INSTRUCTION
stringlengths
1
46.3k
RESPONSE
stringlengths
75
80.2k
Decorator to log user actions
def log_this(cls, f): """Decorator to log user actions""" @functools.wraps(f) def wrapper(*args, **kwargs): user_id = None if g.user: user_id = g.user.get_id() d = request.form.to_dict() or {} # request parameters can overwrite post body request_params = request.args.to_dict() d.update(request_params) d.update(kwargs) slice_id = d.get('slice_id') dashboard_id = d.get('dashboard_id') try: slice_id = int( slice_id or json.loads(d.get('form_data')).get('slice_id')) except (ValueError, TypeError): slice_id = 0 stats_logger.incr(f.__name__) start_dttm = datetime.now() value = f(*args, **kwargs) duration_ms = (datetime.now() - start_dttm).total_seconds() * 1000 # bulk insert try: explode_by = d.get('explode') records = json.loads(d.get(explode_by)) except Exception: records = [d] referrer = request.referrer[:1000] if request.referrer else None logs = [] for record in records: try: json_string = json.dumps(record) except Exception: json_string = None log = cls( action=f.__name__, json=json_string, dashboard_id=dashboard_id, slice_id=slice_id, duration_ms=duration_ms, referrer=referrer, user_id=user_id) logs.append(log) sesh = db.session() sesh.bulk_save_objects(logs) sesh.commit() return value return wrapper
A decorator to label an endpoint as an API. Catches uncaught exceptions and return the response in the JSON format
def api(f): """ A decorator to label an endpoint as an API. Catches uncaught exceptions and return the response in the JSON format """ def wraps(self, *args, **kwargs): try: return f(self, *args, **kwargs) except Exception as e: logging.exception(e) return json_error_response(get_error_msg()) return functools.update_wrapper(wraps, f)
A decorator to catch superset exceptions. Use it after the @api decorator above so superset exception handler is triggered before the handler for generic exceptions.
def handle_api_exception(f): """ A decorator to catch superset exceptions. Use it after the @api decorator above so superset exception handler is triggered before the handler for generic exceptions. """ def wraps(self, *args, **kwargs): try: return f(self, *args, **kwargs) except SupersetSecurityException as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e), status=e.status, stacktrace=traceback.format_exc(), link=e.link) except SupersetException as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e), stacktrace=traceback.format_exc(), status=e.status) except Exception as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e), stacktrace=traceback.format_exc()) return functools.update_wrapper(wraps, f)
Meant to be used in `pre_update` hooks on models to enforce ownership Admin have all access, and other users need to be referenced on either the created_by field that comes with the ``AuditMixin``, or in a field named ``owners`` which is expected to be a one-to-many with the User model. It is meant to be used in the ModelView's pre_update hook in which raising will abort the update.
def check_ownership(obj, raise_if_false=True): """Meant to be used in `pre_update` hooks on models to enforce ownership Admin have all access, and other users need to be referenced on either the created_by field that comes with the ``AuditMixin``, or in a field named ``owners`` which is expected to be a one-to-many with the User model. It is meant to be used in the ModelView's pre_update hook in which raising will abort the update. """ if not obj: return False security_exception = SupersetSecurityException( "You don't have the rights to alter [{}]".format(obj)) if g.user.is_anonymous: if raise_if_false: raise security_exception return False roles = [r.name for r in get_user_roles()] if 'Admin' in roles: return True session = db.create_scoped_session() orig_obj = session.query(obj.__class__).filter_by(id=obj.id).first() # Making a list of owners that works across ORM models owners = [] if hasattr(orig_obj, 'owners'): owners += orig_obj.owners if hasattr(orig_obj, 'owner'): owners += [orig_obj.owner] if hasattr(orig_obj, 'created_by'): owners += [orig_obj.created_by] owner_names = [o.username for o in owners if o] if ( g.user and hasattr(g.user, 'username') and g.user.username in owner_names): return True if raise_if_false: raise security_exception else: return False
Customize how fields are bound by stripping all whitespace. :param form: The form :param unbound_field: The unbound field :param options: The field options :returns: The bound field
def bind_field( self, form: DynamicForm, unbound_field: UnboundField, options: Dict[Any, Any], ) -> Field: """ Customize how fields are bound by stripping all whitespace. :param form: The form :param unbound_field: The unbound field :param options: The field options :returns: The bound field """ filters = unbound_field.kwargs.get('filters', []) filters.append(lambda x: x.strip() if isinstance(x, str) else x) return unbound_field.bind(form=form, filters=filters, **options)
Common data always sent to the client
def common_bootsrap_payload(self): """Common data always sent to the client""" messages = get_flashed_messages(with_categories=True) locale = str(get_locale()) return { 'flash_messages': messages, 'conf': {k: conf.get(k) for k in FRONTEND_CONF_KEYS}, 'locale': locale, 'language_pack': get_language_pack(locale), 'feature_flags': get_feature_flags(), }
Delete function logic, override to implement diferent logic deletes the record with primary_key = pk :param pk: record primary key to delete
def _delete(self, pk): """ Delete function logic, override to implement diferent logic deletes the record with primary_key = pk :param pk: record primary key to delete """ item = self.datamodel.get(pk, self._base_filters) if not item: abort(404) try: self.pre_delete(item) except Exception as e: flash(str(e), 'danger') else: view_menu = security_manager.find_view_menu(item.get_perm()) pvs = security_manager.get_session.query( security_manager.permissionview_model).filter_by( view_menu=view_menu).all() schema_view_menu = None if hasattr(item, 'schema_perm'): schema_view_menu = security_manager.find_view_menu(item.schema_perm) pvs.extend(security_manager.get_session.query( security_manager.permissionview_model).filter_by( view_menu=schema_view_menu).all()) if self.datamodel.delete(item): self.post_delete(item) for pv in pvs: security_manager.get_session.delete(pv) if view_menu: security_manager.get_session.delete(view_menu) if schema_view_menu: security_manager.get_session.delete(schema_view_menu) security_manager.get_session.commit() flash(*self.datamodel.message) self.update_redirect()
Returns a set of tuples with the perm name and view menu name
def get_all_permissions(self): """Returns a set of tuples with the perm name and view menu name""" perms = set() for role in self.get_user_roles(): for perm_view in role.permissions: t = (perm_view.permission.name, perm_view.view_menu.name) perms.add(t) return perms
Returns the details of view_menus for a perm name
def get_view_menus(self, permission_name): """Returns the details of view_menus for a perm name""" vm = set() for perm_name, vm_name in self.get_all_permissions(): if perm_name == permission_name: vm.add(vm_name) return vm
Destroy a driver
def destroy_webdriver(driver): """ Destroy a driver """ # This is some very flaky code in selenium. Hence the retries # and catch-all exceptions try: retry_call(driver.close, tries=2) except Exception: pass try: driver.quit() except Exception: pass
Given a schedule, delivery the dashboard as an email report
def deliver_dashboard(schedule): """ Given a schedule, delivery the dashboard as an email report """ dashboard = schedule.dashboard dashboard_url = _get_url_path( 'Superset.dashboard', dashboard_id=dashboard.id, ) # Create a driver, fetch the page, wait for the page to render driver = create_webdriver() window = config.get('WEBDRIVER_WINDOW')['dashboard'] driver.set_window_size(*window) driver.get(dashboard_url) time.sleep(PAGE_RENDER_WAIT) # Set up a function to retry once for the element. # This is buggy in certain selenium versions with firefox driver get_element = getattr(driver, 'find_element_by_class_name') element = retry_call( get_element, fargs=['grid-container'], tries=2, delay=PAGE_RENDER_WAIT, ) try: screenshot = element.screenshot_as_png except WebDriverException: # Some webdrivers do not support screenshots for elements. # In such cases, take a screenshot of the entire page. screenshot = driver.screenshot() # pylint: disable=no-member finally: destroy_webdriver(driver) # Generate the email body and attachments email = _generate_mail_content( schedule, screenshot, dashboard.dashboard_title, dashboard_url, ) subject = __( '%(prefix)s %(title)s', prefix=config.get('EMAIL_REPORTS_SUBJECT_PREFIX'), title=dashboard.dashboard_title, ) _deliver_email(schedule, subject, email)
Given a schedule, delivery the slice as an email report
def deliver_slice(schedule): """ Given a schedule, delivery the slice as an email report """ if schedule.email_format == SliceEmailReportFormat.data: email = _get_slice_data(schedule) elif schedule.email_format == SliceEmailReportFormat.visualization: email = _get_slice_visualization(schedule) else: raise RuntimeError('Unknown email report format') subject = __( '%(prefix)s %(title)s', prefix=config.get('EMAIL_REPORTS_SUBJECT_PREFIX'), title=schedule.slice.slice_name, ) _deliver_email(schedule, subject, email)
Find all active schedules and schedule celery tasks for each of them with a specific ETA (determined by parsing the cron schedule for the schedule)
def schedule_window(report_type, start_at, stop_at, resolution): """ Find all active schedules and schedule celery tasks for each of them with a specific ETA (determined by parsing the cron schedule for the schedule) """ model_cls = get_scheduler_model(report_type) dbsession = db.create_scoped_session() schedules = dbsession.query(model_cls).filter(model_cls.active.is_(True)) for schedule in schedules: args = ( report_type, schedule.id, ) # Schedule the job for the specified time window for eta in next_schedules(schedule.crontab, start_at, stop_at, resolution=resolution): schedule_email_report.apply_async(args, eta=eta)
Celery beat job meant to be invoked hourly
def schedule_hourly(): """ Celery beat job meant to be invoked hourly """ if not config.get('ENABLE_SCHEDULED_EMAIL_REPORTS'): logging.info('Scheduled email reports not enabled in config') return resolution = config.get('EMAIL_REPORTS_CRON_RESOLUTION', 0) * 60 # Get the top of the hour start_at = datetime.now(tzlocal()).replace(microsecond=0, second=0, minute=0) stop_at = start_at + timedelta(seconds=3600) schedule_window(ScheduleType.dashboard.value, start_at, stop_at, resolution) schedule_window(ScheduleType.slice.value, start_at, stop_at, resolution)
De-duplicates a list of string by suffixing a counter Always returns the same number of entries as provided, and always returns unique values. Case sensitive comparison by default. >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar']))) foo,bar,bar__1,bar__2,Bar >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar'], case_sensitive=False))) foo,bar,bar__1,bar__2,Bar__3
def dedup(l, suffix='__', case_sensitive=True): """De-duplicates a list of string by suffixing a counter Always returns the same number of entries as provided, and always returns unique values. Case sensitive comparison by default. >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar']))) foo,bar,bar__1,bar__2,Bar >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar'], case_sensitive=False))) foo,bar,bar__1,bar__2,Bar__3 """ new_l = [] seen = {} for s in l: s_fixed_case = s if case_sensitive else s.lower() if s_fixed_case in seen: seen[s_fixed_case] += 1 s += suffix + str(seen[s_fixed_case]) else: seen[s_fixed_case] = 0 new_l.append(s) return new_l
Given a numpy dtype, Returns a generic database type
def db_type(cls, dtype): """Given a numpy dtype, Returns a generic database type""" if isinstance(dtype, ExtensionDtype): return cls.type_map.get(dtype.kind) elif hasattr(dtype, 'char'): return cls.type_map.get(dtype.char)
Provides metadata about columns for data visualization. :return: dict, with the fields name, type, is_date, is_dim and agg.
def columns(self): """Provides metadata about columns for data visualization. :return: dict, with the fields name, type, is_date, is_dim and agg. """ if self.df.empty: return None columns = [] sample_size = min(INFER_COL_TYPES_SAMPLE_SIZE, len(self.df.index)) sample = self.df if sample_size: sample = self.df.sample(sample_size) for col in self.df.dtypes.keys(): db_type_str = ( self._type_dict.get(col) or self.db_type(self.df.dtypes[col]) ) column = { 'name': col, 'agg': self.agg_func(self.df.dtypes[col], col), 'type': db_type_str, 'is_date': self.is_date(self.df.dtypes[col], db_type_str), 'is_dim': self.is_dimension(self.df.dtypes[col], col), } if not db_type_str or db_type_str.upper() == 'OBJECT': v = sample[col].iloc[0] if not sample[col].empty else None if isinstance(v, str): column['type'] = 'STRING' elif isinstance(v, int): column['type'] = 'INT' elif isinstance(v, float): column['type'] = 'FLOAT' elif isinstance(v, (datetime, date)): column['type'] = 'DATETIME' column['is_date'] = True column['is_dim'] = False # check if encoded datetime if ( column['type'] == 'STRING' and self.datetime_conversion_rate(sample[col]) > INFER_COL_TYPES_THRESHOLD): column.update({ 'is_date': True, 'is_dim': False, 'agg': None, }) # 'agg' is optional attribute if not column['agg']: column.pop('agg', None) columns.append(column) return columns
Getting the time component of the query
def get_timestamp_expression(self, time_grain): """Getting the time component of the query""" label = utils.DTTM_ALIAS db = self.table.database pdf = self.python_date_format is_epoch = pdf in ('epoch_s', 'epoch_ms') if not self.expression and not time_grain and not is_epoch: sqla_col = column(self.column_name, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label) grain = None if time_grain: grain = db.grains_dict().get(time_grain) if not grain: raise NotImplementedError( f'No grain spec for {time_grain} for database {db.database_name}') col = db.db_engine_spec.get_timestamp_column(self.expression, self.column_name) expr = db.db_engine_spec.get_time_expr(col, pdf, time_grain, grain) sqla_col = literal_column(expr, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label)
Convert datetime object to a SQL expression string If database_expression is empty, the internal dttm will be parsed as the string with the pattern that the user inputted (python_date_format) If database_expression is not empty, the internal dttm will be parsed as the sql sentence for the database to convert
def dttm_sql_literal(self, dttm, is_epoch_in_utc): """Convert datetime object to a SQL expression string If database_expression is empty, the internal dttm will be parsed as the string with the pattern that the user inputted (python_date_format) If database_expression is not empty, the internal dttm will be parsed as the sql sentence for the database to convert """ tf = self.python_date_format if self.database_expression: return self.database_expression.format(dttm.strftime('%Y-%m-%d %H:%M:%S')) elif tf: if is_epoch_in_utc: seconds_since_epoch = dttm.timestamp() else: seconds_since_epoch = (dttm - datetime(1970, 1, 1)).total_seconds() seconds_since_epoch = int(seconds_since_epoch) if tf == 'epoch_s': return str(seconds_since_epoch) elif tf == 'epoch_ms': return str(seconds_since_epoch * 1000) return "'{}'".format(dttm.strftime(tf)) else: s = self.table.database.db_engine_spec.convert_dttm( self.type or '', dttm) return s or "'{}'".format(dttm.strftime('%Y-%m-%d %H:%M:%S.%f'))
Takes a sql alchemy column object and adds label info if supported by engine. :param sqla_col: sql alchemy column instance :param label: alias/label that column is expected to have :return: either a sql alchemy column or label instance if supported by engine
def make_sqla_column_compatible(self, sqla_col, label=None): """Takes a sql alchemy column object and adds label info if supported by engine. :param sqla_col: sql alchemy column instance :param label: alias/label that column is expected to have :return: either a sql alchemy column or label instance if supported by engine """ label_expected = label or sqla_col.name db_engine_spec = self.database.db_engine_spec if db_engine_spec.supports_column_aliases: label = db_engine_spec.make_label_compatible(label_expected) sqla_col = sqla_col.label(label) sqla_col._df_label_expected = label_expected return sqla_col
Runs query against sqla to retrieve some sample values for the given column.
