Chapter
stringclasses
18 values
sentence_range
stringlengths
3
9
Text
stringlengths
7
7.34k
1
4018-4021
11 By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19 1 2 2 0 cos x dx ∫π 2 02 sin sin cos x dx x x π + ∫ 3
1
4019-4022
1 2 2 0 cos x dx ∫π 2 02 sin sin cos x dx x x π + ∫ 3 23 2 3 3 0 2 2 sin sin cos x dx x x π + ∫ 4
1
4020-4023
2 2 0 cos x dx ∫π 2 02 sin sin cos x dx x x π + ∫ 3 23 2 3 3 0 2 2 sin sin cos x dx x x π + ∫ 4 5 2 5 5 0 cos sin cos x dx x x π + ∫ 5
1
4021-4024
02 sin sin cos x dx x x π + ∫ 3 23 2 3 3 0 2 2 sin sin cos x dx x x π + ∫ 4 5 2 5 5 0 cos sin cos x dx x x π + ∫ 5 5 5 | 2| x dx − + ∫ 6
1
4022-4025
23 2 3 3 0 2 2 sin sin cos x dx x x π + ∫ 4 5 2 5 5 0 cos sin cos x dx x x π + ∫ 5 5 5 | 2| x dx − + ∫ 6 8 2 5 x dx − ∫ 7
1
4023-4026
5 2 5 5 0 cos sin cos x dx x x π + ∫ 5 5 5 | 2| x dx − + ∫ 6 8 2 5 x dx − ∫ 7 1 0 (1 )n x x dx − ∫ 8
1
4024-4027
5 5 | 2| x dx − + ∫ 6 8 2 5 x dx − ∫ 7 1 0 (1 )n x x dx − ∫ 8 4 0 log (1 tan )x dx π + ∫ 9
1
4025-4028
8 2 5 x dx − ∫ 7 1 0 (1 )n x x dx − ∫ 8 4 0 log (1 tan )x dx π + ∫ 9 2 0 2 x −x dx ∫ 10
1
4026-4029
1 0 (1 )n x x dx − ∫ 8 4 0 log (1 tan )x dx π + ∫ 9 2 0 2 x −x dx ∫ 10 2 0 (2log sin logsin2 ) x x dx π − ∫ 11
1
4027-4030
4 0 log (1 tan )x dx π + ∫ 9 2 0 2 x −x dx ∫ 10 2 0 (2log sin logsin2 ) x x dx π − ∫ 11 2 –2 2 sin x dx π π ∫ 12
1
4028-4031
2 0 2 x −x dx ∫ 10 2 0 (2log sin logsin2 ) x x dx π − ∫ 11 2 –2 2 sin x dx π π ∫ 12 0 1 sin x dx x π + ∫ 13
1
4029-4032
2 0 (2log sin logsin2 ) x x dx π − ∫ 11 2 –2 2 sin x dx π π ∫ 12 0 1 sin x dx x π + ∫ 13 7 –2 2 sin x dx π ∫π 14
1
4030-4033
2 –2 2 sin x dx π π ∫ 12 0 1 sin x dx x π + ∫ 13 7 –2 2 sin x dx π ∫π 14 2 5 0 cos x dx π ∫ 15
1
4031-4034
0 1 sin x dx x π + ∫ 13 7 –2 2 sin x dx π ∫π 14 2 5 0 cos x dx π ∫ 15 02 sin cos 1 sin cos x x dx x x π − + ∫ 16
1
4032-4035
7 –2 2 sin x dx π ∫π 14 2 5 0 cos x dx π ∫ 15 02 sin cos 1 sin cos x x dx x x π − + ∫ 16 0 log (1 cos ) x dx π + ∫ 17
1
4033-4036
2 5 0 cos x dx π ∫ 15 02 sin cos 1 sin cos x x dx x x π − + ∫ 16 0 log (1 cos ) x dx π + ∫ 17 0 a x dx x a x + − ∫ 18
1
4034-4037
02 sin cos 1 sin cos x x dx x x π − + ∫ 16 0 log (1 cos ) x dx π + ∫ 17 0 a x dx x a x + − ∫ 18 4 0 1 x dx − ∫ 19
1
4035-4038
0 log (1 cos ) x dx π + ∫ 17 0 a x dx x a x + − ∫ 18 4 0 1 x dx − ∫ 19 Show that 0 0 ( ) ( ) 2 ( ) a a f x g x dx f x dx = ∫ ∫ , if f and g are defined as f(x) = f(a – x) and g(x) + g(a – x) = 4 Choose the correct answer in Exercises 20 and 21
1
4036-4039
0 a x dx x a x + − ∫ 18 4 0 1 x dx − ∫ 19 Show that 0 0 ( ) ( ) 2 ( ) a a f x g x dx f x dx = ∫ ∫ , if f and g are defined as f(x) = f(a – x) and g(x) + g(a – x) = 4 Choose the correct answer in Exercises 20 and 21 20
1
4037-4040
4 0 1 x dx − ∫ 19 Show that 0 0 ( ) ( ) 2 ( ) a a f x g x dx f x dx = ∫ ∫ , if f and g are defined as f(x) = f(a – x) and g(x) + g(a – x) = 4 Choose the correct answer in Exercises 20 and 21 20 The value of 3 5 2 2 ( cos tan 1) x x x x dx π −π + + + ∫ is (A) 0 (B) 2 (C) π (D) 1 21
1
4038-4041
Show that 0 0 ( ) ( ) 2 ( ) a a f x g x dx f x dx = ∫ ∫ , if f and g are defined as f(x) = f(a – x) and g(x) + g(a – x) = 4 Choose the correct answer in Exercises 20 and 21 20 The value of 3 5 2 2 ( cos tan 1) x x x x dx π −π + + + ∫ is (A) 0 (B) 2 (C) π (D) 1 21 The value of 02 4 3sin log 4 3cos x dx x π   +   +   ∫ is (A) 2 (B) 43 (C) 0 (D) –2 348 MATHEMATICS Miscellaneous Examples Example 37 Find cos 6 1 sin 6 x x dx + ∫ Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx Therefore 21 1 cos 6 1 sin 6 6 x x dx t dt + = ∫ ∫ = 3 3 2 2 1 2 1 ( ) C = (1 sin 6 ) C 6 3 9 t x × + + + Example 38 Find 1 4 4 5 ( ) x x dx −x ∫ Solution We have 1 1 4 4 4 3 5 4 1 (1 ) ( ) x x x dx dx x x − − = ∫ ∫ Put – 3 3 4 1 3 1 1– , so that x t dx dt x x − = = = Therefore 1 1 4 4 4 5 ( ) 31 x x dx t dt −x = ∫ ∫ = 5 5 4 4 3 1 4 4 1 C = 1 C 3 5 15 t x   × + − +     Example 39 Find 4 2 ( 1) ( 1) x dx x x − + ∫ Solution We have 4 2 ( 1)( 1) x x x − + = 3 12 ( 1) 1 x x x x + + − + − = 12 ( 1) ( 1) ( 1) x x x + + − +
1
4039-4042
20 The value of 3 5 2 2 ( cos tan 1) x x x x dx π −π + + + ∫ is (A) 0 (B) 2 (C) π (D) 1 21 The value of 02 4 3sin log 4 3cos x dx x π   +   +   ∫ is (A) 2 (B) 43 (C) 0 (D) –2 348 MATHEMATICS Miscellaneous Examples Example 37 Find cos 6 1 sin 6 x x dx + ∫ Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx Therefore 21 1 cos 6 1 sin 6 6 x x dx t dt + = ∫ ∫ = 3 3 2 2 1 2 1 ( ) C = (1 sin 6 ) C 6 3 9 t x × + + + Example 38 Find 1 4 4 5 ( ) x x dx −x ∫ Solution We have 1 1 4 4 4 3 5 4 1 (1 ) ( ) x x x dx dx x x − − = ∫ ∫ Put – 3 3 4 1 3 1 1– , so that x t dx dt x x − = = = Therefore 1 1 4 4 4 5 ( ) 31 x x dx t dt −x = ∫ ∫ = 5 5 4 4 3 1 4 4 1 C = 1 C 3 5 15 t x   × + − +     Example 39 Find 4 2 ( 1) ( 1) x dx x x − + ∫ Solution We have 4 2 ( 1)( 1) x x x − + = 3 12 ( 1) 1 x x x x + + − + − = 12 ( 1) ( 1) ( 1) x x x + + − + (1) Now express 2 1 ( 1)( 1) x x − + = 2 A B C ( 1) ( 1) x x x + + − +
1
4040-4043
