INSTRUCTION
stringlengths
1
46.3k
RESPONSE
stringlengths
75
80.2k
:type head: RandomListNode :rtype: RandomListNode
def copy_random_pointer_v1(head): """ :type head: RandomListNode :rtype: RandomListNode """ dic = dict() m = n = head while m: dic[m] = RandomListNode(m.label) m = m.next while n: dic[n].next = dic.get(n.next) dic[n].random = dic.get(n.random) n = n.next return dic.get(head)
:type head: RandomListNode :rtype: RandomListNode
def copy_random_pointer_v2(head): """ :type head: RandomListNode :rtype: RandomListNode """ copy = defaultdict(lambda: RandomListNode(0)) copy[None] = None node = head while node: copy[node].label = node.label copy[node].next = copy[node.next] copy[node].random = copy[node.random] node = node.next return copy[head]
[summary] Arguments: n {[int]} -- [to analysed number] Returns: [list of lists] -- [all factors of the number n]
def get_factors(n): """[summary] Arguments: n {[int]} -- [to analysed number] Returns: [list of lists] -- [all factors of the number n] """ def factor(n, i, combi, res): """[summary] helper function Arguments: n {[int]} -- [number] i {[int]} -- [to tested divisor] combi {[list]} -- [catch divisors] res {[list]} -- [all factors of the number n] Returns: [list] -- [res] """ while i * i <= n: if n % i == 0: res += combi + [i, int(n/i)], factor(n/i, i, combi+[i], res) i += 1 return res return factor(n, 2, [], [])
[summary] Computes all factors of n. Translated the function get_factors(...) in a call-stack modell. Arguments: n {[int]} -- [to analysed number] Returns: [list of lists] -- [all factors]
def get_factors_iterative1(n): """[summary] Computes all factors of n. Translated the function get_factors(...) in a call-stack modell. Arguments: n {[int]} -- [to analysed number] Returns: [list of lists] -- [all factors] """ todo, res = [(n, 2, [])], [] while todo: n, i, combi = todo.pop() while i * i <= n: if n % i == 0: res += combi + [i, n//i], todo.append((n//i, i, combi+[i])), i += 1 return res
[summary] analog as above Arguments: n {[int]} -- [description] Returns: [list of lists] -- [all factors of n]
def get_factors_iterative2(n): """[summary] analog as above Arguments: n {[int]} -- [description] Returns: [list of lists] -- [all factors of n] """ ans, stack, x = [], [], 2 while True: if x > n // x: if not stack: return ans ans.append(stack + [n]) x = stack.pop() n *= x x += 1 elif n % x == 0: stack.append(x) n //= x else: x += 1
Dynamic Programming Algorithm for counting the length of longest increasing subsequence type sequence: List[int]
def longest_increasing_subsequence(sequence): """ Dynamic Programming Algorithm for counting the length of longest increasing subsequence type sequence: List[int] """ length = len(sequence) counts = [1 for _ in range(length)] for i in range(1, length): for j in range(0, i): if sequence[i] > sequence[j]: counts[i] = max(counts[i], counts[j] + 1) print(counts) return max(counts)
:type nums: List[int] :rtype: List[int]
def single_number3(nums): """ :type nums: List[int] :rtype: List[int] """ # isolate a^b from pairs using XOR ab = 0 for n in nums: ab ^= n # isolate right most bit from a^b right_most = ab & (-ab) # isolate a and b from a^b a, b = 0, 0 for n in nums: if n & right_most: a ^= n else: b ^= n return [a, b]
[summary] HELPER-FUNCTION calculates the (eulidean) distance between vector x and y. Arguments: x {[tuple]} -- [vector] y {[tuple]} -- [vector]
def distance(x,y): """[summary] HELPER-FUNCTION calculates the (eulidean) distance between vector x and y. Arguments: x {[tuple]} -- [vector] y {[tuple]} -- [vector] """ assert len(x) == len(y), "The vector must have same length" result = () sum = 0 for i in range(len(x)): result += (x[i] -y[i],) for component in result: sum += component**2 return math.sqrt(sum)
[summary] Implements the nearest neighbor algorithm Arguments: x {[tupel]} -- [vector] tSet {[dict]} -- [training set] Returns: [type] -- [result of the AND-function]
def nearest_neighbor(x, tSet): """[summary] Implements the nearest neighbor algorithm Arguments: x {[tupel]} -- [vector] tSet {[dict]} -- [training set] Returns: [type] -- [result of the AND-function] """ assert isinstance(x, tuple) and isinstance(tSet, dict) current_key = () min_d = float('inf') for key in tSet: d = distance(x, key) if d < min_d: min_d = d current_key = key return tSet[current_key]
:type num: str :rtype: bool
def is_strobogrammatic(num): """ :type num: str :rtype: bool """ comb = "00 11 88 69 96" i = 0 j = len(num) - 1 while i <= j: x = comb.find(num[i]+num[j]) if x == -1: return False i += 1 j -= 1 return True
Merge Sort Complexity: O(n log(n))
def merge_sort(arr): """ Merge Sort Complexity: O(n log(n)) """ # Our recursive base case if len(arr) <= 1: return arr mid = len(arr) // 2 # Perform merge_sort recursively on both halves left, right = merge_sort(arr[:mid]), merge_sort(arr[mid:]) # Merge each side together return merge(left, right, arr.copy())
Merge helper Complexity: O(n)
def merge(left, right, merged): """ Merge helper Complexity: O(n) """ left_cursor, right_cursor = 0, 0 while left_cursor < len(left) and right_cursor < len(right): # Sort each one and place into the result if left[left_cursor] <= right[right_cursor]: merged[left_cursor+right_cursor]=left[left_cursor] left_cursor += 1 else: merged[left_cursor + right_cursor] = right[right_cursor] right_cursor += 1 # Add the left overs if there's any left to the result for left_cursor in range(left_cursor, len(left)): merged[left_cursor + right_cursor] = left[left_cursor] # Add the left overs if there's any left to the result for right_cursor in range(right_cursor, len(right)): merged[left_cursor + right_cursor] = right[right_cursor] # Return result return merged
Bucket Sort Complexity: O(n^2) The complexity is dominated by nextSort
def bucket_sort(arr): ''' Bucket Sort Complexity: O(n^2) The complexity is dominated by nextSort ''' # The number of buckets and make buckets num_buckets = len(arr) buckets = [[] for bucket in range(num_buckets)] # Assign values into bucket_sort for value in arr: index = value * num_buckets // (max(arr) + 1) buckets[index].append(value) # Sort sorted_list = [] for i in range(num_buckets): sorted_list.extend(next_sort(buckets[i])) return sorted_list
Initialize max heap with first k points. Python does not support a max heap; thus we can use the default min heap where the keys (distance) are negated.
def k_closest(points, k, origin=(0, 0)): # Time: O(k+(n-k)logk) # Space: O(k) """Initialize max heap with first k points. Python does not support a max heap; thus we can use the default min heap where the keys (distance) are negated. """ heap = [(-distance(p, origin), p) for p in points[:k]] heapify(heap) """ For every point p in points[k:], check if p is smaller than the root of the max heap; if it is, add p to heap and remove root. Reheapify. """ for p in points[k:]: d = distance(p, origin) heappushpop(heap, (-d, p)) # heappushpop does conditional check """Same as: if d < -heap[0][0]: heappush(heap, (-d,p)) heappop(heap) Note: heappushpop is more efficient than separate push and pop calls. Each heappushpop call takes O(logk) time. """ return [p for nd, p in heap]
:type head: ListNode :rtype: ListNode
def reverse_list(head): """ :type head: ListNode :rtype: ListNode """ if not head or not head.next: return head prev = None while head: current = head head = head.next current.next = prev prev = current return prev
:type head: ListNode :rtype: ListNode
def reverse_list_recursive(head): """ :type head: ListNode :rtype: ListNode """ if head is None or head.next is None: return head p = head.next head.next = None revrest = reverse_list_recursive(p) p.next = head return revrest
:type root: TreeNode :type sum: int :rtype: bool
def has_path_sum(root, sum): """ :type root: TreeNode :type sum: int :rtype: bool """ if root is None: return False if root.left is None and root.right is None and root.val == sum: return True sum -= root.val return has_path_sum(root.left, sum) or has_path_sum(root.right, sum)
:type n: int :type base: int :rtype: str
def int_to_base(n, base): """ :type n: int :type base: int :rtype: str """ is_negative = False if n == 0: return '0' elif n < 0: is_negative = True n *= -1 digit = string.digits + string.ascii_uppercase res = '' while n > 0: res += digit[n % base] n //= base if is_negative: return '-' + res[::-1] else: return res[::-1]
Note : You can use int() built-in function instread of this. :type s: str :type base: int :rtype: int
def base_to_int(s, base): """ Note : You can use int() built-in function instread of this. :type s: str :type base: int :rtype: int """ digit = {} for i,c in enumerate(string.digits + string.ascii_uppercase): digit[c] = i multiplier = 1 res = 0 for c in s[::-1]: res += digit[c] * multiplier multiplier *= base return res
:type head: Node :rtype: bool
def is_cyclic(head): """ :type head: Node :rtype: bool """ if not head: return False runner = head walker = head while runner.next and runner.next.next: runner = runner.next.next walker = walker.next if runner == walker: return True return False
:type s: str :rtype: str
def decode_string(s): """ :type s: str :rtype: str """ stack = []; cur_num = 0; cur_string = '' for c in s: if c == '[': stack.append((cur_string, cur_num)) cur_string = '' cur_num = 0 elif c == ']': prev_string, num = stack.pop() cur_string = prev_string + num * cur_string elif c.isdigit(): cur_num = cur_num*10 + int(c) else: cur_string += c return cur_string
A slightly more Pythonic approach with a recursive generator
def palindromic_substrings_iter(s): """ A slightly more Pythonic approach with a recursive generator """ if not s: yield [] return for i in range(len(s), 0, -1): sub = s[:i] if sub == sub[::-1]: for rest in palindromic_substrings_iter(s[i:]): yield [sub] + rest
:type s: str :type t: str :rtype: bool
def is_isomorphic(s, t): """ :type s: str :type t: str :rtype: bool """ if len(s) != len(t): return False dict = {} set_value = set() for i in range(len(s)): if s[i] not in dict: if t[i] in set_value: return False dict[s[i]] = t[i] set_value.add(t[i]) else: if dict[s[i]] != t[i]: return False return True
Calculate operation result n2 Number: Number 2 n1 Number: Number 1 operator Char: Operation to calculate
def calc(n2, n1, operator): """ Calculate operation result n2 Number: Number 2 n1 Number: Number 1 operator Char: Operation to calculate """ if operator == '-': return n1 - n2 elif operator == '+': return n1 + n2 elif operator == '*': return n1 * n2 elif operator == '/': return n1 / n2 elif operator == '^': return n1 ** n2 return 0
Apply operation to the first 2 items of the output queue op_stack Deque (reference) out_stack Deque (reference)
def apply_operation(op_stack, out_stack): """ Apply operation to the first 2 items of the output queue op_stack Deque (reference) out_stack Deque (reference) """ out_stack.append(calc(out_stack.pop(), out_stack.pop(), op_stack.pop()))
Return array of parsed tokens in the expression expression String: Math expression to parse in infix notation
def parse(expression): """ Return array of parsed tokens in the expression expression String: Math expression to parse in infix notation """ result = [] current = "" for i in expression: if i.isdigit() or i == '.': current += i else: if len(current) > 0: result.append(current) current = "" if i in __operators__ or i in __parenthesis__: result.append(i) else: raise Exception("invalid syntax " + i) if len(current) > 0: result.append(current) return result
Calculate result of expression expression String: The expression type Type (optional): Number type [int, float]
def evaluate(expression): """ Calculate result of expression expression String: The expression type Type (optional): Number type [int, float] """ op_stack = deque() # operator stack out_stack = deque() # output stack (values) tokens = parse(expression) # calls the function only once! for token in tokens: if numeric_value.match(token): out_stack.append(float(token)) elif token == '(': op_stack.append(token) elif token == ')': while len(op_stack) > 0 and op_stack[-1] != '(': apply_operation(op_stack, out_stack) op_stack.pop() # Remove remaining '(' else: # is_operator(token) while len(op_stack) > 0 and is_operator(op_stack[-1]) and higher_priority(op_stack[-1], token): apply_operation(op_stack, out_stack) op_stack.append(token) while len(op_stack) > 0: apply_operation(op_stack, out_stack) return out_stack[-1]
simple user-interface
def main(): """ simple user-interface """ print("\t\tCalculator\n\n") while True: user_input = input("expression or exit: ") if user_input == "exit": break try: print("The result is {0}".format(evaluate(user_input))) except Exception: print("invalid syntax!") user_input = input("expression or exit: ") print("program end")
:type root: TreeNode :type target: float :rtype: int
def closest_value(root, target): """ :type root: TreeNode :type target: float :rtype: int """ a = root.val kid = root.left if target < a else root.right if not kid: return a b = closest_value(kid, target) return min((a,b), key=lambda x: abs(target-x))
Return list of all primes less than n, Using sieve of Eratosthenes.