def values_for_column(self, column_name, limit=10000): """Runs query against sqla to retrieve some sample values for the given column. """ cols = {col.column_name: col for col in self.columns} target_col = cols[column_name] tp = self.get_template_processor() qry = ( select([target_col.get_sqla_col()]) .select_from(self.get_from_clause(tp)) .distinct() ) if limit: qry = qry.limit(limit) if self.fetch_values_predicate: tp = self.get_template_processor() qry = qry.where(tp.process_template(self.fetch_values_predicate)) engine = self.database.get_sqla_engine() sql = '{}'.format( qry.compile(engine, compile_kwargs={'literal_binds': True}), ) sql = self.mutate_query_from_config(sql) df = pd.read_sql_query(sql=sql, con=engine) return [row[0] for row in df.to_records(index=False)]
Apply config's SQL_QUERY_MUTATOR Typically adds comments to the query with context
def mutate_query_from_config(self, sql): """Apply config's SQL_QUERY_MUTATOR Typically adds comments to the query with context""" SQL_QUERY_MUTATOR = config.get('SQL_QUERY_MUTATOR') if SQL_QUERY_MUTATOR: username = utils.get_username() sql = SQL_QUERY_MUTATOR(sql, username, security_manager, self.database) return sql
Turn an adhoc metric into a sqlalchemy column. :param dict metric: Adhoc metric definition :param dict cols: Columns for the current table :returns: The metric defined as a sqlalchemy column :rtype: sqlalchemy.sql.column
def adhoc_metric_to_sqla(self, metric, cols): """ Turn an adhoc metric into a sqlalchemy column. :param dict metric: Adhoc metric definition :param dict cols: Columns for the current table :returns: The metric defined as a sqlalchemy column :rtype: sqlalchemy.sql.column """ expression_type = metric.get('expressionType') label = utils.get_metric_name(metric) if expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES['SIMPLE']: column_name = metric.get('column').get('column_name') table_column = cols.get(column_name) if table_column: sqla_column = table_column.get_sqla_col() else: sqla_column = column(column_name) sqla_metric = self.sqla_aggregations[metric.get('aggregate')](sqla_column) elif expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES['SQL']: sqla_metric = literal_column(metric.get('sqlExpression')) else: return None return self.make_sqla_column_compatible(sqla_metric, label)
Querying any sqla table from this common interface
def get_sqla_query( # sqla self, groupby, metrics, granularity, from_dttm, to_dttm, filter=None, # noqa is_timeseries=True, timeseries_limit=15, timeseries_limit_metric=None, row_limit=None, inner_from_dttm=None, inner_to_dttm=None, orderby=None, extras=None, columns=None, order_desc=True, prequeries=None, is_prequery=False, ): """Querying any sqla table from this common interface""" template_kwargs = { 'from_dttm': from_dttm, 'groupby': groupby, 'metrics': metrics, 'row_limit': row_limit, 'to_dttm': to_dttm, 'filter': filter, 'columns': {col.column_name: col for col in self.columns}, } template_kwargs.update(self.template_params_dict) template_processor = self.get_template_processor(**template_kwargs) db_engine_spec = self.database.db_engine_spec orderby = orderby or [] # For backward compatibility if granularity not in self.dttm_cols: granularity = self.main_dttm_col # Database spec supports join-free timeslot grouping time_groupby_inline = db_engine_spec.time_groupby_inline cols = {col.column_name: col for col in self.columns} metrics_dict = {m.metric_name: m for m in self.metrics} if not granularity and is_timeseries: raise Exception(_( 'Datetime column not provided as part table configuration ' 'and is required by this type of chart')) if not groupby and not metrics and not columns: raise Exception(_('Empty query?')) metrics_exprs = [] for m in metrics: if utils.is_adhoc_metric(m): metrics_exprs.append(self.adhoc_metric_to_sqla(m, cols)) elif m in metrics_dict: metrics_exprs.append(metrics_dict.get(m).get_sqla_col()) else: raise Exception(_("Metric '{}' is not valid".format(m))) if metrics_exprs: main_metric_expr = metrics_exprs[0] else: main_metric_expr, label = literal_column('COUNT(*)'), 'ccount' main_metric_expr = self.make_sqla_column_compatible(main_metric_expr, label) select_exprs = [] groupby_exprs_sans_timestamp = OrderedDict() if groupby: select_exprs = [] for s in groupby: if s in cols: outer = cols[s].get_sqla_col() else: outer = literal_column(f'({s})') outer = self.make_sqla_column_compatible(outer, s) groupby_exprs_sans_timestamp[outer.name] = outer select_exprs.append(outer) elif columns: for s in columns: select_exprs.append( cols[s].get_sqla_col() if s in cols else self.make_sqla_column_compatible(literal_column(s))) metrics_exprs = [] groupby_exprs_with_timestamp = OrderedDict(groupby_exprs_sans_timestamp.items()) if granularity: dttm_col = cols[granularity] time_grain = extras.get('time_grain_sqla') time_filters = [] if is_timeseries: timestamp = dttm_col.get_timestamp_expression(time_grain) select_exprs += [timestamp] groupby_exprs_with_timestamp[timestamp.name] = timestamp # Use main dttm column to support index with secondary dttm columns if db_engine_spec.time_secondary_columns and \ self.main_dttm_col in self.dttm_cols and \ self.main_dttm_col != dttm_col.column_name: time_filters.append(cols[self.main_dttm_col]. get_time_filter(from_dttm, to_dttm)) time_filters.append(dttm_col.get_time_filter(from_dttm, to_dttm)) select_exprs += metrics_exprs labels_expected = [c._df_label_expected for c in select_exprs] select_exprs = db_engine_spec.make_select_compatible( groupby_exprs_with_timestamp.values(), select_exprs) qry = sa.select(select_exprs) tbl = self.get_from_clause(template_processor) if not columns: qry = qry.group_by(*groupby_exprs_with_timestamp.values()) where_clause_and = [] having_clause_and = [] for flt in filter: if not all([flt.get(s) for s in ['col', 'op']]): continue col = flt['col'] op = flt['op'] col_obj = cols.get(col) if col_obj: is_list_target = op in ('in', 'not in') eq = self.filter_values_handler( flt.get('val'), target_column_is_numeric=col_obj.is_num, is_list_target=is_list_target) if op in ('in', 'not in'): cond = col_obj.get_sqla_col().in_(eq) if '<NULL>' in eq: cond = or_(cond, col_obj.get_sqla_col() == None) # noqa if op == 'not in': cond = ~cond where_clause_and.append(cond) else: if col_obj.is_num: eq = utils.string_to_num(flt['val']) if op == '==': where_clause_and.append(col_obj.get_sqla_col() == eq) elif op == '!=': where_clause_and.append(col_obj.get_sqla_col() != eq) elif op == '>': where_clause_and.append(col_obj.get_sqla_col() > eq) elif op == '<': where_clause_and.append(col_obj.get_sqla_col() < eq) elif op == '>=': where_clause_and.append(col_obj.get_sqla_col() >= eq) elif op == '<=': where_clause_and.append(col_obj.get_sqla_col() <= eq) elif op == 'LIKE': where_clause_and.append(col_obj.get_sqla_col().like(eq)) elif op == 'IS NULL': where_clause_and.append(col_obj.get_sqla_col() == None) # noqa elif op == 'IS NOT NULL': where_clause_and.append( col_obj.get_sqla_col() != None) # noqa if extras: where = extras.get('where') if where: where = template_processor.process_template(where) where_clause_and += [sa.text('({})'.format(where))] having = extras.get('having') if having: having = template_processor.process_template(having) having_clause_and += [sa.text('({})'.format(having))] if granularity: qry = qry.where(and_(*(time_filters + where_clause_and))) else: qry = qry.where(and_(*where_clause_and)) qry = qry.having(and_(*having_clause_and)) if not orderby and not columns: orderby = [(main_metric_expr, not order_desc)] for col, ascending in orderby: direction = asc if ascending else desc if utils.is_adhoc_metric(col): col = self.adhoc_metric_to_sqla(col, cols) qry = qry.order_by(direction(col)) if row_limit: qry = qry.limit(row_limit) if is_timeseries and \ timeseries_limit and groupby and not time_groupby_inline: if self.database.db_engine_spec.inner_joins: # some sql dialects require for order by expressions # to also be in the select clause -- others, e.g. vertica, # require a unique inner alias inner_main_metric_expr = self.make_sqla_column_compatible( main_metric_expr, 'mme_inner__') inner_groupby_exprs = [] inner_select_exprs = [] for gby_name, gby_obj in groupby_exprs_sans_timestamp.items(): inner = self.make_sqla_column_compatible(gby_obj, gby_name + '__') inner_groupby_exprs.append(inner) inner_select_exprs.append(inner) inner_select_exprs += [inner_main_metric_expr] subq = select(inner_select_exprs).select_from(tbl) inner_time_filter = dttm_col.get_time_filter( inner_from_dttm or from_dttm, inner_to_dttm or to_dttm, ) subq = subq.where(and_(*(where_clause_and + [inner_time_filter]))) subq = subq.group_by(*inner_groupby_exprs) ob = inner_main_metric_expr if timeseries_limit_metric: ob = self._get_timeseries_orderby( timeseries_limit_metric, metrics_dict, cols, ) direction = desc if order_desc else asc subq = subq.order_by(direction(ob)) subq = subq.limit(timeseries_limit) on_clause = [] for gby_name, gby_obj in groupby_exprs_sans_timestamp.items(): # in this case the column name, not the alias, needs to be # conditionally mutated, as it refers to the column alias in # the inner query col_name = db_engine_spec.make_label_compatible(gby_name + '__') on_clause.append(gby_obj == column(col_name)) tbl = tbl.join(subq.alias(), and_(*on_clause)) else: if timeseries_limit_metric: orderby = [( self._get_timeseries_orderby( timeseries_limit_metric, metrics_dict, cols, ), False, )] # run subquery to get top groups subquery_obj = { 'prequeries': prequeries, 'is_prequery': True, 'is_timeseries': False, 'row_limit': timeseries_limit, 'groupby': groupby, 'metrics': metrics, 'granularity': granularity, 'from_dttm': inner_from_dttm or from_dttm, 'to_dttm': inner_to_dttm or to_dttm, 'filter': filter, 'orderby': orderby, 'extras': extras, 'columns': columns, 'order_desc': True, } result = self.query(subquery_obj) dimensions = [ c for c in result.df.columns if c not in metrics and c in groupby_exprs_sans_timestamp ] top_groups = self._get_top_groups(result.df, dimensions, groupby_exprs_sans_timestamp) qry = qry.where(top_groups) return SqlaQuery(sqla_query=qry.select_from(tbl), labels_expected=labels_expected)
Fetches the metadata for the table and merges it in
def fetch_metadata(self): """Fetches the metadata for the table and merges it in""" try: table = self.get_sqla_table_object() except Exception as e: logging.exception(e) raise Exception(_( "Table [{}] doesn't seem to exist in the specified database, " "couldn't fetch column information").format(self.table_name)) M = SqlMetric # noqa metrics = [] any_date_col = None db_engine_spec = self.database.db_engine_spec db_dialect = self.database.get_dialect() dbcols = ( db.session.query(TableColumn) .filter(TableColumn.table == self) .filter(or_(TableColumn.column_name == col.name for col in table.columns))) dbcols = {dbcol.column_name: dbcol for dbcol in dbcols} for col in table.columns: try: datatype = col.type.compile(dialect=db_dialect).upper() except Exception as e: datatype = 'UNKNOWN' logging.error( 'Unrecognized data type in {}.{}'.format(table, col.name)) logging.exception(e) dbcol = dbcols.get(col.name, None) if not dbcol: dbcol = TableColumn(column_name=col.name, type=datatype) dbcol.sum = dbcol.is_num dbcol.avg = dbcol.is_num dbcol.is_dttm = dbcol.is_time db_engine_spec.alter_new_orm_column(dbcol) else: dbcol.type = datatype dbcol.groupby = True dbcol.filterable = True self.columns.append(dbcol) if not any_date_col and dbcol.is_time: any_date_col = col.name metrics.append(M( metric_name='count', verbose_name='COUNT(*)', metric_type='count', expression='COUNT(*)', )) if not self.main_dttm_col: self.main_dttm_col = any_date_col self.add_missing_metrics(metrics) db.session.merge(self) db.session.commit()
Imports the datasource from the object to the database. Metrics and columns and datasource will be overrided if exists. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copies over.
