Chapter
stringclasses
18 values
sentence_range
stringlengths
3
9
Text
stringlengths
7
7.34k
1
3918-3921
2 2 2 1 5 4 3 x x +x + ∫ 17 2 3 4 0 (2sec 2) x x dx π + + ∫ 18 2 2 0 (sin –cos ) 2 2 x x dx π∫ 19 2 2 0 6 3 4 x dx x ++ ∫ 20
1
3919-3922
2 3 4 0 (2sec 2) x x dx π + + ∫ 18 2 2 0 (sin –cos ) 2 2 x x dx π∫ 19 2 2 0 6 3 4 x dx x ++ ∫ 20 1 0( sin ) 4 x x x e dx π + ∫ Choose the correct answer in Exercises 21 and 22
1
3920-3923
2 2 0 (sin –cos ) 2 2 x x dx π∫ 19 2 2 0 6 3 4 x dx x ++ ∫ 20 1 0( sin ) 4 x x x e dx π + ∫ Choose the correct answer in Exercises 21 and 22 21
1
3921-3924
2 2 0 6 3 4 x dx x ++ ∫ 20 1 0( sin ) 4 x x x e dx π + ∫ Choose the correct answer in Exercises 21 and 22 21 3 2 1 1 dx +x ∫ equals (A) π3 (B) π32 (C) π6 (D) 12 π 22
1
3922-3925
1 0( sin ) 4 x x x e dx π + ∫ Choose the correct answer in Exercises 21 and 22 21 3 2 1 1 dx +x ∫ equals (A) π3 (B) π32 (C) π6 (D) 12 π 22 2 3 2 0 4 9 dx x + ∫ equals (A) 6 π (B) 12 π (C) 24 π (D) 4 π 7
1
3923-3926
21 3 2 1 1 dx +x ∫ equals (A) π3 (B) π32 (C) π6 (D) 12 π 22 2 3 2 0 4 9 dx x + ∫ equals (A) 6 π (B) 12 π (C) 24 π (D) 4 π 7 9 Evaluation of Definite Integrals by Substitution In the previous sections, we have discussed several methods for finding the indefinite integral
1
3924-3927
3 2 1 1 dx +x ∫ equals (A) π3 (B) π32 (C) π6 (D) 12 π 22 2 3 2 0 4 9 dx x + ∫ equals (A) 6 π (B) 12 π (C) 24 π (D) 4 π 7 9 Evaluation of Definite Integrals by Substitution In the previous sections, we have discussed several methods for finding the indefinite integral One of the important methods for finding the indefinite integral is the method of substitution
1
3925-3928
2 3 2 0 4 9 dx x + ∫ equals (A) 6 π (B) 12 π (C) 24 π (D) 4 π 7 9 Evaluation of Definite Integrals by Substitution In the previous sections, we have discussed several methods for finding the indefinite integral One of the important methods for finding the indefinite integral is the method of substitution INTEGRALS 339 To evaluate ( ) b ∫a f x dx , by substitution, the steps could be as follows: 1
1
3926-3929
9 Evaluation of Definite Integrals by Substitution In the previous sections, we have discussed several methods for finding the indefinite integral One of the important methods for finding the indefinite integral is the method of substitution INTEGRALS 339 To evaluate ( ) b ∫a f x dx , by substitution, the steps could be as follows: 1 Consider the integral without limits and substitute, y = f (x) or x = g(y) to reduce the given integral to a known form
1
3927-3930
One of the important methods for finding the indefinite integral is the method of substitution INTEGRALS 339 To evaluate ( ) b ∫a f x dx , by substitution, the steps could be as follows: 1 Consider the integral without limits and substitute, y = f (x) or x = g(y) to reduce the given integral to a known form 2
1
3928-3931
INTEGRALS 339 To evaluate ( ) b ∫a f x dx , by substitution, the steps could be as follows: 1 Consider the integral without limits and substitute, y = f (x) or x = g(y) to reduce the given integral to a known form 2 Integrate the new integrand with respect to the new variable without mentioning the constant of integration
1
3929-3932
Consider the integral without limits and substitute, y = f (x) or x = g(y) to reduce the given integral to a known form 2 Integrate the new integrand with respect to the new variable without mentioning the constant of integration 3
1
3930-3933
2 Integrate the new integrand with respect to the new variable without mentioning the constant of integration 3 Resubstitute for the new variable and write the answer in terms of the original variable
1
3931-3934
Integrate the new integrand with respect to the new variable without mentioning the constant of integration 3 Resubstitute for the new variable and write the answer in terms of the original variable 4
1
3932-3935
3 Resubstitute for the new variable and write the answer in terms of the original variable 4 Find the values of answers obtained in (3) at the given limits of integral and find the difference of the values at the upper and lower limits
1
3933-3936
Resubstitute for the new variable and write the answer in terms of the original variable 4 Find the values of answers obtained in (3) at the given limits of integral and find the difference of the values at the upper and lower limits �Note In order to quicken this method, we can proceed as follows: After performing steps 1, and 2, there is no need of step 3
1
3934-3937
4 Find the values of answers obtained in (3) at the given limits of integral and find the difference of the values at the upper and lower limits �Note In order to quicken this method, we can proceed as follows: After performing steps 1, and 2, there is no need of step 3 Here, the integral will be kept in the new variable itself, and the limits of the integral will accordingly be changed, so that we can perform the last step
