python_code
stringlengths 0
66.4k
|
---|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
from scipy.spatial.transform import Rotation as R
import os
from glob import glob
from tqdm import tqdm
import scipy.io as sio
import random
from PIL import Image
import numpy as np
import torch
from torchvision import transforms
preprocess = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor()
])
# class used for obtaining an instance of the dataset for training vision chart prediction
# to be passed to a pytorch dataloader
# input:
# - classes: list of object classes used
# - args: set of input parameters from the training file
# - set_type: the set type used
# - sample_num: the size of the point cloud to be returned in a given batch
class mesh_loader_vision(object):
def __init__(self, classes, args, set_type='train', sample_num=3000):
# initialization of data locations
self.args = args
self.surf_location = '../data/surfaces/'
self.img_location = '../data/images/'
self.touch_location = '../data/scene_info/'
self.sheet_location = '../data/sheets/'
self.sample_num = sample_num
self.set_type = set_type
self.set_list = np.load('../data/split.npy', allow_pickle='TRUE').item()
names = [[f.split('/')[-1], f.split('/')[-2]] for f in glob((f'{self.img_location}/*/*'))]
self.names = []
self.classes_names = [[] for _ in classes]
np.random.shuffle(names)
for n in tqdm(names):
if n[1] in classes:
if os.path.exists(self.surf_location + n[1] + '/' + n[0] + '.npy'):
if os.path.exists(self.touch_location + n[1] + '/' + n[0]):
if n[0] + n[1] in self.set_list[self.set_type]:
if n[0] +n[1] in self.set_list[self.set_type]:
self.names.append(n)
self.classes_names[classes.index(n[1])].append(n)
print(f'The number of {set_type} set objects found : {len(self.names)}')
def __len__(self):
return len(self.names)
# select the object and grasps for training
def get_training_instance(self):
# select an object and and a principle grasp randomly
class_choice = random.choice(self.classes_names)
object_choice = random.choice(class_choice)
obj, obj_class = object_choice
# select the remaining grasps and shuffle the select grasps
num_choices = [0, 1, 2, 3, 4]
nums = []
for i in range(self.args.num_grasps):
choice = random.choice(num_choices)
nums.append(choice)
del (num_choices[num_choices.index(choice)])
random.shuffle(nums)
return obj, obj_class, nums[-1], nums
# select the object and grasps for validating
def get_validation_examples(self, index):
# select an object and a principle grasp
obj, obj_class = self.names[index]
orig_num = 0
# select the remaining grasps deterministically
nums = [(orig_num + i) % 5 for i in range(self.args.num_grasps)]
return obj, obj_class, orig_num, nums
# load surface point cloud
def get_gt_points(self, obj_class, obj):
samples = np.load(self.surf_location +obj_class + '/' + obj + '.npy')
if self.args.eval:
np.random.seed(0)
np.random.shuffle(samples)
gt_points = torch.FloatTensor(samples[:self.sample_num])
gt_points *= .5 # scales the models to the size of shape we use
gt_points[:, -1] += .6 # this is to make the hand and the shape the right releative sizes
return gt_points
# load vision signal
def get_images(self, obj_class, obj, grasp_number):
# load images
img_occ = Image.open(f'{self.img_location}/{obj_class}/{obj}/{grasp_number}.png')
img_unocc = Image.open(f'{self.img_location}/{obj_class}/{obj}/unoccluded.png')
# apply pytorch image preprocessing
img_occ = preprocess(img_occ)
img_unocc = preprocess(img_unocc)
return torch.FloatTensor(img_occ), torch.FloatTensor(img_unocc)
# load touch sheet mask indicating toch success
def get_touch_info(self, obj_class, obj, grasps):
sheets, successful = [], []
# cycle though grasps and load touch sheets
for grasp in grasps:
sheet_location = self.sheet_location + f'{obj_class}/{obj}/sheets_{grasp}_finger_num.npy'
hand_info = np.load(f'{self.touch_location}/{obj_class}/{obj}/{grasp}.npy', allow_pickle=True).item()
sheet, success = self.get_touch_sheets(sheet_location, hand_info)
sheets.append(sheet)
successful += success
return torch.cat(sheets), successful
# load the touch sheet
def get_touch_sheets(self, location, hand_info):
sheets = []
successful = []
touches = hand_info['touch_success']
finger_pos = torch.FloatTensor(hand_info['cam_pos'])
# cycle through fingers in the grasp
for i in range(4):
sheet = np.load(location.replace('finger_num', str(i)))
# if the touch was unsuccessful
if not touches[i] or sheet.shape[0] == 1:
sheets.append(finger_pos[i].view(1, 3).expand(25, 3)) # save the finger position instead in every vertex
successful.append(False) # binary mask for unsuccessful touch
# if the touch was successful
else:
sheets.append(torch.FloatTensor(sheet)) # save the sheet
successful.append(True) # binary mask for successful touch
sheets = torch.stack(sheets)
return sheets, successful
def __getitem__(self, index):
if self.set_type == 'train':
obj, obj_class, grasp_number, grasps = self.get_training_instance()
else:
obj, obj_class, grasp_number, grasps = self.get_validation_examples(index)
data = {}
# meta data
data['names'] = obj, obj_class, grasp_number
data['class'] = obj_class
# load sampled ground truth points
data['gt_points'] = self.get_gt_points(obj_class, obj)
# load images
data['img_occ'], data['img_unocc'] = self.get_images(obj_class, obj, grasp_number)
# get touch information
data['sheets'], data['successful'] = self.get_touch_info(obj_class, obj, grasps)
return data
def collate(self, batch):
data = {}
data['names'] = [item['names'] for item in batch]
data['class'] = [item['class'] for item in batch]
data['sheets'] = torch.cat([item['sheets'].unsqueeze(0) for item in batch])
data['gt_points'] = torch.cat([item['gt_points'].unsqueeze(0) for item in batch])
data['img_occ'] = torch.cat([item['img_occ'].unsqueeze(0) for item in batch])
data['img_unocc'] = torch.cat([item['img_unocc'].unsqueeze(0) for item in batch])
data['successful'] = [item['successful'] for item in batch]
return data
# class used for obtaining an instance of the dataset for training touch chart prediction
# to be passed to a pytorch dataloader
# input:
# - classes: list of object classes used
# - args: set of input parameters from the training file
# - set_type: the set type used
# - num: if specified only returns a given grasp number
# - all: if True use all objects, regarless of set type
# - finger: if specified only returns a given finger number
class mesh_loader_touch(object):
def __init__(self, classes, args, set_type='train', produce_sheets = False):
# initialization of data locations
self.args = args
self.surf_location = '../data/surfaces/'
self.img_location = '../data/images/'
self.touch_location = '../data/scene_info/'
self.sheet_location = '../data/remake_sheets/'
self.set_type = set_type
self.set_list = np.load('../data/split.npy', allow_pickle='TRUE').item()
self.empty = torch.FloatTensor(np.load('../data/empty_gel.npy'))
self.produce_sheets = produce_sheets
names = [[f.split('/')[-1], f.split('/')[-2]] for f in glob((f'{self.img_location}/*/*'))]
self.names = []
import os
for n in tqdm(names):
if n[1] in classes:
if os.path.exists(self.surf_location + n[1] + '/' + n[0] + '.npy'):
if os.path.exists(self.touch_location + n[1] + '/' + n[0]):
if self.produce_sheets or (n[0] + n[1]) in self.set_list[self.set_type]:
if produce_sheets:
for i in range(5):
for j in range(4):
self.names.append(n + [i, j])
else:
for i in range(5):
hand_info = np.load(f'{self.touch_location}/{n[1]}/{n[0]}/{i}.npy',
allow_pickle=True).item()
for j in range(4):
if hand_info['touch_success'][j]:
self.names.append(n + [i, j])
print(f'The number of {set_type} set objects found : {len(self.names)}')
def __len__(self):
return len(self.names)
def standerdize_point_size(self, points):
if points.shape[0] == 0:
return torch.zeros((self.args.num_samples, 3))
np.random.shuffle(points)
points = torch.FloatTensor(points)
while points.shape[0] < self.args.num_samples :
points = torch.cat((points, points, points, points))
perm = torch.randperm(points.shape[0])
idx = perm[:self.args.num_samples ]
return points[idx]
def get_finger_transforms(self, hand_info, finger_num, args):
rot = hand_info['cam_rot'][finger_num]
rot = R.from_euler('xyz', rot, degrees=False).as_matrix()
rot_q = R.from_matrix(rot).as_quat()
pos = hand_info['cam_pos'][finger_num]
return torch.FloatTensor(rot_q), torch.FloatTensor(rot), torch.FloatTensor(pos)
def __getitem__(self, index):
obj, obj_class, num, finger_num = self.names[index]
# meta data
data = {}
data['names'] = [obj, num , finger_num]
data['class'] = obj_class
# hand infomation
hand_info = np.load(f'{self.touch_location}/{obj_class}/{obj}/{num}.npy', allow_pickle=True).item()
data['rot'], data['rot_M'], data['pos'] = self.get_finger_transforms(hand_info, finger_num, self.args)
data['good_touch'] = hand_info['touch_success']
# simulated touch information
scene_info = np.load(f'{self.touch_location}/{obj_class}/{obj}/{num}.npy', allow_pickle=True).item()
data['depth'] = torch.clamp(torch.FloatTensor(scene_info['depth'][finger_num]).unsqueeze(0), 0, 1)
data['sim_touch'] = torch.FloatTensor(np.array(scene_info['gel'][finger_num]) / 255.).permute(2, 0, 1).contiguous().view(3, 100, 100)
data['empty'] = torch.FloatTensor(self.empty / 255.).permute(2, 0, 1).contiguous().view(3, 100, 100)
# point cloud information
data['samples'] = self.standerdize_point_size(scene_info['points'][finger_num])
data['num_samples'] = scene_info['points'][finger_num].shape
# where to save sheets
data['save_dir'] = f'{self.sheet_location}/{obj_class}/{obj}/sheets_{num}_{finger_num}.npy'
return data
def collate(self, batch):
data = {}
data['names'] = [item['names'] for item in batch]
data['class'] = [item['class'] for item in batch]
data['samples'] = torch.cat([item['samples'].unsqueeze(0) for item in batch])
data['sim_touch'] = torch.cat([item['sim_touch'].unsqueeze(0) for item in batch])
data['empty'] = torch.cat([item['empty'].unsqueeze(0) for item in batch])
data['depth'] = torch.cat([item['depth'].unsqueeze(0) for item in batch])
data['ref'] = {}
data['ref']['rot'] = torch.cat([item['rot'].unsqueeze(0) for item in batch])
data['ref']['rot_M'] = torch.cat([item['rot_M'].unsqueeze(0) for item in batch])
data['ref']['pos'] = torch.cat([item['pos'].unsqueeze(0) for item in batch])
data['good_touch'] = [item['good_touch'] for item in batch]
data['save_dir'] = [item['save_dir'] for item in batch]
data['num_samples'] = [item['num_samples'] for item in batch]
return data
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import time
import sys
sys.path.insert(0, "../")
from pytorch3d.loss import chamfer_distance as cuda_cd
# loads the initial mesh and stores vertex, face, and adjacency matrix information
# input:
# - args: arguments from the training file
# - obj_name: name of the initial mesh object file fot eh vision charts
# output:
# - adj_info: the adjacency matrix, and faces for the combination of vision and touch charts
# - verts: the set of vertices for the initial vision charts
def load_mesh_vision(args, obj_name):
# load obj file
obj = import_obj(obj_name)
verts = np.array(obj.vertices)
verts = torch.FloatTensor(verts).cuda()
faces = torch.LongTensor(np.array(obj.faces) - 1).cuda()
# get adjacency matrix infomation
adj_info = adj_init(verts, faces, args)
return adj_info, verts
# loads object file
# involves identifying face and vertex infomation in .obj file
# needs to be triangulated to work
class import_obj(object):
def __init__(self, file):
self.vertices = []
self.faces = []
with open(file) as f :
for line in f:
line = line.replace('//', '/')
line = line.replace('\n', '')
if line[:2] == "v ":
self.vertices.append([float(v) for v in line.split(" ")[1:]])
elif line[0] == "f":
self.faces.append([int(s.split('/')[0]) for s in line.split(' ')[1:]])
# normalizes symetric, binary adj matrix such that sum of each row is 1
def normalize_adj(mx):
rowsum = mx.sum(1)
r_inv = (1. / rowsum).view(-1)
r_inv[r_inv != r_inv] = 0.