def import_obj(cls, i_datasource, import_time=None): """Imports the datasource from the object to the database. Metrics and columns and datasource will be overrided if exists. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copies over. """ def lookup_sqlatable(table): return db.session.query(SqlaTable).join(Database).filter( SqlaTable.table_name == table.table_name, SqlaTable.schema == table.schema, Database.id == table.database_id, ).first() def lookup_database(table): return db.session.query(Database).filter_by( database_name=table.params_dict['database_name']).one() return import_datasource.import_datasource( db.session, i_datasource, lookup_database, lookup_sqlatable, import_time)
Loading lat/long data from a csv file in the repo
def load_long_lat_data(): """Loading lat/long data from a csv file in the repo""" data = get_example_data('san_francisco.csv.gz', make_bytes=True) pdf = pd.read_csv(data, encoding='utf-8') start = datetime.datetime.now().replace( hour=0, minute=0, second=0, microsecond=0) pdf['datetime'] = [ start + datetime.timedelta(hours=i * 24 / (len(pdf) - 1)) for i in range(len(pdf)) ] pdf['occupancy'] = [random.randint(1, 6) for _ in range(len(pdf))] pdf['radius_miles'] = [random.uniform(1, 3) for _ in range(len(pdf))] pdf['geohash'] = pdf[['LAT', 'LON']].apply( lambda x: geohash.encode(*x), axis=1) pdf['delimited'] = pdf['LAT'].map(str).str.cat(pdf['LON'].map(str), sep=',') pdf.to_sql( # pylint: disable=no-member 'long_lat', db.engine, if_exists='replace', chunksize=500, dtype={ 'longitude': Float(), 'latitude': Float(), 'number': Float(), 'street': String(100), 'unit': String(10), 'city': String(50), 'district': String(50), 'region': String(50), 'postcode': Float(), 'id': String(100), 'datetime': DateTime(), 'occupancy': Float(), 'radius_miles': Float(), 'geohash': String(12), 'delimited': String(60), }, index=False) print('Done loading table!') print('-' * 80) print('Creating table reference') obj = db.session.query(TBL).filter_by(table_name='long_lat').first() if not obj: obj = TBL(table_name='long_lat') obj.main_dttm_col = 'datetime' obj.database = utils.get_or_create_main_db() db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj slice_data = { 'granularity_sqla': 'day', 'since': '2014-01-01', 'until': 'now', 'where': '', 'viz_type': 'mapbox', 'all_columns_x': 'LON', 'all_columns_y': 'LAT', 'mapbox_style': 'mapbox://styles/mapbox/light-v9', 'all_columns': ['occupancy'], 'row_limit': 500000, } print('Creating a slice') slc = Slice( slice_name='Mapbox Long/Lat', viz_type='mapbox', datasource_type='table', datasource_id=tbl.id, params=get_slice_json(slice_data), ) misc_dash_slices.add(slc.slice_name) merge_slice(slc)
Gets column info from the source system
def external_metadata(self, datasource_type=None, datasource_id=None): """Gets column info from the source system""" if datasource_type == 'druid': datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) elif datasource_type == 'table': database = ( db.session .query(Database) .filter_by(id=request.args.get('db_id')) .one() ) Table = ConnectorRegistry.sources['table'] datasource = Table( database=database, table_name=request.args.get('table_name'), schema=request.args.get('schema') or None, ) external_metadata = datasource.external_metadata() return self.json_response(external_metadata)
Returns a list of non empty values or None
def filter_not_empty_values(value): """Returns a list of non empty values or None""" if not value: return None data = [x for x in value if x] if not data: return None return data
If the user has access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is able to upload csv without specifying schema name b) if database supports schema user is able to upload csv to any schema 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and upload will fail b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload elif the user does not access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is unable to upload csv b) if database supports schema user is unable to upload csv 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and user is unable to upload csv b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload
def at_least_one_schema_is_allowed(database): """ If the user has access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is able to upload csv without specifying schema name b) if database supports schema user is able to upload csv to any schema 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and upload will fail b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload elif the user does not access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is unable to upload csv b) if database supports schema user is unable to upload csv 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and user is unable to upload csv b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload """ if (security_manager.database_access(database) or security_manager.all_datasource_access()): return True schemas = database.get_schema_access_for_csv_upload() if (schemas and security_manager.schemas_accessible_by_user( database, schemas, False)): return True return False
Filter queries to only those owned by current user if can_only_access_owned_queries permission is set. :returns: query
def apply( self, query: BaseQuery, func: Callable) -> BaseQuery: """ Filter queries to only those owned by current user if can_only_access_owned_queries permission is set. :returns: query """ if security_manager.can_only_access_owned_queries(): query = ( query .filter(Query.user_id == g.user.get_user_id()) ) return query
Simple hack to redirect to explore view after saving
def edit(self, pk): """Simple hack to redirect to explore view after saving""" resp = super(TableModelView, self).edit(pk) if isinstance(resp, str): return resp return redirect('/superset/explore/table/{}/'.format(pk))
Get/cache a language pack Returns the langugage pack from cache if it exists, caches otherwise >>> get_language_pack('fr')['Dashboards'] "Tableaux de bords"
def get_language_pack(locale): """Get/cache a language pack Returns the langugage pack from cache if it exists, caches otherwise >>> get_language_pack('fr')['Dashboards'] "Tableaux de bords" """ pack = ALL_LANGUAGE_PACKS.get(locale) if not pack: filename = DIR + '/{}/LC_MESSAGES/messages.json'.format(locale) try: with open(filename) as f: pack = json.load(f) ALL_LANGUAGE_PACKS[locale] = pack except Exception: # Assuming english, client side falls back on english pass return pack
Build `form_data` for chart GET request from dashboard's `default_filters`. When a dashboard has `default_filters` they need to be added as extra filters in the GET request for charts.
def get_form_data(chart_id, dashboard=None): """ Build `form_data` for chart GET request from dashboard's `default_filters`. When a dashboard has `default_filters` they need to be added as extra filters in the GET request for charts. """ form_data = {'slice_id': chart_id} if dashboard is None or not dashboard.json_metadata: return form_data json_metadata = json.loads(dashboard.json_metadata) # do not apply filters if chart is immune to them if chart_id in json_metadata.get('filter_immune_slices', []): return form_data default_filters = json.loads(json_metadata.get('default_filters', 'null')) if not default_filters: return form_data # are some of the fields in the chart immune to filters? filter_immune_slice_fields = json_metadata.get('filter_immune_slice_fields', {}) immune_fields = filter_immune_slice_fields.get(str(chart_id), []) extra_filters = [] for filters in default_filters.values(): for col, val in filters.items(): if col not in immune_fields: extra_filters.append({'col': col, 'op': 'in', 'val': val}) if extra_filters: form_data['extra_filters'] = extra_filters return form_data
Return external URL for warming up a given chart/table cache.
def get_url(params): """Return external URL for warming up a given chart/table cache.""" baseurl = 'http://{SUPERSET_WEBSERVER_ADDRESS}:{SUPERSET_WEBSERVER_PORT}/'.format( **app.config) with app.test_request_context(): return urllib.parse.urljoin( baseurl, url_for('Superset.explore_json', **params), )
Warm up cache. This task periodically hits charts to warm up the cache.
def cache_warmup(strategy_name, *args, **kwargs): """ Warm up cache. This task periodically hits charts to warm up the cache. """ logger.info('Loading strategy') class_ = None for class_ in strategies: if class_.name == strategy_name: break else: message = f'No strategy {strategy_name} found!' logger.error(message) return message logger.info(f'Loading {class_.__name__}') try: strategy = class_(*args, **kwargs) logger.info('Success!') except TypeError: message = 'Error loading strategy!' logger.exception(message) return message results = {'success': [], 'errors': []} for url in strategy.get_urls(): try: logger.info(f'Fetching {url}') requests.get(url) results['success'].append(url) except RequestException: logger.exception('Error warming up cache!') results['errors'].append(url) return results
Mocked. Retrieve the logs produced by the execution of the query. Can be called multiple times to fetch the logs produced after the previous call. :returns: list<str> :raises: ``ProgrammingError`` when no query has been started .. note:: This is not a part of DB-API.
def fetch_logs(self, max_rows=1024, orientation=None): """Mocked. Retrieve the logs produced by the execution of the query. Can be called multiple times to fetch the logs produced after the previous call. :returns: list<str> :raises: ``ProgrammingError`` when no query has been started .. note:: This is not a part of DB-API. """ from pyhive import hive from TCLIService import ttypes from thrift import Thrift orientation = orientation or ttypes.TFetchOrientation.FETCH_NEXT try: req = ttypes.TGetLogReq(operationHandle=self._operationHandle) logs = self._connection.client.GetLog(req).log return logs # raised if Hive is used except (ttypes.TApplicationException, Thrift.TApplicationException): if self._state == self._STATE_NONE: raise hive.ProgrammingError('No query yet') logs = [] while True: req = ttypes.TFetchResultsReq( operationHandle=self._operationHandle, orientation=ttypes.TFetchOrientation.FETCH_NEXT, maxRows=self.arraysize, fetchType=1, # 0: results, 1: logs ) response = self._connection.client.FetchResults(req) hive._check_status(response) assert not response.results.rows, \ 'expected data in columnar format' assert len(response.results.columns) == 1, response.results.columns new_logs = hive._unwrap_column(response.results.columns[0]) logs += new_logs if not new_logs: break return '\n'.join(logs)
Refresh metadata of all datasources in the cluster If ``datasource_name`` is specified, only that datasource is updated
def refresh_datasources( self, datasource_name=None, merge_flag=True, refreshAll=True): """Refresh metadata of all datasources in the cluster If ``datasource_name`` is specified, only that datasource is updated """ ds_list = self.get_datasources() blacklist = conf.get('DRUID_DATA_SOURCE_BLACKLIST', []) ds_refresh = [] if not datasource_name: ds_refresh = list(filter(lambda ds: ds not in blacklist, ds_list)) elif datasource_name not in blacklist and datasource_name in ds_list: ds_refresh.append(datasource_name) else: return self.refresh(ds_refresh, merge_flag, refreshAll)
Fetches metadata for the specified datasources and merges to the Superset database
def refresh(self, datasource_names, merge_flag, refreshAll): """ Fetches metadata for the specified datasources and merges to the Superset database """ session = db.session ds_list = ( session.query(DruidDatasource) .filter(DruidDatasource.cluster_name == self.cluster_name) .filter(DruidDatasource.datasource_name.in_(datasource_names)) ) ds_map = {ds.name: ds for ds in ds_list} for ds_name in datasource_names: datasource = ds_map.get(ds_name, None) if not datasource: datasource = DruidDatasource(datasource_name=ds_name) with session.no_autoflush: session.add(datasource) flasher( _('Adding new datasource [{}]').format(ds_name), 'success') ds_map[ds_name] = datasource elif refreshAll: flasher( _('Refreshing datasource [{}]').format(ds_name), 'info') else: del ds_map[ds_name] continue datasource.cluster = self datasource.merge_flag = merge_flag session.flush() # Prepare multithreaded executation pool = ThreadPool() ds_refresh = list(ds_map.values()) metadata = pool.map(_fetch_metadata_for, ds_refresh) pool.close() pool.join() for i in range(0, len(ds_refresh)): datasource = ds_refresh[i] cols = metadata[i] if cols: col_objs_list = ( session.query(DruidColumn) .filter(DruidColumn.datasource_id == datasource.id) .filter(DruidColumn.column_name.in_(cols.keys())) ) col_objs = {col.column_name: col for col in col_objs_list} for col in cols: if col == '__time': # skip the time column continue col_obj = col_objs.get(col) if not col_obj: col_obj = DruidColumn( datasource_id=datasource.id, column_name=col) with session.no_autoflush: session.add(col_obj) col_obj.type = cols[col]['type'] col_obj.datasource = datasource if col_obj.type == 'STRING': col_obj.groupby = True col_obj.filterable = True datasource.refresh_metrics() session.commit()
Refresh metrics based on the column metadata
def refresh_metrics(self): """Refresh metrics based on the column metadata""" metrics = self.get_metrics() dbmetrics = ( db.session.query(DruidMetric) .filter(DruidMetric.datasource_id == self.datasource_id) .filter(DruidMetric.metric_name.in_(metrics.keys())) ) dbmetrics = {metric.metric_name: metric for metric in dbmetrics} for metric in metrics.values(): dbmetric = dbmetrics.get(metric.metric_name) if dbmetric: for attr in ['json', 'metric_type']: setattr(dbmetric, attr, getattr(metric, attr)) else: with db.session.no_autoflush: metric.datasource_id = self.datasource_id db.session.add(metric)
Imports the datasource from the object to the database. Metrics and columns and datasource will be overridden if exists. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copies over.
def import_obj(cls, i_datasource, import_time=None): """Imports the datasource from the object to the database. Metrics and columns and datasource will be overridden if exists. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copies over. """ def lookup_datasource(d): return db.session.query(DruidDatasource).filter( DruidDatasource.datasource_name == d.datasource_name, DruidCluster.cluster_name == d.cluster_name, ).first() def lookup_cluster(d): return db.session.query(DruidCluster).filter_by( cluster_name=d.cluster_name).one() return import_datasource.import_datasource( db.session, i_datasource, lookup_cluster, lookup_datasource, import_time)
Merges the ds config from druid_config into one stored in the db.