1
3935-3938
Find the values of answers obtained in (3) at the given limits of integral and find the difference of the values at the upper and lower limits �Note In order to quicken this method, we can proceed as follows: After performing steps 1, and 2, there is no need of step 3 Here, the integral will be kept in the new variable itself, and the limits of the integral will accordingly be changed, so that we can perform the last step Let us illustrate this by examples
1
3936-3939
�Note In order to quicken this method, we can proceed as follows: After performing steps 1, and 2, there is no need of step 3 Here, the integral will be kept in the new variable itself, and the limits of the integral will accordingly be changed, so that we can perform the last step Let us illustrate this by examples Example 28 Evaluate 1 4 5 15 1 x x dx − + ∫
1
3937-3940
Here, the integral will be kept in the new variable itself, and the limits of the integral will accordingly be changed, so that we can perform the last step Let us illustrate this by examples Example 28 Evaluate 1 4 5 15 1 x x dx − + ∫ Solution Put t = x5 + 1, then dt = 5x4 dx
1
3938-3941
Let us illustrate this by examples Example 28 Evaluate 1 4 5 15 1 x x dx − + ∫ Solution Put t = x5 + 1, then dt = 5x4 dx Therefore, 4 5 5 1 x x dx + ∫ = ∫t dt = 223 3 t = 3 5 2 2 ( 1) 3 x + Hence, 1 4 5 15 1 x x dx − + ∫ = 1 3 5 2 – 1 2 ( 1) 3 x   +       = ( ) 3 3 5 5 2 2 2 (1 1) – (–1) 1 3   + +       = 3 3 2 2 2 2 0 3   −       = 2 4 2 (2 2) 3 3 = Alternatively, first we transform the integral and then evaluate the transformed integral with new limits
1
3939-3942
Example 28 Evaluate 1 4 5 15 1 x x dx − + ∫ Solution Put t = x5 + 1, then dt = 5x4 dx Therefore, 4 5 5 1 x x dx + ∫ = ∫t dt = 223 3 t = 3 5 2 2 ( 1) 3 x + Hence, 1 4 5 15 1 x x dx − + ∫ = 1 3 5 2 – 1 2 ( 1) 3 x   +       = ( ) 3 3 5 5 2 2 2 (1 1) – (–1) 1 3   + +       = 3 3 2 2 2 2 0 3   −       = 2 4 2 (2 2) 3 3 = Alternatively, first we transform the integral and then evaluate the transformed integral with new limits 340 MATHEMATICS Let t = x5 + 1
1
3940-3943
Solution Put t = x5 + 1, then dt = 5x4 dx Therefore, 4 5 5 1 x x dx + ∫ = ∫t dt = 223 3 t = 3 5 2 2 ( 1) 3 x + Hence, 1 4 5 15 1 x x dx − + ∫ = 1 3 5 2 – 1 2 ( 1) 3 x   +       = ( ) 3 3 5 5 2 2 2 (1 1) – (–1) 1 3   + +       = 3 3 2 2 2 2 0 3   −       = 2 4 2 (2 2) 3 3 = Alternatively, first we transform the integral and then evaluate the transformed integral with new limits 340 MATHEMATICS Let t = x5 + 1 Then dt = 5 x4 dx
1
3941-3944
Therefore, 4 5 5 1 x x dx + ∫ = ∫t dt = 223 3 t = 3 5 2 2 ( 1) 3 x + Hence, 1 4 5 15 1 x x dx − + ∫ = 1 3 5 2 – 1 2 ( 1) 3 x   +       = ( ) 3 3 5 5 2 2 2 (1 1) – (–1) 1 3   + +       = 3 3 2 2 2 2 0 3   −       = 2 4 2 (2 2) 3 3 = Alternatively, first we transform the integral and then evaluate the transformed integral with new limits 340 MATHEMATICS Let t = x5 + 1 Then dt = 5 x4 dx Note that, when x = – 1, t = 0 and when x = 1, t = 2 Thus, as x varies from – 1 to 1, t varies from 0 to 2 Therefore 1 4 5 15 1 x x dx − + ∫ = 2 0 t dt ∫ = 2 3 3 3 2 2 2 0 2 2 2 – 0 3 3 t    =             = 2 4 2 (2 2) 3 3 = Example 29 Evaluate – 1 1 2 0 tan 1 x dx +x ∫ Solution Let t = tan – 1x, then 12 1 dt dx x = +
1
3942-3945
340 MATHEMATICS Let t = x5 + 1 Then dt = 5 x4 dx Note that, when x = – 1, t = 0 and when x = 1, t = 2 Thus, as x varies from – 1 to 1, t varies from 0 to 2 Therefore 1 4 5 15 1 x x dx − + ∫ = 2 0 t dt ∫ = 2 3 3 3 2 2 2 0 2 2 2 – 0 3 3 t    =             = 2 4 2 (2 2) 3 3 = Example 29 Evaluate – 1 1 2 0 tan 1 x dx +x ∫ Solution Let t = tan – 1x, then 12 1 dt dx x = + The new limits are, when x = 0, t = 0 and when x = 1, 4 t =π
1
3943-3946
Then dt = 5 x4 dx Note that, when x = – 1, t = 0 and when x = 1, t = 2 Thus, as x varies from – 1 to 1, t varies from 0 to 2 Therefore 1 4 5 15 1 x x dx − + ∫ = 2 0 t dt ∫ = 2 3 3 3 2 2 2 0 2 2 2 – 0 3 3 t    =             = 2 4 2 (2 2) 3 3 = Example 29 Evaluate – 1 1 2 0 tan 1 x dx +x ∫ Solution Let t = tan – 1x, then 12 1 dt dx x = + The new limits are, when x = 0, t = 0 and when x = 1, 4 t =π Thus, as x varies from 0 to 1, t varies from 0 to 4 π
1
3944-3947
Note that, when x = – 1, t = 0 and when x = 1, t = 2 Thus, as x varies from – 1 to 1, t varies from 0 to 2 Therefore 1 4 5 15 1 x x dx − + ∫ = 2 0 t dt ∫ = 2 3 3 3 2 2 2 0 2 2 2 – 0 3 3 t    =             = 2 4 2 (2 2) 3 3 = Example 29 Evaluate – 1 1 2 0 tan 1 x dx +x ∫ Solution Let t = tan – 1x, then 12 1 dt dx x = + The new limits are, when x = 0, t = 0 and when x = 1, 4 t =π Thus, as x varies from 0 to 1, t varies from 0 to 4 π Therefore –1 1 2 0 tan 1 x dx +x ∫ = 2 4 4 0 t20 t dt π π       ∫ = 2 2 1 – 0 2 16 32   π =π     EXERCISE 7
1
3945-3948
