INSTRUCTION
stringlengths
1
46.3k
RESPONSE
stringlengths
75
80.2k
[summary] Works iterative approximate O(n) Arguments: n {[int]} -- [description] Returns: [int] -- [description]
def fib_iter(n): """[summary] Works iterative approximate O(n) Arguments: n {[int]} -- [description] Returns: [int] -- [description] """ # precondition assert n >= 0, 'n must be positive integer' fib_1 = 0 fib_2 = 1 sum = 0 if n <= 1: return n for _ in range(n-1): sum = fib_1 + fib_2 fib_1 = fib_2 fib_2 = sum return sum
:param nums: List[int] :return: Set[tuple]
def subsets(nums): """ :param nums: List[int] :return: Set[tuple] """ n = len(nums) total = 1 << n res = set() for i in range(total): subset = tuple(num for j, num in enumerate(nums) if i & 1 << j) res.add(subset) return res
The length of longest common subsequence among the two given strings s1 and s2
def lcs(s1, s2, i, j): """ The length of longest common subsequence among the two given strings s1 and s2 """ if i == 0 or j == 0: return 0 elif s1[i - 1] == s2[j - 1]: return 1 + lcs(s1, s2, i - 1, j - 1) else: return max(lcs(s1, s2, i - 1, j), lcs(s1, s2, i, j - 1))
:type root: TreeNode :type p: TreeNode :type q: TreeNode :rtype: TreeNode
def lca(root, p, q): """ :type root: TreeNode :type p: TreeNode :type q: TreeNode :rtype: TreeNode """ if root is None or root is p or root is q: return root left = lca(root.left, p, q) right = lca(root.right, p, q) if left is not None and right is not None: return root return left if left else right
:type root: Node :type p: Node :type q: Node :rtype: Node
def lowest_common_ancestor(root, p, q): """ :type root: Node :type p: Node :type q: Node :rtype: Node """ while root: if p.val > root.val < q.val: root = root.right elif p.val < root.val > q.val: root = root.left else: return root
:type n: int :rtype: int
def climb_stairs(n): """ :type n: int :rtype: int """ arr = [1, 1] for _ in range(1, n): arr.append(arr[-1] + arr[-2]) return arr[-1]
find the nth digit of given number. 1. find the length of the number where the nth digit is from. 2. find the actual number where the nth digit is from 3. find the nth digit and return
def find_nth_digit(n): """find the nth digit of given number. 1. find the length of the number where the nth digit is from. 2. find the actual number where the nth digit is from 3. find the nth digit and return """ length = 1 count = 9 start = 1 while n > length * count: n -= length * count length += 1 count *= 10 start *= 10 start += (n-1) / length s = str(start) return int(s[(n-1) % length])
Return the 'hailstone sequence' from n to 1 n: The starting point of the hailstone sequence
def hailstone(n): """Return the 'hailstone sequence' from n to 1 n: The starting point of the hailstone sequence """ sequence = [n] while n > 1: if n%2 != 0: n = 3*n + 1 else: n = int(n/2) sequence.append(n) return sequence
:type s: str :type word_dict: Set[str] :rtype: bool
def word_break(s, word_dict): """ :type s: str :type word_dict: Set[str] :rtype: bool """ dp = [False] * (len(s)+1) dp[0] = True for i in range(1, len(s)+1): for j in range(0, i): if dp[j] and s[j:i] in word_dict: dp[i] = True break return dp[-1]
Return True if n is a prime number Else return False.
def prime_check(n): """Return True if n is a prime number Else return False. """ if n <= 1: return False if n == 2 or n == 3: return True if n % 2 == 0 or n % 3 == 0: return False j = 5 while j * j <= n: if n % j == 0 or n % (j + 2) == 0: return False j += 6 return True
Find the length of the longest substring without repeating characters.
def longest_non_repeat_v1(string): """ Find the length of the longest substring without repeating characters. """ if string is None: return 0 dict = {} max_length = 0 j = 0 for i in range(len(string)): if string[i] in dict: j = max(dict[string[i]], j) dict[string[i]] = i + 1 max_length = max(max_length, i - j + 1) return max_length
Find the length of the longest substring without repeating characters. Uses alternative algorithm.
def longest_non_repeat_v2(string): """ Find the length of the longest substring without repeating characters. Uses alternative algorithm. """ if string is None: return 0 start, max_len = 0, 0 used_char = {} for index, char in enumerate(string): if char in used_char and start <= used_char[char]: start = used_char[char] + 1 else: max_len = max(max_len, index - start + 1) used_char[char] = index return max_len
Find the length of the longest substring without repeating characters. Return max_len and the substring as a tuple
def get_longest_non_repeat_v1(string): """ Find the length of the longest substring without repeating characters. Return max_len and the substring as a tuple """ if string is None: return 0, '' sub_string = '' dict = {} max_length = 0 j = 0 for i in range(len(string)): if string[i] in dict: j = max(dict[string[i]], j) dict[string[i]] = i + 1 if i - j + 1 > max_length: max_length = i - j + 1 sub_string = string[j: i + 1] return max_length, sub_string
Find the length of the longest substring without repeating characters. Uses alternative algorithm. Return max_len and the substring as a tuple
def get_longest_non_repeat_v2(string): """ Find the length of the longest substring without repeating characters. Uses alternative algorithm. Return max_len and the substring as a tuple """ if string is None: return 0, '' sub_string = '' start, max_len = 0, 0 used_char = {} for index, char in enumerate(string): if char in used_char and start <= used_char[char]: start = used_char[char] + 1 else: if index - start + 1 > max_len: max_len = index - start + 1 sub_string = string[start: index + 1] used_char[char] = index return max_len, sub_string
Push the item in the priority queue. if priority is not given, priority is set to the value of item.