def get_primes(n): """Return list of all primes less than n, Using sieve of Eratosthenes. """ if n <= 0: raise ValueError("'n' must be a positive integer.") # If x is even, exclude x from list (-1): sieve_size = (n // 2 - 1) if n % 2 == 0 else (n // 2) sieve = [True for _ in range(sieve_size)] # Sieve primes = [] # List of Primes if n >= 2: primes.append(2) # 2 is prime by default for i in range(sieve_size): if sieve[i]: value_at_i = i*2 + 3 primes.append(value_at_i) for j in range(i, sieve_size, value_at_i): sieve[j] = False return primes
returns a list with the permuations.
def permute(elements): """ returns a list with the permuations. """ if len(elements) <= 1: return [elements] else: tmp = [] for perm in permute(elements[1:]): for i in range(len(elements)): tmp.append(perm[:i] + elements[0:1] + perm[i:]) return tmp
iterator: returns a perumation by each call.
def permute_iter(elements): """ iterator: returns a perumation by each call. """ if len(elements) <= 1: yield elements else: for perm in permute_iter(elements[1:]): for i in range(len(elements)): yield perm[:i] + elements[0:1] + perm[i:]
Extended GCD algorithm. Return s, t, g such that a * s + b * t = GCD(a, b) and s and t are co-prime.
def extended_gcd(a, b): """Extended GCD algorithm. Return s, t, g such that a * s + b * t = GCD(a, b) and s and t are co-prime. """ old_s, s = 1, 0 old_t, t = 0, 1 old_r, r = a, b while r != 0: quotient = old_r / r old_r, r = r, old_r - quotient * r old_s, s = s, old_s - quotient * s old_t, t = t, old_t - quotient * t return old_s, old_t, old_r
type root: root class
def bin_tree_to_list(root): """ type root: root class """ if not root: return root root = bin_tree_to_list_util(root) while root.left: root = root.left return root
:type num: str :type target: int :rtype: List[str]
def add_operators(num, target): """ :type num: str :type target: int :rtype: List[str] """ def dfs(res, path, num, target, pos, prev, multed): if pos == len(num): if target == prev: res.append(path) return for i in range(pos, len(num)): if i != pos and num[pos] == '0': # all digits have to be used break cur = int(num[pos:i+1]) if pos == 0: dfs(res, path + str(cur), num, target, i+1, cur, cur) else: dfs(res, path + "+" + str(cur), num, target, i+1, prev + cur, cur) dfs(res, path + "-" + str(cur), num, target, i+1, prev - cur, -cur) dfs(res, path + "*" + str(cur), num, target, i+1, prev - multed + multed * cur, multed * cur) res = [] if not num: return res dfs(res, "", num, target, 0, 0, 0) return res
internal library initializer.
def _init_rabit(): """internal library initializer.""" if _LIB is not None: _LIB.RabitGetRank.restype = ctypes.c_int _LIB.RabitGetWorldSize.restype = ctypes.c_int _LIB.RabitIsDistributed.restype = ctypes.c_int _LIB.RabitVersionNumber.restype = ctypes.c_int
Initialize the rabit library with arguments
def init(args=None): """Initialize the rabit library with arguments""" if args is None: args = [] arr = (ctypes.c_char_p * len(args))() arr[:] = args _LIB.RabitInit(len(arr), arr)
Print message to the tracker. This function can be used to communicate the information of the progress to the tracker Parameters ---------- msg : str The message to be printed to tracker.
def tracker_print(msg): """Print message to the tracker. This function can be used to communicate the information of the progress to the tracker Parameters ---------- msg : str The message to be printed to tracker. """ if not isinstance(msg, STRING_TYPES): msg = str(msg) is_dist = _LIB.RabitIsDistributed() if is_dist != 0: _LIB.RabitTrackerPrint(c_str(msg)) else: sys.stdout.write(msg) sys.stdout.flush()
Get the processor name. Returns ------- name : str the name of processor(host)
def get_processor_name(): """Get the processor name. Returns ------- name : str the name of processor(host) """ mxlen = 256 length = ctypes.c_ulong() buf = ctypes.create_string_buffer(mxlen) _LIB.RabitGetProcessorName(buf, ctypes.byref(length), mxlen) return buf.value
Broadcast object from one node to all other nodes. Parameters ---------- data : any type that can be pickled Input data, if current rank does not equal root, this can be None root : int Rank of the node to broadcast data from. Returns ------- object : int the result of broadcast.
def broadcast(data, root): """Broadcast object from one node to all other nodes. Parameters ---------- data : any type that can be pickled Input data, if current rank does not equal root, this can be None root : int Rank of the node to broadcast data from. Returns ------- object : int the result of broadcast. """ rank = get_rank() length = ctypes.c_ulong() if root == rank: assert data is not None, 'need to pass in data when broadcasting' s = pickle.dumps(data, protocol=pickle.HIGHEST_PROTOCOL) length.value = len(s) # run first broadcast _LIB.RabitBroadcast(ctypes.byref(length), ctypes.sizeof(ctypes.c_ulong), root) if root != rank: dptr = (ctypes.c_char * length.value)() # run second _LIB.RabitBroadcast(ctypes.cast(dptr, ctypes.c_void_p), length.value, root) data = pickle.loads(dptr.raw) del dptr else: _LIB.RabitBroadcast(ctypes.cast(ctypes.c_char_p(s), ctypes.c_void_p), length.value, root) del s return data
Normalize UNIX path to a native path.
def normpath(path): """Normalize UNIX path to a native path.""" normalized = os.path.join(*path.split("/")) if os.path.isabs(path): return os.path.abspath("/") + normalized else: return normalized
internal training function
def _train_internal(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, xgb_model=None, callbacks=None): """internal training function""" callbacks = [] if callbacks is None else callbacks evals = list(evals) if isinstance(params, dict) \ and 'eval_metric' in params \ and isinstance(params['eval_metric'], list): params = dict((k, v) for k, v in params.items()) eval_metrics = params['eval_metric'] params.pop("eval_metric", None) params = list(params.items()) for eval_metric in eval_metrics: params += [('eval_metric', eval_metric)] bst = Booster(params, [dtrain] + [d[0] for d in evals]) nboost = 0 num_parallel_tree = 1 if xgb_model is not None: if not isinstance(xgb_model, STRING_TYPES): xgb_model = xgb_model.save_raw() bst = Booster(params, [dtrain] + [d[0] for d in evals], model_file=xgb_model) nboost = len(bst.get_dump()) _params = dict(params) if isinstance(params, list) else params if 'num_parallel_tree' in _params: num_parallel_tree = _params['num_parallel_tree'] nboost //= num_parallel_tree if 'num_class' in _params: nboost //= _params['num_class'] # Distributed code: Load the checkpoint from rabit. version = bst.load_rabit_checkpoint() assert rabit.get_world_size() != 1 or version == 0 rank = rabit.get_rank() start_iteration = int(version / 2) nboost += start_iteration callbacks_before_iter = [ cb for cb in callbacks if cb.__dict__.get('before_iteration', False)] callbacks_after_iter = [ cb for cb in callbacks if not cb.__dict__.get('before_iteration', False)] for i in range(start_iteration, num_boost_round): for cb in callbacks_before_iter: cb(CallbackEnv(model=bst, cvfolds=None, iteration=i, begin_iteration=start_iteration, end_iteration=num_boost_round, rank=rank, evaluation_result_list=None)) # Distributed code: need to resume to this point. # Skip the first update if it is a recovery step. if version % 2 == 0: bst.update(dtrain, i, obj) bst.save_rabit_checkpoint() version += 1 assert rabit.get_world_size() == 1 or version == rabit.version_number() nboost += 1 evaluation_result_list = [] # check evaluation result. if evals: bst_eval_set = bst.eval_set(evals, i, feval) if isinstance(bst_eval_set, STRING_TYPES): msg = bst_eval_set else: msg = bst_eval_set.decode() res = [x.split(':') for x in msg.split()] evaluation_result_list = [(k, float(v)) for k, v in res[1:]] try: for cb in callbacks_after_iter: cb(CallbackEnv(model=bst, cvfolds=None, iteration=i, begin_iteration=start_iteration, end_iteration=num_boost_round, rank=rank, evaluation_result_list=evaluation_result_list)) except EarlyStopException: break # do checkpoint after evaluation, in case evaluation also updates booster. bst.save_rabit_checkpoint() version += 1 if bst.attr('best_score') is not None: bst.best_score = float(bst.attr('best_score')) bst.best_iteration = int(bst.attr('best_iteration')) else: bst.best_iteration = nboost - 1 bst.best_ntree_limit = (bst.best_iteration + 1) * num_parallel_tree return bst
Train a booster with given parameters. Parameters ---------- params : dict Booster params. dtrain : DMatrix Data to be trained. num_boost_round: int Number of boosting iterations. evals: list of pairs (DMatrix, string) List of items to be evaluated during training, this allows user to watch performance on the validation set. obj : function Customized objective function. feval : function Customized evaluation function. maximize : bool Whether to maximize feval. early_stopping_rounds: int Activates early stopping. Validation error needs to decrease at least every **early_stopping_rounds** round(s) to continue training. Requires at least one item in **evals**. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: ``bst.best_score``, ``bst.best_iteration`` and ``bst.best_ntree_limit``. (Use ``bst.best_ntree_limit`` to get the correct value if ``num_parallel_tree`` and/or ``num_class`` appears in the parameters) evals_result: dict This dictionary stores the evaluation results of all the items in watchlist. Example: with a watchlist containing ``[(dtest,'eval'), (dtrain,'train')]`` and a parameter containing ``('eval_metric': 'logloss')``, the **evals_result** returns .. code-block:: python {'train': {'logloss': ['0.48253', '0.35953']}, 'eval': {'logloss': ['0.480385', '0.357756']}} verbose_eval : bool or int Requires at least one item in **evals**. If **verbose_eval** is True then the evaluation metric on the validation set is printed at each boosting stage. If **verbose_eval** is an integer then the evaluation metric on the validation set is printed at every given **verbose_eval** boosting stage. The last boosting stage / the boosting stage found by using **early_stopping_rounds** is also printed. Example: with ``verbose_eval=4`` and at least one item in **evals**, an evaluation metric is printed every 4 boosting stages, instead of every boosting stage. learning_rates: list or function (deprecated - use callback API instead) List of learning rate for each boosting round or a customized function that calculates eta in terms of current number of round and the total number of boosting round (e.g. yields learning rate decay) xgb_model : file name of stored xgb model or 'Booster' instance Xgb model to be loaded before training (allows training continuation). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`Callback API <callback_api>`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)] Returns ------- Booster : a trained booster model
def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, maximize=False, early_stopping_rounds=None, evals_result=None, verbose_eval=True, xgb_model=None, callbacks=None, learning_rates=None): # pylint: disable=too-many-statements,too-many-branches, attribute-defined-outside-init """Train a booster with given parameters. Parameters ---------- params : dict Booster params. dtrain : DMatrix Data to be trained. num_boost_round: int Number of boosting iterations. evals: list of pairs (DMatrix, string) List of items to be evaluated during training, this allows user to watch performance on the validation set. obj : function Customized objective function. feval : function Customized evaluation function. maximize : bool Whether to maximize feval. early_stopping_rounds: int Activates early stopping. Validation error needs to decrease at least every **early_stopping_rounds** round(s) to continue training. Requires at least one item in **evals**. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: ``bst.best_score``, ``bst.best_iteration`` and ``bst.best_ntree_limit``. (Use ``bst.best_ntree_limit`` to get the correct value if ``num_parallel_tree`` and/or ``num_class`` appears in the parameters) evals_result: dict This dictionary stores the evaluation results of all the items in watchlist. Example: with a watchlist containing ``[(dtest,'eval'), (dtrain,'train')]`` and a parameter containing ``('eval_metric': 'logloss')``, the **evals_result** returns .. code-block:: python {'train': {'logloss': ['0.48253', '0.35953']}, 'eval': {'logloss': ['0.480385', '0.357756']}} verbose_eval : bool or int Requires at least one item in **evals**. If **verbose_eval** is True then the evaluation metric on the validation set is printed at each boosting stage. If **verbose_eval** is an integer then the evaluation metric on the validation set is printed at every given **verbose_eval** boosting stage. The last boosting stage / the boosting stage found by using **early_stopping_rounds** is also printed. Example: with ``verbose_eval=4`` and at least one item in **evals**, an evaluation metric is printed every 4 boosting stages, instead of every boosting stage. learning_rates: list or function (deprecated - use callback API instead) List of learning rate for each boosting round or a customized function that calculates eta in terms of current number of round and the total number of boosting round (e.g. yields learning rate decay) xgb_model : file name of stored xgb model or 'Booster' instance Xgb model to be loaded before training (allows training continuation). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`Callback API <callback_api>`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)] Returns ------- Booster : a trained booster model """ callbacks = [] if callbacks is None else callbacks # Most of legacy advanced options becomes callbacks if isinstance(verbose_eval, bool) and verbose_eval: callbacks.append(callback.print_evaluation()) else: if isinstance(verbose_eval, int): callbacks.append(callback.print_evaluation(verbose_eval)) if early_stopping_rounds is not None: callbacks.append(callback.early_stop(early_stopping_rounds, maximize=maximize, verbose=bool(verbose_eval))) if evals_result is not None: callbacks.append(callback.record_evaluation(evals_result)) if learning_rates is not None: warnings.warn("learning_rates parameter is deprecated - use callback API instead", DeprecationWarning) callbacks.append(callback.reset_learning_rate(learning_rates)) return _train_internal(params, dtrain, num_boost_round=num_boost_round, evals=evals, obj=obj, feval=feval, xgb_model=xgb_model, callbacks=callbacks)
Make an n-fold list of CVPack from random indices.