The value of 3 5 2 2 ( cos tan 1) x x x x dx π −π + + + ∫ is (A) 0 (B) 2 (C) π (D) 1 21 The value of 02 4 3sin log 4 3cos x dx x π   +   +   ∫ is (A) 2 (B) 43 (C) 0 (D) –2 348 MATHEMATICS Miscellaneous Examples Example 37 Find cos 6 1 sin 6 x x dx + ∫ Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx Therefore 21 1 cos 6 1 sin 6 6 x x dx t dt + = ∫ ∫ = 3 3 2 2 1 2 1 ( ) C = (1 sin 6 ) C 6 3 9 t x × + + + Example 38 Find 1 4 4 5 ( ) x x dx −x ∫ Solution We have 1 1 4 4 4 3 5 4 1 (1 ) ( ) x x x dx dx x x − − = ∫ ∫ Put – 3 3 4 1 3 1 1– , so that x t dx dt x x − = = = Therefore 1 1 4 4 4 5 ( ) 31 x x dx t dt −x = ∫ ∫ = 5 5 4 4 3 1 4 4 1 C = 1 C 3 5 15 t x   × + − +     Example 39 Find 4 2 ( 1) ( 1) x dx x x − + ∫ Solution We have 4 2 ( 1)( 1) x x x − + = 3 12 ( 1) 1 x x x x + + − + − = 12 ( 1) ( 1) ( 1) x x x + + − + (1) Now express 2 1 ( 1)( 1) x x − + = 2 A B C ( 1) ( 1) x x x + + − + (2) INTEGRALS 349 So 1 = A (x2 + 1) + (Bx + C) (x – 1) = (A + B) x2 + (C – B) x + A – C Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1, which give 1 1 A , B C – 2 2 = = =
1
4041-4044
The value of 02 4 3sin log 4 3cos x dx x π   +   +   ∫ is (A) 2 (B) 43 (C) 0 (D) –2 348 MATHEMATICS Miscellaneous Examples Example 37 Find cos 6 1 sin 6 x x dx + ∫ Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx Therefore 21 1 cos 6 1 sin 6 6 x x dx t dt + = ∫ ∫ = 3 3 2 2 1 2 1 ( ) C = (1 sin 6 ) C 6 3 9 t x × + + + Example 38 Find 1 4 4 5 ( ) x x dx −x ∫ Solution We have 1 1 4 4 4 3 5 4 1 (1 ) ( ) x x x dx dx x x − − = ∫ ∫ Put – 3 3 4 1 3 1 1– , so that x t dx dt x x − = = = Therefore 1 1 4 4 4 5 ( ) 31 x x dx t dt −x = ∫ ∫ = 5 5 4 4 3 1 4 4 1 C = 1 C 3 5 15 t x   × + − +     Example 39 Find 4 2 ( 1) ( 1) x dx x x − + ∫ Solution We have 4 2 ( 1)( 1) x x x − + = 3 12 ( 1) 1 x x x x + + − + − = 12 ( 1) ( 1) ( 1) x x x + + − + (1) Now express 2 1 ( 1)( 1) x x − + = 2 A B C ( 1) ( 1) x x x + + − + (2) INTEGRALS 349 So 1 = A (x2 + 1) + (Bx + C) (x – 1) = (A + B) x2 + (C – B) x + A – C Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1, which give 1 1 A , B C – 2 2 = = = Substituting values of A, B and C in (2), we get 2 1 ( 1) ( 1) x x − + = 2 2 1 1 1 2( 1) 2 ( 1) 2( 1) x x x x − − − + +
1
4042-4045
(1) Now express 2 1 ( 1)( 1) x x − + = 2 A B C ( 1) ( 1) x x x + + − + (2) INTEGRALS 349 So 1 = A (x2 + 1) + (Bx + C) (x – 1) = (A + B) x2 + (C – B) x + A – C Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1, which give 1 1 A , B C – 2 2 = = = Substituting values of A, B and C in (2), we get 2 1 ( 1) ( 1) x x − + = 2 2 1 1 1 2( 1) 2 ( 1) 2( 1) x x x x − − − + + (3) Again, substituting (3) in (1), we have 4 2 ( 1) ( 1) x x x x − + + = 2 2 1 1 1 ( 1) 2( 1) 2 ( 1) 2( 1) x x x x x + + − − − + + Therefore 4 2 2 – 1 2 1 1 1 log 1 – log ( 1) – tan C 2 2 4 2 ( 1) ( 1) x x dx x x x x x x x = + + − + + − + + ∫ Example 40 Find 2 1 log (log ) (log ) x dx x   +     ∫ Solution Let 2 1 I log (log ) (log ) x dx x   = +     ∫ = 2 1 log (log ) (log ) x dx dx x + ∫ ∫ In the first integral, let us take 1 as the second function
1
4043-4046
(2) INTEGRALS 349 So 1 = A (x2 + 1) + (Bx + C) (x – 1) = (A + B) x2 + (C – B) x + A – C Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1, which give 1 1 A , B C – 2 2 = = = Substituting values of A, B and C in (2), we get 2 1 ( 1) ( 1) x x − + = 2 2 1 1 1 2( 1) 2 ( 1) 2( 1) x x x x − − − + + (3) Again, substituting (3) in (1), we have 4 2 ( 1) ( 1) x x x x − + + = 2 2 1 1 1 ( 1) 2( 1) 2 ( 1) 2( 1) x x x x x + + − − − + + Therefore 4 2 2 – 1 2 1 1 1 log 1 – log ( 1) – tan C 2 2 4 2 ( 1) ( 1) x x dx x x x x x x x = + + − + + − + + ∫ Example 40 Find 2 1 log (log ) (log ) x dx x   +     ∫ Solution Let 2 1 I log (log ) (log ) x dx x   = +     ∫ = 2 1 log (log ) (log ) x dx dx x + ∫ ∫ In the first integral, let us take 1 as the second function Then integrating it by parts, we get I = 2 1 log (log ) log (log ) dx x x x dx x x x − + ∫ ∫ = 2 log (log ) log (log ) dx dx x x x x − + ∫ ∫
1
4044-4047
Substituting values of A, B and C in (2), we get 2 1 ( 1) ( 1) x x − + = 2 2 1 1 1 2( 1) 2 ( 1) 2( 1) x x x x − − − + + (3) Again, substituting (3) in (1), we have 4 2 ( 1) ( 1) x x x x − + + = 2 2 1 1 1 ( 1) 2( 1) 2 ( 1) 2( 1) x x x x x + + − − − + + Therefore 4 2 2 – 1 2 1 1 1 log 1 – log ( 1) – tan C 2 2 4 2 ( 1) ( 1) x x dx x x x x x x x = + + − + + − + + ∫ Example 40 Find 2 1 log (log ) (log ) x dx x   +     ∫ Solution Let 2 1 I log (log ) (log ) x dx x   = +     ∫ = 2 1 log (log ) (log ) x dx dx x + ∫ ∫ In the first integral, let us take 1 as the second function Then integrating it by parts, we get I = 2 1 log (log ) log (log ) dx x x x dx x x x − + ∫ ∫ = 2 log (log ) log (log ) dx dx x x x x − + ∫ ∫ (1) Again, consider log dx x ∫ , take 1 as the second function and integrate it by parts, we have 2 1 1 – – log log (log ) dx x x dx x x x x       =               ∫ ∫
1
4045-4048