def push(self, item, priority=None): """Push the item in the priority queue. if priority is not given, priority is set to the value of item. """ priority = item if priority is None else priority node = PriorityQueueNode(item, priority) for index, current in enumerate(self.priority_queue_list): if current.priority < node.priority: self.priority_queue_list.insert(index, node) return # when traversed complete queue self.priority_queue_list.append(node)
Calculates factorial iteratively. If mod is not None, then return (n! % mod) Time Complexity - O(n)
def factorial(n, mod=None): """Calculates factorial iteratively. If mod is not None, then return (n! % mod) Time Complexity - O(n)""" if not (isinstance(n, int) and n >= 0): raise ValueError("'n' must be a non-negative integer.") if mod is not None and not (isinstance(mod, int) and mod > 0): raise ValueError("'mod' must be a positive integer") result = 1 if n == 0: return 1 for i in range(2, n+1): result *= i if mod: result %= mod return result
Calculates factorial recursively. If mod is not None, then return (n! % mod) Time Complexity - O(n)
def factorial_recur(n, mod=None): """Calculates factorial recursively. If mod is not None, then return (n! % mod) Time Complexity - O(n)""" if not (isinstance(n, int) and n >= 0): raise ValueError("'n' must be a non-negative integer.") if mod is not None and not (isinstance(mod, int) and mod > 0): raise ValueError("'mod' must be a positive integer") if n == 0: return 1 result = n * factorial(n - 1, mod) if mod: result %= mod return result
Selection Sort Complexity: O(n^2)
def selection_sort(arr, simulation=False): """ Selection Sort Complexity: O(n^2) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) for i in range(len(arr)): minimum = i for j in range(i + 1, len(arr)): # "Select" the correct value if arr[j] < arr[minimum]: minimum = j arr[minimum], arr[i] = arr[i], arr[minimum] if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) return arr
Time Complexity: O(N) Space Complexity: O(N)
def remove_dups(head): """ Time Complexity: O(N) Space Complexity: O(N) """ hashset = set() prev = Node() while head: if head.val in hashset: prev.next = head.next else: hashset.add(head.val) prev = head head = head.next
Time Complexity: O(N^2) Space Complexity: O(1)
def remove_dups_wothout_set(head): """ Time Complexity: O(N^2) Space Complexity: O(1) """ current = head while current: runner = current while runner.next: if runner.next.val == current.val: runner.next = runner.next.next else: runner = runner.next current = current.next
replace u with v :param node_u: replaced node :param node_v: :return: None
def transplant(self, node_u, node_v): """ replace u with v :param node_u: replaced node :param node_v: :return: None """ if node_u.parent is None: self.root = node_v elif node_u is node_u.parent.left: node_u.parent.left = node_v elif node_u is node_u.parent.right: node_u.parent.right = node_v # check is node_v is None if node_v: node_v.parent = node_u.parent
find the max node when node regard as a root node :param node: :return: max node
def maximum(self, node): """ find the max node when node regard as a root node :param node: :return: max node """ temp_node = node while temp_node.right is not None: temp_node = temp_node.right return temp_node
find the minimum node when node regard as a root node :param node: :return: minimum node
def minimum(self, node): """ find the minimum node when node regard as a root node :param node: :return: minimum node """ temp_node = node while temp_node.left: temp_node = temp_node.left return temp_node
Computes (base ^ exponent) % mod. Time complexity - O(log n) Use similar to Python in-built function pow.
def modular_exponential(base, exponent, mod): """Computes (base ^ exponent) % mod. Time complexity - O(log n) Use similar to Python in-built function pow.""" if exponent < 0: raise ValueError("Exponent must be positive.") base %= mod result = 1 while exponent > 0: # If the last bit is 1, add 2^k. if exponent & 1: result = (result * base) % mod exponent = exponent >> 1 # Utilize modular multiplication properties to combine the computed mod C values. base = (base * base) % mod return result
:type intervals: List[Interval] :rtype: bool
def can_attend_meetings(intervals): """ :type intervals: List[Interval] :rtype: bool """ intervals = sorted(intervals, key=lambda x: x.start) for i in range(1, len(intervals)): if intervals[i].start < intervals[i - 1].end: return False return True
:type root: TreeNode :type key: int :rtype: TreeNode
def delete_node(self, root, key): """ :type root: TreeNode :type key: int :rtype: TreeNode """ if not root: return None if root.val == key: if root.left: # Find the right most leaf of the left sub-tree left_right_most = root.left while left_right_most.right: left_right_most = left_right_most.right # Attach right child to the right of that leaf left_right_most.right = root.right # Return left child instead of root, a.k.a delete root return root.left else: return root.right # If left or right child got deleted, the returned root is the child of the deleted node. elif root.val > key: root.left = self.deleteNode(root.left, key) else: root.right = self.deleteNode(root.right, key) return root
:type path: str :rtype: str
def simplify_path(path): """ :type path: str :rtype: str """ skip = {'..', '.', ''} stack = [] paths = path.split('/') for tok in paths: if tok == '..': if stack: stack.pop() elif tok not in skip: stack.append(tok) return '/' + '/'.join(stack)
O(2**n)
def subsets(nums): """ O(2**n) """ def backtrack(res, nums, stack, pos): if pos == len(nums): res.append(list(stack)) else: # take nums[pos] stack.append(nums[pos]) backtrack(res, nums, stack, pos+1) stack.pop() # dont take nums[pos] backtrack(res, nums, stack, pos+1) res = [] backtrack(res, nums, [], 0) return res
Jump Search Worst-case Complexity: O(√n) (root(n)) All items in list must be sorted like binary search Find block that contains target value and search it linearly in that block It returns a first target value in array reference: https://en.wikipedia.org/wiki/Jump_search
def jump_search(arr,target): """Jump Search Worst-case Complexity: O(√n) (root(n)) All items in list must be sorted like binary search Find block that contains target value and search it linearly in that block It returns a first target value in array reference: https://en.wikipedia.org/wiki/Jump_search """ n = len(arr) block_size = int(math.sqrt(n)) block_prev = 0 block= block_size # return -1 means that array doesn't contain taget value # find block that contains target value if arr[n - 1] < target: return -1 while block <= n and arr[block - 1] < target: block_prev = block block += block_size # find target value in block while arr[block_prev] < target : block_prev += 1 if block_prev == min(block, n) : return -1 # if there is target value in array, return it if arr[block_prev] == target : return block_prev else : return -1
Takes as input multi dimensional iterable and returns generator which produces one dimensional output.