def mknfold(dall, nfold, param, seed, evals=(), fpreproc=None, stratified=False, folds=None, shuffle=True): """ Make an n-fold list of CVPack from random indices. """ evals = list(evals) np.random.seed(seed) if stratified is False and folds is None: # Do standard k-fold cross validation if shuffle is True: idx = np.random.permutation(dall.num_row()) else: idx = np.arange(dall.num_row()) out_idset = np.array_split(idx, nfold) in_idset = [ np.concatenate([out_idset[i] for i in range(nfold) if k != i]) for k in range(nfold) ] elif folds is not None: # Use user specified custom split using indices try: in_idset = [x[0] for x in folds] out_idset = [x[1] for x in folds] except TypeError: # Custom stratification using Sklearn KFoldSplit object splits = list(folds.split(X=dall.get_label(), y=dall.get_label())) in_idset = [x[0] for x in splits] out_idset = [x[1] for x in splits] nfold = len(out_idset) else: # Do standard stratefied shuffle k-fold split sfk = XGBStratifiedKFold(n_splits=nfold, shuffle=True, random_state=seed) splits = list(sfk.split(X=dall.get_label(), y=dall.get_label())) in_idset = [x[0] for x in splits] out_idset = [x[1] for x in splits] nfold = len(out_idset) ret = [] for k in range(nfold): dtrain = dall.slice(in_idset[k]) dtest = dall.slice(out_idset[k]) # run preprocessing on the data set if needed if fpreproc is not None: dtrain, dtest, tparam = fpreproc(dtrain, dtest, param.copy()) else: tparam = param plst = list(tparam.items()) + [('eval_metric', itm) for itm in evals] ret.append(CVPack(dtrain, dtest, plst)) return ret
Aggregate cross-validation results. If verbose_eval is true, progress is displayed in every call. If verbose_eval is an integer, progress will only be displayed every `verbose_eval` trees, tracked via trial.
def aggcv(rlist): # pylint: disable=invalid-name """ Aggregate cross-validation results. If verbose_eval is true, progress is displayed in every call. If verbose_eval is an integer, progress will only be displayed every `verbose_eval` trees, tracked via trial. """ cvmap = {} idx = rlist[0].split()[0] for line in rlist: arr = line.split() assert idx == arr[0] for it in arr[1:]: if not isinstance(it, STRING_TYPES): it = it.decode() k, v = it.split(':') if k not in cvmap: cvmap[k] = [] cvmap[k].append(float(v)) msg = idx results = [] for k, v in sorted(cvmap.items(), key=lambda x: (x[0].startswith('test'), x[0])): v = np.array(v) if not isinstance(msg, STRING_TYPES): msg = msg.decode() mean, std = np.mean(v), np.std(v) results.extend([(k, mean, std)]) return results
Cross-validation with given parameters. Parameters ---------- params : dict Booster params. dtrain : DMatrix Data to be trained. num_boost_round : int Number of boosting iterations. nfold : int Number of folds in CV. stratified : bool Perform stratified sampling. folds : a KFold or StratifiedKFold instance or list of fold indices Sklearn KFolds or StratifiedKFolds object. Alternatively may explicitly pass sample indices for each fold. For ``n`` folds, **folds** should be a length ``n`` list of tuples. Each tuple is ``(in,out)`` where ``in`` is a list of indices to be used as the training samples for the ``n`` th fold and ``out`` is a list of indices to be used as the testing samples for the ``n`` th fold. metrics : string or list of strings Evaluation metrics to be watched in CV. obj : function Custom objective function. feval : function Custom evaluation function. maximize : bool Whether to maximize feval. early_stopping_rounds: int Activates early stopping. CV error needs to decrease at least every <early_stopping_rounds> round(s) to continue. Last entry in evaluation history is the one from best iteration. fpreproc : function Preprocessing function that takes (dtrain, dtest, param) and returns transformed versions of those. as_pandas : bool, default True Return pd.DataFrame when pandas is installed. If False or pandas is not installed, return np.ndarray verbose_eval : bool, int, or None, default None Whether to display the progress. If None, progress will be displayed when np.ndarray is returned. If True, progress will be displayed at boosting stage. If an integer is given, progress will be displayed at every given `verbose_eval` boosting stage. show_stdv : bool, default True Whether to display the standard deviation in progress. Results are not affected, and always contains std. seed : int Seed used to generate the folds (passed to numpy.random.seed). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`Callback API <callback_api>`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)] shuffle : bool Shuffle data before creating folds. Returns ------- evaluation history : list(string)
def cv(params, dtrain, num_boost_round=10, nfold=3, stratified=False, folds=None, metrics=(), obj=None, feval=None, maximize=False, early_stopping_rounds=None, fpreproc=None, as_pandas=True, verbose_eval=None, show_stdv=True, seed=0, callbacks=None, shuffle=True): # pylint: disable = invalid-name """Cross-validation with given parameters. Parameters ---------- params : dict Booster params. dtrain : DMatrix Data to be trained. num_boost_round : int Number of boosting iterations. nfold : int Number of folds in CV. stratified : bool Perform stratified sampling. folds : a KFold or StratifiedKFold instance or list of fold indices Sklearn KFolds or StratifiedKFolds object. Alternatively may explicitly pass sample indices for each fold. For ``n`` folds, **folds** should be a length ``n`` list of tuples. Each tuple is ``(in,out)`` where ``in`` is a list of indices to be used as the training samples for the ``n`` th fold and ``out`` is a list of indices to be used as the testing samples for the ``n`` th fold. metrics : string or list of strings Evaluation metrics to be watched in CV. obj : function Custom objective function. feval : function Custom evaluation function. maximize : bool Whether to maximize feval. early_stopping_rounds: int Activates early stopping. CV error needs to decrease at least every <early_stopping_rounds> round(s) to continue. Last entry in evaluation history is the one from best iteration. fpreproc : function Preprocessing function that takes (dtrain, dtest, param) and returns transformed versions of those. as_pandas : bool, default True Return pd.DataFrame when pandas is installed. If False or pandas is not installed, return np.ndarray verbose_eval : bool, int, or None, default None Whether to display the progress. If None, progress will be displayed when np.ndarray is returned. If True, progress will be displayed at boosting stage. If an integer is given, progress will be displayed at every given `verbose_eval` boosting stage. show_stdv : bool, default True Whether to display the standard deviation in progress. Results are not affected, and always contains std. seed : int Seed used to generate the folds (passed to numpy.random.seed). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`Callback API <callback_api>`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)] shuffle : bool Shuffle data before creating folds. Returns ------- evaluation history : list(string) """ if stratified is True and not SKLEARN_INSTALLED: raise XGBoostError('sklearn needs to be installed in order to use stratified cv') if isinstance(metrics, str): metrics = [metrics] if isinstance(params, list): _metrics = [x[1] for x in params if x[0] == 'eval_metric'] params = dict(params) if 'eval_metric' in params: params['eval_metric'] = _metrics else: params = dict((k, v) for k, v in params.items()) if (not metrics) and 'eval_metric' in params: if isinstance(params['eval_metric'], list): metrics = params['eval_metric'] else: metrics = [params['eval_metric']] params.pop("eval_metric", None) results = {} cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc, stratified, folds, shuffle) # setup callbacks callbacks = [] if callbacks is None else callbacks if early_stopping_rounds is not None: callbacks.append(callback.early_stop(early_stopping_rounds, maximize=maximize, verbose=False)) if isinstance(verbose_eval, bool) and verbose_eval: callbacks.append(callback.print_evaluation(show_stdv=show_stdv)) else: if isinstance(verbose_eval, int): callbacks.append(callback.print_evaluation(verbose_eval, show_stdv=show_stdv)) callbacks_before_iter = [ cb for cb in callbacks if cb.__dict__.get('before_iteration', False)] callbacks_after_iter = [ cb for cb in callbacks if not cb.__dict__.get('before_iteration', False)] for i in range(num_boost_round): for cb in callbacks_before_iter: cb(CallbackEnv(model=None, cvfolds=cvfolds, iteration=i, begin_iteration=0, end_iteration=num_boost_round, rank=0, evaluation_result_list=None)) for fold in cvfolds: fold.update(i, obj) res = aggcv([f.eval(i, feval) for f in cvfolds]) for key, mean, std in res: if key + '-mean' not in results: results[key + '-mean'] = [] if key + '-std' not in results: results[key + '-std'] = [] results[key + '-mean'].append(mean) results[key + '-std'].append(std) try: for cb in callbacks_after_iter: cb(CallbackEnv(model=None, cvfolds=cvfolds, iteration=i, begin_iteration=0, end_iteration=num_boost_round, rank=0, evaluation_result_list=res)) except EarlyStopException as e: for k in results: results[k] = results[k][:(e.best_iteration + 1)] break if as_pandas: try: import pandas as pd results = pd.DataFrame.from_dict(results) except ImportError: pass return results
Update the boosters for one iteration
def update(self, iteration, fobj): """"Update the boosters for one iteration""" self.bst.update(self.dtrain, iteration, fobj)
Evaluate the CVPack for one iteration.