mx = torch.mm(torch.eye(r_inv.shape[0]).to(mx.device) * r_inv, mx)
return mx
# defines the adjacecny matrix for an object
def adj_init(verts, faces, args):
# get generic adjacency matrix for vision charts
adj = calc_adj(faces)
adj_info = {}
if args.use_touch:
# this combines the adjacency information of touch and vision charts
# the output adj matrix has the first k rows corresponding to vision charts, and the last |V| - k
# corresponding to touch charts. Similarly the first l faces are correspond to vision charts, and the
# remaining correspond to touch charts
adj, faces = adj_fuse_touch(verts, faces, adj, args)
adj = normalize_adj(adj)
adj_info['adj'] = adj
adj_info['faces'] = faces
return adj_info
# combines graph for vision and touch charts to define a fused adjacency matrix
# input:
# - verts: vertices of the vision charts
# - faces: faces of the vision charts
# - adj: adjacency matric for the vision charts
# - args: arguements from the training file
# output:
# - adj: adjacency matrix from the combination of touch and vision charts
# - faces: combination of vision and touch chart faces
def adj_fuse_touch(verts, faces, adj, args):
verts = verts.data.cpu().numpy()
hash = {}
# find vertices which have the same 3D position
for e, v in enumerate(verts):
if v.tobytes() in hash:
hash[v.tobytes()].append(e)
else:
hash[v.tobytes()] = [e]
# load object information for generic touch chart
sheet = import_obj('../data/initial_sheet.obj')
sheet_verts = torch.FloatTensor(np.array(sheet.vertices)).cuda()
sheet_faces = torch.LongTensor(np.array(sheet.faces) - 1).cuda()
sheet_adj = calc_adj(sheet_faces)
# central vertex for each touch chart that will communicate with all vision charts
central_point = 4
central_points = [central_point + (i * sheet_adj.shape[0]) + adj.shape[0] for i in range(4 * args.num_grasps)]
# define and fill new adjacency matrix with vision and touch charts
new_dim = adj.shape[0] + (4 * args.num_grasps * sheet_adj.shape[0])
new_adj = torch.zeros((new_dim, new_dim)).cuda()
new_adj[: adj.shape[0], :adj.shape[0]] = adj.clone()
for i in range(4 * args.num_grasps):
start = adj.shape[0] + (sheet_adj.shape[0] * i)
end = adj.shape[0] + (sheet_adj.shape[0] * (i + 1))
new_adj[start: end, start:end] = sheet_adj.clone()
adj = new_adj
# define new faces with vision and touch charts
all_faces = [faces]
for i in range(4 * args.num_grasps):
temp_sheet_faces = sheet_faces.clone() + verts.shape[0]
temp_sheet_faces += i * sheet_verts.shape[0]
all_faces.append(temp_sheet_faces)
faces = torch.cat(all_faces)
# update adjacency matrix to allow communication between vision and touch charts
for key in hash.keys():
cur_verts = hash[key]
if len(cur_verts) > 1:
for v1 in cur_verts:
for v2 in cur_verts: # vertices on the boundary of vision charts can communicate
adj[v1, v2] = 1
if args.use_touch:
for c in central_points: # touch and vision charts can communicate
adj[v1, c] = 1
adj[c, v1] = 1
return adj, faces
# computes adjacemcy matrix from face information
def calc_adj(faces):
v1 = faces[:, 0]
v2 = faces[:, 1]
v3 = faces[:, 2]
num_verts = int(faces.max())
adj = torch.eye(num_verts + 1).to(faces.device)
adj[(v1, v2)] = 1
adj[(v1, v3)] = 1
adj[(v2, v1)] = 1
adj[(v2, v3)] = 1
adj[(v3, v1)] = 1
adj[(v3, v2)] = 1
return adj
# sample points from a batch of meshes
# implemented from:
# https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py
# MIT License
# input:
# - verts: vertices of the mesh to sample from
# - faces: faces of the mesh to sample from
# - num: number of point to sample
# output:
# - points: points sampled on the surface of the mesh
def batch_sample(verts, faces, num=10000):
dist_uni = torch.distributions.Uniform(torch.tensor([0.0]).cuda(), torch.tensor([1.0]).cuda())
batch_size = verts.shape[0]
# calculate area of each face
x1, x2, x3 = torch.split(torch.index_select(verts, 1, faces[:, 0]) - torch.index_select(verts, 1, faces[:, 1]), 1,
dim=-1)
y1, y2, y3 = torch.split(torch.index_select(verts, 1, faces[:, 1]) - torch.index_select(verts, 1, faces[:, 2]), 1,
dim=-1)
a = (x2 * y3 - x3 * y2) ** 2
b = (x3 * y1 - x1 * y3) ** 2
c = (x1 * y2 - x2 * y1) ** 2
Areas = torch.sqrt(a + b + c) / 2
Areas = Areas.squeeze(-1) / torch.sum(Areas, dim=1) # percentage of each face w.r.t. full surface area
# define distrubtions of relative face surface areas
choices = None
for A in Areas:
if choices is None:
choices = torch.multinomial(A, num, True) # list of faces to be sampled from
else:
choices = torch.cat((choices, torch.multinomial(A, num, True)))
# select the faces to be used
select_faces = faces[choices].view(verts.shape[0], 3, num)
face_arange = verts.shape[1] * torch.arange(0, batch_size).cuda().unsqueeze(-1).expand(batch_size, num)
select_faces = select_faces + face_arange.unsqueeze(1)
select_faces = select_faces.view(-1, 3)
flat_verts = verts.view(-1, 3)
# sample one point from each
xs = torch.index_select(flat_verts, 0, select_faces[:, 0])
ys = torch.index_select(flat_verts, 0, select_faces[:, 1])
zs = torch.index_select(flat_verts, 0, select_faces[:, 2])
u = torch.sqrt(dist_uni.sample_n(batch_size * num))
v = dist_uni.sample_n(batch_size * num)
points = (1 - u) * xs + (u * (1 - v)) * ys + u * v * zs
points = points.view(batch_size, num, 3)
return points
# compute the local chamfer distance metric on the ground truth mesh at different distances away from the touch sites
# input:
# - samples: point cloud from surface of predicted charts
# - batch: current batch information
# - losses: the current losses across the test set
# output:
# - losses: updates losses across the test set
# - num_examples: the number of times the losses were updated
def calc_local_chamfer(samples, batch, losses):
batch_size = samples.shape[0]
# a grid of point projected towards the surface of the object, starting from the same position and orientation
# as the touch sensor when the touch occurred, but 5 times its size
planes = batch['radius'].cuda().view(batch_size, 4, 100, 100, 3)
# mask indicating which point hit the surface of the object, ie, tho ones we care about
masks = batch['radius_masks'].cuda().view(batch_size, 4, 100, 100)
successful = batch['successful']
num_examples = 0
# for every grasps
for pred, gt, mask, success in zip(samples, planes, masks, successful):
# for every ring size around each touch site
for i in range(5):
# for every touch
for j in range(4):
if not success[j]:
continue
# select the right ring of points, ie 1 x size of sensor ... 5 x size of sensor
dim_mask = torch.zeros(mask[j].shape).clone()
dim_mask[40 - i * 10: 60 + i * 10, 40 - i * 10: 60 + i * 10] = 1
dim_mask[50 - i * 10: 50 + i * 10, 50 - i * 10: 50 + i * 10] = 0
# select point which are on the objects surface
dim_mask[mask[j] == 0] = 0
gt_masked = gt[j][dim_mask == 1]
if (gt_masked.shape[0] == 0):
continue
# compute the local loss between the selected points and the predicted surface
loss, _ = cuda_cd(pred_points, gt_points, batch_reduction=None)
losses[i] += loss.mean()
if i == 0:
num_examples += 1.
return losses, num_examples
# sets up arugments for the pretrained models
def pretrained_args(args):
if args.pretrained == 'empty':
args.use_occluded = False
args.use_unoccluded = False
args.use_touch = False
elif args.pretrained == 'touch':
args.num_gcn_layers = 25
args.hidden_gcn_layers = 250
args.use_occluded = False
args.use_unoccluded = False
args.use_touch = True
elif args.pretrained == 'touch_unoccluded':
args.num_img_blocks = 4
args.num_img_layers = 3
args.size_img_ker = 5
args.num_gcn_layers = 15
args.hidden_gcn_layers = 200
args.use_occluded = False
args.use_unoccluded = True
args.use_touch = True
elif args.pretrained == 'touch_occluded':
args.num_img_blocks = 4
args.num_img_layers = 3
args.size_img_ker = 5
args.num_gcn_layers = 20
args.hidden_gcn_layers = 200
args.use_occluded = True
args.use_unoccluded = False
args.use_touch = True
elif args.pretrained == 'unoccluded':
args.num_img_blocks = 5
args.num_img_layers = 3
args.size_img_ker = 5
args.num_gcn_layers = 15
args.hidden_gcn_layers = 150
args.use_occluded = False
args.use_unoccluded = True
args.use_touch = False
elif args.pretrained == 'occluded':
args.num_img_blocks = 4
args.num_img_layers = 3
args.size_img_ker = 5
args.num_gcn_layers = 25
args.hidden_gcn_layers = 250
args.use_occluded = True
args.use_unoccluded = False
args.use_touch = False
return args
# implemented from:
# https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py
# MIT License
# loads the initial mesh and returns vertex, and face information
def load_mesh_touch(obj='386.obj'):
obj = import_obj(obj)
verts = np.array(obj.vertices)
verts = torch.FloatTensor(verts).cuda()
faces = torch.LongTensor(np.array(obj.faces) - 1).cuda()
return verts, faces
# returns the chamfer distance between a mesh and a point cloud
# input:
# - verts: vertices of the mesh
# - faces: faces of the mesh
# - gt_points: point cloud to operate over
# output:
# - cd: computed chamfer distance
def chamfer_distance(verts, faces, gt_points, num=1000):
batch_size = verts.shape[0]
# sample from faces and calculate pairs
pred_points = batch_sample(verts, faces, num=num)
cd, _ = cuda_cd(pred_points, gt_points, batch_reduction=None)
return cd.mean()
# implemented from:
# https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py
# MIT License
# compute the edgle lengths of a batch of meshes
def batch_calc_edge(verts, faces):
# get vertex locations of faces
p1 = torch.index_select(verts, 1, faces[:, 0])
p2 = torch.index_select(verts, 1, faces[:, 1])
p3 = torch.index_select(verts, 1, faces[:, 2])
# get edge lengths
e1 = p2 - p1
e2 = p3 - p1
e3 = p2 - p3
edge_length = (torch.sum(e1 ** 2, -1).mean() + torch.sum(e2 ** 2, -1).mean() + torch.sum(e3 ** 2, -1).mean()) / 3.
return edge_length
# returns the chamfer distance between two point clouds
# input:
# - gt_points: point cloud 1 to operate over
# - pred_points: point cloud 2 to operate over
# output:
# - cd: computed chamfer distance
def point_loss(gt_points, pred_points):
cd, _ = cuda_cd(pred_points, gt_points, batch_reduction=None)
return cd.mean()
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import numpy as np
import os
from tqdm import tqdm
interval = 1300
commands_to_run = []
for i in range(200):
commands_to_run += [f'python runner.py --save_director experiments/checkpoint/pretrained/encoder_touch '
f'--start {interval*i } --end {interval*i + interval}']
def call(command):
os.system(command)
from multiprocessing import Pool
pool = Pool(processes=10)
pbar = tqdm(pool.imap_unordered(call, commands_to_run), total=len(commands_to_run))
pbar.set_description(f"calling submitit")
for _ in pbar:
pass
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import os
import submitit
import argparse
import produce_sheets
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument('--start', type=int, default=0, help='Random seed.')
parser.add_argument('--end', type=int, default=10000000, help='Random seed.')
parser.add_argument('--save_directory', type=str, default='experiments/checkpoint/pretrained/encoder_touch',
help='Location of the model used to produce sheets')
parser.add_argument('--num_samples', type=int, default=4000, help='Number of points in the predicted point cloud.')
parser.add_argument('--model_location', type=str, default="../data/initial_sheet.obj")
parser.add_argument('--surf_co', type=float, default=9000.)
args = parser.parse_args()
trainer = produce_sheets.Engine(args)
submitit_logs_dir = os.path.join('experiments','sheet_logs_again',str(args.start))
executor = submitit.SlurmExecutor(submitit_logs_dir, max_num_timeout=3)
time = 360
executor.update_parameters(
num_gpus=1,
partition='',
cpus_per_task=16,
mem=500000,
time=time,
job_name=str(args.start),
signal_delay_s=300,
)
executor.submit(trainer)
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import torch.nn as nn
import torch
import torch.nn.functional as F
# implemented from:
# https://github.com/MicrosoftLearning/dev290x-v2/blob/master/Mod04/02-Unet/unet_pytorch/model.py
# MIT License
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels, mid_channels=None):
super().__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
# implemented from:
# https://github.com/MicrosoftLearning/dev290x-v2/blob/master/Mod04/02-Unet/unet_pytorch/model.py
# MIT License
class Down(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
# implemented from:
# https://github.com/MicrosoftLearning/dev290x-v2/blob/master/Mod04/02-Unet/unet_pytorch/model.py
# MIT License
class Up(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.up = nn.ConvTranspose2d(in_channels , in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
diffX = torch.tensor([x2.size()[3] - x1.size()[3]])
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
x = torch.cat([x2, x1], dim=1)
output = self.conv(x)
return output
# implemented from:
# https://github.com/MicrosoftLearning/dev290x-v2/blob/master/Mod04/02-Unet/unet_pytorch/model.py
# MIT License
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, args, dim = 100):
super(Encoder, self).__init__()
self.args = args
# settings
n_channels = 3
n_classes = 1
# downscale the image
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
# upscale the image
self.down4 = Down(512, 1024)
self.up1 = Up(1024, 512)
self.up2 = Up(512, 256)
self.up3 = Up(256, 128)
self.up4 = Up(128, 64)
self.outc = OutConv(64, n_classes)
# define a plane of the same size, and shape at the touch sensor
width = .0218 - 0.00539
y_z = torch.arange(dim).cuda().view(dim, 1).expand(dim, dim).float()
y_z = torch.stack((y_z, y_z.permute(1, 0))).permute(1, 2, 0)
plane = torch.cat((torch.zeros(dim, dim, 1).cuda(), y_z), dim=-1)
self.orig_plane = (plane / float(dim) - .5) * width
# update the plane with the predicted depth information
def project_depth(self, depths, pos, rot, dim=100):
# reshape the plane to have the same position and orientation as the touch sensor when the touch occurred
batch_size = depths.shape[0]
planes = self.orig_plane.view(1 , -1 , 3).expand(batch_size, -1, 3)
planes = torch.bmm(rot, planes.permute(0, 2, 1)).permute(0, 2, 1)
planes += pos.view(batch_size, 1, 3)
# add the depth in the same direction as the normal of the sensor plane
init_camera_vector = torch.FloatTensor((1, 0, 0)).cuda().view(1, 3, 1) .expand(batch_size, 3, 1 )
camera_vector = torch.bmm(rot, init_camera_vector).permute(0, 2, 1)
camera_vector = F.normalize(camera_vector, p=2, dim=-1).view(batch_size, 1, 1, 3).expand(batch_size, dim, dim, 3)
depth_update = depths.unsqueeze(-1) * camera_vector
local_depth = (planes + depth_update.view(batch_size, -1, 3)).view(batch_size, -1, 3)
return local_depth
def forward(self, gel, depth, ref_frame, empty, producing_sheet = False):
# get initial data
batch_size = ref_frame['pos'].shape[0]
pos = ref_frame['pos'].cuda().view(batch_size, -1)
rot_m = ref_frame['rot_M'].cuda().view(-1, 3, 3)
# U-Net prediction
# downscale the image
x1 = self.inc(gel)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
# upscale the image
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
pred_depth =(self.outc(x))
# scale the prediction
pred_depth = F.sigmoid(pred_depth) * 0.1
# we only want to use the points in the predicted point cloud if they correspond to pixels in the touch signal
# which are "different" enough from the an untouched touch signal, otherwise the do not correspond to any
# geometry of the object which is deforming the touch sensor's surface.
diff = torch.sqrt((((gel.permute(0, 2, 3, 1) - empty.permute(0, 2, 3, 1)).view(batch_size, -1, 3)) **2).sum(dim = -1))
useful_points = diff > 0.001
# project the depth values into 3D points
projected_depths = self.project_depth(pred_depth.squeeze(1), pos, rot_m).view(batch_size, -1, 3)
pred_points = []
for points, useful in zip(projected_depths, useful_points):
# select only useful points
orig_points = points.clone()
points = points[useful]
if points.shape[0] == 0:
if producing_sheet:
pred_points.append(torch.zeros((self.args.num_samples, 3)).cuda())
continue
else:
points = orig_points
# make the number of points in each element of a batch consistent
while points.shape[0] < self.args.num_samples:
points = torch.cat((points, points, points, points))
perm = torch.randperm(points.shape[0])
idx = perm[:self.args.num_samples]
points = points[idx]
pred_points.append(points)
pred_points = torch.stack(pred_points)
return pred_depth, pred_points
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import models
import os
import torch
import numpy as np
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
import sys
sys.path.insert(0, "../")
import utils
import data_loaders
class Engine():
def __init__(self, args):
# set seeds
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
self.classes = ['0001', '0002']
self.args = args
self.verts, self.faces = utils.load_mesh_touch(f'../data/initial_sheet.obj')
def __call__(self) -> float:
self.encoder = models.Encoder(self.args)
self.encoder.load_state_dict(torch.load(self.args.save_directory))
self.encoder.cuda()
self.encoder.eval()
train_data = data_loaders.mesh_loader_touch(self.classes, self.args, produce_sheets=True)
train_data.names = train_data.names[self.args.start:self.args.end]
train_loader = DataLoader(train_data, batch_size=1, shuffle=False,
num_workers=16, collate_fn=train_data.collate)
for k, batch in enumerate(tqdm(train_loader, smoothing=0)):
# initialize data
sim_touch = batch['sim_touch'].cuda()
depth = batch['depth'].cuda()
ref_frame = batch['ref']
# predict point cloud
with torch.no_grad():
pred_depth, sampled_points = self.encoder(sim_touch, depth, ref_frame, empty = batch['empty'].cuda())
# optimize touch chart
for points, dir in zip(sampled_points, batch['save_dir']):
if os.path.exists(dir):
continue
directory = dir[:-len(dir.split('/')[-1])]
if not os.path.exists(directory):
os.makedirs(directory)
# if not a successful touch
if torch.abs(points).sum() == 0 :
np.save(dir, np.zeros(1))
continue
# make initial mesh match touch sensor when touch occurred
initial = self.verts.clone().unsqueeze(0)
pos = ref_frame['pos'].cuda().view(1, -1)
rot = ref_frame['rot_M'].cuda().view(1, 3, 3)
initial = torch.bmm(rot, initial.permute(0, 2, 1)).permute(0, 2, 1)
initial += pos.view(1, 1, 3)
initial = initial[0]
# set up optimization
updates = torch.zeros(self.verts.shape, requires_grad=True, device="cuda")
optimizer = optim.Adam([updates], lr=0.003, weight_decay=0)
last_improvement = 0
best_loss = 10000
while True:
# update
optimizer.zero_grad()
verts = initial + updates
# losses
surf_loss = utils.chamfer_distance(verts.unsqueeze(0), self.faces, points.unsqueeze(0), num =self.args.num_samples)
edge_lengths = utils.batch_calc_edge(verts.unsqueeze(0), self.faces)
loss = self.args.surf_co * surf_loss + 70 * edge_lengths
# optimize
loss.backward()
optimizer.step()
# check results
if loss < 0.0006:
break
if best_loss > loss :
best_loss = loss
best_verts = verts.clone()
last_improvement = 0
else:
last_improvement += 1
if last_improvement > 50:
break
np.save(dir, best_verts.data.cpu().numpy())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument('--start', type=int, default=0, help='Random seed.')