def flatten_iter(iterable): """ Takes as input multi dimensional iterable and returns generator which produces one dimensional output. """ for element in iterable: if isinstance(element, Iterable): yield from flatten_iter(element) else: yield element
Bidirectional BFS!!! :type begin_word: str :type end_word: str :type word_list: Set[str] :rtype: int
def ladder_length(begin_word, end_word, word_list): """ Bidirectional BFS!!! :type begin_word: str :type end_word: str :type word_list: Set[str] :rtype: int """ if len(begin_word) != len(end_word): return -1 # not possible if begin_word == end_word: return 0 # when only differ by 1 character if sum(c1 != c2 for c1, c2 in zip(begin_word, end_word)) == 1: return 1 begin_set = set() end_set = set() begin_set.add(begin_word) end_set.add(end_word) result = 2 while begin_set and end_set: if len(begin_set) > len(end_set): begin_set, end_set = end_set, begin_set next_begin_set = set() for word in begin_set: for ladder_word in word_range(word): if ladder_word in end_set: return result if ladder_word in word_list: next_begin_set.add(ladder_word) word_list.remove(ladder_word) begin_set = next_begin_set result += 1 # print(begin_set) # print(result) return -1
Iterable to get every convolution window per loop iteration. For example: `convolved([1, 2, 3, 4], kernel_size=2)` will produce the following result: `[[1, 2], [2, 3], [3, 4]]`. `convolved([1, 2, 3], kernel_size=2, stride=1, padding=2, default_value=42)` will produce the following result: `[[42, 42], [42, 1], [1, 2], [2, 3], [3, 42], [42, 42]]` Arguments: iterable: An object to iterate on. It should support slice indexing if `padding == 0`. kernel_size: The number of items yielded at every iteration. stride: The step size between each iteration. padding: Padding must be an integer or a string with value `SAME` or `VALID`. If it is an integer, it represents how many values we add with `default_value` on the borders. If it is a string, `SAME` means that the convolution will add some padding according to the kernel_size, and `VALID` is the same as specifying `padding=0`. default_value: Default fill value for padding and values outside iteration range. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier
def convolved(iterable, kernel_size=1, stride=1, padding=0, default_value=None): """Iterable to get every convolution window per loop iteration. For example: `convolved([1, 2, 3, 4], kernel_size=2)` will produce the following result: `[[1, 2], [2, 3], [3, 4]]`. `convolved([1, 2, 3], kernel_size=2, stride=1, padding=2, default_value=42)` will produce the following result: `[[42, 42], [42, 1], [1, 2], [2, 3], [3, 42], [42, 42]]` Arguments: iterable: An object to iterate on. It should support slice indexing if `padding == 0`. kernel_size: The number of items yielded at every iteration. stride: The step size between each iteration. padding: Padding must be an integer or a string with value `SAME` or `VALID`. If it is an integer, it represents how many values we add with `default_value` on the borders. If it is a string, `SAME` means that the convolution will add some padding according to the kernel_size, and `VALID` is the same as specifying `padding=0`. default_value: Default fill value for padding and values outside iteration range. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier """ # Input validation and error messages if not hasattr(iterable, '__iter__'): raise ValueError( "Can't iterate on object.".format( iterable)) if stride < 1: raise ValueError( "Stride must be of at least one. Got `stride={}`.".format( stride)) if not (padding in ['SAME', 'VALID'] or type(padding) in [int]): raise ValueError( "Padding must be an integer or a string with value `SAME` or `VALID`.") if not isinstance(padding, str): if padding < 0: raise ValueError( "Padding must be of at least zero. Got `padding={}`.".format( padding)) else: if padding == 'SAME': padding = kernel_size // 2 elif padding == 'VALID': padding = 0 if not type(iterable) == list: iterable = list(iterable) # Add padding to iterable if padding > 0: pad = [default_value] * padding iterable = pad + list(iterable) + pad # Fill missing value to the right remainder = (kernel_size - len(iterable)) % stride extra_pad = [default_value] * remainder iterable = iterable + extra_pad i = 0 while True: if i > len(iterable) - kernel_size: break yield iterable[i:i + kernel_size] i += stride
1D Iterable to get every convolution window per loop iteration. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier
def convolved_1d(iterable, kernel_size=1, stride=1, padding=0, default_value=None): """1D Iterable to get every convolution window per loop iteration. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier """ return convolved(iterable, kernel_size, stride, padding, default_value)
2D Iterable to get every convolution window per loop iteration. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier
def convolved_2d(iterable, kernel_size=1, stride=1, padding=0, default_value=None): """2D Iterable to get every convolution window per loop iteration. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier """ kernel_size = dimensionize(kernel_size, nd=2) stride = dimensionize(stride, nd=2) padding = dimensionize(padding, nd=2) for row_packet in convolved(iterable, kernel_size[0], stride[0], padding[0], default_value): transposed_inner = [] for col in tuple(row_packet): transposed_inner.append(list( convolved(col, kernel_size[1], stride[1], padding[1], default_value) )) if len(transposed_inner) > 0: for col_i in range(len(transposed_inner[0])): yield tuple(row_j[col_i] for row_j in transposed_inner)
Convert integers to a list of integers to fit the number of dimensions if the argument is not already a list. For example: `dimensionize(3, nd=2)` will produce the following result: `(3, 3)`. `dimensionize([3, 1], nd=2)` will produce the following result: `[3, 1]`. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier
def dimensionize(maybe_a_list, nd=2): """Convert integers to a list of integers to fit the number of dimensions if the argument is not already a list. For example: `dimensionize(3, nd=2)` will produce the following result: `(3, 3)`. `dimensionize([3, 1], nd=2)` will produce the following result: `[3, 1]`. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier """ if not hasattr(maybe_a_list, '__iter__'): # Argument is probably an integer so we map it to a list of size `nd`. now_a_list = [maybe_a_list] * nd return now_a_list else: # Argument is probably an `nd`-sized list. return maybe_a_list
:type nums: List[int] :type k: int :rtype: List[int]
def max_sliding_window(nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ if not nums: return nums queue = collections.deque() res = [] for num in nums: if len(queue) < k: queue.append(num) else: res.append(max(queue)) queue.popleft() queue.append(num) res.append(max(queue)) return res
Merge intervals in the form of a list.
def merge_intervals(intervals): """ Merge intervals in the form of a list. """ if intervals is None: return None intervals.sort(key=lambda i: i[0]) out = [intervals.pop(0)] for i in intervals: if out[-1][-1] >= i[0]: out[-1][-1] = max(out[-1][-1], i[-1]) else: out.append(i) return out
Merge two intervals into one.
def merge(intervals): """ Merge two intervals into one. """ out = [] for i in sorted(intervals, key=lambda i: i.start): if out and i.start <= out[-1].end: out[-1].end = max(out[-1].end, i.end) else: out += i, return out
Print out the intervals.
def print_intervals(intervals): """ Print out the intervals. """ res = [] for i in intervals: res.append(repr(i)) print("".join(res))
Rotate the entire array 'k' times T(n)- O(nk) :type array: List[int] :type k: int :rtype: void Do not return anything, modify array in-place instead.
def rotate_v1(array, k): """ Rotate the entire array 'k' times T(n)- O(nk) :type array: List[int] :type k: int :rtype: void Do not return anything, modify array in-place instead. """ array = array[:] n = len(array) for i in range(k): # unused variable is not a problem temp = array[n - 1] for j in range(n-1, 0, -1): array[j] = array[j - 1] array[0] = temp return array
Reverse segments of the array, followed by the entire array T(n)- O(n) :type array: List[int] :type k: int :rtype: void Do not return anything, modify nums in-place instead.
