
"the",
"results",
"after",
"the",
"Monte",
"Carlo",
"simulation",
"is",
"run",
".",
"NOTE",
"-",
"This",
"method",
"must",
"be",
"called",
"AFTER",
"roll_mc",
".",
":",
"param",
"title_prefix",
":",
"If",
"desired",
"prefix",
"the",
"title",
"(",
"such",
"as",
"Alg",
"1",
")",
":",
"param",
"title_override",
":",
"Override",
"the",
"title",
"string",
"entirely",
":",
"param",
"figsize",
":",
"The",
"size",
"of",
"the",
"histogram",
"plot",
":",
"return",
":",
"a",
"seaborn",
"figure",
"of",
"the",
"histogram"
]
| python | train |
apache/spark | python/pyspark/sql/session.py | https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/session.py#L461-L482 | def _get_numpy_record_dtype(self, rec):
"""
Used when converting a pandas.DataFrame to Spark using to_records(), this will correct
the dtypes of fields in a record so they can be properly loaded into Spark.
:param rec: a numpy record to check field dtypes
:return corrected dtype for a numpy.record or None if no correction needed
"""
import numpy as np
cur_dtypes = rec.dtype
col_names = cur_dtypes.names
record_type_list = []
has_rec_fix = False
for i in xrange(len(cur_dtypes)):
curr_type = cur_dtypes[i]
# If type is a datetime64 timestamp, convert to microseconds
# NOTE: if dtype is datetime[ns] then np.record.tolist() will output values as longs,
# conversion from [us] or lower will lead to py datetime objects, see SPARK-22417
if curr_type == np.dtype('datetime64[ns]'):
curr_type = 'datetime64[us]'
has_rec_fix = True
record_type_list.append((str(col_names[i]), curr_type))
return np.dtype(record_type_list) if has_rec_fix else None | [
"def",
"_get_numpy_record_dtype",
"(",
"self",
",",
"rec",
")",
":",
"import",
"numpy",
"as",
"np",
"cur_dtypes",
"=",
"rec",
".",
"dtype",
"col_names",
"=",
"cur_dtypes",
".",
"names",
"record_type_list",
"=",
"[",
"]",
"has_rec_fix",
"=",
"False",
"for",
"i",
"in",
"xrange",
"(",
"len",
"(",
"cur_dtypes",
")",
")",
":",
"curr_type",
"=",
"cur_dtypes",
"[",
"i",
"]",
"# If type is a datetime64 timestamp, convert to microseconds",
"# NOTE: if dtype is datetime[ns] then np.record.tolist() will output values as longs,",
"# conversion from [us] or lower will lead to py datetime objects, see SPARK-22417",
"if",
"curr_type",
"==",
"np",
".",
"dtype",
"(",
"'datetime64[ns]'",
")",
":",
"curr_type",
"=",
"'datetime64[us]'",
"has_rec_fix",
"=",
"True",
"record_type_list",
".",
"append",
"(",
"(",
"str",
"(",
"col_names",
"[",
"i",
"]",
")",
",",
"curr_type",
")",
")",
"return",
"np",
".",
"dtype",
"(",
"record_type_list",
")",
"if",
"has_rec_fix",
"else",
"None"
]
| Used when converting a pandas.DataFrame to Spark using to_records(), this will correct
the dtypes of fields in a record so they can be properly loaded into Spark.
:param rec: a numpy record to check field dtypes
:return corrected dtype for a numpy.record or None if no correction needed | [
"Used",
"when",
"converting",
"a",
"pandas",
".",
"DataFrame",
"to",
"Spark",
"using",
"to_records",
"()",
"this",
"will",
"correct",
"the",
"dtypes",
"of",
"fields",
"in",
"a",
"record",
"so",
"they",
"can",
"be",
"properly",
"loaded",
"into",
"Spark",
".",
":",
"param",
"rec",
":",
"a",
"numpy",
"record",
"to",
"check",
"field",
"dtypes",
":",
"return",
"corrected",
"dtype",
"for",
"a",
"numpy",
".",
"record",
"or",
"None",
"if",
"no",
"correction",
"needed"
]
| python | train |
boriel/zxbasic | api/constants.py | https://github.com/boriel/zxbasic/blob/23b28db10e41117805bdb3c0f78543590853b132/api/constants.py#L166-L170 | def to_type(cls, typename):
""" Converts a type ID to name. On error returns None
"""
NAME_TYPES = {cls.TYPE_NAMES[x]: x for x in cls.TYPE_NAMES}
return NAME_TYPES.get(typename, None) | [
"def",
"to_type",
"(",
"cls",
",",
"typename",
")",
":",
"NAME_TYPES",
"=",
"{",
"cls",
".",
"TYPE_NAMES",
"[",
"x",
"]",
":",
"x",
"for",
"x",
"in",
"cls",
".",
"TYPE_NAMES",
"}",
"return",
"NAME_TYPES",
".",
"get",
"(",
"typename",
",",
"None",
")"
]
| Converts a type ID to name. On error returns None | [
"Converts",
"a",
"type",
"ID",
"to",
"name",
".",
"On",
"error",
"returns",
"None"
]
| python | train |
beathan/django-akamai | django_akamai/purge.py | https://github.com/beathan/django-akamai/blob/00cab2dd5fab3745742721185e75a55a5c26fe7e/django_akamai/purge.py#L68-L106 | def load_edgegrid_client_settings():
'''Load Akamai EdgeGrid configuration
returns a (hostname, EdgeGridAuth) tuple from the following locations:
1. Values specified directly in the Django settings::
AKAMAI_CCU_CLIENT_SECRET
AKAMAI_CCU_HOST
AKAMAI_CCU_ACCESS_TOKEN
AKAMAI_CCU_CLIENT_TOKEN
2. An edgerc file specified in the AKAMAI_EDGERC_FILENAME settings
3. The default ~/.edgerc file
Both edgerc file load options will return the values from the “CCU” section
by default. This may be customized using the AKAMAI_EDGERC_CCU_SECTION setting.
'''
if getattr(settings, 'AKAMAI_CCU_CLIENT_SECRET', None):
# If the settings module has the values directly and they are not empty
# we'll use them without checking for an edgerc file:
host = settings.AKAMAI_CCU_HOST
auth = EdgeGridAuth(access_token=settings.AKAMAI_CCU_ACCESS_TOKEN,
client_token=settings.AKAMAI_CCU_CLIENT_TOKEN,
client_secret=settings.AKAMAI_CCU_CLIENT_SECRET)
return host, auth
else:
edgerc_section = getattr(settings, 'AKAMAI_EDGERC_CCU_SECTION', 'CCU')
edgerc_path = getattr(settings, 'AKAMAI_EDGERC_FILENAME', '~/.edgerc')
edgerc_path = os.path.expanduser(edgerc_path)
if os.path.isfile(edgerc_path):
edgerc = EdgeRc(edgerc_path)
host = edgerc.get(edgerc_section, 'host')
auth = EdgeGridAuth.from_edgerc(edgerc, section=edgerc_section)
return host, auth
raise InvalidAkamaiConfiguration('Cannot find Akamai client configuration!') | [
"def",
"load_edgegrid_client_settings",
"(",
")",
":",
"if",
"getattr",
"(",
"settings",
",",
"'AKAMAI_CCU_CLIENT_SECRET'",
",",
"None",
")",
":",
"# If the settings module has the values directly and they are not empty",
"# we'll use them without checking for an edgerc file:",
"host",
"=",
"settings",
".",
"AKAMAI_CCU_HOST",
"auth",
"=",
"EdgeGridAuth",
"(",
"access_token",
"=",
"settings",
".",
"AKAMAI_CCU_ACCESS_TOKEN",
",",
"client_token",
"=",
"settings",
".",
"AKAMAI_CCU_CLIENT_TOKEN",
",",
"client_secret",
"=",
"settings",
".",
"AKAMAI_CCU_CLIENT_SECRET",
")",
"return",
"host",
",",
"auth",
"else",
":",
"edgerc_section",
"=",
"getattr",
"(",
"settings",
",",
"'AKAMAI_EDGERC_CCU_SECTION'",
",",
"'CCU'",
")",
"edgerc_path",
"=",
"getattr",
"(",
"settings",
",",
"'AKAMAI_EDGERC_FILENAME'",
",",
"'~/.edgerc'",
")",
"edgerc_path",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"edgerc_path",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"edgerc_path",
")",
":",
"edgerc",
"=",
"EdgeRc",
"(",
"edgerc_path",
")",
"host",
"=",
"edgerc",
".",
"get",
"(",
"edgerc_section",
",",
"'host'",
")",
"auth",
"=",
"EdgeGridAuth",
".",
"from_edgerc",
"(",
"edgerc",
",",
"section",
"=",
"edgerc_section",
")",
"return",
"host",
",",
"auth",
"raise",
"InvalidAkamaiConfiguration",
"(",
"'Cannot find Akamai client configuration!'",
")"
]
| Load Akamai EdgeGrid configuration
returns a (hostname, EdgeGridAuth) tuple from the following locations:
1. Values specified directly in the Django settings::
AKAMAI_CCU_CLIENT_SECRET
AKAMAI_CCU_HOST
AKAMAI_CCU_ACCESS_TOKEN
AKAMAI_CCU_CLIENT_TOKEN
2. An edgerc file specified in the AKAMAI_EDGERC_FILENAME settings
3. The default ~/.edgerc file
Both edgerc file load options will return the values from the “CCU” section
by default. This may be customized using the AKAMAI_EDGERC_CCU_SECTION setting. | [
"Load",
"Akamai",
"EdgeGrid",
"configuration"
]
| python | train |
NoviceLive/intellicoder | intellicoder/utils.py | https://github.com/NoviceLive/intellicoder/blob/6cac5ebfce65c370dbebe47756a1789b120ef982/intellicoder/utils.py#L238-L245 | def hash_func(name):
"""Hash the string using a hash algorithm found in
tombkeeper/Shellcode_Template_in_C.
"""
ret = 0
for char in name:
ret = ((ret << 5) + ret + ord(char)) & 0xffffffff
return hex(ret) | [
"def",
"hash_func",
"(",
"name",
")",
":",
"ret",
"=",
"0",
"for",
"char",
"in",
"name",
":",
"ret",
"=",
"(",
"(",
"ret",
"<<",
"5",
")",
"+",
"ret",
"+",
"ord",
"(",
"char",
")",
")",
"&",
"0xffffffff",
"return",
"hex",
"(",
"ret",
")"
]
| Hash the string using a hash algorithm found in
tombkeeper/Shellcode_Template_in_C. | [
"Hash",
"the",
"string",
"using",
"a",
"hash",
"algorithm",
"found",
"in",
"tombkeeper",
"/",
"Shellcode_Template_in_C",
"."
]
| python | train |
cloudera/cm_api | python/examples/aws.py | https://github.com/cloudera/cm_api/blob/5d2512375bd94684b4da36df9e0d9177865ffcbb/python/examples/aws.py#L129-L137 | def initialize_api(args):
"""
Initializes the global API instance using the given arguments.
@param args: arguments provided to the script.
"""
global api
api = ApiResource(server_host=args.hostname, server_port=args.port,
username=args.username, password=args.password,
version=args.api_version, use_tls=args.use_tls) | [
"def",
"initialize_api",
"(",
"args",
")",
":",
"global",
"api",
"api",
"=",
"ApiResource",
"(",
"server_host",
"=",
"args",
".",
"hostname",
",",
"server_port",
"=",
"args",
".",
"port",
",",
"username",
"=",
"args",
".",
"username",
",",
"password",
"=",
"args",
".",
"password",
",",
"version",
"=",
"args",
".",
"api_version",
",",
"use_tls",
"=",
"args",
".",
"use_tls",
")"
]
| Initializes the global API instance using the given arguments.
@param args: arguments provided to the script. | [
"Initializes",
"the",
"global",
"API",
"instance",
"using",
"the",
"given",
"arguments",
"."
]
| python | train |
sosreport/sos | sos/sosreport.py | https://github.com/sosreport/sos/blob/2ebc04da53dc871c8dd5243567afa4f8592dca29/sos/sosreport.py#L831-L849 | def del_preset(self, name):
"""Delete a named command line preset.
:param name: the name of the preset to delete
:returns: True on success or False otherwise
"""
policy = self.policy
if not policy.find_preset(name):
self.ui_log.error("Preset '%s' not found" % name)
return False
try:
policy.del_preset(name=name)
except Exception as e:
self.ui_log.error(str(e) + "\n")
return False
self.ui_log.info("Deleted preset '%s'\n" % name)
return True | [
"def",
"del_preset",
"(",
"self",
",",
"name",
")",
":",
"policy",
"=",
"self",
".",
"policy",
"if",
"not",
"policy",
".",
"find_preset",
"(",
"name",
")",
":",
"self",
".",
"ui_log",
".",
"error",
"(",
"\"Preset '%s' not found\"",
"%",
"name",
")",
"return",
"False",
"try",
":",
"policy",
".",
"del_preset",
"(",
"name",
"=",
"name",
")",
"except",
"Exception",
"as",
"e",
":",
"self",
".",
"ui_log",
".",
"error",
"(",
"str",
"(",
"e",
")",
"+",
"\"\\n\"",
")",
"return",
"False",
"self",
".",
"ui_log",
".",
"info",
"(",
"\"Deleted preset '%s'\\n\"",
"%",
"name",
")",
"return",
"True"
]
| Delete a named command line preset.
:param name: the name of the preset to delete
:returns: True on success or False otherwise | [
"Delete",
"a",
"named",
"command",
"line",
"preset",
"."
]
| python | train |
apache/incubator-mxnet | python/mxnet/contrib/onnx/mx2onnx/_op_translations.py | https://github.com/apache/incubator-mxnet/blob/1af29e9c060a4c7d60eeaacba32afdb9a7775ba7/python/mxnet/contrib/onnx/mx2onnx/_op_translations.py#L946-L961 | def convert_dropout(node, **kwargs):
"""Map MXNet's Dropout operator attributes to onnx's Dropout operator
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
probability = float(attrs.get("p", 0.5))
dropout_node = onnx.helper.make_node(
"Dropout",
input_nodes,
[name],
ratio=probability,
name=name
)
return [dropout_node] | [
"def",
"convert_dropout",
"(",
"node",
",",
"*",
"*",
"kwargs",
")",
":",
"name",
",",
"input_nodes",
",",
"attrs",
"=",
"get_inputs",
"(",
"node",
",",
"kwargs",
")",
"probability",
"=",
"float",
"(",
"attrs",
".",
"get",
"(",
"\"p\"",
",",
"0.5",
")",
")",
"dropout_node",
"=",
"onnx",
".",
"helper",
".",
"make_node",
"(",
"\"Dropout\"",
",",
"input_nodes",
",",
"[",
"name",
"]",
",",
"ratio",
"=",
"probability",
",",
"name",
"=",
"name",
")",
"return",
"[",
"dropout_node",
"]"
]
| Map MXNet's Dropout operator attributes to onnx's Dropout operator
and return the created node. | [
"Map",
"MXNet",
"s",
"Dropout",
"operator",
"attributes",
"to",
"onnx",
"s",
"Dropout",
"operator",
"and",
"return",
"the",
"created",
"node",
"."
]
| python | train |
pudo-attic/scrapekit | scrapekit/http.py | https://github.com/pudo-attic/scrapekit/blob/cfd258120922fcd571430cdf00ba50f3cf18dc15/scrapekit/http.py#L18-L27 | def html(self):
""" Create an ``lxml``-based HTML DOM from the response. The tree
will not have a root, so all queries need to be relative
(i.e. start with a dot).
"""
try:
from lxml import html
return html.fromstring(self.content)
except ImportError as ie:
raise DependencyException(ie) | [
"def",
"html",
"(",
"self",
")",
":",
"try",
":",
"from",
"lxml",
"import",
"html",
"return",
"html",
".",
"fromstring",
"(",
"self",
".",
"content",
")",
"except",
"ImportError",
"as",
"ie",
":",
"raise",
"DependencyException",
"(",
"ie",
")"
]
| Create an ``lxml``-based HTML DOM from the response. The tree
will not have a root, so all queries need to be relative
(i.e. start with a dot). | [
"Create",
"an",
"lxml",
"-",
"based",
"HTML",
"DOM",
"from",
"the",
"response",
".",
"The",
"tree",
"will",
"not",
"have",
"a",
"root",
"so",
"all",
"queries",
"need",
"to",
"be",
"relative",
"(",
"i",
".",
"e",
".",
"start",
"with",
"a",
"dot",
")",
"."
]
| python | train |
adafruit/Adafruit_Python_PureIO | Adafruit_PureIO/smbus.py | https://github.com/adafruit/Adafruit_Python_PureIO/blob/6f4976d91c52d70b67b28bba75a429b5328a52c1/Adafruit_PureIO/smbus.py#L283-L294 | def write_i2c_block_data(self, addr, cmd, vals):
"""Write a buffer of data to the specified cmd register of the device.
"""
assert self._device is not None, 'Bus must be opened before operations are made against it!'
# Construct a string of data to send, including room for the command register.
data = bytearray(len(vals)+1)
data[0] = cmd & 0xFF # Command register at the start.
data[1:] = vals[0:] # Copy in the block data (ugly but necessary to ensure
# the entire write happens in one transaction).
# Send the data to the device.
self._select_device(addr)
self._device.write(data) | [
"def",
"write_i2c_block_data",
"(",
"self",
",",
"addr",
",",
"cmd",
",",
"vals",
")",
":",
"assert",
"self",
".",
"_device",
"is",
"not",
"None",
",",
"'Bus must be opened before operations are made against it!'",
"# Construct a string of data to send, including room for the command register.",
"data",
"=",
"bytearray",
"(",
"len",
"(",
"vals",
")",
"+",
"1",
")",
"data",
"[",
"0",
"]",
"=",
"cmd",
"&",
"0xFF",
"# Command register at the start.",
"data",
"[",
"1",
":",
"]",
"=",
"vals",
"[",
"0",
":",
"]",
"# Copy in the block data (ugly but necessary to ensure",
"# the entire write happens in one transaction).",
"# Send the data to the device.",
"self",
".",
"_select_device",
"(",
"addr",
")",
"self",
".",
"_device",
".",
"write",
"(",
"data",
")"
]
| Write a buffer of data to the specified cmd register of the device. | [
"Write",
"a",
"buffer",
"of",
"data",
"to",
"the",
"specified",
"cmd",
"register",
"of",
"the",
"device",
"."
]
| python | test |
SecurityInnovation/PGPy | pgpy/pgp.py | https://github.com/SecurityInnovation/PGPy/blob/f1c3d68e32c334f5aa14c34580925e97f17f4fde/pgpy/pgp.py#L1317-L1348 | def pubkey(self):
"""If the :py:obj:`PGPKey` object is a private key, this method returns a corresponding public key object with
all the trimmings. Otherwise, returns ``None``
"""
if not self.is_public:
if self._sibling is None or isinstance(self._sibling, weakref.ref):
# create a new key shell
pub = PGPKey()
pub.ascii_headers = self.ascii_headers.copy()
# get the public half of the primary key
pub._key = self._key.pubkey()
# get the public half of each subkey
for skid, subkey in self.subkeys.items():
pub |= subkey.pubkey
# copy user ids and user attributes
for uid in self._uids:
pub |= copy.copy(uid)
# copy signatures that weren't copied with uids
for sig in self._signatures:
if sig.parent is None:
pub |= copy.copy(sig)
# keep connect the two halves using a weak reference
self._sibling = weakref.ref(pub)
pub._sibling = weakref.ref(self)
return self._sibling()
return None | [
"def",
"pubkey",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"is_public",
":",
"if",
"self",
".",
"_sibling",
"is",
"None",
"or",
"isinstance",
"(",
"self",
".",
"_sibling",
",",
"weakref",
".",
"ref",
")",
":",
"# create a new key shell",
"pub",
"=",
"PGPKey",
"(",
")",
"pub",
".",
"ascii_headers",
"=",
"self",
".",
"ascii_headers",
".",
"copy",
"(",
")",
"# get the public half of the primary key",
"pub",
".",
"_key",
"=",
"self",
".",
"_key",
".",
"pubkey",
"(",
")",
"# get the public half of each subkey",
"for",
"skid",
",",
"subkey",
"in",
"self",
".",
"subkeys",
".",
"items",
"(",
")",
":",
"pub",
"|=",
"subkey",
".",
"pubkey",
"# copy user ids and user attributes",
"for",
"uid",
"in",
"self",
".",
"_uids",
":",
"pub",
"|=",
"copy",
".",
"copy",
"(",
"uid",
")",
"# copy signatures that weren't copied with uids",
"for",
"sig",
"in",
"self",
".",
"_signatures",
":",
"if",
"sig",
".",
"parent",
"is",
"None",
":",
"pub",
"|=",
"copy",
".",
"copy",
"(",
"sig",
")",
"# keep connect the two halves using a weak reference",
"self",
".",
"_sibling",
"=",
"weakref",
".",
"ref",
"(",
"pub",
")",
"pub",
".",
"_sibling",
"=",
"weakref",
".",
"ref",
"(",
"self",
")",
"return",
"self",
".",
"_sibling",
"(",
")",
"return",
"None"
]
| If the :py:obj:`PGPKey` object is a private key, this method returns a corresponding public key object with
all the trimmings. Otherwise, returns ``None`` | [
"If",
"the",
":",
"py",
":",
"obj",
":",
"PGPKey",
"object",
"is",
"a",
"private",
"key",
"this",
"method",
"returns",
"a",
"corresponding",
"public",
"key",
"object",
"with",
"all",
"the",
"trimmings",
".",
"Otherwise",
"returns",
"None"
]
| python | train |
RedHatInsights/insights-core | insights/parsers/df.py | https://github.com/RedHatInsights/insights-core/blob/b57cbf8ed7c089672426ede0441e0a4f789ef4a1/insights/parsers/df.py#L68-L125 | def parse_df_lines(df_content):
"""Parse contents of each line in ``df`` output.
Parse each line of ``df`` output ensuring that wrapped lines are
reassembled prior to parsing, and that mount names containing spaces
are maintained.
Parameters:
df_content (list): Lines of df output to be parsed.
Returns:
list: A list of ``Record`` ``namedtuple``'s. One for each line of the
``df`` output with columns as the key values. The fields of
``Record`` provide information about the file system attributes
as determined by the arguments to the ``df`` command. So, for
example, if ``df`` is given the ``-alP``, the values are in
terms of 1024 blocks. If ``-li`` is given, then the values are
in terms of inodes::
- filesystem: Name of the filesystem
- total: total number of resources on the filesystem
- used: number of the resources used on the filesystem
- available: number of the resource available on the filesystem
- capacity: percentage of the resource used on the filesystem
- mounted_on: mount point of the filesystem
"""
df_ls = {}
df_out = []
is_sep = False
columns = Record._fields
for line in df_content[1:]: # [1:] -> Skip the header
# Stop at 5 splits to avoid splitting spaces in path
line_splits = line.rstrip().split(None, 5)
if len(line_splits) >= 6:
for i, name in enumerate(columns):
df_ls[name] = line_splits[i]
is_sep = False
elif len(line_splits) == 1:
# First line of the separated line
df_ls[columns[0]] = line_splits[0]
is_sep = True
elif is_sep and len(line_splits) >= 5:
# Re-split to avoid this kind of "Mounted on": "VMware Tools"
line_splits = line.split(None, 4)
# Last line of the separated line
for i, name in enumerate(columns[1:]):
df_ls[name] = line_splits[i]
is_sep = False
elif not line_splits: # Skip empty lines (might in sosreport)
continue
else:
raise ParseException("Could not parse line '{l}'".format(l=line))
# Only add this record if we've got a line and it's not separated
if df_ls and not is_sep:
rec = Record(**df_ls)
df_out.append(rec)
df_ls = {}
return df_out | [
"def",
"parse_df_lines",
"(",
"df_content",
")",
":",
"df_ls",
"=",
"{",
"}",
"df_out",
"=",
"[",
"]",
"is_sep",
"=",
"False",
"columns",
"=",
"Record",
".",
"_fields",
"for",
"line",
"in",
"df_content",
"[",
"1",
":",
"]",
":",
"# [1:] -> Skip the header",
"# Stop at 5 splits to avoid splitting spaces in path",
"line_splits",
"=",
"line",
".",
"rstrip",
"(",
")",
".",
"split",
"(",
"None",
",",
"5",
")",
"if",
"len",
"(",
"line_splits",
")",
">=",
"6",
":",
"for",
"i",
",",
"name",
"in",
"enumerate",
"(",
"columns",
")",
":",
"df_ls",
"[",
"name",
"]",
"=",
"line_splits",
"[",
"i",
"]",
"is_sep",
"=",
"False",
"elif",
"len",
"(",
"line_splits",
")",
"==",
"1",
":",
"# First line of the separated line",
"df_ls",
"[",
"columns",
"[",
"0",
"]",
"]",
"=",
"line_splits",
"[",
"0",
"]",
"is_sep",
"=",
"True",
"elif",
"is_sep",
"and",
"len",
"(",
"line_splits",
")",
">=",
"5",
":",
"# Re-split to avoid this kind of \"Mounted on\": \"VMware Tools\"",
"line_splits",
"=",
"line",
".",
"split",
"(",
"None",
",",
"4",
")",
"# Last line of the separated line",
"for",
"i",
",",
"name",
"in",
"enumerate",
"(",
"columns",
"[",
"1",
":",
"]",
")",
":",
"df_ls",
"[",
"name",
"]",
"=",
"line_splits",
"[",
"i",
"]",
"is_sep",
"=",
"False",
"elif",
"not",
"line_splits",
":",
"# Skip empty lines (might in sosreport)",
"continue",
"else",
":",
"raise",
"ParseException",
"(",
"\"Could not parse line '{l}'\"",
".",
"format",
"(",
"l",
"=",
"line",
")",
")",
"# Only add this record if we've got a line and it's not separated",
"if",
"df_ls",
"and",
"not",
"is_sep",
":",
"rec",
"=",
"Record",
"(",
"*",
"*",
"df_ls",
")",
"df_out",
".",
"append",
"(",
"rec",
")",
"df_ls",
"=",
"{",
"}",
"return",
"df_out"
]
| Parse contents of each line in ``df`` output.
Parse each line of ``df`` output ensuring that wrapped lines are
reassembled prior to parsing, and that mount names containing spaces
are maintained.
Parameters:
df_content (list): Lines of df output to be parsed.
Returns:
list: A list of ``Record`` ``namedtuple``'s. One for each line of the
``df`` output with columns as the key values. The fields of
``Record`` provide information about the file system attributes
as determined by the arguments to the ``df`` command. So, for
example, if ``df`` is given the ``-alP``, the values are in
terms of 1024 blocks. If ``-li`` is given, then the values are
in terms of inodes::
- filesystem: Name of the filesystem
- total: total number of resources on the filesystem
- used: number of the resources used on the filesystem
- available: number of the resource available on the filesystem
- capacity: percentage of the resource used on the filesystem
- mounted_on: mount point of the filesystem | [
"Parse",
"contents",
"of",
"each",
"line",
"in",
"df",
"output",
"."
]
| python | train |
UCL-INGI/INGInious | inginious/frontend/fix_webpy_cookies.py | https://github.com/UCL-INGI/INGInious/blob/cbda9a9c7f2b8e8eb1e6d7d51f0d18092086300c/inginious/frontend/fix_webpy_cookies.py#L10-L23 | def fix_webpy_cookies():
"""
Fixes a bug in web.py. See #208. PR is waiting to be merged upstream at https://github.com/webpy/webpy/pull/419
TODO: remove me once PR is merged upstream.
"""
try:
web.webapi.parse_cookies('a="test"') # make the bug occur
except NameError:
# monkeypatch web.py
SimpleCookie.iteritems = SimpleCookie.items
web.webapi.Cookie = namedtuple('Cookie', ['SimpleCookie', 'CookieError'])(SimpleCookie, CookieError)
web.webapi.parse_cookies('a="test"') | [
"def",
"fix_webpy_cookies",
"(",
")",
":",
"try",
":",
"web",
".",
"webapi",
".",
"parse_cookies",
"(",
"'a=\"test\"'",
")",
"# make the bug occur",
"except",
"NameError",
":",
"# monkeypatch web.py",
"SimpleCookie",
".",
"iteritems",
"=",
"SimpleCookie",
".",
"items",
"web",
".",
"webapi",
".",
"Cookie",
"=",
"namedtuple",
"(",
"'Cookie'",
",",
"[",
"'SimpleCookie'",
",",
"'CookieError'",
"]",
")",
"(",
"SimpleCookie",
",",
"CookieError",
")",
"web",
".",
"webapi",
".",
"parse_cookies",
"(",
"'a=\"test\"'",
")"
]
| Fixes a bug in web.py. See #208. PR is waiting to be merged upstream at https://github.com/webpy/webpy/pull/419
TODO: remove me once PR is merged upstream. | [
"Fixes",
"a",
"bug",
"in",
"web",
".",
"py",
".",
"See",
"#208",
".",
"PR",
"is",
"waiting",
"to",
"be",
"merged",
"upstream",
"at",
"https",
":",
"//",
"github",
".",
"com",
"/",
"webpy",
"/",
"webpy",
"/",
"pull",
"/",
"419",
"TODO",
":",
"remove",
"me",
"once",
"PR",
"is",
"merged",
"upstream",
"."
]
| python | train |
BreakingBytes/simkit | simkit/core/__init__.py | https://github.com/BreakingBytes/simkit/blob/205163d879d3880b6c9ef609f1b723a58773026b/simkit/core/__init__.py#L212-L223 | def default(self, o):
"""
JSONEncoder default method that converts NumPy arrays and quantities
objects to lists.