parser.add_argument('--end', type=int, default=10000000, help='Random seed.')
parser.add_argument('--save_directory', type=str, default='experiments/checkpoint/pretrained/encoder_touch',
help='Location of the model used to produce sheet')
parser.add_argument('--num_samples', type=int, default=4000, help='Number of points in the predicted point cloud.')
parser.add_argument('--model_location', type=str, default="../data/initial_sheet.obj",
help='Location of inital mesh sheet whcih will be optimized')
parser.add_argument('--surf_co', type=float, default=9000.)
args = parser.parse_args()
trainer = Engine(args)
trainer()
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import models
from torch.utils.tensorboard import SummaryWriter
import torch
import numpy as np
import torch.optim as optim
import os
from torch.utils.data import DataLoader
from tqdm import tqdm
import argparse
import sys
sys.path.insert(0, "../")
import utils
import data_loaders
class Engine():
def __init__(self, args):
# set seeds
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# set initial data values
self.epoch = 0
self.best_loss = 10000
self.args = args
self.last_improvement = 0
self.classes = ['0001', '0002']
self.checkpoint_dir = os.path.join('experiments/checkpoint/', args.exp_type, args.exp_id)
self.log_dir = f'experiments/results/{self.args.exp_type}/{self.args.exp_id}/'
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
def __call__(self) -> float:
self.encoder = models.Encoder(self.args)
self.encoder.cuda()
params = list(self.encoder.parameters())
self.optimizer = optim.Adam(params, lr=self.args.lr, weight_decay=0)
writer = SummaryWriter(os.path.join('experiments/tensorboard/', args.exp_type ))
train_loader, valid_loaders = self.get_loaders()
if self.args.eval:
self.load('')
with torch.no_grad():
self.validate(valid_loaders, writer)
exit()
for epoch in range(self.args.epochs):
self.epoch = epoch
self.train(train_loader, writer)
with torch.no_grad():
self.validate(valid_loaders, writer)
self.check_values()
def get_loaders(self):
# training data
train_data = data_loaders.mesh_loader_touch(self.classes, self.args, set_type='train')
train_loader = DataLoader(train_data, batch_size=self.args.batch_size, shuffle=True, num_workers=16, collate_fn=train_data.collate)
# validation data
valid_loaders = []
set_type = 'test' if self.args.eval else 'valid'
for c in self.classes:
valid_data = data_loaders.mesh_loader_touch(c, self.args, set_type=set_type)
valid_loaders.append(
DataLoader(valid_data, batch_size=self.args.batch_size, shuffle=False, num_workers=16, collate_fn=valid_data.collate))
return train_loader, valid_loaders
def train(self, data, writer):
total_loss = 0
iterations = 0
self.encoder.train()
for k, batch in enumerate(tqdm(data)):
self.optimizer.zero_grad()
# initialize data
sim_touch = batch['sim_touch'].cuda()
depth = batch['depth'].cuda()
ref_frame = batch['ref']
gt_points = batch['samples'].cuda()
# inference
pred_depth, pred_points = self.encoder(sim_touch, depth, ref_frame, empty = batch['empty'].cuda())
# losses
loss = point_loss = self.args.loss_coeff * utils.point_loss(pred_points, gt_points)
total_loss += point_loss.item()
# backprop
loss.backward()
self.optimizer.step()
# log
message = f'Train || Epoch: {self.epoch}, loss: {loss.item():.5f} '
message += f'|| best_loss: {self.best_loss :.5f}'
tqdm.write(message)
iterations += 1.
writer.add_scalars('train', {self.args.exp_id: total_loss / iterations}, self.epoch)
def validate(self, data, writer):
total_loss = 0
self.encoder.eval()
# loop through every class
for v, valid_loader in enumerate(data):
num_examples = 0
class_loss = 0
# loop through every batch
for k, batch in enumerate(tqdm(valid_loader)):
# initialize data
sim_touch = batch['sim_touch'].cuda()
depth = batch['depth'].cuda()
ref_frame = batch['ref']
gt_points = batch['samples'].cuda()
obj_class = batch['class'][0]
batch_size = gt_points.shape[0]
# inference
pred_depth, pred_points = self.encoder( sim_touch, depth, ref_frame, empty = batch['empty'].cuda())
# losses
point_loss = self.args.loss_coeff * utils.point_loss(pred_points, gt_points)
# log
num_examples += float(batch_size)
class_loss += point_loss * float(batch_size)
# log
class_loss = (class_loss / num_examples)
message = f'Valid || Epoch: {self.epoch}, class: {obj_class}, loss: {class_loss:.5f}'
message += f' || best_loss: {self.best_loss:.5f}'
tqdm.write(message)
total_loss += (class_loss / float(len(self.classes)))
# log
print('*******************************************************')
print(f'Total validation loss: {total_loss}')
print('*******************************************************')
if not self.args.eval:
writer.add_scalars('valid', {self.args.exp_id: total_loss}, self.epoch)
self.current_loss = total_loss
def save(self, label):
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
torch.save(self.encoder.state_dict(), self.checkpoint_dir + '/encoder_touch' + label)
torch.save(self.optimizer.state_dict(), self.checkpoint_dir + '/optim_touch' + label)
def check_values(self):
if self.best_loss >= self.current_loss:
improvement = self.best_loss - self.current_loss
self.best_loss = self.current_loss
print(f'Saving Model with a {improvement} improvement in point loss')
self.save('')
self.last_improvement = 0
else:
self.last_improvement += 1
if self.last_improvement == self.args.patience:
print(f'Over {self.args.patience} steps since last imporvement')
print('Exiting now')
exit()
if self.epoch % 10 == 0:
print(f'Saving Model at epoch {self.epoch}')
self.save(f'_recent')
print('*******************************************************')
def load(self, label):
self.encoder.load_state_dict(torch.load(self.checkpoint_dir + '/encoder_touch' + label))
self.optimizer.load_state_dict(torch.load(self.checkpoint_dir + '/optim_touch' + label))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0, help='Setting for the random seed.')
parser.add_argument('--epochs', type=int, default=300, help='Number of epochs to use.')
parser.add_argument('--lr', type=float, default=0.001, help='Initial learning rate.')
parser.add_argument('--eval', action='store_true', default=False, help='Evaluate the trained model on the test set.')
parser.add_argument('--batch_size', type=int, default=128, help='Size of the batch.')
parser.add_argument('--num_samples', type=int, default=4000, help='Number of points in the predicted point cloud.')
parser.add_argument('--patience', type=int, default=70, help='How many epochs without imporvement before training stops.')
parser.add_argument('--loss_coeff', type=float, default=9000., help='Coefficient for loss term.')
parser.add_argument('--exp_id', type=str, default='test', help='The experiment name')
parser.add_argument('--exp_type', type=str, default='test', help='The experiment group')
args = parser.parse_args()
trainer = Engine(args)
trainer()
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
from .chamfer_distance import ChamferDistance
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import torch
from torch.utils.cpp_extension import load
cd = load(name="cd",
sources=["../third_party_code/chamfer_distance.cpp",
"../third_party_code/chamfer_distance.cu"])
class ChamferDistanceFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, xyz1, xyz2):
batchsize, n, _ = xyz1.size()
_, m, _ = xyz2.size()
xyz1 = xyz1.contiguous()
xyz2 = xyz2.contiguous()
dist1 = torch.zeros(batchsize, n)
dist2 = torch.zeros(batchsize, m)
idx1 = torch.zeros(batchsize, n, dtype=torch.int)
idx2 = torch.zeros(batchsize, m, dtype=torch.int)
dist1 = dist1.cuda()
dist2 = dist2.cuda()
idx1 = idx1.cuda()
idx2 = idx2.cuda()
cd.forward_cuda(xyz1, xyz2, dist1, dist2, idx1, idx2)
return idx1, idx2
class ChamferDistance(torch.nn.Module):
def forward(self, xyz1, xyz2):
return ChamferDistanceFunction.apply(xyz1, xyz2)
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import numpy as np
import os
from tqdm import tqdm
def call(command):
os.system(command)
param_namer = {'--seed': 'seed', '--num_gcn_layers': 'ngl', '--hidden_gcn_layers': 'hgl', '--num_img_blocks': 'nib',
'--num_img_layers': 'nil', '--num_grasps': 'grasps', '--geo': 'geo'}
commands = []
ex_type = 'Comparison'
eval = False
def add_commands(forced_params, string, params, exp_id_start):
for f in forced_params:
string += f' {f}'
number = []
keys = list(params.keys())
for param_name in keys:
number.append(len(params[param_name]))
numbers = np.where(np.zeros(number) == 0 )
numbers = np.stack(numbers).transpose()
commands = []
for n in numbers :
exp_id = exp_id_start
command = string
for e, k in enumerate(n):
param_name = keys[e]
param_value = params[param_name][k]
command += f' {param_name} {param_value}'
exp_id += f'_{param_namer[param_name]}_{param_value}'
if eval:
command += ' --eval'
command += f' --exp_id {exp_id}'
commands.append(command)
return commands
######################
###### empty #########
######################
params = {'--seed': [0,1,2,3,4,5]}
exp_id_start = '@empty'
string = f'CUDA_VISIBLE_DEVICES=0 python runner.py --exp_type {ex_type}'
forced_params = []
commands += add_commands(forced_params, string, params, exp_id_start)
######################
###### occluded ######
######################
params = {'--num_gcn_layers': [15, 20, 25], '--hidden_gcn_layers': [150, 200, 250], '--num_img_blocks': [4,5],
'--num_img_layers': [3, 5]}
exp_id_start = '@occluded'
string = f'CUDA_VISIBLE_DEVICES=0 python runner.py --exp_type {ex_type}'
forced_params = ['--use_occluded']
commands += add_commands(forced_params, string, params, exp_id_start)
######################
###### unoccluded ####
######################
params = {'--num_gcn_layers': [15, 20, 25], '--hidden_gcn_layers': [150, 200, 250], '--num_img_blocks': [4,5],
'--num_img_layers': [3, 5]}
exp_id_start = '@unoccluded'
string = f'CUDA_VISIBLE_DEVICES=0 python runner.py --exp_type {ex_type}'
forced_params = ['--use_unoccluded']
commands += add_commands(forced_params, string, params, exp_id_start)
########################
#### touch ######
########################
params = {'--num_gcn_layers': [15, 20, 25], '--hidden_gcn_layers': [150, 200, 250], '--num_grasps': [1, 2, 3, 4, 5]}
exp_id_start = '@touch'
string = f'CUDA_VISIBLE_DEVICES=0 python runner.py --exp_type {ex_type}'
forced_params = ['--use_touch', ]
commands += add_commands(forced_params, string, params, exp_id_start)
##############################
##### occluded + touch #######
##############################
params = {'--num_gcn_layers': [15, 20, 25], '--hidden_gcn_layers': [150, 200, 250], '--num_img_blocks': [4,5],
'--num_img_layers': [3, 5]}
exp_id_start = '@occluded_touch'
string = f'CUDA_VISIBLE_DEVICES=0 python runner.py --exp_type {ex_type}'
forced_params = ['--use_occluded', '--use_touch']
commands += add_commands(forced_params, string, params, exp_id_start)
##############################
### touch + unoccluded ######
##############################
params = {'--num_gcn_layers': [15, 20, 25], '--hidden_gcn_layers': [150, 200, 250], '--num_img_blocks': [4,5],
'--num_img_layers': [3, 5],'--num_grasps': [1, 2, 3, 4, 5] }
exp_id_start = '@unoccluded_touch'
string = f'CUDA_VISIBLE_DEVICES=0 python runner.py --exp_type {ex_type}'
forced_params = ['--use_unoccluded', '--use_touch', ]
commands += add_commands(forced_params, string, params, exp_id_start)
for i in range(len(commands)):
commands[i] += f'_command_{i}@'
from multiprocessing import Pool
pool = Pool(processes=10)
pbar = tqdm(pool.imap_unordered(call, commands), total=len(commands))
pbar.set_description(f"calling submitit")
for _ in pbar:
pass
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import os
import submitit
import argparse
import recon
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0, help='Setting for the random seed.')
parser.add_argument('--geo', type=int, default=0, help='use_geomtrics')
parser.add_argument('--lr', type=float, default=0.0003, help='Initial learning rate.')
parser.add_argument('--eval', action='store_true', default=False, help='Evaluate the trained model on the test set.')
parser.add_argument('--batch_size', type=int, default=25, help='Size of the batch.')
parser.add_argument('--exp_id', type=str, default='Eval', help='The experiment name')
parser.add_argument('--exp_type', type=str, default='Test', help='The experiment group')
parser.add_argument('--use_occluded', action='store_true', default=False, help='To use the occluded image.')
parser.add_argument('--use_unoccluded', action='store_true', default=False, help='To use the unoccluded image.')
parser.add_argument('--use_touch', action='store_true', default=False, help='To use the touch information.')
parser.add_argument('--patience', type=int, default=70, help='How many epochs without imporvement before training stops.')
parser.add_argument('--loss_coeff', type=float, default=9000., help='Coefficient for loss term.')
parser.add_argument('--num_img_blocks', type=int, default=6, help='Number of image block in the image encoder.')
parser.add_argument('--num_img_layers', type=int, default=3, help='Number of image layer in each blocl in the image encoder.')
parser.add_argument('--size_img_ker', type=int, default=5, help='Size of the image kernel in each Image encoder layer')
parser.add_argument('--num_gcn_layers', type=int, default=20, help='Number of GCN layer in the mesh deformation network.')
parser.add_argument('--hidden_gcn_layers', type=int, default=300, help='Size of the feature vector for each GCN layer in the mesh deformation network.')
parser.add_argument('--num_grasps', type=int, default=1, help='Number of grasps in each instance to train with')
parser.add_argument('--pretrained', type=str, default='no', help='String indicating which pretrained model to use.',
choices=['no', 'touch', 'touch_unoccluded', 'touch_occluded', 'unoccluded', 'occluded'])
parser.add_argument('--visualize', action='store_true', default=False)
args = parser.parse_args()
trainer = recon.Engine(args)
submitit_logs_dir = os.path.join('experiments','logs', args.exp_type, args.exp_id )
executor = submitit.SlurmExecutor(submitit_logs_dir, max_num_timeout=3)
if args.eval:
time = 30
else:
time = 60*48
executor.update_parameters(
num_gpus=1,
partition='',
cpus_per_task=16,
mem=500000,
time=time,
job_name=args.exp_id,
signal_delay_s=300,
)
executor.submit(trainer)
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import torch.nn as nn
import torch
import numpy as np
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import math
# network for making image features for vertex feature vectors
class Image_Encoder(nn.Module):
def __init__(self, args):
super(Image_Encoder, self).__init__()
layers = []
cur_size = 6
next_size = 16
for i in range(args.num_img_blocks):
layers.append(CNN_layer(cur_size, next_size, args.size_img_ker, stride=2))
cur_size = next_size
next_size = next_size * 2
for j in range(args.num_img_layers -1):
layers.append(CNN_layer(cur_size, cur_size, args.size_img_ker))
self.args = args
self.layers = nn.ModuleList(layers)
f = 221.7025
RT = np.array([[-0.0000, -1.0000, 0.0000, -0.0000],
[-0.7071, 0.0000, -0.7071, 0.4243],
[0.7071, 0.0000, -0.7071, 1.1314]])
K = np.array([[f, 0, 128.], [0, f, 128.], [0, 0, 1]])
self.matrix = torch.FloatTensor(K.dot(RT)).cuda()
# implemented from:
# https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py
# MIT License
# defines image features over vertices from vertex positions, and feature mpas from vision
def pooling(self, blocks, verts_pos, debug=False):
# convert vertex positions to x,y coordinates in the image, scaled to fractions of image dimension
ext_verts_pos = torch.cat(
(verts_pos, torch.FloatTensor(np.ones([verts_pos.shape[0], verts_pos.shape[1], 1])).cuda()), dim=-1)
ext_verts_pos = torch.matmul(ext_verts_pos, self.matrix.permute(1, 0))
xs = ext_verts_pos[:, :, 1] / ext_verts_pos[:, :, 2] / 256.