def rotate_v2(array, k): """ Reverse segments of the array, followed by the entire array T(n)- O(n) :type array: List[int] :type k: int :rtype: void Do not return anything, modify nums in-place instead. """ array = array[:] def reverse(arr, a, b): while a < b: arr[a], arr[b] = arr[b], arr[a] a += 1 b -= 1 n = len(array) k = k % n reverse(array, 0, n - k - 1) reverse(array, n - k, n - 1) reverse(array, 0, n - 1) return array
:type matrix: List[List[int]] :rtype: List[List[int]]
def pacific_atlantic(matrix): """ :type matrix: List[List[int]] :rtype: List[List[int]] """ n = len(matrix) if not n: return [] m = len(matrix[0]) if not m: return [] res = [] atlantic = [[False for _ in range (n)] for _ in range(m)] pacific = [[False for _ in range (n)] for _ in range(m)] for i in range(n): dfs(pacific, matrix, float("-inf"), i, 0) dfs(atlantic, matrix, float("-inf"), i, m-1) for i in range(m): dfs(pacific, matrix, float("-inf"), 0, i) dfs(atlantic, matrix, float("-inf"), n-1, i) for i in range(n): for j in range(m): if pacific[i][j] and atlantic[i][j]: res.append([i, j]) return res
Quick sort Complexity: best O(n log(n)) avg O(n log(n)), worst O(N^2)
def quick_sort(arr, simulation=False): """ Quick sort Complexity: best O(n log(n)) avg O(n log(n)), worst O(N^2) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) arr, _ = quick_sort_recur(arr, 0, len(arr) - 1, iteration, simulation) return arr
:type s: str :rtype: bool
def is_palindrome(s): """ :type s: str :rtype: bool """ i = 0 j = len(s)-1 while i < j: while i < j and not s[i].isalnum(): i += 1 while i < j and not s[j].isalnum(): j -= 1 if s[i].lower() != s[j].lower(): return False i, j = i+1, j-1 return True
:type digits: List[int] :rtype: List[int]
def plus_one_v1(digits): """ :type digits: List[int] :rtype: List[int] """ digits[-1] = digits[-1] + 1 res = [] ten = 0 i = len(digits)-1 while i >= 0 or ten == 1: summ = 0 if i >= 0: summ += digits[i] if ten: summ += 1 res.append(summ % 10) ten = summ // 10 i -= 1 return res[::-1]
:type head: ListNode :type k: int :rtype: ListNode
def rotate_right(head, k): """ :type head: ListNode :type k: int :rtype: ListNode """ if not head or not head.next: return head current = head length = 1 # count length of the list while current.next: current = current.next length += 1 # make it circular current.next = head k = k % length # rotate until length-k for i in range(length-k): current = current.next head = current.next current.next = None return head
:type s: str :rtype: int
def num_decodings(s): """ :type s: str :rtype: int """ if not s or s[0] == "0": return 0 wo_last, wo_last_two = 1, 1 for i in range(1, len(s)): x = wo_last if s[i] != "0" else 0 y = wo_last_two if int(s[i-1:i+1]) < 27 and s[i-1] != "0" else 0 wo_last_two = wo_last wo_last = x+y return wo_last
:type nums: List[int] :type target: int :rtype: List[int]
def search_range(nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ low = 0 high = len(nums) - 1 while low <= high: mid = low + (high - low) // 2 if target < nums[mid]: high = mid - 1 elif target > nums[mid]: low = mid + 1 else: break for j in range(len(nums) - 1, -1, -1): if nums[j] == target: return [mid, j] return [-1, -1]
:type head: Node :rtype: Node
def first_cyclic_node(head): """ :type head: Node :rtype: Node """ runner = walker = head while runner and runner.next: runner = runner.next.next walker = walker.next if runner is walker: break if runner is None or runner.next is None: return None walker = head while runner is not walker: runner, walker = runner.next, walker.next return runner
Heap Sort that uses a max heap to sort an array in ascending order Complexity: O(n log(n))
def max_heap_sort(arr, simulation=False): """ Heap Sort that uses a max heap to sort an array in ascending order Complexity: O(n log(n)) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) for i in range(len(arr) - 1, 0, -1): iteration = max_heapify(arr, i, simulation, iteration) if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) return arr
Max heapify helper for max_heap_sort
def max_heapify(arr, end, simulation, iteration): """ Max heapify helper for max_heap_sort """ last_parent = (end - 1) // 2 # Iterate from last parent to first for parent in range(last_parent, -1, -1): current_parent = parent # Iterate from current_parent to last_parent while current_parent <= last_parent: # Find greatest child of current_parent child = 2 * current_parent + 1 if child + 1 <= end and arr[child] < arr[child + 1]: child = child + 1 # Swap if child is greater than parent if arr[child] > arr[current_parent]: arr[current_parent], arr[child] = arr[child], arr[current_parent] current_parent = child if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) # If no swap occured, no need to keep iterating else: break arr[0], arr[end] = arr[end], arr[0] return iteration
Heap Sort that uses a min heap to sort an array in ascending order Complexity: O(n log(n))
def min_heap_sort(arr, simulation=False): """ Heap Sort that uses a min heap to sort an array in ascending order Complexity: O(n log(n)) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) for i in range(0, len(arr) - 1): iteration = min_heapify(arr, i, simulation, iteration) return arr
Min heapify helper for min_heap_sort
def min_heapify(arr, start, simulation, iteration): """ Min heapify helper for min_heap_sort """ # Offset last_parent by the start (last_parent calculated as if start index was 0) # All array accesses need to be offset by start end = len(arr) - 1 last_parent = (end - start - 1) // 2 # Iterate from last parent to first for parent in range(last_parent, -1, -1): current_parent = parent # Iterate from current_parent to last_parent while current_parent <= last_parent: # Find lesser child of current_parent child = 2 * current_parent + 1 if child + 1 <= end - start and arr[child + start] > arr[ child + 1 + start]: child = child + 1 # Swap if child is less than parent if arr[child + start] < arr[current_parent + start]: arr[current_parent + start], arr[child + start] = \ arr[child + start], arr[current_parent + start] current_parent = child if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) # If no swap occured, no need to keep iterating else: break return iteration
the RSA key generating algorithm k is the number of bits in n
def generate_key(k, seed=None): """ the RSA key generating algorithm k is the number of bits in n """ def modinv(a, m): """calculate the inverse of a mod m that is, find b such that (a * b) % m == 1""" b = 1 while not (a * b) % m == 1: b += 1 return b def gen_prime(k, seed=None): """generate a prime with k bits""" def is_prime(num): if num == 2: return True for i in range(2, int(num ** 0.5) + 1): if num % i == 0: return False return True random.seed(seed) while True: key = random.randrange(int(2 ** (k - 1)), int(2 ** k)) if is_prime(key): return key # size in bits of p and q need to add up to the size of n p_size = k / 2 q_size = k - p_size e = gen_prime(k, seed) # in many cases, e is also chosen to be a small constant while True: p = gen_prime(p_size, seed) if p % e != 1: break while True: q = gen_prime(q_size, seed) if q % e != 1: break n = p * q l = (p - 1) * (q - 1) # calculate totient function d = modinv(e, l) return int(n), int(e), int(d)