"""
if isinstance(o, Q_):
return o.magnitude
elif isinstance(o, np.ndarray):
return o.tolist()
else:
# raise TypeError if not serializable
return super(SimKitJSONEncoder, self).default(o) | [
"def",
"default",
"(",
"self",
",",
"o",
")",
":",
"if",
"isinstance",
"(",
"o",
",",
"Q_",
")",
":",
"return",
"o",
".",
"magnitude",
"elif",
"isinstance",
"(",
"o",
",",
"np",
".",
"ndarray",
")",
":",
"return",
"o",
".",
"tolist",
"(",
")",
"else",
":",
"# raise TypeError if not serializable",
"return",
"super",
"(",
"SimKitJSONEncoder",
",",
"self",
")",
".",
"default",
"(",
"o",
")"
]
| JSONEncoder default method that converts NumPy arrays and quantities
objects to lists. | [
"JSONEncoder",
"default",
"method",
"that",
"converts",
"NumPy",
"arrays",
"and",
"quantities",
"objects",
"to",
"lists",
"."
]
| python | train |
saltstack/salt | salt/modules/win_lgpo.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/modules/win_lgpo.py#L4501-L4524 | def _in_range_inclusive(cls, val, **kwargs):
'''
checks that a value is in an inclusive range
The value for 0 used by Max Password Age is actually 0xffffffff
'''
minimum = kwargs.get('min', 0)
maximum = kwargs.get('max', 1)
zero_value = kwargs.get('zero_value', 0)
if isinstance(val, six.string_types):
if val.lower() == 'not defined':
return True
else:
try:
val = int(val)
except ValueError:
return False
if val is not None:
if minimum <= val <= maximum or val == zero_value:
return True
else:
return False
else:
return False | [
"def",
"_in_range_inclusive",
"(",
"cls",
",",
"val",
",",
"*",
"*",
"kwargs",
")",
":",
"minimum",
"=",
"kwargs",
".",
"get",
"(",
"'min'",
",",
"0",
")",
"maximum",
"=",
"kwargs",
".",
"get",
"(",
"'max'",
",",
"1",
")",
"zero_value",
"=",
"kwargs",
".",
"get",
"(",
"'zero_value'",
",",
"0",
")",
"if",
"isinstance",
"(",
"val",
",",
"six",
".",
"string_types",
")",
":",
"if",
"val",
".",
"lower",
"(",
")",
"==",
"'not defined'",
":",
"return",
"True",
"else",
":",
"try",
":",
"val",
"=",
"int",
"(",
"val",
")",
"except",
"ValueError",
":",
"return",
"False",
"if",
"val",
"is",
"not",
"None",
":",
"if",
"minimum",
"<=",
"val",
"<=",
"maximum",
"or",
"val",
"==",
"zero_value",
":",
"return",
"True",
"else",
":",
"return",
"False",
"else",
":",
"return",
"False"
]
| checks that a value is in an inclusive range
The value for 0 used by Max Password Age is actually 0xffffffff | [
"checks",
"that",
"a",
"value",
"is",
"in",
"an",
"inclusive",
"range",
"The",
"value",
"for",
"0",
"used",
"by",
"Max",
"Password",
"Age",
"is",
"actually",
"0xffffffff"
]
| python | train |
horazont/aioxmpp | aioxmpp/stream.py | https://github.com/horazont/aioxmpp/blob/22a68e5e1d23f2a4dee470092adbd4672f9ef061/aioxmpp/stream.py#L2436-L2452 | def _stop_sm(self):
"""
Version of :meth:`stop_sm` which can be called during startup.
"""
if not self.sm_enabled:
raise RuntimeError("Stream Management is not enabled")
self._logger.info("stopping SM stream")
self._sm_enabled = False
del self._sm_outbound_base
del self._sm_inbound_ctr
self._clear_unacked(StanzaState.SENT_WITHOUT_SM)
del self._sm_unacked_list
self._destroy_stream_state(ConnectionError(
"stream management disabled"
)) | [
"def",
"_stop_sm",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"sm_enabled",
":",
"raise",
"RuntimeError",
"(",
"\"Stream Management is not enabled\"",
")",
"self",
".",
"_logger",
".",
"info",
"(",
"\"stopping SM stream\"",
")",
"self",
".",
"_sm_enabled",
"=",
"False",
"del",
"self",
".",
"_sm_outbound_base",
"del",
"self",
".",
"_sm_inbound_ctr",
"self",
".",
"_clear_unacked",
"(",
"StanzaState",
".",
"SENT_WITHOUT_SM",
")",
"del",
"self",
".",
"_sm_unacked_list",
"self",
".",
"_destroy_stream_state",
"(",
"ConnectionError",
"(",
"\"stream management disabled\"",
")",
")"
]
| Version of :meth:`stop_sm` which can be called during startup. | [
"Version",
"of",
":",
"meth",
":",
"stop_sm",
"which",
"can",
"be",
"called",
"during",
"startup",
"."
]
| python | train |
SBRG/ssbio | ssbio/protein/structure/structprop.py | https://github.com/SBRG/ssbio/blob/e9449e64ffc1a1f5ad07e5849aa12a650095f8a2/ssbio/protein/structure/structprop.py#L392-L422 | def get_seqprop_within(self, chain_id, resnum, angstroms, only_protein=True,
use_ca=False, custom_coord=None, return_resnums=False):
"""Get a SeqProp object of the amino acids within X angstroms of the specified chain + residue number.
Args:
resnum (int): Residue number of the structure
chain_id (str): Chain ID of the residue number
angstroms (float): Radius of the search sphere
only_protein (bool): If only protein atoms (no HETATMS) should be included in the returned sequence
use_ca (bool): If the alpha-carbon atom should be used for searching, default is False (last atom of residue used)
Returns:
SeqProp: Sequence that represents the amino acids in the vicinity of your residue number.
"""
# XTODO: change "remove" parameter to be clean_seq and to remove all non standard amino acids
# TODO: make return_resnums smarter
polypep, resnums = self.get_polypeptide_within(chain_id=chain_id, resnum=resnum, angstroms=angstroms, use_ca=use_ca,
only_protein=only_protein, custom_coord=custom_coord,
return_resnums=True)
# final_seq = polypep.get_sequence()
# seqprop = SeqProp(id='{}-{}_within_{}_of_{}'.format(self.id, chain_id, angstroms, resnum),
# seq=final_seq)
chain_subseq = self.chains.get_by_id(chain_id).get_subsequence(resnums)
if return_resnums:
return chain_subseq, resnums
else:
return chain_subseq | [
"def",
"get_seqprop_within",
"(",
"self",
",",
"chain_id",
",",
"resnum",
",",
"angstroms",
",",
"only_protein",
"=",
"True",
",",
"use_ca",
"=",
"False",
",",
"custom_coord",
"=",
"None",
",",
"return_resnums",
"=",
"False",
")",
":",
"# XTODO: change \"remove\" parameter to be clean_seq and to remove all non standard amino acids",
"# TODO: make return_resnums smarter",
"polypep",
",",
"resnums",
"=",
"self",
".",
"get_polypeptide_within",
"(",
"chain_id",
"=",
"chain_id",
",",
"resnum",
"=",
"resnum",
",",
"angstroms",
"=",
"angstroms",
",",
"use_ca",
"=",
"use_ca",
",",
"only_protein",
"=",
"only_protein",
",",
"custom_coord",
"=",
"custom_coord",
",",
"return_resnums",
"=",
"True",
")",
"# final_seq = polypep.get_sequence()",
"# seqprop = SeqProp(id='{}-{}_within_{}_of_{}'.format(self.id, chain_id, angstroms, resnum),",
"# seq=final_seq)",
"chain_subseq",
"=",
"self",
".",
"chains",
".",
"get_by_id",
"(",
"chain_id",
")",
".",
"get_subsequence",
"(",
"resnums",
")",
"if",
"return_resnums",
":",
"return",
"chain_subseq",
",",
"resnums",
"else",
":",
"return",
"chain_subseq"
]
| Get a SeqProp object of the amino acids within X angstroms of the specified chain + residue number.
Args:
resnum (int): Residue number of the structure
chain_id (str): Chain ID of the residue number
angstroms (float): Radius of the search sphere
only_protein (bool): If only protein atoms (no HETATMS) should be included in the returned sequence
use_ca (bool): If the alpha-carbon atom should be used for searching, default is False (last atom of residue used)
Returns:
SeqProp: Sequence that represents the amino acids in the vicinity of your residue number. | [
"Get",
"a",
"SeqProp",
"object",
"of",
"the",
"amino",
"acids",
"within",
"X",
"angstroms",
"of",
"the",
"specified",
"chain",
"+",
"residue",
"number",
"."
]
| python | train |
bitcaster-io/bitcaster | src/bitcaster/web/templatetags/partition.py | https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/web/templatetags/partition.py#L23-L59 | def rows(thelist, n):
"""
Break a list into ``n`` rows, filling up each row to the maximum equal
length possible. For example::
>>> l = range(10)
>>> rows(l, 2)
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
>>> rows(l, 3)
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9]]
>>> rows(l, 4)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> rows(l, 5)
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]
>>> rows(l, 9)
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [], [], [], []]
# This filter will always return `n` rows, even if some are empty:
>>> rows(range(2), 3)
[[0], [1], []]
"""
try:
n = int(n)
thelist = list(thelist)
except (ValueError, TypeError):
return [thelist]
list_len = len(thelist)
split = list_len // n
if list_len % n != 0:
split += 1
return [thelist[split * i:split * (i + 1)] for i in range(n)] | [
"def",
"rows",
"(",
"thelist",
",",
"n",
")",
":",
"try",
":",
"n",
"=",
"int",
"(",
"n",
")",
"thelist",
"=",
"list",
"(",
"thelist",
")",
"except",
"(",
"ValueError",
",",
"TypeError",
")",
":",
"return",
"[",
"thelist",
"]",
"list_len",
"=",
"len",
"(",
"thelist",
")",
"split",
"=",
"list_len",
"//",
"n",
"if",
"list_len",
"%",
"n",
"!=",
"0",
":",
"split",
"+=",
"1",
"return",
"[",
"thelist",
"[",
"split",
"*",
"i",
":",
"split",
"*",
"(",
"i",
"+",
"1",
")",
"]",
"for",
"i",
"in",
"range",
"(",
"n",
")",
"]"
]
| Break a list into ``n`` rows, filling up each row to the maximum equal
length possible. For example::
>>> l = range(10)
>>> rows(l, 2)
[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
>>> rows(l, 3)
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9]]
>>> rows(l, 4)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> rows(l, 5)
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]
>>> rows(l, 9)
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [], [], [], []]
# This filter will always return `n` rows, even if some are empty:
>>> rows(range(2), 3)
[[0], [1], []] | [
"Break",
"a",
"list",
"into",
"n",
"rows",
"filling",
"up",
"each",
"row",
"to",
"the",
"maximum",
"equal",
"length",
"possible",
".",
"For",
"example",
"::"
]
| python | train |
childsish/lhc-python | lhc/misc/tools.py | https://github.com/childsish/lhc-python/blob/0a669f46a40a39f24d28665e8b5b606dc7e86beb/lhc/misc/tools.py#L38-L50 | def combinations_with_replacement(iterable, r):
""" This function acts as a replacement for the
itertools.combinations_with_replacement function. The original does not
replace items that come earlier in the provided iterator.
"""
stk = [[i,] for i in iterable]
pop = stk.pop
while len(stk) > 0:
top = pop()
if len(top) == r:
yield tuple(top)
else:
stk.extend(top + [i] for i in iterable) | [
"def",
"combinations_with_replacement",
"(",
"iterable",
",",
"r",
")",
":",
"stk",
"=",
"[",
"[",
"i",
",",
"]",
"for",
"i",
"in",
"iterable",
"]",
"pop",
"=",
"stk",
".",
"pop",
"while",
"len",
"(",
"stk",
")",
">",
"0",
":",
"top",
"=",
"pop",
"(",
")",
"if",
"len",
"(",
"top",
")",
"==",
"r",
":",
"yield",
"tuple",
"(",
"top",
")",
"else",
":",
"stk",
".",
"extend",
"(",
"top",
"+",
"[",
"i",
"]",
"for",
"i",
"in",
"iterable",
")"
]
| This function acts as a replacement for the
itertools.combinations_with_replacement function. The original does not
replace items that come earlier in the provided iterator. | [
"This",
"function",
"acts",
"as",
"a",
"replacement",
"for",
"the",
"itertools",
".",
"combinations_with_replacement",
"function",
".",
"The",
"original",
"does",
"not",
"replace",
"items",
"that",
"come",
"earlier",
"in",
"the",
"provided",
"iterator",
"."
]
| python | train |
spyder-ide/spyder | spyder/widgets/onecolumntree.py | https://github.com/spyder-ide/spyder/blob/f76836ce1b924bcc4efd3f74f2960d26a4e528e0/spyder/widgets/onecolumntree.py#L204-L211 | def sort_top_level_items(self, key):
"""Sorting tree wrt top level items"""
self.save_expanded_state()
items = sorted([self.takeTopLevelItem(0)
for index in range(self.topLevelItemCount())], key=key)
for index, item in enumerate(items):
self.insertTopLevelItem(index, item)
self.restore_expanded_state() | [
"def",
"sort_top_level_items",
"(",
"self",
",",
"key",
")",
":",
"self",
".",
"save_expanded_state",
"(",
")",
"items",
"=",
"sorted",
"(",
"[",
"self",
".",
"takeTopLevelItem",
"(",
"0",
")",
"for",
"index",
"in",
"range",
"(",
"self",
".",
"topLevelItemCount",
"(",
")",
")",
"]",
",",
"key",
"=",
"key",
")",
"for",
"index",
",",
"item",
"in",
"enumerate",
"(",
"items",
")",
":",
"self",
".",
"insertTopLevelItem",
"(",
"index",
",",
"item",
")",
"self",
".",
"restore_expanded_state",
"(",
")"
]
| Sorting tree wrt top level items | [
"Sorting",
"tree",
"wrt",
"top",
"level",
"items"
]
| python | train |
brandon-rhodes/uncommitted | uncommitted/command.py | https://github.com/brandon-rhodes/uncommitted/blob/80ebd95a3735e26bd8b9b7b62ff25e1e749a7472/uncommitted/command.py#L174-L201 | def scan(repos, options):
"""Given a repository list [(path, vcsname), ...], scan each of them."""
ignore_set = set()
repos = repos[::-1] # Create a queue we can push and pop from
while repos:
directory, dotdir = repos.pop()
ignore_this = any(pat in directory for pat in options.ignore_patterns)
if ignore_this:
if options.verbose:
output(b'Ignoring repo: %s' % directory)
output(b'')
continue
vcsname, get_status = SYSTEMS[dotdir]
lines, subrepos = get_status(directory, ignore_set, options)
# We want to tackle subrepos immediately after their repository,
# so we put them at the front of the queue.
subrepos = [(os.path.join(directory, r), dotdir) for r in subrepos]
repos.extend(reversed(subrepos))
if lines is None: # signal that we should ignore this one
continue
if lines or options.verbose:
output(b'%s - %s' % (directory, vcsname))
for line in lines:
output(line)
output(b'') | [
"def",
"scan",
"(",
"repos",
",",
"options",
")",
":",
"ignore_set",
"=",
"set",
"(",
")",
"repos",
"=",
"repos",
"[",
":",
":",
"-",
"1",
"]",
"# Create a queue we can push and pop from",
"while",
"repos",
":",
"directory",
",",
"dotdir",
"=",
"repos",
".",
"pop",
"(",
")",
"ignore_this",
"=",
"any",
"(",
"pat",
"in",
"directory",
"for",
"pat",
"in",
"options",
".",
"ignore_patterns",
")",
"if",
"ignore_this",
":",
"if",
"options",
".",
"verbose",
":",
"output",
"(",
"b'Ignoring repo: %s'",
"%",
"directory",
")",
"output",
"(",
"b''",
")",
"continue",
"vcsname",
",",
"get_status",
"=",
"SYSTEMS",
"[",
"dotdir",
"]",
"lines",
",",
"subrepos",
"=",
"get_status",
"(",
"directory",
",",
"ignore_set",
",",
"options",
")",
"# We want to tackle subrepos immediately after their repository,",
"# so we put them at the front of the queue.",
"subrepos",
"=",
"[",
"(",
"os",
".",
"path",
".",
"join",
"(",
"directory",
",",
"r",
")",
",",
"dotdir",
")",
"for",
"r",
"in",
"subrepos",
"]",
"repos",
".",
"extend",
"(",
"reversed",
"(",
"subrepos",
")",
")",
"if",
"lines",
"is",
"None",
":",
"# signal that we should ignore this one",
"continue",
"if",
"lines",
"or",
"options",
".",
"verbose",
":",
"output",
"(",
"b'%s - %s'",
"%",
"(",
"directory",
",",
"vcsname",
")",
")",
"for",
"line",
"in",
"lines",
":",
"output",
"(",
"line",
")",
"output",
"(",
"b''",
")"
]
| Given a repository list [(path, vcsname), ...], scan each of them. | [
"Given",
"a",
"repository",
"list",
"[",
"(",
"path",
"vcsname",
")",
"...",
"]",
"scan",
"each",
"of",
"them",
"."
]
| python | train |
night-crawler/django-docker-helpers | django_docker_helpers/utils.py | https://github.com/night-crawler/django-docker-helpers/blob/b64f8009101a8eb61d3841124ba19e3ab881aa2f/django_docker_helpers/utils.py#L364-L382 | def run_env_once(f: t.Callable) -> t.Callable:
"""
A decorator to prevent ``manage.py`` from running code twice for everything.
(https://stackoverflow.com/questions/16546652/why-does-django-run-everything-twice)
:param f: function or method to decorate
:return: callable
"""
@wraps(f)
def wrapper(*args, **kwargs):
has_run = os.environ.get(wrapper.__name__)
if has_run == '1':
return
result = f(*args, **kwargs)
os.environ[wrapper.__name__] = '1'
return result
return wrapper | [
"def",
"run_env_once",
"(",
"f",
":",
"t",
".",
"Callable",
")",
"->",
"t",
".",
"Callable",
":",
"@",
"wraps",
"(",
"f",
")",
"def",
"wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"has_run",
"=",
"os",
".",
"environ",
".",
"get",
"(",
"wrapper",
".",
"__name__",
")",
"if",
"has_run",
"==",
"'1'",
":",
"return",
"result",
"=",
"f",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"os",
".",
"environ",
"[",
"wrapper",
".",
"__name__",
"]",
"=",
"'1'",
"return",
"result",
"return",
"wrapper"
]
| A decorator to prevent ``manage.py`` from running code twice for everything.
(https://stackoverflow.com/questions/16546652/why-does-django-run-everything-twice)
:param f: function or method to decorate
:return: callable | [
"A",
"decorator",
"to",
"prevent",
"manage",
".",
"py",
"from",
"running",
"code",
"twice",
"for",
"everything",
".",
"(",
"https",
":",
"//",
"stackoverflow",
".",
"com",
"/",
"questions",
"/",
"16546652",
"/",
"why",
"-",
"does",
"-",
"django",
"-",
"run",
"-",
"everything",
"-",
"twice",
")"
]
| python | train |
MIT-LCP/wfdb-python | wfdb/io/_signal.py | https://github.com/MIT-LCP/wfdb-python/blob/cc8c9e9e44f10af961b7a9d8ae03708b31ac8a8c/wfdb/io/_signal.py#L70-L143 | def check_sig_cohesion(self, write_fields, expanded):
"""
Check the cohesion of the d_signal/e_d_signal field with the other
fields used to write the record
"""
# Using list of arrays e_d_signal
if expanded:
# Set default samps_per_frame
spf = self.samps_per_frame
for ch in range(len(spf)):
if spf[ch] is None:
spf[ch] = 1
# Match the actual signal shape against stated length and number of channels
if self.n_sig != len(self.e_d_signal):
raise ValueError('n_sig does not match the length of e_d_signal')
for ch in range(self.n_sig):
if len(self.e_d_signal[ch]) != spf[ch]*self.sig_len:
raise ValueError('Length of channel '+str(ch)+'does not match samps_per_frame['+str(ch+']*sig_len'))
# For each channel (if any), make sure the digital format has no values out of bounds
for ch in range(self.n_sig):
fmt = self.fmt[ch]
dmin, dmax = _digi_bounds(self.fmt[ch])
chmin = min(self.e_d_signal[ch])
chmax = max(self.e_d_signal[ch])
if (chmin < dmin) or (chmax > dmax):
raise IndexError("Channel "+str(ch)+" contain values outside allowed range ["+str(dmin)+", "+str(dmax)+"] for fmt "+str(fmt))
# Ensure that the checksums and initial value fields match the digital signal (if the fields are present)
if self.n_sig > 0:
if 'checksum' in write_fields:
realchecksum = self.calc_checksum(expanded)
if self.checksum != realchecksum:
print("The actual checksum of e_d_signal is: ", realchecksum)
raise ValueError("checksum field does not match actual checksum of e_d_signal")
if 'init_value' in write_fields:
realinit_value = [self.e_d_signal[ch][0] for ch in range(self.n_sig)]
if self.init_value != realinit_value:
print("The actual init_value of e_d_signal is: ", realinit_value)
raise ValueError("init_value field does not match actual init_value of e_d_signal")
# Using uniform d_signal
else:
# Match the actual signal shape against stated length and number of channels
if (self.sig_len, self.n_sig) != self.d_signal.shape:
print('sig_len: ', self.sig_len)
print('n_sig: ', self.n_sig)
print('d_signal.shape: ', self.d_signal.shape)
raise ValueError('sig_len and n_sig do not match shape of d_signal')
# For each channel (if any), make sure the digital format has no values out of bounds
for ch in range(self.n_sig):
fmt = self.fmt[ch]
dmin, dmax = _digi_bounds(self.fmt[ch])
chmin = min(self.d_signal[:,ch])
chmax = max(self.d_signal[:,ch])
if (chmin < dmin) or (chmax > dmax):
raise IndexError("Channel "+str(ch)+" contain values outside allowed range ["+str(dmin)+", "+str(dmax)+"] for fmt "+str(fmt))
# Ensure that the checksums and initial value fields match the digital signal (if the fields are present)
if self.n_sig>0:
if 'checksum' in write_fields:
realchecksum = self.calc_checksum()
if self.checksum != realchecksum:
print("The actual checksum of d_signal is: ", realchecksum)
raise ValueError("checksum field does not match actual checksum of d_signal")
if 'init_value' in write_fields:
realinit_value = list(self.d_signal[0,:])
if self.init_value != realinit_value:
print("The actual init_value of d_signal is: ", realinit_value)
raise ValueError("init_value field does not match actual init_value of d_signal") | [
"def",
"check_sig_cohesion",
"(",
"self",
",",
"write_fields",
",",
"expanded",
")",
":",
"# Using list of arrays e_d_signal",
"if",
"expanded",
":",
"# Set default samps_per_frame",
"spf",
"=",
"self",
".",
"samps_per_frame",
"for",
"ch",
"in",
"range",
"(",
"len",
"(",
"spf",
")",
")",
":",
"if",
"spf",
"[",
"ch",
"]",
"is",
"None",
":",
"spf",
"[",
"ch",
"]",
"=",
"1",
"# Match the actual signal shape against stated length and number of channels",
"if",
"self",
".",
"n_sig",
"!=",
"len",
"(",
"self",
".",
"e_d_signal",
")",
":",
"raise",
"ValueError",
"(",
"'n_sig does not match the length of e_d_signal'",
")",
"for",
"ch",
"in",
"range",
"(",
"self",
".",
"n_sig",
")",
":",
"if",
"len",
"(",
"self",
".",
"e_d_signal",
"[",
"ch",
"]",
")",
"!=",
"spf",
"[",
"ch",
"]",
"*",
"self",
".",
"sig_len",
":",
"raise",
"ValueError",
"(",
"'Length of channel '",
"+",
"str",
"(",
"ch",
")",
"+",
"'does not match samps_per_frame['",
"+",
"str",
"(",
"ch",
"+",
"']*sig_len'",
")",
")",
"# For each channel (if any), make sure the digital format has no values out of bounds",
"for",
"ch",
"in",
"range",
"(",
"self",
".",
"n_sig",
")",
":",
"fmt",
"=",
"self",
".",
"fmt",
"[",
"ch",
"]",
"dmin",
",",
"dmax",
"=",
"_digi_bounds",
"(",
"self",
".",
"fmt",
"[",
"ch",
"]",
")",
"chmin",
"=",
"min",
"(",
"self",
".",
"e_d_signal",
"[",
"ch",
"]",
")",
"chmax",
"=",
"max",
"(",
"self",
".",
"e_d_signal",
"[",
"ch",
"]",
")",
"if",
"(",
"chmin",
"<",
"dmin",
")",
"or",
"(",
"chmax",
">",
"dmax",
")",
":",
"raise",
"IndexError",
"(",
"\"Channel \"",
"+",
"str",
"(",
"ch",
")",
"+",
"\" contain values outside allowed range [\"",
"+",
"str",
"(",
"dmin",
")",
"+",
"\", \"",
"+",
"str",
"(",
"dmax",
")",
"+",
"\"] for fmt \"",
"+",
"str",
"(",
"fmt",
")",
")",
"# Ensure that the checksums and initial value fields match the digital signal (if the fields are present)",
"if",
"self",
".",
"n_sig",
">",
"0",
":",
"if",
"'checksum'",
"in",
"write_fields",
":",
"realchecksum",
"=",
"self",
".",
"calc_checksum",
"(",
"expanded",
")",
"if",
"self",
".",
"checksum",
"!=",
"realchecksum",
":",
"print",
"(",
"\"The actual checksum of e_d_signal is: \"",
",",
"realchecksum",
")",
"raise",
"ValueError",
"(",
"\"checksum field does not match actual checksum of e_d_signal\"",
")",
"if",
"'init_value'",
"in",
"write_fields",
":",
"realinit_value",
"=",
"[",
"self",
".",
"e_d_signal",
"[",
"ch",
"]",
"[",
"0",
"]",
"for",
"ch",
"in",
"range",
"(",
"self",
".",
"n_sig",
")",
"]",
"if",
"self",
".",
"init_value",
"!=",
"realinit_value",
":",
"print",
"(",
"\"The actual init_value of e_d_signal is: \"",
",",
"realinit_value",
")",
"raise",
"ValueError",
"(",
"\"init_value field does not match actual init_value of e_d_signal\"",
")",
"# Using uniform d_signal",
"else",
":",
"# Match the actual signal shape against stated length and number of channels",
"if",
"(",
"self",
".",
"sig_len",
",",
"self",
".",
"n_sig",
")",
"!=",
"self",
".",
"d_signal",
".",
"shape",
":",
"print",
"(",
"'sig_len: '",
",",
"self",
".",
"sig_len",
")",
"print",
"(",
"'n_sig: '",
",",
"self",
".",
"n_sig",
")",
"print",
"(",
"'d_signal.shape: '",
",",
"self",
".",
"d_signal",
".",
"shape",
")",
"raise",
"ValueError",
"(",
"'sig_len and n_sig do not match shape of d_signal'",
")",
"# For each channel (if any), make sure the digital format has no values out of bounds",
"for",
"ch",
"in",
"range",
"(",
"self",
".",
"n_sig",
")",
":",
"fmt",
"=",
"self",
".",
"fmt",
"[",
"ch",
"]",
"dmin",
",",
"dmax",
"=",
"_digi_bounds",
"(",
"self",
".",
"fmt",
"[",
"ch",
"]",
")",
"chmin",
"=",
"min",
"(",
"self",
".",
"d_signal",
"[",
":",
",",
"ch",
"]",
")",
"chmax",
"=",
"max",
"(",
"self",
".",
"d_signal",
"[",
":",
",",
"ch",
"]",
")",
"if",
"(",
"chmin",
"<",
"dmin",
")",
"or",
"(",
"chmax",
">",
"dmax",
")",
":",
"raise",
"IndexError",
"(",
"\"Channel \"",
"+",
"str",
"(",
"ch",
")",
"+",
"\" contain values outside allowed range [\"",
"+",
"str",
"(",
"dmin",
")",
"+",
"\", \"",
"+",
"str",
"(",
"dmax",
")",
"+",
"\"] for fmt \"",
"+",
"str",
"(",
"fmt",
")",
")",
"# Ensure that the checksums and initial value fields match the digital signal (if the fields are present)",
"if",
"self",
".",
"n_sig",
">",
"0",
":",
"if",
"'checksum'",
"in",
"write_fields",
":",
"realchecksum",
"=",
"self",
".",
"calc_checksum",
"(",
")",
"if",
"self",
".",
"checksum",
"!=",
"realchecksum",
":",
"print",
"(",
"\"The actual checksum of d_signal is: \"",
",",
"realchecksum",
")",
"raise",
"ValueError",
"(",
"\"checksum field does not match actual checksum of d_signal\"",
")",
"if",
"'init_value'",
"in",
"write_fields",
":",
"realinit_value",
"=",
"list",
"(",
"self",
".",
"d_signal",
"[",
"0",
",",
":",
"]",
")",
"if",
"self",
".",
"init_value",
"!=",
"realinit_value",
":",
"print",
"(",
"\"The actual init_value of d_signal is: \"",
",",
"realinit_value",
")",
"raise",
"ValueError",
"(",
"\"init_value field does not match actual init_value of d_signal\"",
")"
]
| Check the cohesion of the d_signal/e_d_signal field with the other
fields used to write the record | [
"Check",
"the",
"cohesion",
"of",
"the",
"d_signal",
"/",
"e_d_signal",
"field",
"with",
"the",
"other",
"fields",
"used",
"to",
"write",
"the",
"record"
]
| python | train |
bwohlberg/sporco | sporco/linalg.py | https://github.com/bwohlberg/sporco/blob/8946a04331106f4e39904fbdf2dc7351900baa04/sporco/linalg.py#L1295-L1321 | def split(u, axis=0):
"""
Split an array into a list of arrays on the specified axis. The length
of the list is the shape of the array on the specified axis, and the
corresponding axis is removed from each entry in the list. This function
does not have the same behaviour as :func:`numpy.split`.