ys = ext_verts_pos[:, :, 0] / ext_verts_pos[:, :, 2] / 256.
full_features = None
batch_size = verts_pos.shape[0]
# check camera project covers the image
if debug:
dim = 256
xs = (torch.clamp(xs * dim, 0, dim - 1).data.cpu().numpy()).astype(np.uint8)
ys = (torch.clamp(ys * dim, 0, dim - 1).data.cpu().numpy()).astype(np.uint8)
for ex in range(blocks.shape[0]):
img = blocks[ex].permute(1, 2, 0).data.cpu().numpy()[:, :, :3]
for x, y in zip(xs[ex], ys[ex]):
img[x, y, 0] = 1
img[x, y, 1] = 0
img[x, y, 2] = 0
from PIL import Image
Image.fromarray((img * 255).astype(np.uint8)).save('results/temp.png')
print('saved')
input()
for block in blocks:
# scale projected vertex points to dimension of current feature map
dim = block.shape[-1]
cur_xs = torch.clamp(xs * dim, 0, dim - 1)
cur_ys = torch.clamp(ys * dim, 0, dim - 1)
# https://en.wikipedia.org/wiki/Bilinear_interpolation
x1s, y1s, x2s, y2s = torch.floor(cur_xs), torch.floor(cur_ys), torch.ceil(cur_xs), torch.ceil(cur_ys)
A = x2s - cur_xs
B = cur_xs - x1s
G = y2s - cur_ys
H = cur_ys - y1s
x1s = x1s.type(torch.cuda.LongTensor)
y1s = y1s.type(torch.cuda.LongTensor)
x2s = x2s.type(torch.cuda.LongTensor)
y2s = y2s.type(torch.cuda.LongTensor)
# flatten batch of feature maps to make vectorization easier
flat_block = block.permute(1, 0, 2, 3).contiguous().view(block.shape[1], -1)
block_idx = torch.arange(0, verts_pos.shape[0]).cuda().unsqueeze(-1).expand(batch_size, verts_pos.shape[1])
block_idx = block_idx * dim * dim
selection = (block_idx + (x1s * dim) + y1s).view(-1)
C = torch.index_select(flat_block, 1, selection)
C = C.view(-1, batch_size, verts_pos.shape[1]).permute(1, 0, 2)
selection = (block_idx + (x1s * dim) + y2s).view(-1)
D = torch.index_select(flat_block, 1, selection)
D = D.view(-1, batch_size, verts_pos.shape[1]).permute(1, 0, 2)
selection = (block_idx + (x2s * dim) + y1s).view(-1)
E = torch.index_select(flat_block, 1, selection)
E = E.view(-1, batch_size, verts_pos.shape[1]).permute(1, 0, 2)
selection = (block_idx + (x2s * dim) + y2s).view(-1)
F = torch.index_select(flat_block, 1, selection)
F = F.view(-1, batch_size, verts_pos.shape[1]).permute(1, 0, 2)
section1 = A.unsqueeze(1) * C * G.unsqueeze(1)
section2 = H.unsqueeze(1) * D * A.unsqueeze(1)
section3 = G.unsqueeze(1) * E * B.unsqueeze(1)
section4 = B.unsqueeze(1) * F * H.unsqueeze(1)
features = (section1 + section2 + section3 + section4)
features = features.permute(0, 2, 1)
if full_features is None:
full_features = features
else:
full_features = torch.cat((full_features, features), dim=2)
return full_features
def forward(self, img_occ, img_unocc, cur_vertices):
# double size due to legacy decision
if self.args.use_unoccluded:
x = torch.cat((img_unocc, img_unocc), dim = 1)
elif self.args.use_occluded:
x = torch.cat((img_occ, img_occ), dim=1)
else:
x = torch.cat((img_occ, img_unocc), dim=1)
features = []
layer_selections = [len(self.layers) - 1 - (i+1)*self.args.num_img_layers for i in range(3)]
for e, layer in enumerate(self.layers):
if x.shape[-1] < self.args.size_img_ker:
break
x = layer(x)
# collect feature maps
if e in layer_selections:
features.append(x)
features.append(x)
# get vertex features from selected feature maps
vert_image_features = self.pooling(features, cur_vertices)
return vert_image_features
# global chart deformation class
class Encoder(nn.Module):
def __init__(self, adj_info, inital_positions, args):
super(Encoder, self).__init__()
self.adj_info = adj_info
self.initial_positions = inital_positions
self.args = args
input_size = 3 # used to determine the size of the vertex feature vector
if args.use_occluded or args.use_unoccluded:
self.img_encoder = Image_Encoder(args).cuda()
with torch.no_grad():
input_size += self.img_encoder(torch.zeros(1, 3, 256, 256).cuda(), torch.zeros(1, 3, 256, 256).cuda(), torch.zeros(1, 1, 3).cuda()).shape[-1]
if self.args.use_touch:
input_size+=1
self.mesh_decoder = GCN(input_size, args).cuda()
def forward(self, img_occ, img_unocc, batch):
# initial data
batch_size = img_occ.shape[0]
cur_vertices = self.initial_positions.unsqueeze(0).expand(batch_size, -1, -1)
size_vision_charts = cur_vertices.shape[1]
# if using touch then append touch chart position to graph definition
if self.args.use_touch:
sheets = batch['sheets'].cuda().view(batch_size, -1, 3)
cur_vertices = torch.cat((cur_vertices,sheets), dim = 1 )
# cycle thorugh deformation
for _ in range(3):
vertex_features = cur_vertices.clone()
# add vision features
if self.args.use_occluded or self.args.use_unoccluded:
vert_img_features = self.img_encoder(img_occ, img_unocc, cur_vertices)
vertex_features = torch.cat((vert_img_features, vertex_features), dim=-1)
# add mask for touch charts
if self.args.use_touch:
vision_chart_mask = torch.ones(batch_size, size_vision_charts, 1).cuda() * 2 # flag corresponding to vision
touch_chart_mask = torch.FloatTensor(batch['successful']).cuda().unsqueeze(-1).expand(batch_size, 4 * self.args.num_grasps, 25)
touch_chart_mask = touch_chart_mask.contiguous().view(batch_size, -1, 1)
mask = torch.cat((vision_chart_mask, touch_chart_mask), dim=1)
vertex_features = torch.cat((vertex_features,mask), dim = -1)
# deform the vertex positions
vertex_positions = self.mesh_decoder(vertex_features, self.adj_info)
# avoid deforming the touch chart positions
vertex_positions[:, size_vision_charts:] = 0
cur_vertices = cur_vertices + vertex_positions
return cur_vertices
# implemented from:
# https://github.com/tkipf/pygcn/tree/master/pygcn
# MIT License
# Graph convolutional network for chart deformation
class GCN(nn.Module):
def __init__(self, input_features, args):
super(GCN, self).__init__()
self.num_layers = args.num_gcn_layers
# define output sizes for each GCN layer
hidden_values = [input_features] + [ args.hidden_gcn_layers for k in range(self.num_layers -1)] + [3]
# define layers
layers = []
for i in range(self.num_layers):
layers.append(GCN_layer(hidden_values[i], hidden_values[i+1]))
self.layers = nn.ModuleList(layers)
def forward(self, vertex_features, adj_info):
adj = adj_info['adj']
# iterate through GCN layers
x = self.layers[0](vertex_features, adj, F.relu)
for i in range(1, self.num_layers-1):
x = self.layers[i](x, adj, F.relu)
coords = (self.layers[-1](x, adj, lambda x: x))
return coords
# CNN layer definition
def CNN_layer(f_in, f_out, k, stride = 1):
layers = []
layers.append(nn.Conv2d(int(f_in), int(f_out), kernel_size=k, padding=1, stride=stride))
layers.append(nn.BatchNorm2d(int(f_out)))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
# implemented from:
# https://github.com/tkipf/pygcn/tree/master/pygcn
# MIT License
# Graph convolutional network layer definition
class GCN_layer(nn.Module):
def __init__(self, in_features, out_features, bias=True):
super(GCN_layer, self).__init__()
self.weight1 = Parameter(torch.Tensor(1, in_features, out_features))
self.bias = Parameter(torch.Tensor(out_features))
self.reset_parameters()
def reset_parameters(self):
stdv = 6. / math.sqrt((self.weight1.size(1) + self.weight1.size(0)))
stdv *= .3
self.weight1.data.uniform_(-stdv, stdv)
self.bias.data.uniform_(-.1, .1)
def forward(self, features, adj, activation):
# 0N-GCN definition, removes need for resnet layers
features = torch.matmul(features, self.weight1)
output = torch.matmul(adj, features[:, :, :features.shape[-1] // 3])
output = torch.cat((output, features[:, :, features.shape[-1] // 3:]), dim=-1)
output = output + self.bias
return activation(output)
|
#Copyright (c) Facebook, Inc. and its affiliates.
#All rights reserved.
#This source code is licensed under the license found in the
#LICENSE file in the root directory of this source tree.
import os
import models
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import tensorflow as tf
import tensorboard as tb
from tqdm import tqdm
import sys
sys.path.insert(0, "../")
import utils
import data_loaders
class Engine():
def __init__(self, args):
# set seeds
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# set initial data values
self.epoch = 0
self.best_loss = 10000
self.args = args
self.last_improvement = 0
self.num_samples = 10000
self.classes = ['0001', '0002']
self.checkpoint_dir = os.path.join('experiments/checkpoint/', args.exp_type, args.exp_id)
def __call__(self) -> float:
# initial data
if self.args.GEOmetrics:
self.adj_info, initial_positions = utils.load_mesh_vision(self.args, f'../data/sphere.obj')
else:
self.adj_info, initial_positions = utils.load_mesh_vision(self.args, f'../data/vision_sheets.obj')
self.encoder = models.Encoder(self.adj_info, Variable(initial_positions.cuda()), self.args)
self.encoder.cuda()
params = list(self.encoder.parameters())
self.optimizer = optim.Adam(params, lr=self.args.lr, weight_decay=0)
writer = SummaryWriter(os.path.join('experiments/tensorboard/', self.args.exp_type ))
train_loader, valid_loaders = self.get_loaders()
if self.args.eval:
if self.args.pretrained != 'no':
self.load_pretrained()
else:
self.load('')
with torch.no_grad():
self.validate(valid_loaders, writer)
exit()
# training loop
for epoch in range(3000):
self.epoch = epoch
self.train(train_loader, writer)
with torch.no_grad():
self.validate(valid_loaders, writer)
self.check_values()
def get_loaders(self):
train_data = data_loaders.mesh_loader_vision(self.classes, self.args, set_type='train', sample_num=self.num_samples)
train_loader = DataLoader(train_data, batch_size=self.args.batch_size, shuffle=True, num_workers=16, collate_fn=train_data.collate)
valid_loaders = []
set_type = 'test' if self.args.eval else 'valid'
for c in self.classes:
valid_data = data_loaders.mesh_loader_vision(c, self.args, set_type=set_type, sample_num=self.num_samples)
valid_loaders.append( DataLoader(valid_data, batch_size=self.args.batch_size, shuffle=False, num_workers=16, collate_fn=valid_data.collate))
return train_loader, valid_loaders
def train(self, data, writer):
total_loss = 0
iterations = 0
self.encoder.train()
for k, batch in enumerate(tqdm(data)):
self.optimizer.zero_grad()
# initialize data
img_occ = batch['img_occ'].cuda()
img_unocc = batch['img_unocc'].cuda()
gt_points = batch['gt_points'].cuda()
# inference
# self.encoder.img_encoder.pooling(img_unocc, gt_points, debug=True)
verts = self.encoder(img_occ, img_unocc, batch)
# losses
loss = utils.chamfer_distance(verts, self.adj_info['faces'], gt_points, num=self.num_samples)
loss = self.args.loss_coeff * loss.mean()
# backprop
loss.backward()
self.optimizer.step()
# log
message = f'Train || Epoch: {self.epoch}, loss: {loss.item():.2f}, b_ptp: {self.best_loss:.2f}'
tqdm.write(message)
total_loss += loss.item()
iterations += 1.
writer.add_scalars('train_loss', {self.args.exp_id : total_loss / iterations}, self.epoch)
def validate(self, data, writer):
total_loss = 0
# local losses at different distances from the touch sites
self.encoder.eval()
for v, valid_loader in enumerate(data):
num_examples = 0
class_loss = 0
for k, batch in enumerate(tqdm(valid_loader)):
# initialize data
img_occ = batch['img_occ'].cuda()
img_unocc = batch['img_unocc'].cuda()
gt_points = batch['gt_points'].cuda()
batch_size = img_occ.shape[0]
obj_class = batch['class'][0]
# model prediction
verts = self.encoder(img_occ, img_unocc, batch)
# losses
loss = utils.chamfer_distance(verts, self.adj_info['faces'], gt_points, num=self.num_samples)
loss = self.args.loss_coeff * loss.mean() * batch_size
# logs
num_examples += float(batch_size)
class_loss += loss
print_loss = (class_loss / num_examples)
message = f'Valid || Epoch: {self.epoch}, class: {obj_class}, f1: {print_loss:.2f}'
tqdm.write(message)
total_loss += (print_loss / float(len(self.classes)))
print('*******************************************************')
print(f'Validation Accuracy: {total_loss}')
print('*******************************************************')
writer.add_scalars('valid_ptp', {self.args.exp_id: total_loss}, self.epoch)
self.current_loss = total_loss
def save(self, label):
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
torch.save(self.encoder.state_dict(), self.checkpoint_dir + '/encoder_vision' + label)
torch.save(self.optimizer.state_dict(), self.checkpoint_dir + '/optim_vision' + label)
def check_values(self):
if self.best_loss >= self.current_loss:
improvement = self.best_loss -self.current_loss
self.best_loss = self.current_loss
print(f'Saving Model with a {improvement} improvement')
self.save('')
self.last_improvement = 0
else:
self.last_improvement += 1
if self.last_improvement == self.args.patience:
print(f'Over {self.args.patience} steps since last imporvement')
print('Exiting now')
exit()
if self.epoch % 10 == 0:
print(f'Saving Model at epoch {self.epoch}')
self.save(f'_recent')
print('*******************************************************')
def load(self, label):
self.encoder.load_state_dict(torch.load(self.checkpoint_dir + '/encoder_vision' + label))
self.optimizer.load_state_dict(torch.load(self.checkpoint_dir + '/optim_vision' + label))
def load_pretrained(self):
pretrained_location = 'experiments/checkpoint/pretrained/' + self.args.pretrained
self.encoder.load_state_dict(torch.load(pretrained_location))
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0, help='Setting for the random seed.')