The new limits are, when x = 0, t = 0 and when x = 1, 4 t =π Thus, as x varies from 0 to 1, t varies from 0 to 4 π Therefore –1 1 2 0 tan 1 x dx +x ∫ = 2 4 4 0 t20 t dt π π       ∫ = 2 2 1 – 0 2 16 32   π =π     EXERCISE 7 10 Evaluate the integrals in Exercises 1 to 8 using substitution
1
3946-3949
Thus, as x varies from 0 to 1, t varies from 0 to 4 π Therefore –1 1 2 0 tan 1 x dx +x ∫ = 2 4 4 0 t20 t dt π π       ∫ = 2 2 1 – 0 2 16 32   π =π     EXERCISE 7 10 Evaluate the integrals in Exercises 1 to 8 using substitution 1
1
3947-3950
Therefore –1 1 2 0 tan 1 x dx +x ∫ = 2 4 4 0 t20 t dt π π       ∫ = 2 2 1 – 0 2 16 32   π =π     EXERCISE 7 10 Evaluate the integrals in Exercises 1 to 8 using substitution 1 1 2 0 1 x dx ∫x + 2
1
3948-3951
10 Evaluate the integrals in Exercises 1 to 8 using substitution 1 1 2 0 1 x dx ∫x + 2 5 02 sin cos d π φ φ φ ∫ 3
1
3949-3952
1 1 2 0 1 x dx ∫x + 2 5 02 sin cos d π φ φ φ ∫ 3 1 – 1 2 0 2 sin 1 x dx x     +  ∫ 4
1
3950-3953
1 2 0 1 x dx ∫x + 2 5 02 sin cos d π φ φ φ ∫ 3 1 – 1 2 0 2 sin 1 x dx x     +  ∫ 4 2 0 2 x x + ∫ (Put x + 2 = t2) 5
1
3951-3954
5 02 sin cos d π φ φ φ ∫ 3 1 – 1 2 0 2 sin 1 x dx x     +  ∫ 4 2 0 2 x x + ∫ (Put x + 2 = t2) 5 2 2 0 1sin cos x dx x π + ∫ 6
1
3952-3955
1 – 1 2 0 2 sin 1 x dx x     +  ∫ 4 2 0 2 x x + ∫ (Put x + 2 = t2) 5 2 2 0 1sin cos x dx x π + ∫ 6 2 2 0 4 – dx x x + ∫ 7
1
3953-3956
2 0 2 x x + ∫ (Put x + 2 = t2) 5 2 2 0 1sin cos x dx x π + ∫ 6 2 2 0 4 – dx x x + ∫ 7 1 2 1 2 5 dx x x − + + ∫ 8
1
3954-3957
2 2 0 1sin cos x dx x π + ∫ 6 2 2 0 4 – dx x x + ∫ 7 1 2 1 2 5 dx x x − + + ∫ 8 2 2 2 1 1 –1 2 x e dx x x       ∫ Choose the correct answer in Exercises 9 and 10
1
3955-3958
2 2 0 4 – dx x x + ∫ 7 1 2 1 2 5 dx x x − + + ∫ 8 2 2 2 1 1 –1 2 x e dx x x       ∫ Choose the correct answer in Exercises 9 and 10 9
1
3956-3959
1 2 1 2 5 dx x x − + + ∫ 8 2 2 2 1 1 –1 2 x e dx x x       ∫ Choose the correct answer in Exercises 9 and 10 9 The value of the integral 3 31 1 1 4 3 ( ) x x dx −x ∫ is (A) 6 (B) 0 (C) 3 (D) 4 10
1
3957-3960
2 2 2 1 1 –1 2 x e dx x x       ∫ Choose the correct answer in Exercises 9 and 10 9 The value of the integral 3 31 1 1 4 3 ( ) x x dx −x ∫ is (A) 6 (B) 0 (C) 3 (D) 4 10 If f (x) = 0 x tsin t dt ∫ , then f′(x) is (A) cosx + x sin x (B) x sinx (C) x cosx (D) sinx + x cosx INTEGRALS 341 7
1
3958-3961
9 The value of the integral 3 31 1 1 4 3 ( ) x x dx −x ∫ is (A) 6 (B) 0 (C) 3 (D) 4 10 If f (x) = 0 x tsin t dt ∫ , then f′(x) is (A) cosx + x sin x (B) x sinx (C) x cosx (D) sinx + x cosx INTEGRALS 341 7 10 Some Properties of Definite Integrals We list below some important properties of definite integrals
1
3959-3962
The value of the integral 3 31 1 1 4 3 ( ) x x dx −x ∫ is (A) 6 (B) 0 (C) 3 (D) 4 10 If f (x) = 0 x tsin t dt ∫ , then f′(x) is (A) cosx + x sin x (B) x sinx (C) x cosx (D) sinx + x cosx INTEGRALS 341 7 10 Some Properties of Definite Integrals We list below some important properties of definite integrals These will be useful in evaluating the definite integrals more easily
1
3960-3963
If f (x) = 0 x tsin t dt ∫ , then f′(x) is (A) cosx + x sin x (B) x sinx (C) x cosx (D) sinx + x cosx INTEGRALS 341 7 10 Some Properties of Definite Integrals We list below some important properties of definite integrals These will be useful in evaluating the definite integrals more easily P0 : ( ) ( ) b b a a f x dx f t dt = ∫ ∫ P1 : ( ) – ( ) b a a b f x dx f x dx = ∫ ∫
1
3961-3964
10 Some Properties of Definite Integrals We list below some important properties of definite integrals These will be useful in evaluating the definite integrals more easily P0 : ( ) ( ) b b a a f x dx f t dt = ∫ ∫ P1 : ( ) – ( ) b a a b f x dx f x dx = ∫ ∫ In particular, ( ) 0 a a f x dx = ∫ P2 : ( ) ( ) ( ) b c b a a c f x dx f x dx f x dx = + ∫ ∫ ∫ P3 : ( ) ( ) b b a a f x dx f a b x dx = + − ∫ ∫ P4 : 0 0 ( ) ( ) a a f x dx f a x dx = − ∫ ∫ (Note that P4 is a particular case of P3) P5 : 2 0 0 0 ( ) ( ) (2 ) a a a f x dx f x dx f a x dx = + − ∫ ∫ ∫ P6 : 2 0 0 ( ) 2 ( ) , if (2 ) ( ) a a f x dx f x dx f a x f x = − = ∫ ∫ and 0 if f (2a – x) = – f (x) P7 : (i) 0 ( ) 2 ( ) a a a f x dx f x dx − = ∫ ∫ , if f is an even function, i
1
3962-3965
These will be useful in evaluating the definite integrals more easily P0 : ( ) ( ) b b a a f x dx f t dt = ∫ ∫ P1 : ( ) – ( ) b a a b f x dx f x dx = ∫ ∫ In particular, ( ) 0 a a f x dx = ∫ P2 : ( ) ( ) ( ) b c b a a c f x dx f x dx f x dx = + ∫ ∫ ∫ P3 : ( ) ( ) b b a a f x dx f a b x dx = + − ∫ ∫ P4 : 0 0 ( ) ( ) a a f x dx f a x dx = − ∫ ∫ (Note that P4 is a particular case of P3) P5 : 2 0 0 0 ( ) ( ) (2 ) a a a f x dx f x dx f a x dx = + − ∫ ∫ ∫ P6 : 2 0 0 ( ) 2 ( ) , if (2 ) ( ) a a f x dx f x dx f a x f x = − = ∫ ∫ and 0 if f (2a – x) = – f (x) P7 : (i) 0 ( ) 2 ( ) a a a f x dx f x dx − = ∫ ∫ , if f is an even function, i e
1
3963-3966