Parameters
----------
u : array_like
Input array
axis : int, optional (default 0)
Axis on which to split the input array
Returns
-------
v : list of ndarray
List of arrays
"""
# Convert negative axis to positive
if axis < 0:
axis = u.ndim + axis
# Construct axis selection slice
slct0 = (slice(None),) * axis
return [u[slct0 + (k,)] for k in range(u.shape[axis])] | [
"def",
"split",
"(",
"u",
",",
"axis",
"=",
"0",
")",
":",
"# Convert negative axis to positive",
"if",
"axis",
"<",
"0",
":",
"axis",
"=",
"u",
".",
"ndim",
"+",
"axis",
"# Construct axis selection slice",
"slct0",
"=",
"(",
"slice",
"(",
"None",
")",
",",
")",
"*",
"axis",
"return",
"[",
"u",
"[",
"slct0",
"+",
"(",
"k",
",",
")",
"]",
"for",
"k",
"in",
"range",
"(",
"u",
".",
"shape",
"[",
"axis",
"]",
")",
"]"
]
| Split an array into a list of arrays on the specified axis. The length
of the list is the shape of the array on the specified axis, and the
corresponding axis is removed from each entry in the list. This function
does not have the same behaviour as :func:`numpy.split`.
Parameters
----------
u : array_like
Input array
axis : int, optional (default 0)
Axis on which to split the input array
Returns
-------
v : list of ndarray
List of arrays | [
"Split",
"an",
"array",
"into",
"a",
"list",
"of",
"arrays",
"on",
"the",
"specified",
"axis",
".",
"The",
"length",
"of",
"the",
"list",
"is",
"the",
"shape",
"of",
"the",
"array",
"on",
"the",
"specified",
"axis",
"and",
"the",
"corresponding",
"axis",
"is",
"removed",
"from",
"each",
"entry",
"in",
"the",
"list",
".",
"This",
"function",
"does",
"not",
"have",
"the",
"same",
"behaviour",
"as",
":",
"func",
":",
"numpy",
".",
"split",
"."
]
| python | train |
Jammy2211/PyAutoLens | autolens/data/array/util/mapping_util.py | https://github.com/Jammy2211/PyAutoLens/blob/91e50369c7a9c048c83d217625578b72423cd5a7/autolens/data/array/util/mapping_util.py#L381-L401 | def sparse_grid_from_unmasked_sparse_grid(unmasked_sparse_grid, sparse_to_unmasked_sparse):
"""Use the central arc-second coordinate of every unmasked pixelization grid's pixels and mapping between each
pixelization pixel and unmasked pixelization pixel to compute the central arc-second coordinate of every masked
pixelization grid pixel.
Parameters
-----------
unmasked_sparse_grid : ndarray
The (y,x) arc-second centre of every unmasked pixelization grid pixel.
sparse_to_unmasked_sparse : ndarray
The index mapping between every pixelization pixel and masked pixelization pixel.
"""
total_pix_pixels = sparse_to_unmasked_sparse.shape[0]
pix_grid = np.zeros((total_pix_pixels, 2))
for pixel_index in range(total_pix_pixels):
pix_grid[pixel_index, 0] = unmasked_sparse_grid[sparse_to_unmasked_sparse[pixel_index], 0]
pix_grid[pixel_index, 1] = unmasked_sparse_grid[sparse_to_unmasked_sparse[pixel_index], 1]
return pix_grid | [
"def",
"sparse_grid_from_unmasked_sparse_grid",
"(",
"unmasked_sparse_grid",
",",
"sparse_to_unmasked_sparse",
")",
":",
"total_pix_pixels",
"=",
"sparse_to_unmasked_sparse",
".",
"shape",
"[",
"0",
"]",
"pix_grid",
"=",
"np",
".",
"zeros",
"(",
"(",
"total_pix_pixels",
",",
"2",
")",
")",
"for",
"pixel_index",
"in",
"range",
"(",
"total_pix_pixels",
")",
":",
"pix_grid",
"[",
"pixel_index",
",",
"0",
"]",
"=",
"unmasked_sparse_grid",
"[",
"sparse_to_unmasked_sparse",
"[",
"pixel_index",
"]",
",",
"0",
"]",
"pix_grid",
"[",
"pixel_index",
",",
"1",
"]",
"=",
"unmasked_sparse_grid",
"[",
"sparse_to_unmasked_sparse",
"[",
"pixel_index",
"]",
",",
"1",
"]",
"return",
"pix_grid"
]
| Use the central arc-second coordinate of every unmasked pixelization grid's pixels and mapping between each
pixelization pixel and unmasked pixelization pixel to compute the central arc-second coordinate of every masked
pixelization grid pixel.
Parameters
-----------
unmasked_sparse_grid : ndarray
The (y,x) arc-second centre of every unmasked pixelization grid pixel.
sparse_to_unmasked_sparse : ndarray
The index mapping between every pixelization pixel and masked pixelization pixel. | [
"Use",
"the",
"central",
"arc",
"-",
"second",
"coordinate",
"of",
"every",
"unmasked",
"pixelization",
"grid",
"s",
"pixels",
"and",
"mapping",
"between",
"each",
"pixelization",
"pixel",
"and",
"unmasked",
"pixelization",
"pixel",
"to",
"compute",
"the",
"central",
"arc",
"-",
"second",
"coordinate",
"of",
"every",
"masked",
"pixelization",
"grid",
"pixel",
"."
]
| python | valid |
amzn/ion-python | amazon/ion/reader_text.py | https://github.com/amzn/ion-python/blob/0b21fa3ba7755f55f745e4aa970d86343b82449d/amazon/ion/reader_text.py#L1651-L1655 | def _struct_or_lob_handler(c, ctx):
"""Handles tokens that begin with an open brace."""
assert c == _OPEN_BRACE
c, self = yield
yield ctx.immediate_transition(_STRUCT_OR_LOB_TABLE[c](c, ctx)) | [
"def",
"_struct_or_lob_handler",
"(",
"c",
",",
"ctx",
")",
":",
"assert",
"c",
"==",
"_OPEN_BRACE",
"c",
",",
"self",
"=",
"yield",
"yield",
"ctx",
".",
"immediate_transition",
"(",
"_STRUCT_OR_LOB_TABLE",
"[",
"c",
"]",
"(",
"c",
",",
"ctx",
")",
")"
]
| Handles tokens that begin with an open brace. | [
"Handles",
"tokens",
"that",
"begin",
"with",
"an",
"open",
"brace",
"."
]
| python | train |
Fortran-FOSS-Programmers/ford | ford/fortran_project.py | https://github.com/Fortran-FOSS-Programmers/ford/blob/d46a44eae20d99205292c31785f936fbed47070f/ford/fortran_project.py#L295-L303 | def markdown(self,md,base_url='..'):
"""
Process the documentation with Markdown to produce HTML.
"""
print("\nProcessing documentation comments...")
ford.sourceform.set_base_url(base_url)
if self.settings['warn'].lower() == 'true': print()
for src in self.allfiles:
src.markdown(md, self) | [
"def",
"markdown",
"(",
"self",
",",
"md",
",",
"base_url",
"=",
"'..'",
")",
":",
"print",
"(",
"\"\\nProcessing documentation comments...\"",
")",
"ford",
".",
"sourceform",
".",
"set_base_url",
"(",
"base_url",
")",
"if",
"self",
".",
"settings",
"[",
"'warn'",
"]",
".",
"lower",
"(",
")",
"==",
"'true'",
":",
"print",
"(",
")",
"for",
"src",
"in",
"self",
".",
"allfiles",
":",
"src",
".",
"markdown",
"(",
"md",
",",
"self",
")"
]
| Process the documentation with Markdown to produce HTML. | [
"Process",
"the",
"documentation",
"with",
"Markdown",
"to",
"produce",
"HTML",
"."
]
| python | train |
quantmind/pulsar | pulsar/utils/tools/pidfile.py | https://github.com/quantmind/pulsar/blob/fee44e871954aa6ca36d00bb5a3739abfdb89b26/pulsar/utils/tools/pidfile.py#L44-L52 | def unlink(self):
""" delete pidfile"""
try:
with open(self.fname, "r") as f:
pid1 = int(f.read() or 0)
if pid1 == self.pid:
os.unlink(self.fname)
except Exception:
pass | [
"def",
"unlink",
"(",
"self",
")",
":",
"try",
":",
"with",
"open",
"(",
"self",
".",
"fname",
",",
"\"r\"",
")",
"as",
"f",
":",
"pid1",
"=",
"int",
"(",
"f",
".",
"read",
"(",
")",
"or",
"0",
")",
"if",
"pid1",
"==",
"self",
".",
"pid",
":",
"os",
".",
"unlink",
"(",
"self",
".",
"fname",
")",
"except",
"Exception",
":",
"pass"
]
| delete pidfile | [
"delete",
"pidfile"
]
| python | train |
prometheus/client_python | prometheus_client/multiprocess.py | https://github.com/prometheus/client_python/blob/31f5557e2e84ca4ffa9a03abf6e3f4d0c8b8c3eb/prometheus_client/multiprocess.py#L29-L114 | def merge(files, accumulate=True):
"""Merge metrics from given mmap files.
By default, histograms are accumulated, as per prometheus wire format.
But if writing the merged data back to mmap files, use
accumulate=False to avoid compound accumulation.
"""
metrics = {}
for f in files:
parts = os.path.basename(f).split('_')
typ = parts[0]
d = MmapedDict(f, read_mode=True)
for key, value in d.read_all_values():
metric_name, name, labels = json.loads(key)
labels_key = tuple(sorted(labels.items()))
metric = metrics.get(metric_name)
if metric is None:
metric = Metric(metric_name, 'Multiprocess metric', typ)
metrics[metric_name] = metric
if typ == 'gauge':
pid = parts[2][:-3]
metric._multiprocess_mode = parts[1]
metric.add_sample(name, labels_key + (('pid', pid),), value)
else:
# The duplicates and labels are fixed in the next for.
metric.add_sample(name, labels_key, value)
d.close()
for metric in metrics.values():
samples = defaultdict(float)
buckets = {}
for s in metric.samples:
name, labels, value = s.name, s.labels, s.value
if metric.type == 'gauge':
without_pid = tuple(l for l in labels if l[0] != 'pid')
if metric._multiprocess_mode == 'min':
current = samples.setdefault((name, without_pid), value)
if value < current:
samples[(s.name, without_pid)] = value
elif metric._multiprocess_mode == 'max':
current = samples.setdefault((name, without_pid), value)
if value > current:
samples[(s.name, without_pid)] = value
elif metric._multiprocess_mode == 'livesum':
samples[(name, without_pid)] += value
else: # all/liveall
samples[(name, labels)] = value
elif metric.type == 'histogram':
bucket = tuple(float(l[1]) for l in labels if l[0] == 'le')
if bucket:
# _bucket
without_le = tuple(l for l in labels if l[0] != 'le')
buckets.setdefault(without_le, {})
buckets[without_le].setdefault(bucket[0], 0.0)
buckets[without_le][bucket[0]] += value
else:
# _sum/_count
samples[(s.name, labels)] += value
else:
# Counter and Summary.
samples[(s.name, labels)] += value
# Accumulate bucket values.
if metric.type == 'histogram':
for labels, values in buckets.items():
acc = 0.0
for bucket, value in sorted(values.items()):
sample_key = (
metric.name + '_bucket',
labels + (('le', floatToGoString(bucket)),),
)
if accumulate:
acc += value
samples[sample_key] = acc
else:
samples[sample_key] = value
if accumulate:
samples[(metric.name + '_count', labels)] = acc
# Convert to correct sample format.
metric.samples = [Sample(name_, dict(labels), value) for (name_, labels), value in samples.items()]
return metrics.values() | [
"def",
"merge",
"(",
"files",
",",
"accumulate",
"=",
"True",
")",
":",
"metrics",
"=",
"{",
"}",
"for",
"f",
"in",
"files",
":",
"parts",
"=",
"os",
".",
"path",
".",
"basename",
"(",
"f",
")",
".",
"split",
"(",
"'_'",
")",
"typ",
"=",
"parts",
"[",
"0",
"]",
"d",
"=",
"MmapedDict",
"(",
"f",
",",
"read_mode",
"=",
"True",
")",
"for",
"key",
",",
"value",
"in",
"d",
".",
"read_all_values",
"(",
")",
":",
"metric_name",
",",
"name",
",",
"labels",
"=",
"json",
".",
"loads",
"(",
"key",
")",
"labels_key",
"=",
"tuple",
"(",
"sorted",
"(",
"labels",
".",
"items",
"(",
")",
")",
")",
"metric",
"=",
"metrics",
".",
"get",
"(",
"metric_name",
")",
"if",
"metric",
"is",
"None",
":",
"metric",
"=",
"Metric",
"(",
"metric_name",
",",
"'Multiprocess metric'",
",",
"typ",
")",
"metrics",
"[",
"metric_name",
"]",
"=",
"metric",
"if",
"typ",
"==",
"'gauge'",
":",
"pid",
"=",
"parts",
"[",
"2",
"]",
"[",
":",
"-",
"3",
"]",
"metric",
".",
"_multiprocess_mode",
"=",
"parts",
"[",
"1",
"]",
"metric",
".",
"add_sample",
"(",
"name",
",",
"labels_key",
"+",
"(",
"(",
"'pid'",
",",
"pid",
")",
",",
")",
",",
"value",
")",
"else",
":",
"# The duplicates and labels are fixed in the next for.",
"metric",
".",
"add_sample",
"(",
"name",
",",
"labels_key",
",",
"value",
")",
"d",
".",
"close",
"(",
")",
"for",
"metric",
"in",
"metrics",
".",
"values",
"(",
")",
":",
"samples",
"=",
"defaultdict",
"(",
"float",
")",
"buckets",
"=",
"{",
"}",
"for",
"s",
"in",
"metric",
".",
"samples",
":",
"name",
",",
"labels",
",",
"value",
"=",
"s",
".",
"name",
",",
"s",
".",
"labels",
",",
"s",
".",
"value",
"if",
"metric",
".",
"type",
"==",
"'gauge'",
":",
"without_pid",
"=",
"tuple",
"(",
"l",
"for",
"l",
"in",
"labels",
"if",
"l",
"[",
"0",
"]",
"!=",
"'pid'",
")",
"if",
"metric",
".",
"_multiprocess_mode",
"==",
"'min'",
":",
"current",
"=",
"samples",
".",
"setdefault",
"(",
"(",
"name",
",",
"without_pid",
")",
",",
"value",
")",
"if",
"value",
"<",
"current",
":",
"samples",
"[",
"(",
"s",
".",
"name",
",",
"without_pid",
")",
"]",
"=",
"value",
"elif",
"metric",
".",
"_multiprocess_mode",
"==",
"'max'",
":",
"current",
"=",
"samples",
".",
"setdefault",
"(",
"(",
"name",
",",
"without_pid",
")",
",",
"value",
")",
"if",
"value",
">",
"current",
":",
"samples",
"[",
"(",
"s",
".",
"name",
",",
"without_pid",
")",
"]",
"=",
"value",
"elif",
"metric",
".",
"_multiprocess_mode",
"==",
"'livesum'",
":",
"samples",
"[",
"(",
"name",
",",
"without_pid",
")",
"]",
"+=",
"value",
"else",
":",
"# all/liveall",
"samples",
"[",
"(",
"name",
",",
"labels",
")",
"]",
"=",
"value",
"elif",
"metric",
".",
"type",
"==",
"'histogram'",
":",
"bucket",
"=",
"tuple",
"(",
"float",
"(",
"l",
"[",
"1",
"]",
")",
"for",
"l",
"in",
"labels",
"if",
"l",
"[",
"0",
"]",
"==",
"'le'",
")",
"if",
"bucket",
":",
"# _bucket",
"without_le",
"=",
"tuple",
"(",
"l",
"for",
"l",
"in",
"labels",
"if",
"l",
"[",
"0",
"]",
"!=",
"'le'",
")",
"buckets",
".",
"setdefault",
"(",
"without_le",
",",
"{",
"}",
")",
"buckets",
"[",
"without_le",
"]",
".",
"setdefault",
"(",
"bucket",
"[",
"0",
"]",
",",
"0.0",
")",
"buckets",
"[",
"without_le",
"]",
"[",
"bucket",
"[",
"0",
"]",
"]",
"+=",
"value",
"else",
":",
"# _sum/_count",
"samples",
"[",
"(",
"s",
".",
"name",
",",
"labels",
")",
"]",
"+=",
"value",
"else",
":",
"# Counter and Summary.",
"samples",
"[",
"(",
"s",
".",
"name",
",",
"labels",
")",
"]",
"+=",
"value",
"# Accumulate bucket values.",
"if",
"metric",
".",
"type",
"==",
"'histogram'",
":",
"for",
"labels",
",",
"values",
"in",
"buckets",
".",
"items",
"(",
")",
":",
"acc",
"=",
"0.0",
"for",
"bucket",
",",
"value",
"in",
"sorted",
"(",
"values",
".",
"items",
"(",
")",
")",
":",
"sample_key",
"=",
"(",
"metric",
".",
"name",
"+",
"'_bucket'",
",",
"labels",
"+",
"(",
"(",
"'le'",
",",
"floatToGoString",
"(",
"bucket",
")",
")",
",",
")",
",",
")",
"if",
"accumulate",
":",
"acc",
"+=",
"value",
"samples",
"[",
"sample_key",
"]",
"=",
"acc",
"else",
":",
"samples",
"[",
"sample_key",
"]",
"=",
"value",
"if",
"accumulate",
":",
"samples",
"[",
"(",
"metric",
".",
"name",
"+",
"'_count'",
",",
"labels",
")",
"]",
"=",
"acc",
"# Convert to correct sample format.",
"metric",
".",
"samples",
"=",
"[",
"Sample",
"(",
"name_",
",",
"dict",
"(",
"labels",
")",
",",
"value",
")",
"for",
"(",
"name_",
",",
"labels",
")",
",",
"value",
"in",
"samples",
".",
"items",
"(",
")",
"]",
"return",
"metrics",
".",
"values",
"(",
")"
]
| Merge metrics from given mmap files.
By default, histograms are accumulated, as per prometheus wire format.
But if writing the merged data back to mmap files, use
accumulate=False to avoid compound accumulation. | [
"Merge",
"metrics",
"from",
"given",
"mmap",
"files",
"."
]
| python | train |
partofthething/ace | ace/validation/validate_smoothers.py | https://github.com/partofthething/ace/blob/1593a49f3c2e845514323e9c36ee253fe77bac3c/ace/validation/validate_smoothers.py#L77-L92 | def validate_average_best_span():
"""Figure 2d? from Friedman."""
N = 200
num_trials = 400
avg = numpy.zeros(N)
for i in range(num_trials):
x, y = smoother_friedman82.build_sample_smoother_problem_friedman82(N=N)
my_smoother = smoother.perform_smooth(
x, y, smoother_cls=supersmoother.SuperSmoother
)
avg += my_smoother._smoothed_best_spans.smooth_result
if not (i + 1) % 20:
print(i + 1)
avg /= num_trials
plt.plot(my_smoother.x, avg, '.', label='Average JCV')
finish_plot() | [
"def",
"validate_average_best_span",
"(",
")",
":",
"N",
"=",
"200",
"num_trials",
"=",
"400",
"avg",
"=",
"numpy",
".",
"zeros",
"(",
"N",
")",
"for",
"i",
"in",
"range",
"(",
"num_trials",
")",
":",
"x",
",",
"y",
"=",
"smoother_friedman82",
".",
"build_sample_smoother_problem_friedman82",
"(",
"N",
"=",
"N",
")",
"my_smoother",
"=",
"smoother",
".",
"perform_smooth",
"(",
"x",
",",
"y",
",",
"smoother_cls",
"=",
"supersmoother",
".",
"SuperSmoother",
")",
"avg",
"+=",
"my_smoother",
".",
"_smoothed_best_spans",
".",
"smooth_result",
"if",
"not",
"(",
"i",
"+",
"1",
")",
"%",
"20",
":",
"print",
"(",
"i",
"+",
"1",
")",
"avg",
"/=",
"num_trials",
"plt",
".",
"plot",
"(",
"my_smoother",
".",
"x",
",",
"avg",
",",
"'.'",
",",
"label",
"=",
"'Average JCV'",
")",
"finish_plot",
"(",
")"
]
| Figure 2d? from Friedman. | [
"Figure",
"2d?",
"from",
"Friedman",
"."
]
| python | train |
Parallels/artifactory | artifactory.py | https://github.com/Parallels/artifactory/blob/09ddcc4ae15095eec2347d39774c3f8aca6c4654/artifactory.py#L420-L426 | def rest_put(self, url, params=None, headers=None, auth=None, verify=True, cert=None):
"""
Perform a PUT request to url with optional authentication
"""
res = requests.put(url, params=params, headers=headers, auth=auth, verify=verify,
cert=cert)
return res.text, res.status_code | [
"def",
"rest_put",
"(",
"self",
",",
"url",
",",
"params",
"=",
"None",
",",
"headers",
"=",
"None",
",",
"auth",
"=",
"None",
",",
"verify",
"=",
"True",
",",
"cert",
"=",
"None",
")",
":",
"res",
"=",
"requests",
".",
"put",
"(",
"url",
",",
"params",
"=",
"params",
",",
"headers",
"=",
"headers",
",",
"auth",
"=",
"auth",
",",
"verify",
"=",
"verify",
",",
"cert",
"=",
"cert",
")",
"return",
"res",
".",
"text",
",",
"res",
".",
"status_code"
]
| Perform a PUT request to url with optional authentication | [
"Perform",
"a",
"PUT",
"request",
"to",
"url",
"with",
"optional",
"authentication"
]
| python | train |
ga4gh/ga4gh-server | ga4gh/server/backend.py | https://github.com/ga4gh/ga4gh-server/blob/1aa18922ef136db8604f6f098cb1732cba6f2a76/ga4gh/server/backend.py#L405-L421 | def continuousGenerator(self, request):
"""
Returns a generator over the (continuous, nextPageToken) pairs
defined by the (JSON string) request.
"""
compoundId = None
if request.continuous_set_id != "":
compoundId = datamodel.ContinuousSetCompoundId.parse(
request.continuous_set_id)
if compoundId is None:
raise exceptions.ContinuousSetNotSpecifiedException()
dataset = self.getDataRepository().getDataset(
compoundId.dataset_id)
continuousSet = dataset.getContinuousSet(request.continuous_set_id)
iterator = paging.ContinuousIterator(request, continuousSet)
return iterator | [
"def",
"continuousGenerator",
"(",
"self",
",",
"request",
")",
":",
"compoundId",
"=",
"None",
"if",
"request",
".",
"continuous_set_id",
"!=",
"\"\"",
":",
"compoundId",
"=",
"datamodel",
".",
"ContinuousSetCompoundId",
".",
"parse",
"(",
"request",
".",
"continuous_set_id",
")",
"if",
"compoundId",
"is",
"None",
":",
"raise",
"exceptions",
".",
"ContinuousSetNotSpecifiedException",
"(",
")",
"dataset",
"=",
"self",
".",
"getDataRepository",
"(",
")",
".",
"getDataset",
"(",
"compoundId",
".",
"dataset_id",
")",
"continuousSet",
"=",
"dataset",
".",
"getContinuousSet",
"(",
"request",
".",
"continuous_set_id",
")",
"iterator",
"=",
"paging",
".",
"ContinuousIterator",
"(",
"request",
",",
"continuousSet",
")",
"return",
"iterator"
]
| Returns a generator over the (continuous, nextPageToken) pairs
defined by the (JSON string) request. | [
"Returns",
"a",
"generator",
"over",
"the",
"(",
"continuous",
"nextPageToken",
")",
"pairs",
"defined",
"by",
"the",
"(",
"JSON",
"string",
")",
"request",
"."
]
| python | train |
cameronbwhite/Flask-CAS | flask_cas/routing.py | https://github.com/cameronbwhite/Flask-CAS/blob/f85173938654cb9b9316a5c869000b74b008422e/flask_cas/routing.py#L62-L87 | def logout():
"""
When the user accesses this route they are logged out.
"""
cas_username_session_key = current_app.config['CAS_USERNAME_SESSION_KEY']
cas_attributes_session_key = current_app.config['CAS_ATTRIBUTES_SESSION_KEY']
if cas_username_session_key in flask.session:
del flask.session[cas_username_session_key]
if cas_attributes_session_key in flask.session:
del flask.session[cas_attributes_session_key]
if(current_app.config['CAS_AFTER_LOGOUT'] is not None):
redirect_url = create_cas_logout_url(
current_app.config['CAS_SERVER'],
current_app.config['CAS_LOGOUT_ROUTE'],
current_app.config['CAS_AFTER_LOGOUT'])
else:
redirect_url = create_cas_logout_url(
current_app.config['CAS_SERVER'],
current_app.config['CAS_LOGOUT_ROUTE'])
current_app.logger.debug('Redirecting to: {0}'.format(redirect_url))
return flask.redirect(redirect_url) | [
"def",
"logout",
"(",
")",
":",
"cas_username_session_key",
"=",
"current_app",
".",
"config",
"[",
"'CAS_USERNAME_SESSION_KEY'",
"]",
"cas_attributes_session_key",
"=",
"current_app",
".",
"config",
"[",
"'CAS_ATTRIBUTES_SESSION_KEY'",
"]",
"if",
"cas_username_session_key",
"in",
"flask",
".",
"session",
":",
"del",
"flask",
".",
"session",
"[",
"cas_username_session_key",
"]",
"if",
"cas_attributes_session_key",
"in",
"flask",
".",
"session",
":",
"del",
"flask",
".",
"session",
"[",
"cas_attributes_session_key",
"]",
"if",
"(",
"current_app",
".",
"config",
"[",
"'CAS_AFTER_LOGOUT'",
"]",
"is",
"not",
"None",
")",
":",
"redirect_url",
"=",
"create_cas_logout_url",
"(",
"current_app",
".",
"config",
"[",
"'CAS_SERVER'",
"]",
",",
"current_app",
".",
"config",
"[",
"'CAS_LOGOUT_ROUTE'",
"]",
",",
"current_app",
".",
"config",
"[",
"'CAS_AFTER_LOGOUT'",
"]",
")",
"else",
":",
"redirect_url",
"=",
"create_cas_logout_url",
"(",
"current_app",
".",
"config",
"[",
"'CAS_SERVER'",
"]",
",",
"current_app",
".",
"config",
"[",
"'CAS_LOGOUT_ROUTE'",
"]",
")",
"current_app",
".",
"logger",
".",
"debug",
"(",
"'Redirecting to: {0}'",
".",
"format",
"(",
"redirect_url",
")",
")",
"return",
"flask",
".",
"redirect",
"(",
"redirect_url",
")"
]
| When the user accesses this route they are logged out. | [
"When",
"the",
"user",
"accesses",
"this",
"route",
"they",
"are",
"logged",
"out",
"."
]
| python | train |
greenelab/PathCORE-T | pathcore/network.py | https://github.com/greenelab/PathCORE-T/blob/9d079d5ebffea2fe9fb9ab557588d51ad67d2c9c/pathcore/network.py#L59-L76 | def connected_to(self, vertex_id):
"""
Parameters
-----------
vertex_id : int
Get what `vertex_id` is connected to.
Returns
-----------
int|None, the vertex id connected to the
input `vertex_id` in this edge, as long as `vertex_id` is
one of the vertices connected by this edge.
"""
if vertex_id not in self.edge:
return None
connected_to = (self.edge[1] if self.edge[0] == vertex_id
else self.edge[0])
return connected_to | [
"def",
"connected_to",
"(",
"self",
",",
"vertex_id",
")",
":",
"if",
"vertex_id",
"not",
"in",
"self",
".",
"edge",
":",
"return",
"None",
"connected_to",
"=",
"(",
"self",
".",
"edge",
"[",
"1",
"]",
"if",
"self",
".",
"edge",
"[",
"0",
"]",
"==",
"vertex_id",
"else",
"self",
".",
"edge",
"[",
"0",
"]",
")",
"return",
"connected_to"
]
| Parameters
-----------
vertex_id : int
Get what `vertex_id` is connected to.
Returns
-----------
int|None, the vertex id connected to the
input `vertex_id` in this edge, as long as `vertex_id` is
one of the vertices connected by this edge. | [
"Parameters",
"-----------",
"vertex_id",
":",
"int",
"Get",
"what",
"vertex_id",
"is",
"connected",
"to",
"."