def sync_to_db_from_config( cls, druid_config, user, cluster, refresh=True): """Merges the ds config from druid_config into one stored in the db.""" session = db.session datasource = ( session.query(cls) .filter_by(datasource_name=druid_config['name']) .first() ) # Create a new datasource. if not datasource: datasource = cls( datasource_name=druid_config['name'], cluster=cluster, owners=[user], changed_by_fk=user.id, created_by_fk=user.id, ) session.add(datasource) elif not refresh: return dimensions = druid_config['dimensions'] col_objs = ( session.query(DruidColumn) .filter(DruidColumn.datasource_id == datasource.id) .filter(DruidColumn.column_name.in_(dimensions)) ) col_objs = {col.column_name: col for col in col_objs} for dim in dimensions: col_obj = col_objs.get(dim, None) if not col_obj: col_obj = DruidColumn( datasource_id=datasource.id, column_name=dim, groupby=True, filterable=True, # TODO: fetch type from Hive. type='STRING', datasource=datasource, ) session.add(col_obj) # Import Druid metrics metric_objs = ( session.query(DruidMetric) .filter(DruidMetric.datasource_id == datasource.id) .filter(DruidMetric.metric_name.in_( spec['name'] for spec in druid_config['metrics_spec'] )) ) metric_objs = {metric.metric_name: metric for metric in metric_objs} for metric_spec in druid_config['metrics_spec']: metric_name = metric_spec['name'] metric_type = metric_spec['type'] metric_json = json.dumps(metric_spec) if metric_type == 'count': metric_type = 'longSum' metric_json = json.dumps({ 'type': 'longSum', 'name': metric_name, 'fieldName': metric_name, }) metric_obj = metric_objs.get(metric_name, None) if not metric_obj: metric_obj = DruidMetric( metric_name=metric_name, metric_type=metric_type, verbose_name='%s(%s)' % (metric_type, metric_name), datasource=datasource, json=metric_json, description=( 'Imported from the airolap config dir for %s' % druid_config['name']), ) session.add(metric_obj) session.commit()
For a metric specified as `postagg` returns the kind of post aggregation for pydruid.
def get_post_agg(mconf): """ For a metric specified as `postagg` returns the kind of post aggregation for pydruid. """ if mconf.get('type') == 'javascript': return JavascriptPostAggregator( name=mconf.get('name', ''), field_names=mconf.get('fieldNames', []), function=mconf.get('function', '')) elif mconf.get('type') == 'quantile': return Quantile( mconf.get('name', ''), mconf.get('probability', ''), ) elif mconf.get('type') == 'quantiles': return Quantiles( mconf.get('name', ''), mconf.get('probabilities', ''), ) elif mconf.get('type') == 'fieldAccess': return Field(mconf.get('name')) elif mconf.get('type') == 'constant': return Const( mconf.get('value'), output_name=mconf.get('name', ''), ) elif mconf.get('type') == 'hyperUniqueCardinality': return HyperUniqueCardinality( mconf.get('name'), ) elif mconf.get('type') == 'arithmetic': return Postaggregator( mconf.get('fn', '/'), mconf.get('fields', []), mconf.get('name', '')) else: return CustomPostAggregator( mconf.get('name', ''), mconf)
Return a list of metrics that are post aggregations
def find_postaggs_for(postagg_names, metrics_dict): """Return a list of metrics that are post aggregations""" postagg_metrics = [ metrics_dict[name] for name in postagg_names if metrics_dict[name].metric_type == POST_AGG_TYPE ] # Remove post aggregations that were found for postagg in postagg_metrics: postagg_names.remove(postagg.metric_name) return postagg_metrics
Retrieve some values for the given column
def values_for_column(self, column_name, limit=10000): """Retrieve some values for the given column""" logging.info( 'Getting values for columns [{}] limited to [{}]' .format(column_name, limit)) # TODO: Use Lexicographic TopNMetricSpec once supported by PyDruid if self.fetch_values_from: from_dttm = utils.parse_human_datetime(self.fetch_values_from) else: from_dttm = datetime(1970, 1, 1) qry = dict( datasource=self.datasource_name, granularity='all', intervals=from_dttm.isoformat() + '/' + datetime.now().isoformat(), aggregations=dict(count=count('count')), dimension=column_name, metric='count', threshold=limit, ) client = self.cluster.get_pydruid_client() client.topn(**qry) df = client.export_pandas() return [row[column_name] for row in df.to_records(index=False)]
Returns a dictionary of aggregation metric names to aggregation json objects :param metrics_dict: dictionary of all the metrics :param saved_metrics: list of saved metric names :param adhoc_metrics: list of adhoc metric names :raise SupersetException: if one or more metric names are not aggregations
def get_aggregations(metrics_dict, saved_metrics, adhoc_metrics=[]): """ Returns a dictionary of aggregation metric names to aggregation json objects :param metrics_dict: dictionary of all the metrics :param saved_metrics: list of saved metric names :param adhoc_metrics: list of adhoc metric names :raise SupersetException: if one or more metric names are not aggregations """ aggregations = OrderedDict() invalid_metric_names = [] for metric_name in saved_metrics: if metric_name in metrics_dict: metric = metrics_dict[metric_name] if metric.metric_type == POST_AGG_TYPE: invalid_metric_names.append(metric_name) else: aggregations[metric_name] = metric.json_obj else: invalid_metric_names.append(metric_name) if len(invalid_metric_names) > 0: raise SupersetException( _('Metric(s) {} must be aggregations.').format(invalid_metric_names)) for adhoc_metric in adhoc_metrics: aggregations[adhoc_metric['label']] = { 'fieldName': adhoc_metric['column']['column_name'], 'fieldNames': [adhoc_metric['column']['column_name']], 'type': DruidDatasource.druid_type_from_adhoc_metric(adhoc_metric), 'name': adhoc_metric['label'], } return aggregations
Replace dimensions specs with their `dimension` values, and ignore those without
def _dimensions_to_values(dimensions): """ Replace dimensions specs with their `dimension` values, and ignore those without """ values = [] for dimension in dimensions: if isinstance(dimension, dict): if 'extractionFn' in dimension: values.append(dimension) elif 'dimension' in dimension: values.append(dimension['dimension']) else: values.append(dimension) return values
Runs a query against Druid and returns a dataframe.
def run_query( # noqa / druid self, groupby, metrics, granularity, from_dttm, to_dttm, filter=None, # noqa is_timeseries=True, timeseries_limit=None, timeseries_limit_metric=None, row_limit=None, inner_from_dttm=None, inner_to_dttm=None, orderby=None, extras=None, # noqa columns=None, phase=2, client=None, order_desc=True, prequeries=None, is_prequery=False, ): """Runs a query against Druid and returns a dataframe. """ # TODO refactor into using a TBD Query object client = client or self.cluster.get_pydruid_client() row_limit = row_limit or conf.get('ROW_LIMIT') if not is_timeseries: granularity = 'all' if granularity == 'all': phase = 1 inner_from_dttm = inner_from_dttm or from_dttm inner_to_dttm = inner_to_dttm or to_dttm timezone = from_dttm.replace(tzinfo=DRUID_TZ).tzname() if from_dttm else None query_str = '' metrics_dict = {m.metric_name: m for m in self.metrics} columns_dict = {c.column_name: c for c in self.columns} if ( self.cluster and LooseVersion(self.cluster.get_druid_version()) < LooseVersion('0.11.0') ): for metric in metrics: self.sanitize_metric_object(metric) self.sanitize_metric_object(timeseries_limit_metric) aggregations, post_aggs = DruidDatasource.metrics_and_post_aggs( metrics, metrics_dict) self.check_restricted_metrics(aggregations) # the dimensions list with dimensionSpecs expanded dimensions = self.get_dimensions(groupby, columns_dict) extras = extras or {} qry = dict( datasource=self.datasource_name, dimensions=dimensions, aggregations=aggregations, granularity=DruidDatasource.granularity( granularity, timezone=timezone, origin=extras.get('druid_time_origin'), ), post_aggregations=post_aggs, intervals=self.intervals_from_dttms(from_dttm, to_dttm), ) filters = DruidDatasource.get_filters(filter, self.num_cols, columns_dict) if filters: qry['filter'] = filters having_filters = self.get_having_filters(extras.get('having_druid')) if having_filters: qry['having'] = having_filters order_direction = 'descending' if order_desc else 'ascending' if columns: columns.append('__time') del qry['post_aggregations'] del qry['aggregations'] qry['dimensions'] = columns qry['metrics'] = [] qry['granularity'] = 'all' qry['limit'] = row_limit client.scan(**qry) elif len(groupby) == 0 and not having_filters: logging.info('Running timeseries query for no groupby values') del qry['dimensions'] client.timeseries(**qry) elif ( not having_filters and len(groupby) == 1 and order_desc ): dim = list(qry.get('dimensions'))[0] logging.info('Running two-phase topn query for dimension [{}]'.format(dim)) pre_qry = deepcopy(qry) if timeseries_limit_metric: order_by = utils.get_metric_name(timeseries_limit_metric) aggs_dict, post_aggs_dict = DruidDatasource.metrics_and_post_aggs( [timeseries_limit_metric], metrics_dict) if phase == 1: pre_qry['aggregations'].update(aggs_dict) pre_qry['post_aggregations'].update(post_aggs_dict) else: pre_qry['aggregations'] = aggs_dict pre_qry['post_aggregations'] = post_aggs_dict else: agg_keys = qry['aggregations'].keys() order_by = list(agg_keys)[0] if agg_keys else None # Limit on the number of timeseries, doing a two-phases query pre_qry['granularity'] = 'all' pre_qry['threshold'] = min(row_limit, timeseries_limit or row_limit) pre_qry['metric'] = order_by pre_qry['dimension'] = self._dimensions_to_values(qry.get('dimensions'))[0] del pre_qry['dimensions'] client.topn(**pre_qry) logging.info('Phase 1 Complete') if phase == 2: query_str += '// Two phase query\n// Phase 1\n' query_str += json.dumps( client.query_builder.last_query.query_dict, indent=2) query_str += '\n' if phase == 1: return query_str query_str += ( "// Phase 2 (built based on phase one's results)\n") df = client.export_pandas() qry['filter'] = self._add_filter_from_pre_query_data( df, [pre_qry['dimension']], filters) qry['threshold'] = timeseries_limit or 1000 if row_limit and granularity == 'all': qry['threshold'] = row_limit qry['dimension'] = dim del qry['dimensions'] qry['metric'] = list(qry['aggregations'].keys())[0] client.topn(**qry) logging.info('Phase 2 Complete') elif len(groupby) > 0 or having_filters: # If grouping on multiple fields or using a having filter # we have to force a groupby query logging.info('Running groupby query for dimensions [{}]'.format(dimensions)) if timeseries_limit and is_timeseries: logging.info('Running two-phase query for timeseries') pre_qry = deepcopy(qry) pre_qry_dims = self._dimensions_to_values(qry['dimensions']) # Can't use set on an array with dicts # Use set with non-dict items only non_dict_dims = list( set([x for x in pre_qry_dims if not isinstance(x, dict)]), ) dict_dims = [x for x in pre_qry_dims if isinstance(x, dict)] pre_qry['dimensions'] = non_dict_dims + dict_dims order_by = None if metrics: order_by = utils.get_metric_name(metrics[0]) else: order_by = pre_qry_dims[0] if timeseries_limit_metric: order_by = utils.get_metric_name(timeseries_limit_metric) aggs_dict, post_aggs_dict = DruidDatasource.metrics_and_post_aggs( [timeseries_limit_metric], metrics_dict) if phase == 1: pre_qry['aggregations'].update(aggs_dict) pre_qry['post_aggregations'].update(post_aggs_dict) else: pre_qry['aggregations'] = aggs_dict pre_qry['post_aggregations'] = post_aggs_dict # Limit on the number of timeseries, doing a two-phases query pre_qry['granularity'] = 'all' pre_qry['limit_spec'] = { 'type': 'default', 'limit': min(timeseries_limit, row_limit), 'intervals': self.intervals_from_dttms( inner_from_dttm, inner_to_dttm), 'columns': [{ 'dimension': order_by, 'direction': order_direction, }], } client.groupby(**pre_qry) logging.info('Phase 1 Complete') query_str += '// Two phase query\n// Phase 1\n' query_str += json.dumps( client.query_builder.last_query.query_dict, indent=2) query_str += '\n' if phase == 1: return query_str query_str += ( "// Phase 2 (built based on phase one's results)\n") df = client.export_pandas() qry['filter'] = self._add_filter_from_pre_query_data( df, pre_qry['dimensions'], filters, ) qry['limit_spec'] = None if row_limit: dimension_values = self._dimensions_to_values(dimensions) qry['limit_spec'] = { 'type': 'default', 'limit': row_limit, 'columns': [{ 'dimension': ( utils.get_metric_name( metrics[0], ) if metrics else dimension_values[0] ), 'direction': order_direction, }], } client.groupby(**qry) logging.info('Query Complete') query_str += json.dumps( client.query_builder.last_query.query_dict, indent=2) return query_str
Converting all GROUPBY columns to strings When grouping by a numeric (say FLOAT) column, pydruid returns strings in the dataframe. This creates issues downstream related to having mixed types in the dataframe Here we replace None with <NULL> and make the whole series a str instead of an object.