(3) Again, substituting (3) in (1), we have 4 2 ( 1) ( 1) x x x x − + + = 2 2 1 1 1 ( 1) 2( 1) 2 ( 1) 2( 1) x x x x x + + − − − + + Therefore 4 2 2 – 1 2 1 1 1 log 1 – log ( 1) – tan C 2 2 4 2 ( 1) ( 1) x x dx x x x x x x x = + + − + + − + + ∫ Example 40 Find 2 1 log (log ) (log ) x dx x   +     ∫ Solution Let 2 1 I log (log ) (log ) x dx x   = +     ∫ = 2 1 log (log ) (log ) x dx dx x + ∫ ∫ In the first integral, let us take 1 as the second function Then integrating it by parts, we get I = 2 1 log (log ) log (log ) dx x x x dx x x x − + ∫ ∫ = 2 log (log ) log (log ) dx dx x x x x − + ∫ ∫ (1) Again, consider log dx x ∫ , take 1 as the second function and integrate it by parts, we have 2 1 1 – – log log (log ) dx x x dx x x x x       =               ∫ ∫ (2) 350 MATHEMATICS Putting (2) in (1), we get 2 2 I log (log ) log (log ) (log ) x dx dx x x x x x = − − + ∫ ∫ = log (log ) C log x x x x − + Example 41 Find cot tan x x dx   +   ∫ Solution We have I = cot tan x x dx   +   ∫ tan (1 cot ) x x dx = + ∫ Put tan x = t2, so that sec2 x dx = 2t dt or dx = 4 2 1 t dt t + Then I = 2 4 1 2 1 (1 ) t t dt t t   +  +   ∫ = 2 2 2 4 2 2 2 1 1 1 1 ( 1) 2 = 2 = 2 1 1 1 2 dt dt t t t dt t t t t t     + +     +       +   + − +         ∫ ∫ ∫ Put 1 t t − = y, so that 12 1 t   +    dt = dy
1
4046-4049
Then integrating it by parts, we get I = 2 1 log (log ) log (log ) dx x x x dx x x x − + ∫ ∫ = 2 log (log ) log (log ) dx dx x x x x − + ∫ ∫ (1) Again, consider log dx x ∫ , take 1 as the second function and integrate it by parts, we have 2 1 1 – – log log (log ) dx x x dx x x x x       =               ∫ ∫ (2) 350 MATHEMATICS Putting (2) in (1), we get 2 2 I log (log ) log (log ) (log ) x dx dx x x x x x = − − + ∫ ∫ = log (log ) C log x x x x − + Example 41 Find cot tan x x dx   +   ∫ Solution We have I = cot tan x x dx   +   ∫ tan (1 cot ) x x dx = + ∫ Put tan x = t2, so that sec2 x dx = 2t dt or dx = 4 2 1 t dt t + Then I = 2 4 1 2 1 (1 ) t t dt t t   +  +   ∫ = 2 2 2 4 2 2 2 1 1 1 1 ( 1) 2 = 2 = 2 1 1 1 2 dt dt t t t dt t t t t t     + +     +       +   + − +         ∫ ∫ ∫ Put 1 t t − = y, so that 12 1 t   +    dt = dy Then I = ( ) – 1 – 1 2 2 1 2 2 tan C = 2 tan C 2 2 2 t dy y t y   −    = + + + ∫ = 2 – 1 – 1 1 tan 1 2 tan C = 2 tan C 2 2tan t x t x  − −   + +           Example 42 Find 4 sin 2 cos 2 9– cos (2 ) x x dx x ∫ Solution Let 4 sin 2 cos 2 I 9 – cos 2 x x dx x =∫ INTEGRALS 351 Put cos2 (2x) = t so that 4 sin 2x cos 2x dx = – dt Therefore –1 1 2 2 1 1 1 1 I – – sin C sin cos 2 C 4 4 3 4 3 9 – dt t x t −     = = + = − +         ∫ Example 43 Evaluate 123 sin ( ) x x dx − π ∫ Solution Here f (x) = | x sin πx | = sin for 1 1 3 sin for 1 2 x x x x x x π − ≤ ≤ − π ≤ ≤  Therefore 23 1 | sin | x x dx − π ∫ = 3 1 2 1 1 sin sin x x dx x x dx − π + − π ∫ ∫ = 3 1 2 1 1 sin sin x x dx x x dx − π − π ∫ ∫ Integrating both integrals on righthand side, we get 23 1 | sin | x x dx − π ∫ = 3 1 2 2 2 1 1 – cos sin cos sin x x x x x x − π π − π π     + − +     π π π π     = 2 2 2 1 1 3 1   − − − = +   π π π π π   Example 44 Evaluate 2 2 2 2 0 cos sin x dx a x b x π + ∫ Solution Let I = 2 2 2 2 2 2 2 2 0 0 ( ) cos sin cos ( ) sin ( ) x dx x dx a x b x a x b x π π π − = + π − + π − ∫ ∫ (using P4) = 2 2 2 2 2 2 2 2 0 0 cos sin cos sin dx x dx a x b x a x b x π π π − + + ∫ ∫ = 2 2 2 2 0 I cos sin dx a x b x π π − + ∫ Thus 2I = 2 2 2 2 0 cos sin dx a x b x π π + ∫ 352 MATHEMATICS or I = 2 2 2 2 2 2 2 2 2 0 20 2 2 cos sin cos sin dx dx a x b x a x b x π π π =π ⋅ + + ∫ ∫ (using P6) = 2 4 2 2 2 2 2 2 2 2 0 4 cos sin cos sin π π π   π +   + +     ∫ ∫ dx dx a x b x a x b x = 2 2 2 4 2 2 2 2 2 2 0 4 sec cosec tan cot π π π   π +   + +     ∫ ∫ xdx xdx a b x a x b = ( ) 0 1 2 2 2 2 2 2 0 1 tan t cot   π − = =   + +   ∫ ∫ dt du put x and x u a b t a u b = 1 0 –1 –1 0 1 tan – tan π π             bt au ab a ab b = –1 –1 tan tan π   +     b a ab a b = 2 2 π ab Miscellaneous Exercise on Chapter 7 Integrate the functions in Exercises 1 to 24
1
4047-4050
(1) Again, consider log dx x ∫ , take 1 as the second function and integrate it by parts, we have 2 1 1 – – log log (log ) dx x x dx x x x x       =               ∫ ∫ (2) 350 MATHEMATICS Putting (2) in (1), we get 2 2 I log (log ) log (log ) (log ) x dx dx x x x x x = − − + ∫ ∫ = log (log ) C log x x x x − + Example 41 Find cot tan x x dx   +   ∫ Solution We have I = cot tan x x dx   +   ∫ tan (1 cot ) x x dx = + ∫ Put tan x = t2, so that sec2 x dx = 2t dt or dx = 4 2 1 t dt t + Then I = 2 4 1 2 1 (1 ) t t dt t t   +  +   ∫ = 2 2 2 4 2 2 2 1 1 1 1 ( 1) 2 = 2 = 2 1 1 1 2 dt dt t t t dt t t t t t     + +     +       +   + − +         ∫ ∫ ∫ Put 1 t t − = y, so that 12 1 t   +    dt = dy Then I = ( ) – 1 – 1 2 2 1 2 2 tan C = 2 tan C 2 2 2 t dy y t y   −    = + + + ∫ = 2 – 1 – 1 1 tan 1 2 tan C = 2 tan C 2 2tan t x t x  − −   + +           Example 42 Find 4 sin 2 cos 2 9– cos (2 ) x x dx x ∫ Solution Let 4 sin 2 cos 2 I 9 – cos 2 x x dx x =∫ INTEGRALS 351 Put cos2 (2x) = t so that 4 sin 2x cos 2x dx = – dt Therefore –1 1 2 2 1 1 1 1 I – – sin C sin cos 2 C 4 