P0 : ( ) ( ) b b a a f x dx f t dt = ∫ ∫ P1 : ( ) – ( ) b a a b f x dx f x dx = ∫ ∫ In particular, ( ) 0 a a f x dx = ∫ P2 : ( ) ( ) ( ) b c b a a c f x dx f x dx f x dx = + ∫ ∫ ∫ P3 : ( ) ( ) b b a a f x dx f a b x dx = + − ∫ ∫ P4 : 0 0 ( ) ( ) a a f x dx f a x dx = − ∫ ∫ (Note that P4 is a particular case of P3) P5 : 2 0 0 0 ( ) ( ) (2 ) a a a f x dx f x dx f a x dx = + − ∫ ∫ ∫ P6 : 2 0 0 ( ) 2 ( ) , if (2 ) ( ) a a f x dx f x dx f a x f x = − = ∫ ∫ and 0 if f (2a – x) = – f (x) P7 : (i) 0 ( ) 2 ( ) a a a f x dx f x dx − = ∫ ∫ , if f is an even function, i e , if f (– x) = f (x)
1
3964-3967
In particular, ( ) 0 a a f x dx = ∫ P2 : ( ) ( ) ( ) b c b a a c f x dx f x dx f x dx = + ∫ ∫ ∫ P3 : ( ) ( ) b b a a f x dx f a b x dx = + − ∫ ∫ P4 : 0 0 ( ) ( ) a a f x dx f a x dx = − ∫ ∫ (Note that P4 is a particular case of P3) P5 : 2 0 0 0 ( ) ( ) (2 ) a a a f x dx f x dx f a x dx = + − ∫ ∫ ∫ P6 : 2 0 0 ( ) 2 ( ) , if (2 ) ( ) a a f x dx f x dx f a x f x = − = ∫ ∫ and 0 if f (2a – x) = – f (x) P7 : (i) 0 ( ) 2 ( ) a a a f x dx f x dx − = ∫ ∫ , if f is an even function, i e , if f (– x) = f (x) (ii) ( ) 0 a −a f x dx = ∫ , if f is an odd function, i
1
3965-3968
e , if f (– x) = f (x) (ii) ( ) 0 a −a f x dx = ∫ , if f is an odd function, i e
1
3966-3969
, if f (– x) = f (x) (ii) ( ) 0 a −a f x dx = ∫ , if f is an odd function, i e , if f (– x) = – f (x)
1
3967-3970
(ii) ( ) 0 a −a f x dx = ∫ , if f is an odd function, i e , if f (– x) = – f (x) We give the proofs of these properties one by one
1
3968-3971
e , if f (– x) = – f (x) We give the proofs of these properties one by one Proof of P0 It follows directly by making the substitution x = t
1
3969-3972
, if f (– x) = – f (x) We give the proofs of these properties one by one Proof of P0 It follows directly by making the substitution x = t Proof of P1 Let F be anti derivative of f
1
3970-3973
We give the proofs of these properties one by one Proof of P0 It follows directly by making the substitution x = t Proof of P1 Let F be anti derivative of f Then, by the second fundamental theorem of calculus, we have ( ) F ( ) – F ( ) –[F ( ) F ( )] ( ) b a a b f x dx b a a b f x dx = = − = − ∫ ∫ Here, we observe that, if a = b, then ( ) 0 a ∫a f x dx =
1
3971-3974
Proof of P0 It follows directly by making the substitution x = t Proof of P1 Let F be anti derivative of f Then, by the second fundamental theorem of calculus, we have ( ) F ( ) – F ( ) –[F ( ) F ( )] ( ) b a a b f x dx b a a b f x dx = = − = − ∫ ∫ Here, we observe that, if a = b, then ( ) 0 a ∫a f x dx = Proof of P2 Let F be anti derivative of f
1
3972-3975
Proof of P1 Let F be anti derivative of f Then, by the second fundamental theorem of calculus, we have ( ) F ( ) – F ( ) –[F ( ) F ( )] ( ) b a a b f x dx b a a b f x dx = = − = − ∫ ∫ Here, we observe that, if a = b, then ( ) 0 a ∫a f x dx = Proof of P2 Let F be anti derivative of f Then ( ) b ∫a f x dx = F(b) – F(a)
1
3973-3976
Then, by the second fundamental theorem of calculus, we have ( ) F ( ) – F ( ) –[F ( ) F ( )] ( ) b a a b f x dx b a a b f x dx = = − = − ∫ ∫ Here, we observe that, if a = b, then ( ) 0 a ∫a f x dx = Proof of P2 Let F be anti derivative of f Then ( ) b ∫a f x dx = F(b) – F(a) (1) ( ) c ∫a f x dx = F(c) – F(a)
1
3974-3977
Proof of P2 Let F be anti derivative of f Then ( ) b ∫a f x dx = F(b) – F(a) (1) ( ) c ∫a f x dx = F(c) – F(a) (2) and ( ) b ∫c f x dx = F(b) – F(c)
1
3975-3978
Then ( ) b ∫a f x dx = F(b) – F(a) (1) ( ) c ∫a f x dx = F(c) – F(a) (2) and ( ) b ∫c f x dx = F(b) – F(c) (3) 342 MATHEMATICS Adding (2) and (3), we get ( ) ( ) F( ) – F( ) ( ) c b b a c a f x dx f x dx b a f x dx + = = ∫ ∫ ∫ This proves the property P2
1
3976-3979
(1) ( ) c ∫a f x dx = F(c) – F(a) (2) and ( ) b ∫c f x dx = F(b) – F(c) (3) 342 MATHEMATICS Adding (2) and (3), we get ( ) ( ) F( ) – F( ) ( ) c b b a c a f x dx f x dx b a f x dx + = = ∫ ∫ ∫ This proves the property P2 Proof of P3 Let t = a + b – x
1
3977-3980
(2) and ( ) b ∫c f x dx = F(b) – F(c) (3) 342 MATHEMATICS Adding (2) and (3), we get ( ) ( ) F( ) – F( ) ( ) c b b a c a f x dx f x dx b a f x dx + = = ∫ ∫ ∫ This proves the property P2 Proof of P3 Let t = a + b – x Then dt = – dx
1
3978-3981
(3) 342 MATHEMATICS Adding (2) and (3), we get ( ) ( ) F( ) – F( ) ( ) c b b a c a f x dx f x dx b a f x dx + = = ∫ ∫ ∫ This proves the property P2 Proof of P3 Let t = a + b – x Then dt = – dx When x = a, t = b and when x = b, t = a
1
3979-3982
Proof of P3 Let t = a + b – x Then dt = – dx When x = a, t = b and when x = b, t = a Therefore ( ) b ∫a f x dx = ( – ) a b f a b t dt − + ∫ = ( – ) b a f a b t dt + ∫ (by P1) = ( – ) b a f a b x + ∫ dx by P0 Proof of P4 Put t = a – x
1
3980-3983
Then dt = – dx When x = a, t = b and when x = b, t = a Therefore ( ) b ∫a f x dx = ( – ) a b f a b t dt − + ∫ = ( – ) b a f a b t dt + ∫ (by P1) = ( – ) b a f a b x + ∫ dx by P0 Proof of P4 Put t = a – x Then dt = – dx