parser.add_argument('--GEOmetrics', type=int, default=0, help='use GEOMemtrics setup instead')
parser.add_argument('--lr', type=float, default=0.0003, help='Initial learning rate.')
parser.add_argument('--eval', action='store_true', default=False, help='Evaluate the trained model on the test set.')
parser.add_argument('--batch_size', type=int, default=16, help='Size of the batch.')
parser.add_argument('--exp_id', type=str, default='Eval', help='The experiment name')
parser.add_argument('--exp_type', type=str, default='Test', help='The experiment group')
parser.add_argument('--use_occluded', action='store_true', default=False, help='To use the occluded image.')
parser.add_argument('--use_unoccluded', action='store_true', default=False, help='To use the unoccluded image.')
parser.add_argument('--use_touch', action='store_true', default=False, help='To use the touch information.')
parser.add_argument('--patience', type=int, default=30, help='How many epochs without imporvement before training stops.')
parser.add_argument('--loss_coeff', type=float, default=9000., help='Coefficient for loss term.')
parser.add_argument('--num_img_blocks', type=int, default=6, help='Number of image block in the image encoder.')
parser.add_argument('--num_img_layers', type=int, default=3, help='Number of image layer in each blocl in the image encoder.')
parser.add_argument('--size_img_ker', type=int, default=5, help='Size of the image kernel in each Image encoder layer')
parser.add_argument('--num_gcn_layers', type=int, default=20, help='Number of GCN layer in the mesh deformation network.')
parser.add_argument('--hidden_gcn_layers', type=int, default=300, help='Size of the feature vector for each GCN layer in the mesh deformation network.')
parser.add_argument('--num_grasps', type=int, default=1, help='Number of grasps in each instance to train with')
parser.add_argument('--pretrained', type=str, default='no', help='String indicating which pretrained model to use.',
choices=['no', 'empty', 'touch', 'touch_unoccluded', 'touch_occluded', 'unoccluded', 'occluded'])
args = parser.parse_args()
# update args for pretrained models
args = utils.pretrained_args(args)
trainer = Engine(args)
trainer()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import distutils.command.clean
import os
import shutil
import subprocess
from pathlib import Path
from setuptools import find_packages, setup
cwd = os.path.dirname(os.path.abspath(__file__))
version_txt = os.path.join(cwd, "version.txt")
with open(version_txt, "r") as f:
version = f.readline().strip()
ROOT_DIR = Path(__file__).parent.resolve()
try:
sha = (
subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd)
.decode("ascii")
.strip()
)
except Exception:
sha = "Unknown"
package_name = "rlhive"
if os.getenv("BUILD_VERSION"):
version = os.getenv("BUILD_VERSION")
elif sha != "Unknown":
version += "+" + sha[:7]
def write_version_file():
version_path = os.path.join(cwd, "rlhive", "version.py")
with open(version_path, "w") as f:
f.write("__version__ = '{}'\n".format(version))
f.write("git_version = {}\n".format(repr(sha)))
def _get_pytorch_version():
# if "PYTORCH_VERSION" in os.environ:
# return f"torch=={os.environ['PYTORCH_VERSION']}"
return "torch"
def _get_packages():
exclude = [
"build*",
"test*",
# "rlhive.csrc*",
# "third_party*",
# "tools*",
]
return find_packages(exclude=exclude)
ROOT_DIR = Path(__file__).parent.resolve()
class clean(distutils.command.clean.clean):
def run(self):
# Run default behavior first
distutils.command.clean.clean.run(self)
# Remove rlhive extension
for path in (ROOT_DIR / "rlhive").glob("**/*.so"):
print(f"removing '{path}'")
path.unlink()
# Remove build directory
build_dirs = [
ROOT_DIR / "build",
]
for path in build_dirs:
if path.exists():
print(f"removing '{path}' (and everything under it)")
shutil.rmtree(str(path), ignore_errors=True)
def _check_robohive():
import importlib
import sys
name = "robohive"
spam_loader = importlib.find_loader(name)
found = spam_loader is not None
if name in sys.modules:
print(f"{name!r} already in sys.modules")
# elif (spec := importlib.util.find_spec(name)) is not None:
elif found:
print(f"{name!r} is importable")
else:
raise ImportError(
f"can't find {name!r}: check README.md for " f"install instructions"
)
def _main():
pytorch_package_dep = _get_pytorch_version()
print("-- PyTorch dependency:", pytorch_package_dep)
# branch = _run_cmd(["git", "rev-parse", "--abbrev-ref", "HEAD"])
# tag = _run_cmd(["git", "describe", "--tags", "--exact-match", "@"])
this_directory = Path(__file__).parent
long_description = (this_directory / "README.md").read_text()
# install robohive locally
# subprocess.run(
# [
# "git",
# "clone",
# "-c",
# "submodule.robohive/sims/neuromuscular_sim.update=none",
# "--branch",
# "non-local-install",
# "--recursive",
# "https://github.com/vikashplus/robohive.git",
# "third_party/robohive",
# ]
# )
# subprocess.run(
# [
# "git",
# "clone",
# "--branch",
# "main",
# "https://github.com/pytorch/rl.git",
# "third_party/rl",
# ]
# )
# mj_env_path = os.path.join(os.getcwd(), "third_party", "robohive#egg=robohive")
# rl_path = os.path.join(os.getcwd(), "third_party", "rl#egg=torchrl")
setup(
# Metadata
name="rlhive",
version=version,
author="rlhive contributors",
author_email="[email protected]",
url="https://github.com/fairinternal/rlhive",
long_description=long_description,
long_description_content_type="text/markdown",
license="BSD",
# Package info
packages=find_packages(exclude=("test", "tutorials", "third_party")),
# ext_modules=get_extensions(),
# cmdclass={
# "build_ext": BuildExtension.with_options(no_python_abi_suffix=True),
# "clean": clean,
# },
install_requires=[
pytorch_package_dep,
# "torchrl @ git+ssh://[email protected]/pytorch/rl@main#egg=torchrl",
# f"torchrl @ file://{rl_path}",
"torchrl",
"gym==0.13",
# "robohive",
# f"robohive @ file://{mj_env_path}",
"numpy",
"packaging",
"cloudpickle",
"hydra-core",
"dm_control",
],
zip_safe=False,
dependency_links=[
# location to your egg file
],
extra_requires={
"tests": ["pytest", "pyyaml", "pytest-instafail"],
},
)
if __name__ == "__main__":
write_version_file()
print("Building wheel {}-{}".format(package_name, version))
print(f"BUILD_VERSION is {os.getenv('BUILD_VERSION')}")
# _check_robohive()
_main()
|
import robohive
import torchrl
from rlhive import RoboHiveEnv
|
import argparse
import pytest
import torch
from rlhive.rl_envs import RoboHiveEnv
from torchrl.envs import (
CatTensors,
EnvCreator,
ParallelEnv,
R3MTransform,
TransformedEnv,
)
from torchrl.envs.utils import check_env_specs
def test_state_env():
pass
def test_pixel_env():
pass
@pytest.mark.parametrize(
"env_name",
[
"visual_franka_slide_random-v3",
"visual_franka_slide_close-v3",
"visual_franka_slide_open-v3",
"visual_franka_micro_random-v3",
"visual_franka_micro_close-v3",
"visual_franka_micro_open-v3",
"visual_kitchen_knob1_off-v3",
"visual_kitchen_knob1_on-v3",
"visual_kitchen_knob2_off-v3",
"visual_kitchen_knob2_on-v3",
"visual_kitchen_knob3_off-v3",
"visual_kitchen_knob3_on-v3",
"visual_kitchen_knob4_off-v3",
"visual_kitchen_knob4_on-v3",
"visual_kitchen_light_off-v3",
"visual_kitchen_light_on-v3",
"visual_kitchen_sdoor_close-v3",
"visual_kitchen_sdoor_open-v3",
"visual_kitchen_ldoor_close-v3",
"visual_kitchen_ldoor_open-v3",
"visual_kitchen_rdoor_close-v3",
"visual_kitchen_rdoor_open-v3",
"visual_kitchen_micro_close-v3",
"visual_kitchen_micro_open-v3",
"visual_kitchen_close-v3",
],
)
def test_mixed_env(env_name):
base_env = RoboHiveEnv(
env_name,
)
assert base_env.from_pixels
env = TransformedEnv(
base_env,
CatTensors(
[key for key in base_env.observation_spec.keys() if "pixels" not in key],
"observation",
),
)
# reset
tensordict = env.reset()
assert {"done", "observation", "pixels"} == set(tensordict.keys())
assert tensordict["pixels"].shape[0] == 2
# step
env.rand_step(tensordict)
assert {
"reward",
"done",
"observation",
"pixels",
"action",
("next", "observation"),
("next", "pixels"),
"next",
} == set(tensordict.keys(True))
# rollout
tensordict = env.rollout(10)
assert {
"reward",
"done",
"observation",
"pixels",
"action",
("next", "observation"),
("next", "pixels"),
"next",
} == set(tensordict.keys(True))
assert tensordict.shape == torch.Size([10])
env.close()
@pytest.mark.parametrize(
"env_name",
[
"visual_franka_slide_random-v3",
"visual_franka_slide_close-v3",
"visual_franka_slide_open-v3",
"visual_franka_micro_random-v3",
"visual_franka_micro_close-v3",
"visual_franka_micro_open-v3",
"visual_kitchen_knob1_off-v3",
"visual_kitchen_knob1_on-v3",
"visual_kitchen_knob2_off-v3",
"visual_kitchen_knob2_on-v3",
"visual_kitchen_knob3_off-v3",
"visual_kitchen_knob3_on-v3",
"visual_kitchen_knob4_off-v3",
"visual_kitchen_knob4_on-v3",
"visual_kitchen_light_off-v3",
"visual_kitchen_light_on-v3",
"visual_kitchen_sdoor_close-v3",
"visual_kitchen_sdoor_open-v3",
"visual_kitchen_ldoor_close-v3",
"visual_kitchen_ldoor_open-v3",
"visual_kitchen_rdoor_close-v3",
"visual_kitchen_rdoor_open-v3",
"visual_kitchen_micro_close-v3",
"visual_kitchen_micro_open-v3",
"visual_kitchen_close-v3",
],
)
def test_specs(env_name):
base_env = RoboHiveEnv(
env_name,
)
check_env_specs(base_env)
env = TransformedEnv(
base_env,
CatTensors(
[key for key in base_env.observation_spec.keys() if "pixels" not in key],
"observation",
),
)
check_env_specs(env)
@pytest.mark.parametrize(
"env_name",
[
"visual_franka_slide_random-v3",
"visual_franka_slide_close-v3",
"visual_franka_slide_open-v3",
"visual_franka_micro_random-v3",
"visual_franka_micro_close-v3",
"visual_franka_micro_open-v3",
"visual_kitchen_knob1_off-v3",
"visual_kitchen_knob1_on-v3",
"visual_kitchen_knob2_off-v3",
"visual_kitchen_knob2_on-v3",
"visual_kitchen_knob3_off-v3",
"visual_kitchen_knob3_on-v3",
"visual_kitchen_knob4_off-v3",
"visual_kitchen_knob4_on-v3",
"visual_kitchen_light_off-v3",
"visual_kitchen_light_on-v3",
"visual_kitchen_sdoor_close-v3",
"visual_kitchen_sdoor_open-v3",
"visual_kitchen_ldoor_close-v3",
"visual_kitchen_ldoor_open-v3",
"visual_kitchen_rdoor_close-v3",
"visual_kitchen_rdoor_open-v3",
"visual_kitchen_micro_close-v3",
"visual_kitchen_micro_open-v3",
"visual_kitchen_close-v3",
],
)
def test_parallel(env_name):
def make_env():
base_env = RoboHiveEnv(
env_name,
)
check_env_specs(base_env)
env = TransformedEnv(
base_env,
CatTensors(
[
key
for key in base_env.observation_spec.keys()
if "pixels" not in key
],
"observation",
),
)
return env
env = ParallelEnv(3, make_env)
env.reset()
env.rollout(3)
@pytest.mark.parametrize("parallel", [False, True])
def test_env_render_native(parallel):
if not parallel:
env = RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0")
else:
env = ParallelEnv(3, lambda: RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0"))
td = env.reset()
assert set(td.keys(True)) == {
"done",
"observation",
"pixels",
}
td = env.rand_step(td)
assert set(td.keys(True)) == {
"done",
"next",
("next", "pixels"),
"pixels",
"observation",
("next", "observation"),
"reward",
"action",
}
td = env.rollout(50)
if not parallel:
assert td.shape == torch.Size([50])
else:
assert td.shape == torch.Size([3, 50])
assert set(td.keys(True)) == {
"done",
"next",
("next", "pixels"),
"pixels",
"observation",
("next", "observation"),
"reward",
"action",
}
env.close()
@pytest.mark.parametrize(
"parallel,env_creator", [[True, True], [True, False], [False, True]]
)
def test_env_r3m_native(parallel, env_creator):
if not parallel:
base_env = RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0")
else:
if env_creator:
env_creator = EnvCreator(
lambda: RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0")
)
else:
env_creator = lambda: RoboHiveEnv(env_name="FrankaReachRandom_v2d-v0")
base_env = ParallelEnv(3, env_creator)
env = TransformedEnv(
base_env,
R3MTransform(
"resnet18",
["pixels"],
["pixels_embed"],
),
)
td = env.reset()
_ = env.rand_step(td)
td = env.rollout(50)
if parallel:
assert td.shape == torch.Size([3, 50])
else:
assert td.shape == torch.Size([50])
env.close()
if __name__ == "__main__":
args, unknown = argparse.ArgumentParser().parse_known_args()
pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)
|
import torch
def get_available_devices():
devices = [torch.device("cpu")]
n_cuda = torch.cuda.device_count()
if n_cuda > 0:
for i in range(n_cuda):
devices += [torch.device(f"cuda:{i}")]
return devices
|
import argparse
import pytest
import torch
from omegaconf import OmegaConf
from rlhive.sim_algos.helpers import EnvConfig
from rlhive.sim_algos.run import make_env_constructor
from utils import get_available_devices
@pytest.mark.parametrize("device", get_available_devices())
def test_make_r3menv(device):
cfg = EnvConfig
# hacky way of create a config that can be shared across processes
cfg = OmegaConf.create(OmegaConf.to_yaml(cfg))
cfg.env_name = "FrankaReachRandom_v2d-v0"
cfg.r3m = "resnet50"
cfg.collector_devices = str(device)
cfg.norm_stats = False
cfg.env_per_collector = 2
cfg.pin_memory = False
cfg.batch_transform = True
single_env_constructor, multi_env_constructor = make_env_constructor(cfg)
env = single_env_constructor()
print(env)
td = env.reset()
assert {"done", "observation_vector"} == set(td.keys())
td = env.rollout(10)
assert {
"action",
"done",
(
"next",
"observation_vector",
),
"next",
"observation_vector",
"reward",
} == set(td.keys())
assert td.shape == torch.Size([10])
env = multi_env_constructor
print(env)
td = env.reset()
assert {"done", "observation_vector"} == set(td.keys())
td = env.rollout(10)
assert {
"action",
"done",
(
"next",
"observation_vector",
),
"next",
"observation_vector",
"reward",
} == set(td.keys())
assert td.shape == torch.Size([2, 10])
env.close()
if __name__ == "__main__":
args, unknown = argparse.ArgumentParser().parse_known_args()
pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)
|
''' Use this script to comapare multiple results \n
Usage: python viz_resulyts.py -j expdir1_group0 expdir2_group0 -j expdir3_group1 expdir4_group1 -k "key1" "key2"...