Return square root of n, with maximum absolute error epsilon
def square_root(n, epsilon=0.001): """Return square root of n, with maximum absolute error epsilon""" guess = n / 2 while abs(guess * guess - n) > epsilon: guess = (guess + (n / guess)) / 2 return guess
Counting_sort Sorting a array which has no element greater than k Creating a new temp_arr,where temp_arr[i] contain the number of element less than or equal to i in the arr Then placing the number i into a correct position in the result_arr return the result_arr Complexity: 0(n)
def counting_sort(arr): """ Counting_sort Sorting a array which has no element greater than k Creating a new temp_arr,where temp_arr[i] contain the number of element less than or equal to i in the arr Then placing the number i into a correct position in the result_arr return the result_arr Complexity: 0(n) """ m = min(arr) # in case there are negative elements, change the array to all positive element different = 0 if m < 0: # save the change, so that we can convert the array back to all positive number different = -m for i in range(len(arr)): arr[i] += -m k = max(arr) temp_arr = [0] * (k + 1) for i in range(0, len(arr)): temp_arr[arr[i]] = temp_arr[arr[i]] + 1 # temp_array[i] contain the times the number i appear in arr for i in range(1, k + 1): temp_arr[i] = temp_arr[i] + temp_arr[i - 1] # temp_array[i] contain the number of element less than or equal i in arr result_arr = arr.copy() # creating a result_arr an put the element in a correct positon for i in range(len(arr) - 1, -1, -1): result_arr[temp_arr[arr[i]] - 1] = arr[i] - different temp_arr[arr[i]] = temp_arr[arr[i]] - 1 return result_arr
Calculate the powerset of any iterable. For a range of integers up to the length of the given list, make all possible combinations and chain them together as one object. From https://docs.python.org/3/library/itertools.html#itertools-recipes
def powerset(iterable): """Calculate the powerset of any iterable. For a range of integers up to the length of the given list, make all possible combinations and chain them together as one object. From https://docs.python.org/3/library/itertools.html#itertools-recipes """ "list(powerset([1,2,3])) --> [(), (1,), (2,), (3,), (1,2), (1,3), (2,3), (1,2,3)]" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
Optimal algorithm - DONT USE ON BIG INPUTS - O(2^n) complexity! Finds the minimum cost subcollection os S that covers all elements of U Args: universe (list): Universe of elements subsets (dict): Subsets of U {S1:elements,S2:elements} costs (dict): Costs of each subset in S - {S1:cost, S2:cost...}
def optimal_set_cover(universe, subsets, costs): """ Optimal algorithm - DONT USE ON BIG INPUTS - O(2^n) complexity! Finds the minimum cost subcollection os S that covers all elements of U Args: universe (list): Universe of elements subsets (dict): Subsets of U {S1:elements,S2:elements} costs (dict): Costs of each subset in S - {S1:cost, S2:cost...} """ pset = powerset(subsets.keys()) best_set = None best_cost = float("inf") for subset in pset: covered = set() cost = 0 for s in subset: covered.update(subsets[s]) cost += costs[s] if len(covered) == len(universe) and cost < best_cost: best_set = subset best_cost = cost return best_set
Approximate greedy algorithm for set-covering. Can be used on large inputs - though not an optimal solution. Args: universe (list): Universe of elements subsets (dict): Subsets of U {S1:elements,S2:elements} costs (dict): Costs of each subset in S - {S1:cost, S2:cost...}
def greedy_set_cover(universe, subsets, costs): """Approximate greedy algorithm for set-covering. Can be used on large inputs - though not an optimal solution. Args: universe (list): Universe of elements subsets (dict): Subsets of U {S1:elements,S2:elements} costs (dict): Costs of each subset in S - {S1:cost, S2:cost...} """ elements = set(e for s in subsets.keys() for e in subsets[s]) # elements don't cover universe -> invalid input for set cover if elements != universe: return None # track elements of universe covered covered = set() cover_sets = [] while covered != universe: min_cost_elem_ratio = float("inf") min_set = None # find set with minimum cost:elements_added ratio for s, elements in subsets.items(): new_elements = len(elements - covered) # set may have same elements as already covered -> new_elements = 0 # check to avoid division by 0 error if new_elements != 0: cost_elem_ratio = costs[s] / new_elements if cost_elem_ratio < min_cost_elem_ratio: min_cost_elem_ratio = cost_elem_ratio min_set = s cover_sets.append(min_set) # union covered |= subsets[min_set] return cover_sets
:type n: int :rtype: int
def num_trees(n): """ :type n: int :rtype: int """ dp = [0] * (n+1) dp[0] = 1 dp[1] = 1 for i in range(2, n+1): for j in range(i+1): dp[i] += dp[i-j] * dp[j-1] return dp[-1]
:type val: int :rtype: float
def next(self, val): """ :type val: int :rtype: float """ self.queue.append(val) return sum(self.queue) / len(self.queue)
n: int nums: list[object] target: object sum_closure: function, optional Given two elements of nums, return sum of both. compare_closure: function, optional Given one object of nums and target, return -1, 1, or 0. same_closure: function, optional Given two object of nums, return bool. return: list[list[object]] Note: 1. type of sum_closure's return should be same as type of compare_closure's first param
def n_sum(n, nums, target, **kv): """ n: int nums: list[object] target: object sum_closure: function, optional Given two elements of nums, return sum of both. compare_closure: function, optional Given one object of nums and target, return -1, 1, or 0. same_closure: function, optional Given two object of nums, return bool. return: list[list[object]] Note: 1. type of sum_closure's return should be same as type of compare_closure's first param """ def sum_closure_default(a, b): return a + b def compare_closure_default(num, target): """ above, below, or right on? """ if num < target: return -1 elif num > target: return 1 else: return 0 def same_closure_default(a, b): return a == b def n_sum(n, nums, target): if n == 2: # want answers with only 2 terms? easy! results = two_sum(nums, target) else: results = [] prev_num = None for index, num in enumerate(nums): if prev_num is not None and \ same_closure(prev_num, num): continue prev_num = num n_minus1_results = ( n_sum( # recursive call n - 1, # a nums[index + 1:], # b