1
3981-3984
When x = a, t = b and when x = b, t = a Therefore ( ) b ∫a f x dx = ( – ) a b f a b t dt − + ∫ = ( – ) b a f a b t dt + ∫ (by P1) = ( – ) b a f a b x + ∫ dx by P0 Proof of P4 Put t = a – x Then dt = – dx When x = 0, t = a and when x = a, t = 0
1
3982-3985
Therefore ( ) b ∫a f x dx = ( – ) a b f a b t dt − + ∫ = ( – ) b a f a b t dt + ∫ (by P1) = ( – ) b a f a b x + ∫ dx by P0 Proof of P4 Put t = a – x Then dt = – dx When x = 0, t = a and when x = a, t = 0 Now proceed as in P3
1
3983-3986
Then dt = – dx When x = 0, t = a and when x = a, t = 0 Now proceed as in P3 Proof of P5 Using P2, we have 2 2 0 0 ( ) ( ) ( ) a a a a f x dx f x dx f x dx = + ∫ ∫ ∫
1
3984-3987
When x = 0, t = a and when x = a, t = 0 Now proceed as in P3 Proof of P5 Using P2, we have 2 2 0 0 ( ) ( ) ( ) a a a a f x dx f x dx f x dx = + ∫ ∫ ∫ Let t = 2a – x in the second integral on the right hand side
1
3985-3988
Now proceed as in P3 Proof of P5 Using P2, we have 2 2 0 0 ( ) ( ) ( ) a a a a f x dx f x dx f x dx = + ∫ ∫ ∫ Let t = 2a – x in the second integral on the right hand side Then dt = – dx
1
3986-3989
Proof of P5 Using P2, we have 2 2 0 0 ( ) ( ) ( ) a a a a f x dx f x dx f x dx = + ∫ ∫ ∫ Let t = 2a – x in the second integral on the right hand side Then dt = – dx When x = a, t = a and when x = 2a, t = 0
1
3987-3990
Let t = 2a – x in the second integral on the right hand side Then dt = – dx When x = a, t = a and when x = 2a, t = 0 Also x = 2a – t
1
3988-3991
Then dt = – dx When x = a, t = a and when x = 2a, t = 0 Also x = 2a – t Therefore, the second integral becomes 2 ( ) a a f x dx ∫ = –0 (2 – ) a f a t dt ∫ = 0 (2 – ) a f a t dt ∫ = 0 (2 – ) a f a x dx ∫ Hence 2 0 ( ) ∫a f x dx = 0 0 ( ) (2 ) a a f x dx f a x dx + − ∫ ∫ Proof of P6 Using P5, we have 2 0 0 0 ( ) ( ) (2 ) a a a f x dx f x dx f a x dx = + − ∫ ∫ ∫
1
3989-3992
When x = a, t = a and when x = 2a, t = 0 Also x = 2a – t Therefore, the second integral becomes 2 ( ) a a f x dx ∫ = –0 (2 – ) a f a t dt ∫ = 0 (2 – ) a f a t dt ∫ = 0 (2 – ) a f a x dx ∫ Hence 2 0 ( ) ∫a f x dx = 0 0 ( ) (2 ) a a f x dx f a x dx + − ∫ ∫ Proof of P6 Using P5, we have 2 0 0 0 ( ) ( ) (2 ) a a a f x dx f x dx f a x dx = + − ∫ ∫ ∫ (1) Now, if f (2a – x) = f (x), then (1) becomes 2 0 ( ) ∫a f x dx = 0 0 0 ( ) ( ) 2 ( ) , a a a f x dx f x dx f x dx + = ∫ ∫ ∫ and if f(2a – x) = – f (x), then (1) becomes 2 0 ( ) ∫a f x dx = 0 0 ( ) ( ) 0 a a f x dx f x dx − = ∫ ∫ Proof of P7 Using P2, we have ( ) a a f x dx −∫ = 0 0 ( ) ( ) a a f x dx f x dx − + ∫ ∫
1
3990-3993
Also x = 2a – t Therefore, the second integral becomes 2 ( ) a a f x dx ∫ = –0 (2 – ) a f a t dt ∫ = 0 (2 – ) a f a t dt ∫ = 0 (2 – ) a f a x dx ∫ Hence 2 0 ( ) ∫a f x dx = 0 0 ( ) (2 ) a a f x dx f a x dx + − ∫ ∫ Proof of P6 Using P5, we have 2 0 0 0 ( ) ( ) (2 ) a a a f x dx f x dx f a x dx = + − ∫ ∫ ∫ (1) Now, if f (2a – x) = f (x), then (1) becomes 2 0 ( ) ∫a f x dx = 0 0 0 ( ) ( ) 2 ( ) , a a a f x dx f x dx f x dx + = ∫ ∫ ∫ and if f(2a – x) = – f (x), then (1) becomes 2 0 ( ) ∫a f x dx = 0 0 ( ) ( ) 0 a a f x dx f x dx − = ∫ ∫ Proof of P7 Using P2, we have ( ) a a f x dx −∫ = 0 0 ( ) ( ) a a f x dx f x dx − + ∫ ∫ Then Let t = – x in the first integral on the right hand side
1
3991-3994
Therefore, the second integral becomes 2 ( ) a a f x dx ∫ = –0 (2 – ) a f a t dt ∫ = 0 (2 – ) a f a t dt ∫ = 0 (2 – ) a f a x dx ∫ Hence 2 0 ( ) ∫a f x dx = 0 0 ( ) (2 ) a a f x dx f a x dx + − ∫ ∫ Proof of P6 Using P5, we have 2 0 0 0 ( ) ( ) (2 ) a a a f x dx f x dx f a x dx = + − ∫ ∫ ∫ (1) Now, if f (2a – x) = f (x), then (1) becomes 2 0 ( ) ∫a f x dx = 0 0 0 ( ) ( ) 2 ( ) , a a a f x dx f x dx f x dx + = ∫ ∫ ∫ and if f(2a – x) = – f (x), then (1) becomes 2 0 ( ) ∫a f x dx = 0 0 ( ) ( ) 0 a a f x dx f x dx − = ∫ ∫ Proof of P7 Using P2, we have ( ) a a f x dx −∫ = 0 0 ( ) ( ) a a f x dx f x dx − + ∫ ∫ Then Let t = – x in the first integral on the right hand side dt = – dx
1
3992-3995
(1) Now, if f (2a – x) = f (x), then (1) becomes 2 0 ( ) ∫a f x dx = 0 0 0 ( ) ( ) 2 ( ) , a a a f x dx f x dx f x dx + = ∫ ∫ ∫ and if f(2a – x) = – f (x), then (1) becomes 2 0 ( ) ∫a f x dx = 0 0 ( ) ( ) 0 a a f x dx f x dx − = ∫ ∫ Proof of P7 Using P2, we have ( ) a a f x dx −∫ = 0 0 ( ) ( ) a a f x dx f x dx − + ∫ ∫ Then Let t = – x in the first integral on the right hand side dt = – dx When x = – a, t = a and when x = 0, t = 0
1
3993-3996
Then Let t = – x in the first integral on the right hand side dt = – dx When x = – a, t = a and when x = 0, t = 0 Also x = – t
1
3994-3997
dt = – dx When x = – a, t = a and when x = 0, t = 0 Also x = – t INTEGRALS 343 Therefore ( ) a a f x dx −∫ = 0 0 – (– ) ( ) a a f t dt f x dx + ∫ ∫ = 0 0 (– ) ( ) a a f x dx f x dx + ∫ ∫ (by P0)
1
3995-3998