def eval(self, iteration, feval): """"Evaluate the CVPack for one iteration.""" return self.bst.eval_set(self.watchlist, iteration, feval)
return whether the current callback context is cv or train
def _get_callback_context(env): """return whether the current callback context is cv or train""" if env.model is not None and env.cvfolds is None: context = 'train' elif env.model is None and env.cvfolds is not None: context = 'cv' return context
format metric string
def _fmt_metric(value, show_stdv=True): """format metric string""" if len(value) == 2: return '%s:%g' % (value[0], value[1]) if len(value) == 3: if show_stdv: return '%s:%g+%g' % (value[0], value[1], value[2]) return '%s:%g' % (value[0], value[1]) raise ValueError("wrong metric value")
Create a callback that print evaluation result. We print the evaluation results every **period** iterations and on the first and the last iterations. Parameters ---------- period : int The period to log the evaluation results show_stdv : bool, optional Whether show stdv if provided Returns ------- callback : function A callback that print evaluation every period iterations.
def print_evaluation(period=1, show_stdv=True): """Create a callback that print evaluation result. We print the evaluation results every **period** iterations and on the first and the last iterations. Parameters ---------- period : int The period to log the evaluation results show_stdv : bool, optional Whether show stdv if provided Returns ------- callback : function A callback that print evaluation every period iterations. """ def callback(env): """internal function""" if env.rank != 0 or (not env.evaluation_result_list) or period is False or period == 0: return i = env.iteration if i % period == 0 or i + 1 == env.begin_iteration or i + 1 == env.end_iteration: msg = '\t'.join([_fmt_metric(x, show_stdv) for x in env.evaluation_result_list]) rabit.tracker_print('[%d]\t%s\n' % (i, msg)) return callback
Create a call back that records the evaluation history into **eval_result**. Parameters ---------- eval_result : dict A dictionary to store the evaluation results. Returns ------- callback : function The requested callback function.
def record_evaluation(eval_result): """Create a call back that records the evaluation history into **eval_result**. Parameters ---------- eval_result : dict A dictionary to store the evaluation results. Returns ------- callback : function The requested callback function. """ if not isinstance(eval_result, dict): raise TypeError('eval_result has to be a dictionary') eval_result.clear() def init(env): """internal function""" for k, _ in env.evaluation_result_list: pos = k.index('-') key = k[:pos] metric = k[pos + 1:] if key not in eval_result: eval_result[key] = {} if metric not in eval_result[key]: eval_result[key][metric] = [] def callback(env): """internal function""" if not eval_result: init(env) for k, v in env.evaluation_result_list: pos = k.index('-') key = k[:pos] metric = k[pos + 1:] eval_result[key][metric].append(v) return callback
Reset learning rate after iteration 1 NOTE: the initial learning rate will still take in-effect on first iteration. Parameters ---------- learning_rates: list or function List of learning rate for each boosting round or a customized function that calculates eta in terms of current number of round and the total number of boosting round (e.g. yields learning rate decay) * list ``l``: ``eta = l[boosting_round]`` * function ``f``: ``eta = f(boosting_round, num_boost_round)`` Returns ------- callback : function The requested callback function.
def reset_learning_rate(learning_rates): """Reset learning rate after iteration 1 NOTE: the initial learning rate will still take in-effect on first iteration. Parameters ---------- learning_rates: list or function List of learning rate for each boosting round or a customized function that calculates eta in terms of current number of round and the total number of boosting round (e.g. yields learning rate decay) * list ``l``: ``eta = l[boosting_round]`` * function ``f``: ``eta = f(boosting_round, num_boost_round)`` Returns ------- callback : function The requested callback function. """ def get_learning_rate(i, n, learning_rates): """helper providing the learning rate""" if isinstance(learning_rates, list): if len(learning_rates) != n: raise ValueError("Length of list 'learning_rates' has to equal 'num_boost_round'.") new_learning_rate = learning_rates[i] else: new_learning_rate = learning_rates(i, n) return new_learning_rate def callback(env): """internal function""" context = _get_callback_context(env) if context == 'train': bst, i, n = env.model, env.iteration, env.end_iteration bst.set_param('learning_rate', get_learning_rate(i, n, learning_rates)) elif context == 'cv': i, n = env.iteration, env.end_iteration for cvpack in env.cvfolds: bst = cvpack.bst bst.set_param('learning_rate', get_learning_rate(i, n, learning_rates)) callback.before_iteration = True return callback
Create a callback that activates early stoppping. Validation error needs to decrease at least every **stopping_rounds** round(s) to continue training. Requires at least one item in **evals**. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: ``bst.best_score``, ``bst.best_iteration`` and ``bst.best_ntree_limit``. (Use ``bst.best_ntree_limit`` to get the correct value if ``num_parallel_tree`` and/or ``num_class`` appears in the parameters) Parameters ---------- stopp_rounds : int The stopping rounds before the trend occur. maximize : bool Whether to maximize evaluation metric. verbose : optional, bool Whether to print message about early stopping information. Returns ------- callback : function The requested callback function.
def early_stop(stopping_rounds, maximize=False, verbose=True): """Create a callback that activates early stoppping. Validation error needs to decrease at least every **stopping_rounds** round(s) to continue training. Requires at least one item in **evals**. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: ``bst.best_score``, ``bst.best_iteration`` and ``bst.best_ntree_limit``. (Use ``bst.best_ntree_limit`` to get the correct value if ``num_parallel_tree`` and/or ``num_class`` appears in the parameters) Parameters ---------- stopp_rounds : int The stopping rounds before the trend occur. maximize : bool Whether to maximize evaluation metric. verbose : optional, bool Whether to print message about early stopping information. Returns ------- callback : function The requested callback function. """ state = {} def init(env): """internal function""" bst = env.model if not env.evaluation_result_list: raise ValueError('For early stopping you need at least one set in evals.') if len(env.evaluation_result_list) > 1 and verbose: msg = ("Multiple eval metrics have been passed: " "'{0}' will be used for early stopping.\n\n") rabit.tracker_print(msg.format(env.evaluation_result_list[-1][0])) maximize_metrics = ('auc', 'aucpr', 'map', 'ndcg') maximize_at_n_metrics = ('auc@', 'aucpr@', 'map@', 'ndcg@') maximize_score = maximize metric_label = env.evaluation_result_list[-1][0] metric = metric_label.split('-', 1)[-1] if any(metric.startswith(x) for x in maximize_at_n_metrics): maximize_score = True if any(metric.split(":")[0] == x for x in maximize_metrics): maximize_score = True if verbose and env.rank == 0: msg = "Will train until {} hasn't improved in {} rounds.\n" rabit.tracker_print(msg.format(metric_label, stopping_rounds)) state['maximize_score'] = maximize_score state['best_iteration'] = 0 if maximize_score: state['best_score'] = float('-inf') else: state['best_score'] = float('inf') if bst is not None: if bst.attr('best_score') is not None: state['best_score'] = float(bst.attr('best_score')) state['best_iteration'] = int(bst.attr('best_iteration')) state['best_msg'] = bst.attr('best_msg') else: bst.set_attr(best_iteration=str(state['best_iteration'])) bst.set_attr(best_score=str(state['best_score'])) else: assert env.cvfolds is not None def callback(env): """internal function""" score = env.evaluation_result_list[-1][1] if not state: init(env) best_score = state['best_score'] best_iteration = state['best_iteration'] maximize_score = state['maximize_score'] if (maximize_score and score > best_score) or \ (not maximize_score and score < best_score): msg = '[%d]\t%s' % ( env.iteration, '\t'.join([_fmt_metric(x) for x in env.evaluation_result_list])) state['best_msg'] = msg state['best_score'] = score state['best_iteration'] = env.iteration # save the property to attributes, so they will occur in checkpoint. if env.model is not None: env.model.set_attr(best_score=str(state['best_score']), best_iteration=str(state['best_iteration']), best_msg=state['best_msg']) elif env.iteration - best_iteration >= stopping_rounds: best_msg = state['best_msg'] if verbose and env.rank == 0: msg = "Stopping. Best iteration:\n{}\n\n" rabit.tracker_print(msg.format(best_msg)) raise EarlyStopException(best_iteration) return callback
Run the doxygen make command in the designated folder.
def run_doxygen(folder): """Run the doxygen make command in the designated folder.""" try: retcode = subprocess.call("cd %s; make doxygen" % folder, shell=True) if retcode < 0: sys.stderr.write("doxygen terminated by signal %s" % (-retcode)) except OSError as e: sys.stderr.write("doxygen execution failed: %s" % e)
Decorate an objective function Converts an objective function using the typical sklearn metrics signature so that it is usable with ``xgboost.training.train`` Parameters ---------- func: callable Expects a callable with signature ``func(y_true, y_pred)``: y_true: array_like of shape [n_samples] The target values y_pred: array_like of shape [n_samples] The predicted values Returns ------- new_func: callable The new objective function as expected by ``xgboost.training.train``. The signature is ``new_func(preds, dmatrix)``: preds: array_like, shape [n_samples] The predicted values dmatrix: ``DMatrix`` The training set from which the labels will be extracted using ``dmatrix.get_label()``
def _objective_decorator(func): """Decorate an objective function Converts an objective function using the typical sklearn metrics signature so that it is usable with ``xgboost.training.train`` Parameters ---------- func: callable Expects a callable with signature ``func(y_true, y_pred)``: y_true: array_like of shape [n_samples] The target values y_pred: array_like of shape [n_samples] The predicted values Returns ------- new_func: callable The new objective function as expected by ``xgboost.training.train``. The signature is ``new_func(preds, dmatrix)``: preds: array_like, shape [n_samples] The predicted values dmatrix: ``DMatrix`` The training set from which the labels will be extracted using ``dmatrix.get_label()`` """ def inner(preds, dmatrix): """internal function""" labels = dmatrix.get_label() return func(labels, preds) return inner
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid search. Returns ------- self
def set_params(self, **params): """Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid search. Returns ------- self """ if not params: # Simple optimization to gain speed (inspect is slow) return self for key, value in params.items(): if hasattr(self, key): setattr(self, key, value) else: self.kwargs[key] = value return self
Get parameters.
def get_params(self, deep=False): """Get parameters.""" params = super(XGBModel, self).get_params(deep=deep) if isinstance(self.kwargs, dict): # if kwargs is a dict, update params accordingly params.update(self.kwargs) if params['missing'] is np.nan: params['missing'] = None # sklearn doesn't handle nan. see #4725 if not params.get('eval_metric', True): del params['eval_metric'] # don't give as None param to Booster return params
Get xgboost type parameters.