]
| python | train |
yaz/yaz | yaz/main.py | https://github.com/yaz/yaz/blob/48c842fe053bf9cd6446c4b33fb081c65339aa48/yaz/main.py#L11-L89 | def main(argv=None, white_list=None, load_yaz_extension=True):
"""The entry point for a yaz script
This will almost always be called from a python script in
the following manner:
if __name__ == "__main__":
yaz.main()
This function will perform the following steps:
1. It will load any additional python code from
the yaz_extension python module located in the
~/.yaz directory when LOAD_YAZ_EXTENSION is True
and the yaz_extension module exists
2. It collects all yaz tasks and plugins. When WHITE_LIST
is a non-empty list, only the tasks and plugins located
therein will be considered
3. It will parse arguments from ARGV, or the command line
when ARGV is not given, resulting in a yaz task or a parser
help message.
4. When a suitable task is found, this task is executed. In
case of a task which is part of a plugin, i.e. class, then
this plugin is initialized, possibly resulting in other
plugins to also be initialized if there are marked as
`@yaz.dependency`.
"""
assert argv is None or isinstance(argv, list), type(argv)
assert white_list is None or isinstance(white_list, list), type(white_list)
assert isinstance(load_yaz_extension, bool), type(load_yaz_extension)
argv = sys.argv if argv is None else argv
assert len(argv) > 0, len(argv)
if load_yaz_extension:
load("~/.yaz", "yaz_extension")
parser = Parser(prog=argv[0])
parser.add_task_tree(get_task_tree(white_list))
task, kwargs = parser.parse_arguments(argv)
if task:
try:
result = task(**kwargs)
# when the result is a boolean, exit with 0 (success) or 1 (failure)
if isinstance(result, bool):
code = 0 if result else 1
output = None
# when the result is an integer, exit with that integer value
elif isinstance(result, int):
code = result % 256
output = None
# otherwise exit with 0 (success) and print the result
else:
code = 0
output = result
# when yaz.Error occurs, exit with the given return code and print the error message
# when any other error occurs, let python handle the exception (i.e. exit(1) and print call stack)
except Error as error:
code = error.return_code
output = error
else:
# when no task is found to execute, exit with 1 (failure) and print the help text
code = 1
output = parser.format_help().rstrip()
if output is not None:
print(output)
sys.exit(code) | [
"def",
"main",
"(",
"argv",
"=",
"None",
",",
"white_list",
"=",
"None",
",",
"load_yaz_extension",
"=",
"True",
")",
":",
"assert",
"argv",
"is",
"None",
"or",
"isinstance",
"(",
"argv",
",",
"list",
")",
",",
"type",
"(",
"argv",
")",
"assert",
"white_list",
"is",
"None",
"or",
"isinstance",
"(",
"white_list",
",",
"list",
")",
",",
"type",
"(",
"white_list",
")",
"assert",
"isinstance",
"(",
"load_yaz_extension",
",",
"bool",
")",
",",
"type",
"(",
"load_yaz_extension",
")",
"argv",
"=",
"sys",
".",
"argv",
"if",
"argv",
"is",
"None",
"else",
"argv",
"assert",
"len",
"(",
"argv",
")",
">",
"0",
",",
"len",
"(",
"argv",
")",
"if",
"load_yaz_extension",
":",
"load",
"(",
"\"~/.yaz\"",
",",
"\"yaz_extension\"",
")",
"parser",
"=",
"Parser",
"(",
"prog",
"=",
"argv",
"[",
"0",
"]",
")",
"parser",
".",
"add_task_tree",
"(",
"get_task_tree",
"(",
"white_list",
")",
")",
"task",
",",
"kwargs",
"=",
"parser",
".",
"parse_arguments",
"(",
"argv",
")",
"if",
"task",
":",
"try",
":",
"result",
"=",
"task",
"(",
"*",
"*",
"kwargs",
")",
"# when the result is a boolean, exit with 0 (success) or 1 (failure)",
"if",
"isinstance",
"(",
"result",
",",
"bool",
")",
":",
"code",
"=",
"0",
"if",
"result",
"else",
"1",
"output",
"=",
"None",
"# when the result is an integer, exit with that integer value",
"elif",
"isinstance",
"(",
"result",
",",
"int",
")",
":",
"code",
"=",
"result",
"%",
"256",
"output",
"=",
"None",
"# otherwise exit with 0 (success) and print the result",
"else",
":",
"code",
"=",
"0",
"output",
"=",
"result",
"# when yaz.Error occurs, exit with the given return code and print the error message",
"# when any other error occurs, let python handle the exception (i.e. exit(1) and print call stack)",
"except",
"Error",
"as",
"error",
":",
"code",
"=",
"error",
".",
"return_code",
"output",
"=",
"error",
"else",
":",
"# when no task is found to execute, exit with 1 (failure) and print the help text",
"code",
"=",
"1",
"output",
"=",
"parser",
".",
"format_help",
"(",
")",
".",
"rstrip",
"(",
")",
"if",
"output",
"is",
"not",
"None",
":",
"print",
"(",
"output",
")",
"sys",
".",
"exit",
"(",
"code",
")"
]
| The entry point for a yaz script
This will almost always be called from a python script in
the following manner:
if __name__ == "__main__":
yaz.main()
This function will perform the following steps:
1. It will load any additional python code from
the yaz_extension python module located in the
~/.yaz directory when LOAD_YAZ_EXTENSION is True
and the yaz_extension module exists
2. It collects all yaz tasks and plugins. When WHITE_LIST
is a non-empty list, only the tasks and plugins located
therein will be considered
3. It will parse arguments from ARGV, or the command line
when ARGV is not given, resulting in a yaz task or a parser
help message.
4. When a suitable task is found, this task is executed. In
case of a task which is part of a plugin, i.e. class, then
this plugin is initialized, possibly resulting in other
plugins to also be initialized if there are marked as
`@yaz.dependency`. | [
"The",
"entry",
"point",
"for",
"a",
"yaz",
"script"
]
| python | valid |
abilian/abilian-core | abilian/services/audit/service.py | https://github.com/abilian/abilian-core/blob/0a71275bf108c3d51e13ca9e093c0249235351e3/abilian/services/audit/service.py#L340-L374 | def get_model_changes(
entity_type, year=None, month=None, day=None, hour=None, since=None
):
# type: (Text, int, int, int, int, datetime) -> Query
"""Get models modified at the given date with the Audit service.
:param entity_type: string like "extranet_medicen.apps.crm.models.Compte".
Beware the typo, there won't be a warning message.
:param since: datetime
:param year: int
:param month: int
:param day: int
:param hour: int
:returns: a query object
"""
query = AuditEntry.query
if since:
query = query.filter(AuditEntry.happened_at >= since)
if year:
query = query.filter(extract("year", AuditEntry.happened_at) == year)
if month:
query = query.filter(extract("month", AuditEntry.happened_at) == month)
if day:
query = query.filter(extract("day", AuditEntry.happened_at) == day)
if hour:
query = query.filter(extract("hour", AuditEntry.happened_at) == hour)
query = query.filter(AuditEntry.entity_type.like(entity_type)).order_by(
AuditEntry.happened_at
)
return query | [
"def",
"get_model_changes",
"(",
"entity_type",
",",
"year",
"=",
"None",
",",
"month",
"=",
"None",
",",
"day",
"=",
"None",
",",
"hour",
"=",
"None",
",",
"since",
"=",
"None",
")",
":",
"# type: (Text, int, int, int, int, datetime) -> Query",
"query",
"=",
"AuditEntry",
".",
"query",
"if",
"since",
":",
"query",
"=",
"query",
".",
"filter",
"(",
"AuditEntry",
".",
"happened_at",
">=",
"since",
")",
"if",
"year",
":",
"query",
"=",
"query",
".",
"filter",
"(",
"extract",
"(",
"\"year\"",
",",
"AuditEntry",
".",
"happened_at",
")",
"==",
"year",
")",
"if",
"month",
":",
"query",
"=",
"query",
".",
"filter",
"(",
"extract",
"(",
"\"month\"",
",",
"AuditEntry",
".",
"happened_at",
")",
"==",
"month",
")",
"if",
"day",
":",
"query",
"=",
"query",
".",
"filter",
"(",
"extract",
"(",
"\"day\"",
",",
"AuditEntry",
".",
"happened_at",
")",
"==",
"day",
")",
"if",
"hour",
":",
"query",
"=",
"query",
".",
"filter",
"(",
"extract",
"(",
"\"hour\"",
",",
"AuditEntry",
".",
"happened_at",
")",
"==",
"hour",
")",
"query",
"=",
"query",
".",
"filter",
"(",
"AuditEntry",
".",
"entity_type",
".",
"like",
"(",
"entity_type",
")",
")",
".",
"order_by",
"(",
"AuditEntry",
".",
"happened_at",
")",
"return",
"query"
]
| Get models modified at the given date with the Audit service.
:param entity_type: string like "extranet_medicen.apps.crm.models.Compte".
Beware the typo, there won't be a warning message.
:param since: datetime
:param year: int
:param month: int
:param day: int
:param hour: int
:returns: a query object | [
"Get",
"models",
"modified",
"at",
"the",
"given",
"date",
"with",
"the",
"Audit",
"service",
"."
]
| python | train |
DataBiosphere/toil | src/toil/lib/docker.py | https://github.com/DataBiosphere/toil/blob/a8252277ff814e7bee0971139c2344f88e44b644/src/toil/lib/docker.py#L477-L497 | def containerIsRunning(container_name):
"""
Checks whether the container is running or not.
:param container_name: Name of the container being checked.
:returns: True if status is 'running', False if status is anything else,
and None if the container does not exist.
"""
client = docker.from_env(version='auto')
try:
this_container = client.containers.get(container_name)
if this_container.status == 'running':
return True
else:
# this_container.status == 'exited', 'restarting', or 'paused'
return False
except NotFound:
return None
except requests.exceptions.HTTPError as e:
logger.debug("Server error attempting to call container: ",
container_name)
raise create_api_error_from_http_exception(e) | [
"def",
"containerIsRunning",
"(",
"container_name",
")",
":",
"client",
"=",
"docker",
".",
"from_env",
"(",
"version",
"=",
"'auto'",
")",
"try",
":",
"this_container",
"=",
"client",
".",
"containers",
".",
"get",
"(",
"container_name",
")",
"if",
"this_container",
".",
"status",
"==",
"'running'",
":",
"return",
"True",
"else",
":",
"# this_container.status == 'exited', 'restarting', or 'paused'",
"return",
"False",
"except",
"NotFound",
":",
"return",
"None",
"except",
"requests",
".",
"exceptions",
".",
"HTTPError",
"as",
"e",
":",
"logger",
".",
"debug",
"(",
"\"Server error attempting to call container: \"",
",",
"container_name",
")",
"raise",
"create_api_error_from_http_exception",
"(",
"e",
")"
]
| Checks whether the container is running or not.
:param container_name: Name of the container being checked.
:returns: True if status is 'running', False if status is anything else,
and None if the container does not exist. | [
"Checks",
"whether",
"the",
"container",
"is",
"running",
"or",
"not",
".",
":",
"param",
"container_name",
":",
"Name",
"of",
"the",
"container",
"being",
"checked",
".",
":",
"returns",
":",
"True",
"if",
"status",
"is",
"running",
"False",
"if",
"status",
"is",
"anything",
"else",
"and",
"None",
"if",
"the",
"container",
"does",
"not",
"exist",
"."
]
| python | train |
softwarefactory-project/rdopkg | rdopkg/utils/specfile.py | https://github.com/softwarefactory-project/rdopkg/blob/2d2bed4e7cd329558a36d0dd404ec4ac8f9f254c/rdopkg/utils/specfile.py#L473-L483 | def recognized_release(self):
"""
Check if this Release value is something we can parse.
:rtype: bool
"""
_, _, rest = self.get_release_parts()
# If "rest" is not a well-known value here, then this package is
# using a Release value pattern we cannot recognize.
if rest == '' or re.match(r'%{\??dist}', rest):
return True
return False | [
"def",
"recognized_release",
"(",
"self",
")",
":",
"_",
",",
"_",
",",
"rest",
"=",
"self",
".",
"get_release_parts",
"(",
")",
"# If \"rest\" is not a well-known value here, then this package is",
"# using a Release value pattern we cannot recognize.",
"if",
"rest",
"==",
"''",
"or",
"re",
".",
"match",
"(",
"r'%{\\??dist}'",
",",
"rest",
")",
":",
"return",
"True",
"return",
"False"
]
| Check if this Release value is something we can parse.
:rtype: bool | [
"Check",
"if",
"this",
"Release",
"value",
"is",
"something",
"we",
"can",
"parse",
".",
":",
"rtype",
":",
"bool"
]
| python | train |
BlueBrain/NeuroM | neurom/check/morphtree.py | https://github.com/BlueBrain/NeuroM/blob/254bb73535b20053d175bc4725bade662177d12b/neurom/check/morphtree.py#L190-L202 | def get_flat_neurites(neuron, tol=0.1, method='ratio'):
'''Check if a neuron has neurites that are flat within a tolerance
Args:
neurite(Neurite): neurite to operate on
tol(float): the tolerance or the ratio
method(string): 'tolerance' or 'ratio' described in :meth:`is_flat`
Returns:
Bool list corresponding to the flatness check for each neurite
in neuron neurites with respect to the given criteria
'''
return [n for n in neuron.neurites if is_flat(n, tol, method)] | [
"def",
"get_flat_neurites",
"(",
"neuron",
",",
"tol",
"=",
"0.1",
",",
"method",
"=",
"'ratio'",
")",
":",
"return",
"[",
"n",
"for",
"n",
"in",
"neuron",
".",
"neurites",
"if",
"is_flat",
"(",
"n",
",",
"tol",
",",
"method",
")",
"]"
]
| Check if a neuron has neurites that are flat within a tolerance
Args:
neurite(Neurite): neurite to operate on
tol(float): the tolerance or the ratio
method(string): 'tolerance' or 'ratio' described in :meth:`is_flat`
Returns:
Bool list corresponding to the flatness check for each neurite
in neuron neurites with respect to the given criteria | [
"Check",
"if",
"a",
"neuron",
"has",
"neurites",
"that",
"are",
"flat",
"within",
"a",
"tolerance"
]
| python | train |
jazzband/django-analytical | analytical/templatetags/snapengage.py | https://github.com/jazzband/django-analytical/blob/5487fd677bd47bc63fc2cf39597a0adc5d6c9ab3/analytical/templatetags/snapengage.py#L56-L66 | def snapengage(parser, token):
"""
SnapEngage set-up template tag.
Renders Javascript code to set-up SnapEngage chat. You must supply
your widget ID in the ``SNAPENGAGE_WIDGET_ID`` setting.
"""
bits = token.split_contents()
if len(bits) > 1:
raise TemplateSyntaxError("'%s' takes no arguments" % bits[0])
return SnapEngageNode() | [
"def",
"snapengage",
"(",
"parser",
",",
"token",
")",
":",
"bits",
"=",
"token",
".",
"split_contents",
"(",
")",
"if",
"len",
"(",
"bits",
")",
">",
"1",
":",
"raise",
"TemplateSyntaxError",
"(",
"\"'%s' takes no arguments\"",
"%",
"bits",
"[",
"0",
"]",
")",
"return",
"SnapEngageNode",
"(",
")"
]
| SnapEngage set-up template tag.
Renders Javascript code to set-up SnapEngage chat. You must supply
your widget ID in the ``SNAPENGAGE_WIDGET_ID`` setting. | [
"SnapEngage",
"set",
"-",
"up",
"template",
"tag",
"."
]
| python | valid |
cloud9ers/gurumate | environment/lib/python2.7/site-packages/IPython/parallel/apps/launcher.py | https://github.com/cloud9ers/gurumate/blob/075dc74d1ee62a8c6b7a8bf2b271364f01629d1e/environment/lib/python2.7/site-packages/IPython/parallel/apps/launcher.py#L466-L469 | def find_args(self):
"""Build self.args using all the fields."""
return self.mpi_cmd + ['-n', str(self.n)] + self.mpi_args + \
self.program + self.program_args | [
"def",
"find_args",
"(",
"self",
")",
":",
"return",
"self",
".",
"mpi_cmd",
"+",
"[",
"'-n'",
",",
"str",
"(",
"self",
".",
"n",
")",
"]",
"+",
"self",
".",
"mpi_args",
"+",
"self",
".",
"program",
"+",
"self",
".",
"program_args"
]
| Build self.args using all the fields. | [
"Build",
"self",
".",
"args",
"using",
"all",
"the",
"fields",
"."
]
| python | test |
DataDog/integrations-core | datadog_checks_dev/datadog_checks/dev/tooling/utils.py | https://github.com/DataDog/integrations-core/blob/ebd41c873cf9f97a8c51bf9459bc6a7536af8acd/datadog_checks_dev/datadog_checks/dev/tooling/utils.py#L138-L145 | def load_manifest(check_name):
"""
Load the manifest file into a dictionary
"""
manifest_path = os.path.join(get_root(), check_name, 'manifest.json')
if file_exists(manifest_path):
return json.loads(read_file(manifest_path))
return {} | [
"def",
"load_manifest",
"(",
"check_name",
")",
":",
"manifest_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"get_root",
"(",
")",
",",
"check_name",
",",
"'manifest.json'",
")",
"if",
"file_exists",
"(",
"manifest_path",
")",
":",
"return",
"json",
".",
"loads",
"(",
"read_file",
"(",
"manifest_path",
")",
")",
"return",
"{",
"}"
]
| Load the manifest file into a dictionary | [
"Load",
"the",
"manifest",
"file",
"into",
"a",
"dictionary"
]
| python | train |
grahambell/pymoc | lib/pymoc/moc.py | https://github.com/grahambell/pymoc/blob/0e2e57ce07ff3de6ac024627c1fb6ad30c2fde48/lib/pymoc/moc.py#L365-L381 | def cells(self):
"""The number of cells in the MOC.
This gives the total number of cells at all orders,
with cells from every order counted equally.
>>> m = MOC(0, (1, 2))
>>> m.cells
2
"""
n = 0
for (order, cells) in self:
n += len(cells)
return n | [
"def",
"cells",
"(",
"self",
")",
":",
"n",
"=",
"0",
"for",
"(",
"order",
",",
"cells",
")",
"in",
"self",
":",
"n",
"+=",
"len",
"(",
"cells",
")",
"return",
"n"
]
| The number of cells in the MOC.
This gives the total number of cells at all orders,
with cells from every order counted equally.
>>> m = MOC(0, (1, 2))
>>> m.cells
2 | [
"The",
"number",
"of",
"cells",
"in",
"the",
"MOC",
"."
]
| python | train |
yandex/yandex-tank | yandextank/plugins/InfluxUploader/decoder.py | https://github.com/yandex/yandex-tank/blob/d71d63b6ab5de8b8a5ea2b728b6ab9ac0b1ba71b/yandextank/plugins/InfluxUploader/decoder.py#L38-L57 | def decode_monitoring(self, data):
"""
The reason why we have two separate methods for monitoring
and aggregates is a strong difference in incoming data.
"""
points = list()
for second_data in data:
for host, host_data in second_data["data"].iteritems():
points.append(
self.__make_points(
"monitoring",
{"host": host, "comment": host_data.get("comment")},
second_data["timestamp"],
{
metric: value
for metric, value in host_data["metrics"].iteritems()
}
)
)
return points | [
"def",
"decode_monitoring",
"(",
"self",
",",
"data",
")",
":",
"points",
"=",
"list",
"(",
")",
"for",
"second_data",
"in",
"data",
":",
"for",
"host",
",",
"host_data",
"in",
"second_data",
"[",
"\"data\"",
"]",
".",
"iteritems",
"(",
")",
":",
"points",
".",
"append",
"(",
"self",
".",
"__make_points",
"(",
"\"monitoring\"",
",",
"{",
"\"host\"",
":",
"host",
",",
"\"comment\"",
":",
"host_data",
".",
"get",
"(",
"\"comment\"",
")",
"}",
",",
"second_data",
"[",
"\"timestamp\"",
"]",
",",
"{",
"metric",
":",
"value",
"for",
"metric",
",",
"value",
"in",
"host_data",
"[",
"\"metrics\"",
"]",
".",
"iteritems",
"(",
")",
"}",
")",
")",
"return",
"points"
]
| The reason why we have two separate methods for monitoring
and aggregates is a strong difference in incoming data. | [
"The",
"reason",
"why",
"we",
"have",
"two",
"separate",
"methods",
"for",
"monitoring",
"and",
"aggregates",
"is",
"a",
"strong",
"difference",
"in",
"incoming",
"data",
"."
]
| python | test |
lpantano/seqcluster | seqcluster/libs/thinkbayes.py | https://github.com/lpantano/seqcluster/blob/774e23add8cd4fdc83d626cea3bd1f458e7d060d/seqcluster/libs/thinkbayes.py#L1804-L1813 | def PredictivePmf(self, xs, name=''):
"""Makes a predictive distribution.
xs: values to go into the Pmf
Returns: Pmf that maps from x to the mean prevalence of x
"""
alpha0 = self.params.sum()
ps = self.params / alpha0
return MakePmfFromItems(zip(xs, ps), name=name) | [
"def",
"PredictivePmf",
"(",
"self",
",",
"xs",
",",
"name",
"=",
"''",
")",
":",
"alpha0",
"=",
"self",
".",
"params",
".",
"sum",
"(",
")",
"ps",
"=",
"self",
".",
"params",
"/",
"alpha0",
"return",
"MakePmfFromItems",
"(",
"zip",
"(",
"xs",
",",
"ps",
")",
",",
"name",
"=",
"name",
")"
]
| Makes a predictive distribution.
xs: values to go into the Pmf
Returns: Pmf that maps from x to the mean prevalence of x | [
"Makes",
"a",
"predictive",
"distribution",
"."
]
| python | train |
scikit-learn-contrib/categorical-encoding | category_encoders/hashing.py | https://github.com/scikit-learn-contrib/categorical-encoding/blob/5e9e803c9131b377af305d5302723ba2415001da/category_encoders/hashing.py#L88-L134 | def fit(self, X, y=None, **kwargs):
"""Fit encoder according to X and y.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
-------
self : encoder
Returns self.
"""
# first check the type
X = util.convert_input(X)
self._dim = X.shape[1]
# if columns aren't passed, just use every string column
if self.cols is None:
self.cols = util.get_obj_cols(X)
else:
self.cols = util.convert_cols_to_list(self.cols)
X_temp = self.transform(X, override_return_df=True)
self.feature_names = X_temp.columns.tolist()
# drop all output columns with 0 variance.
if self.drop_invariant:
self.drop_cols = []
generated_cols = util.get_generated_cols(X, X_temp, self.cols)
self.drop_cols = [x for x in generated_cols if X_temp[x].var() <= 10e-5]
try:
[self.feature_names.remove(x) for x in self.drop_cols]
except KeyError as e:
if self.verbose > 0:
print("Could not remove column from feature names."
"Not found in generated cols.\n{}".format(e))
return self | [
"def",
"fit",
"(",
"self",
",",
"X",
",",
"y",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"# first check the type",
"X",
"=",
"util",
".",
"convert_input",
"(",
"X",
")",
"self",
".",
"_dim",
"=",
"X",
".",
"shape",
"[",
"1",
"]",
"# if columns aren't passed, just use every string column",
"if",
"self",
".",
"cols",
"is",
"None",
":",
"self",
".",
"cols",
"=",
"util",
".",
"get_obj_cols",
"(",
"X",
")",
"else",
":",
"self",
".",
"cols",
"=",
"util",
".",
"convert_cols_to_list",
"(",
"self",
".",
"cols",
")",
"X_temp",
"=",
"self",
".",
"transform",
"(",
"X",
",",
"override_return_df",
"=",
"True",
")",
"self",
".",
"feature_names",
"=",
"X_temp",
".",
"columns",
".",
"tolist",
"(",
")",
"# drop all output columns with 0 variance.",
"if",
"self",
".",
"drop_invariant",
":",
"self",
".",
"drop_cols",
"=",
"[",
"]",
"generated_cols",
"=",
"util",
".",
"get_generated_cols",
"(",
"X",
",",
"X_temp",
",",
"self",
".",
"cols",
")",
"self",
".",
"drop_cols",
"=",
"[",
"x",
"for",
"x",
"in",
"generated_cols",
"if",
"X_temp",
"[",
"x",
"]",
".",
"var",
"(",
")",
"<=",
"10e-5",
"]",
"try",
":",
"[",
"self",
".",
"feature_names",
".",
"remove",
"(",
"x",
")",
"for",
"x",
"in",
"self",
".",
"drop_cols",
"]",
"except",
"KeyError",
"as",
"e",
":",
"if",
"self",
".",
"verbose",
">",
"0",
":",
"print",
"(",
"\"Could not remove column from feature names.\"",
"\"Not found in generated cols.\\n{}\"",
".",
"format",
"(",
"e",
")",
")",
"return",
"self"
]
| Fit encoder according to X and y.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
-------
self : encoder
Returns self. | [
"Fit",
"encoder",
"according",
"to",
"X",
"and",
"y",
"."
]
| python | valid |
onnx/onnxmltools | onnxmltools/convert/sparkml/ops_input_output.py | https://github.com/onnx/onnxmltools/blob/d4e4c31990fc2d9fd1f92139f497d360914c9df2/onnxmltools/convert/sparkml/ops_input_output.py#L13-L168 | def build_io_name_map():
'''
map of spark models to input-output tuples
Each lambda gets the corresponding input or output column name from the model
'''
map = {
"pyspark.ml.feature.BucketedRandomProjectionLSHModel": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.regression.AFTSurvivalRegressionModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol")]
),
"pyspark.ml.feature.ElementwiseProduct": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.MinHashLSHModel": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.Word2VecModel": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.IndexToString": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.ChiSqSelectorModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.classification.OneVsRestModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol")]
),
"pyspark.ml.regression.GBTRegressionModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol")]
),
"pyspark.ml.classification.GBTClassificationModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol"), 'probability']
),
"pyspark.ml.feature.DCT": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.PCAModel": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.PolynomialExpansion": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.Tokenizer": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.classification.NaiveBayesModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol"), model.getOrDefault("probabilityCol")]
),
"pyspark.ml.feature.VectorSlicer": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.StopWordsRemover": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.NGram": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.Bucketizer": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.regression.RandomForestRegressionModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol")]
),
"pyspark.ml.classification.RandomForestClassificationModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol"), model.getOrDefault("probabilityCol")]
),
"pyspark.ml.regression.DecisionTreeRegressionModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol")]
),
"pyspark.ml.classification.DecisionTreeClassificationModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol"), model.getOrDefault("probabilityCol")]
),
"pyspark.ml.feature.VectorIndexerModel": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.regression.GeneralizedLinearRegressionModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol")]
),
"pyspark.ml.regression.LinearRegressionModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol")]
),
"pyspark.ml.feature.ImputerModel": (
lambda model: model.getOrDefault("inputCols"),
lambda model: model.getOrDefault("outputCols")
),
"pyspark.ml.feature.MaxAbsScalerModel": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.MinMaxScalerModel": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.StandardScalerModel": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.Normalizer": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.Binarizer": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.classification.LinearSVCModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol")]
),
"pyspark.ml.classification.LogisticRegressionModel": (
lambda model: [model.getOrDefault("featuresCol")],
lambda model: [model.getOrDefault("predictionCol"), model.getOrDefault("probabilityCol")]
),
"pyspark.ml.feature.OneHotEncoderModel": (
lambda model: model.getOrDefault("inputCols"),
lambda model: model.getOrDefault("outputCols")
),
"pyspark.ml.feature.StringIndexerModel": (
lambda model: [model.getOrDefault("inputCol")],
lambda model: [model.getOrDefault("outputCol")]
),
"pyspark.ml.feature.VectorAssembler": (
lambda model: model.getOrDefault("inputCols"),
lambda model: [model.getOrDefault("outputCol")]
)
}
return map | [
"def",
"build_io_name_map",
"(",
")",
":",
"map",
"=",
"{",
"\"pyspark.ml.feature.BucketedRandomProjectionLSHModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.regression.AFTSurvivalRegressionModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.ElementwiseProduct\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.MinHashLSHModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.Word2VecModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.IndexToString\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.ChiSqSelectorModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.classification.OneVsRestModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.regression.GBTRegressionModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.classification.GBTClassificationModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
",",
"'probability'",
"]",
")",
",",
"\"pyspark.ml.feature.DCT\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.PCAModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.PolynomialExpansion\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.Tokenizer\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.classification.NaiveBayesModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
",",
"model",
".",
"getOrDefault",
"(",
"\"probabilityCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.VectorSlicer\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.StopWordsRemover\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.NGram\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.Bucketizer\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.regression.RandomForestRegressionModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.classification.RandomForestClassificationModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
",",
"model",
".",
"getOrDefault",
"(",
"\"probabilityCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.regression.DecisionTreeRegressionModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.classification.DecisionTreeClassificationModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
",",
"model",
".",
"getOrDefault",
"(",
"\"probabilityCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.VectorIndexerModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.regression.GeneralizedLinearRegressionModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.regression.LinearRegressionModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.ImputerModel\"",
":",
"(",
"lambda",
"model",
":",
"model",
".",
"getOrDefault",
"(",
"\"inputCols\"",
")",
",",
"lambda",
"model",
":",
"model",
".",
"getOrDefault",
"(",
"\"outputCols\"",
")",
")",
",",
"\"pyspark.ml.feature.MaxAbsScalerModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.MinMaxScalerModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.StandardScalerModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.Normalizer\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.Binarizer\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.classification.LinearSVCModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.classification.LogisticRegressionModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"featuresCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"predictionCol\"",
")",
",",
"model",
".",
"getOrDefault",
"(",
"\"probabilityCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.OneHotEncoderModel\"",
":",
"(",
"lambda",
"model",
":",
"model",
".",
"getOrDefault",
"(",
"\"inputCols\"",
")",
",",
"lambda",
"model",
":",
"model",
".",
"getOrDefault",
"(",
"\"outputCols\"",
")",
")",
",",
"\"pyspark.ml.feature.StringIndexerModel\"",
":",
"(",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"inputCol\"",
")",
"]",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
",",
"\"pyspark.ml.feature.VectorAssembler\"",
":",
"(",
"lambda",
"model",
":",
"model",
".",
"getOrDefault",
"(",
"\"inputCols\"",
")",
",",
"lambda",
"model",
":",
"[",
"model",
".",
"getOrDefault",
"(",
"\"outputCol\"",
")",
"]",
")",
"}",
"return",
"map"
]
| map of spark models to input-output tuples
Each lambda gets the corresponding input or output column name from the model | [
"map",
"of",
"spark",
"models",
"to",
"input",
"-",
"output",
"tuples",
"Each",
"lambda",
"gets",
"the",
"corresponding",
"input",
"or",
"output",
"column",
"name",
"from",
"the",
"model"
]
| python | train |
swharden/PyOriginTools | PyOriginTools/workbook.py | https://github.com/swharden/PyOriginTools/blob/536fb8e11234ffdc27e26b1800e0358179ca7d26/PyOriginTools/workbook.py#L81-L88 | def onex(self):
"""
delete all X columns except the first one.