def homogenize_types(df, groupby_cols): """Converting all GROUPBY columns to strings When grouping by a numeric (say FLOAT) column, pydruid returns strings in the dataframe. This creates issues downstream related to having mixed types in the dataframe Here we replace None with <NULL> and make the whole series a str instead of an object. """ for col in groupby_cols: df[col] = df[col].fillna('<NULL>').astype('unicode') return df
Given Superset filter data structure, returns pydruid Filter(s)
def get_filters(cls, raw_filters, num_cols, columns_dict): # noqa """Given Superset filter data structure, returns pydruid Filter(s)""" filters = None for flt in raw_filters: col = flt.get('col') op = flt.get('op') eq = flt.get('val') if ( not col or not op or (eq is None and op not in ('IS NULL', 'IS NOT NULL'))): continue # Check if this dimension uses an extraction function # If so, create the appropriate pydruid extraction object column_def = columns_dict.get(col) dim_spec = column_def.dimension_spec if column_def else None extraction_fn = None if dim_spec and 'extractionFn' in dim_spec: (col, extraction_fn) = DruidDatasource._create_extraction_fn(dim_spec) cond = None is_numeric_col = col in num_cols is_list_target = op in ('in', 'not in') eq = cls.filter_values_handler( eq, is_list_target=is_list_target, target_column_is_numeric=is_numeric_col) # For these two ops, could have used Dimension, # but it doesn't support extraction functions if op == '==': cond = Filter(dimension=col, value=eq, extraction_function=extraction_fn) elif op == '!=': cond = ~Filter(dimension=col, value=eq, extraction_function=extraction_fn) elif op in ('in', 'not in'): fields = [] # ignore the filter if it has no value if not len(eq): continue # if it uses an extraction fn, use the "in" operator # as Dimension isn't supported elif extraction_fn is not None: cond = Filter( dimension=col, values=eq, type='in', extraction_function=extraction_fn, ) elif len(eq) == 1: cond = Dimension(col) == eq[0] else: for s in eq: fields.append(Dimension(col) == s) cond = Filter(type='or', fields=fields) if op == 'not in': cond = ~cond elif op == 'regex': cond = Filter( extraction_function=extraction_fn, type='regex', pattern=eq, dimension=col, ) # For the ops below, could have used pydruid's Bound, # but it doesn't support extraction functions elif op == '>=': cond = Filter( type='bound', extraction_function=extraction_fn, dimension=col, lowerStrict=False, upperStrict=False, lower=eq, upper=None, alphaNumeric=is_numeric_col, ) elif op == '<=': cond = Filter( type='bound', extraction_function=extraction_fn, dimension=col, lowerStrict=False, upperStrict=False, lower=None, upper=eq, alphaNumeric=is_numeric_col, ) elif op == '>': cond = Filter( type='bound', extraction_function=extraction_fn, lowerStrict=True, upperStrict=False, dimension=col, lower=eq, upper=None, alphaNumeric=is_numeric_col, ) elif op == '<': cond = Filter( type='bound', extraction_function=extraction_fn, upperStrict=True, lowerStrict=False, dimension=col, lower=None, upper=eq, alphaNumeric=is_numeric_col, ) elif op == 'IS NULL': cond = Dimension(col) == None # NOQA elif op == 'IS NOT NULL': cond = Dimension(col) != None # NOQA if filters: filters = Filter(type='and', fields=[ cond, filters, ]) else: filters = cond return filters
Get the environment variable or raise exception.
def get_env_variable(var_name, default=None): """Get the environment variable or raise exception.""" try: return os.environ[var_name] except KeyError: if default is not None: return default else: error_msg = 'The environment variable {} was missing, abort...'\ .format(var_name) raise EnvironmentError(error_msg)
Returns datasource with columns and metrics.
def get_eager_datasource(cls, session, datasource_type, datasource_id): """Returns datasource with columns and metrics.""" datasource_class = ConnectorRegistry.sources[datasource_type] return ( session.query(datasource_class) .options( subqueryload(datasource_class.columns), subqueryload(datasource_class.metrics), ) .filter_by(id=datasource_id) .one() )
Loading a dashboard featuring misc charts
def load_misc_dashboard(): """Loading a dashboard featuring misc charts""" print('Creating the dashboard') db.session.expunge_all() dash = db.session.query(Dash).filter_by(slug=DASH_SLUG).first() if not dash: dash = Dash() js = textwrap.dedent("""\ { "CHART-BkeVbh8ANQ": { "children": [], "id": "CHART-BkeVbh8ANQ", "meta": { "chartId": 4004, "height": 34, "sliceName": "Multi Line", "width": 8 }, "type": "CHART" }, "CHART-H1HYNzEANX": { "children": [], "id": "CHART-H1HYNzEANX", "meta": { "chartId": 3940, "height": 50, "sliceName": "Energy Sankey", "width": 6 }, "type": "CHART" }, "CHART-HJOYVMV0E7": { "children": [], "id": "CHART-HJOYVMV0E7", "meta": { "chartId": 3969, "height": 63, "sliceName": "Mapbox Long/Lat", "width": 6 }, "type": "CHART" }, "CHART-S1WYNz4AVX": { "children": [], "id": "CHART-S1WYNz4AVX", "meta": { "chartId": 3989, "height": 25, "sliceName": "Parallel Coordinates", "width": 4 }, "type": "CHART" }, "CHART-r19KVMNCE7": { "children": [], "id": "CHART-r19KVMNCE7", "meta": { "chartId": 3971, "height": 34, "sliceName": "Calendar Heatmap multiformat 0", "width": 4 }, "type": "CHART" }, "CHART-rJ4K4GV04Q": { "children": [], "id": "CHART-rJ4K4GV04Q", "meta": { "chartId": 3941, "height": 63, "sliceName": "Energy Force Layout", "width": 6 }, "type": "CHART" }, "CHART-rkgF4G4A4X": { "children": [], "id": "CHART-rkgF4G4A4X", "meta": { "chartId": 3970, "height": 25, "sliceName": "Birth in France by department in 2016", "width": 8 }, "type": "CHART" }, "CHART-rywK4GVR4X": { "children": [], "id": "CHART-rywK4GVR4X", "meta": { "chartId": 3942, "height": 50, "sliceName": "Heatmap", "width": 6 }, "type": "CHART" }, "COLUMN-ByUFVf40EQ": { "children": [ "CHART-rywK4GVR4X", "CHART-HJOYVMV0E7" ], "id": "COLUMN-ByUFVf40EQ", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 6 }, "type": "COLUMN" }, "COLUMN-rkmYVGN04Q": { "children": [ "CHART-rJ4K4GV04Q", "CHART-H1HYNzEANX" ], "id": "COLUMN-rkmYVGN04Q", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 6 }, "type": "COLUMN" }, "GRID_ID": { "children": [ "ROW-SytNzNA4X", "ROW-S1MK4M4A4X", "ROW-HkFFEzVRVm" ], "id": "GRID_ID", "type": "GRID" }, "HEADER_ID": { "id": "HEADER_ID", "meta": { "text": "Misc Charts" }, "type": "HEADER" }, "ROOT_ID": { "children": [ "GRID_ID" ], "id": "ROOT_ID", "type": "ROOT" }, "ROW-HkFFEzVRVm": { "children": [ "CHART-r19KVMNCE7", "CHART-BkeVbh8ANQ" ], "id": "ROW-HkFFEzVRVm", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-S1MK4M4A4X": { "children": [ "COLUMN-rkmYVGN04Q", "COLUMN-ByUFVf40EQ" ], "id": "ROW-S1MK4M4A4X", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-SytNzNA4X": { "children": [ "CHART-rkgF4G4A4X", "CHART-S1WYNz4AVX" ], "id": "ROW-SytNzNA4X", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "DASHBOARD_VERSION_KEY": "v2" } """) pos = json.loads(js) slices = ( db.session .query(Slice) .filter(Slice.slice_name.in_(misc_dash_slices)) .all() ) slices = sorted(slices, key=lambda x: x.id) update_slice_ids(pos, slices) dash.dashboard_title = 'Misc Charts' dash.position_json = json.dumps(pos, indent=4) dash.slug = DASH_SLUG dash.slices = slices db.session.merge(dash) db.session.commit()
Loads the world bank health dataset, slices and a dashboard
def load_world_bank_health_n_pop(): """Loads the world bank health dataset, slices and a dashboard""" tbl_name = 'wb_health_population' data = get_example_data('countries.json.gz') pdf = pd.read_json(data) pdf.columns = [col.replace('.', '_') for col in pdf.columns] pdf.year = pd.to_datetime(pdf.year) pdf.to_sql( tbl_name, db.engine, if_exists='replace', chunksize=50, dtype={ 'year': DateTime(), 'country_code': String(3), 'country_name': String(255), 'region': String(255), }, index=False) print('Creating table [wb_health_population] reference') tbl = db.session.query(TBL).filter_by(table_name=tbl_name).first() if not tbl: tbl = TBL(table_name=tbl_name) tbl.description = utils.readfile(os.path.join(DATA_FOLDER, 'countries.md')) tbl.main_dttm_col = 'year' tbl.database = utils.get_or_create_main_db() tbl.filter_select_enabled = True metrics = [ 'sum__SP_POP_TOTL', 'sum__SH_DYN_AIDS', 'sum__SH_DYN_AIDS', 'sum__SP_RUR_TOTL_ZS', 'sum__SP_DYN_LE00_IN', ] for m in metrics: if not any(col.metric_name == m for col in tbl.metrics): tbl.metrics.append(SqlMetric( metric_name=m, expression=f'{m[:3]}({m[5:]})', )) db.session.merge(tbl) db.session.commit() tbl.fetch_metadata() defaults = { 'compare_lag': '10', 'compare_suffix': 'o10Y', 'limit': '25', 'granularity_sqla': 'year', 'groupby': [], 'metric': 'sum__SP_POP_TOTL', 'metrics': ['sum__SP_POP_TOTL'], 'row_limit': config.get('ROW_LIMIT'), 'since': '2014-01-01', 'until': '2014-01-02', 'time_range': '2014-01-01 : 2014-01-02', 'where': '', 'markup_type': 'markdown', 'country_fieldtype': 'cca3', 'secondary_metric': 'sum__SP_POP_TOTL', 'entity': 'country_code', 'show_bubbles': True, } print('Creating slices') slices = [ Slice( slice_name='Region Filter', viz_type='filter_box', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='filter_box', date_filter=False, filter_configs=[ { 'asc': False, 'clearable': True, 'column': 'region', 'key': '2s98dfu', 'metric': 'sum__SP_POP_TOTL', 'multiple': True, }, { 'asc': False, 'clearable': True, 'key': 'li3j2lk', 'column': 'country_name', 'metric': 'sum__SP_POP_TOTL', 'multiple': True, }, ])), Slice( slice_name="World's Population", viz_type='big_number', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='2000', viz_type='big_number', compare_lag='10', metric='sum__SP_POP_TOTL', compare_suffix='over 10Y')), Slice( slice_name='Most Populated Countries', viz_type='table', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='table', metrics=['sum__SP_POP_TOTL'], groupby=['country_name'])), Slice( slice_name='Growth Rate', viz_type='line', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='line', since='1960-01-01', metrics=['sum__SP_POP_TOTL'], num_period_compare='10', groupby=['country_name'])), Slice( slice_name='% Rural', viz_type='world_map', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='world_map', metric='sum__SP_RUR_TOTL_ZS', num_period_compare='10')), Slice( slice_name='Life Expectancy VS Rural %', viz_type='bubble', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='bubble', since='2011-01-01', until='2011-01-02', series='region', limit=0, entity='country_name', x='sum__SP_RUR_TOTL_ZS', y='sum__SP_DYN_LE00_IN', size='sum__SP_POP_TOTL', max_bubble_size='50', filters=[{ 'col': 'country_code', 'val': [ 'TCA', 'MNP', 'DMA', 'MHL', 'MCO', 'SXM', 'CYM', 'TUV', 'IMY', 'KNA', 'ASM', 'ADO', 'AMA', 'PLW', ], 'op': 'not in'}], )), Slice( slice_name='Rural Breakdown', viz_type='sunburst', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='sunburst', groupby=['region', 'country_name'], secondary_metric='sum__SP_RUR_TOTL', since='2011-01-01', until='2011-01-01')), Slice( slice_name="World's Pop Growth", viz_type='area', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='1960-01-01', until='now', viz_type='area', groupby=['region'])), Slice( slice_name='Box plot', viz_type='box_plot', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='1960-01-01', until='now', whisker_options='Min/max (no outliers)', x_ticks_layout='staggered', viz_type='box_plot', groupby=['region'])), Slice( slice_name='Treemap', viz_type='treemap', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='1960-01-01', until='now', viz_type='treemap', metrics=['sum__SP_POP_TOTL'], groupby=['region', 'country_code'])), Slice( slice_name='Parallel Coordinates', viz_type='para', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='2011-01-01', until='2011-01-01', viz_type='para', limit=100, metrics=[ 'sum__SP_POP_TOTL', 'sum__SP_RUR_TOTL_ZS', 'sum__SH_DYN_AIDS'], secondary_metric='sum__SP_POP_TOTL', series='country_name')), ] misc_dash_slices.add(slices[-1].slice_name) for slc in slices: merge_slice(slc) print("Creating a World's Health Bank dashboard") dash_name = "World's Bank Data" slug = 'world_health' dash = db.session.query(Dash).filter_by(slug=slug).first() if not dash: dash = Dash() js = textwrap.dedent("""\ { "CHART-36bfc934": { "children": [], "id": "CHART-36bfc934", "meta": { "chartId": 40, "height": 25, "sliceName": "Region Filter", "width": 2 }, "type": "CHART" }, "CHART-37982887": { "children": [], "id": "CHART-37982887", "meta": { "chartId": 41, "height": 25, "sliceName": "World's Population", "width": 2 }, "type": "CHART" }, "CHART-17e0f8d8": { "children": [], "id": "CHART-17e0f8d8", "meta": { "chartId": 42, "height": 92, "sliceName": "Most Populated Countries", "width": 3 }, "type": "CHART" }, "CHART-2ee52f30": { "children": [], "id": "CHART-2ee52f30", "meta": { "chartId": 43, "height": 38, "sliceName": "Growth Rate", "width": 6 }, "type": "CHART" }, "CHART-2d5b6871": { "children": [], "id": "CHART-2d5b6871", "meta": { "chartId": 44, "height": 52, "sliceName": "% Rural", "width": 7 }, "type": "CHART" }, "CHART-0fd0d252": { "children": [], "id": "CHART-0fd0d252", "meta": { "chartId": 45, "height": 50, "sliceName": "Life Expectancy VS Rural %", "width": 8 }, "type": "CHART" }, "CHART-97f4cb48": { "children": [], "id": "CHART-97f4cb48", "meta": { "chartId": 46, "height": 38, "sliceName": "Rural Breakdown", "width": 3 }, "type": "CHART" }, "CHART-b5e05d6f": { "children": [], "id": "CHART-b5e05d6f", "meta": { "chartId": 47, "height": 50, "sliceName": "World's Pop Growth", "width": 4 }, "type": "CHART" }, "CHART-e76e9f5f": { "children": [], "id": "CHART-e76e9f5f", "meta": { "chartId": 48, "height": 50, "sliceName": "Box plot", "width": 4 }, "type": "CHART" }, "CHART-a4808bba": { "children": [], "id": "CHART-a4808bba", "meta": { "chartId": 49, "height": 50, "sliceName": "Treemap", "width": 8 }, "type": "CHART" }, "COLUMN-071bbbad": { "children": [ "ROW-1e064e3c", "ROW-afdefba9" ], "id": "COLUMN-071bbbad", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 9 }, "type": "COLUMN" }, "COLUMN-fe3914b8": { "children": [ "CHART-36bfc934", "CHART-37982887" ], "id": "COLUMN-fe3914b8", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 2 }, "type": "COLUMN" }, "GRID_ID": { "children": [ "ROW-46632bc2", "ROW-3fa26c5d", "ROW-812b3f13" ], "id": "GRID_ID", "type": "GRID" }, "HEADER_ID": { "id": "HEADER_ID", "meta": { "text": "World's Bank Data" }, "type": "HEADER" }, "ROOT_ID": { "children": [ "GRID_ID" ], "id": "ROOT_ID", "type": "ROOT" }, "ROW-1e064e3c": { "children": [ "COLUMN-fe3914b8", "CHART-2d5b6871" ], "id": "ROW-1e064e3c", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-3fa26c5d": { "children": [ "CHART-b5e05d6f", "CHART-0fd0d252" ], "id": "ROW-3fa26c5d", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-46632bc2": { "children": [ "COLUMN-071bbbad", "CHART-17e0f8d8" ], "id": "ROW-46632bc2", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-812b3f13": { "children": [ "CHART-a4808bba", "CHART-e76e9f5f" ], "id": "ROW-812b3f13", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-afdefba9": { "children": [ "CHART-2ee52f30", "CHART-97f4cb48" ], "id": "ROW-afdefba9", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "DASHBOARD_VERSION_KEY": "v2" } """) pos = json.loads(js) update_slice_ids(pos, slices) dash.dashboard_title = dash_name dash.position_json = json.dumps(pos, indent=4) dash.slug = slug dash.slices = slices[:-1] db.session.merge(dash) db.session.commit()