4 3 4 3 9 – dt t x t −     = = + = − +         ∫ Example 43 Evaluate 123 sin ( ) x x dx − π ∫ Solution Here f (x) = | x sin πx | = sin for 1 1 3 sin for 1 2 x x x x x x π − ≤ ≤ − π ≤ ≤  Therefore 23 1 | sin | x x dx − π ∫ = 3 1 2 1 1 sin sin x x dx x x dx − π + − π ∫ ∫ = 3 1 2 1 1 sin sin x x dx x x dx − π − π ∫ ∫ Integrating both integrals on righthand side, we get 23 1 | sin | x x dx − π ∫ = 3 1 2 2 2 1 1 – cos sin cos sin x x x x x x − π π − π π     + − +     π π π π     = 2 2 2 1 1 3 1   − − − = +   π π π π π   Example 44 Evaluate 2 2 2 2 0 cos sin x dx a x b x π + ∫ Solution Let I = 2 2 2 2 2 2 2 2 0 0 ( ) cos sin cos ( ) sin ( ) x dx x dx a x b x a x b x π π π − = + π − + π − ∫ ∫ (using P4) = 2 2 2 2 2 2 2 2 0 0 cos sin cos sin dx x dx a x b x a x b x π π π − + + ∫ ∫ = 2 2 2 2 0 I cos sin dx a x b x π π − + ∫ Thus 2I = 2 2 2 2 0 cos sin dx a x b x π π + ∫ 352 MATHEMATICS or I = 2 2 2 2 2 2 2 2 2 0 20 2 2 cos sin cos sin dx dx a x b x a x b x π π π =π ⋅ + + ∫ ∫ (using P6) = 2 4 2 2 2 2 2 2 2 2 0 4 cos sin cos sin π π π   π +   + +     ∫ ∫ dx dx a x b x a x b x = 2 2 2 4 2 2 2 2 2 2 0 4 sec cosec tan cot π π π   π +   + +     ∫ ∫ xdx xdx a b x a x b = ( ) 0 1 2 2 2 2 2 2 0 1 tan t cot   π − = =   + +   ∫ ∫ dt du put x and x u a b t a u b = 1 0 –1 –1 0 1 tan – tan π π             bt au ab a ab b = –1 –1 tan tan π   +     b a ab a b = 2 2 π ab Miscellaneous Exercise on Chapter 7 Integrate the functions in Exercises 1 to 24 1
1
4048-4051
(2) 350 MATHEMATICS Putting (2) in (1), we get 2 2 I log (log ) log (log ) (log ) x dx dx x x x x x = − − + ∫ ∫ = log (log ) C log x x x x − + Example 41 Find cot tan x x dx   +   ∫ Solution We have I = cot tan x x dx   +   ∫ tan (1 cot ) x x dx = + ∫ Put tan x = t2, so that sec2 x dx = 2t dt or dx = 4 2 1 t dt t + Then I = 2 4 1 2 1 (1 ) t t dt t t   +  +   ∫ = 2 2 2 4 2 2 2 1 1 1 1 ( 1) 2 = 2 = 2 1 1 1 2 dt dt t t t dt t t t t t     + +     +       +   + − +         ∫ ∫ ∫ Put 1 t t − = y, so that 12 1 t   +    dt = dy Then I = ( ) – 1 – 1 2 2 1 2 2 tan C = 2 tan C 2 2 2 t dy y t y   −    = + + + ∫ = 2 – 1 – 1 1 tan 1 2 tan C = 2 tan C 2 2tan t x t x  − −   + +           Example 42 Find 4 sin 2 cos 2 9– cos (2 ) x x dx x ∫ Solution Let 4 sin 2 cos 2 I 9 – cos 2 x x dx x =∫ INTEGRALS 351 Put cos2 (2x) = t so that 4 sin 2x cos 2x dx = – dt Therefore –1 1 2 2 1 1 1 1 I – – sin C sin cos 2 C 4 4 3 4 3 9 – dt t x t −     = = + = − +         ∫ Example 43 Evaluate 123 sin ( ) x x dx − π ∫ Solution Here f (x) = | x sin πx | = sin for 1 1 3 sin for 1 2 x x x x x x π − ≤ ≤ − π ≤ ≤  Therefore 23 1 | sin | x x dx − π ∫ = 3 1 2 1 1 sin sin x x dx x x dx − π + − π ∫ ∫ = 3 1 2 1 1 sin sin x x dx x x dx − π − π ∫ ∫ Integrating both integrals on righthand side, we get 23 1 | sin | x x dx − π ∫ = 3 1 2 2 2 1 1 – cos sin cos sin x x x x x x − π π − π π     + − +     π π π π     = 2 2 2 1 1 3 1   − − − = +   π π π π π   Example 44 Evaluate 2 2 2 2 0 cos sin x dx a x b x π + ∫ Solution Let I = 2 2 2 2 2 2 2 2 0 0 ( ) cos sin cos ( ) sin ( ) x dx x dx a x b x a x b x π π π − = + π − + π − ∫ ∫ (using P4) = 2 2 2 2 2 2 2 2 0 0 cos sin cos sin dx x dx a x b x a x b x π π π − + + ∫ ∫ = 2 2 2 2 0 I cos sin dx a x b x π π − + ∫ Thus 2I = 2 2 2 2 0 cos sin dx a x b x π π + ∫ 352 MATHEMATICS or I = 2 2 2 2 2 2 2 2 2 0 20 2 2 cos sin cos sin dx dx a x b x a x b x π π π =π ⋅ + + ∫ ∫ (using P6) = 2 4 2 2 2 2 2 2 2 2 0 4 cos sin cos sin π π π   π +   + +     ∫ ∫ dx dx a x b x a x b x = 2 2 2 4 2 2 2 2 2 2 0 4 sec cosec tan cot π π π   π +   + +     ∫ ∫ xdx xdx a b x a x b = ( ) 0 1 2 2 2 2 2 2 0 1 tan t cot   π − = =   + +   ∫ ∫ dt du put x and x u a b t a u b = 1 0 –1 –1 0 1 tan – tan π π             bt au ab a ab b = –1 –1 tan tan π   +     b a ab a b = 2 2 π ab Miscellaneous Exercise on Chapter 7 Integrate the functions in Exercises 1 to 24 1 3 1 x −x 2
1
4049-4052
Then I = ( ) – 1 – 1 2 2 1 2 2 tan C = 2 tan C 2 2 2 t dy y t y   −    = + + + ∫ = 2 – 1 – 1 1 tan 1 2 tan C = 2 tan C 2 2tan t x t x  − −   + +           Example 42 Find 4 sin 2 cos 2 9– cos (2 ) x x dx x ∫ Solution Let 4 sin 2 cos 2 I 9 – cos 2 x x dx x =∫ INTEGRALS 351 Put cos2 (2x) = t so that 4 sin 2x cos 2x dx = – dt Therefore –1 1 2 2 1 1 1 1 I – – sin C sin cos 2 C 4 4 3 4 3 9 – dt t x t −     = = + = − +         ∫ Example 43 Evaluate 123 sin ( ) x x dx − π ∫ Solution Here f (x) = | x sin πx | = sin for 1 1 3 sin for 1 2 x x x x x x π − ≤ ≤ − π ≤ ≤  Therefore 23 1 | sin | x x dx − π ∫ = 3 1 2 1 1 sin sin x x dx x x dx − π + − π ∫ ∫ = 3 1 2 1 1 sin sin x x dx x x dx − π − π ∫ ∫ Integrating both integrals on righthand side, we get 23 1 | sin | x x dx − π ∫ = 3 1 2 2 2 1 1 – cos sin cos sin x x x x x x − π π − π π     + − +     π π π π     = 2 2 2 1 1 3 1   − − − = +   π π π π π   Example 44 Evaluate 2 2 2 2 0 cos sin x dx a x b x π + ∫ Solution Let I = 2 2 2 2 2 2 2 2 0 0 ( ) cos sin cos ( ) sin ( ) x dx x dx a x b x a x b x π π π − = + π − + π − ∫ ∫ (using P4) = 2 2 2 2 