"""
xCols=[i for i in range(self.nCols) if self.colTypes[i]==3]
if len(xCols)>1:
for colI in xCols[1:][::-1]:
self.colDelete(colI) | [
"def",
"onex",
"(",
"self",
")",
":",
"xCols",
"=",
"[",
"i",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"nCols",
")",
"if",
"self",
".",
"colTypes",
"[",
"i",
"]",
"==",
"3",
"]",
"if",
"len",
"(",
"xCols",
")",
">",
"1",
":",
"for",
"colI",
"in",
"xCols",
"[",
"1",
":",
"]",
"[",
":",
":",
"-",
"1",
"]",
":",
"self",
".",
"colDelete",
"(",
"colI",
")"
]
| delete all X columns except the first one. | [
"delete",
"all",
"X",
"columns",
"except",
"the",
"first",
"one",
"."
]
| python | train |
gwastro/pycbc | pycbc/workflow/configuration.py | https://github.com/gwastro/pycbc/blob/7a64cdd104d263f1b6ea0b01e6841837d05a4cb3/pycbc/workflow/configuration.py#L948-L971 | def has_option_tag(self, section, option, tag):
"""
Convenience function accessing has_option_tags() for a single tag: see
documentation for that function.
NB calling has_option_tags() directly is preferred for simplicity.
Parameters
-----------
self : ConfigParser object
The ConfigParser object (automatically passed when this is appended
to the ConfigParser class)
section : string
The section of the ConfigParser object to read
option : string
The ConfigParser option to look for
tag : string
The name of the subsection to look in, if not found in [section]
Returns
--------
Boolean
Is the option in the section or [section-tag]
"""
return self.has_option_tags(section, option, [tag]) | [
"def",
"has_option_tag",
"(",
"self",
",",
"section",
",",
"option",
",",
"tag",
")",
":",
"return",
"self",
".",
"has_option_tags",
"(",
"section",
",",
"option",
",",
"[",
"tag",
"]",
")"
]
| Convenience function accessing has_option_tags() for a single tag: see
documentation for that function.
NB calling has_option_tags() directly is preferred for simplicity.
Parameters
-----------
self : ConfigParser object
The ConfigParser object (automatically passed when this is appended
to the ConfigParser class)
section : string
The section of the ConfigParser object to read
option : string
The ConfigParser option to look for
tag : string
The name of the subsection to look in, if not found in [section]
Returns
--------
Boolean
Is the option in the section or [section-tag] | [
"Convenience",
"function",
"accessing",
"has_option_tags",
"()",
"for",
"a",
"single",
"tag",
":",
"see",
"documentation",
"for",
"that",
"function",
".",
"NB",
"calling",
"has_option_tags",
"()",
"directly",
"is",
"preferred",
"for",
"simplicity",
"."
]
| python | train |
mitsei/dlkit | dlkit/json_/relationship/sessions.py | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/relationship/sessions.py#L814-L856 | def get_relationships_by_query(self, relationship_query):
"""Gets a list of ``Relationships`` matching the given relationship query.
arg: relationship_query
(osid.relationship.RelationshipQuery): the relationship
query
return: (osid.relationship.RelationshipList) - the returned
``RelationshipList``
raise: NullArgument - ``relationship_query`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - ``relationship_query`` is not of this
service
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.resource.ResourceQuerySession.get_resources_by_query
and_list = list()
or_list = list()
for term in relationship_query._query_terms:
if '$in' in relationship_query._query_terms[term] and '$nin' in relationship_query._query_terms[term]:
and_list.append(
{'$or': [{term: {'$in': relationship_query._query_terms[term]['$in']}},
{term: {'$nin': relationship_query._query_terms[term]['$nin']}}]})
else:
and_list.append({term: relationship_query._query_terms[term]})
for term in relationship_query._keyword_terms:
or_list.append({term: relationship_query._keyword_terms[term]})
if or_list:
and_list.append({'$or': or_list})
view_filter = self._view_filter()
if view_filter:
and_list.append(view_filter)
if and_list:
query_terms = {'$and': and_list}
collection = JSONClientValidated('relationship',
collection='Relationship',
runtime=self._runtime)
result = collection.find(query_terms).sort('_id', DESCENDING)
else:
result = []
return objects.RelationshipList(result, runtime=self._runtime, proxy=self._proxy) | [
"def",
"get_relationships_by_query",
"(",
"self",
",",
"relationship_query",
")",
":",
"# Implemented from template for",
"# osid.resource.ResourceQuerySession.get_resources_by_query",
"and_list",
"=",
"list",
"(",
")",
"or_list",
"=",
"list",
"(",
")",
"for",
"term",
"in",
"relationship_query",
".",
"_query_terms",
":",
"if",
"'$in'",
"in",
"relationship_query",
".",
"_query_terms",
"[",
"term",
"]",
"and",
"'$nin'",
"in",
"relationship_query",
".",
"_query_terms",
"[",
"term",
"]",
":",
"and_list",
".",
"append",
"(",
"{",
"'$or'",
":",
"[",
"{",
"term",
":",
"{",
"'$in'",
":",
"relationship_query",
".",
"_query_terms",
"[",
"term",
"]",
"[",
"'$in'",
"]",
"}",
"}",
",",
"{",
"term",
":",
"{",
"'$nin'",
":",
"relationship_query",
".",
"_query_terms",
"[",
"term",
"]",
"[",
"'$nin'",
"]",
"}",
"}",
"]",
"}",
")",
"else",
":",
"and_list",
".",
"append",
"(",
"{",
"term",
":",
"relationship_query",
".",
"_query_terms",
"[",
"term",
"]",
"}",
")",
"for",
"term",
"in",
"relationship_query",
".",
"_keyword_terms",
":",
"or_list",
".",
"append",
"(",
"{",
"term",
":",
"relationship_query",
".",
"_keyword_terms",
"[",
"term",
"]",
"}",
")",
"if",
"or_list",
":",
"and_list",
".",
"append",
"(",
"{",
"'$or'",
":",
"or_list",
"}",
")",
"view_filter",
"=",
"self",
".",
"_view_filter",
"(",
")",
"if",
"view_filter",
":",
"and_list",
".",
"append",
"(",
"view_filter",
")",
"if",
"and_list",
":",
"query_terms",
"=",
"{",
"'$and'",
":",
"and_list",
"}",
"collection",
"=",
"JSONClientValidated",
"(",
"'relationship'",
",",
"collection",
"=",
"'Relationship'",
",",
"runtime",
"=",
"self",
".",
"_runtime",
")",
"result",
"=",
"collection",
".",
"find",
"(",
"query_terms",
")",
".",
"sort",
"(",
"'_id'",
",",
"DESCENDING",
")",
"else",
":",
"result",
"=",
"[",
"]",
"return",
"objects",
".",
"RelationshipList",
"(",
"result",
",",
"runtime",
"=",
"self",
".",
"_runtime",
",",
"proxy",
"=",
"self",
".",
"_proxy",
")"
]
| Gets a list of ``Relationships`` matching the given relationship query.
arg: relationship_query
(osid.relationship.RelationshipQuery): the relationship
query
return: (osid.relationship.RelationshipList) - the returned
``RelationshipList``
raise: NullArgument - ``relationship_query`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - ``relationship_query`` is not of this
service
*compliance: mandatory -- This method must be implemented.* | [
"Gets",
"a",
"list",
"of",
"Relationships",
"matching",
"the",
"given",
"relationship",
"query",
"."
]
| python | train |
openstack/networking-arista | networking_arista/ml2/rpc/arista_eapi.py | https://github.com/openstack/networking-arista/blob/07ce6b1fc62ff74308a6eabfc4cc0ee09fb7b0fe/networking_arista/ml2/rpc/arista_eapi.py#L313-L337 | def get_host_physnet(self, context):
"""Returns dictionary which contains physical topology information
for a given host_id
"""
host_id = utils.hostname(context.host)
cmd = ['show network physical-topology neighbors']
try:
response = self._run_eos_cmds(cmd)
# Get response for 'show network physical-topology neighbors'
# command
neighbors = response[0]['neighbors']
for neighbor in neighbors:
if host_id in neighbor:
physnet = neighbors[neighbor]['toPort'][0]['hostname']
LOG.debug("get_physical_network: Physical Network for "
"%(host)s is %(physnet)s", {'host': host_id,
'physnet': physnet})
return physnet
LOG.debug("Physical network not found for %(host)s",
{'host': host_id})
except Exception as exc:
LOG.error(_LE('command %(cmd)s failed with '
'%(exc)s'), {'cmd': cmd, 'exc': exc})
return None | [
"def",
"get_host_physnet",
"(",
"self",
",",
"context",
")",
":",
"host_id",
"=",
"utils",
".",
"hostname",
"(",
"context",
".",
"host",
")",
"cmd",
"=",
"[",
"'show network physical-topology neighbors'",
"]",
"try",
":",
"response",
"=",
"self",
".",
"_run_eos_cmds",
"(",
"cmd",
")",
"# Get response for 'show network physical-topology neighbors'",
"# command",
"neighbors",
"=",
"response",
"[",
"0",
"]",
"[",
"'neighbors'",
"]",
"for",
"neighbor",
"in",
"neighbors",
":",
"if",
"host_id",
"in",
"neighbor",
":",
"physnet",
"=",
"neighbors",
"[",
"neighbor",
"]",
"[",
"'toPort'",
"]",
"[",
"0",
"]",
"[",
"'hostname'",
"]",
"LOG",
".",
"debug",
"(",
"\"get_physical_network: Physical Network for \"",
"\"%(host)s is %(physnet)s\"",
",",
"{",
"'host'",
":",
"host_id",
",",
"'physnet'",
":",
"physnet",
"}",
")",
"return",
"physnet",
"LOG",
".",
"debug",
"(",
"\"Physical network not found for %(host)s\"",
",",
"{",
"'host'",
":",
"host_id",
"}",
")",
"except",
"Exception",
"as",
"exc",
":",
"LOG",
".",
"error",
"(",
"_LE",
"(",
"'command %(cmd)s failed with '",
"'%(exc)s'",
")",
",",
"{",
"'cmd'",
":",
"cmd",
",",
"'exc'",
":",
"exc",
"}",
")",
"return",
"None"
]
| Returns dictionary which contains physical topology information
for a given host_id | [
"Returns",
"dictionary",
"which",
"contains",
"physical",
"topology",
"information"
]
| python | train |
hubo1016/vlcp | vlcp/event/matchtree.py | https://github.com/hubo1016/vlcp/blob/239055229ec93a99cc7e15208075724ccf543bd1/vlcp/event/matchtree.py#L125-L133 | def matchesWithMatchers(self, event):
'''
Return all matches for this event. The first matcher is also returned for each matched object.
:param event: an input event
'''
ret = []
self._matches(event, set(), ret)
return tuple(ret) | [
"def",
"matchesWithMatchers",
"(",
"self",
",",
"event",
")",
":",
"ret",
"=",
"[",
"]",
"self",
".",
"_matches",
"(",
"event",
",",
"set",
"(",
")",
",",
"ret",
")",
"return",
"tuple",
"(",
"ret",
")"
]
| Return all matches for this event. The first matcher is also returned for each matched object.
:param event: an input event | [
"Return",
"all",
"matches",
"for",
"this",
"event",
".",
"The",
"first",
"matcher",
"is",
"also",
"returned",
"for",
"each",
"matched",
"object",
".",
":",
"param",
"event",
":",
"an",
"input",
"event"
]
| python | train |
cloudera/cm_api | python/src/cm_api/endpoints/clusters.py | https://github.com/cloudera/cm_api/blob/5d2512375bd94684b4da36df9e0d9177865ffcbb/python/src/cm_api/endpoints/clusters.py#L163-L170 | def delete_service(self, name):
"""
Delete a service by name.
@param name: Service name
@return: The deleted ApiService object
"""
return services.delete_service(self._get_resource_root(), name, self.name) | [
"def",
"delete_service",
"(",
"self",
",",
"name",
")",
":",
"return",
"services",
".",
"delete_service",
"(",
"self",
".",
"_get_resource_root",
"(",
")",
",",
"name",
",",
"self",
".",
"name",
")"
]
| Delete a service by name.
@param name: Service name
@return: The deleted ApiService object | [
"Delete",
"a",
"service",
"by",
"name",
"."
]
| python | train |
brocade/pynos | pynos/versions/base/interface.py | https://github.com/brocade/pynos/blob/bd8a34e98f322de3fc06750827d8bbc3a0c00380/pynos/versions/base/interface.py#L780-L863 | def pvlan_host_association(self, **kwargs):
"""Set interface PVLAN association.
Args:
int_type (str): Type of interface. (gigabitethernet,
tengigabitethernet, etc)
name (str): Name of interface. (1/0/5, 1/0/10, etc)
pri_vlan (str): The primary PVLAN.
sec_vlan (str): The secondary PVLAN.
callback (function): A function executed upon completion of the
method. The only parameter passed to `callback` will be the
``ElementTree`` `config`.
Returns:
Return value of `callback`.
Raises:
KeyError: if `int_type`, `name`, `pri_vlan`, or `sec_vlan` is not
specified.
ValueError: if `int_type`, `name`, `pri_vlan`, or `sec_vlan`
is invalid.
Examples:
>>> import pynos.device
>>> switches = ['10.24.39.211', '10.24.39.203']
>>> auth = ('admin', 'password')
>>> int_type = 'tengigabitethernet'
>>> name = '225/0/38'
>>> pri_vlan = '75'
>>> sec_vlan = '100'
>>> for switch in switches:
... conn = (switch, '22')
... with pynos.device.Device(conn=conn, auth=auth) as dev:
... output = dev.interface.private_vlan_type(name=pri_vlan,
... pvlan_type='primary')
... output = dev.interface.private_vlan_type(name=sec_vlan,
... pvlan_type='isolated')
... output = dev.interface.vlan_pvlan_association_add(
... name=pri_vlan, sec_vlan=sec_vlan)
... output = dev.interface.enable_switchport(int_type,
... name)
... output = dev.interface.private_vlan_mode(
... int_type=int_type, name=name, mode='host')
... output = dev.interface.pvlan_host_association(
... int_type=int_type, name=name, pri_vlan=pri_vlan,
... sec_vlan=sec_vlan)
... dev.interface.pvlan_host_association()
... # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
KeyError
"""
int_type = kwargs.pop('int_type').lower()
name = kwargs.pop('name')
pri_vlan = kwargs.pop('pri_vlan')
sec_vlan = kwargs.pop('sec_vlan')
callback = kwargs.pop('callback', self._callback)
int_types = ['gigabitethernet', 'tengigabitethernet',
'fortygigabitethernet', 'hundredgigabitethernet',
'port_channel']
if int_type not in int_types:
raise ValueError("Incorrect int_type value.")
if not pynos.utilities.valid_interface(int_type, name):
raise ValueError('`name` must be in the format of x/y/z for '
'physical interfaces or x for port channel.')
if not pynos.utilities.valid_vlan_id(pri_vlan):
raise InvalidVlanId("`sec_vlan` must be between `1` and `4095`.")
if not pynos.utilities.valid_vlan_id(sec_vlan):
raise InvalidVlanId("`sec_vlan` must be between `1` and `4095`.")
pvlan_args = dict(name=name, host_pri_pvlan=pri_vlan)
associate_pvlan = getattr(self._interface,
'interface_%s_switchport_private_vlan_'
'host_association_host_pri_pvlan' %
int_type)
config = associate_pvlan(**pvlan_args)
sec_assoc = config.find('.//*host-association')
sec_assoc = ET.SubElement(sec_assoc, 'host-sec-pvlan')
sec_assoc.text = sec_vlan
return callback(config) | [
"def",
"pvlan_host_association",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"int_type",
"=",
"kwargs",
".",
"pop",
"(",
"'int_type'",
")",
".",
"lower",
"(",
")",
"name",
"=",
"kwargs",
".",
"pop",
"(",
"'name'",
")",
"pri_vlan",
"=",
"kwargs",
".",
"pop",
"(",
"'pri_vlan'",
")",
"sec_vlan",
"=",
"kwargs",
".",
"pop",
"(",
"'sec_vlan'",
")",
"callback",
"=",
"kwargs",
".",
"pop",
"(",
"'callback'",
",",
"self",
".",
"_callback",
")",
"int_types",
"=",
"[",
"'gigabitethernet'",
",",
"'tengigabitethernet'",
",",
"'fortygigabitethernet'",
",",
"'hundredgigabitethernet'",
",",
"'port_channel'",
"]",
"if",
"int_type",
"not",
"in",
"int_types",
":",
"raise",
"ValueError",
"(",
"\"Incorrect int_type value.\"",
")",
"if",
"not",
"pynos",
".",
"utilities",
".",
"valid_interface",
"(",
"int_type",
",",
"name",
")",
":",
"raise",
"ValueError",
"(",
"'`name` must be in the format of x/y/z for '",
"'physical interfaces or x for port channel.'",
")",
"if",
"not",
"pynos",
".",
"utilities",
".",
"valid_vlan_id",
"(",
"pri_vlan",
")",
":",
"raise",
"InvalidVlanId",
"(",
"\"`sec_vlan` must be between `1` and `4095`.\"",
")",
"if",
"not",
"pynos",
".",
"utilities",
".",
"valid_vlan_id",
"(",
"sec_vlan",
")",
":",
"raise",
"InvalidVlanId",
"(",
"\"`sec_vlan` must be between `1` and `4095`.\"",
")",
"pvlan_args",
"=",
"dict",
"(",
"name",
"=",
"name",
",",
"host_pri_pvlan",
"=",
"pri_vlan",
")",
"associate_pvlan",
"=",
"getattr",
"(",
"self",
".",
"_interface",
",",
"'interface_%s_switchport_private_vlan_'",
"'host_association_host_pri_pvlan'",
"%",
"int_type",
")",
"config",
"=",
"associate_pvlan",
"(",
"*",
"*",
"pvlan_args",
")",
"sec_assoc",
"=",
"config",
".",
"find",
"(",
"'.//*host-association'",
")",
"sec_assoc",
"=",
"ET",
".",
"SubElement",
"(",
"sec_assoc",
",",
"'host-sec-pvlan'",
")",
"sec_assoc",
".",
"text",
"=",
"sec_vlan",
"return",
"callback",
"(",
"config",
")"
]
| Set interface PVLAN association.
Args:
int_type (str): Type of interface. (gigabitethernet,
tengigabitethernet, etc)
name (str): Name of interface. (1/0/5, 1/0/10, etc)
pri_vlan (str): The primary PVLAN.
sec_vlan (str): The secondary PVLAN.
callback (function): A function executed upon completion of the
method. The only parameter passed to `callback` will be the
``ElementTree`` `config`.
Returns:
Return value of `callback`.
Raises:
KeyError: if `int_type`, `name`, `pri_vlan`, or `sec_vlan` is not
specified.
ValueError: if `int_type`, `name`, `pri_vlan`, or `sec_vlan`
is invalid.
Examples:
>>> import pynos.device
>>> switches = ['10.24.39.211', '10.24.39.203']
>>> auth = ('admin', 'password')
>>> int_type = 'tengigabitethernet'
>>> name = '225/0/38'
>>> pri_vlan = '75'
>>> sec_vlan = '100'
>>> for switch in switches:
... conn = (switch, '22')
... with pynos.device.Device(conn=conn, auth=auth) as dev:
... output = dev.interface.private_vlan_type(name=pri_vlan,
... pvlan_type='primary')
... output = dev.interface.private_vlan_type(name=sec_vlan,
... pvlan_type='isolated')
... output = dev.interface.vlan_pvlan_association_add(
... name=pri_vlan, sec_vlan=sec_vlan)
... output = dev.interface.enable_switchport(int_type,
... name)
... output = dev.interface.private_vlan_mode(
... int_type=int_type, name=name, mode='host')
... output = dev.interface.pvlan_host_association(
... int_type=int_type, name=name, pri_vlan=pri_vlan,
... sec_vlan=sec_vlan)
... dev.interface.pvlan_host_association()
... # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
KeyError | [
"Set",
"interface",
"PVLAN",
"association",
"."
]
| python | train |
mitsei/dlkit | dlkit/json_/logging_/sessions.py | https://github.com/mitsei/dlkit/blob/445f968a175d61c8d92c0f617a3c17dc1dc7c584/dlkit/json_/logging_/sessions.py#L2490-L2509 | def is_child_of_log(self, id_, log_id):
"""Tests if an ``Id`` is a direct child of a log.
arg: id (osid.id.Id): an ``Id``
arg: log_id (osid.id.Id): the ``Id`` of a log
return: (boolean) - ``true`` if this ``id`` is a child of
``log_id,`` ``false`` otherwise
raise: NotFound - ``log_id`` is not found
raise: NullArgument - ``id`` or ``log_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.*
*implementation notes*: If ``id`` not found return ``false``.
"""
# Implemented from template for
# osid.resource.BinHierarchySession.is_child_of_bin
if self._catalog_session is not None:
return self._catalog_session.is_child_of_catalog(id_=id_, catalog_id=log_id)
return self._hierarchy_session.is_child(id_=log_id, child_id=id_) | [
"def",
"is_child_of_log",
"(",
"self",
",",
"id_",
",",
"log_id",
")",
":",
"# Implemented from template for",
"# osid.resource.BinHierarchySession.is_child_of_bin",
"if",
"self",
".",
"_catalog_session",
"is",
"not",
"None",
":",
"return",
"self",
".",
"_catalog_session",
".",
"is_child_of_catalog",
"(",
"id_",
"=",
"id_",
",",
"catalog_id",
"=",
"log_id",
")",
"return",
"self",
".",
"_hierarchy_session",
".",
"is_child",
"(",
"id_",
"=",
"log_id",
",",
"child_id",
"=",
"id_",
")"
]
| Tests if an ``Id`` is a direct child of a log.
arg: id (osid.id.Id): an ``Id``
arg: log_id (osid.id.Id): the ``Id`` of a log
return: (boolean) - ``true`` if this ``id`` is a child of
``log_id,`` ``false`` otherwise
raise: NotFound - ``log_id`` is not found
raise: NullArgument - ``id`` or ``log_id`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
*compliance: mandatory -- This method must be implemented.*
*implementation notes*: If ``id`` not found return ``false``. | [
"Tests",
"if",
"an",
"Id",
"is",
"a",
"direct",
"child",
"of",
"a",
"log",
"."
]
| python | train |
Microsoft/knack | knack/prompting.py | https://github.com/Microsoft/knack/blob/5f1a480a33f103e2688c46eef59fb2d9eaf2baad/knack/prompting.py#L99-L131 | def prompt_choice_list(msg, a_list, default=1, help_string=None):
"""Prompt user to select from a list of possible choices.
:param msg:A message displayed to the user before the choice list
:type msg: str
:param a_list:The list of choices (list of strings or list of dicts with 'name' & 'desc')
"type a_list: list
:param default:The default option that should be chosen if user doesn't enter a choice
:type default: int
:returns: The list index of the item chosen.
"""
verify_is_a_tty()
options = '\n'.join([' [{}] {}{}'
.format(i + 1,
x['name'] if isinstance(x, dict) and 'name' in x else x,
' - ' + x['desc'] if isinstance(x, dict) and 'desc' in x else '')
for i, x in enumerate(a_list)])
allowed_vals = list(range(1, len(a_list) + 1))
while True:
val = _input('{}\n{}\nPlease enter a choice [Default choice({})]: '.format(msg, options, default))
if val == '?' and help_string is not None:
print(help_string)
continue
if not val:
val = '{}'.format(default)
try:
ans = int(val)
if ans in allowed_vals:
# array index is 0-based, user input is 1-based
return ans - 1
raise ValueError
except ValueError:
logger.warning('Valid values are %s', allowed_vals) | [
"def",
"prompt_choice_list",
"(",
"msg",
",",
"a_list",
",",
"default",
"=",
"1",
",",
"help_string",
"=",
"None",
")",
":",
"verify_is_a_tty",
"(",
")",
"options",
"=",
"'\\n'",
".",
"join",
"(",
"[",
"' [{}] {}{}'",
".",
"format",
"(",
"i",
"+",
"1",
",",
"x",
"[",
"'name'",
"]",
"if",
"isinstance",
"(",
"x",
",",
"dict",
")",
"and",
"'name'",
"in",
"x",
"else",
"x",
",",
"' - '",
"+",
"x",
"[",
"'desc'",
"]",
"if",
"isinstance",
"(",
"x",
",",
"dict",
")",
"and",
"'desc'",
"in",
"x",
"else",
"''",
")",
"for",
"i",
",",
"x",
"in",
"enumerate",
"(",
"a_list",
")",
"]",
")",
"allowed_vals",
"=",
"list",
"(",
"range",
"(",
"1",
",",
"len",
"(",
"a_list",
")",
"+",
"1",
")",
")",
"while",
"True",
":",
"val",
"=",
"_input",
"(",
"'{}\\n{}\\nPlease enter a choice [Default choice({})]: '",
".",
"format",
"(",
"msg",
",",
"options",
",",
"default",
")",
")",
"if",
"val",
"==",
"'?'",
"and",
"help_string",
"is",
"not",
"None",
":",
"print",
"(",
"help_string",
")",
"continue",
"if",
"not",
"val",
":",
"val",
"=",
"'{}'",
".",
"format",
"(",
"default",
")",
"try",
":",
"ans",
"=",
"int",
"(",
"val",
")",
"if",
"ans",
"in",
"allowed_vals",
":",
"# array index is 0-based, user input is 1-based",
"return",
"ans",
"-",
"1",
"raise",
"ValueError",
"except",
"ValueError",
":",
"logger",
".",
"warning",
"(",
"'Valid values are %s'",
",",
"allowed_vals",
")"
]
| Prompt user to select from a list of possible choices.
:param msg:A message displayed to the user before the choice list
:type msg: str
:param a_list:The list of choices (list of strings or list of dicts with 'name' & 'desc')
"type a_list: list
:param default:The default option that should be chosen if user doesn't enter a choice
:type default: int
:returns: The list index of the item chosen. | [
"Prompt",
"user",
"to",
"select",
"from",
"a",
"list",
"of",
"possible",
"choices",
"."
]
| python | train |
reincubate/ricloud | ricloud/asmaster_api.py | https://github.com/reincubate/ricloud/blob/e46bce4529fbdca34a4190c18c7219e937e2b697/ricloud/asmaster_api.py#L59-L66 | def _set_allowed_services_and_actions(self, services):
"""Expect services to be a list of service dictionaries, each with `name` and `actions` keys."""
for service in services:
self.services[service['name']] = {}
for action in service['actions']:
name = action.pop('name')
self.services[service['name']][name] = action | [
"def",
"_set_allowed_services_and_actions",
"(",
"self",
",",
"services",
")",
":",
"for",
"service",
"in",
"services",
":",
"self",
".",
"services",
"[",
"service",
"[",
"'name'",
"]",
"]",
"=",
"{",
"}",
"for",
"action",
"in",
"service",
"[",
"'actions'",
"]",
":",
"name",
"=",
"action",
".",
"pop",
"(",
"'name'",
")",
"self",
".",
"services",
"[",
"service",
"[",
"'name'",
"]",
"]",
"[",
"name",
"]",
"=",
"action"
]
| Expect services to be a list of service dictionaries, each with `name` and `actions` keys. | [
"Expect",
"services",
"to",
"be",
"a",
"list",
"of",
"service",
"dictionaries",
"each",
"with",
"name",
"and",
"actions",
"keys",
"."
]
| python | train |
calmjs/calmjs.parse | src/calmjs/parse/vlq.py | https://github.com/calmjs/calmjs.parse/blob/369f0ee346c5a84c4d5c35a7733a0e63b02eac59/src/calmjs/parse/vlq.py#L64-L83 | def encode_vlq(i):
"""
Encode integer `i` into a VLQ encoded string.