Loading data for map with country map
def load_country_map_data(): """Loading data for map with country map""" csv_bytes = get_example_data( 'birth_france_data_for_country_map.csv', is_gzip=False, make_bytes=True) data = pd.read_csv(csv_bytes, encoding='utf-8') data['dttm'] = datetime.datetime.now().date() data.to_sql( # pylint: disable=no-member 'birth_france_by_region', db.engine, if_exists='replace', chunksize=500, dtype={ 'DEPT_ID': String(10), '2003': BigInteger, '2004': BigInteger, '2005': BigInteger, '2006': BigInteger, '2007': BigInteger, '2008': BigInteger, '2009': BigInteger, '2010': BigInteger, '2011': BigInteger, '2012': BigInteger, '2013': BigInteger, '2014': BigInteger, 'dttm': Date(), }, index=False) print('Done loading table!') print('-' * 80) print('Creating table reference') obj = db.session.query(TBL).filter_by(table_name='birth_france_by_region').first() if not obj: obj = TBL(table_name='birth_france_by_region') obj.main_dttm_col = 'dttm' obj.database = utils.get_or_create_main_db() if not any(col.metric_name == 'avg__2004' for col in obj.metrics): obj.metrics.append(SqlMetric( metric_name='avg__2004', expression='AVG(2004)', )) db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj slice_data = { 'granularity_sqla': '', 'since': '', 'until': '', 'where': '', 'viz_type': 'country_map', 'entity': 'DEPT_ID', 'metric': { 'expressionType': 'SIMPLE', 'column': { 'type': 'INT', 'column_name': '2004', }, 'aggregate': 'AVG', 'label': 'Boys', 'optionName': 'metric_112342', }, 'row_limit': 500000, } print('Creating a slice') slc = Slice( slice_name='Birth in France by department in 2016', viz_type='country_map', datasource_type='table', datasource_id=tbl.id, params=get_slice_json(slice_data), ) misc_dash_slices.add(slc.slice_name) merge_slice(slc)
Returns a list of SQL statements as strings, stripped
def get_statements(self): """Returns a list of SQL statements as strings, stripped""" statements = [] for statement in self._parsed: if statement: sql = str(statement).strip(' \n;\t') if sql: statements.append(sql) return statements
Reformats the query into the create table as query. Works only for the single select SQL statements, in all other cases the sql query is not modified. :param superset_query: string, sql query that will be executed :param table_name: string, will contain the results of the query execution :param overwrite, boolean, table table_name will be dropped if true :return: string, create table as query
def as_create_table(self, table_name, overwrite=False): """Reformats the query into the create table as query. Works only for the single select SQL statements, in all other cases the sql query is not modified. :param superset_query: string, sql query that will be executed :param table_name: string, will contain the results of the query execution :param overwrite, boolean, table table_name will be dropped if true :return: string, create table as query """ exec_sql = '' sql = self.stripped() if overwrite: exec_sql = f'DROP TABLE IF EXISTS {table_name};\n' exec_sql += f'CREATE TABLE {table_name} AS \n{sql}' return exec_sql
returns the query with the specified limit
def get_query_with_new_limit(self, new_limit): """returns the query with the specified limit""" """does not change the underlying query""" if not self._limit: return self.sql + ' LIMIT ' + str(new_limit) limit_pos = None tokens = self._parsed[0].tokens # Add all items to before_str until there is a limit for pos, item in enumerate(tokens): if item.ttype in Keyword and item.value.lower() == 'limit': limit_pos = pos break limit = tokens[limit_pos + 2] if limit.ttype == sqlparse.tokens.Literal.Number.Integer: tokens[limit_pos + 2].value = new_limit elif limit.is_group: tokens[limit_pos + 2].value = ( '{}, {}'.format(next(limit.get_identifiers()), new_limit) ) str_res = '' for i in tokens: str_res += str(i.value) return str_res
Read a url or post parameter and use it in your SQL Lab query When in SQL Lab, it's possible to add arbitrary URL "query string" parameters, and use those in your SQL code. For instance you can alter your url and add `?foo=bar`, as in `{domain}/superset/sqllab?foo=bar`. Then if your query is something like SELECT * FROM foo = '{{ url_param('foo') }}', it will be parsed at runtime and replaced by the value in the URL. As you create a visualization form this SQL Lab query, you can pass parameters in the explore view as well as from the dashboard, and it should carry through to your queries. :param param: the parameter to lookup :type param: str :param default: the value to return in the absence of the parameter :type default: str
def url_param(param, default=None): """Read a url or post parameter and use it in your SQL Lab query When in SQL Lab, it's possible to add arbitrary URL "query string" parameters, and use those in your SQL code. For instance you can alter your url and add `?foo=bar`, as in `{domain}/superset/sqllab?foo=bar`. Then if your query is something like SELECT * FROM foo = '{{ url_param('foo') }}', it will be parsed at runtime and replaced by the value in the URL. As you create a visualization form this SQL Lab query, you can pass parameters in the explore view as well as from the dashboard, and it should carry through to your queries. :param param: the parameter to lookup :type param: str :param default: the value to return in the absence of the parameter :type default: str """ if request.args.get(param): return request.args.get(param, default) # Supporting POST as well as get if request.form.get('form_data'): form_data = json.loads(request.form.get('form_data')) url_params = form_data.get('url_params') or {} return url_params.get(param, default) return default
Gets a values for a particular filter as a list This is useful if: - you want to use a filter box to filter a query where the name of filter box column doesn't match the one in the select statement - you want to have the ability for filter inside the main query for speed purposes This searches for "filters" and "extra_filters" in form_data for a match Usage example: SELECT action, count(*) as times FROM logs WHERE action in ( {{ "'" + "','".join(filter_values('action_type')) + "'" }} ) GROUP BY 1 :param column: column/filter name to lookup :type column: str :param default: default value to return if there's no matching columns :type default: str :return: returns a list of filter values :type: list
def filter_values(column, default=None): """ Gets a values for a particular filter as a list This is useful if: - you want to use a filter box to filter a query where the name of filter box column doesn't match the one in the select statement - you want to have the ability for filter inside the main query for speed purposes This searches for "filters" and "extra_filters" in form_data for a match Usage example: SELECT action, count(*) as times FROM logs WHERE action in ( {{ "'" + "','".join(filter_values('action_type')) + "'" }} ) GROUP BY 1 :param column: column/filter name to lookup :type column: str :param default: default value to return if there's no matching columns :type default: str :return: returns a list of filter values :type: list """ form_data = json.loads(request.form.get('form_data', '{}')) return_val = [] for filter_type in ['filters', 'extra_filters']: if filter_type not in form_data: continue for f in form_data[filter_type]: if f['col'] == column: for v in f['val']: return_val.append(v) if return_val: return return_val if default: return [default] else: return []
Processes a sql template >>> sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}'" >>> process_template(sql) "SELECT '2017-01-01T00:00:00'"
def process_template(self, sql, **kwargs): """Processes a sql template >>> sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}'" >>> process_template(sql) "SELECT '2017-01-01T00:00:00'" """ template = self.env.from_string(sql) kwargs.update(self.context) return template.render(kwargs)
Compatibility layer for handling of datasource info datasource_id & datasource_type used to be passed in the URL directory, now they should come as part of the form_data, This function allows supporting both without duplicating code
def get_datasource_info(datasource_id, datasource_type, form_data): """Compatibility layer for handling of datasource info datasource_id & datasource_type used to be passed in the URL directory, now they should come as part of the form_data, This function allows supporting both without duplicating code""" datasource = form_data.get('datasource', '') if '__' in datasource: datasource_id, datasource_type = datasource.split('__') # The case where the datasource has been deleted datasource_id = None if datasource_id == 'None' else datasource_id if not datasource_id: raise Exception( 'The datasource associated with this chart no longer exists') datasource_id = int(datasource_id) return datasource_id, datasource_type
Protecting from has_access failing from missing perms/view
def can_access(self, permission_name, view_name): """Protecting from has_access failing from missing perms/view""" user = g.user if user.is_anonymous: return self.is_item_public(permission_name, view_name) return self._has_view_access(user, permission_name, view_name)
FAB leaves faulty permissions that need to be cleaned up
def clean_perms(self): """FAB leaves faulty permissions that need to be cleaned up""" logging.info('Cleaning faulty perms') sesh = self.get_session pvms = ( sesh.query(ab_models.PermissionView) .filter(or_( ab_models.PermissionView.permission == None, # NOQA ab_models.PermissionView.view_menu == None, # NOQA )) ) deleted_count = pvms.delete() sesh.commit() if deleted_count: logging.info('Deleted {} faulty permissions'.format(deleted_count))
Inits the Superset application with security roles and such
def sync_role_definitions(self): """Inits the Superset application with security roles and such""" from superset import conf logging.info('Syncing role definition') self.create_custom_permissions() # Creating default roles self.set_role('Admin', self.is_admin_pvm) self.set_role('Alpha', self.is_alpha_pvm) self.set_role('Gamma', self.is_gamma_pvm) self.set_role('granter', self.is_granter_pvm) self.set_role('sql_lab', self.is_sql_lab_pvm) if conf.get('PUBLIC_ROLE_LIKE_GAMMA', False): self.set_role('Public', self.is_gamma_pvm) self.create_missing_perms() # commit role and view menu updates self.get_session.commit() self.clean_perms()
Exports the supported import/export schema to a dictionary
def export_schema_to_dict(back_references): """Exports the supported import/export schema to a dictionary""" databases = [Database.export_schema(recursive=True, include_parent_ref=back_references)] clusters = [DruidCluster.export_schema(recursive=True, include_parent_ref=back_references)] data = dict() if databases: data[DATABASES_KEY] = databases if clusters: data[DRUID_CLUSTERS_KEY] = clusters return data
Exports databases and druid clusters to a dictionary
def export_to_dict(session, recursive, back_references, include_defaults): """Exports databases and druid clusters to a dictionary""" logging.info('Starting export') dbs = session.query(Database) databases = [database.export_to_dict(recursive=recursive, include_parent_ref=back_references, include_defaults=include_defaults) for database in dbs] logging.info('Exported %d %s', len(databases), DATABASES_KEY) cls = session.query(DruidCluster) clusters = [cluster.export_to_dict(recursive=recursive, include_parent_ref=back_references, include_defaults=include_defaults) for cluster in cls] logging.info('Exported %d %s', len(clusters), DRUID_CLUSTERS_KEY) data = dict() if databases: data[DATABASES_KEY] = databases if clusters: data[DRUID_CLUSTERS_KEY] = clusters return data
Imports databases and druid clusters from dictionary
def import_from_dict(session, data, sync=[]): """Imports databases and druid clusters from dictionary""" if isinstance(data, dict): logging.info('Importing %d %s', len(data.get(DATABASES_KEY, [])), DATABASES_KEY) for database in data.get(DATABASES_KEY, []): Database.import_from_dict(session, database, sync=sync) logging.info('Importing %d %s', len(data.get(DRUID_CLUSTERS_KEY, [])), DRUID_CLUSTERS_KEY) for datasource in data.get(DRUID_CLUSTERS_KEY, []): DruidCluster.import_from_dict(session, datasource, sync=sync) session.commit() else: logging.info('Supplied object is not a dictionary.')