target - num # c ) # x = n_sum( a, b, c ) ) # n_minus1_results = x n_minus1_results = ( append_elem_to_each_list(num, n_minus1_results) ) results += n_minus1_results return union(results) def two_sum(nums, target): nums.sort() lt = 0 rt = len(nums) - 1 results = [] while lt < rt: sum_ = sum_closure(nums[lt], nums[rt]) flag = compare_closure(sum_, target) if flag == -1: lt += 1 elif flag == 1: rt -= 1 else: results.append(sorted([nums[lt], nums[rt]])) lt += 1 rt -= 1 while (lt < len(nums) and same_closure(nums[lt - 1], nums[lt])): lt += 1 while (0 <= rt and same_closure(nums[rt], nums[rt + 1])): rt -= 1 return results def append_elem_to_each_list(elem, container): results = [] for elems in container: elems.append(elem) results.append(sorted(elems)) return results def union(duplicate_results): results = [] if len(duplicate_results) != 0: duplicate_results.sort() results.append(duplicate_results[0]) for result in duplicate_results[1:]: if results[-1] != result: results.append(result) return results sum_closure = kv.get('sum_closure', sum_closure_default) same_closure = kv.get('same_closure', same_closure_default) compare_closure = kv.get('compare_closure', compare_closure_default) nums.sort() return n_sum(n, nums, target)
:type pattern: str :type string: str :rtype: bool
def pattern_match(pattern, string): """ :type pattern: str :type string: str :rtype: bool """ def backtrack(pattern, string, dic): if len(pattern) == 0 and len(string) > 0: return False if len(pattern) == len(string) == 0: return True for end in range(1, len(string)-len(pattern)+2): if pattern[0] not in dic and string[:end] not in dic.values(): dic[pattern[0]] = string[:end] if backtrack(pattern[1:], string[end:], dic): return True del dic[pattern[0]] elif pattern[0] in dic and dic[pattern[0]] == string[:end]: if backtrack(pattern[1:], string[end:], dic): return True return False return backtrack(pattern, string, {})
Bogo Sort Best Case Complexity: O(n) Worst Case Complexity: O(∞) Average Case Complexity: O(n(n-1)!)
def bogo_sort(arr, simulation=False): """Bogo Sort Best Case Complexity: O(n) Worst Case Complexity: O(∞) Average Case Complexity: O(n(n-1)!) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) def is_sorted(arr): #check the array is inorder i = 0 arr_len = len(arr) while i+1 < arr_len: if arr[i] > arr[i+1]: return False i += 1 return True while not is_sorted(arr): random.shuffle(arr) if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) return arr
Insert new key into node
def insert(self, key): """ Insert new key into node """ # Create new node n = TreeNode(key) if not self.node: self.node = n self.node.left = AvlTree() self.node.right = AvlTree() elif key < self.node.val: self.node.left.insert(key) elif key > self.node.val: self.node.right.insert(key) self.re_balance()
Re balance tree. After inserting or deleting a node,
def re_balance(self): """ Re balance tree. After inserting or deleting a node, """ self.update_heights(recursive=False) self.update_balances(False) while self.balance < -1 or self.balance > 1: if self.balance > 1: if self.node.left.balance < 0: self.node.left.rotate_left() self.update_heights() self.update_balances() self.rotate_right() self.update_heights() self.update_balances() if self.balance < -1: if self.node.right.balance > 0: self.node.right.rotate_right() self.update_heights() self.update_balances() self.rotate_left() self.update_heights() self.update_balances()
Update tree height
def update_heights(self, recursive=True): """ Update tree height """ if self.node: if recursive: if self.node.left: self.node.left.update_heights() if self.node.right: self.node.right.update_heights() self.height = 1 + max(self.node.left.height, self.node.right.height) else: self.height = -1
Calculate tree balance factor
def update_balances(self, recursive=True): """ Calculate tree balance factor """ if self.node: if recursive: if self.node.left: self.node.left.update_balances() if self.node.right: self.node.right.update_balances() self.balance = self.node.left.height - self.node.right.height else: self.balance = 0
Right rotation
def rotate_right(self): """ Right rotation """ new_root = self.node.left.node new_left_sub = new_root.right.node old_root = self.node self.node = new_root old_root.left.node = new_left_sub new_root.right.node = old_root
Left rotation
def rotate_left(self): """ Left rotation """ new_root = self.node.right.node new_left_sub = new_root.left.node old_root = self.node self.node = new_root old_root.right.node = new_left_sub new_root.left.node = old_root
In-order traversal of the tree
def in_order_traverse(self): """ In-order traversal of the tree """ result = [] if not self.node: return result result.extend(self.node.left.in_order_traverse()) result.append(self.node.key) result.extend(self.node.right.in_order_traverse()) return result
:type low: str :type high: str :rtype: int
def strobogrammatic_in_range(low, high): """ :type low: str :type high: str :rtype: int """ res = [] count = 0 low_len = len(low) high_len = len(high) for i in range(low_len, high_len + 1): res.extend(helper2(i, i)) for perm in res: if len(perm) == low_len and int(perm) < int(low): continue elif len(perm) == high_len and int(perm) > int(high): continue else: count += 1 return count
:type words: List[str] :rtype: List[str]
def find_keyboard_row(words): """ :type words: List[str] :rtype: List[str] """ keyboard = [ set('qwertyuiop'), set('asdfghjkl'), set('zxcvbnm'), ] result = [] for word in words: for key in keyboard: if set(word.lower()).issubset(key): result.append(word) return result
This is a suboptimal, hacky method using eval(), which is not safe for user input. We guard against danger by ensuring k in an int
def kth_to_last_eval(head, k): """ This is a suboptimal, hacky method using eval(), which is not safe for user input. We guard against danger by ensuring k in an int """ if not isinstance(k, int) or not head.val: return False nexts = '.'.join(['next' for n in range(1, k+1)]) seeker = str('.'.join(['head', nexts])) while head: if eval(seeker) is None: return head else: head = head.next return False
This is a brute force method where we keep a dict the size of the list Then we check it for the value we need. If the key is not in the dict, our and statement will short circuit and return False
def kth_to_last_dict(head, k): """ This is a brute force method where we keep a dict the size of the list Then we check it for the value we need. If the key is not in the dict, our and statement will short circuit and return False """ if not (head and k > -1): return False d = dict() count = 0 while head: d[count] = head head = head.next count += 1 return len(d)-k in d and d[len(d)-k]
This is an optimal method using iteration. We move p1 k steps ahead into the list. Then we move p1 and p2 together until p1 hits the end.