2 2 2 2 0 0 cos sin cos sin dx x dx a x b x a x b x π π π − + + ∫ ∫ = 2 2 2 2 0 I cos sin dx a x b x π π − + ∫ Thus 2I = 2 2 2 2 0 cos sin dx a x b x π π + ∫ 352 MATHEMATICS or I = 2 2 2 2 2 2 2 2 2 0 20 2 2 cos sin cos sin dx dx a x b x a x b x π π π =π ⋅ + + ∫ ∫ (using P6) = 2 4 2 2 2 2 2 2 2 2 0 4 cos sin cos sin π π π   π +   + +     ∫ ∫ dx dx a x b x a x b x = 2 2 2 4 2 2 2 2 2 2 0 4 sec cosec tan cot π π π   π +   + +     ∫ ∫ xdx xdx a b x a x b = ( ) 0 1 2 2 2 2 2 2 0 1 tan t cot   π − = =   + +   ∫ ∫ dt du put x and x u a b t a u b = 1 0 –1 –1 0 1 tan – tan π π             bt au ab a ab b = –1 –1 tan tan π   +     b a ab a b = 2 2 π ab Miscellaneous Exercise on Chapter 7 Integrate the functions in Exercises 1 to 24 1 3 1 x −x 2 1 x a x b + + + 3
1
4050-4053
1 3 1 x −x 2 1 x a x b + + + 3 2 1 x ax x − [Hint: Put x = a t ] 4
1
4051-4054
3 1 x −x 2 1 x a x b + + + 3 2 1 x ax x − [Hint: Put x = a t ] 4 3 2 4 4 1 ( 1) x x + 5
1
4052-4055
1 x a x b + + + 3 2 1 x ax x − [Hint: Put x = a t ] 4 3 2 4 4 1 ( 1) x x + 5 1 1 3 2 1 x x + [Hint: 1 1 1 1 3 2 3 6 1 1 1 x x x x =   + +      , put x = t6] 6
1
4053-4056
2 1 x ax x − [Hint: Put x = a t ] 4 3 2 4 4 1 ( 1) x x + 5 1 1 3 2 1 x x + [Hint: 1 1 1 1 3 2 3 6 1 1 1 x x x x =   + +      , put x = t6] 6 2 5 ( 1) ( 9) x x x + + 7
1
4054-4057
3 2 4 4 1 ( 1) x x + 5 1 1 3 2 1 x x + [Hint: 1 1 1 1 3 2 3 6 1 1 1 x x x x =   + +      , put x = t6] 6 2 5 ( 1) ( 9) x x x + + 7 sin sin ( ) x x −a 8
1
4055-4058
1 1 3 2 1 x x + [Hint: 1 1 1 1 3 2 3 6 1 1 1 x x x x =   + +      , put x = t6] 6 2 5 ( 1) ( 9) x x x + + 7 sin sin ( ) x x −a 8 5 log 4 log 3 log 2 log x x x x e e e −e − 9
1
4056-4059
2 5 ( 1) ( 9) x x x + + 7 sin sin ( ) x x −a 8 5 log 4 log 3 log 2 log x x x x e e e −e − 9 2 cos 4 sin x x − 10
1
4057-4060
sin sin ( ) x x −a 8 5 log 4 log 3 log 2 log x x x x e e e −e − 9 2 cos 4 sin x x − 10 8 8 2 2 sin cos 1 2sin cos x x x − − 11
1
4058-4061
5 log 4 log 3 log 2 log x x x x e e e −e − 9 2 cos 4 sin x x − 10 8 8 2 2 sin cos 1 2sin cos x x x − − 11 1 cos ( ) cos ( ) x a x b + + 12
1
4059-4062
2 cos 4 sin x x − 10 8 8 2 2 sin cos 1 2sin cos x x x − − 11 1 cos ( ) cos ( ) x a x b + + 12 3 8 1 x x − 13
1
4060-4063
8 8 2 2 sin cos 1 2sin cos x x x − − 11 1 cos ( ) cos ( ) x a x b + + 12 3 8 1 x x − 13 (1 ) (2 ) x x x e e e + + 14
1
4061-4064
1 cos ( ) cos ( ) x a x b + + 12 3 8 1 x x − 13 (1 ) (2 ) x x x e e e + + 14 2 2 1 ( 1) ( 4) x x + + 15
1
4062-4065
3 8 1 x x − 13 (1 ) (2 ) x x x e e e + + 14 2 2 1 ( 1) ( 4) x x + + 15 cos 3x elog sinx 16
1
4063-4066
(1 ) (2 ) x x x e e e + + 14 2 2 1 ( 1) ( 4) x x + + 15 cos 3x elog sinx 16 e3 logx (x4 + 1)– 1 17
1
4064-4067
2 2 1 ( 1) ( 4) x x + + 15 cos 3x elog sinx 16 e3 logx (x4 + 1)– 1 17 f ′ (ax + b) [f (ax + b)] n 18
1
4065-4068
cos 3x elog sinx 16 e3 logx (x4 + 1)– 1 17 f ′ (ax + b) [f (ax + b)] n 18 3 1 sin sin ( ) x x + α 19
1
4066-4069
e3 logx (x4 + 1)– 1 17 f ′ (ax + b) [f (ax + b)] n 18 3 1 sin sin ( ) x x + α 19 1 1 1 1 sin cos sin cos x x x x − − − − − + , x ∈ [0, 1] INTEGRALS 353 20
1
4067-4070
f ′ (ax + b) [f (ax + b)] n 18 3 1 sin sin ( ) x x + α 19 1 1 1 1 sin cos sin cos x x x x − − − − − + , x ∈ [0, 1] INTEGRALS 353 20 1 1 x x − + 21
1
4068-4071
3 1 sin sin ( ) x x + α 19 1 1 1 1 sin cos sin cos x x x x − − − − − + , x ∈ [0, 1] INTEGRALS 353 20 1 1 x x − + 21 2 sin 2 1 cos2 x ex x ++ 22
1
4069-4072
1 1 1 1 sin cos sin cos x x x x − − − − − + , x ∈ [0, 1] INTEGRALS 353 20 1 1 x x − + 21 2 sin 2 1 cos2 x ex x ++ 22 2 2 1 ( 1) ( 2) x x x +x + + + 23
1
4070-4073
1 1 x x − + 21 2 sin 2 1 cos2 x ex x ++ 22 2 2 1 ( 1) ( 2) x x x +x + + + 23 – 1 1 tan 1 x x +− 24
1
4071-4074
2 sin 2 1 cos2 x ex x ++ 22 2 2 1 ( 1) ( 2) x x x +x + + + 23 – 1 1 tan 1 x x +− 24 2 2 4 1 log ( 1) 2 log x x x x   + + −   Evaluate the definite integrals in Exercises 25 to 33
1
4072-4075
2 2 1 ( 1) ( 2) x x x +x + + + 23 – 1 1 tan 1 x x +− 24 2 2 4 1 log ( 1) 2 log x x x x   + + −   Evaluate the definite integrals in Exercises 25 to 33 25
1
4073-4076
– 1 1 tan 1 x x +− 24 2 2 4 1 log ( 1) 2 log x x x x   + + −   Evaluate the definite integrals in Exercises 25 to 33 25 2 1 sin 1 cos π π −    −  ∫ x x e xdx 26
1
4074-4077
2 2 4 1 log ( 1) 2 log x x x x   + + −   Evaluate the definite integrals in Exercises 25 to 33 25 2 1 sin 1 cos π π −    −  ∫ x x e xdx 26 4 4 4 0 sin cos cos sin x x dx x x π + ∫ 27
1
4075-4078
25 2 1 sin 1 cos π π −    −  ∫ x x e xdx 26 4 4 4 0 sin cos cos sin x x dx x x π + ∫ 27 2 2 2 2 0 cos cos 4 sin x dx x x π + ∫ 28
1
4076-4079
2 1 sin 1 cos π π −    −  ∫ x x e xdx 26 4 4 4 0 sin cos cos sin x x dx x x π + ∫ 27 2 2 2 2 0 cos cos 4 sin x dx x x π + ∫ 28 3 6 sin cos sin 2 x x dx x π π + ∫ 29
1
4077-4080
4 4 4 0 sin cos cos sin x x dx x x π + ∫ 27 2 2 2 2 0 cos cos 4 sin x dx x x π + ∫ 28 3 6 sin cos sin 2 x x dx x π π + ∫ 29 1 0 1 dx x x + − ∫ 30
1
4078-4081
2 2 2 2 0 cos cos 4 sin x dx x x π + ∫ 28 3 6 sin cos sin 2 x x dx x π π + ∫ 29 1 0 1 dx x x + − ∫ 30 04 sin cos 9 x16 sin 2 x dx x π + + ∫ 31