When x = – a, t = a and when x = 0, t = 0 Also x = – t INTEGRALS 343 Therefore ( ) a a f x dx −∫ = 0 0 – (– ) ( ) a a f t dt f x dx + ∫ ∫ = 0 0 (– ) ( ) a a f x dx f x dx + ∫ ∫ (by P0) (1) (i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes 0 0 0 ( ) ( ) ( ) 2 ( ) a a a a a f x dx f x dx f x dx f x dx − = + = ∫ ∫ ∫ ∫ (ii) If f is an odd function, then f (–x) = – f(x) and so (1) becomes 0 0 ( ) ( ) ( ) 0 a a a a f x dx f x dx f x dx − = − + = ∫ ∫ ∫ Example 30 Evaluate 2 3 1 x– x dx −∫ Solution We note that x3 – x ≥ 0 on [– 1, 0] and x3 – x ≤ 0 on [0, 1] and that x3 – x ≥ 0 on [1, 2]
1
3996-3999
Also x = – t INTEGRALS 343 Therefore ( ) a a f x dx −∫ = 0 0 – (– ) ( ) a a f t dt f x dx + ∫ ∫ = 0 0 (– ) ( ) a a f x dx f x dx + ∫ ∫ (by P0) (1) (i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes 0 0 0 ( ) ( ) ( ) 2 ( ) a a a a a f x dx f x dx f x dx f x dx − = + = ∫ ∫ ∫ ∫ (ii) If f is an odd function, then f (–x) = – f(x) and so (1) becomes 0 0 ( ) ( ) ( ) 0 a a a a f x dx f x dx f x dx − = − + = ∫ ∫ ∫ Example 30 Evaluate 2 3 1 x– x dx −∫ Solution We note that x3 – x ≥ 0 on [– 1, 0] and x3 – x ≤ 0 on [0, 1] and that x3 – x ≥ 0 on [1, 2] So by P2 we write 2 3 1 x– x dx −∫ = 0 1 2 3 3 3 1 0 1 ( – ) – ( – ) ( – ) x x dx x x dx x x dx − + + ∫ ∫ ∫ = 0 1 2 3 3 3 1 0 1 ( – ) ( – ) ( – ) x x dx x x dx x x dx − + + ∫ ∫ ∫ = 0 1 2 4 2 2 4 4 2 –1 0 1 – – – 4 2 2 4 4 2 x x x x x x       + +             = ( ) 1 1 1 1 1 1 – – – 4 – 2 – – 4 2 2 4 4 2       + +             = 1 1 1 1 1 1 – 2 4 2 2 4 4 2 + + − + − + = 3 3 11 2 2 4 4 − + = Example 31 Evaluate 2 –4 4 sin x dx π π ∫ Solution We observe that sin2 x is an even function
1
3997-4000
INTEGRALS 343 Therefore ( ) a a f x dx −∫ = 0 0 – (– ) ( ) a a f t dt f x dx + ∫ ∫ = 0 0 (– ) ( ) a a f x dx f x dx + ∫ ∫ (by P0) (1) (i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes 0 0 0 ( ) ( ) ( ) 2 ( ) a a a a a f x dx f x dx f x dx f x dx − = + = ∫ ∫ ∫ ∫ (ii) If f is an odd function, then f (–x) = – f(x) and so (1) becomes 0 0 ( ) ( ) ( ) 0 a a a a f x dx f x dx f x dx − = − + = ∫ ∫ ∫ Example 30 Evaluate 2 3 1 x– x dx −∫ Solution We note that x3 – x ≥ 0 on [– 1, 0] and x3 – x ≤ 0 on [0, 1] and that x3 – x ≥ 0 on [1, 2] So by P2 we write 2 3 1 x– x dx −∫ = 0 1 2 3 3 3 1 0 1 ( – ) – ( – ) ( – ) x x dx x x dx x x dx − + + ∫ ∫ ∫ = 0 1 2 3 3 3 1 0 1 ( – ) ( – ) ( – ) x x dx x x dx x x dx − + + ∫ ∫ ∫ = 0 1 2 4 2 2 4 4 2 –1 0 1 – – – 4 2 2 4 4 2 x x x x x x       + +             = ( ) 1 1 1 1 1 1 – – – 4 – 2 – – 4 2 2 4 4 2       + +             = 1 1 1 1 1 1 – 2 4 2 2 4 4 2 + + − + − + = 3 3 11 2 2 4 4 − + = Example 31 Evaluate 2 –4 4 sin x dx π π ∫ Solution We observe that sin2 x is an even function Therefore, by P7 (i), we get 2 –4 4 sin x dx π ∫π = 2 204 sin x dx ∫π 344 MATHEMATICS = 4 0 (1 cos 2 ) 2 2 x dx π − ∫ = 4 0 (1 cos 2 )x dx π − ∫ = 4 0 –1 sin 2 2 x x π       = 1 1 – sin –0 – 4 2 2 4 2 π π π   =     Example 32 Evaluate 2 0 sin 1 xcos x dx x π + ∫ Solution Let I = 2 0 1sin xcos x dx x π + ∫
1
3998-4001
(1) (i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes 0 0 0 ( ) ( ) ( ) 2 ( ) a a a a a f x dx f x dx f x dx f x dx − = + = ∫ ∫ ∫ ∫ (ii) If f is an odd function, then f (–x) = – f(x) and so (1) becomes 0 0 ( ) ( ) ( ) 0 a a a a f x dx f x dx f x dx − = − + = ∫ ∫ ∫ Example 30 Evaluate 2 3 1 x– x dx −∫ Solution We note that x3 – x ≥ 0 on [– 1, 0] and x3 – x ≤ 0 on [0, 1] and that x3 – x ≥ 0 on [1, 2] So by P2 we write 2 3 1 x– x dx −∫ = 0 1 2 3 3 3 1 0 1 ( – ) – ( – ) ( – ) x x dx x x dx x x dx − + + ∫ ∫ ∫ = 0 1 2 3 3 3 1 0 1 ( – ) ( – ) ( – ) x x dx x x dx x x dx − + + ∫ ∫ ∫ = 0 1 2 4 2 2 4 4 2 –1 0 1 – – – 4 2 2 4 4 2 x x x x x x       + +             = ( ) 1 1 1 1 1 1 – – – 4 – 2 – – 4 2 2 4 4 2       + +             = 1 1 1 1 1 1 – 2 4 2 2 4 4 2 + + − + − + = 3 3 11 2 2 4 4 − + = Example 31 Evaluate 2 –4 4 sin x dx π π ∫ Solution We observe that sin2 x is an even function Therefore, by P7 (i), we get 2 –4 4 sin x dx π ∫π = 2 204 sin x dx ∫π 344 MATHEMATICS = 4 0 (1 cos 2 ) 2 2 x dx π − ∫ = 4 0 (1 cos 2 )x dx π − ∫ = 4 0 –1 sin 2 2 x x π       = 1 1 – sin –0 – 4 2 2 4 2 π π π   =     Example 32 Evaluate 2 0 sin 1 xcos x dx x π + ∫ Solution Let I = 2 0 1sin xcos x dx x π + ∫ Then, by P4, we have I = 2 0 ( )sin ( ) 1 cos ( ) x x dx x π π − π − + π − ∫ = 2 0 ( )sin 1 cos x x dx x π π − + ∫ = 2 0 sin I 1 cos x dx x π π − + ∫ or 2 I = 2 0 1sin cos x dx x π π + ∫ or I = 2 0 sin 2 1 cos x dx x π π + ∫ Put cos x = t so that – sin x dx = dt
1
3999-4002