def get_xgb_params(self): """Get xgboost type parameters.""" xgb_params = self.get_params() random_state = xgb_params.pop('random_state') if 'seed' in xgb_params and xgb_params['seed'] is not None: warnings.warn('The seed parameter is deprecated as of version .6.' 'Please use random_state instead.' 'seed is deprecated.', DeprecationWarning) else: xgb_params['seed'] = random_state n_jobs = xgb_params.pop('n_jobs') if 'nthread' in xgb_params and xgb_params['nthread'] is not None: warnings.warn('The nthread parameter is deprecated as of version .6.' 'Please use n_jobs instead.' 'nthread is deprecated.', DeprecationWarning) else: xgb_params['nthread'] = n_jobs if 'silent' in xgb_params and xgb_params['silent'] is not None: warnings.warn('The silent parameter is deprecated.' 'Please use verbosity instead.' 'silent is depreated', DeprecationWarning) # TODO(canonizer): set verbosity explicitly if silent is removed from xgboost, # but remains in this API else: # silent=None shouldn't be passed to xgboost xgb_params.pop('silent', None) if xgb_params['nthread'] <= 0: xgb_params.pop('nthread', None) return xgb_params
Load the model from a file. The model is loaded from an XGBoost internal binary format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature names) will not be loaded. Label encodings (text labels to numeric labels) will be also lost. **If you are using only the Python interface, we recommend pickling the model object for best results.** Parameters ---------- fname : string or a memory buffer Input file name or memory buffer(see also save_raw)
def load_model(self, fname): """ Load the model from a file. The model is loaded from an XGBoost internal binary format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature names) will not be loaded. Label encodings (text labels to numeric labels) will be also lost. **If you are using only the Python interface, we recommend pickling the model object for best results.** Parameters ---------- fname : string or a memory buffer Input file name or memory buffer(see also save_raw) """ if self._Booster is None: self._Booster = Booster({'nthread': self.n_jobs}) self._Booster.load_model(fname)
Fit the gradient boosting model Parameters ---------- X : array_like Feature matrix y : array_like Labels sample_weight : array_like instance weights eval_set : list, optional A list of (X, y) tuple pairs to use as a validation set for early-stopping sample_weight_eval_set : list, optional A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of instance weights on the i-th validation set. eval_metric : str, callable, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.rst. If callable, a custom evaluation metric. The call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that you may need to call the get_label method. It must return a str, value pair where the str is a name for the evaluation and value is the value of the evaluation function. This objective is always minimized. early_stopping_rounds : int Activates early stopping. Validation error needs to decrease at least every <early_stopping_rounds> round(s) to continue training. Requires at least one item in evals. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct value if num_parallel_tree and/or num_class appears in the parameters) verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. xgb_model : str file name of stored xgb model or 'Booster' instance Xgb model to be loaded before training (allows training continuation). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`callback_api`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)]
def fit(self, X, y, sample_weight=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None, callbacks=None): # pylint: disable=missing-docstring,invalid-name,attribute-defined-outside-init """ Fit the gradient boosting model Parameters ---------- X : array_like Feature matrix y : array_like Labels sample_weight : array_like instance weights eval_set : list, optional A list of (X, y) tuple pairs to use as a validation set for early-stopping sample_weight_eval_set : list, optional A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of instance weights on the i-th validation set. eval_metric : str, callable, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.rst. If callable, a custom evaluation metric. The call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that you may need to call the get_label method. It must return a str, value pair where the str is a name for the evaluation and value is the value of the evaluation function. This objective is always minimized. early_stopping_rounds : int Activates early stopping. Validation error needs to decrease at least every <early_stopping_rounds> round(s) to continue training. Requires at least one item in evals. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct value if num_parallel_tree and/or num_class appears in the parameters) verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. xgb_model : str file name of stored xgb model or 'Booster' instance Xgb model to be loaded before training (allows training continuation). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`callback_api`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)] """ if sample_weight is not None: trainDmatrix = DMatrix(X, label=y, weight=sample_weight, missing=self.missing, nthread=self.n_jobs) else: trainDmatrix = DMatrix(X, label=y, missing=self.missing, nthread=self.n_jobs) evals_result = {} if eval_set is not None: if sample_weight_eval_set is None: sample_weight_eval_set = [None] * len(eval_set) evals = list( DMatrix(eval_set[i][0], label=eval_set[i][1], missing=self.missing, weight=sample_weight_eval_set[i], nthread=self.n_jobs) for i in range(len(eval_set))) evals = list(zip(evals, ["validation_{}".format(i) for i in range(len(evals))])) else: evals = () params = self.get_xgb_params() if callable(self.objective): obj = _objective_decorator(self.objective) params["objective"] = "reg:linear" else: obj = None feval = eval_metric if callable(eval_metric) else None if eval_metric is not None: if callable(eval_metric): eval_metric = None else: params.update({'eval_metric': eval_metric}) self._Booster = train(params, trainDmatrix, self.get_num_boosting_rounds(), evals=evals, early_stopping_rounds=early_stopping_rounds, evals_result=evals_result, obj=obj, feval=feval, verbose_eval=verbose, xgb_model=xgb_model, callbacks=callbacks) if evals_result: for val in evals_result.items(): evals_result_key = list(val[1].keys())[0] evals_result[val[0]][evals_result_key] = val[1][evals_result_key] self.evals_result_ = evals_result if early_stopping_rounds is not None: self.best_score = self._Booster.best_score self.best_iteration = self._Booster.best_iteration self.best_ntree_limit = self._Booster.best_ntree_limit return self
Predict with `data`. .. note:: This function is not thread safe. For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies of model object and then call ``predict()``. .. note:: Using ``predict()`` with DART booster If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only some of the trees will be evaluated. This will produce incorrect results if ``data`` is not the training data. To obtain correct results on test sets, set ``ntree_limit`` to a nonzero value, e.g. .. code-block:: python preds = bst.predict(dtest, ntree_limit=num_round) Parameters ---------- data : DMatrix The dmatrix storing the input. output_margin : bool Whether to output the raw untransformed margin value. ntree_limit : int Limit number of trees in the prediction; defaults to best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use all trees). validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. Returns ------- prediction : numpy array
def predict(self, data, output_margin=False, ntree_limit=None, validate_features=True): """ Predict with `data`. .. note:: This function is not thread safe. For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies of model object and then call ``predict()``. .. note:: Using ``predict()`` with DART booster If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only some of the trees will be evaluated. This will produce incorrect results if ``data`` is not the training data. To obtain correct results on test sets, set ``ntree_limit`` to a nonzero value, e.g. .. code-block:: python preds = bst.predict(dtest, ntree_limit=num_round) Parameters ---------- data : DMatrix The dmatrix storing the input. output_margin : bool Whether to output the raw untransformed margin value. ntree_limit : int Limit number of trees in the prediction; defaults to best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use all trees). validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. Returns ------- prediction : numpy array """ # pylint: disable=missing-docstring,invalid-name test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs) # get ntree_limit to use - if none specified, default to # best_ntree_limit if defined, otherwise 0. if ntree_limit is None: ntree_limit = getattr(self, "best_ntree_limit", 0) return self.get_booster().predict(test_dmatrix, output_margin=output_margin, ntree_limit=ntree_limit, validate_features=validate_features)
Return the predicted leaf every tree for each sample. Parameters ---------- X : array_like, shape=[n_samples, n_features] Input features matrix. ntree_limit : int Limit number of trees in the prediction; defaults to 0 (use all trees). Returns ------- X_leaves : array_like, shape=[n_samples, n_trees] For each datapoint x in X and for each tree, return the index of the leaf x ends up in. Leaves are numbered within ``[0; 2**(self.max_depth+1))``, possibly with gaps in the numbering.
def apply(self, X, ntree_limit=0): """Return the predicted leaf every tree for each sample. Parameters ---------- X : array_like, shape=[n_samples, n_features] Input features matrix. ntree_limit : int Limit number of trees in the prediction; defaults to 0 (use all trees). Returns ------- X_leaves : array_like, shape=[n_samples, n_trees] For each datapoint x in X and for each tree, return the index of the leaf x ends up in. Leaves are numbered within ``[0; 2**(self.max_depth+1))``, possibly with gaps in the numbering. """ test_dmatrix = DMatrix(X, missing=self.missing, nthread=self.n_jobs) return self.get_booster().predict(test_dmatrix, pred_leaf=True, ntree_limit=ntree_limit)
Feature importances property .. note:: Feature importance is defined only for tree boosters Feature importance is only defined when the decision tree model is chosen as base learner (`booster=gbtree`). It is not defined for other base learner types, such as linear learners (`booster=gblinear`). Returns ------- feature_importances_ : array of shape ``[n_features]``
def feature_importances_(self): """ Feature importances property .. note:: Feature importance is defined only for tree boosters Feature importance is only defined when the decision tree model is chosen as base learner (`booster=gbtree`). It is not defined for other base learner types, such as linear learners (`booster=gblinear`). Returns ------- feature_importances_ : array of shape ``[n_features]`` """ if getattr(self, 'booster', None) is not None and self.booster != 'gbtree': raise AttributeError('Feature importance is not defined for Booster type {}' .format(self.booster)) b = self.get_booster() score = b.get_score(importance_type=self.importance_type) all_features = [score.get(f, 0.) for f in b.feature_names] all_features = np.array(all_features, dtype=np.float32) return all_features / all_features.sum()
Coefficients property .. note:: Coefficients are defined only for linear learners Coefficients are only defined when the linear model is chosen as base learner (`booster=gblinear`). It is not defined for other base learner types, such as tree learners (`booster=gbtree`). Returns ------- coef_ : array of shape ``[n_features]`` or ``[n_classes, n_features]``
def coef_(self): """ Coefficients property .. note:: Coefficients are defined only for linear learners Coefficients are only defined when the linear model is chosen as base learner (`booster=gblinear`). It is not defined for other base learner types, such as tree learners (`booster=gbtree`). Returns ------- coef_ : array of shape ``[n_features]`` or ``[n_classes, n_features]`` """ if getattr(self, 'booster', None) is not None and self.booster != 'gblinear': raise AttributeError('Coefficients are not defined for Booster type {}' .format(self.booster)) b = self.get_booster() coef = np.array(json.loads(b.get_dump(dump_format='json')[0])['weight']) # Logic for multiclass classification n_classes = getattr(self, 'n_classes_', None) if n_classes is not None: if n_classes > 2: assert len(coef.shape) == 1 assert coef.shape[0] % n_classes == 0 coef = coef.reshape((n_classes, -1)) return coef
Intercept (bias) property .. note:: Intercept is defined only for linear learners Intercept (bias) is only defined when the linear model is chosen as base learner (`booster=gblinear`). It is not defined for other base learner types, such as tree learners (`booster=gbtree`). Returns ------- intercept_ : array of shape ``(1,)`` or ``[n_classes]``
def intercept_(self): """ Intercept (bias) property .. note:: Intercept is defined only for linear learners Intercept (bias) is only defined when the linear model is chosen as base learner (`booster=gblinear`). It is not defined for other base learner types, such as tree learners (`booster=gbtree`). Returns ------- intercept_ : array of shape ``(1,)`` or ``[n_classes]`` """ if getattr(self, 'booster', None) is not None and self.booster != 'gblinear': raise AttributeError('Intercept (bias) is not defined for Booster type {}' .format(self.booster)) b = self.get_booster() return np.array(json.loads(b.get_dump(dump_format='json')[0])['bias'])
Predict with `data`. .. note:: This function is not thread safe. For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies of model object and then call ``predict()``. .. note:: Using ``predict()`` with DART booster If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only some of the trees will be evaluated. This will produce incorrect results if ``data`` is not the training data. To obtain correct results on test sets, set ``ntree_limit`` to a nonzero value, e.g. .. code-block:: python preds = bst.predict(dtest, ntree_limit=num_round) Parameters ---------- data : DMatrix The dmatrix storing the input. output_margin : bool Whether to output the raw untransformed margin value. ntree_limit : int Limit number of trees in the prediction; defaults to best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use all trees). validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. Returns ------- prediction : numpy array
def predict(self, data, output_margin=False, ntree_limit=None, validate_features=True): """ Predict with `data`. .. note:: This function is not thread safe. For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies of model object and then call ``predict()``. .. note:: Using ``predict()`` with DART booster If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only some of the trees will be evaluated. This will produce incorrect results if ``data`` is not the training data. To obtain correct results on test sets, set ``ntree_limit`` to a nonzero value, e.g. .. code-block:: python preds = bst.predict(dtest, ntree_limit=num_round) Parameters ---------- data : DMatrix The dmatrix storing the input. output_margin : bool Whether to output the raw untransformed margin value. ntree_limit : int Limit number of trees in the prediction; defaults to best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use all trees). validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. Returns ------- prediction : numpy array """ test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs) if ntree_limit is None: ntree_limit = getattr(self, "best_ntree_limit", 0) class_probs = self.get_booster().predict(test_dmatrix, output_margin=output_margin, ntree_limit=ntree_limit, validate_features=validate_features) if output_margin: # If output_margin is active, simply return the scores return class_probs if len(class_probs.shape) > 1: column_indexes = np.argmax(class_probs, axis=1) else: column_indexes = np.repeat(0, class_probs.shape[0]) column_indexes[class_probs > 0.5] = 1 return self._le.inverse_transform(column_indexes)
Predict the probability of each `data` example being of a given class. .. note:: This function is not thread safe For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies of model object and then call predict Parameters ---------- data : DMatrix The dmatrix storing the input. ntree_limit : int Limit number of trees in the prediction; defaults to best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use all trees). validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. Returns ------- prediction : numpy array a numpy array with the probability of each data example being of a given class.