1
4079-4082
3 6 sin cos sin 2 x x dx x π π + ∫ 29 1 0 1 dx x x + − ∫ 30 04 sin cos 9 x16 sin 2 x dx x π + + ∫ 31 1 2 0 sin 2 tan (sin ) x x dx π − ∫ 32
1
4080-4083
1 0 1 dx x x + − ∫ 30 04 sin cos 9 x16 sin 2 x dx x π + + ∫ 31 1 2 0 sin 2 tan (sin ) x x dx π − ∫ 32 0 tan sec tan x x dx x x π + ∫ 33
1
4081-4084
04 sin cos 9 x16 sin 2 x dx x π + + ∫ 31 1 2 0 sin 2 tan (sin ) x x dx π − ∫ 32 0 tan sec tan x x dx x x π + ∫ 33 4 1 [ 1| | 2| | 3|] x x x dx − + − + − ∫ Prove the following (Exercises 34 to 39) 34
1
4082-4085
1 2 0 sin 2 tan (sin ) x x dx π − ∫ 32 0 tan sec tan x x dx x x π + ∫ 33 4 1 [ 1| | 2| | 3|] x x x dx − + − + − ∫ Prove the following (Exercises 34 to 39) 34 3 2 1 2 2 log 3 3 ( xdx1) x = + + ∫ 35
1
4083-4086
0 tan sec tan x x dx x x π + ∫ 33 4 1 [ 1| | 2| | 3|] x x x dx − + − + − ∫ Prove the following (Exercises 34 to 39) 34 3 2 1 2 2 log 3 3 ( xdx1) x = + + ∫ 35 1 0 1 x x e dx = ∫ 36
1
4084-4087
4 1 [ 1| | 2| | 3|] x x x dx − + − + − ∫ Prove the following (Exercises 34 to 39) 34 3 2 1 2 2 log 3 3 ( xdx1) x = + + ∫ 35 1 0 1 x x e dx = ∫ 36 1 17 4 1 cos 0 x x dx − = ∫ 37
1
4085-4088
3 2 1 2 2 log 3 3 ( xdx1) x = + + ∫ 35 1 0 1 x x e dx = ∫ 36 1 17 4 1 cos 0 x x dx − = ∫ 37 3 2 0 2 sin 3 x dx π = ∫ 38
1
4086-4089
1 0 1 x x e dx = ∫ 36 1 17 4 1 cos 0 x x dx − = ∫ 37 3 2 0 2 sin 3 x dx π = ∫ 38 3 4 0 2 tan 1 log2 x dx π = − ∫ 39
1
4087-4090
1 17 4 1 cos 0 x x dx − = ∫ 37 3 2 0 2 sin 3 x dx π = ∫ 38 3 4 0 2 tan 1 log2 x dx π = − ∫ 39 1 1 0sin 1 2 x dx − =π − ∫ 40
1
4088-4091
3 2 0 2 sin 3 x dx π = ∫ 38 3 4 0 2 tan 1 log2 x dx π = − ∫ 39 1 1 0sin 1 2 x dx − =π − ∫ 40 Evaluate 1 2 3 0 x e dx − ∫ as a limit of a sum
1
4089-4092
3 4 0 2 tan 1 log2 x dx π = − ∫ 39 1 1 0sin 1 2 x dx − =π − ∫ 40 Evaluate 1 2 3 0 x e dx − ∫ as a limit of a sum Choose the correct answers in Exercises 41 to 44
1
4090-4093
1 1 0sin 1 2 x dx − =π − ∫ 40 Evaluate 1 2 3 0 x e dx − ∫ as a limit of a sum Choose the correct answers in Exercises 41 to 44 41
1
4091-4094
Evaluate 1 2 3 0 x e dx − ∫ as a limit of a sum Choose the correct answers in Exercises 41 to 44 41 x x dx e +e− ∫ is equal to (A) tan–1 (ex) + C (B) tan–1 (e–x) + C (C) log (ex – e–x) + C (D) log (ex + e–x) + C 42
1
4092-4095
Choose the correct answers in Exercises 41 to 44 41 x x dx e +e− ∫ is equal to (A) tan–1 (ex) + C (B) tan–1 (e–x) + C (C) log (ex – e–x) + C (D) log (ex + e–x) + C 42 2 (sincos2 cos ) x dx x x + ∫ is equal to (A) –1 C sin cos x x + + (B) log |sin cos | C x x + + (C) log |sin cos | C x x − + (D) 2 1 (sin cos ) x x + 354 MATHEMATICS 43
1
4093-4096
41 x x dx e +e− ∫ is equal to (A) tan–1 (ex) + C (B) tan–1 (e–x) + C (C) log (ex – e–x) + C (D) log (ex + e–x) + C 42 2 (sincos2 cos ) x dx x x + ∫ is equal to (A) –1 C sin cos x x + + (B) log |sin cos | C x x + + (C) log |sin cos | C x x − + (D) 2 1 (sin cos ) x x + 354 MATHEMATICS 43 If f (a + b – x) = f (x), then ( ) b ∫a x f x dx is equal to (A) ( ) 2 b a a b f b x dx + − ∫ (B) ( ) 2 b a a b f b x dx + + ∫ (C) ( ) 2 b a b a − ∫f x dx (D) ( ) 2 b a a b f x dx + ∫ 44
1
4094-4097
x x dx e +e− ∫ is equal to (A) tan–1 (ex) + C (B) tan–1 (e–x) + C (C) log (ex – e–x) + C (D) log (ex + e–x) + C 42 2 (sincos2 cos ) x dx x x + ∫ is equal to (A) –1 C sin cos x x + + (B) log |sin cos | C x x + + (C) log |sin cos | C x x − + (D) 2 1 (sin cos ) x x + 354 MATHEMATICS 43 If f (a + b – x) = f (x), then ( ) b ∫a x f x dx is equal to (A) ( ) 2 b a a b f b x dx + − ∫ (B) ( ) 2 b a a b f b x dx + + ∫ (C) ( ) 2 b a b a − ∫f x dx (D) ( ) 2 b a a b f x dx + ∫ 44 The value of 1 1 2 0 2 1 tan 1 x dx x x − −     + −   ∫ is (A) 1 (B) 0 (C) –1 (D) 4 π Summary � Integration is the inverse process of differentiation
1
4095-4098
2 (sincos2 cos ) x dx x x + ∫ is equal to (A) –1 C sin cos x x + + (B) log |sin cos | C x x + + (C) log |sin cos | C x x − + (D) 2 1 (sin cos ) x x + 354 MATHEMATICS 43 If f (a + b – x) = f (x), then ( ) b ∫a x f x dx is equal to (A) ( ) 2 b a a b f b x dx + − ∫ (B) ( ) 2 b a a b f b x dx + + ∫ (C) ( ) 2 b a b a − ∫f x dx (D) ( ) 2 b a a b f x dx + ∫ 44 The value of 1 1 2 0 2 1 tan 1 x dx x x − −     + −   ∫ is (A) 1 (B) 0 (C) –1 (D) 4 π Summary � Integration is the inverse process of differentiation In the differential calculus, we are given a function and we have to find the derivative or differential of this function, but in the integral calculus, we are to find a function whose differential is given
1
4096-4099
If f (a + b – x) = f (x), then ( ) b ∫a x f x dx is equal to (A) ( ) 2 b a a b f b x dx + − ∫ (B) ( ) 2 b a a b f b x dx + + ∫ (C) ( ) 2 b a b a − ∫f x dx (D) ( ) 2 b a a b f x dx + ∫ 44 The value of 1 1 2 0 2 1 tan 1 x dx x x − −     + −   ∫ is (A) 1 (B) 0 (C) –1 (D) 4 π Summary � Integration is the inverse process of differentiation In the differential calculus, we are given a function and we have to find the derivative or differential of this function, but in the integral calculus, we are to find a function whose differential is given Thus, integration is a process which is the inverse of differentiation