So by P2 we write 2 3 1 x– x dx −∫ = 0 1 2 3 3 3 1 0 1 ( – ) – ( – ) ( – ) x x dx x x dx x x dx − + + ∫ ∫ ∫ = 0 1 2 3 3 3 1 0 1 ( – ) ( – ) ( – ) x x dx x x dx x x dx − + + ∫ ∫ ∫ = 0 1 2 4 2 2 4 4 2 –1 0 1 – – – 4 2 2 4 4 2 x x x x x x       + +             = ( ) 1 1 1 1 1 1 – – – 4 – 2 – – 4 2 2 4 4 2       + +             = 1 1 1 1 1 1 – 2 4 2 2 4 4 2 + + − + − + = 3 3 11 2 2 4 4 − + = Example 31 Evaluate 2 –4 4 sin x dx π π ∫ Solution We observe that sin2 x is an even function Therefore, by P7 (i), we get 2 –4 4 sin x dx π ∫π = 2 204 sin x dx ∫π 344 MATHEMATICS = 4 0 (1 cos 2 ) 2 2 x dx π − ∫ = 4 0 (1 cos 2 )x dx π − ∫ = 4 0 –1 sin 2 2 x x π       = 1 1 – sin –0 – 4 2 2 4 2 π π π   =     Example 32 Evaluate 2 0 sin 1 xcos x dx x π + ∫ Solution Let I = 2 0 1sin xcos x dx x π + ∫ Then, by P4, we have I = 2 0 ( )sin ( ) 1 cos ( ) x x dx x π π − π − + π − ∫ = 2 0 ( )sin 1 cos x x dx x π π − + ∫ = 2 0 sin I 1 cos x dx x π π − + ∫ or 2 I = 2 0 1sin cos x dx x π π + ∫ or I = 2 0 sin 2 1 cos x dx x π π + ∫ Put cos x = t so that – sin x dx = dt When x = 0, t = 1 and when x = π, t = – 1
1
4000-4003
Therefore, by P7 (i), we get 2 –4 4 sin x dx π ∫π = 2 204 sin x dx ∫π 344 MATHEMATICS = 4 0 (1 cos 2 ) 2 2 x dx π − ∫ = 4 0 (1 cos 2 )x dx π − ∫ = 4 0 –1 sin 2 2 x x π       = 1 1 – sin –0 – 4 2 2 4 2 π π π   =     Example 32 Evaluate 2 0 sin 1 xcos x dx x π + ∫ Solution Let I = 2 0 1sin xcos x dx x π + ∫ Then, by P4, we have I = 2 0 ( )sin ( ) 1 cos ( ) x x dx x π π − π − + π − ∫ = 2 0 ( )sin 1 cos x x dx x π π − + ∫ = 2 0 sin I 1 cos x dx x π π − + ∫ or 2 I = 2 0 1sin cos x dx x π π + ∫ or I = 2 0 sin 2 1 cos x dx x π π + ∫ Put cos x = t so that – sin x dx = dt When x = 0, t = 1 and when x = π, t = – 1 Therefore, (by P1) we get I = 1 2 1 – 2 1 dt t − π + ∫ = 1 2 1 2 1 dt t − π + ∫ = 1 2 0 1 dt t π + ∫ (by P7, 2 1 since 1 t + is even function) = 2 1 – 1 – 1 1 0 tan tan 1– tan 0 – 0 4 4 t − π π       π = π = π =         Example 33 Evaluate 1 5 4 1 sin xcos x dx −∫ Solution Let I = 1 5 4 1sin xcos x dx −∫
1
4001-4004
Then, by P4, we have I = 2 0 ( )sin ( ) 1 cos ( ) x x dx x π π − π − + π − ∫ = 2 0 ( )sin 1 cos x x dx x π π − + ∫ = 2 0 sin I 1 cos x dx x π π − + ∫ or 2 I = 2 0 1sin cos x dx x π π + ∫ or I = 2 0 sin 2 1 cos x dx x π π + ∫ Put cos x = t so that – sin x dx = dt When x = 0, t = 1 and when x = π, t = – 1 Therefore, (by P1) we get I = 1 2 1 – 2 1 dt t − π + ∫ = 1 2 1 2 1 dt t − π + ∫ = 1 2 0 1 dt t π + ∫ (by P7, 2 1 since 1 t + is even function) = 2 1 – 1 – 1 1 0 tan tan 1– tan 0 – 0 4 4 t − π π       π = π = π =         Example 33 Evaluate 1 5 4 1 sin xcos x dx −∫ Solution Let I = 1 5 4 1sin xcos x dx −∫ Let f(x) = sin5 x cos4 x
1
4002-4005
When x = 0, t = 1 and when x = π, t = – 1 Therefore, (by P1) we get I = 1 2 1 – 2 1 dt t − π + ∫ = 1 2 1 2 1 dt t − π + ∫ = 1 2 0 1 dt t π + ∫ (by P7, 2 1 since 1 t + is even function) = 2 1 – 1 – 1 1 0 tan tan 1– tan 0 – 0 4 4 t − π π       π = π = π =         Example 33 Evaluate 1 5 4 1 sin xcos x dx −∫ Solution Let I = 1 5 4 1sin xcos x dx −∫ Let f(x) = sin5 x cos4 x Then f (– x) = sin5 (– x) cos4 (– x) = – sin5 x cos4 x = – f (x), i
1
4003-4006
Therefore, (by P1) we get I = 1 2 1 – 2 1 dt t − π + ∫ = 1 2 1 2 1 dt t − π + ∫ = 1 2 0 1 dt t π + ∫ (by P7, 2 1 since 1 t + is even function) = 2 1 – 1 – 1 1 0 tan tan 1– tan 0 – 0 4 4 t − π π       π = π = π =         Example 33 Evaluate 1 5 4 1 sin xcos x dx −∫ Solution Let I = 1 5 4 1sin xcos x dx −∫ Let f(x) = sin5 x cos4 x Then f (– x) = sin5 (– x) cos4 (– x) = – sin5 x cos4 x = – f (x), i e
1
4004-4007
Let f(x) = sin5 x cos4 x Then f (– x) = sin5 (– x) cos4 (– x) = – sin5 x cos4 x = – f (x), i e , f is an odd function
1
4005-4008
Then f (– x) = sin5 (– x) cos4 (– x) = – sin5 x cos4 x = – f (x), i e , f is an odd function Therefore, by P7 (ii), I = 0 INTEGRALS 345 Example 34 Evaluate 4 2 4 4 0 sinsin cos x dx x x π + ∫ Solution Let I = 4 2 4 4 0 sinsin cos x dx x x π + ∫
1
4006-4009
e , f is an odd function Therefore, by P7 (ii), I = 0 INTEGRALS 345 Example 34 Evaluate 4 2 4 4 0 sinsin cos x dx x x π + ∫ Solution Let I = 4 2 4 4 0 sinsin cos x dx x x π + ∫ (1) Then, by P4 I = 4 2 0 4 4 sin ( ) 2 sin ( ) cos ( ) 2 2 x dx x x π π − π π − + − ∫ = 4 2 4 4 0 coscos sin x dx x x π + ∫
1
4007-4010
, f is an odd function Therefore, by P7 (ii), I = 0 INTEGRALS 345 Example 34 Evaluate 4 2 4 4 0 sinsin cos x dx x x π + ∫ Solution Let I = 4 2 4 4 0 sinsin cos x dx x x π + ∫ (1) Then, by P4 I = 4 2 0 4 4 sin ( ) 2 sin ( ) cos ( ) 2 2 x dx x x π π − π π − + − ∫ = 4 2 4 4 0 coscos sin x dx x x π + ∫ (2) Adding (1) and (2), we get 2I = 4 4 2 2 2 4 4 0 0 0 sin cos [ ] 2 sin xcos x dx dx x x x π π π + π = = = + ∫ ∫ Hence I = 4 π Example 35 Evaluate 3 6 1 tan dx x π π + ∫ Solution Let I = 3 3 6 6 cos 1 tan cos sin x dx dx x x x π π π π = + + ∫ ∫
1
4008-4011
Therefore, by P7 (ii), I = 0 INTEGRALS 345 Example 34 Evaluate 4 2 4 4 0 sinsin cos x dx x x π + ∫ Solution Let I = 4 2 4 4 0 sinsin cos x dx x x π + ∫ (1) Then, by P4 I = 4 2 0 4 4 sin ( ) 2 sin ( ) cos ( ) 2 2 x dx x x π π − π π − + − ∫ = 4 2 4 4 0 coscos sin x dx x x π + ∫ (2) Adding (1) and (2), we get 2I = 4 4 2 2 2 4 4 0 0 0 sin cos [ ] 2 sin xcos x dx dx x x x π π π + π = = = + ∫ ∫ Hence I = 4 π Example 35 Evaluate 3 6 1 tan dx x π π + ∫ Solution Let I = 3 3 6 6 cos 1 tan cos sin x dx dx x x x π π π π = + + ∫ ∫ (1) Then, by P3 I = 3 6 cos 3 6 cos sin 3 6 3 6 x dx x x π π π π   + −     π π π π     + − + + −         ∫ = 3 6 sin sin cos x dx x x π π + ∫