'''
from vtils.plotting import simple_plot
import argparse
from scipy import signal
import pandas
import glob
def get_files(search_path, file_name):
search_path = search_path[:-1] if search_path.endswith('/') else search_path
search_path = search_path+"*/**/"+file_name
filenames = glob.glob(search_path, recursive=True)
assert (len(filenames) > 0), "No file found at: {}".format(search_path)
return filenames
# Another example, Python 3.5+
def get_files_p35(search_path, file_name):
from pathlib import Path
filenames = []
for path in Path(search_path).rglob(file_name):
filenames.append(path)
return filenames
def get_log(filename, format="csv"):
try:
if format=="csv":
data = pandas.read_csv(filename)
elif format=="json":
data = pandas.read_json(filename)
except Exception as e:
print("WARNING: Can't read %s." % filename)
quit()
return data
def smooth_data(y, window_length=101, polyorder=3):
window_length = min(int(len(y) / 2),
window_length) # set maximum valid window length
# if window not off
if window_length % 2 == 0:
window_length = window_length + 1
try:
return signal.savgol_filter(y, window_length, polyorder)
except Exception as e:
return y # nans
# MAIN =========================================================
def main():
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument(
'-j', '--job', required=True, action='append', nargs='?', help='job group')
parser.add_argument(
'-lf', '--log_file', type=str, default="log.csv", help='name of log file (with extension)')
parser.add_argument(
'-cf', '--config_file', type=str, default="job_config.json", help='name of config file (with extension)')
parser.add_argument(
'-t', '--title', type=str, default=None, help='Title of the plot')
parser.add_argument(
'-l', '--label', action='append', nargs='?', help='job group label')
parser.add_argument(
'-s', '--smooth', type=int, default=21, help='window for smoothing')
parser.add_argument(
'-y', '--ykeys', nargs='+', default=["eval_score", 'norm_score'], help='yKeys to plot')
parser.add_argument(
'-x', '--xkey', default="total_num_samples", help='xKey to plot')
parser.add_argument(
'-i', '--index', type=int, default=-4, help='index in log filename to use as labels')
args = parser.parse_args()
# scan labels
if args.label is not None:
assert (len(args.job) == len(args.label)), "The number of labels has to be same as the number of jobs"
else:
args.label = [''] * len(args.job)
# for all the algo jobs
for ialgo, algo_dir in enumerate(args.job):
print("algo> "+algo_dir)
envs_dirs = glob.glob(algo_dir+"/*/")
# for all envs inside the algo
nenv = len(envs_dirs)
for ienv, env_dir in enumerate(sorted(envs_dirs)):
print("env>> "+env_dir)
run_dirs = glob.glob(env_dir+"/*/")
# all the seeds/ variations within the env
for irun, run_dir in enumerate(sorted(run_dirs)):
print("run> "+run_dir)
title = run_dir.split('/')[3]
title = title[:title.find('-v')]
# for log_file in get_files(env_dir, args.file):
log_file = get_files(run_dir, args.log_file)
log = get_log(filename=log_file[0], format="csv")
# validate keys
for key in [args.xkey]+args.ykeys:
assert key in log.keys(), "{} not present in available keys {}".format(key, log.keys())
nykeys = len(args.ykeys)
for iykey, ykey in enumerate(sorted(args.ykeys)):
simple_plot.plot(xdata=log[args.xkey]/1e6,
ydata=smooth_data(log[ykey], args.smooth),
legend='job_name',
subplot_id=(nenv, nykeys, nykeys*ienv+iykey+1),
xaxislabel=args.xkey+'(M)',
plot_name=title,
yaxislabel=ykey,
fig_size=(4*nykeys, 4*nenv),
fig_name='SAC performance'
)
# simple_plot.show_plot()
simple_plot.save_plot(args.job[0]+'RS-SAC.pdf')
if __name__ == '__main__':
main()
|
''' Use this script to comapare multiple results \n
Usage: python agents/NPG/plot_all_npg.py -j agents/v0.1/kitchen/NPG/outputs_kitchenJ5c_3.8/ -j agents/v0.1/kitchen/NPG/outputs_kitchenJ5d_3.9/ -j /Users/vikashplus/Projects/mj_envs/kitchen/outputs_kitchenJ8a/ -l 'v0.1(fixed_init)' -l 'v0.1(random_init)' -l 'v0.2(random_init)' -pt True
'''
from vtils.plotting import simple_plot
import argparse
from scipy import signal
import pandas
import glob
import numpy as np
import os
def get_files(search_path, file_name):
search_path = search_path[:-1] if search_path.endswith('/') else search_path
search_path = search_path+"*/**/"+file_name
filenames = glob.glob(search_path, recursive=True)
assert (len(filenames) > 0), "No file found at: {}".format(search_path)
return filenames
# Another example, Python 3.5+
def get_files_p35(search_path, file_name):
from pathlib import Path
filenames = []
for path in Path(search_path).rglob(file_name):
filenames.append(path)
return filenames
def get_log(filename, format="csv"):
try:
if format=="csv":
data = pandas.read_csv(filename)
elif format=="json":
data = pandas.read_json(filename)
except Exception as e:
print("WARNING: Can't read %s." % filename)
quit()
return data
def smooth_data(y, window_length=101, polyorder=3):
window_length = min(int(len(y) / 2),
window_length) # set maximum valid window length
# if window not off
if window_length % 2 == 0:
window_length = window_length + 1
try:
return signal.savgol_filter(y, window_length, polyorder)
except Exception as e:
return y # nans
# MAIN =========================================================
def main():
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument(
'-j', '--job', required=True, action='append', nargs='?', help='job group')
parser.add_argument(
'-lf', '--run_log', type=str, default="log.csv", help='name of log file (with extension)')
parser.add_argument(
'-cf', '--config_file', type=str, default="job_config.json", help='name of config file (with extension)')
parser.add_argument(
'-t', '--title', type=str, default=None, help='Title of the plot')
parser.add_argument(
'-l', '--label', action='append', nargs='?', help='job group label')
parser.add_argument(
'-s', '--smooth', type=int, default=21, help='window for smoothing')
parser.add_argument(
'-y', '--ykeys', nargs='+', default=['success_percentage', 'rwd_sparse', 'rwd_dense'], help='yKeys to plot')
parser.add_argument(
'-x', '--xkey', default="num_samples", help='xKey to plot')
parser.add_argument(
'-ei', '--env_index', type=int, default=-2, help='index in log filename to use as labels')
parser.add_argument(
'-pt', '--plot_train', type=bool, default=False, help='plot train perf')
parser.add_argument(
'-od', '--output_dir', type=str, default=None, help='Save outputs here')
args = parser.parse_args()
# init
nykeys = len(args.ykeys)
njob = len(args.job)
nenv = -1
env_labels = []
# scan labels
if args.label is not None:
assert (njob == len(args.label)), "The number of labels has to be same as the number of jobs"
else:
args.label = [''] * njob
# for all the jobs
for ijob, job_dir in enumerate(args.job):
print("Job> "+job_dir)
envs_dirs = glob.glob(job_dir+"/*/")
if nenv ==-1:
nenv = len(envs_dirs)
else:
assert nenv == len(envs_dirs), f"Number of envs changed {envs_dirs}"
for env_dir in sorted(envs_dirs):
env_labels.append(env_dir.split('/')[args.env_index])
# for all envs inside the exp
env_means = []
env_stds = []
for ienv, env_dir in enumerate(sorted(envs_dirs)):
print(" env> "+env_dir)
# all the seeds/ variations runs within the env
yruns = []
xruns = [] # known bug: Logs will different lengths will cause a bug. Its hacked via using [:len(xdata)]
for irun, run_log in enumerate(sorted(get_files(env_dir, args.run_log))):
print(" run> "+run_log, flush=True)
log = get_log(filename=run_log, format="csv")
# validate keys
for key in [args.xkey]+args.ykeys:
assert key in log.keys(), "{} not present in available keys {}".format(key, log.keys())
if 'sample' in args.xkey: #special keys
xdata = np.cumsum(log[args.xkey])/1e6
plot_xkey = args.xkey+"(M)"
else:
xdata = log[args.xkey]
plot_xkey = args.xkey
yruns.append(log[args.ykeys])
# print(xdata.shape, log[args.ykeys].shape)
del log
# stats over keys
yruns = pandas.concat(yruns)
yruns_stacked = yruns.groupby(yruns.index)
yruns_mean = yruns_stacked.mean()
yruns_min = yruns_stacked.min()
yruns_max = yruns_stacked.max()
yruns_std = yruns_stacked.std()
# stats over jobs
env_means.append(yruns_mean.tail(1))
env_stds.append(yruns_std.tail(1))
if args.plot_train:
for iykey, ykey in enumerate(sorted(args.ykeys)):
h_figp,_,_= simple_plot.plot(xdata=xdata,
ydata=smooth_data(yruns_mean[ykey][:len(xdata)], args.smooth),
errmin=yruns_min[ykey][:len(xdata)],
errmax=yruns_max[ykey][:len(xdata)],
legend=args.label[ijob],
subplot_id=(nenv, nykeys, nykeys*ienv+iykey+1),
xaxislabel=plot_xkey,
plot_name=env_labels[ienv],
yaxislabel=ykey,
fig_size=(4*nykeys, 3*nenv),
fig_name='NPG performance',
)
env_means = pandas.concat(env_means)
env_stds = pandas.concat(env_stds)
width = 1/(njob+1)
for iykey, ykey in enumerate(sorted(args.ykeys)):
h_figb, h_axisb, h_bar = simple_plot.bar(
xdata=np.arange(nenv)+width*ijob,
ydata=env_means[ykey],
errdata=env_stds[ykey],
width=width,
subplot_id=(nykeys, 1, iykey+1),
fig_size=(2+0.2*nenv, 4*nykeys),
fig_name="Env perfs",
yaxislabel=ykey,
legend=args.label[ijob],
xticklabels=env_labels[:nenv],
# plot_name="Performance using 5M samples"
)
args.output_dir = args.job[-1] if args.output_dir == None else args.output_dir
if args.plot_train:
simple_plot.save_plot(os.path.join(args.output_dir, 'TrainPerf-NPG.pdf'), h_figp)
simple_plot.save_plot(os.path.join(args.output_dir,'FinalPerf-NPG.pdf'), h_figb)
if __name__ == '__main__':
main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from tensordict.tensordict import make_tensordict, TensorDictBase
from torchrl.data import BoundedTensorSpec, CompositeSpec, UnboundedContinuousTensorSpec
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform, _has_gym, GymEnv
from torchrl.envs.transforms import CatTensors, Compose, R3MTransform, TransformedEnv
from torchrl.envs.utils import make_composite_from_td
from torchrl.trainers.helpers.envs import LIBS
if _has_gym:
import gym
class RoboHiveEnv(GymEnv):
# info_keys = ["time", "rwd_dense", "rwd_sparse", "solved"]
def _build_env(
self,
env_name: str,
from_pixels: bool = False,
pixels_only: bool = False,
**kwargs,
) -> "gym.core.Env":
self.pixels_only = pixels_only
try:
render_device = int(str(self.device)[-1])
except ValueError:
render_device = 0
print(f"rendering device: {render_device}, device is {self.device}")
if not _has_gym:
raise RuntimeError(
f"gym not found, unable to create {env_name}. "
f"Consider downloading and installing dm_control from"
f" {self.git_url}"
)
try:
env = self.lib.make(
env_name,
frameskip=self.frame_skip,
device_id=render_device,
return_dict=True,
**kwargs,
)
self.wrapper_frame_skip = 1
from_pixels = bool(len(env.visual_keys))
except TypeError as err:
if "unexpected keyword argument 'frameskip" not in str(err):
raise TypeError(err)
kwargs.pop("framek_skip")
env = self.lib.make(
env_name, return_dict=True, device_id=render_device, **kwargs
)
self.wrapper_frame_skip = self.frame_skip
self.from_pixels = from_pixels
self.render_device = render_device
self.info_dict_reader = self.read_info
return env
def _make_specs(self, env: "gym.Env") -> None:
if self.from_pixels:
num_cams = len(env.visual_keys)
# n_pix = 224 * 224 * 3 * num_cams
# env.observation_space = gym.spaces.Box(
# -8 * np.ones(env.obs_dim - n_pix),
# 8 * np.ones(env.obs_dim - n_pix),
# dtype=np.float32,
# )
self.action_spec = _gym_to_torchrl_spec_transform(
env.action_space, device=self.device
)
observation_spec = _gym_to_torchrl_spec_transform(
env.observation_space,
device=self.device,
)
if not isinstance(observation_spec, CompositeSpec):
observation_spec = CompositeSpec(observation=observation_spec)
self.observation_spec = observation_spec
if self.from_pixels:
self.observation_spec["pixels"] = BoundedTensorSpec(
torch.zeros(
num_cams,
224, # working with 640
224, # working with 480
3,
device=self.device,
dtype=torch.uint8,
),
255
* torch.ones(
num_cams,
224,
224,
3,
device=self.device,
dtype=torch.uint8,
),
torch.Size(torch.Size([num_cams, 224, 224, 3])),
dtype=torch.uint8,
device=self.device,
)
self.reward_spec = UnboundedContinuousTensorSpec(
device=self.device,
) # default
rollout = self.rollout(2).get("next").exclude("done", "reward")[0]
self.observation_spec.update(make_composite_from_td(rollout))
def set_from_pixels(self, from_pixels: bool) -> None:
"""Sets the from_pixels attribute to an existing environment.