1
4097-4100
The value of 1 1 2 0 2 1 tan 1 x dx x x − −     + −   ∫ is (A) 1 (B) 0 (C) –1 (D) 4 π Summary � Integration is the inverse process of differentiation In the differential calculus, we are given a function and we have to find the derivative or differential of this function, but in the integral calculus, we are to find a function whose differential is given Thus, integration is a process which is the inverse of differentiation Let F( ) ( ) d x f x dx =
1
4098-4101
In the differential calculus, we are given a function and we have to find the derivative or differential of this function, but in the integral calculus, we are to find a function whose differential is given Thus, integration is a process which is the inverse of differentiation Let F( ) ( ) d x f x dx = Then we write ( ) F ( ) C f x dx x = + ∫
1
4099-4102
Thus, integration is a process which is the inverse of differentiation Let F( ) ( ) d x f x dx = Then we write ( ) F ( ) C f x dx x = + ∫ These integrals are called indefinite integrals or general integrals, C is called constant of integration
1
4100-4103
Let F( ) ( ) d x f x dx = Then we write ( ) F ( ) C f x dx x = + ∫ These integrals are called indefinite integrals or general integrals, C is called constant of integration All these integrals differ by a constant
1
4101-4104
Then we write ( ) F ( ) C f x dx x = + ∫ These integrals are called indefinite integrals or general integrals, C is called constant of integration All these integrals differ by a constant � From the geometric point of view, an indefinite integral is collection of family of curves, each of which is obtained by translating one of the curves parallel to itself upwards or downwards along the y-axis
1
4102-4105
These integrals are called indefinite integrals or general integrals, C is called constant of integration All these integrals differ by a constant � From the geometric point of view, an indefinite integral is collection of family of curves, each of which is obtained by translating one of the curves parallel to itself upwards or downwards along the y-axis � Some properties of indefinite integrals are as follows: 1
1
4103-4106
All these integrals differ by a constant � From the geometric point of view, an indefinite integral is collection of family of curves, each of which is obtained by translating one of the curves parallel to itself upwards or downwards along the y-axis � Some properties of indefinite integrals are as follows: 1 [ ( ) ( )] ( ) ( ) f x g x dx f x dx g x dx + = + ∫ ∫ ∫ 2
1
4104-4107
� From the geometric point of view, an indefinite integral is collection of family of curves, each of which is obtained by translating one of the curves parallel to itself upwards or downwards along the y-axis � Some properties of indefinite integrals are as follows: 1 [ ( ) ( )] ( ) ( ) f x g x dx f x dx g x dx + = + ∫ ∫ ∫ 2 For any real number k, ( ) ( ) k f x dx k f x dx = ∫ ∫ More generally, if f1, f2, f3,
1
4105-4108
� Some properties of indefinite integrals are as follows: 1 [ ( ) ( )] ( ) ( ) f x g x dx f x dx g x dx + = + ∫ ∫ ∫ 2 For any real number k, ( ) ( ) k f x dx k f x dx = ∫ ∫ More generally, if f1, f2, f3, , fn are functions and k1, k2,
1
4106-4109
[ ( ) ( )] ( ) ( ) f x g x dx f x dx g x dx + = + ∫ ∫ ∫ 2 For any real number k, ( ) ( ) k f x dx k f x dx = ∫ ∫ More generally, if f1, f2, f3, , fn are functions and k1, k2, ,kn are real numbers
1
4107-4110
For any real number k, ( ) ( ) k f x dx k f x dx = ∫ ∫ More generally, if f1, f2, f3, , fn are functions and k1, k2, ,kn are real numbers Then 1 1 2 2 [ ( ) ( )
1
4108-4111
, fn are functions and k1, k2, ,kn are real numbers Then 1 1 2 2 [ ( ) ( ) ( )] n n k f x k f x k f x dx + + + ∫ = 1 1 2 2 ( ) ( )
1
4109-4112
,kn are real numbers Then 1 1 2 2 [ ( ) ( ) ( )] n n k f x k f x k f x dx + + + ∫ = 1 1 2 2 ( ) ( ) ( ) n n k f x dx k f x dx k f x dx + + + ∫ ∫ ∫ INTEGRALS 355 � Some standard integrals (i) 1 C 1 n n x x dx n + = + + ∫ , n ≠ – 1
1
4110-4113
Then 1 1 2 2 [ ( ) ( ) ( )] n n k f x k f x k f x dx + + + ∫ = 1 1 2 2 ( ) ( ) ( ) n n k f x dx k f x dx k f x dx + + + ∫ ∫ ∫ INTEGRALS 355 � Some standard integrals (i) 1 C 1 n n x x dx n + = + + ∫ , n ≠ – 1 Particularly, C dx =x + ∫ (ii) cos sin C x dx x = + ∫ (iii) sin – cos C x dx x = + ∫ (iv) sec2 tan C x dx x = + ∫ (v) cosec2 – cot C x dx x = + ∫ (vi) sec tan sec C x x dx x = + ∫ (vii) cosec cot – cosec C x x dx x = + ∫ (viii) 1 2 sin C 1 dx x x − = + − ∫ (ix) 1 2 cos C 1 dx x x − = − + − ∫ (x) 1 2 tan C 1 dx x x − = + + ∫ (xi) 1 2 cot C 1 dx x x − = − + ∫+ (xii) C x x e dx =e + ∫ (xiii) C log x x a a dx a = + ∫ (xiv) 1 2 sec C 1 dx x x x − = + − ∫ (xv) 1 2 cosec C 1 dx x x x − = − + − ∫ (xvi) 1 log| | C dx x x = + ∫ � Integration by partial fractions Recall that a rational function is ratio of two polynomials of the form P( ) Q( ) x x , where P(x) and Q (x) are polynomials in x and Q (x) ≠ 0