"""
# shift in the sign to least significant bit
raw = (-i << 1) + 1 if i < 0 else i << 1
if raw < VLQ_MULTI_CHAR:
# short-circuit simple case as it doesn't need continuation
return INT_B64[raw]
result = []
while raw:
# assume continue
result.append(raw & VLQ_BASE_MASK | VLQ_CONT)
# shift out processed bits
raw = raw >> VLQ_SHIFT
# discontinue the last unit
result[-1] &= VLQ_BASE_MASK
return ''.join(INT_B64[i] for i in result) | [
"def",
"encode_vlq",
"(",
"i",
")",
":",
"# shift in the sign to least significant bit",
"raw",
"=",
"(",
"-",
"i",
"<<",
"1",
")",
"+",
"1",
"if",
"i",
"<",
"0",
"else",
"i",
"<<",
"1",
"if",
"raw",
"<",
"VLQ_MULTI_CHAR",
":",
"# short-circuit simple case as it doesn't need continuation",
"return",
"INT_B64",
"[",
"raw",
"]",
"result",
"=",
"[",
"]",
"while",
"raw",
":",
"# assume continue",
"result",
".",
"append",
"(",
"raw",
"&",
"VLQ_BASE_MASK",
"|",
"VLQ_CONT",
")",
"# shift out processed bits",
"raw",
"=",
"raw",
">>",
"VLQ_SHIFT",
"# discontinue the last unit",
"result",
"[",
"-",
"1",
"]",
"&=",
"VLQ_BASE_MASK",
"return",
"''",
".",
"join",
"(",
"INT_B64",
"[",
"i",
"]",
"for",
"i",
"in",
"result",
")"
]
| Encode integer `i` into a VLQ encoded string. | [
"Encode",
"integer",
"i",
"into",
"a",
"VLQ",
"encoded",
"string",
"."
]
| python | train |
hydpy-dev/hydpy | hydpy/core/sequencetools.py | https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/sequencetools.py#L856-L862 | def disk2ram(self):
"""Move internal data from disk to RAM."""
values = self.series
self.deactivate_disk()
self.ramflag = True
self.__set_array(values)
self.update_fastaccess() | [
"def",
"disk2ram",
"(",
"self",
")",
":",
"values",
"=",
"self",
".",
"series",
"self",
".",
"deactivate_disk",
"(",
")",
"self",
".",
"ramflag",
"=",
"True",
"self",
".",
"__set_array",
"(",
"values",
")",
"self",
".",
"update_fastaccess",
"(",
")"
]
| Move internal data from disk to RAM. | [
"Move",
"internal",
"data",
"from",
"disk",
"to",
"RAM",
"."
]
| python | train |
nikcub/floyd | floyd/db/__init__.py | https://github.com/nikcub/floyd/blob/5772d0047efb11c9ce5f7d234a9da4576ce24edc/floyd/db/__init__.py#L140-L161 | def parse_md(self):
"""Takes a post path and returns a dictionary of variables"""
post_content = _MARKDOWN.convert(self.raw_src)
if hasattr(_MARKDOWN, 'Meta'):
# 'Meta' in _MARKDOWN and _MARKDOWN.Meta:
for key in _MARKDOWN.Meta:
print "\t meta: %s: %s (%s)" % (key, _MARKDOWN.Meta[key][0], type(_MARKDOWN.Meta[key][0]))
if key == 'pubdate':
setattr(self, key, datetime.datetime.fromtimestamp(float(_MARKDOWN.Meta[key][0])))
else:
setattr(self, key, _MARKDOWN.Meta[key][0])
self.content = post_content
self.stub = self.__key__
# set required fields
# @TODO required in schema rather than here
if not hasattr(self, 'pubdate'):
print '\t Notice: setting default pubdate'
setattr(self, 'pubdate', datetime.datetime.now()) | [
"def",
"parse_md",
"(",
"self",
")",
":",
"post_content",
"=",
"_MARKDOWN",
".",
"convert",
"(",
"self",
".",
"raw_src",
")",
"if",
"hasattr",
"(",
"_MARKDOWN",
",",
"'Meta'",
")",
":",
"# 'Meta' in _MARKDOWN and _MARKDOWN.Meta:",
"for",
"key",
"in",
"_MARKDOWN",
".",
"Meta",
":",
"print",
"\"\\t meta: %s: %s (%s)\"",
"%",
"(",
"key",
",",
"_MARKDOWN",
".",
"Meta",
"[",
"key",
"]",
"[",
"0",
"]",
",",
"type",
"(",
"_MARKDOWN",
".",
"Meta",
"[",
"key",
"]",
"[",
"0",
"]",
")",
")",
"if",
"key",
"==",
"'pubdate'",
":",
"setattr",
"(",
"self",
",",
"key",
",",
"datetime",
".",
"datetime",
".",
"fromtimestamp",
"(",
"float",
"(",
"_MARKDOWN",
".",
"Meta",
"[",
"key",
"]",
"[",
"0",
"]",
")",
")",
")",
"else",
":",
"setattr",
"(",
"self",
",",
"key",
",",
"_MARKDOWN",
".",
"Meta",
"[",
"key",
"]",
"[",
"0",
"]",
")",
"self",
".",
"content",
"=",
"post_content",
"self",
".",
"stub",
"=",
"self",
".",
"__key__",
"# set required fields",
"# @TODO required in schema rather than here",
"if",
"not",
"hasattr",
"(",
"self",
",",
"'pubdate'",
")",
":",
"print",
"'\\t Notice: setting default pubdate'",
"setattr",
"(",
"self",
",",
"'pubdate'",
",",
"datetime",
".",
"datetime",
".",
"now",
"(",
")",
")"
]
| Takes a post path and returns a dictionary of variables | [
"Takes",
"a",
"post",
"path",
"and",
"returns",
"a",
"dictionary",
"of",
"variables"
]
| python | train |
ppb/pursuedpybear | ppb/scenes.py | https://github.com/ppb/pursuedpybear/blob/db3bfaaf86d14b4d1bb9e0b24cc8dc63f29c2191/ppb/scenes.py#L35-L55 | def add(self, game_object: Hashable, tags: Iterable[Hashable]=()) -> None:
"""
Add a game_object to the container.
game_object: Any Hashable object. The item to be added.
tags: An iterable of Hashable objects. Values that can be used to
retrieve a group containing the game_object.
Examples:
container.add(MyObject())
container.add(MyObject(), tags=("red", "blue")
"""
if isinstance(tags, (str, bytes)):
raise TypeError("You passed a string instead of an iterable, this probably isn't what you intended.\n\nTry making it a tuple.")
self.all.add(game_object)
for kind in type(game_object).mro():
self.kinds[kind].add(game_object)
for tag in tags:
self.tags[tag].add(game_object) | [
"def",
"add",
"(",
"self",
",",
"game_object",
":",
"Hashable",
",",
"tags",
":",
"Iterable",
"[",
"Hashable",
"]",
"=",
"(",
")",
")",
"->",
"None",
":",
"if",
"isinstance",
"(",
"tags",
",",
"(",
"str",
",",
"bytes",
")",
")",
":",
"raise",
"TypeError",
"(",
"\"You passed a string instead of an iterable, this probably isn't what you intended.\\n\\nTry making it a tuple.\"",
")",
"self",
".",
"all",
".",
"add",
"(",
"game_object",
")",
"for",
"kind",
"in",
"type",
"(",
"game_object",
")",
".",
"mro",
"(",
")",
":",
"self",
".",
"kinds",
"[",
"kind",
"]",
".",
"add",
"(",
"game_object",
")",
"for",
"tag",
"in",
"tags",
":",
"self",
".",
"tags",
"[",
"tag",
"]",
".",
"add",
"(",
"game_object",
")"
]
| Add a game_object to the container.
game_object: Any Hashable object. The item to be added.
tags: An iterable of Hashable objects. Values that can be used to
retrieve a group containing the game_object.
Examples:
container.add(MyObject())
container.add(MyObject(), tags=("red", "blue") | [
"Add",
"a",
"game_object",
"to",
"the",
"container",
"."
]
| python | train |
edx/ease | ease/feature_extractor.py | https://github.com/edx/ease/blob/a7890ed403da94d03726b0639cd8ebda45af6bbb/ease/feature_extractor.py#L38-L73 | def initialize_dictionaries(self, e_set, max_feats2 = 200):
"""
Initializes dictionaries from an essay set object
Dictionaries must be initialized prior to using this to extract features
e_set is an input essay set
returns a confirmation of initialization
"""
if(hasattr(e_set, '_type')):
if(e_set._type == "train"):
#normal text (unstemmed) useful words/bigrams
nvocab = util_functions.get_vocab(e_set._text, e_set._score, max_feats2 = max_feats2)
#stemmed and spell corrected vocab useful words/ngrams
svocab = util_functions.get_vocab(e_set._clean_stem_text, e_set._score, max_feats2 = max_feats2)
#dictionary trained on proper vocab
self._normal_dict = CountVectorizer(ngram_range=(1,2), vocabulary=nvocab)
#dictionary trained on proper vocab
self._stem_dict = CountVectorizer(ngram_range=(1,2), vocabulary=svocab)
self.dict_initialized = True
#Average spelling errors in set. needed later for spelling detection
self._mean_spelling_errors=sum(e_set._spelling_errors)/float(len(e_set._spelling_errors))
self._spell_errors_per_character=sum(e_set._spelling_errors)/float(sum([len(t) for t in e_set._text]))
#Gets the number and positions of grammar errors
good_pos_tags,bad_pos_positions=self._get_grammar_errors(e_set._pos,e_set._text,e_set._tokens)
self._grammar_errors_per_character=(sum(good_pos_tags)/float(sum([len(t) for t in e_set._text])))
#Generate bag of words features
bag_feats=self.gen_bag_feats(e_set)
#Sum of a row of bag of words features (topical words in an essay)
f_row_sum=numpy.sum(bag_feats[:,:])
#Average index of how "topical" essays are
self._mean_f_prop=f_row_sum/float(sum([len(t) for t in e_set._text]))
ret = "ok"
else:
raise util_functions.InputError(e_set, "needs to be an essay set of the train type.")
else:
raise util_functions.InputError(e_set, "wrong input. need an essay set object")
return ret | [
"def",
"initialize_dictionaries",
"(",
"self",
",",
"e_set",
",",
"max_feats2",
"=",
"200",
")",
":",
"if",
"(",
"hasattr",
"(",
"e_set",
",",
"'_type'",
")",
")",
":",
"if",
"(",
"e_set",
".",
"_type",
"==",
"\"train\"",
")",
":",
"#normal text (unstemmed) useful words/bigrams",
"nvocab",
"=",
"util_functions",
".",
"get_vocab",
"(",
"e_set",
".",
"_text",
",",
"e_set",
".",
"_score",
",",
"max_feats2",
"=",
"max_feats2",
")",
"#stemmed and spell corrected vocab useful words/ngrams",
"svocab",
"=",
"util_functions",
".",
"get_vocab",
"(",
"e_set",
".",
"_clean_stem_text",
",",
"e_set",
".",
"_score",
",",
"max_feats2",
"=",
"max_feats2",
")",
"#dictionary trained on proper vocab",
"self",
".",
"_normal_dict",
"=",
"CountVectorizer",
"(",
"ngram_range",
"=",
"(",
"1",
",",
"2",
")",
",",
"vocabulary",
"=",
"nvocab",
")",
"#dictionary trained on proper vocab",
"self",
".",
"_stem_dict",
"=",
"CountVectorizer",
"(",
"ngram_range",
"=",
"(",
"1",
",",
"2",
")",
",",
"vocabulary",
"=",
"svocab",
")",
"self",
".",
"dict_initialized",
"=",
"True",
"#Average spelling errors in set. needed later for spelling detection",
"self",
".",
"_mean_spelling_errors",
"=",
"sum",
"(",
"e_set",
".",
"_spelling_errors",
")",
"/",
"float",
"(",
"len",
"(",
"e_set",
".",
"_spelling_errors",
")",
")",
"self",
".",
"_spell_errors_per_character",
"=",
"sum",
"(",
"e_set",
".",
"_spelling_errors",
")",
"/",
"float",
"(",
"sum",
"(",
"[",
"len",
"(",
"t",
")",
"for",
"t",
"in",
"e_set",
".",
"_text",
"]",
")",
")",
"#Gets the number and positions of grammar errors",
"good_pos_tags",
",",
"bad_pos_positions",
"=",
"self",
".",
"_get_grammar_errors",
"(",
"e_set",
".",
"_pos",
",",
"e_set",
".",
"_text",
",",
"e_set",
".",
"_tokens",
")",
"self",
".",
"_grammar_errors_per_character",
"=",
"(",
"sum",
"(",
"good_pos_tags",
")",
"/",
"float",
"(",
"sum",
"(",
"[",
"len",
"(",
"t",
")",
"for",
"t",
"in",
"e_set",
".",
"_text",
"]",
")",
")",
")",
"#Generate bag of words features",
"bag_feats",
"=",
"self",
".",
"gen_bag_feats",
"(",
"e_set",
")",
"#Sum of a row of bag of words features (topical words in an essay)",
"f_row_sum",
"=",
"numpy",
".",
"sum",
"(",
"bag_feats",
"[",
":",
",",
":",
"]",
")",
"#Average index of how \"topical\" essays are",
"self",
".",
"_mean_f_prop",
"=",
"f_row_sum",
"/",
"float",
"(",
"sum",
"(",
"[",
"len",
"(",
"t",
")",
"for",
"t",
"in",
"e_set",
".",
"_text",
"]",
")",
")",
"ret",
"=",
"\"ok\"",
"else",
":",
"raise",
"util_functions",
".",
"InputError",
"(",
"e_set",
",",
"\"needs to be an essay set of the train type.\"",
")",
"else",
":",
"raise",
"util_functions",
".",
"InputError",
"(",
"e_set",
",",
"\"wrong input. need an essay set object\"",
")",
"return",
"ret"
]
| Initializes dictionaries from an essay set object
Dictionaries must be initialized prior to using this to extract features
e_set is an input essay set
returns a confirmation of initialization | [
"Initializes",
"dictionaries",
"from",
"an",
"essay",
"set",
"object",
"Dictionaries",
"must",
"be",
"initialized",
"prior",
"to",
"using",
"this",
"to",
"extract",
"features",
"e_set",
"is",
"an",
"input",
"essay",
"set",
"returns",
"a",
"confirmation",
"of",
"initialization"
]
| python | valid |
saltstack/salt | salt/loader.py | https://github.com/saltstack/salt/blob/e8541fd6e744ab0df786c0f76102e41631f45d46/salt/loader.py#L2044-L2058 | def global_injector_decorator(inject_globals):
'''
Decorator used by the LazyLoader to inject globals into a function at
execute time.
globals
Dictionary with global variables to inject
'''
def inner_decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
with salt.utils.context.func_globals_inject(f, **inject_globals):
return f(*args, **kwargs)
return wrapper
return inner_decorator | [
"def",
"global_injector_decorator",
"(",
"inject_globals",
")",
":",
"def",
"inner_decorator",
"(",
"f",
")",
":",
"@",
"functools",
".",
"wraps",
"(",
"f",
")",
"def",
"wrapper",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"with",
"salt",
".",
"utils",
".",
"context",
".",
"func_globals_inject",
"(",
"f",
",",
"*",
"*",
"inject_globals",
")",
":",
"return",
"f",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"wrapper",
"return",
"inner_decorator"
]
| Decorator used by the LazyLoader to inject globals into a function at
execute time.
globals
Dictionary with global variables to inject | [
"Decorator",
"used",
"by",
"the",
"LazyLoader",
"to",
"inject",
"globals",
"into",
"a",
"function",
"at",
"execute",
"time",
"."
]
| python | train |
dronekit/dronekit-python | examples/guided_set_speed_yaw/guided_set_speed_yaw.py | https://github.com/dronekit/dronekit-python/blob/91c147fa61f521f5fff5d0cee06d07ed93614af8/examples/guided_set_speed_yaw/guided_set_speed_yaw.py#L298-L324 | def goto(dNorth, dEast, gotoFunction=vehicle.simple_goto):
"""
Moves the vehicle to a position dNorth metres North and dEast metres East of the current position.
The method takes a function pointer argument with a single `dronekit.lib.LocationGlobal` parameter for
the target position. This allows it to be called with different position-setting commands.
By default it uses the standard method: dronekit.lib.Vehicle.simple_goto().
The method reports the distance to target every two seconds.
"""
currentLocation = vehicle.location.global_relative_frame
targetLocation = get_location_metres(currentLocation, dNorth, dEast)
targetDistance = get_distance_metres(currentLocation, targetLocation)
gotoFunction(targetLocation)
#print "DEBUG: targetLocation: %s" % targetLocation
#print "DEBUG: targetLocation: %s" % targetDistance
while vehicle.mode.name=="GUIDED": #Stop action if we are no longer in guided mode.
#print "DEBUG: mode: %s" % vehicle.mode.name
remainingDistance=get_distance_metres(vehicle.location.global_relative_frame, targetLocation)
print("Distance to target: ", remainingDistance)
if remainingDistance<=targetDistance*0.01: #Just below target, in case of undershoot.
print("Reached target")
break;
time.sleep(2) | [
"def",
"goto",
"(",
"dNorth",
",",
"dEast",
",",
"gotoFunction",
"=",
"vehicle",
".",
"simple_goto",
")",
":",
"currentLocation",
"=",
"vehicle",
".",
"location",
".",
"global_relative_frame",
"targetLocation",
"=",
"get_location_metres",
"(",
"currentLocation",
",",
"dNorth",
",",
"dEast",
")",
"targetDistance",
"=",
"get_distance_metres",
"(",
"currentLocation",
",",
"targetLocation",
")",
"gotoFunction",
"(",
"targetLocation",
")",
"#print \"DEBUG: targetLocation: %s\" % targetLocation",
"#print \"DEBUG: targetLocation: %s\" % targetDistance",
"while",
"vehicle",
".",
"mode",
".",
"name",
"==",
"\"GUIDED\"",
":",
"#Stop action if we are no longer in guided mode.",
"#print \"DEBUG: mode: %s\" % vehicle.mode.name",
"remainingDistance",
"=",
"get_distance_metres",
"(",
"vehicle",
".",
"location",
".",
"global_relative_frame",
",",
"targetLocation",
")",
"print",
"(",
"\"Distance to target: \"",
",",
"remainingDistance",
")",
"if",
"remainingDistance",
"<=",
"targetDistance",
"*",
"0.01",
":",
"#Just below target, in case of undershoot.",
"print",
"(",
"\"Reached target\"",
")",
"break",
"time",
".",
"sleep",
"(",
"2",
")"
]
| Moves the vehicle to a position dNorth metres North and dEast metres East of the current position.
The method takes a function pointer argument with a single `dronekit.lib.LocationGlobal` parameter for
the target position. This allows it to be called with different position-setting commands.
By default it uses the standard method: dronekit.lib.Vehicle.simple_goto().
The method reports the distance to target every two seconds. | [
"Moves",
"the",
"vehicle",
"to",
"a",
"position",
"dNorth",
"metres",
"North",
"and",
"dEast",
"metres",
"East",
"of",
"the",
"current",
"position",
"."
]
| python | train |
dswah/pyGAM | pygam/terms.py | https://github.com/dswah/pyGAM/blob/b3e5c3cd580f0a3ad69f9372861624f67760c325/pygam/terms.py#L1202-L1214 | def info(self):
"""get information about this term
Parameters
----------
Returns
-------
dict containing information to duplicate this term
"""
info = super(TensorTerm, self).info
info.update({'terms':[term.info for term in self._terms]})
return info | [
"def",
"info",
"(",
"self",
")",
":",
"info",
"=",
"super",
"(",
"TensorTerm",
",",
"self",
")",
".",
"info",
"info",
".",
"update",
"(",
"{",
"'terms'",
":",
"[",
"term",
".",
"info",
"for",
"term",
"in",
"self",
".",
"_terms",
"]",
"}",
")",
"return",
"info"
]
| get information about this term
Parameters
----------
Returns
-------
dict containing information to duplicate this term | [
"get",
"information",
"about",
"this",
"term"
]
| python | train |
SystemRDL/systemrdl-compiler | systemrdl/node.py | https://github.com/SystemRDL/systemrdl-compiler/blob/6ae64f2bb6ecbbe9db356e20e8ac94e85bdeed3a/systemrdl/node.py#L74-L107 | def children(self, unroll=False, skip_not_present=True):
"""
Returns an iterator that provides nodes for all immediate children of
this component.
Parameters
----------
unroll : bool
If True, any children that are arrays are unrolled.
skip_not_present : bool
If True, skips children whose 'ispresent' property is set to False
Yields
------
:class:`~Node`
All immediate children
"""
for child_inst in self.inst.children:
if skip_not_present:
# Check if property ispresent == False
if not child_inst.properties.get('ispresent', True):
# ispresent was explicitly set to False. Skip it
continue
if unroll and isinstance(child_inst, comp.AddressableComponent) and child_inst.is_array:
# Unroll the array
range_list = [range(n) for n in child_inst.array_dimensions]
for idxs in itertools.product(*range_list):
N = Node._factory(child_inst, self.env, self)
N.current_idx = idxs # pylint: disable=attribute-defined-outside-init
yield N
else:
yield Node._factory(child_inst, self.env, self) | [
"def",
"children",
"(",
"self",
",",
"unroll",
"=",
"False",
",",
"skip_not_present",
"=",
"True",
")",
":",
"for",
"child_inst",
"in",
"self",
".",
"inst",
".",
"children",
":",
"if",
"skip_not_present",
":",
"# Check if property ispresent == False",
"if",
"not",
"child_inst",
".",
"properties",
".",
"get",
"(",
"'ispresent'",
",",
"True",
")",
":",
"# ispresent was explicitly set to False. Skip it",
"continue",
"if",
"unroll",
"and",
"isinstance",
"(",
"child_inst",
",",
"comp",
".",
"AddressableComponent",
")",
"and",
"child_inst",
".",
"is_array",
":",
"# Unroll the array",
"range_list",
"=",
"[",
"range",
"(",
"n",
")",
"for",
"n",
"in",
"child_inst",
".",
"array_dimensions",
"]",
"for",
"idxs",
"in",
"itertools",
".",
"product",
"(",
"*",
"range_list",
")",
":",
"N",
"=",
"Node",
".",
"_factory",
"(",
"child_inst",
",",
"self",
".",
"env",
",",
"self",
")",
"N",
".",
"current_idx",
"=",
"idxs",
"# pylint: disable=attribute-defined-outside-init",
"yield",
"N",
"else",
":",
"yield",
"Node",
".",
"_factory",
"(",
"child_inst",
",",
"self",
".",
"env",
",",
"self",
")"
]
| Returns an iterator that provides nodes for all immediate children of
this component.
Parameters
----------
unroll : bool
If True, any children that are arrays are unrolled.
skip_not_present : bool
If True, skips children whose 'ispresent' property is set to False
Yields
------
:class:`~Node`
All immediate children | [
"Returns",
"an",
"iterator",
"that",
"provides",
"nodes",
"for",
"all",
"immediate",
"children",
"of",
"this",
"component",
"."
]
| python | train |
inasafe/inasafe | safe/common/parameters/resource_parameter.py | https://github.com/inasafe/inasafe/blob/831d60abba919f6d481dc94a8d988cc205130724/safe/common/parameters/resource_parameter.py#L55-L64 | def serialize(self):
"""Convert the parameter into a dictionary.
:return: The parameter dictionary.
:rtype: dict
"""
pickle = super(ResourceParameter, self).serialize()
pickle['frequency'] = self.frequency
pickle['unit'] = self._unit.serialize()
return pickle | [
"def",
"serialize",
"(",
"self",
")",
":",
"pickle",
"=",
"super",
"(",
"ResourceParameter",
",",
"self",
")",
".",
"serialize",
"(",
")",
"pickle",
"[",
"'frequency'",
"]",
"=",
"self",
".",
"frequency",
"pickle",
"[",
"'unit'",
"]",
"=",
"self",
".",
"_unit",
".",
"serialize",
"(",
")",
"return",
"pickle"
]
| Convert the parameter into a dictionary.
:return: The parameter dictionary.
:rtype: dict | [
"Convert",
"the",
"parameter",
"into",
"a",
"dictionary",
"."
]
| python | train |
SKA-ScienceDataProcessor/integration-prototype | sip/execution_control/configuration_db/sip_config_db/scheduling/subarray.py | https://github.com/SKA-ScienceDataProcessor/integration-prototype/blob/8c8006de6ad71dcd44114b0338780738079c87d4/sip/execution_control/configuration_db/sip_config_db/scheduling/subarray.py#L107-L120 | def configure_sbi(self, sbi_config: dict, schema_path: str = None):
"""Add a new SBI to the database associated with this subarray.
Args:
sbi_config (dict): SBI configuration.
schema_path (str, optional): Path to the SBI config schema.
"""
if not self.active:
raise RuntimeError("Unable to add SBIs to inactive subarray!")
sbi_config['subarray_id'] = self._id
sbi = SchedulingBlockInstance.from_config(sbi_config, schema_path)
self._add_sbi_id(sbi_config['id'])
return sbi | [
"def",
"configure_sbi",
"(",
"self",
",",
"sbi_config",
":",
"dict",
",",
"schema_path",
":",
"str",
"=",
"None",
")",
":",
"if",
"not",
"self",
".",
"active",
":",
"raise",
"RuntimeError",
"(",
"\"Unable to add SBIs to inactive subarray!\"",
")",
"sbi_config",
"[",
"'subarray_id'",
"]",
"=",
"self",
".",
"_id",
"sbi",
"=",
"SchedulingBlockInstance",
".",
"from_config",
"(",
"sbi_config",
",",
"schema_path",
")",
"self",
".",
"_add_sbi_id",
"(",
"sbi_config",
"[",
"'id'",
"]",
")",
"return",
"sbi"
]
| Add a new SBI to the database associated with this subarray.
Args:
sbi_config (dict): SBI configuration.
schema_path (str, optional): Path to the SBI config schema. | [
"Add",
"a",
"new",
"SBI",
"to",
"the",
"database",
"associated",
"with",
"this",
"subarray",
"."
]
| python | train |
ContextLab/quail | quail/simulate.py | https://github.com/ContextLab/quail/blob/71dd53c792dd915dc84879d8237e3582dd68b7a4/quail/simulate.py#L5-L14 | def simulate_list(nwords=16, nrec=10, ncats=4):
"""A function to simulate a list"""
# load wordpool
wp = pd.read_csv('data/cut_wordpool.csv')
# get one list
wp = wp[wp['GROUP']==np.random.choice(list(range(16)), 1)[0]].sample(16)
wp['COLOR'] = [[int(np.random.rand() * 255) for i in range(3)] for i in range(16)] | [
"def",
"simulate_list",
"(",
"nwords",
"=",
"16",
",",
"nrec",
"=",
"10",
",",
"ncats",
"=",
"4",
")",
":",
"# load wordpool",
"wp",
"=",
"pd",
".",
"read_csv",
"(",
"'data/cut_wordpool.csv'",
")",
"# get one list",
"wp",
"=",
"wp",
"[",
"wp",
"[",
"'GROUP'",
"]",
"==",
"np",
".",
"random",
".",
"choice",
"(",
"list",
"(",
"range",
"(",
"16",
")",
")",
",",
"1",
")",
"[",
"0",
"]",
"]",
".",
"sample",
"(",
"16",
")",
"wp",
"[",
"'COLOR'",
"]",
"=",
"[",
"[",
"int",
"(",
"np",
".",
"random",
".",
"rand",
"(",
")",
"*",
"255",
")",
"for",
"i",
"in",
"range",
"(",
"3",
")",
"]",
"for",
"i",
"in",
"range",
"(",
"16",
")",
"]"
]
| A function to simulate a list | [
"A",
"function",
"to",
"simulate",
"a",
"list"
]
| python | train |
bitcraze/crazyflie-lib-python | cflib/crazyflie/param.py | https://github.com/bitcraze/crazyflie-lib-python/blob/f6ebb4eb315bbe6e02db518936ac17fb615b2af8/cflib/crazyflie/param.py#L250-L255 | def request_param_update(self, complete_name):
"""
Request an update of the value for the supplied parameter.
"""
self.param_updater.request_param_update(
self.toc.get_element_id(complete_name)) | [
"def",
"request_param_update",
"(",
"self",
",",
"complete_name",
")",
":",
"self",
".",
"param_updater",
".",
"request_param_update",
"(",
"self",
".",
"toc",
".",
"get_element_id",
"(",
"complete_name",
")",
")"
]
| Request an update of the value for the supplied parameter. | [
"Request",
"an",
"update",
"of",
"the",
"value",
"for",
"the",
"supplied",
"parameter",
"."
]
| python | train |
jakevdp/supersmoother | supersmoother/utils.py | https://github.com/jakevdp/supersmoother/blob/0c96cf13dcd6f9006d3c0421f9cd6e18abe27a2f/supersmoother/utils.py#L10-L30 | def setattr_context(obj, **kwargs):
"""
Context manager to temporarily change the values of object attributes
while executing a function.
Example
-------
>>> class Foo: pass
>>> f = Foo(); f.attr = 'hello'
>>> with setattr_context(f, attr='goodbye'):
... print(f.attr)
goodbye
>>> print(f.attr)
hello
"""
old_kwargs = dict([(key, getattr(obj, key)) for key in kwargs])
[setattr(obj, key, val) for key, val in kwargs.items()]
try:
yield
finally:
[setattr(obj, key, val) for key, val in old_kwargs.items()] | [
"def",
"setattr_context",
"(",
"obj",
",",
"*",
"*",
"kwargs",
")",
":",
"old_kwargs",
"=",
"dict",
"(",
"[",
"(",
"key",
",",
"getattr",
"(",
"obj",
",",
"key",
")",
")",
"for",
"key",
"in",
"kwargs",
"]",
")",
"[",
"setattr",
"(",
"obj",
",",
"key",
",",
"val",
")",
"for",
"key",
",",
"val",
"in",
"kwargs",
".",
"items",
"(",
")",
"]",
"try",
":",
"yield",
"finally",
":",
"[",
"setattr",
"(",
"obj",
",",
"key",
",",
"val",
")",
"for",
"key",
",",
"val",
"in",
"old_kwargs",
".",
"items",
"(",
")",
"]"
]
| Context manager to temporarily change the values of object attributes
while executing a function.