Args:
from_pixels (bool): new value for the from_pixels attribute
"""
if from_pixels is self.from_pixels:
return
self.from_pixels = from_pixels
self._make_specs(self.env)
def read_obs(self, observation):
# the info is missing from the reset
observations = self.env.obs_dict
visual = self.env.get_exteroception()
try:
del observations["t"]
except KeyError:
pass
# recover vec
obsvec = []
pixel_list = []
observations.update(visual)
for key in observations:
if key.startswith("rgb"):
pix = observations[key]
if not pix.shape[0] == 1:
pix = pix[None]
pixel_list.append(pix)
elif key in self._env.obs_keys:
value = observations[key]
if not value.shape:
value = value[None]
obsvec.append(value) # ravel helps with images
if obsvec:
obsvec = np.concatenate(obsvec, 0)
if self.from_pixels:
out = {"observation": obsvec, "pixels": np.concatenate(pixel_list, 0)}
else:
out = {"observation": obsvec}
return super().read_obs(out)
def read_info(self, info, tensordict_out):
out = {}
for key, value in info.items():
if key in ("obs_dict", "done", "reward"):
continue
if isinstance(value, dict):
value = {key: _val for key, _val in value.items() if _val is not None}
value = make_tensordict(value, batch_size=[])
out[key] = value
tensordict_out.update(out)
return tensordict_out
def to(self, *args, **kwargs):
out = super().to(*args, **kwargs)
try:
render_device = int(str(out.device)[-1])
except ValueError:
render_device = 0
if render_device != self.render_device:
out._build_env(**self._constructor_kwargs)
return out
def make_r3m_env(env_name, model_name="resnet50", download=True, **kwargs):
base_env = RoboHiveEnv(env_name, from_pixels=True, pixels_only=False)
vec_keys = [k for k in base_env.observation_spec.keys() if k not in "pixels"]
env = TransformedEnv(
base_env,
Compose(
R3MTransform(
model_name,
keys_in=["pixels"],
keys_out=["pixel_r3m"],
download=download,
**kwargs,
),
CatTensors(keys_in=["pixel_r3m", *vec_keys], out_key="observation_vector"),
),
)
return env
LIBS["robohive"] = RoboHiveEnv
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# Custom env reg for RoboHive usage in TorchRL
# Pixel rendering will be queried by torchrl, so we don't include those keys in visual_obs_keys_wt
import os
import warnings
from pathlib import Path
import robohive.envs.multi_task.substeps1
from robohive.envs.env_variants import register_env_variant
visual_obs_keys_wt = robohive.envs.multi_task.substeps1.visual_obs_keys_wt
class set_directory(object):
"""Sets the cwd within the context
Args:
path (Path): The path to the cwd
"""
def __init__(self, path: Path):
self.path = path
self.origin = Path().absolute()
def __enter__(self):
os.chdir(self.path)
def __exit__(self, *args, **kwargs):
os.chdir(self.origin)
def __call__(self, fun):
def new_fun(*args, **kwargs):
with set_directory(Path(self.path)):
return fun(*args, **kwargs)
return new_fun
CURR_DIR = robohive.envs.multi_task.substeps1.CURR_DIR
MODEL_PATH = robohive.envs.multi_task.substeps1.MODEL_PATH
CONFIG_PATH = robohive.envs.multi_task.substeps1.CONFIG_PATH
RANDOM_ENTRY_POINT = robohive.envs.multi_task.substeps1.RANDOM_ENTRY_POINT
FIXED_ENTRY_POINT = robohive.envs.multi_task.substeps1.FIXED_ENTRY_POINT
ENTRY_POINT = RANDOM_ENTRY_POINT
override_keys = [
"objs_jnt",
"end_effector",
"knob1_site_err",
"knob2_site_err",
"knob3_site_err",
"knob4_site_err",
"light_site_err",
"slide_site_err",
"leftdoor_site_err",
"rightdoor_site_err",
"microhandle_site_err",
"kettle_site0_err",
"rgb:right_cam:224x224:2d",
"rgb:left_cam:224x224:2d",
]
@set_directory(CURR_DIR)
def register_kitchen_envs():
print("RLHive:> Registering Kitchen Envs")
env_list = [
"kitchen_knob1_off-v3",
"kitchen_knob1_on-v3",
"kitchen_knob2_off-v3",
"kitchen_knob2_on-v3",
"kitchen_knob3_off-v3",
"kitchen_knob3_on-v3",
"kitchen_knob4_off-v3",
"kitchen_knob4_on-v3",
"kitchen_light_off-v3",
"kitchen_light_on-v3",
"kitchen_sdoor_close-v3",
"kitchen_sdoor_open-v3",
"kitchen_ldoor_close-v3",
"kitchen_ldoor_open-v3",
"kitchen_rdoor_close-v3",
"kitchen_rdoor_open-v3",
"kitchen_micro_close-v3",
"kitchen_micro_open-v3",
"FK1_RelaxFixed-v4",
# "kitchen_close-v3",
]
obs_keys_wt = {
"robot_jnt": 1.0,
"end_effector": 1.0,
}
visual_obs_keys = {
"rgb:right_cam:224x224:2d": 1.0,
"rgb:left_cam:224x224:2d": 1.0,
}
for env in env_list:
try:
new_env_name = "visual_" + env
register_env_variant(
env,
variants={"obs_keys_wt": obs_keys_wt, "visual_keys": list(visual_obs_keys.keys())},
variant_id=new_env_name,
override_keys=override_keys,
)
except AssertionError as err:
warnings.warn(
f"Could not register {new_env_name}, the following error was raised: {err}"
)
@set_directory(CURR_DIR)
def register_franka_envs():
print("RLHive:> Registering Franka Envs")
env_list = [
"franka_slide_random-v3",
"franka_slide_close-v3",
"franka_slide_open-v3",
"franka_micro_random-v3",
"franka_micro_close-v3",
"franka_micro_open-v3",
]
# Franka Appliance ======================================================================
obs_keys_wt = {
"robot_jnt": 1.0,
"end_effector": 1.0,
}
visual_obs_keys = {
"rgb:right_cam:224x224:2d": 1.0,
"rgb:left_cam:224x224:2d": 1.0,
}
for env in env_list:
try:
new_env_name = "visual_" + env
register_env_variant(
env,
variants={"obs_keys_wt": obs_keys_wt, "visual_keys": visual_obs_keys},
variant_id=new_env_name,
override_keys=override_keys,
)
except AssertionError as err:
warnings.warn(
f"Could not register {new_env_name}, the following error was raised: {err}"
)
@set_directory(CURR_DIR)
def register_hand_envs():
print("RLHive:> Registering Arm Envs")
env_list = ["door-v1", "hammer-v1", "pen-v1", "relocate-v1"]
visual_obs_keys = [
"rgb:vil_camera:224x224:2d",
"rgb:fixed:224x224:2d",
]
# Hand Manipulation Suite ======================================================================
for env in env_list:
try:
new_env_name = "visual_" + env
register_env_variant(
env,
variants={
"obs_keys": [
"hand_jnt",
],
"visual_keys": visual_obs_keys,
},
variant_id=new_env_name,
)
except AssertionError as err:
warnings.warn(
f"Could not register {new_env_name}, the following error was raised: {err}"
)
@set_directory(CURR_DIR)
def register_myo_envs():
print("RLHive:> Registering Myo Envs")
env_list = ["motorFingerReachFixed-v0"]
visual_keys = [
"rgb:vil_camera:224x224:2d",
"rgb:fixed:224x224:2d",
]
# Hand Manipulation Suite ======================================================================
for env in env_list:
try:
new_env_name = "visual_" + env
register_env_variant(
env,
variants={
"obs_keys": [
"hand_jnt",
],
"visual_keys": visual_keys,
},
variant_id=new_env_name,
)
except AssertionError as err:
warnings.warn(
f"Could not register {new_env_name}, the following error was raised: {err}"
)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .envs import (
register_franka_envs,
register_hand_envs,
register_kitchen_envs,
register_myo_envs,
)
register_franka_envs()
register_kitchen_envs()
register_hand_envs()
register_myo_envs()
from .rl_envs import RoboHiveEnv
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Optional, Union
import torch
from torch.nn import Identity
from torchrl.data.tensor_specs import (
CompositeSpec,
TensorSpec,
UnboundedContinuousTensorSpec,
)
from torchrl.data.utils import DEVICE_TYPING
from torchrl.envs.transforms.transforms import (
CatTensors,
Compose,
FlattenObservation,
ObservationNorm,
Resize,
ToTensorImage,
Transform,
UnsqueezeTransform,
)
try:
from torchvision import models
_has_tv = True
except ImportError:
_has_tv = False
class _RRLNet(Transform):
inplace = False
def __init__(self, in_keys, out_keys, model_name, del_keys: bool = True):
if not _has_tv:
raise ImportError(
"Tried to instantiate RRL without torchvision. Make sure you have "
"torchvision installed in your environment."
)
if model_name == "resnet18":
self.model_name = "rrl_18"
self.outdim = 512
convnet = models.resnet18(pretrained=True)
elif model_name == "resnet34":
self.model_name = "rrl_34"
self.outdim = 512
convnet = models.resnet34(pretrained=True)
elif model_name == "resnet50":
self.model_name = "rrl_50"
self.outdim = 2048
convnet = models.resnet50(pretrained=True)
else:
raise NotImplementedError(
f"model {model_name} is currently not supported by RRL"
)
convnet.fc = Identity()
super().__init__(in_keys=in_keys, out_keys=out_keys)
self.convnet = convnet
self.del_keys = del_keys
def _call(self, tensordict):
tensordict_view = tensordict.view(-1)
super()._call(tensordict_view)
if self.del_keys:
tensordict.exclude(*self.in_keys, inplace=True)
return tensordict
@torch.no_grad()
def _apply_transform(self, obs: torch.Tensor) -> None:
shape = None
if obs.ndimension() > 4:
shape = obs.shape[:-3]
obs = obs.flatten(0, -4)
out = self.convnet(obs)
if shape is not None:
out = out.view(*shape, *out.shape[1:])
return out
def transform_observation_spec(self, observation_spec: TensorSpec) -> TensorSpec:
if not isinstance(observation_spec, CompositeSpec):
raise ValueError("_RRLNet can only infer CompositeSpec")
keys = [key for key in observation_spec._specs.keys() if key in self.in_keys]
device = observation_spec[keys[0]].device
dim = observation_spec[keys[0]].shape[:-3]
observation_spec = CompositeSpec(observation_spec)
if self.del_keys:
for in_key in keys:
del observation_spec[in_key]
for out_key in self.out_keys:
observation_spec[out_key] = UnboundedContinuousTensorSpec(
shape=torch.Size([*dim, self.outdim]), device=device
)
return observation_spec
# @staticmethod
# def _load_weights(model_name, r3m_instance, dir_prefix):
# if model_name not in ("r3m_50", "r3m_34", "r3m_18"):
# raise ValueError(
# "model_name should be one of 'r3m_50', 'r3m_34' or 'r3m_18'"
# )
# # url = "https://download.pytorch.org/models/rl/r3m/" + model_name
# url = "https://pytorch.s3.amazonaws.com/models/rl/r3m/" + model_name + ".pt"
# d = load_state_dict_from_url(
# url,
# progress=True,
# map_location=next(r3m_instance.parameters()).device,
# model_dir=dir_prefix,
# )
# td = TensorDict(d["r3m"], []).unflatten_keys(".")
# td_flatten = td["module"]["convnet"].flatten_keys(".")
# state_dict = td_flatten.to_dict()
# r3m_instance.convnet.load_state_dict(state_dict)
# def load_weights(self, dir_prefix=None):
# self._load_weights(self.model_name, self, dir_prefix)
def _init_first(fun):
def new_fun(self, *args, **kwargs):
if not self.initialized:
self._init()
return fun(self, *args, **kwargs)
return new_fun
class RRLTransform(Compose):
"""RRL Transform class.
RRL provides pre-trained ResNet weights aimed at facilitating visual
embedding for robotic tasks. The models are trained using Ego4d.
See the paper:
Shah, Rutav, and Vikash Kumar. "RRl: Resnet as representation for reinforcement learning."
arXiv preprint arXiv:2107.03380 (2021).
The RRLTransform is created in a lazy manner: the object will be initialized
only when an attribute (a spec or the forward method) will be queried.
The reason for this is that the :obj:`_init()` method requires some attributes of
the parent environment (if any) to be accessed: by making the class lazy we
can ensure that the following code snippet works as expected:
Examples:
>>> transform = RRLTransform("resnet50", in_keys=["pixels"])
>>> env.append_transform(transform)
>>> # the forward method will first call _init which will look at env.observation_spec
>>> env.reset()
Args:
model_name (str): one of resnet50, resnet34 or resnet18
in_keys (list of str): list of input keys. If left empty, the
"pixels" key is assumed.
out_keys (list of str, optional): list of output keys. If left empty,
"rrl_vec" is assumed.
size (int, optional): Size of the image to feed to resnet.
Defaults to 244.
stack_images (bool, optional): if False, the images given in the :obj:`in_keys`
argument will be treaded separetely and each will be given a single,
separated entry in the output tensordict. Defaults to :obj:`True`.
download (bool, optional): if True, the weights will be downloaded using
the torch.hub download API (i.e. weights will be cached for future use).
Defaults to False.
download_path (str, optional): path where to download the models.
Default is None (cache path determined by torch.hub utils).
tensor_pixels_keys (list of str, optional): Optionally, one can keep the
original images (as collected from the env) in the output tensordict.
If no value is provided, this won't be collected.
"""
@classmethod
def __new__(cls, *args, **kwargs):
cls.initialized = False
cls._device = None
cls._dtype = None
return super().__new__(cls)
def __init__(
self,
model_name: str,
in_keys: List[str],
out_keys: List[str] = None,
size: int = 244,
stack_images: bool = True,
download: bool = False,
download_path: Optional[str] = None,
tensor_pixels_keys: List[str] = None,
):
super().__init__()
self.in_keys = in_keys if in_keys is not None else ["pixels"]
self.download = download
self.download_path = download_path
self.model_name = model_name
self.out_keys = out_keys
self.size = size
self.stack_images = stack_images
self.tensor_pixels_keys = tensor_pixels_keys
self._init()
def _init(self):
"""Initializer for RRL."""
self.initialized = True
in_keys = self.in_keys
model_name = self.model_name
out_keys = self.out_keys
size = self.size
stack_images = self.stack_images
tensor_pixels_keys = self.tensor_pixels_keys
# ToTensor
transforms = []
if tensor_pixels_keys:
for i in range(len(in_keys)):
transforms.append(
CatTensors(
in_keys=[in_keys[i]],
out_key=tensor_pixels_keys[i],
del_keys=False,
)
)
totensor = ToTensorImage(
unsqueeze=False,
in_keys=in_keys,
)
transforms.append(totensor)
# Normalize
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
normalize = ObservationNorm(
in_keys=in_keys,
loc=torch.tensor(mean).view(3, 1, 1),
scale=torch.tensor(std).view(3, 1, 1),
standard_normal=True,
)
transforms.append(normalize)
# Resize: note that resize is a no-op if the tensor has the desired size already
resize = Resize(size, size, in_keys=in_keys)
transforms.append(resize)
# RRL
if out_keys is None:
if stack_images:
out_keys = ["rrl_vec"]
else:
out_keys = [f"rrl_vec_{i}" for i in range(len(in_keys))]
self.out_keys = out_keys
elif stack_images and len(out_keys) != 1:
raise ValueError(
f"out_key must be of length 1 if stack_images is True. Got out_keys={out_keys}"
)
elif not stack_images and len(out_keys) != len(in_keys):
raise ValueError(
"out_key must be of length equal to in_keys if stack_images is False."
)
if stack_images and len(in_keys) > 1:
unsqueeze = UnsqueezeTransform(
in_keys=in_keys,
out_keys=in_keys,
unsqueeze_dim=-4,
)
transforms.append(unsqueeze)
cattensors = CatTensors(
in_keys,
out_keys[0],
dim=-4,
)
network = _RRLNet(
in_keys=out_keys,
out_keys=out_keys,
model_name=model_name,
del_keys=False,
)
flatten = FlattenObservation(-2, -1, out_keys)
transforms = [*transforms, cattensors, network, flatten]
else:
network = _RRLNet(
in_keys=in_keys,
out_keys=out_keys,
model_name=model_name,
del_keys=True,
)
transforms = [*transforms, network]
for transform in transforms:
self.append(transform)
# if self.download:
# self[-1].load_weights(dir_prefix=self.download_path)
if self._device is not None:
self.to(self._device)
if self._dtype is not None:
self.to(self._dtype)
def to(self, dest: Union[DEVICE_TYPING, torch.dtype]):
if isinstance(dest, torch.dtype):
self._dtype = dest
else:
self._device = dest
return super().to(dest)
@property
def device(self):
return self._device
@property
def dtype(self):
return self._dtype
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""Multi-node distributed data collection with submitit in contexts where jobs can't launch other jobs.
The default configuration will ask for 8 nodes with 1 GPU each and 32 procs / node.
It should reach a collection speed of roughly 15-25K fps, or better depending
on the cluster specs.
The logic of the script is the following: we create a `main()` function that
executes or code (in this case just a data collection but in practice a training
loop should be present).
Since this `main()` function cannot launch sub-jobs by design, we launch the script
from the jump host and pass the slurm specs to submitit.
*Note*:
Although we don't go in much details into this in this script, the specs of the training
node and the specs of the inference nodes can differ (look at the DEFAULT_SLURM_CONF
and DEFAULT_SLURM_CONF_MAIN dictionaries below).
"""
import time
from argparse import ArgumentParser
import torch
from torchrl.collectors.distributed import submitit_delayed_launcher
from torchrl.collectors.distributed.default_configs import (
DEFAULT_SLURM_CONF,
DEFAULT_SLURM_CONF_MAIN,
)
parser = ArgumentParser()
parser.add_argument("--partition", "-p", help="slurm partition to use")
parser.add_argument("--num_jobs", type=int, default=8, help="Number of jobs")
parser.add_argument("--tcp_port", type=int, default=1234, help="TCP port")
parser.add_argument(
"--num_workers", type=int, default=8, help="Number of workers per node"
)
parser.add_argument(
"--gpus_per_node",
"--gpus-per-node",
"-G",
type=int,
default=1,
help="Number of GPUs per node. If greater than 0, the backend used will be NCCL.",
)
parser.add_argument(
"--cpus_per_task",
"--cpus-per-task",
"-c",
type=int,
default=32,
help="Number of CPUs per node.",
)
parser.add_argument(
"--sync", action="store_true", help="Use --sync to collect data synchronously."