def predict_proba(self, data, ntree_limit=None, validate_features=True): """ Predict the probability of each `data` example being of a given class. .. note:: This function is not thread safe For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call ``xgb.copy()`` to make copies of model object and then call predict Parameters ---------- data : DMatrix The dmatrix storing the input. ntree_limit : int Limit number of trees in the prediction; defaults to best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use all trees). validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. Returns ------- prediction : numpy array a numpy array with the probability of each data example being of a given class. """ test_dmatrix = DMatrix(data, missing=self.missing, nthread=self.n_jobs) if ntree_limit is None: ntree_limit = getattr(self, "best_ntree_limit", 0) class_probs = self.get_booster().predict(test_dmatrix, ntree_limit=ntree_limit, validate_features=validate_features) if self.objective == "multi:softprob": return class_probs classone_probs = class_probs classzero_probs = 1.0 - classone_probs return np.vstack((classzero_probs, classone_probs)).transpose()
Fit the gradient boosting model Parameters ---------- X : array_like Feature matrix y : array_like Labels group : array_like group size of training data sample_weight : array_like group weights .. note:: Weights are per-group for ranking tasks In ranking task, one weight is assigned to each group (not each data point). This is because we only care about the relative ordering of data points within each group, so it doesn't make sense to assign weights to individual data points. eval_set : list, optional A list of (X, y) tuple pairs to use as a validation set for early-stopping sample_weight_eval_set : list, optional A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of group weights on the i-th validation set. .. note:: Weights are per-group for ranking tasks In ranking task, one weight is assigned to each group (not each data point). This is because we only care about the relative ordering of data points within each group, so it doesn't make sense to assign weights to individual data points. eval_group : list of arrays, optional A list that contains the group size corresponds to each (X, y) pair in eval_set eval_metric : str, callable, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.rst. If callable, a custom evaluation metric. The call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that you may need to call the get_label method. It must return a str, value pair where the str is a name for the evaluation and value is the value of the evaluation function. This objective is always minimized. early_stopping_rounds : int Activates early stopping. Validation error needs to decrease at least every <early_stopping_rounds> round(s) to continue training. Requires at least one item in evals. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct value if num_parallel_tree and/or num_class appears in the parameters) verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. xgb_model : str file name of stored xgb model or 'Booster' instance Xgb model to be loaded before training (allows training continuation). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`callback_api`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)]
def fit(self, X, y, group, sample_weight=None, eval_set=None, sample_weight_eval_set=None, eval_group=None, eval_metric=None, early_stopping_rounds=None, verbose=False, xgb_model=None, callbacks=None): # pylint: disable = attribute-defined-outside-init,arguments-differ """ Fit the gradient boosting model Parameters ---------- X : array_like Feature matrix y : array_like Labels group : array_like group size of training data sample_weight : array_like group weights .. note:: Weights are per-group for ranking tasks In ranking task, one weight is assigned to each group (not each data point). This is because we only care about the relative ordering of data points within each group, so it doesn't make sense to assign weights to individual data points. eval_set : list, optional A list of (X, y) tuple pairs to use as a validation set for early-stopping sample_weight_eval_set : list, optional A list of the form [L_1, L_2, ..., L_n], where each L_i is a list of group weights on the i-th validation set. .. note:: Weights are per-group for ranking tasks In ranking task, one weight is assigned to each group (not each data point). This is because we only care about the relative ordering of data points within each group, so it doesn't make sense to assign weights to individual data points. eval_group : list of arrays, optional A list that contains the group size corresponds to each (X, y) pair in eval_set eval_metric : str, callable, optional If a str, should be a built-in evaluation metric to use. See doc/parameter.rst. If callable, a custom evaluation metric. The call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that you may need to call the get_label method. It must return a str, value pair where the str is a name for the evaluation and value is the value of the evaluation function. This objective is always minimized. early_stopping_rounds : int Activates early stopping. Validation error needs to decrease at least every <early_stopping_rounds> round(s) to continue training. Requires at least one item in evals. If there's more than one, will use the last. Returns the model from the last iteration (not the best one). If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct value if num_parallel_tree and/or num_class appears in the parameters) verbose : bool If `verbose` and an evaluation set is used, writes the evaluation metric measured on the validation set to stderr. xgb_model : str file name of stored xgb model or 'Booster' instance Xgb model to be loaded before training (allows training continuation). callbacks : list of callback functions List of callback functions that are applied at end of each iteration. It is possible to use predefined callbacks by using :ref:`callback_api`. Example: .. code-block:: python [xgb.callback.reset_learning_rate(custom_rates)] """ # check if group information is provided if group is None: raise ValueError("group is required for ranking task") if eval_set is not None: if eval_group is None: raise ValueError("eval_group is required if eval_set is not None") if len(eval_group) != len(eval_set): raise ValueError("length of eval_group should match that of eval_set") if any(group is None for group in eval_group): raise ValueError("group is required for all eval datasets for ranking task") def _dmat_init(group, **params): ret = DMatrix(**params) ret.set_group(group) return ret if sample_weight is not None: train_dmatrix = _dmat_init(group, data=X, label=y, weight=sample_weight, missing=self.missing, nthread=self.n_jobs) else: train_dmatrix = _dmat_init(group, data=X, label=y, missing=self.missing, nthread=self.n_jobs) evals_result = {} if eval_set is not None: if sample_weight_eval_set is None: sample_weight_eval_set = [None] * len(eval_set) evals = [_dmat_init(eval_group[i], data=eval_set[i][0], label=eval_set[i][1], missing=self.missing, weight=sample_weight_eval_set[i], nthread=self.n_jobs) for i in range(len(eval_set))] nevals = len(evals) eval_names = ["eval_{}".format(i) for i in range(nevals)] evals = list(zip(evals, eval_names)) else: evals = () params = self.get_xgb_params() feval = eval_metric if callable(eval_metric) else None if eval_metric is not None: if callable(eval_metric): eval_metric = None else: params.update({'eval_metric': eval_metric}) self._Booster = train(params, train_dmatrix, self.n_estimators, early_stopping_rounds=early_stopping_rounds, evals=evals, evals_result=evals_result, feval=feval, verbose_eval=verbose, xgb_model=xgb_model, callbacks=callbacks) self.objective = params["objective"] if evals_result: for val in evals_result.items(): evals_result_key = list(val[1].keys())[0] evals_result[val[0]][evals_result_key] = val[1][evals_result_key] self.evals_result = evals_result if early_stopping_rounds is not None: self.best_score = self._Booster.best_score self.best_iteration = self._Booster.best_iteration self.best_ntree_limit = self._Booster.best_ntree_limit return self
Convert a list of Python str to C pointer Parameters ---------- data : list list of str
def from_pystr_to_cstr(data): """Convert a list of Python str to C pointer Parameters ---------- data : list list of str """ if not isinstance(data, list): raise NotImplementedError pointers = (ctypes.c_char_p * len(data))() if PY3: data = [bytes(d, 'utf-8') for d in data] else: data = [d.encode('utf-8') if isinstance(d, unicode) else d # pylint: disable=undefined-variable for d in data] pointers[:] = data return pointers
Revert C pointer to Python str Parameters ---------- data : ctypes pointer pointer to data length : ctypes pointer pointer to length of data
def from_cstr_to_pystr(data, length): """Revert C pointer to Python str Parameters ---------- data : ctypes pointer pointer to data length : ctypes pointer pointer to length of data """ if PY3: res = [] for i in range(length.value): try: res.append(str(data[i].decode('ascii'))) except UnicodeDecodeError: res.append(str(data[i].decode('utf-8'))) else: res = [] for i in range(length.value): try: res.append(str(data[i].decode('ascii'))) except UnicodeDecodeError: # pylint: disable=undefined-variable res.append(unicode(data[i].decode('utf-8'))) return res
Load xgboost Library.
def _load_lib(): """Load xgboost Library.""" lib_paths = find_lib_path() if not lib_paths: return None try: pathBackup = os.environ['PATH'].split(os.pathsep) except KeyError: pathBackup = [] lib_success = False os_error_list = [] for lib_path in lib_paths: try: # needed when the lib is linked with non-system-available dependencies os.environ['PATH'] = os.pathsep.join(pathBackup + [os.path.dirname(lib_path)]) lib = ctypes.cdll.LoadLibrary(lib_path) lib_success = True except OSError as e: os_error_list.append(str(e)) continue finally: os.environ['PATH'] = os.pathsep.join(pathBackup) if not lib_success: libname = os.path.basename(lib_paths[0]) raise XGBoostError( 'XGBoost Library ({}) could not be loaded.\n'.format(libname) + 'Likely causes:\n' + ' * OpenMP runtime is not installed ' + '(vcomp140.dll or libgomp-1.dll for Windows, ' + 'libgomp.so for UNIX-like OSes)\n' + ' * You are running 32-bit Python on a 64-bit OS\n' + 'Error message(s): {}\n'.format(os_error_list)) lib.XGBGetLastError.restype = ctypes.c_char_p lib.callback = _get_log_callback_func() if lib.XGBRegisterLogCallback(lib.callback) != 0: raise XGBoostError(lib.XGBGetLastError()) return lib
Convert a ctypes pointer array to a numpy array.
def ctypes2numpy(cptr, length, dtype): """Convert a ctypes pointer array to a numpy array. """ NUMPY_TO_CTYPES_MAPPING = { np.float32: ctypes.c_float, np.uint32: ctypes.c_uint, } if dtype not in NUMPY_TO_CTYPES_MAPPING: raise RuntimeError('Supported types: {}'.format(NUMPY_TO_CTYPES_MAPPING.keys())) ctype = NUMPY_TO_CTYPES_MAPPING[dtype] if not isinstance(cptr, ctypes.POINTER(ctype)): raise RuntimeError('expected {} pointer'.format(ctype)) res = np.zeros(length, dtype=dtype) if not ctypes.memmove(res.ctypes.data, cptr, length * res.strides[0]): raise RuntimeError('memmove failed') return res
Convert ctypes pointer to buffer type.