Takes a query_obj constructed in the client and returns payload data response for the given query_obj. params: query_context: json_blob
def query(self): """ Takes a query_obj constructed in the client and returns payload data response for the given query_obj. params: query_context: json_blob """ query_context = QueryContext(**json.loads(request.form.get('query_context'))) security_manager.assert_datasource_permission(query_context.datasource) payload_json = query_context.get_payload() return json.dumps( payload_json, default=utils.json_int_dttm_ser, ignore_nan=True, )
Get the formdata stored in the database for existing slice. params: slice_id: integer
def query_form_data(self): """ Get the formdata stored in the database for existing slice. params: slice_id: integer """ form_data = {} slice_id = request.args.get('slice_id') if slice_id: slc = db.session.query(models.Slice).filter_by(id=slice_id).one_or_none() if slc: form_data = slc.form_data.copy() update_time_range(form_data) return json.dumps(form_data)
Loads 2 css templates to demonstrate the feature
def load_css_templates(): """Loads 2 css templates to demonstrate the feature""" print('Creating default CSS templates') obj = db.session.query(CssTemplate).filter_by(template_name='Flat').first() if not obj: obj = CssTemplate(template_name='Flat') css = textwrap.dedent("""\ .gridster div.widget { transition: background-color 0.5s ease; background-color: #FAFAFA; border: 1px solid #CCC; box-shadow: none; border-radius: 0px; } .gridster div.widget:hover { border: 1px solid #000; background-color: #EAEAEA; } .navbar { transition: opacity 0.5s ease; opacity: 0.05; } .navbar:hover { opacity: 1; } .chart-header .header{ font-weight: normal; font-size: 12px; } /* var bnbColors = [ //rausch hackb kazan babu lima beach tirol '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c', '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a', '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e', ]; */ """) obj.css = css db.session.merge(obj) db.session.commit() obj = ( db.session.query(CssTemplate).filter_by(template_name='Courier Black').first()) if not obj: obj = CssTemplate(template_name='Courier Black') css = textwrap.dedent("""\ .gridster div.widget { transition: background-color 0.5s ease; background-color: #EEE; border: 2px solid #444; border-radius: 15px; box-shadow: none; } h2 { color: white; font-size: 52px; } .navbar { box-shadow: none; } .gridster div.widget:hover { border: 2px solid #000; background-color: #EAEAEA; } .navbar { transition: opacity 0.5s ease; opacity: 0.05; } .navbar:hover { opacity: 1; } .chart-header .header{ font-weight: normal; font-size: 12px; } .nvd3 text { font-size: 12px; font-family: inherit; } body{ background: #000; font-family: Courier, Monaco, monospace;; } /* var bnbColors = [ //rausch hackb kazan babu lima beach tirol '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c', '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a', '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e', ]; */ """) obj.css = css db.session.merge(obj) db.session.commit()
Get a mapping of foreign name to the local name of foreign keys
def _parent_foreign_key_mappings(cls): """Get a mapping of foreign name to the local name of foreign keys""" parent_rel = cls.__mapper__.relationships.get(cls.export_parent) if parent_rel: return {l.name: r.name for (l, r) in parent_rel.local_remote_pairs} return {}
Get all (single column and multi column) unique constraints
def _unique_constrains(cls): """Get all (single column and multi column) unique constraints""" unique = [{c.name for c in u.columns} for u in cls.__table_args__ if isinstance(u, UniqueConstraint)] unique.extend({c.name} for c in cls.__table__.columns if c.unique) return unique
Export schema as a dictionary
def export_schema(cls, recursive=True, include_parent_ref=False): """Export schema as a dictionary""" parent_excludes = {} if not include_parent_ref: parent_ref = cls.__mapper__.relationships.get(cls.export_parent) if parent_ref: parent_excludes = {c.name for c in parent_ref.local_columns} def formatter(c): return ('{0} Default ({1})'.format( str(c.type), c.default.arg) if c.default else str(c.type)) schema = {c.name: formatter(c) for c in cls.__table__.columns if (c.name in cls.export_fields and c.name not in parent_excludes)} if recursive: for c in cls.export_children: child_class = cls.__mapper__.relationships[c].argument.class_ schema[c] = [child_class.export_schema(recursive=recursive, include_parent_ref=include_parent_ref)] return schema
Import obj from a dictionary
def import_from_dict(cls, session, dict_rep, parent=None, recursive=True, sync=[]): """Import obj from a dictionary""" parent_refs = cls._parent_foreign_key_mappings() export_fields = set(cls.export_fields) | set(parent_refs.keys()) new_children = {c: dict_rep.get(c) for c in cls.export_children if c in dict_rep} unique_constrains = cls._unique_constrains() filters = [] # Using these filters to check if obj already exists # Remove fields that should not get imported for k in list(dict_rep): if k not in export_fields: del dict_rep[k] if not parent: if cls.export_parent: for p in parent_refs.keys(): if p not in dict_rep: raise RuntimeError( '{0}: Missing field {1}'.format(cls.__name__, p)) else: # Set foreign keys to parent obj for k, v in parent_refs.items(): dict_rep[k] = getattr(parent, v) # Add filter for parent obj filters.extend([getattr(cls, k) == dict_rep.get(k) for k in parent_refs.keys()]) # Add filter for unique constraints ucs = [and_(*[getattr(cls, k) == dict_rep.get(k) for k in cs if dict_rep.get(k) is not None]) for cs in unique_constrains] filters.append(or_(*ucs)) # Check if object already exists in DB, break if more than one is found try: obj_query = session.query(cls).filter(and_(*filters)) obj = obj_query.one_or_none() except MultipleResultsFound as e: logging.error('Error importing %s \n %s \n %s', cls.__name__, str(obj_query), yaml.safe_dump(dict_rep)) raise e if not obj: is_new_obj = True # Create new DB object obj = cls(**dict_rep) logging.info('Importing new %s %s', obj.__tablename__, str(obj)) if cls.export_parent and parent: setattr(obj, cls.export_parent, parent) session.add(obj) else: is_new_obj = False logging.info('Updating %s %s', obj.__tablename__, str(obj)) # Update columns for k, v in dict_rep.items(): setattr(obj, k, v) # Recursively create children if recursive: for c in cls.export_children: child_class = cls.__mapper__.relationships[c].argument.class_ added = [] for c_obj in new_children.get(c, []): added.append(child_class.import_from_dict(session=session, dict_rep=c_obj, parent=obj, sync=sync)) # If children should get synced, delete the ones that did not # get updated. if c in sync and not is_new_obj: back_refs = child_class._parent_foreign_key_mappings() delete_filters = [getattr(child_class, k) == getattr(obj, back_refs.get(k)) for k in back_refs.keys()] to_delete = set(session.query(child_class).filter( and_(*delete_filters))).difference(set(added)) for o in to_delete: logging.info('Deleting %s %s', c, str(obj)) session.delete(o) return obj
Export obj to dictionary
def export_to_dict(self, recursive=True, include_parent_ref=False, include_defaults=False): """Export obj to dictionary""" cls = self.__class__ parent_excludes = {} if recursive and not include_parent_ref: parent_ref = cls.__mapper__.relationships.get(cls.export_parent) if parent_ref: parent_excludes = {c.name for c in parent_ref.local_columns} dict_rep = {c.name: getattr(self, c.name) for c in cls.__table__.columns if (c.name in self.export_fields and c.name not in parent_excludes and (include_defaults or ( getattr(self, c.name) is not None and (not c.default or getattr(self, c.name) != c.default.arg)))) } if recursive: for c in self.export_children: # sorting to make lists of children stable dict_rep[c] = sorted( [ child.export_to_dict( recursive=recursive, include_parent_ref=include_parent_ref, include_defaults=include_defaults, ) for child in getattr(self, c) ], key=lambda k: sorted(k.items())) return dict_rep
Overrides the plain fields of the dashboard.
def override(self, obj): """Overrides the plain fields of the dashboard.""" for field in obj.__class__.export_fields: setattr(self, field, getattr(obj, field))
Move since and until to time_range.
def update_time_range(form_data): """Move since and until to time_range.""" if 'since' in form_data or 'until' in form_data: form_data['time_range'] = '{} : {}'.format( form_data.pop('since', '') or '', form_data.pop('until', '') or '', )
Use this decorator to cache functions that have predefined first arg. enable_cache is treated as True by default, except enable_cache = False is passed to the decorated function. force means whether to force refresh the cache and is treated as False by default, except force = True is passed to the decorated function. timeout of cache is set to 600 seconds by default, except cache_timeout = {timeout in seconds} is passed to the decorated function. memoized_func uses simple_cache and stored the data in memory. Key is a callable function that takes function arguments and returns the caching key.
def memoized_func(key=view_cache_key, attribute_in_key=None): """Use this decorator to cache functions that have predefined first arg. enable_cache is treated as True by default, except enable_cache = False is passed to the decorated function. force means whether to force refresh the cache and is treated as False by default, except force = True is passed to the decorated function. timeout of cache is set to 600 seconds by default, except cache_timeout = {timeout in seconds} is passed to the decorated function. memoized_func uses simple_cache and stored the data in memory. Key is a callable function that takes function arguments and returns the caching key. """ def wrap(f): if tables_cache: def wrapped_f(self, *args, **kwargs): if not kwargs.get('cache', True): return f(self, *args, **kwargs) if attribute_in_key: cache_key = key(*args, **kwargs).format( getattr(self, attribute_in_key)) else: cache_key = key(*args, **kwargs) o = tables_cache.get(cache_key) if not kwargs.get('force') and o is not None: return o o = f(self, *args, **kwargs) tables_cache.set(cache_key, o, timeout=kwargs.get('cache_timeout')) return o else: # noop def wrapped_f(self, *args, **kwargs): return f(self, *args, **kwargs) return wrapped_f return wrap
Name property
def name(self): """Name property""" ts = datetime.now().isoformat() ts = ts.replace('-', '').replace(':', '').split('.')[0] tab = (self.tab_name.replace(' ', '_').lower() if self.tab_name else 'notab') tab = re.sub(r'\W+', '', tab) return f'sqllab_{tab}_{ts}'
Check if user can access a cached response from explore_json. This function takes `self` since it must have the same signature as the the decorated method.
def check_datasource_perms(self, datasource_type=None, datasource_id=None): """ Check if user can access a cached response from explore_json. This function takes `self` since it must have the same signature as the the decorated method. """ form_data = get_form_data()[0] datasource_id, datasource_type = get_datasource_info( datasource_id, datasource_type, form_data) viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=False, ) security_manager.assert_datasource_permission(viz_obj.datasource)
Check if user can access a cached response from slice_json. This function takes `self` since it must have the same signature as the the decorated method.
def check_slice_perms(self, slice_id): """ Check if user can access a cached response from slice_json. This function takes `self` since it must have the same signature as the the decorated method. """ form_data, slc = get_form_data(slice_id, use_slice_data=True) datasource_type = slc.datasource.type datasource_id = slc.datasource.id viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=False, ) security_manager.assert_datasource_permission(viz_obj.datasource)
Applies the configuration's http headers to all responses
def apply_caching(response): """Applies the configuration's http headers to all responses""" for k, v in config.get('HTTP_HEADERS').items(): response.headers[k] = v return response
Updates the role with the give datasource permissions. Permissions not in the request will be revoked. This endpoint should be available to admins only. Expects JSON in the format: { 'role_name': '{role_name}', 'database': [{ 'datasource_type': '{table|druid}', 'name': '{database_name}', 'schema': [{ 'name': '{schema_name}', 'datasources': ['{datasource name}, {datasource name}'] }] }] }
def override_role_permissions(self): """Updates the role with the give datasource permissions. Permissions not in the request will be revoked. This endpoint should be available to admins only. Expects JSON in the format: { 'role_name': '{role_name}', 'database': [{ 'datasource_type': '{table|druid}', 'name': '{database_name}', 'schema': [{ 'name': '{schema_name}', 'datasources': ['{datasource name}, {datasource name}'] }] }] } """ data = request.get_json(force=True) role_name = data['role_name'] databases = data['database'] db_ds_names = set() for dbs in databases: for schema in dbs['schema']: for ds_name in schema['datasources']: fullname = utils.get_datasource_full_name( dbs['name'], ds_name, schema=schema['name']) db_ds_names.add(fullname) existing_datasources = ConnectorRegistry.get_all_datasources(db.session) datasources = [ d for d in existing_datasources if d.full_name in db_ds_names] role = security_manager.find_role(role_name) # remove all permissions role.permissions = [] # grant permissions to the list of datasources granted_perms = [] for datasource in datasources: view_menu_perm = security_manager.find_permission_view_menu( view_menu_name=datasource.perm, permission_name='datasource_access') # prevent creating empty permissions if view_menu_perm and view_menu_perm.view_menu: role.permissions.append(view_menu_perm) granted_perms.append(view_menu_perm.view_menu.name) db.session.commit() return self.json_response({ 'granted': granted_perms, 'requested': list(db_ds_names), }, status=201)
Serves all request that GET or POST form_data This endpoint evolved to be the entry point of many different requests that GETs or POSTs a form_data. `self.generate_json` receives this input and returns different payloads based on the request args in the first block TODO: break into one endpoint for each return shape
def explore_json(self, datasource_type=None, datasource_id=None): """Serves all request that GET or POST form_data This endpoint evolved to be the entry point of many different requests that GETs or POSTs a form_data. `self.generate_json` receives this input and returns different payloads based on the request args in the first block TODO: break into one endpoint for each return shape""" csv = request.args.get('csv') == 'true' query = request.args.get('query') == 'true' results = request.args.get('results') == 'true' samples = request.args.get('samples') == 'true' force = request.args.get('force') == 'true' form_data = get_form_data()[0] datasource_id, datasource_type = get_datasource_info( datasource_id, datasource_type, form_data) viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=force, ) return self.generate_json( viz_obj, csv=csv, query=query, results=results, samples=samples, )
Overrides the dashboards using json instances from the file.