def kth_to_last(head, k): """ This is an optimal method using iteration. We move p1 k steps ahead into the list. Then we move p1 and p2 together until p1 hits the end. """ if not (head or k > -1): return False p1 = head p2 = head for i in range(1, k+1): if p1 is None: # Went too far, k is not valid raise IndexError p1 = p1.next while p1: p1 = p1.next p2 = p2.next return p2
Wortst Time Complexity: O(NlogN) :type buildings: List[List[int]] :rtype: List[List[int]]
def get_skyline(lrh): """ Wortst Time Complexity: O(NlogN) :type buildings: List[List[int]] :rtype: List[List[int]] """ skyline, live = [], [] i, n = 0, len(lrh) while i < n or live: if not live or i < n and lrh[i][0] <= -live[0][1]: x = lrh[i][0] while i < n and lrh[i][0] == x: heapq.heappush(live, (-lrh[i][2], -lrh[i][1])) i += 1 else: x = -live[0][1] while live and -live[0][1] <= x: heapq.heappop(live) height = len(live) and -live[0][0] if not skyline or height != skyline[-1][1]: skyline += [x, height], return skyline
:type array: List[int] :rtype: List[]
def summarize_ranges(array): """ :type array: List[int] :rtype: List[] """ res = [] if len(array) == 1: return [str(array[0])] i = 0 while i < len(array): num = array[i] while i + 1 < len(array) and array[i + 1] - array[i] == 1: i += 1 if array[i] != num: res.append((num, array[i])) else: res.append((num, num)) i += 1 return res
Encodes a list of strings to a single string. :type strs: List[str] :rtype: str
def encode(strs): """Encodes a list of strings to a single string. :type strs: List[str] :rtype: str """ res = '' for string in strs.split(): res += str(len(string)) + ":" + string return res
Decodes a single string to a list of strings. :type s: str :rtype: List[str]
def decode(s): """Decodes a single string to a list of strings. :type s: str :rtype: List[str] """ strs = [] i = 0 while i < len(s): index = s.find(":", i) size = int(s[i:index]) strs.append(s[index+1: index+1+size]) i = index+1+size return strs
:type A: List[List[int]] :type B: List[List[int]] :rtype: List[List[int]]
def multiply(multiplicand: list, multiplier: list) -> list: """ :type A: List[List[int]] :type B: List[List[int]] :rtype: List[List[int]] """ multiplicand_row, multiplicand_col = len( multiplicand), len(multiplicand[0]) multiplier_row, multiplier_col = len(multiplier), len(multiplier[0]) if(multiplicand_col != multiplier_row): raise Exception( "Multiplicand matrix not compatible with Multiplier matrix.") # create a result matrix result = [[0] * multiplier_col for i in range(multiplicand_row)] for i in range(multiplicand_row): for j in range(multiplier_col): for k in range(len(multiplier)): result[i][j] += multiplicand[i][k] * multiplier[k][j] return result
This function calculates nCr.
def combination(n, r): """This function calculates nCr.""" if n == r or r == 0: return 1 else: return combination(n-1, r-1) + combination(n-1, r)
This function calculates nCr using memoization method.
def combination_memo(n, r): """This function calculates nCr using memoization method.""" memo = {} def recur(n, r): if n == r or r == 0: return 1 if (n, r) not in memo: memo[(n, r)] = recur(n - 1, r - 1) + recur(n - 1, r) return memo[(n, r)] return recur(n, r)
:type s: str :type t: str :rtype: bool
def is_anagram(s, t): """ :type s: str :type t: str :rtype: bool """ maps = {} mapt = {} for i in s: maps[i] = maps.get(i, 0) + 1 for i in t: mapt[i] = mapt.get(i, 0) + 1 return maps == mapt
Pancake_sort Sorting a given array mutation of selection sort reference: https://www.geeksforgeeks.org/pancake-sorting/ Overall time complexity : O(N^2)
def pancake_sort(arr): """ Pancake_sort Sorting a given array mutation of selection sort reference: https://www.geeksforgeeks.org/pancake-sorting/ Overall time complexity : O(N^2) """ len_arr = len(arr) if len_arr <= 1: return arr for cur in range(len(arr), 1, -1): #Finding index of maximum number in arr index_max = arr.index(max(arr[0:cur])) if index_max+1 != cur: #Needs moving if index_max != 0: #reverse from 0 to index_max arr[:index_max+1] = reversed(arr[:index_max+1]) # Reverse list arr[:cur] = reversed(arr[:cur]) return arr
:rtype: int
def next(self): """ :rtype: int """ v=self.queue.pop(0) ret=v.pop(0) if v: self.queue.append(v) return ret
:type prices: List[int] :rtype: int
def max_profit_naive(prices): """ :type prices: List[int] :rtype: int """ max_so_far = 0 for i in range(0, len(prices) - 1): for j in range(i + 1, len(prices)): max_so_far = max(max_so_far, prices[j] - prices[i]) return max_so_far
input: [7, 1, 5, 3, 6, 4] diff : [X, -6, 4, -2, 3, -2] :type prices: List[int] :rtype: int
def max_profit_optimized(prices): """ input: [7, 1, 5, 3, 6, 4] diff : [X, -6, 4, -2, 3, -2] :type prices: List[int] :rtype: int """ cur_max, max_so_far = 0, 0 for i in range(1, len(prices)): cur_max = max(0, cur_max + prices[i] - prices[i-1]) max_so_far = max(max_so_far, cur_max) return max_so_far
:type s: str :rtype: int
def first_unique_char(s): """ :type s: str :rtype: int """ if (len(s) == 1): return 0 ban = [] for i in range(len(s)): if all(s[i] != s[k] for k in range(i + 1, len(s))) == True and s[i] not in ban: return i else: ban.append(s[i]) return -1
:type root: TreeNode :type k: int :rtype: int
def kth_smallest(self, root, k): """ :type root: TreeNode :type k: int :rtype: int """ count = [] self.helper(root, count) return count[k-1]
:type num: int :rtype: str
def int_to_roman(num): """ :type num: int :rtype: str """ m = ["", "M", "MM", "MMM"]; c = ["", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM"]; x = ["", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC"]; i = ["", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX"]; return m[num//1000] + c[(num%1000)//100] + x[(num%100)//10] + i[num%10];
:type input: str :rtype: int