def ctypes2buffer(cptr, length): """Convert ctypes pointer to buffer type.""" if not isinstance(cptr, ctypes.POINTER(ctypes.c_char)): raise RuntimeError('expected char pointer') res = bytearray(length) rptr = (ctypes.c_char * length).from_buffer(res) if not ctypes.memmove(rptr, cptr, length): raise RuntimeError('memmove failed') return res
Convert a python string to c array.
def c_array(ctype, values): """Convert a python string to c array.""" if isinstance(values, np.ndarray) and values.dtype.itemsize == ctypes.sizeof(ctype): return (ctype * len(values)).from_buffer_copy(values) return (ctype * len(values))(*values)
Extract internal data from pd.DataFrame for DMatrix data
def _maybe_pandas_data(data, feature_names, feature_types): """ Extract internal data from pd.DataFrame for DMatrix data """ if not isinstance(data, DataFrame): return data, feature_names, feature_types data_dtypes = data.dtypes if not all(dtype.name in PANDAS_DTYPE_MAPPER for dtype in data_dtypes): bad_fields = [data.columns[i] for i, dtype in enumerate(data_dtypes) if dtype.name not in PANDAS_DTYPE_MAPPER] msg = """DataFrame.dtypes for data must be int, float or bool. Did not expect the data types in fields """ raise ValueError(msg + ', '.join(bad_fields)) if feature_names is None: if isinstance(data.columns, MultiIndex): feature_names = [ ' '.join([str(x) for x in i]) for i in data.columns ] else: feature_names = data.columns.format() if feature_types is None: feature_types = [PANDAS_DTYPE_MAPPER[dtype.name] for dtype in data_dtypes] data = data.values.astype('float') return data, feature_names, feature_types
Validate feature names and types if data table
def _maybe_dt_data(data, feature_names, feature_types): """ Validate feature names and types if data table """ if not isinstance(data, DataTable): return data, feature_names, feature_types data_types_names = tuple(lt.name for lt in data.ltypes) bad_fields = [data.names[i] for i, type_name in enumerate(data_types_names) if type_name not in DT_TYPE_MAPPER] if bad_fields: msg = """DataFrame.types for data must be int, float or bool. Did not expect the data types in fields """ raise ValueError(msg + ', '.join(bad_fields)) if feature_names is None: feature_names = data.names # always return stypes for dt ingestion if feature_types is not None: raise ValueError('DataTable has own feature types, cannot pass them in') feature_types = np.vectorize(DT_TYPE_MAPPER2.get)(data_types_names) return data, feature_names, feature_types
Extract numpy array from single column data table
def _maybe_dt_array(array): """ Extract numpy array from single column data table """ if not isinstance(array, DataTable) or array is None: return array if array.shape[1] > 1: raise ValueError('DataTable for label or weight cannot have multiple columns') # below requires new dt version # extract first column array = array.to_numpy()[:, 0].astype('float') return array
Initialize data from a CSR matrix.
def _init_from_csr(self, csr): """ Initialize data from a CSR matrix. """ if len(csr.indices) != len(csr.data): raise ValueError('length mismatch: {} vs {}'.format(len(csr.indices), len(csr.data))) handle = ctypes.c_void_p() _check_call(_LIB.XGDMatrixCreateFromCSREx(c_array(ctypes.c_size_t, csr.indptr), c_array(ctypes.c_uint, csr.indices), c_array(ctypes.c_float, csr.data), ctypes.c_size_t(len(csr.indptr)), ctypes.c_size_t(len(csr.data)), ctypes.c_size_t(csr.shape[1]), ctypes.byref(handle))) self.handle = handle
Initialize data from a CSC matrix.
def _init_from_csc(self, csc): """ Initialize data from a CSC matrix. """ if len(csc.indices) != len(csc.data): raise ValueError('length mismatch: {} vs {}'.format(len(csc.indices), len(csc.data))) handle = ctypes.c_void_p() _check_call(_LIB.XGDMatrixCreateFromCSCEx(c_array(ctypes.c_size_t, csc.indptr), c_array(ctypes.c_uint, csc.indices), c_array(ctypes.c_float, csc.data), ctypes.c_size_t(len(csc.indptr)), ctypes.c_size_t(len(csc.data)), ctypes.c_size_t(csc.shape[0]), ctypes.byref(handle))) self.handle = handle
Initialize data from a 2-D numpy matrix. If ``mat`` does not have ``order='C'`` (aka row-major) or is not contiguous, a temporary copy will be made. If ``mat`` does not have ``dtype=numpy.float32``, a temporary copy will be made. So there could be as many as two temporary data copies; be mindful of input layout and type if memory use is a concern.
def _init_from_npy2d(self, mat, missing, nthread): """ Initialize data from a 2-D numpy matrix. If ``mat`` does not have ``order='C'`` (aka row-major) or is not contiguous, a temporary copy will be made. If ``mat`` does not have ``dtype=numpy.float32``, a temporary copy will be made. So there could be as many as two temporary data copies; be mindful of input layout and type if memory use is a concern. """ if len(mat.shape) != 2: raise ValueError('Input numpy.ndarray must be 2 dimensional') # flatten the array by rows and ensure it is float32. # we try to avoid data copies if possible (reshape returns a view when possible # and we explicitly tell np.array to try and avoid copying) data = np.array(mat.reshape(mat.size), copy=False, dtype=np.float32) handle = ctypes.c_void_p() missing = missing if missing is not None else np.nan if nthread is None: _check_call(_LIB.XGDMatrixCreateFromMat( data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), c_bst_ulong(mat.shape[0]), c_bst_ulong(mat.shape[1]), ctypes.c_float(missing), ctypes.byref(handle))) else: _check_call(_LIB.XGDMatrixCreateFromMat_omp( data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), c_bst_ulong(mat.shape[0]), c_bst_ulong(mat.shape[1]), ctypes.c_float(missing), ctypes.byref(handle), nthread)) self.handle = handle
Initialize data from a datatable Frame.
def _init_from_dt(self, data, nthread): """ Initialize data from a datatable Frame. """ ptrs = (ctypes.c_void_p * data.ncols)() if hasattr(data, "internal") and hasattr(data.internal, "column"): # datatable>0.8.0 for icol in range(data.ncols): col = data.internal.column(icol) ptr = col.data_pointer ptrs[icol] = ctypes.c_void_p(ptr) else: # datatable<=0.8.0 from datatable.internal import frame_column_data_r # pylint: disable=no-name-in-module,import-error for icol in range(data.ncols): ptrs[icol] = frame_column_data_r(data, icol) # always return stypes for dt ingestion feature_type_strings = (ctypes.c_char_p * data.ncols)() for icol in range(data.ncols): feature_type_strings[icol] = ctypes.c_char_p(data.stypes[icol].name.encode('utf-8')) handle = ctypes.c_void_p() _check_call(_LIB.XGDMatrixCreateFromDT( ptrs, feature_type_strings, c_bst_ulong(data.shape[0]), c_bst_ulong(data.shape[1]), ctypes.byref(handle), nthread)) self.handle = handle
Set float type property into the DMatrix. Parameters ---------- field: str The field name of the information data: numpy array The array of data to be set
def set_float_info(self, field, data): """Set float type property into the DMatrix. Parameters ---------- field: str The field name of the information data: numpy array The array of data to be set """ if getattr(data, 'base', None) is not None and \ data.base is not None and isinstance(data, np.ndarray) \ and isinstance(data.base, np.ndarray) and (not data.flags.c_contiguous): self.set_float_info_npy2d(field, data) return c_data = c_array(ctypes.c_float, data) _check_call(_LIB.XGDMatrixSetFloatInfo(self.handle, c_str(field), c_data, c_bst_ulong(len(data))))
Set float type property into the DMatrix for numpy 2d array input Parameters ---------- field: str The field name of the information data: numpy array The array of data to be set
def set_float_info_npy2d(self, field, data): """Set float type property into the DMatrix for numpy 2d array input Parameters ---------- field: str The field name of the information data: numpy array The array of data to be set """ if getattr(data, 'base', None) is not None and \ data.base is not None and isinstance(data, np.ndarray) \ and isinstance(data.base, np.ndarray) and (not data.flags.c_contiguous): warnings.warn("Use subset (sliced data) of np.ndarray is not recommended " + "because it will generate extra copies and increase memory consumption") data = np.array(data, copy=True, dtype=np.float32) else: data = np.array(data, copy=False, dtype=np.float32) c_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)) _check_call(_LIB.XGDMatrixSetFloatInfo(self.handle, c_str(field), c_data, c_bst_ulong(len(data))))
Set uint type property into the DMatrix. Parameters ---------- field: str The field name of the information data: numpy array The array of data to be set
def set_uint_info(self, field, data): """Set uint type property into the DMatrix. Parameters ---------- field: str The field name of the information data: numpy array The array of data to be set """ if getattr(data, 'base', None) is not None and \ data.base is not None and isinstance(data, np.ndarray) \ and isinstance(data.base, np.ndarray) and (not data.flags.c_contiguous): warnings.warn("Use subset (sliced data) of np.ndarray is not recommended " + "because it will generate extra copies and increase memory consumption") data = np.array(data, copy=True, dtype=ctypes.c_uint) else: data = np.array(data, copy=False, dtype=ctypes.c_uint) _check_call(_LIB.XGDMatrixSetUIntInfo(self.handle, c_str(field), c_array(ctypes.c_uint, data), c_bst_ulong(len(data))))
Save DMatrix to an XGBoost buffer. Saved binary can be later loaded by providing the path to :py:func:`xgboost.DMatrix` as input. Parameters ---------- fname : string Name of the output buffer file. silent : bool (optional; default: True) If set, the output is suppressed.
def save_binary(self, fname, silent=True): """Save DMatrix to an XGBoost buffer. Saved binary can be later loaded by providing the path to :py:func:`xgboost.DMatrix` as input. Parameters ---------- fname : string Name of the output buffer file. silent : bool (optional; default: True) If set, the output is suppressed. """ _check_call(_LIB.XGDMatrixSaveBinary(self.handle, c_str(fname), ctypes.c_int(silent)))
Set group size of DMatrix (used for ranking). Parameters ---------- group : array like Group size of each group
def set_group(self, group): """Set group size of DMatrix (used for ranking). Parameters ---------- group : array like Group size of each group """ _check_call(_LIB.XGDMatrixSetGroup(self.handle, c_array(ctypes.c_uint, group), c_bst_ulong(len(group))))
Get feature names (column labels). Returns ------- feature_names : list or None
def feature_names(self): """Get feature names (column labels). Returns ------- feature_names : list or None """ if self._feature_names is None: self._feature_names = ['f{0}'.format(i) for i in range(self.num_col())] return self._feature_names
Set feature names (column labels). Parameters ---------- feature_names : list or None Labels for features. None will reset existing feature names
def feature_names(self, feature_names): """Set feature names (column labels). Parameters ---------- feature_names : list or None Labels for features. None will reset existing feature names """ if feature_names is not None: # validate feature name try: if not isinstance(feature_names, str): feature_names = [n for n in iter(feature_names)] else: feature_names = [feature_names] except TypeError: feature_names = [feature_names] if len(feature_names) != len(set(feature_names)): raise ValueError('feature_names must be unique') if len(feature_names) != self.num_col(): msg = 'feature_names must have the same length as data' raise ValueError(msg) # prohibit to use symbols may affect to parse. e.g. []< if not all(isinstance(f, STRING_TYPES) and not any(x in f for x in set(('[', ']', '<'))) for f in feature_names): raise ValueError('feature_names may not contain [, ] or <') else: # reset feature_types also self.feature_types = None self._feature_names = feature_names
Set feature types (column types). This is for displaying the results and unrelated to the learning process. Parameters ---------- feature_types : list or None Labels for features. None will reset existing feature names
def feature_types(self, feature_types): """Set feature types (column types). This is for displaying the results and unrelated to the learning process. Parameters ---------- feature_types : list or None Labels for features. None will reset existing feature names """ if feature_types is not None: if self._feature_names is None: msg = 'Unable to set feature types before setting names' raise ValueError(msg) if isinstance(feature_types, STRING_TYPES): # single string will be applied to all columns feature_types = [feature_types] * self.num_col() try: if not isinstance(feature_types, str): feature_types = [n for n in iter(feature_types)] else: feature_types = [feature_types] except TypeError: feature_types = [feature_types] if len(feature_types) != self.num_col(): msg = 'feature_types must have the same length as data' raise ValueError(msg) valid = ('int', 'float', 'i', 'q') if not all(isinstance(f, STRING_TYPES) and f in valid for f in feature_types): raise ValueError('All feature_names must be {int, float, i, q}') self._feature_types = feature_types
Initialize the model by load from rabit checkpoint. Returns ------- version: integer The version number of the model.