1
4111-4114
( )] n n k f x k f x k f x dx + + + ∫ = 1 1 2 2 ( ) ( ) ( ) n n k f x dx k f x dx k f x dx + + + ∫ ∫ ∫ INTEGRALS 355 � Some standard integrals (i) 1 C 1 n n x x dx n + = + + ∫ , n ≠ – 1 Particularly, C dx =x + ∫ (ii) cos sin C x dx x = + ∫ (iii) sin – cos C x dx x = + ∫ (iv) sec2 tan C x dx x = + ∫ (v) cosec2 – cot C x dx x = + ∫ (vi) sec tan sec C x x dx x = + ∫ (vii) cosec cot – cosec C x x dx x = + ∫ (viii) 1 2 sin C 1 dx x x − = + − ∫ (ix) 1 2 cos C 1 dx x x − = − + − ∫ (x) 1 2 tan C 1 dx x x − = + + ∫ (xi) 1 2 cot C 1 dx x x − = − + ∫+ (xii) C x x e dx =e + ∫ (xiii) C log x x a a dx a = + ∫ (xiv) 1 2 sec C 1 dx x x x − = + − ∫ (xv) 1 2 cosec C 1 dx x x x − = − + − ∫ (xvi) 1 log| | C dx x x = + ∫ � Integration by partial fractions Recall that a rational function is ratio of two polynomials of the form P( ) Q( ) x x , where P(x) and Q (x) are polynomials in x and Q (x) ≠ 0 If degree of the polynomial P (x) is greater than the degree of the polynomial Q (x), then we may divide P (x) by Q (x) so that 1P ( ) P( ) T ( ) Q( ) Q( ) x x x x x = + , where T(x) is a polynomial in x and degree of P1(x) is less than the degree of Q(x)
1
4112-4115
( ) n n k f x dx k f x dx k f x dx + + + ∫ ∫ ∫ INTEGRALS 355 � Some standard integrals (i) 1 C 1 n n x x dx n + = + + ∫ , n ≠ – 1 Particularly, C dx =x + ∫ (ii) cos sin C x dx x = + ∫ (iii) sin – cos C x dx x = + ∫ (iv) sec2 tan C x dx x = + ∫ (v) cosec2 – cot C x dx x = + ∫ (vi) sec tan sec C x x dx x = + ∫ (vii) cosec cot – cosec C x x dx x = + ∫ (viii) 1 2 sin C 1 dx x x − = + − ∫ (ix) 1 2 cos C 1 dx x x − = − + − ∫ (x) 1 2 tan C 1 dx x x − = + + ∫ (xi) 1 2 cot C 1 dx x x − = − + ∫+ (xii) C x x e dx =e + ∫ (xiii) C log x x a a dx a = + ∫ (xiv) 1 2 sec C 1 dx x x x − = + − ∫ (xv) 1 2 cosec C 1 dx x x x − = − + − ∫ (xvi) 1 log| | C dx x x = + ∫ � Integration by partial fractions Recall that a rational function is ratio of two polynomials of the form P( ) Q( ) x x , where P(x) and Q (x) are polynomials in x and Q (x) ≠ 0 If degree of the polynomial P (x) is greater than the degree of the polynomial Q (x), then we may divide P (x) by Q (x) so that 1P ( ) P( ) T ( ) Q( ) Q( ) x x x x x = + , where T(x) is a polynomial in x and degree of P1(x) is less than the degree of Q(x) T(x) being polynomial can be easily integrated
1
4113-4116
Particularly, C dx =x + ∫ (ii) cos sin C x dx x = + ∫ (iii) sin – cos C x dx x = + ∫ (iv) sec2 tan C x dx x = + ∫ (v) cosec2 – cot C x dx x = + ∫ (vi) sec tan sec C x x dx x = + ∫ (vii) cosec cot – cosec C x x dx x = + ∫ (viii) 1 2 sin C 1 dx x x − = + − ∫ (ix) 1 2 cos C 1 dx x x − = − + − ∫ (x) 1 2 tan C 1 dx x x − = + + ∫ (xi) 1 2 cot C 1 dx x x − = − + ∫+ (xii) C x x e dx =e + ∫ (xiii) C log x x a a dx a = + ∫ (xiv) 1 2 sec C 1 dx x x x − = + − ∫ (xv) 1 2 cosec C 1 dx x x x − = − + − ∫ (xvi) 1 log| | C dx x x = + ∫ � Integration by partial fractions Recall that a rational function is ratio of two polynomials of the form P( ) Q( ) x x , where P(x) and Q (x) are polynomials in x and Q (x) ≠ 0 If degree of the polynomial P (x) is greater than the degree of the polynomial Q (x), then we may divide P (x) by Q (x) so that 1P ( ) P( ) T ( ) Q( ) Q( ) x x x x x = + , where T(x) is a polynomial in x and degree of P1(x) is less than the degree of Q(x) T(x) being polynomial can be easily integrated 1P ( ) Q( ) x x can be integrated by 356 MATHEMATICS expressing 1P ( ) Q( ) x x as the sum of partial fractions of the following type: 1
1
4114-4117
If degree of the polynomial P (x) is greater than the degree of the polynomial Q (x), then we may divide P (x) by Q (x) so that 1P ( ) P( ) T ( ) Q( ) Q( ) x x x x x = + , where T(x) is a polynomial in x and degree of P1(x) is less than the degree of Q(x) T(x) being polynomial can be easily integrated 1P ( ) Q( ) x x can be integrated by 356 MATHEMATICS expressing 1P ( ) Q( ) x x as the sum of partial fractions of the following type: 1 ( ) ( ) px q x a x b + − − = A B x a x b + − − , a ≠ b 2
1
4115-4118
T(x) being polynomial can be easily integrated 1P ( ) Q( ) x x can be integrated by 356 MATHEMATICS expressing 1P ( ) Q( ) x x as the sum of partial fractions of the following type: 1 ( ) ( ) px q x a x b + − − = A B x a x b + − − , a ≠ b 2 2 ( ) px q x a + − = 2 A B ( ) x a x a + − − 3
1
4116-4119
1P ( ) Q( ) x x can be integrated by 356 MATHEMATICS expressing 1P ( ) Q( ) x x as the sum of partial fractions of the following type: 1 ( ) ( ) px q x a x b + − − = A B x a x b + − − , a ≠ b 2 2 ( ) px q x a + − = 2 A B ( ) x a x a + − − 3 2 ( ) ( ) ( ) px qx r x a x b x c + + − − − = A B C x a x b x c + + − − − 4
1
4117-4120
( ) ( ) px q x a x b + − − = A B x a x b + − − , a ≠ b 2 2 ( ) px q x a + − = 2 A B ( ) x a x a + − − 3 2 ( ) ( ) ( ) px qx r x a x b x c + + − − − = A B C x a x b x c + + − − − 4 2 2 ( ) ( ) px qx r x a x b + + − − = 2 A B C ( ) x a x b x a + + − − − 5