def length_longest_path(input): """ :type input: str :rtype: int """ curr_len, max_len = 0, 0 # running length and max length stack = [] # keep track of the name length for s in input.split('\n'): print("---------") print("<path>:", s) depth = s.count('\t') # the depth of current dir or file print("depth: ", depth) print("stack: ", stack) print("curlen: ", curr_len) while len(stack) > depth: # go back to the correct depth curr_len -= stack.pop() stack.append(len(s.strip('\t'))+1) # 1 is the length of '/' curr_len += stack[-1] # increase current length print("stack: ", stack) print("curlen: ", curr_len) if '.' in s: # update maxlen only when it is a file max_len = max(max_len, curr_len-1) # -1 is to minus one '/' return max_len
:type A: List[List[int]] :type B: List[List[int]] :rtype: List[List[int]]
def multiply(self, a, b): """ :type A: List[List[int]] :type B: List[List[int]] :rtype: List[List[int]] """ if a is None or b is None: return None m, n, l = len(a), len(b[0]), len(b[0]) if len(b) != n: raise Exception("A's column number must be equal to B's row number.") c = [[0 for _ in range(l)] for _ in range(m)] for i, row in enumerate(a): for k, eleA in enumerate(row): if eleA: for j, eleB in enumerate(b[k]): if eleB: c[i][j] += eleA * eleB return c
:type A: List[List[int]] :type B: List[List[int]] :rtype: List[List[int]]
def multiply(self, a, b): """ :type A: List[List[int]] :type B: List[List[int]] :rtype: List[List[int]] """ if a is None or b is None: return None m, n = len(a), len(b[0]) if len(b) != n: raise Exception("A's column number must be equal to B's row number.") l = len(b[0]) table_a, table_b = {}, {} for i, row in enumerate(a): for j, ele in enumerate(row): if ele: if i not in table_a: table_a[i] = {} table_a[i][j] = ele for i, row in enumerate(b): for j, ele in enumerate(row): if ele: if i not in table_b: table_b[i] = {} table_b[i][j] = ele c = [[0 for j in range(l)] for i in range(m)] for i in table_a: for k in table_a[i]: if k not in table_b: continue for j in table_b[k]: c[i][j] += table_a[i][k] * table_b[k][j] return c
bitonic sort is sorting algorithm to use multiple process, but this code not containing parallel process It can sort only array that sizes power of 2 It can sort array in both increasing order and decreasing order by giving argument true(increasing) and false(decreasing) Worst-case in parallel: O(log(n)^2) Worst-case in non-parallel: O(nlog(n)^2) reference: https://en.wikipedia.org/wiki/Bitonic_sorter
def bitonic_sort(arr, reverse=False): """ bitonic sort is sorting algorithm to use multiple process, but this code not containing parallel process It can sort only array that sizes power of 2 It can sort array in both increasing order and decreasing order by giving argument true(increasing) and false(decreasing) Worst-case in parallel: O(log(n)^2) Worst-case in non-parallel: O(nlog(n)^2) reference: https://en.wikipedia.org/wiki/Bitonic_sorter """ def compare(arr, reverse): n = len(arr)//2 for i in range(n): if reverse != (arr[i] > arr[i+n]): arr[i], arr[i+n] = arr[i+n], arr[i] return arr def bitonic_merge(arr, reverse): n = len(arr) if n <= 1: return arr arr = compare(arr, reverse) left = bitonic_merge(arr[:n // 2], reverse) right = bitonic_merge(arr[n // 2:], reverse) return left + right #end of function(compare and bitionic_merge) definition n = len(arr) if n <= 1: return arr # checks if n is power of two if not (n and (not(n & (n - 1))) ): raise ValueError("the size of input should be power of two") left = bitonic_sort(arr[:n // 2], True) right = bitonic_sort(arr[n // 2:], False) arr = bitonic_merge(left + right, reverse) return arr
Computes the strongly connected components of a graph
def scc(graph): ''' Computes the strongly connected components of a graph ''' order = [] vis = {vertex: False for vertex in graph} graph_transposed = {vertex: [] for vertex in graph} for (v, neighbours) in graph.iteritems(): for u in neighbours: add_edge(graph_transposed, u, v) for v in graph: if not vis[v]: dfs_transposed(v, graph_transposed, order, vis) vis = {vertex: False for vertex in graph} vertex_scc = {} current_comp = 0 for v in reversed(order): if not vis[v]: # Each dfs will visit exactly one component dfs(v, current_comp, vertex_scc, graph, vis) current_comp += 1 return vertex_scc
Builds the implication graph from the formula
def build_graph(formula): ''' Builds the implication graph from the formula ''' graph = {} for clause in formula: for (lit, _) in clause: for neg in [False, True]: graph[(lit, neg)] = [] for ((a_lit, a_neg), (b_lit, b_neg)) in formula: add_edge(graph, (a_lit, a_neg), (b_lit, not b_neg)) add_edge(graph, (b_lit, b_neg), (a_lit, not a_neg)) return graph
1. Sort all the arrays - a,b,c. - This improves average time complexity. 2. If c[i] < Sum, then look for Sum - c[i] in array a and b. When pair found, insert c[i], a[j] & b[k] into the result list. This can be done in O(n). 3. Keep on doing the above procedure while going through complete c array. Complexity: O(n(m+p))
def unique_array_sum_combinations(A, B, C, target): """ 1. Sort all the arrays - a,b,c. - This improves average time complexity. 2. If c[i] < Sum, then look for Sum - c[i] in array a and b. When pair found, insert c[i], a[j] & b[k] into the result list. This can be done in O(n). 3. Keep on doing the above procedure while going through complete c array. Complexity: O(n(m+p)) """ def check_sum(n, *nums): if sum(x for x in nums) == n: return (True, nums) else: return (False, nums) pro = itertools.product(A, B, C) func = partial(check_sum, target) sums = list(itertools.starmap(func, pro)) res = set() for s in sums: if s[0] is True and s[1] not in res: res.add(s[1]) return list(res)
:type root: TreeNode :rtype: bool
def is_bst(root): """ :type root: TreeNode :rtype: bool """ stack = [] pre = None while root or stack: while root: stack.append(root) root = root.left root = stack.pop() if pre and root.val <= pre.val: return False pre = root root = root.right return True
return 0 if unbalanced else depth + 1
def __get_depth(root): """ return 0 if unbalanced else depth + 1 """ if root is None: return 0 left = __get_depth(root.left) right = __get_depth(root.right) if abs(left-right) > 1 or -1 in [left, right]: return -1 return 1 + max(left, right)