def load_rabit_checkpoint(self): """Initialize the model by load from rabit checkpoint. Returns ------- version: integer The version number of the model. """ version = ctypes.c_int() _check_call(_LIB.XGBoosterLoadRabitCheckpoint( self.handle, ctypes.byref(version))) return version.value
Get attribute string from the Booster. Parameters ---------- key : str The key to get attribute from. Returns ------- value : str The attribute value of the key, returns None if attribute do not exist.
def attr(self, key): """Get attribute string from the Booster. Parameters ---------- key : str The key to get attribute from. Returns ------- value : str The attribute value of the key, returns None if attribute do not exist. """ ret = ctypes.c_char_p() success = ctypes.c_int() _check_call(_LIB.XGBoosterGetAttr( self.handle, c_str(key), ctypes.byref(ret), ctypes.byref(success))) if success.value != 0: return py_str(ret.value) return None
Get attributes stored in the Booster as a dictionary. Returns ------- result : dictionary of attribute_name: attribute_value pairs of strings. Returns an empty dict if there's no attributes.
def attributes(self): """Get attributes stored in the Booster as a dictionary. Returns ------- result : dictionary of attribute_name: attribute_value pairs of strings. Returns an empty dict if there's no attributes. """ length = c_bst_ulong() sarr = ctypes.POINTER(ctypes.c_char_p)() _check_call(_LIB.XGBoosterGetAttrNames(self.handle, ctypes.byref(length), ctypes.byref(sarr))) attr_names = from_cstr_to_pystr(sarr, length) return {n: self.attr(n) for n in attr_names}
Set the attribute of the Booster. Parameters ---------- **kwargs The attributes to set. Setting a value to None deletes an attribute.
def set_attr(self, **kwargs): """Set the attribute of the Booster. Parameters ---------- **kwargs The attributes to set. Setting a value to None deletes an attribute. """ for key, value in kwargs.items(): if value is not None: if not isinstance(value, STRING_TYPES): raise ValueError("Set Attr only accepts string values") value = c_str(str(value)) _check_call(_LIB.XGBoosterSetAttr( self.handle, c_str(key), value))
Set parameters into the Booster. Parameters ---------- params: dict/list/str list of key,value pairs, dict of key to value or simply str key value: optional value of the specified parameter, when params is str key
def set_param(self, params, value=None): """Set parameters into the Booster. Parameters ---------- params: dict/list/str list of key,value pairs, dict of key to value or simply str key value: optional value of the specified parameter, when params is str key """ if isinstance(params, Mapping): params = params.items() elif isinstance(params, STRING_TYPES) and value is not None: params = [(params, value)] for key, val in params: _check_call(_LIB.XGBoosterSetParam(self.handle, c_str(key), c_str(str(val))))
Evaluate the model on mat. Parameters ---------- data : DMatrix The dmatrix storing the input. name : str, optional The name of the dataset. iteration : int, optional The current iteration number. Returns ------- result: str Evaluation result string.
def eval(self, data, name='eval', iteration=0): """Evaluate the model on mat. Parameters ---------- data : DMatrix The dmatrix storing the input. name : str, optional The name of the dataset. iteration : int, optional The current iteration number. Returns ------- result: str Evaluation result string. """ self._validate_features(data) return self.eval_set([(data, name)], iteration)
Predict with data. .. note:: This function is not thread safe. For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call ``bst.copy()`` to make copies of model object and then call ``predict()``. .. note:: Using ``predict()`` with DART booster If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only some of the trees will be evaluated. This will produce incorrect results if ``data`` is not the training data. To obtain correct results on test sets, set ``ntree_limit`` to a nonzero value, e.g. .. code-block:: python preds = bst.predict(dtest, ntree_limit=num_round) Parameters ---------- data : DMatrix The dmatrix storing the input. output_margin : bool Whether to output the raw untransformed margin value. ntree_limit : int Limit number of trees in the prediction; defaults to 0 (use all trees). pred_leaf : bool When this option is on, the output will be a matrix of (nsample, ntrees) with each record indicating the predicted leaf index of each sample in each tree. Note that the leaf index of a tree is unique per tree, so you may find leaf 1 in both tree 1 and tree 0. pred_contribs : bool When this is True the output will be a matrix of size (nsample, nfeats + 1) with each record indicating the feature contributions (SHAP values) for that prediction. The sum of all feature contributions is equal to the raw untransformed margin value of the prediction. Note the final column is the bias term. approx_contribs : bool Approximate the contributions of each feature pred_interactions : bool When this is True the output will be a matrix of size (nsample, nfeats + 1, nfeats + 1) indicating the SHAP interaction values for each pair of features. The sum of each row (or column) of the interaction values equals the corresponding SHAP value (from pred_contribs), and the sum of the entire matrix equals the raw untransformed margin value of the prediction. Note the last row and column correspond to the bias term. validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. Returns ------- prediction : numpy array
def predict(self, data, output_margin=False, ntree_limit=0, pred_leaf=False, pred_contribs=False, approx_contribs=False, pred_interactions=False, validate_features=True): """ Predict with data. .. note:: This function is not thread safe. For each booster object, predict can only be called from one thread. If you want to run prediction using multiple thread, call ``bst.copy()`` to make copies of model object and then call ``predict()``. .. note:: Using ``predict()`` with DART booster If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only some of the trees will be evaluated. This will produce incorrect results if ``data`` is not the training data. To obtain correct results on test sets, set ``ntree_limit`` to a nonzero value, e.g. .. code-block:: python preds = bst.predict(dtest, ntree_limit=num_round) Parameters ---------- data : DMatrix The dmatrix storing the input. output_margin : bool Whether to output the raw untransformed margin value. ntree_limit : int Limit number of trees in the prediction; defaults to 0 (use all trees). pred_leaf : bool When this option is on, the output will be a matrix of (nsample, ntrees) with each record indicating the predicted leaf index of each sample in each tree. Note that the leaf index of a tree is unique per tree, so you may find leaf 1 in both tree 1 and tree 0. pred_contribs : bool When this is True the output will be a matrix of size (nsample, nfeats + 1) with each record indicating the feature contributions (SHAP values) for that prediction. The sum of all feature contributions is equal to the raw untransformed margin value of the prediction. Note the final column is the bias term. approx_contribs : bool Approximate the contributions of each feature pred_interactions : bool When this is True the output will be a matrix of size (nsample, nfeats + 1, nfeats + 1) indicating the SHAP interaction values for each pair of features. The sum of each row (or column) of the interaction values equals the corresponding SHAP value (from pred_contribs), and the sum of the entire matrix equals the raw untransformed margin value of the prediction. Note the last row and column correspond to the bias term. validate_features : bool When this is True, validate that the Booster's and data's feature_names are identical. Otherwise, it is assumed that the feature_names are the same. Returns ------- prediction : numpy array """ option_mask = 0x00 if output_margin: option_mask |= 0x01 if pred_leaf: option_mask |= 0x02 if pred_contribs: option_mask |= 0x04 if approx_contribs: option_mask |= 0x08 if pred_interactions: option_mask |= 0x10 if validate_features: self._validate_features(data) length = c_bst_ulong() preds = ctypes.POINTER(ctypes.c_float)() _check_call(_LIB.XGBoosterPredict(self.handle, data.handle, ctypes.c_int(option_mask), ctypes.c_uint(ntree_limit), ctypes.byref(length), ctypes.byref(preds))) preds = ctypes2numpy(preds, length.value, np.float32) if pred_leaf: preds = preds.astype(np.int32) nrow = data.num_row() if preds.size != nrow and preds.size % nrow == 0: chunk_size = int(preds.size / nrow) if pred_interactions: ngroup = int(chunk_size / ((data.num_col() + 1) * (data.num_col() + 1))) if ngroup == 1: preds = preds.reshape(nrow, data.num_col() + 1, data.num_col() + 1) else: preds = preds.reshape(nrow, ngroup, data.num_col() + 1, data.num_col() + 1) elif pred_contribs: ngroup = int(chunk_size / (data.num_col() + 1)) if ngroup == 1: preds = preds.reshape(nrow, data.num_col() + 1) else: preds = preds.reshape(nrow, ngroup, data.num_col() + 1) else: preds = preds.reshape(nrow, chunk_size) return preds
Save the model to a file. The model is saved in an XGBoost internal binary format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved. To preserve all attributes, pickle the Booster object. Parameters ---------- fname : string Output file name
def save_model(self, fname): """ Save the model to a file. The model is saved in an XGBoost internal binary format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved. To preserve all attributes, pickle the Booster object. Parameters ---------- fname : string Output file name """ if isinstance(fname, STRING_TYPES): # assume file name _check_call(_LIB.XGBoosterSaveModel(self.handle, c_str(fname))) else: raise TypeError("fname must be a string")
Load the model from a file. The model is loaded from an XGBoost internal binary format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded. To preserve all attributes, pickle the Booster object. Parameters ---------- fname : string or a memory buffer Input file name or memory buffer(see also save_raw)
def load_model(self, fname): """ Load the model from a file. The model is loaded from an XGBoost internal binary format which is universal among the various XGBoost interfaces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded. To preserve all attributes, pickle the Booster object. Parameters ---------- fname : string or a memory buffer Input file name or memory buffer(see also save_raw) """ if isinstance(fname, STRING_TYPES): # assume file name, cannot use os.path.exist to check, file can be from URL. _check_call(_LIB.XGBoosterLoadModel(self.handle, c_str(fname))) else: buf = fname length = c_bst_ulong(len(buf)) ptr = (ctypes.c_char * len(buf)).from_buffer(buf) _check_call(_LIB.XGBoosterLoadModelFromBuffer(self.handle, ptr, length))
Dump model into a text or JSON file. Parameters ---------- fout : string Output file name. fmap : string, optional Name of the file containing feature map names. with_stats : bool, optional Controls whether the split statistics are output. dump_format : string, optional Format of model dump file. Can be 'text' or 'json'.
def dump_model(self, fout, fmap='', with_stats=False, dump_format="text"): """ Dump model into a text or JSON file. Parameters ---------- fout : string Output file name. fmap : string, optional Name of the file containing feature map names. with_stats : bool, optional Controls whether the split statistics are output. dump_format : string, optional Format of model dump file. Can be 'text' or 'json'. """ if isinstance(fout, STRING_TYPES): fout = open(fout, 'w') need_close = True else: need_close = False ret = self.get_dump(fmap, with_stats, dump_format) if dump_format == 'json': fout.write('[\n') for i, _ in enumerate(ret): fout.write(ret[i]) if i < len(ret) - 1: fout.write(",\n") fout.write('\n]') else: for i, _ in enumerate(ret): fout.write('booster[{}]:\n'.format(i)) fout.write(ret[i]) if need_close: fout.close()