1
4009-4012
(1) Then, by P4 I = 4 2 0 4 4 sin ( ) 2 sin ( ) cos ( ) 2 2 x dx x x π π − π π − + − ∫ = 4 2 4 4 0 coscos sin x dx x x π + ∫ (2) Adding (1) and (2), we get 2I = 4 4 2 2 2 4 4 0 0 0 sin cos [ ] 2 sin xcos x dx dx x x x π π π + π = = = + ∫ ∫ Hence I = 4 π Example 35 Evaluate 3 6 1 tan dx x π π + ∫ Solution Let I = 3 3 6 6 cos 1 tan cos sin x dx dx x x x π π π π = + + ∫ ∫ (1) Then, by P3 I = 3 6 cos 3 6 cos sin 3 6 3 6 x dx x x π π π π   + −     π π π π     + − + + −         ∫ = 3 6 sin sin cos x dx x x π π + ∫ (2) Adding (1) and (2), we get 2I = [ ] 3 3 6 6 3 6 6 dx x π π π π π π π = = − = ∫
1
4010-4013
(2) Adding (1) and (2), we get 2I = 4 4 2 2 2 4 4 0 0 0 sin cos [ ] 2 sin xcos x dx dx x x x π π π + π = = = + ∫ ∫ Hence I = 4 π Example 35 Evaluate 3 6 1 tan dx x π π + ∫ Solution Let I = 3 3 6 6 cos 1 tan cos sin x dx dx x x x π π π π = + + ∫ ∫ (1) Then, by P3 I = 3 6 cos 3 6 cos sin 3 6 3 6 x dx x x π π π π   + −     π π π π     + − + + −         ∫ = 3 6 sin sin cos x dx x x π π + ∫ (2) Adding (1) and (2), we get 2I = [ ] 3 3 6 6 3 6 6 dx x π π π π π π π = = − = ∫ Hence I 12 =π 346 MATHEMATICS Example 36 Evaluate 2 0 log sin x dx π ∫ Solution Let I = 2 0 logsinx dx π ∫ Then, by P4 I = 2 2 0 0 log sin log cos 2 x dx x dx π π π  − =     ∫ ∫ Adding the two values of I, we get 2I = ( ) 02 log sin logcos x x dx π + ∫ = ( ) 02 log sin cos log2 log2 x x dx π + − ∫ (by adding and subtracting log2) = 2 2 0 0 log sin2 log2 x dx dx π π − ∫ ∫ (Why
1
4011-4014
(1) Then, by P3 I = 3 6 cos 3 6 cos sin 3 6 3 6 x dx x x π π π π   + −     π π π π     + − + + −         ∫ = 3 6 sin sin cos x dx x x π π + ∫ (2) Adding (1) and (2), we get 2I = [ ] 3 3 6 6 3 6 6 dx x π π π π π π π = = − = ∫ Hence I 12 =π 346 MATHEMATICS Example 36 Evaluate 2 0 log sin x dx π ∫ Solution Let I = 2 0 logsinx dx π ∫ Then, by P4 I = 2 2 0 0 log sin log cos 2 x dx x dx π π π  − =     ∫ ∫ Adding the two values of I, we get 2I = ( ) 02 log sin logcos x x dx π + ∫ = ( ) 02 log sin cos log2 log2 x x dx π + − ∫ (by adding and subtracting log2) = 2 2 0 0 log sin2 log2 x dx dx π π − ∫ ∫ (Why ) Put 2x = t in the first integral
1
4012-4015
(2) Adding (1) and (2), we get 2I = [ ] 3 3 6 6 3 6 6 dx x π π π π π π π = = − = ∫ Hence I 12 =π 346 MATHEMATICS Example 36 Evaluate 2 0 log sin x dx π ∫ Solution Let I = 2 0 logsinx dx π ∫ Then, by P4 I = 2 2 0 0 log sin log cos 2 x dx x dx π π π  − =     ∫ ∫ Adding the two values of I, we get 2I = ( ) 02 log sin logcos x x dx π + ∫ = ( ) 02 log sin cos log2 log2 x x dx π + − ∫ (by adding and subtracting log2) = 2 2 0 0 log sin2 log2 x dx dx π π − ∫ ∫ (Why ) Put 2x = t in the first integral Then 2 dx = dt, when x = 0, t = 0 and when 2 x =π , t = π
1
4013-4016
Hence I 12 =π 346 MATHEMATICS Example 36 Evaluate 2 0 log sin x dx π ∫ Solution Let I = 2 0 logsinx dx π ∫ Then, by P4 I = 2 2 0 0 log sin log cos 2 x dx x dx π π π  − =     ∫ ∫ Adding the two values of I, we get 2I = ( ) 02 log sin logcos x x dx π + ∫ = ( ) 02 log sin cos log2 log2 x x dx π + − ∫ (by adding and subtracting log2) = 2 2 0 0 log sin2 log2 x dx dx π π − ∫ ∫ (Why ) Put 2x = t in the first integral Then 2 dx = dt, when x = 0, t = 0 and when 2 x =π , t = π Therefore 2I = 0 1 log sin log2 2 2 t dt π −π ∫ = 02 2 log sin log2 2 2 t dt π −π ∫ [by P6 as sin (π – t) = sin t) = 2 0 log sin log2 2 x dx π −π ∫ (by changing variable t to x) = I log2 π2 − Hence 2 0 log sin x dx ∫π = – 2log2 π
1
4014-4017
) Put 2x = t in the first integral Then 2 dx = dt, when x = 0, t = 0 and when 2 x =π , t = π Therefore 2I = 0 1 log sin log2 2 2 t dt π −π ∫ = 02 2 log sin log2 2 2 t dt π −π ∫ [by P6 as sin (π – t) = sin t) = 2 0 log sin log2 2 x dx π −π ∫ (by changing variable t to x) = I log2 π2 − Hence 2 0 log sin x dx ∫π = – 2log2 π INTEGRALS 347 EXERCISE 7
1
4015-4018
Then 2 dx = dt, when x = 0, t = 0 and when 2 x =π , t = π Therefore 2I = 0 1 log sin log2 2 2 t dt π −π ∫ = 02 2 log sin log2 2 2 t dt π −π ∫ [by P6 as sin (π – t) = sin t) = 2 0 log sin log2 2 x dx π −π ∫ (by changing variable t to x) = I log2 π2 − Hence 2 0 log sin x dx ∫π = – 2log2 π INTEGRALS 347 EXERCISE 7 11 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19
1
4016-4019
Therefore 2I = 0 1 log sin log2 2 2 t dt π −π ∫ = 02 2 log sin log2 2 2 t dt π −π ∫ [by P6 as sin (π – t) = sin t) = 2 0 log sin log2 2 x dx π −π ∫ (by changing variable t to x) = I log2 π2 − Hence 2 0 log sin x dx ∫π = – 2log2 π INTEGRALS 347 EXERCISE 7 11 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19 1
1
4017-4020
INTEGRALS 347 EXERCISE 7 11 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19 1 2 2 0 cos x dx ∫π 2