def import_dashboards(self): """Overrides the dashboards using json instances from the file.""" f = request.files.get('file') if request.method == 'POST' and f: dashboard_import_export.import_dashboards(db.session, f.stream) return redirect('/dashboard/list/') return self.render_template('superset/import_dashboards.html')
Deprecated endpoint, here for backward compatibility of urls
def explorev2(self, datasource_type, datasource_id): """Deprecated endpoint, here for backward compatibility of urls""" return redirect(url_for( 'Superset.explore', datasource_type=datasource_type, datasource_id=datasource_id, **request.args))
Endpoint to retrieve values for specified column. :param datasource_type: Type of datasource e.g. table :param datasource_id: Datasource id :param column: Column name to retrieve values for :return:
def filter(self, datasource_type, datasource_id, column): """ Endpoint to retrieve values for specified column. :param datasource_type: Type of datasource e.g. table :param datasource_id: Datasource id :param column: Column name to retrieve values for :return: """ # TODO: Cache endpoint by user, datasource and column datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) if not datasource: return json_error_response(DATASOURCE_MISSING_ERR) security_manager.assert_datasource_permission(datasource) payload = json.dumps( datasource.values_for_column( column, config.get('FILTER_SELECT_ROW_LIMIT', 10000), ), default=utils.json_int_dttm_ser) return json_success(payload)
Save or overwrite a slice
def save_or_overwrite_slice( self, args, slc, slice_add_perm, slice_overwrite_perm, slice_download_perm, datasource_id, datasource_type, datasource_name): """Save or overwrite a slice""" slice_name = args.get('slice_name') action = args.get('action') form_data = get_form_data()[0] if action in ('saveas'): if 'slice_id' in form_data: form_data.pop('slice_id') # don't save old slice_id slc = models.Slice(owners=[g.user] if g.user else []) slc.params = json.dumps(form_data, indent=2, sort_keys=True) slc.datasource_name = datasource_name slc.viz_type = form_data['viz_type'] slc.datasource_type = datasource_type slc.datasource_id = datasource_id slc.slice_name = slice_name if action in ('saveas') and slice_add_perm: self.save_slice(slc) elif action == 'overwrite' and slice_overwrite_perm: self.overwrite_slice(slc) # Adding slice to a dashboard if requested dash = None if request.args.get('add_to_dash') == 'existing': dash = ( db.session.query(models.Dashboard) .filter_by(id=int(request.args.get('save_to_dashboard_id'))) .one() ) # check edit dashboard permissions dash_overwrite_perm = check_ownership(dash, raise_if_false=False) if not dash_overwrite_perm: return json_error_response( _('You don\'t have the rights to ') + _('alter this ') + _('dashboard'), status=400) flash( _('Chart [{}] was added to dashboard [{}]').format( slc.slice_name, dash.dashboard_title), 'info') elif request.args.get('add_to_dash') == 'new': # check create dashboard permissions dash_add_perm = security_manager.can_access('can_add', 'DashboardModelView') if not dash_add_perm: return json_error_response( _('You don\'t have the rights to ') + _('create a ') + _('dashboard'), status=400) dash = models.Dashboard( dashboard_title=request.args.get('new_dashboard_name'), owners=[g.user] if g.user else []) flash( _('Dashboard [{}] just got created and chart [{}] was added ' 'to it').format( dash.dashboard_title, slc.slice_name), 'info') if dash and slc not in dash.slices: dash.slices.append(slc) db.session.commit() response = { 'can_add': slice_add_perm, 'can_download': slice_download_perm, 'can_overwrite': is_owner(slc, g.user), 'form_data': slc.form_data, 'slice': slc.data, 'dashboard_id': dash.id if dash else None, } if request.args.get('goto_dash') == 'true': response.update({'dashboard': dash.url}) return json_success(json.dumps(response))
endpoint for checking/unchecking any boolean in a sqla model
def checkbox(self, model_view, id_, attr, value): """endpoint for checking/unchecking any boolean in a sqla model""" modelview_to_model = { '{}ColumnInlineView'.format(name.capitalize()): source.column_class for name, source in ConnectorRegistry.sources.items() } model = modelview_to_model[model_view] col = db.session.query(model).filter_by(id=id_).first() checked = value == 'true' if col: setattr(col, attr, checked) if checked: metrics = col.get_metrics().values() col.datasource.add_missing_metrics(metrics) db.session.commit() return json_success('OK')
Endpoint to fetch the list of tables for given database
def tables(self, db_id, schema, substr, force_refresh='false'): """Endpoint to fetch the list of tables for given database""" db_id = int(db_id) force_refresh = force_refresh.lower() == 'true' schema = utils.js_string_to_python(schema) substr = utils.js_string_to_python(substr) database = db.session.query(models.Database).filter_by(id=db_id).one() if schema: table_names = database.all_table_names_in_schema( schema=schema, force=force_refresh, cache=database.table_cache_enabled, cache_timeout=database.table_cache_timeout) view_names = database.all_view_names_in_schema( schema=schema, force=force_refresh, cache=database.table_cache_enabled, cache_timeout=database.table_cache_timeout) else: table_names = database.all_table_names_in_database( cache=True, force=False, cache_timeout=24 * 60 * 60) view_names = database.all_view_names_in_database( cache=True, force=False, cache_timeout=24 * 60 * 60) table_names = security_manager.accessible_by_user(database, table_names, schema) view_names = security_manager.accessible_by_user(database, view_names, schema) if substr: table_names = [tn for tn in table_names if substr in tn] view_names = [vn for vn in view_names if substr in vn] if not schema and database.default_schemas: def get_schema(tbl_or_view_name): return tbl_or_view_name.split('.')[0] if '.' in tbl_or_view_name else None user_schema = g.user.email.split('@')[0] valid_schemas = set(database.default_schemas + [user_schema]) table_names = [tn for tn in table_names if get_schema(tn) in valid_schemas] view_names = [vn for vn in view_names if get_schema(vn) in valid_schemas] max_items = config.get('MAX_TABLE_NAMES') or len(table_names) total_items = len(table_names) + len(view_names) max_tables = len(table_names) max_views = len(view_names) if total_items and substr: max_tables = max_items * len(table_names) // total_items max_views = max_items * len(view_names) // total_items table_options = [{'value': tn, 'label': tn} for tn in table_names[:max_tables]] table_options.extend([{'value': vn, 'label': '[view] {}'.format(vn)} for vn in view_names[:max_views]]) payload = { 'tableLength': len(table_names) + len(view_names), 'options': table_options, } return json_success(json.dumps(payload))
Copy dashboard
def copy_dash(self, dashboard_id): """Copy dashboard""" session = db.session() data = json.loads(request.form.get('data')) dash = models.Dashboard() original_dash = ( session .query(models.Dashboard) .filter_by(id=dashboard_id).first()) dash.owners = [g.user] if g.user else [] dash.dashboard_title = data['dashboard_title'] if data['duplicate_slices']: # Duplicating slices as well, mapping old ids to new ones old_to_new_sliceids = {} for slc in original_dash.slices: new_slice = slc.clone() new_slice.owners = [g.user] if g.user else [] session.add(new_slice) session.flush() new_slice.dashboards.append(dash) old_to_new_sliceids['{}'.format(slc.id)] = \ '{}'.format(new_slice.id) # update chartId of layout entities # in v2_dash positions json data, chartId should be integer, # while in older version slice_id is string type for value in data['positions'].values(): if ( isinstance(value, dict) and value.get('meta') and value.get('meta').get('chartId') ): old_id = '{}'.format(value.get('meta').get('chartId')) new_id = int(old_to_new_sliceids[old_id]) value['meta']['chartId'] = new_id else: dash.slices = original_dash.slices dash.params = original_dash.params self._set_dash_metadata(dash, data) session.add(dash) session.commit() dash_json = json.dumps(dash.data) session.close() return json_success(dash_json)
Save a dashboard's metadata
def save_dash(self, dashboard_id): """Save a dashboard's metadata""" session = db.session() dash = (session .query(models.Dashboard) .filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) data = json.loads(request.form.get('data')) self._set_dash_metadata(dash, data) session.merge(dash) session.commit() session.close() return json_success(json.dumps({'status': 'SUCCESS'}))
Add and save slices to a dashboard
def add_slices(self, dashboard_id): """Add and save slices to a dashboard""" data = json.loads(request.form.get('data')) session = db.session() Slice = models.Slice # noqa dash = ( session.query(models.Dashboard).filter_by(id=dashboard_id).first()) check_ownership(dash, raise_if_false=True) new_slices = session.query(Slice).filter( Slice.id.in_(data['slice_ids'])) dash.slices += new_slices session.merge(dash) session.commit() session.close() return 'SLICES ADDED'
Recent activity (actions) for a given user
def recent_activity(self, user_id): """Recent activity (actions) for a given user""" M = models # noqa if request.args.get('limit'): limit = int(request.args.get('limit')) else: limit = 1000 qry = ( db.session.query(M.Log, M.Dashboard, M.Slice) .outerjoin( M.Dashboard, M.Dashboard.id == M.Log.dashboard_id, ) .outerjoin( M.Slice, M.Slice.id == M.Log.slice_id, ) .filter( sqla.and_( ~M.Log.action.in_(('queries', 'shortner', 'sql_json')), M.Log.user_id == user_id, ), ) .order_by(M.Log.dttm.desc()) .limit(limit) ) payload = [] for log in qry.all(): item_url = None item_title = None if log.Dashboard: item_url = log.Dashboard.url item_title = log.Dashboard.dashboard_title elif log.Slice: item_url = log.Slice.slice_url item_title = log.Slice.slice_name payload.append({ 'action': log.Log.action, 'item_url': item_url, 'item_title': item_title, 'time': log.Log.dttm, }) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
This lets us use a user's username to pull favourite dashboards
def fave_dashboards_by_username(self, username): """This lets us use a user's username to pull favourite dashboards""" user = security_manager.find_user(username=username) return self.fave_dashboards(user.get_id())
List of slices a user created, or faved
def user_slices(self, user_id=None): """List of slices a user created, or faved""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa FavStar = models.FavStar # noqa qry = ( db.session.query(Slice, FavStar.dttm).join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), isouter=True).filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, FavStar.user_id == user_id, ), ) .order_by(Slice.slice_name.asc()) ) payload = [{ 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'data': o.Slice.form_data, 'dttm': o.dttm if o.dttm else o.Slice.changed_on, 'viz_type': o.Slice.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
List of slices created by this user
def created_slices(self, user_id=None): """List of slices created by this user""" if not user_id: user_id = g.user.id Slice = models.Slice # noqa qry = ( db.session.query(Slice) .filter( sqla.or_( Slice.created_by_fk == user_id, Slice.changed_by_fk == user_id, ), ) .order_by(Slice.changed_on.desc()) ) payload = [{ 'id': o.id, 'title': o.slice_name, 'url': o.slice_url, 'dttm': o.changed_on, 'viz_type': o.viz_type, } for o in qry.all()] return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
Favorite slices for a user
def fave_slices(self, user_id=None): """Favorite slices for a user""" if not user_id: user_id = g.user.id qry = ( db.session.query( models.Slice, models.FavStar.dttm, ) .join( models.FavStar, sqla.and_( models.FavStar.user_id == int(user_id), models.FavStar.class_name == 'slice', models.Slice.id == models.FavStar.obj_id, ), ) .order_by( models.FavStar.dttm.desc(), ) ) payload = [] for o in qry.all(): d = { 'id': o.Slice.id, 'title': o.Slice.slice_name, 'url': o.Slice.slice_url, 'dttm': o.dttm, 'viz_type': o.Slice.viz_type, } if o.Slice.created_by: user = o.Slice.created_by d['creator'] = str(user) d['creator_url'] = '/superset/profile/{}/'.format( user.username) payload.append(d) return json_success( json.dumps(payload, default=utils.json_int_dttm_ser))
Warms up the cache for the slice or table. Note for slices a force refresh occurs.
def warm_up_cache(self): """Warms up the cache for the slice or table. Note for slices a force refresh occurs. """ slices = None session = db.session() slice_id = request.args.get('slice_id') table_name = request.args.get('table_name') db_name = request.args.get('db_name') if not slice_id and not (table_name and db_name): return json_error_response(__( 'Malformed request. slice_id or table_name and db_name ' 'arguments are expected'), status=400) if slice_id: slices = session.query(models.Slice).filter_by(id=slice_id).all() if not slices: return json_error_response(__( 'Chart %(id)s not found', id=slice_id), status=404) elif table_name and db_name: SqlaTable = ConnectorRegistry.sources['table'] table = ( session.query(SqlaTable) .join(models.Database) .filter( models.Database.database_name == db_name or SqlaTable.table_name == table_name) ).first() if not table: return json_error_response(__( "Table %(t)s wasn't found in the database %(d)s", t=table_name, s=db_name), status=404) slices = session.query(models.Slice).filter_by( datasource_id=table.id, datasource_type=table.type).all() for slc in slices: try: form_data = get_form_data(slc.id, use_slice_data=True)[0] obj = get_viz( datasource_type=slc.datasource.type, datasource_id=slc.datasource.id, form_data=form_data, force=True, ) obj.get_json() except Exception as e: return json_error_response(utils.error_msg_from_exception(e)) return json_success(json.dumps( [{'slice_id': slc.id, 'slice_name': slc.slice_name} for slc in slices]))