Example
-------
>>> class Foo: pass
>>> f = Foo(); f.attr = 'hello'
>>> with setattr_context(f, attr='goodbye'):
... print(f.attr)
goodbye
>>> print(f.attr)
hello | [
"Context",
"manager",
"to",
"temporarily",
"change",
"the",
"values",
"of",
"object",
"attributes",
"while",
"executing",
"a",
"function",
"."
]
| python | train |
tanghaibao/jcvi | jcvi/assembly/opticalmap.py | https://github.com/tanghaibao/jcvi/blob/d2e31a77b6ade7f41f3b321febc2b4744d1cdeca/jcvi/assembly/opticalmap.py#L307-L316 | def select_bed(bed):
"""
Return non-overlapping set of ranges, choosing high scoring blocks over low
scoring alignments when there are conflicts.
"""
ranges = [Range(x.seqid, x.start, x.end, float(x.score), i) for i, x in enumerate(bed)]
selected, score = range_chain(ranges)
selected = [bed[x.id] for x in selected]
return selected | [
"def",
"select_bed",
"(",
"bed",
")",
":",
"ranges",
"=",
"[",
"Range",
"(",
"x",
".",
"seqid",
",",
"x",
".",
"start",
",",
"x",
".",
"end",
",",
"float",
"(",
"x",
".",
"score",
")",
",",
"i",
")",
"for",
"i",
",",
"x",
"in",
"enumerate",
"(",
"bed",
")",
"]",
"selected",
",",
"score",
"=",
"range_chain",
"(",
"ranges",
")",
"selected",
"=",
"[",
"bed",
"[",
"x",
".",
"id",
"]",
"for",
"x",
"in",
"selected",
"]",
"return",
"selected"
]
| Return non-overlapping set of ranges, choosing high scoring blocks over low
scoring alignments when there are conflicts. | [
"Return",
"non",
"-",
"overlapping",
"set",
"of",
"ranges",
"choosing",
"high",
"scoring",
"blocks",
"over",
"low",
"scoring",
"alignments",
"when",
"there",
"are",
"conflicts",
"."
]
| python | train |
estnltk/estnltk | estnltk/text.py | https://github.com/estnltk/estnltk/blob/28ae334a68a0673072febc318635f04da0dcc54a/estnltk/text.py#L408-L412 | def paragraph_ends(self):
"""The end positions of ``paragraphs`` layer elements."""
if not self.is_tagged(PARAGRAPHS):
self.tokenize_paragraphs()
return self.ends(PARAGRAPHS) | [
"def",
"paragraph_ends",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"is_tagged",
"(",
"PARAGRAPHS",
")",
":",
"self",
".",
"tokenize_paragraphs",
"(",
")",
"return",
"self",
".",
"ends",
"(",
"PARAGRAPHS",
")"
]
| The end positions of ``paragraphs`` layer elements. | [
"The",
"end",
"positions",
"of",
"paragraphs",
"layer",
"elements",
"."
]
| python | train |
rwl/godot | godot/ui/graph_view_model.py | https://github.com/rwl/godot/blob/013687c9e8983d2aa2ceebb8a76c5c4f1e37c90f/godot/ui/graph_view_model.py#L356-L386 | def add_edge(self, info):
""" Handles adding an Edge to the graph.
"""
if not info.initialized:
return
graph = self._request_graph(info.ui.control)
if graph is None:
return
n_nodes = len(graph.nodes)
IDs = [v.ID for v in graph.nodes]
if n_nodes == 0:
tail_node = Node(ID=make_unique_name("node", IDs))
head_name = make_unique_name("node", IDs + [tail_node.ID])
head_node = Node(ID=head_name)
elif n_nodes == 1:
tail_node = graph.nodes[0]
head_node = Node(ID=make_unique_name("node", IDs))
else:
tail_node = graph.nodes[0]
head_node = graph.nodes[1]
edge = Edge(tail_node, head_node, _nodes=graph.nodes)
retval = edge.edit_traits(parent=info.ui.control, kind="livemodal")
if retval.result:
graph.edges.append(edge) | [
"def",
"add_edge",
"(",
"self",
",",
"info",
")",
":",
"if",
"not",
"info",
".",
"initialized",
":",
"return",
"graph",
"=",
"self",
".",
"_request_graph",
"(",
"info",
".",
"ui",
".",
"control",
")",
"if",
"graph",
"is",
"None",
":",
"return",
"n_nodes",
"=",
"len",
"(",
"graph",
".",
"nodes",
")",
"IDs",
"=",
"[",
"v",
".",
"ID",
"for",
"v",
"in",
"graph",
".",
"nodes",
"]",
"if",
"n_nodes",
"==",
"0",
":",
"tail_node",
"=",
"Node",
"(",
"ID",
"=",
"make_unique_name",
"(",
"\"node\"",
",",
"IDs",
")",
")",
"head_name",
"=",
"make_unique_name",
"(",
"\"node\"",
",",
"IDs",
"+",
"[",
"tail_node",
".",
"ID",
"]",
")",
"head_node",
"=",
"Node",
"(",
"ID",
"=",
"head_name",
")",
"elif",
"n_nodes",
"==",
"1",
":",
"tail_node",
"=",
"graph",
".",
"nodes",
"[",
"0",
"]",
"head_node",
"=",
"Node",
"(",
"ID",
"=",
"make_unique_name",
"(",
"\"node\"",
",",
"IDs",
")",
")",
"else",
":",
"tail_node",
"=",
"graph",
".",
"nodes",
"[",
"0",
"]",
"head_node",
"=",
"graph",
".",
"nodes",
"[",
"1",
"]",
"edge",
"=",
"Edge",
"(",
"tail_node",
",",
"head_node",
",",
"_nodes",
"=",
"graph",
".",
"nodes",
")",
"retval",
"=",
"edge",
".",
"edit_traits",
"(",
"parent",
"=",
"info",
".",
"ui",
".",
"control",
",",
"kind",
"=",
"\"livemodal\"",
")",
"if",
"retval",
".",
"result",
":",
"graph",
".",
"edges",
".",
"append",
"(",
"edge",
")"
]
| Handles adding an Edge to the graph. | [
"Handles",
"adding",
"an",
"Edge",
"to",
"the",
"graph",
"."
]
| python | test |
materialsproject/pymatgen | pymatgen/io/feff/inputs.py | https://github.com/materialsproject/pymatgen/blob/4ca558cf72f8d5f8a1f21dfdfc0181a971c186da/pymatgen/io/feff/inputs.py#L104-L119 | def from_cif_file(cif_file, source='', comment=''):
"""
Static method to create Header object from cif_file
Args:
cif_file: cif_file path and name
source: User supplied identifier, i.e. for Materials Project this
would be the material ID number
comment: User comment that goes in header
Returns:
Header Object
"""
r = CifParser(cif_file)
structure = r.get_structures()[0]
return Header(structure, source, comment) | [
"def",
"from_cif_file",
"(",
"cif_file",
",",
"source",
"=",
"''",
",",
"comment",
"=",
"''",
")",
":",
"r",
"=",
"CifParser",
"(",
"cif_file",
")",
"structure",
"=",
"r",
".",
"get_structures",
"(",
")",
"[",
"0",
"]",
"return",
"Header",
"(",
"structure",
",",
"source",
",",
"comment",
")"
]
| Static method to create Header object from cif_file
Args:
cif_file: cif_file path and name
source: User supplied identifier, i.e. for Materials Project this
would be the material ID number
comment: User comment that goes in header
Returns:
Header Object | [
"Static",
"method",
"to",
"create",
"Header",
"object",
"from",
"cif_file"
]
| python | train |
tensorflow/tensor2tensor | tensor2tensor/layers/common_attention.py | https://github.com/tensorflow/tensor2tensor/blob/272500b6efe353aeb638d2745ed56e519462ca31/tensor2tensor/layers/common_attention.py#L728-L759 | def make_edge_vectors(adjacency_matrix, num_edge_types, depth, name=None):
"""Gets edge vectors for the edge types in the adjacency matrix.
Args:
adjacency_matrix: A [batch, num_nodes, num_nodes] tensor of ints.
num_edge_types: Number of different edge types
depth: Number of channels
name: a string
Returns:
A [batch, num_nodes, num_nodes, depth] vector of tensors
"""
with tf.variable_scope(name, default_name="edge_vectors"):
att_adj_vectors_shape = [num_edge_types, depth]
adjacency_matrix_shape = common_layers.shape_list(adjacency_matrix)
adj_vectors = (
tf.get_variable(
"adj_vectors",
att_adj_vectors_shape,
initializer=tf.random_normal_initializer(0, depth**-0.5)) *
(depth**0.5))
# Avoiding gathers so that it works on TPUs
# adjacency_matrix_one_hot has shape
# [batch, num_nodes, num_nodes, num_edge_types]
adjacency_matrix_one_hot = tf.one_hot(adjacency_matrix, num_edge_types)
att_adj_vectors = tf.matmul(
tf.reshape(tf.to_float(adjacency_matrix_one_hot), [-1, num_edge_types]),
adj_vectors)
return tf.reshape(att_adj_vectors,
[adjacency_matrix_shape[0], adjacency_matrix_shape[1],
adjacency_matrix_shape[2], depth]) | [
"def",
"make_edge_vectors",
"(",
"adjacency_matrix",
",",
"num_edge_types",
",",
"depth",
",",
"name",
"=",
"None",
")",
":",
"with",
"tf",
".",
"variable_scope",
"(",
"name",
",",
"default_name",
"=",
"\"edge_vectors\"",
")",
":",
"att_adj_vectors_shape",
"=",
"[",
"num_edge_types",
",",
"depth",
"]",
"adjacency_matrix_shape",
"=",
"common_layers",
".",
"shape_list",
"(",
"adjacency_matrix",
")",
"adj_vectors",
"=",
"(",
"tf",
".",
"get_variable",
"(",
"\"adj_vectors\"",
",",
"att_adj_vectors_shape",
",",
"initializer",
"=",
"tf",
".",
"random_normal_initializer",
"(",
"0",
",",
"depth",
"**",
"-",
"0.5",
")",
")",
"*",
"(",
"depth",
"**",
"0.5",
")",
")",
"# Avoiding gathers so that it works on TPUs",
"# adjacency_matrix_one_hot has shape",
"# [batch, num_nodes, num_nodes, num_edge_types]",
"adjacency_matrix_one_hot",
"=",
"tf",
".",
"one_hot",
"(",
"adjacency_matrix",
",",
"num_edge_types",
")",
"att_adj_vectors",
"=",
"tf",
".",
"matmul",
"(",
"tf",
".",
"reshape",
"(",
"tf",
".",
"to_float",
"(",
"adjacency_matrix_one_hot",
")",
",",
"[",
"-",
"1",
",",
"num_edge_types",
"]",
")",
",",
"adj_vectors",
")",
"return",
"tf",
".",
"reshape",
"(",
"att_adj_vectors",
",",
"[",
"adjacency_matrix_shape",
"[",
"0",
"]",
",",
"adjacency_matrix_shape",
"[",
"1",
"]",
",",
"adjacency_matrix_shape",
"[",
"2",
"]",
",",
"depth",
"]",
")"
]
| Gets edge vectors for the edge types in the adjacency matrix.
Args:
adjacency_matrix: A [batch, num_nodes, num_nodes] tensor of ints.
num_edge_types: Number of different edge types
depth: Number of channels
name: a string
Returns:
A [batch, num_nodes, num_nodes, depth] vector of tensors | [
"Gets",
"edge",
"vectors",
"for",
"the",
"edge",
"types",
"in",
"the",
"adjacency",
"matrix",
"."
]
| python | train |
heigeo/climata | climata/base.py | https://github.com/heigeo/climata/blob/2028bdbd40e1c8985b0b62f7cb969ce7dfa8f1bd/climata/base.py#L196-L208 | def get_params(self):
"""
Get parameters for web service, noting whether any are "complex"
"""
params = {}
complex = False
for name, opt in self.filter_options.items():
if opt.ignored:
continue
if self.set_param(params, name):
complex = True
return params, complex | [
"def",
"get_params",
"(",
"self",
")",
":",
"params",
"=",
"{",
"}",
"complex",
"=",
"False",
"for",
"name",
",",
"opt",
"in",
"self",
".",
"filter_options",
".",
"items",
"(",
")",
":",
"if",
"opt",
".",
"ignored",
":",
"continue",
"if",
"self",
".",
"set_param",
"(",
"params",
",",
"name",
")",
":",
"complex",
"=",
"True",
"return",
"params",
",",
"complex"
]
| Get parameters for web service, noting whether any are "complex" | [
"Get",
"parameters",
"for",
"web",
"service",
"noting",
"whether",
"any",
"are",
"complex"
]
| python | train |
tdegeus/GooseMPL | GooseMPL/__init__.py | https://github.com/tdegeus/GooseMPL/blob/16e1e06cbcf7131ac98c03ca7251ce83734ef905/GooseMPL/__init__.py#L287-L323 | def rel2abs_x(x, axis=None):
r'''
Transform relative x-coordinates to absolute x-coordinates. Relative coordinates correspond to a
fraction of the relevant axis. Be sure to set the limits and scale before calling this function!
:arguments:
**x** (``float``, ``list``)
Relative coordinates.
:options:
**axis** ([``plt.gca()``] | ...)
Specify the axis to which to apply the limits.
:returns:
**x** (``float``, ``list``)
Absolute coordinates.
'''
# get current axis
if axis is None:
axis = plt.gca()
# get current limits
xmin, xmax = axis.get_xlim()
# transform
# - log scale
if axis.get_xscale() == 'log':
try : return [10.**(np.log10(xmin)+i*(np.log10(xmax)-np.log10(xmin))) if i is not None else i for i in x]
except: return 10.**(np.log10(xmin)+x*(np.log10(xmax)-np.log10(xmin)))
# - normal scale
else:
try : return [xmin+i*(xmax-xmin) if i is not None else i for i in x]
except: return xmin+x*(xmax-xmin) | [
"def",
"rel2abs_x",
"(",
"x",
",",
"axis",
"=",
"None",
")",
":",
"# get current axis",
"if",
"axis",
"is",
"None",
":",
"axis",
"=",
"plt",
".",
"gca",
"(",
")",
"# get current limits",
"xmin",
",",
"xmax",
"=",
"axis",
".",
"get_xlim",
"(",
")",
"# transform",
"# - log scale",
"if",
"axis",
".",
"get_xscale",
"(",
")",
"==",
"'log'",
":",
"try",
":",
"return",
"[",
"10.",
"**",
"(",
"np",
".",
"log10",
"(",
"xmin",
")",
"+",
"i",
"*",
"(",
"np",
".",
"log10",
"(",
"xmax",
")",
"-",
"np",
".",
"log10",
"(",
"xmin",
")",
")",
")",
"if",
"i",
"is",
"not",
"None",
"else",
"i",
"for",
"i",
"in",
"x",
"]",
"except",
":",
"return",
"10.",
"**",
"(",
"np",
".",
"log10",
"(",
"xmin",
")",
"+",
"x",
"*",
"(",
"np",
".",
"log10",
"(",
"xmax",
")",
"-",
"np",
".",
"log10",
"(",
"xmin",
")",
")",
")",
"# - normal scale",
"else",
":",
"try",
":",
"return",
"[",
"xmin",
"+",
"i",
"*",
"(",
"xmax",
"-",
"xmin",
")",
"if",
"i",
"is",
"not",
"None",
"else",
"i",
"for",
"i",
"in",
"x",
"]",
"except",
":",
"return",
"xmin",
"+",
"x",
"*",
"(",
"xmax",
"-",
"xmin",
")"
]
| r'''
Transform relative x-coordinates to absolute x-coordinates. Relative coordinates correspond to a
fraction of the relevant axis. Be sure to set the limits and scale before calling this function!
:arguments:
**x** (``float``, ``list``)
Relative coordinates.
:options:
**axis** ([``plt.gca()``] | ...)
Specify the axis to which to apply the limits.
:returns:
**x** (``float``, ``list``)
Absolute coordinates. | [
"r",
"Transform",
"relative",
"x",
"-",
"coordinates",
"to",
"absolute",
"x",
"-",
"coordinates",
".",
"Relative",
"coordinates",
"correspond",
"to",
"a",
"fraction",
"of",
"the",
"relevant",
"axis",
".",
"Be",
"sure",
"to",
"set",
"the",
"limits",
"and",
"scale",
"before",
"calling",
"this",
"function!"
]
| python | train |
sentinel-hub/eo-learn | features/eolearn/features/radiometric_normalization.py | https://github.com/sentinel-hub/eo-learn/blob/b8c390b9f553c561612fe9eb64e720611633a035/features/eolearn/features/radiometric_normalization.py#L135-L143 | def _get_indices(self, data):
""" Compute indices along temporal dimension corresponding to the sought percentile
:param data: Input 3D array holding the reference band
:type data: numpy array
:return: 2D array holding the temporal index corresponding to percentile
"""
indices = self._index_by_percentile(data, self.percentile)
return indices | [
"def",
"_get_indices",
"(",
"self",
",",
"data",
")",
":",
"indices",
"=",
"self",
".",
"_index_by_percentile",
"(",
"data",
",",
"self",
".",
"percentile",
")",
"return",
"indices"
]
| Compute indices along temporal dimension corresponding to the sought percentile
:param data: Input 3D array holding the reference band
:type data: numpy array
:return: 2D array holding the temporal index corresponding to percentile | [
"Compute",
"indices",
"along",
"temporal",
"dimension",
"corresponding",
"to",
"the",
"sought",
"percentile"
]
| python | train |
bsolomon1124/pyfinance | pyfinance/utils.py | https://github.com/bsolomon1124/pyfinance/blob/c95925209a809b4e648e79cbeaf7711d8e5ff1a6/pyfinance/utils.py#L618-L670 | def random_tickers(
length, n_tickers, endswith=None, letters=None, slicer=itertools.islice
):
"""Generate a length-n_tickers list of unique random ticker symbols.
Parameters
----------
length : int
The length of each ticker string.
n_tickers : int
Number of tickers to generate.
endswith : str, default None
Specify the ending element(s) of each ticker (for example, 'X').
letters : sequence, default None
Sequence of possible letters to choose from. If None, defaults to
`string.ascii_uppercase`.
Returns
-------
list of str
Examples
--------
>>> from pyfinance import utils
>>> utils.random_tickers(length=5, n_tickers=4, endswith='X')
['UZTFX', 'ROYAX', 'ZBVIX', 'IUWYX']
>>> utils.random_tickers(3, 8)
['SBW', 'GDF', 'FOG', 'PWO', 'QDH', 'MJJ', 'YZD', 'QST']
"""
# The trick here is that we need uniqueness. That defeats the
# purpose of using NumPy because we need to generate 1x1.
# (Although the alternative is just to generate a "large
# enough" duplicated sequence and prune from it.)
if letters is None:
letters = string.ascii_uppercase
if endswith:
# Only generate substrings up to `endswith`
length = length - len(endswith)
join = "".join
def yield_ticker(rand=random.choices):
if endswith:
while True:
yield join(rand(letters, k=length)) + endswith
else:
while True:
yield join(rand(letters, k=length))
tickers = itertools.islice(unique_everseen(yield_ticker()), n_tickers)
return list(tickers) | [
"def",
"random_tickers",
"(",
"length",
",",
"n_tickers",
",",
"endswith",
"=",
"None",
",",
"letters",
"=",
"None",
",",
"slicer",
"=",
"itertools",
".",
"islice",
")",
":",
"# The trick here is that we need uniqueness. That defeats the\r",
"# purpose of using NumPy because we need to generate 1x1.\r",
"# (Although the alternative is just to generate a \"large\r",
"# enough\" duplicated sequence and prune from it.)\r",
"if",
"letters",
"is",
"None",
":",
"letters",
"=",
"string",
".",
"ascii_uppercase",
"if",
"endswith",
":",
"# Only generate substrings up to `endswith`\r",
"length",
"=",
"length",
"-",
"len",
"(",
"endswith",
")",
"join",
"=",
"\"\"",
".",
"join",
"def",
"yield_ticker",
"(",
"rand",
"=",
"random",
".",
"choices",
")",
":",
"if",
"endswith",
":",
"while",
"True",
":",
"yield",
"join",
"(",
"rand",
"(",
"letters",
",",
"k",
"=",
"length",
")",
")",
"+",
"endswith",
"else",
":",
"while",
"True",
":",
"yield",
"join",
"(",
"rand",
"(",
"letters",
",",
"k",
"=",
"length",
")",
")",
"tickers",
"=",
"itertools",
".",
"islice",
"(",
"unique_everseen",
"(",
"yield_ticker",
"(",
")",
")",
",",
"n_tickers",
")",
"return",
"list",
"(",
"tickers",
")"
]
| Generate a length-n_tickers list of unique random ticker symbols.
Parameters
----------
length : int
The length of each ticker string.
n_tickers : int
Number of tickers to generate.
endswith : str, default None
Specify the ending element(s) of each ticker (for example, 'X').
letters : sequence, default None
Sequence of possible letters to choose from. If None, defaults to
`string.ascii_uppercase`.
Returns
-------
list of str
Examples
--------
>>> from pyfinance import utils
>>> utils.random_tickers(length=5, n_tickers=4, endswith='X')
['UZTFX', 'ROYAX', 'ZBVIX', 'IUWYX']
>>> utils.random_tickers(3, 8)
['SBW', 'GDF', 'FOG', 'PWO', 'QDH', 'MJJ', 'YZD', 'QST'] | [
"Generate",
"a",
"length",
"-",
"n_tickers",
"list",
"of",
"unique",
"random",
"ticker",
"symbols",
".",
"Parameters",
"----------",
"length",
":",
"int",
"The",
"length",
"of",
"each",
"ticker",
"string",
".",
"n_tickers",
":",
"int",
"Number",
"of",
"tickers",
"to",
"generate",
".",
"endswith",
":",
"str",
"default",
"None",
"Specify",
"the",
"ending",
"element",
"(",
"s",
")",
"of",
"each",
"ticker",
"(",
"for",
"example",
"X",
")",
".",
"letters",
":",
"sequence",
"default",
"None",
"Sequence",
"of",
"possible",
"letters",
"to",
"choose",
"from",
".",
"If",
"None",
"defaults",
"to",
"string",
".",
"ascii_uppercase",
".",
"Returns",
"-------",
"list",
"of",
"str",
"Examples",
"--------",
">>>",
"from",
"pyfinance",
"import",
"utils",
">>>",
"utils",
".",
"random_tickers",
"(",
"length",
"=",
"5",
"n_tickers",
"=",
"4",
"endswith",
"=",
"X",
")",
"[",
"UZTFX",
"ROYAX",
"ZBVIX",
"IUWYX",
"]",
">>>",
"utils",
".",
"random_tickers",
"(",
"3",
"8",
")",
"[",
"SBW",
"GDF",
"FOG",
"PWO",
"QDH",
"MJJ",
"YZD",
"QST",
"]"
]
| python | train |
google/grr | grr/server/grr_response_server/databases/mysql_paths.py | https://github.com/google/grr/blob/5cef4e8e2f0d5df43ea4877e9c798e0bf60bfe74/grr/server/grr_response_server/databases/mysql_paths.py#L202-L346 | def _MultiWritePathInfos(self, path_infos, connection=None):
"""Writes a collection of path info records for specified clients."""
query = ""
path_info_count = 0
path_info_values = []
parent_path_info_count = 0
parent_path_info_values = []
has_stat_entries = False
has_hash_entries = False
for client_id, client_path_infos in iteritems(path_infos):
for path_info in client_path_infos:
path = mysql_utils.ComponentsToPath(path_info.components)
path_info_values.append(db_utils.ClientIDToInt(client_id))
path_info_values.append(int(path_info.path_type))
path_info_values.append(path_info.GetPathID().AsBytes())
path_info_values.append(path)
path_info_values.append(bool(path_info.directory))
path_info_values.append(len(path_info.components))
if path_info.HasField("stat_entry"):
path_info_values.append(path_info.stat_entry.SerializeToString())
has_stat_entries = True
else:
path_info_values.append(None)
if path_info.HasField("hash_entry"):
path_info_values.append(path_info.hash_entry.SerializeToString())
path_info_values.append(path_info.hash_entry.sha256.AsBytes())
has_hash_entries = True
else:
path_info_values.append(None)
path_info_values.append(None)
path_info_count += 1
# TODO(hanuszczak): Implement a trie in order to avoid inserting
# duplicated records.
for parent_path_info in path_info.GetAncestors():
path = mysql_utils.ComponentsToPath(parent_path_info.components)
parent_path_info_values.append(db_utils.ClientIDToInt(client_id))
parent_path_info_values.append(int(parent_path_info.path_type))
parent_path_info_values.append(parent_path_info.GetPathID().AsBytes())
parent_path_info_values.append(path)
parent_path_info_values.append(len(parent_path_info.components))
parent_path_info_count += 1
query += """
CREATE TEMPORARY TABLE client_path_infos(
client_id BIGINT UNSIGNED NOT NULL,
path_type INT UNSIGNED NOT NULL,
path_id BINARY(32) NOT NULL,
path TEXT NOT NULL,
directory BOOLEAN NOT NULL,
depth INT NOT NULL,
stat_entry MEDIUMBLOB NULL,
hash_entry MEDIUMBLOB NULL,
sha256 BINARY(32) NULL,
timestamp TIMESTAMP(6) NOT NULL DEFAULT now(6)
);"""
if path_info_count > 0:
query += """
INSERT INTO client_path_infos(client_id, path_type, path_id,
path, directory, depth,
stat_entry, hash_entry, sha256)
VALUES {};
""".format(mysql_utils.Placeholders(num=9, values=path_info_count))
query += """
INSERT INTO client_paths(client_id, path_type, path_id, path,
directory, depth)
SELECT client_id, path_type, path_id, path, directory, depth
FROM client_path_infos
ON DUPLICATE KEY UPDATE
client_paths.directory = client_paths.directory OR VALUES(client_paths.directory),
client_paths.timestamp = now(6);
"""
if parent_path_info_count > 0:
placeholders = ["(%s, %s, %s, %s, TRUE, %s)"] * parent_path_info_count
query += """
INSERT INTO client_paths(client_id, path_type, path_id, path,
directory, depth)
VALUES {}
ON DUPLICATE KEY UPDATE
directory = TRUE,
timestamp = now();
""".format(", ".join(placeholders))
if has_stat_entries:
query += """
INSERT INTO client_path_stat_entries(client_id, path_type, path_id,
stat_entry, timestamp)
SELECT client_id, path_type, path_id, stat_entry, timestamp
FROM client_path_infos
WHERE stat_entry IS NOT NULL;
"""
query += """
UPDATE client_paths, client_path_infos
SET client_paths.last_stat_entry_timestamp = client_path_infos.timestamp
WHERE client_paths.client_id = client_path_infos.client_id
AND client_paths.path_type = client_path_infos.path_type
AND client_paths.path_id = client_path_infos.path_id
AND client_path_infos.stat_entry IS NOT NULL;
"""
if has_hash_entries:
query += """
INSERT INTO client_path_hash_entries(client_id, path_type, path_id,
hash_entry, sha256, timestamp)
SELECT client_id, path_type, path_id, hash_entry, sha256, timestamp
FROM client_path_infos
WHERE hash_entry IS NOT NULL;
"""
query += """
UPDATE client_paths, client_path_infos
SET client_paths.last_hash_entry_timestamp = client_path_infos.timestamp
WHERE client_paths.client_id = client_path_infos.client_id
AND client_paths.path_type = client_path_infos.path_type
AND client_paths.path_id = client_path_infos.path_id
AND client_path_infos.hash_entry IS NOT NULL;
"""
try:
with contextlib.closing(connection.cursor()) as cursor:
cursor.execute(query, path_info_values + parent_path_info_values)
finally:
# Drop the temporary table in a separate cursor. This ensures that
# even if the previous cursor.execute fails mid-way leaving the
# temporary table created (as table creation can't be rolled back), the
# table would still be correctly dropped.
#
# This is important since connections are reused in the MySQL connection
# pool.
with contextlib.closing(connection.cursor()) as cursor:
cursor.execute("DROP TEMPORARY TABLE IF EXISTS client_path_infos") | [
"def",
"_MultiWritePathInfos",
"(",
"self",
",",
"path_infos",
",",
"connection",
"=",
"None",
")",
":",
"query",
"=",
"\"\"",
"path_info_count",
"=",
"0",
"path_info_values",
"=",
"[",
"]",
"parent_path_info_count",
"=",
"0",
"parent_path_info_values",
"=",
"[",
"]",
"has_stat_entries",
"=",
"False",
"has_hash_entries",
"=",
"False",
"for",
"client_id",
",",
"client_path_infos",
"in",
"iteritems",
"(",
"path_infos",
")",
":",
"for",
"path_info",
"in",
"client_path_infos",
":",
"path",
"=",
"mysql_utils",
".",
"ComponentsToPath",
"(",
"path_info",
".",
"components",
")",
"path_info_values",
".",
"append",
"(",
"db_utils",
".",
"ClientIDToInt",
"(",
"client_id",
")",
")",
"path_info_values",
".",
"append",
"(",
"int",
"(",
"path_info",
".",
"path_type",
")",
")",
"path_info_values",
".",
"append",
"(",
"path_info",
".",
"GetPathID",
"(",
")",
".",
"AsBytes",
"(",
")",
")",
"path_info_values",
".",
"append",
"(",
"path",
")",
"path_info_values",
".",
"append",
"(",
"bool",
"(",
"path_info",
".",
"directory",
")",
")",
"path_info_values",
".",
"append",
"(",
"len",
"(",
"path_info",
".",
"components",
")",
")",
"if",
"path_info",
".",
"HasField",
"(",
"\"stat_entry\"",
")",
":",
"path_info_values",
".",
"append",
"(",
"path_info",
".",
"stat_entry",
".",
"SerializeToString",
"(",
")",
")",
"has_stat_entries",
"=",
"True",
"else",
":",
"path_info_values",
".",
"append",
"(",
"None",
")",
"if",
"path_info",
".",
"HasField",
"(",
"\"hash_entry\"",
")",
":",
"path_info_values",
".",
"append",
"(",
"path_info",
".",
"hash_entry",
".",
"SerializeToString",
"(",
")",
")",
"path_info_values",
".",
"append",
"(",
"path_info",
".",
"hash_entry",
".",
"sha256",
".",
"AsBytes",
"(",
")",
")",
"has_hash_entries",
"=",
"True",
"else",
":",
"path_info_values",
".",
"append",
"(",
"None",
")",
"path_info_values",
".",
"append",
"(",
"None",
")",
"path_info_count",
"+=",
"1",
"# TODO(hanuszczak): Implement a trie in order to avoid inserting",
"# duplicated records.",
"for",
"parent_path_info",
"in",
"path_info",
".",
"GetAncestors",
"(",
")",
":",
"path",
"=",
"mysql_utils",
".",
"ComponentsToPath",
"(",
"parent_path_info",
".",
"components",
")",
"parent_path_info_values",
".",
"append",
"(",
"db_utils",
".",
"ClientIDToInt",
"(",
"client_id",
")",
")",
"parent_path_info_values",
".",
"append",
"(",
"int",
"(",
"parent_path_info",
".",
"path_type",
")",
")",
"parent_path_info_values",
".",
"append",
"(",
"parent_path_info",
".",
"GetPathID",
"(",
")",
".",
"AsBytes",
"(",
")",
")",
"parent_path_info_values",
".",
"append",
"(",
"path",
")",
"parent_path_info_values",
".",
"append",
"(",
"len",
"(",
"parent_path_info",
".",
"components",
")",
")",
"parent_path_info_count",
"+=",
"1",
"query",
"+=",
"\"\"\"\n CREATE TEMPORARY TABLE client_path_infos(\n client_id BIGINT UNSIGNED NOT NULL,\n path_type INT UNSIGNED NOT NULL,\n path_id BINARY(32) NOT NULL,\n path TEXT NOT NULL,\n directory BOOLEAN NOT NULL,\n depth INT NOT NULL,\n stat_entry MEDIUMBLOB NULL,\n hash_entry MEDIUMBLOB NULL,\n sha256 BINARY(32) NULL,\n timestamp TIMESTAMP(6) NOT NULL DEFAULT now(6)\n );\"\"\"",
"if",
"path_info_count",
">",
"0",
":",
"query",
"+=",
"\"\"\"\n INSERT INTO client_path_infos(client_id, path_type, path_id,\n path, directory, depth,\n stat_entry, hash_entry, sha256)\n VALUES {};\n \"\"\"",
".",
"format",
"(",
"mysql_utils",
".",
"Placeholders",
"(",
"num",
"=",
"9",
",",
"values",
"=",
"path_info_count",
")",
")",
"query",
"+=",
"\"\"\"\n INSERT INTO client_paths(client_id, path_type, path_id, path,\n directory, depth)\n SELECT client_id, path_type, path_id, path, directory, depth\n FROM client_path_infos\n ON DUPLICATE KEY UPDATE\n client_paths.directory = client_paths.directory OR VALUES(client_paths.directory),\n client_paths.timestamp = now(6);\n \"\"\"",
"if",
"parent_path_info_count",
">",
"0",
":",
"placeholders",
"=",
"[",
"\"(%s, %s, %s, %s, TRUE, %s)\"",
"]",
"*",
"parent_path_info_count",
"query",
"+=",
"\"\"\"\n INSERT INTO client_paths(client_id, path_type, path_id, path,\n directory, depth)\n VALUES {}\n ON DUPLICATE KEY UPDATE\n directory = TRUE,\n timestamp = now();\n \"\"\"",
".",
"format",
"(",
"\", \"",
".",
"join",
"(",
"placeholders",
")",
")",
"if",
"has_stat_entries",
":",
"query",
"+=",
"\"\"\"\n INSERT INTO client_path_stat_entries(client_id, path_type, path_id,\n stat_entry, timestamp)\n SELECT client_id, path_type, path_id, stat_entry, timestamp\n FROM client_path_infos\n WHERE stat_entry IS NOT NULL;\n \"\"\"",
"query",
"+=",
"\"\"\"\n UPDATE client_paths, client_path_infos\n SET client_paths.last_stat_entry_timestamp = client_path_infos.timestamp\n WHERE client_paths.client_id = client_path_infos.client_id\n AND client_paths.path_type = client_path_infos.path_type\n AND client_paths.path_id = client_path_infos.path_id\n AND client_path_infos.stat_entry IS NOT NULL;\n \"\"\"",
"if",
"has_hash_entries",
":",
"query",
"+=",
"\"\"\"\n INSERT INTO client_path_hash_entries(client_id, path_type, path_id,\n hash_entry, sha256, timestamp)\n SELECT client_id, path_type, path_id, hash_entry, sha256, timestamp\n FROM client_path_infos\n WHERE hash_entry IS NOT NULL;\n \"\"\"",
"query",
"+=",
"\"\"\"\n UPDATE client_paths, client_path_infos\n SET client_paths.last_hash_entry_timestamp = client_path_infos.timestamp\n WHERE client_paths.client_id = client_path_infos.client_id\n AND client_paths.path_type = client_path_infos.path_type\n AND client_paths.path_id = client_path_infos.path_id\n AND client_path_infos.hash_entry IS NOT NULL;\n \"\"\"",
"try",
":",
"with",
"contextlib",
".",
"closing",
"(",
"connection",
".",
"cursor",
"(",
")",
")",
"as",
"cursor",
":",
"cursor",
".",
"execute",
"(",
"query",
",",
"path_info_values",
"+",
"parent_path_info_values",
")",
"finally",
":",
"# Drop the temporary table in a separate cursor. This ensures that",
"# even if the previous cursor.execute fails mid-way leaving the",
"# temporary table created (as table creation can't be rolled back), the",
"# table would still be correctly dropped.",
"#",
"# This is important since connections are reused in the MySQL connection",
"# pool.",
"with",
"contextlib",
".",
"closing",
"(",
"connection",
".",
"cursor",
"(",
")",
")",
"as",
"cursor",
":",
"cursor",
".",
"execute",
"(",
"\"DROP TEMPORARY TABLE IF EXISTS client_path_infos\"",
")"
]
| Writes a collection of path info records for specified clients. | [
"Writes",
"a",
"collection",
"of",
"path",
"info",
"records",
"for",
"specified",
"clients",
"."
]
| python | train |
salu133445/pypianoroll | pypianoroll/track.py | https://github.com/salu133445/pypianoroll/blob/6224dc1e29222de2124d249acb80f3d072166917/pypianoroll/track.py#L76-L99 | def assign_constant(self, value, dtype=None):
"""
Assign a constant value to all nonzeros in the pianoroll. If the
pianoroll is not binarized, its data type will be preserved. If the
pianoroll is binarized, it will be casted to the type of `value`.
Arguments
---------
value : int or float
The constant value to be assigned to all the nonzeros in the
pianoroll.
"""
if not self.is_binarized():
self.pianoroll[self.pianoroll.nonzero()] = value
return
if dtype is None:
if isinstance(value, int):
dtype = int
elif isinstance(value, float):
dtype = float
nonzero = self.pianoroll.nonzero()
self.pianoroll = np.zeros(self.pianoroll.shape, dtype)
self.pianoroll[nonzero] = value | [
"def",
"assign_constant",
"(",
"self",
",",
"value",
",",
"dtype",
"=",
"None",
")",
":",
"if",
"not",
"self",
".",
"is_binarized",
"(",
")",
":",
"self",
".",
"pianoroll",
"[",
"self",
".",
"pianoroll",
".",
"nonzero",
"(",
")",
"]",
"=",
"value",
"return",
"if",
"dtype",
"is",
"None",
":",
"if",
"isinstance",
"(",
"value",
",",
"int",
")",
":",
"dtype",
"=",
"int",
"elif",
"isinstance",
"(",
"value",
",",
"float",
")",
":",
"dtype",
"=",
"float",
"nonzero",
"=",
"self",
".",
"pianoroll",
".",
"nonzero",
"(",
")",
"self",
".",
"pianoroll",
"=",
"np",
".",
"zeros",
"(",
"self",
".",
"pianoroll",
".",
"shape",
",",
"dtype",
")",
"self",
".",
"pianoroll",
"[",
"nonzero",
"]",
"=",
"value"
]
| Assign a constant value to all nonzeros in the pianoroll. If the
pianoroll is not binarized, its data type will be preserved. If the
pianoroll is binarized, it will be casted to the type of `value`.
Arguments
---------
value : int or float
The constant value to be assigned to all the nonzeros in the
pianoroll. | [
"Assign",
"a",
"constant",
"value",
"to",
"all",
"nonzeros",
"in",
"the",
"pianoroll",
".",
"If",
"the",
"pianoroll",
"is",
"not",
"binarized",
"its",
"data",
"type",
"will",
"be",
"preserved",
".",
"If",
"the",
"pianoroll",
"is",
"binarized",
"it",
"will",
"be",
"casted",
"to",
"the",
"type",
"of",
"value",
"."
]
| python | train |
buruzaemon/natto-py | natto/environment.py | https://github.com/buruzaemon/natto-py/blob/018fe004c47c45c66bdf2e03fe24e981ae089b76/natto/environment.py#L98-L162 | def __get_libpath(self):
'''Return the absolute path to the MeCab library.
On Windows, the path to the system dictionary is used to deduce the
path to libmecab.dll.
Otherwise, mecab-config is used find the libmecab shared object or
dynamic library (*NIX or Mac OS, respectively).
Will defer to the user-specified MECAB_PATH environment variable, if
set.
Returns:
The absolute path to the MeCab library.
Raises:
EnvironmentError: A problem was encountered in trying to locate the
MeCab library.
'''
libp = os.getenv(self.MECAB_PATH)
if libp:
return os.path.abspath(libp)
else:
plat = sys.platform
if plat == 'win32':
lib = self._LIBMECAB.format(self._WINLIB_EXT)
try:
v = self.__regkey_value(self._WINHKEY, self._WINVALUE)
ldir = v.split('etc')[0]
libp = os.path.join(ldir, 'bin', lib)
except EnvironmentError as err:
logger.error('{}\n'.format(err))
logger.error('{}\n'.format(sys.exc_info()[0]))
raise EnvironmentError(
self._ERROR_WINREG.format(self._WINVALUE,
self._WINHKEY))
else:
# UNIX-y OS?
if plat == 'darwin':
lib = self._LIBMECAB.format(self._MACLIB_EXT)
else:
lib = self._LIBMECAB.format(self._UNIXLIB_EXT)
try:
cmd = ['mecab-config', '--libs-only-L']
res = Popen(cmd, stdout=PIPE).communicate()
lines = res[0].decode()
if not lines.startswith('unrecognized'):
linfo = lines.strip()
libp = os.path.join(linfo, lib)
else:
raise EnvironmentError(
self._ERROR_MECABCONFIG.format(lib))
except EnvironmentError as err:
logger.error('{}\n'.format(err))
logger.error('{}\n'.format(sys.exc_info()[0]))
raise EnvironmentError(self._ERROR_NOLIB.format(lib))
if libp and os.path.exists(libp):
libp = os.path.abspath(libp)
os.environ[self.MECAB_PATH] = libp
return libp
else:
raise EnvironmentError(self._ERROR_NOLIB.format(libp)) | [
"def",
"__get_libpath",
"(",
"self",
")",
":",
"libp",
"=",
"os",
".",
"getenv",
"(",
"self",
".",
"MECAB_PATH",
")",
"if",
"libp",
":",
"return",
"os",
".",
"path",
".",
"abspath",
"(",
"libp",
")",
"else",
":",
"plat",
"=",
"sys",
".",
"platform",
"if",
"plat",
"==",
"'win32'",
":",
"lib",
"=",
"self",
".",
"_LIBMECAB",
".",
"format",
"(",
"self",
".",
"_WINLIB_EXT",
")",
"try",
":",
"v",
"=",
"self",
".",
"__regkey_value",
"(",
"self",
".",
"_WINHKEY",
",",
"self",
".",
"_WINVALUE",
")",
"ldir",
"=",
"v",
".",
"split",
"(",
"'etc'",
")",
"[",
"0",
"]",
"libp",
"=",
"os",
".",
"path",
".",
"join",
"(",
"ldir",
",",
"'bin'",
",",
"lib",
")",
"except",
"EnvironmentError",
"as",
"err",
":",
"logger",
".",
"error",
"(",
"'{}\\n'",
".",
"format",
"(",
"err",
")",
")",
"logger",
".",
"error",
"(",
"'{}\\n'",
".",
"format",
"(",
"sys",
".",
"exc_info",
"(",
")",
"[",
"0",
"]",
")",
")",
"raise",
"EnvironmentError",
"(",
"self",
".",
"_ERROR_WINREG",
".",
"format",
"(",
"self",
".",
"_WINVALUE",
",",
"self",
".",
"_WINHKEY",
")",
")",
"else",
":",
"# UNIX-y OS?\r",
"if",
"plat",
"==",
"'darwin'",
":",
"lib",
"=",
"self",
".",
"_LIBMECAB",
".",
"format",
"(",
"self",
".",
"_MACLIB_EXT",
")",
"else",
":",
"lib",
"=",
"self",
".",
"_LIBMECAB",
".",
"format",
"(",
"self",
".",
"_UNIXLIB_EXT",
")",
"try",
":",
"cmd",
"=",
"[",
"'mecab-config'",
",",
"'--libs-only-L'",
"]",
"res",
"=",
"Popen",
"(",
"cmd",
",",
"stdout",
"=",
"PIPE",
")",
".",
"communicate",
"(",
")",
"lines",
"=",
"res",
"[",
"0",
"]",
".",
"decode",
"(",
")",
"if",
"not",
"lines",
".",
"startswith",
"(",
"'unrecognized'",
")",
":",
"linfo",
"=",
"lines",
".",
"strip",
"(",
")",
"libp",
"=",
"os",
".",
"path",
".",
"join",
"(",
"linfo",
",",
"lib",
")",
"else",
":",
"raise",
"EnvironmentError",
"(",
"self",
".",
"_ERROR_MECABCONFIG",
".",
"format",
"(",
"lib",
")",
")",
"except",
"EnvironmentError",
"as",
"err",
":",
"logger",
".",
"error",
"(",
"'{}\\n'",
".",
"format",
"(",
"err",
")",
")",
"logger",
".",
"error",
"(",
"'{}\\n'",
".",
"format",
"(",
"sys",
".",
"exc_info",
"(",
")",
"[",
"0",
"]",
")",
")",
"raise",
"EnvironmentError",
"(",
"self",
".",
"_ERROR_NOLIB",
".",
"format",
"(",
"lib",
")",
")",
"if",
"libp",
"and",
"os",
".",
"path",
".",
"exists",
"(",
"libp",
")",
":",
"libp",
"=",
"os",
".",
"path",
".",
"abspath",
"(",
"libp",
")",
"os",
".",
"environ",
"[",
"self",
".",
"MECAB_PATH",
"]",
"=",
"libp",
"return",
"libp",
"else",
":",
"raise",
"EnvironmentError",
"(",
"self",
".",
"_ERROR_NOLIB",
".",
"format",
"(",
"libp",
")",
")"
]
| Return the absolute path to the MeCab library.
On Windows, the path to the system dictionary is used to deduce the
path to libmecab.dll.
Otherwise, mecab-config is used find the libmecab shared object or
dynamic library (*NIX or Mac OS, respectively).
Will defer to the user-specified MECAB_PATH environment variable, if
set.
Returns:
The absolute path to the MeCab library.
Raises:
EnvironmentError: A problem was encountered in trying to locate the
MeCab library. | [
"Return",
"the",
"absolute",
"path",
"to",
"the",
"MeCab",
"library",
".",
"On",
"Windows",
"the",
"path",
"to",
"the",
"system",
"dictionary",
"is",
"used",
"to",
"deduce",
"the",
"path",
"to",
"libmecab",
".",
"dll",
".",
"Otherwise",
"mecab",
"-",
"config",
"is",
"used",
"find",
"the",
"libmecab",
"shared",
"object",
"or",
"dynamic",
"library",
"(",
"*",
"NIX",
"or",
"Mac",
"OS",
"respectively",
")",
".",
"Will",
"defer",
"to",
"the",
"user",
"-",
"specified",
"MECAB_PATH",
"environment",
"variable",
"if",
"set",
".",
"Returns",
":",
"The",
"absolute",
"path",
"to",
"the",
"MeCab",
"library",
".",
"Raises",
":",
"EnvironmentError",
":",
"A",
"problem",
"was",
"encountered",
"in",
"trying",
"to",
"locate",
"the",
"MeCab",
"library",
"."
]
| python | train |
rocky/python-uncompyle6 | uncompyle6/semantics/pysource.py | https://github.com/rocky/python-uncompyle6/blob/c5d7944e657f0ad05a0e2edd34e1acb27001abc0/uncompyle6/semantics/pysource.py#L1174-L1283 | def listcomprehension_walk2(self, node):
"""List comprehensions the way they are done in Python 2 and
sometimes in Python 3.
They're more other comprehensions, e.g. set comprehensions
See if we can combine code.
"""
p = self.prec
self.prec = 27
code = Code(node[1].attr, self.scanner, self.currentclass)
ast = self.build_ast(code._tokens, code._customize)
self.customize(code._customize)
# skip over: sstmt, stmt, return, ret_expr
# and other singleton derivations
while (len(ast) == 1
or (ast in ('sstmt', 'return')
and ast[-1] in ('RETURN_LAST', 'RETURN_VALUE'))):
self.prec = 100
ast = ast[0]
n = ast[1]
# collection = node[-3]
collections = [node[-3]]
list_ifs = []
if self.version == 3.0 and n != 'list_iter':
# FIXME 3.0 is a snowflake here. We need
# special code for this. Not sure if this is totally
# correct.
stores = [ast[3]]
assert ast[4] == 'comp_iter'
n = ast[4]
# Find the list comprehension body. It is the inner-most
# node that is not comp_.. .
while n == 'comp_iter':
if n[0] == 'comp_for':
n = n[0]
stores.append(n[2])
n = n[3]
elif n[0] in ('comp_if', 'comp_if_not'):
n = n[0]
# FIXME: just a guess
if n[0].kind == 'expr':
list_ifs.append(n)
else:
list_ifs.append([1])
n = n[2]
pass
else:
break
pass
# Skip over n[0] which is something like: _[1]
self.preorder(n[1])
else:
assert n == 'list_iter'
stores = []
# Find the list comprehension body. It is the inner-most
# node that is not list_.. .
while n == 'list_iter':
n = n[0] # recurse one step
if n == 'list_for':
stores.append(n[2])
n = n[3]
if self.version >= 3.6 and n[0] == 'list_for':
# Dog-paddle down largely singleton reductions
# to find the collection (expr)
c = n[0][0]
if c == 'expr':
c = c[0]
# FIXME: grammar is wonky here? Is this really an attribute?
if c == 'attribute':
c = c[0]
collections.append(c)
pass
elif n in ('list_if', 'list_if_not'):
# FIXME: just a guess
if n[0].kind == 'expr':
list_ifs.append(n)
else:
list_ifs.append([1])
n = n[2]
pass
pass
assert n == 'lc_body', ast
self.preorder(n[0])
# FIXME: add indentation around "for"'s and "in"'s
if self.version < 3.6:
self.write(' for ')
self.preorder(stores[0])
self.write(' in ')
self.preorder(collections[0])
if list_ifs:
self.preorder(list_ifs[0])
pass
else:
for i, store in enumerate(stores):
self.write(' for ')
self.preorder(store)
self.write(' in ')
self.preorder(collections[i])
if i < len(list_ifs):
self.preorder(list_ifs[i])
pass
pass
self.prec = p | [
"def",
"listcomprehension_walk2",
"(",
"self",
",",
"node",
")",
":",
"p",
"=",
"self",
".",
"prec",
"self",
".",
"prec",
"=",
"27",
"code",
"=",
"Code",
"(",
"node",
"[",
"1",
"]",
".",
"attr",
",",
"self",
".",
"scanner",
",",
"self",
".",
"currentclass",
")",
"ast",
"=",
"self",
".",
"build_ast",
"(",
"code",
".",
"_tokens",
",",
"code",
".",
"_customize",
")",
"self",
".",
"customize",
"(",
"code",
".",
"_customize",
")",
"# skip over: sstmt, stmt, return, ret_expr",
"# and other singleton derivations",
"while",
"(",
"len",
"(",
"ast",
")",
"==",
"1",
"or",
"(",
"ast",
"in",
"(",
"'sstmt'",
",",
"'return'",
")",
"and",
"ast",
"[",
"-",
"1",
"]",
"in",
"(",
"'RETURN_LAST'",
",",
"'RETURN_VALUE'",
")",
")",
")",
":",
"self",
".",
"prec",
"=",
"100",
"ast",
"=",
"ast",
"[",
"0",
"]",
"n",
"=",
"ast",
"[",
"1",
"]",
"# collection = node[-3]",
"collections",
"=",
"[",
"node",
"[",
"-",
"3",
"]",
"]",
"list_ifs",
"=",
"[",
"]",
"if",
"self",
".",
"version",
"==",
"3.0",
"and",
"n",
"!=",
"'list_iter'",
":",
"# FIXME 3.0 is a snowflake here. We need",
"# special code for this. Not sure if this is totally",
"# correct.",
"stores",
"=",
"[",
"ast",
"[",
"3",
"]",
"]",
"assert",
"ast",
"[",
"4",
"]",
"==",
"'comp_iter'",
"n",
"=",
"ast",
"[",
"4",
"]",
"# Find the list comprehension body. It is the inner-most",
"# node that is not comp_.. .",
"while",
"n",
"==",
"'comp_iter'",
":",
"if",
"n",
"[",
"0",
"]",
"==",
"'comp_for'",
":",
"n",
"=",
"n",
"[",
"0",
"]",
"stores",
".",
"append",
"(",
"n",
"[",
"2",
"]",
")",
"n",
"=",
"n",
"[",
"3",
"]",
"elif",
"n",
"[",
"0",
"]",
"in",
"(",
"'comp_if'",
",",
"'comp_if_not'",
")",
":",
"n",
"=",
"n",
"[",
"0",
"]",
"# FIXME: just a guess",
"if",
"n",
"[",
"0",
"]",
".",
"kind",
"==",
"'expr'",
":",
"list_ifs",
".",
"append",
"(",
"n",
")",
"else",
":",
"list_ifs",
".",
"append",
"(",
"[",
"1",
"]",
")",
"n",
"=",
"n",
"[",
"2",
"]",
"pass",
"else",
":",
"break",
"pass",
"# Skip over n[0] which is something like: _[1]",
"self",
".",
"preorder",
"(",
"n",
"[",
"1",
"]",
")",
"else",
":",
"assert",
"n",
"==",
"'list_iter'",
"stores",
"=",
"[",
"]",
"# Find the list comprehension body. It is the inner-most",
"# node that is not list_.. .",
"while",
"n",
"==",
"'list_iter'",
":",
"n",
"=",
"n",
"[",
"0",
"]",
"# recurse one step",
"if",
"n",
"==",
"'list_for'",
":",
"stores",
".",
"append",
"(",
"n",
"[",
"2",
"]",
")",
"n",
"=",
"n",
"[",
"3",
"]",
"if",
"self",
".",
"version",
">=",
"3.6",
"and",
"n",
"[",
"0",
"]",
"==",
"'list_for'",
":",
"# Dog-paddle down largely singleton reductions",
"# to find the collection (expr)",
"c",
"=",
"n",
"[",
"0",
"]",
"[",
"0",
"]",
"if",
"c",
"==",
"'expr'",
":",
"c",
"=",
"c",
"[",
"0",
"]",
"# FIXME: grammar is wonky here? Is this really an attribute?",
"if",
"c",
"==",
"'attribute'",
":",
"c",
"=",
"c",
"[",
"0",
"]",
"collections",
".",
"append",
"(",
"c",
")",
"pass",
"elif",
"n",
"in",
"(",
"'list_if'",
",",
"'list_if_not'",
")",
":",
"# FIXME: just a guess",
"if",
"n",
"[",
"0",
"]",
".",
"kind",
"==",
"'expr'",
":",
"list_ifs",
".",
"append",
"(",
"n",
")",
"else",
":",
"list_ifs",
".",
"append",
"(",
"[",
"1",
"]",
")",
"n",
"=",
"n",
"[",
"2",
"]",
"pass",
"pass",
"assert",
"n",
"==",
"'lc_body'",
",",
"ast",
"self",
".",
"preorder",
"(",
"n",
"[",
"0",
"]",
")",
"# FIXME: add indentation around \"for\"'s and \"in\"'s",
"if",
"self",
".",
"version",
"<",
"3.6",
":",
"self",
".",
"write",
"(",
"' for '",
")",
"self",
".",
"preorder",
"(",
"stores",
"[",
"0",
"]",
")",
"self",
".",
"write",
"(",
"' in '",
")",
"self",
".",
"preorder",
"(",
"collections",
"[",
"0",
"]",
")",
"if",
"list_ifs",
":",
"self",
".",
"preorder",
"(",
"list_ifs",
"[",
"0",
"]",
")",
"pass",
"else",
":",
"for",
"i",
",",
"store",
"in",
"enumerate",
"(",
"stores",
")",
":",
"self",
".",
"write",
"(",
"' for '",
")",
"self",
".",
"preorder",
"(",
"store",
")",
"self",
".",
"write",
"(",
"' in '",
")",
"self",
".",
"preorder",
"(",
"collections",
"[",
"i",
"]",
")",
"if",
"i",
"<",
"len",
"(",
"list_ifs",
")",
":",
"self",
".",
"preorder",
"(",
"list_ifs",
"[",
"i",
"]",
")",
"pass",
"pass",
"self",
".",
"prec",
"=",
"p"
]
| List comprehensions the way they are done in Python 2 and
sometimes in Python 3.
They're more other comprehensions, e.g. set comprehensions
See if we can combine code. | [
"List",
"comprehensions",
"the",
"way",
"they",
"are",
"done",
"in",
"Python",
"2",
"and",
"sometimes",
"in",
"Python",
"3",
".",
"They",
"re",
"more",
"other",
"comprehensions",
"e",
".",
"g",
".",
"set",
"comprehensions",
"See",
"if",
"we",
"can",
"combine",
"code",
"."
]
| python | train |
senaite/senaite.core | bika/lims/content/analysisrequest.py | https://github.com/senaite/senaite.core/blob/7602ce2ea2f9e81eb34e20ce17b98a3e70713f85/bika/lims/content/analysisrequest.py#L1503-L1520 | def getAnalysesNum(self):
""" Returns an array with the number of analyses for the current AR in
different statuses, like follows:
[verified, total, not_submitted, to_be_verified]
"""
an_nums = [0, 0, 0, 0]
for analysis in self.getAnalyses():
review_state = analysis.review_state
if review_state in ['retracted', 'rejected', 'cancelled']:
continue
if review_state == 'to_be_verified':
an_nums[3] += 1
elif review_state in ['published', 'verified']:
an_nums[0] += 1
else:
an_nums[2] += 1
an_nums[1] += 1
return an_nums | [
"def",
"getAnalysesNum",
"(",
"self",
")",
":",
"an_nums",
"=",
"[",
"0",
",",
"0",
",",
"0",
",",
"0",
"]",
"for",
"analysis",
"in",
"self",
".",
"getAnalyses",
"(",
")",
":",
"review_state",
"=",
"analysis",
".",
"review_state",
"if",
"review_state",
"in",
"[",
"'retracted'",
",",
"'rejected'",
",",
"'cancelled'",
"]",
":",
"continue",
"if",
"review_state",
"==",
"'to_be_verified'",
":",
"an_nums",
"[",
"3",
"]",
"+=",
"1",
"elif",
"review_state",
"in",
"[",
"'published'",
",",
"'verified'",
"]",
":",
"an_nums",
"[",
"0",
"]",
"+=",
"1",
"else",
":",
"an_nums",
"[",
"2",
"]",
"+=",
"1",
"an_nums",
"[",
"1",
"]",
"+=",
"1",
"return",
"an_nums"
]
| Returns an array with the number of analyses for the current AR in
different statuses, like follows:
[verified, total, not_submitted, to_be_verified] | [
"Returns",
"an",
"array",
"with",
"the",
"number",
"of",
"analyses",
"for",
"the",
"current",
"AR",
"in",
"different",
"statuses",
"like",
"follows",
":",
"[",
"verified",
"total",
"not_submitted",
"to_be_verified",
"]"
]
| python | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.