)
parser.add_argument(
"--frames_per_batch",
"--frames-per-batch",
default=4000,
type=int,
help="Number of frames in each batch of data. Must be "
"divisible by the product of nodes and workers if sync, by the number of "
"workers otherwise.",
)
parser.add_argument(
"--total_frames",
"--total-frames",
default=10_000_000,
type=int,
help="Total number of frames collected by the collector.",
)
parser.add_argument(
"--time",
"-t",
default="1:00:00",
help="Timeout for the nodes",
)
parser.add_argument(
"--backend",
"-b",
default="gloo",
help="Backend for the collector",
)
parser.add_argument("--env_name", default="franka_micro_random-v3")
parser.add_argument("--r3m", action="store_true")
args = parser.parse_args()
slurm_gpus_per_node = args.gpus_per_node
slurm_time = args.time
backend = args.backend
DEFAULT_SLURM_CONF["slurm_gpus_per_node"] = slurm_gpus_per_node
DEFAULT_SLURM_CONF["slurm_time"] = slurm_time
DEFAULT_SLURM_CONF["slurm_cpus_per_task"] = args.cpus_per_task
DEFAULT_SLURM_CONF["slurm_partition"] = args.partition
DEFAULT_SLURM_CONF_MAIN["slurm_partition"] = args.partition
DEFAULT_SLURM_CONF_MAIN["slurm_time"] = slurm_time
num_jobs = args.num_jobs
tcp_port = args.tcp_port
num_workers = args.num_workers
sync = args.sync
total_frames = args.total_frames
frames_per_batch = args.frames_per_batch
device = "cpu" if backend == "gloo" else "cuda:0"
def make_env(args):
def constructor():
from rlhive import RoboHiveEnv
from torchrl.envs import EnvCreator, ParallelEnv, R3MTransform, TransformedEnv
from torchrl.envs.libs.gym import GymEnv
if args.num_workers > 1:
penv = ParallelEnv(
args.num_workers,
# EnvCreator(lambda: RoboHiveEnv(args.env_name, device="cuda:0")),
EnvCreator(lambda: GymEnv("Pendulum-v0", device="cuda:0")),
)
else:
# penv = RoboHiveEnv(args.env_name, device="cuda:0")
penv = GymEnv("Pendulum-v0", device="cuda:0")
if "visual" in args.env_name:
if args.r3m:
tenv = TransformedEnv(
penv,
R3MTransform(
in_keys=["pixels"], download=True, model_name="resnet50"
),
)
else:
tenv = penv
else:
tenv = penv
return tenv
return constructor
@submitit_delayed_launcher(
num_jobs=num_jobs,
backend=backend,
tcpport=tcp_port,
)
def main():
assert torch.cuda.device_count()
import tqdm
from torchrl.collectors import SyncDataCollector
from torchrl.collectors.collectors import RandomPolicy
from torchrl.collectors.distributed.generic import DistributedDataCollector
from torchrl.envs import EnvCreator
collector_class = SyncDataCollector
collector = DistributedDataCollector(
[EnvCreator(make_env(args))] * num_jobs,
policy=RandomPolicy(make_env(args)().action_spec),
launcher="submitit_delayed",
frames_per_batch=frames_per_batch,
total_frames=total_frames,
tcp_port=tcp_port,
collector_class=collector_class,
num_workers_per_collector=args.num_workers,
collector_kwargs={
"device": "cuda:0" if slurm_gpus_per_node else "cpu",
"storing_device": device,
},
storing_device="cpu",
backend=backend,
sync=sync,
)
counter = 0
pbar = tqdm.tqdm(total=collector.total_frames)
for i, data in enumerate(collector):
pbar.update(data.numel())
pbar.set_description(f"data shape: {data.shape}, data device: {data.device}")
if i >= 10:
counter += data.numel()
if i == 10:
t0 = time.time()
t1 = time.time()
print(f"time elapsed: {t1-t0}s, rate: {counter/(t1-t0)} fps")
collector.shutdown()
exit()
if __name__ == "__main__":
main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from omegaconf import DictConfig
os.environ["sim_backend"] = "MUJOCO"
def main(args: DictConfig):
import numpy as np
import torch.cuda
import tqdm
from rlhive.rl_envs import RoboHiveEnv
from tensordict import TensorDict
from torch import nn, optim
from torchrl.collectors import MultiaSyncDataCollector
from torchrl.data import TensorDictPrioritizedReplayBuffer, TensorDictReplayBuffer
from torchrl.data.replay_buffers.storages import LazyMemmapStorage
# from torchrl.envs import SerialEnv as ParallelEnv, R3MTransform, SelectTransform, TransformedEnv
from torchrl.envs import (
CatTensors,
EnvCreator,
ParallelEnv,
R3MTransform,
SelectTransform,
TransformedEnv,
)
from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling
from torchrl.envs.utils import set_exploration_mode, step_mdp
from torchrl.modules import MLP, NormalParamWrapper, SafeModule
from torchrl.modules.distributions import TanhNormal
from torchrl.modules.tensordict_module.actors import (
ProbabilisticActor,
ValueOperator,
)
from torchrl.objectives import SoftUpdate
from torchrl.objectives.deprecated import REDQLoss_deprecated as REDQLoss
from torchrl.record import VideoRecorder
from torchrl.record.loggers.wandb import WandbLogger
from torchrl.trainers import Recorder
# ===========================================================================================
# Env constructor
# ---------------
# - Use the RoboHiveEnv class to wrap robohive envs in torchrl's GymWrapper
# - Add transforms immediately after that:
# - SelectTransform: selects the relevant kesy from our output
# - R3MTransform
# - FlattenObservation: The images delivered by robohive have a singleton dim to start with, we need to flatten that
# - RewardScaling
#
# One can also possibly use ObservationNorm.
#
# TIPS:
# - For faster execution, you should follow this abstract scheme, where we reduce the data
# to be passed from worker to worker to a minimum, we apply R3M to a batch and append the
# rest of the transforms afterward:
#
# >>> env = TransformedEnv(
# ... ParallelEnv(N, lambda: TransformedEnv(RoboHiveEnv(...), SelectTransform(...))),
# ... Compose(
# ... R3MTransform(...),
# ... FlattenObservation(...),
# ... *other_transforms,
# ... ))
#
def traj_is_solved(done, solved):
solved = solved.view_as(done)
done_cumsum = done.cumsum(-2)
count = 0
_i = 0
for _i, u in enumerate(done_cumsum.unique()):
is_solved = solved[done_cumsum == u].any()
count += is_solved
return count / (_i + 1)
def traj_total_reward(done, reward):
reward = reward.view_as(done)
done_cumsum = done.cumsum(-2)
count = 0
_i = 0
for _i, u in enumerate(done_cumsum.unique()):
count += reward[done_cumsum == u].sum()
return count / (_i + 1)
def make_env(num_envs, task, visual_transform, reward_scaling, device):
if num_envs > 1:
base_env = ParallelEnv(
num_envs, EnvCreator(lambda: RoboHiveEnv(task, device=device))
)
else:
base_env = RoboHiveEnv(task, device=device)
env = make_transformed_env(
env=base_env,
reward_scaling=reward_scaling,
visual_transform=visual_transform,
)
return env
def make_transformed_env(
env,
reward_scaling=5.0,
visual_transform="r3m",
):
"""
Apply transforms to the env (such as reward scaling and state normalization)
"""
env = TransformedEnv(
env,
SelectTransform(
"solved", "pixels", "observation", "rwd_dense", "rwd_sparse"
),
)
if visual_transform == "r3m":
vec_keys = ["r3m_vec"]
selected_keys = ["observation", "r3m_vec"]
env.append_transform(
Compose(
R3MTransform("resnet50", in_keys=["pixels"], download=True).eval(),
FlattenObservation(-2, -1, in_keys=vec_keys),
)
) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802
elif visual_transform == "rrl":
vec_keys = ["r3m_vec"]
selected_keys = ["observation", "r3m_vec"]
env.append_transform(
Compose(
R3MTransform(
"resnet50", in_keys=["pixels"], download="IMAGENET1K_V2"
).eval(),
FlattenObservation(-2, -1, in_keys=vec_keys),
)
) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802
elif not visual_transform:
selected_keys = ["observation"]
else:
raise NotImplementedError(visual_transform)
env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling))
out_key = "observation_vector"
env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key))
return env
# ===========================================================================================
# Making a recorder
# -----------------
#
# A `Recorder` is a dedicated torchrl class that will run the policy in the test env
# once every X steps (eg X=1M).
#
def make_recorder(
task: str,
frame_skip: int,
record_interval: int,
actor_model_explore: object,
eval_traj: int,
env_configs: dict,
wandb_logger: WandbLogger,
num_envs: int,
):
test_env = make_env(num_envs=num_envs, task=task, **env_configs)
if "visual" in task:
test_env.insert_transform(
0, VideoRecorder(wandb_logger, "test", in_keys=["pixels"])
)
test_env.reset()
recorder_obj = Recorder(
record_frames=eval_traj * test_env.horizon,
frame_skip=frame_skip,
policy_exploration=actor_model_explore,
recorder=test_env,
exploration_mode="mean",
record_interval=record_interval,
log_keys=["reward", "solved", "done", "rwd_sparse"],
out_keys={
"reward": "r_evaluation",
"solved": "success",
"done": "done",
"rwd_sparse": "rwd_sparse",
},
)
return recorder_obj
# ===========================================================================================
# Relplay buffers
# ---------------
#
# TorchRL also provides prioritized RBs if needed.
#
def make_replay_buffer(
prb: bool,
buffer_size: int,
buffer_scratch_dir: str,
device: torch.device,
prefetch: int = 10,
):
if prb:
replay_buffer = TensorDictPrioritizedReplayBuffer(
alpha=0.7,
beta=0.5,
pin_memory=False,
prefetch=prefetch,
storage=LazyMemmapStorage(
buffer_size,
scratch_dir=buffer_scratch_dir,
device=device,
),
)
else:
replay_buffer = TensorDictReplayBuffer(
pin_memory=False,
prefetch=prefetch,
storage=LazyMemmapStorage(
buffer_size,
scratch_dir=buffer_scratch_dir,
device=device,
),
)
return replay_buffer
# ===========================================================================================
# Dataloader
# ----------
#
# This is a simplified version of the dataloder
#
@torch.no_grad()
@set_exploration_mode("random")
def dataloader(
total_frames, fpb, train_env, actor, actor_collection, device_collection
):
params = TensorDict(
{k: v for k, v in actor.named_parameters()}, batch_size=[]
).unflatten_keys(".")
params_collection = TensorDict(
{k: v for k, v in actor_collection.named_parameters()}, batch_size=[]
).unflatten_keys(".")
_prev = None
collected_frames = 0
while collected_frames < total_frames:
params_collection.update_(params)
batch = TensorDict(
{}, batch_size=[fpb, *train_env.batch_size], device=device_collection
)
for t in range(fpb):
if _prev is None:
_prev = train_env.reset()
_reset = _prev["_reset"] = _prev["done"].clone().squeeze(-1)
if _reset.any():
_prev = train_env.reset(_prev)
_new = train_env.step(actor_collection(_prev))
batch[t] = _new
_prev = step_mdp(_new, exclude_done=False)
collected_frames += batch.numel()
yield batch
# customize device at will
device = args.device
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Create Environment
env_configs = {
"reward_scaling": args.reward_scaling,
"visual_transform": args.visual_transform,
"device": "cpu",
}
train_env = make_env(num_envs=args.env_per_collector, task=args.task, **env_configs)
# add forward pass for initialization with proof env
proof_env = make_env(num_envs=1, task=args.task, **env_configs)
# Create Agent
# Define Actor Network
in_keys = ["observation_vector"]
action_spec = proof_env.action_spec
actor_net_kwargs = {
"num_cells": [256, 256],
"out_features": 2 * action_spec.shape[-1],
"activation_class": nn.ReLU,
}
actor_net = MLP(**actor_net_kwargs)
dist_class = TanhNormal
dist_kwargs = {
"min": action_spec.space.minimum,
"max": action_spec.space.maximum,
"tanh_loc": True,
}
actor_net = NormalParamWrapper(
actor_net,
scale_mapping=f"biased_softplus_{1.0}",
scale_lb=0.1,
)
in_keys_actor = in_keys
actor_module = SafeModule(
actor_net,
in_keys=in_keys_actor,
out_keys=[
"loc",
"scale",
],
)
actor = ProbabilisticActor(
spec=action_spec,
in_keys=["loc", "scale"],
module=actor_module,
distribution_class=dist_class,
distribution_kwargs=dist_kwargs,
default_interaction_mode="random",
return_log_prob=True,
)
# Define Critic Network
qvalue_net_kwargs = {
"num_cells": [256, 256],
"out_features": 1,
"activation_class": nn.ReLU,
}
qvalue_net = MLP(
**qvalue_net_kwargs,
)
qvalue = ValueOperator(
in_keys=["action"] + in_keys,
module=qvalue_net,
)
model = actor, qvalue = nn.ModuleList([actor, qvalue]).to(device)
# init nets
with torch.no_grad(), set_exploration_mode("random"):
td = proof_env.reset()
td = td.to(device)
for net in model:
net(td)
del td
proof_env.close()
actor_model_explore = model[0]
# Create REDQ loss
loss_module = REDQLoss(
actor_network=model[0],
qvalue_network=model[1],
gamma=args.gamma,
loss_function="smooth_l1",
)
# Define Target Network Updater
target_net_updater = SoftUpdate(loss_module, args.target_update_polyak)
# Make Replay Buffer
replay_buffer = make_replay_buffer(
prb=args.prb,
buffer_size=args.buffer_size,
buffer_scratch_dir=args.buffer_scratch_dir,
device="cpu",
)
# Optimizers
params = list(loss_module.parameters())
optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
rewards = []
rewards_eval = []
# Main loop
target_net_updater.init_()
collected_frames = 0
episodes = 0
optim_steps = 0
pbar = tqdm.tqdm(total=args.total_frames)
r0 = None
loss = None
logger = WandbLogger(
exp_name=args.task,
project=args.wandb_project,
name=args.exp_name,
config=args,
entity=args.wandb_entity,
mode=args.wandb_mode,
)
# Trajectory recorder for evaluation
recorder = make_recorder(
task=args.task,
frame_skip=args.frame_skip,
record_interval=args.record_interval,
actor_model_explore=actor_model_explore,
eval_traj=args.eval_traj,
env_configs=env_configs,
wandb_logger=logger,
num_envs=args.num_record_envs,
)
collector_device = args.device_collection
if isinstance(collector_device, str):
collector_device = [collector_device]
collector = MultiaSyncDataCollector(
create_env_fn=[train_env for _ in collector_device],
policy=actor_model_explore,
total_frames=args.total_frames,
max_frames_per_traj=args.frames_per_batch,
frames_per_batch=args.frames_per_batch,
init_random_frames=args.init_random_frames,
reset_at_each_iter=False,
postproc=None,
split_trajs=False,
devices=collector_device, # device for execution
passing_devices=collector_device, # device where data will be stored and passed
seed=args.seed,
pin_memory=False,
update_at_each_batch=False,
exploration_mode="random",
)
for i, batch in enumerate(collector):
collector.update_policy_weights_()
if r0 is None:
r0 = batch["reward"].sum(-1).mean().item()
pbar.update(batch.numel())
# extend the replay buffer with the new data
batch = batch.cpu().view(-1)
current_frames = batch.numel()
collected_frames += current_frames
episodes += batch["done"].sum()
replay_buffer.extend(batch)
# optimization steps
if collected_frames >= args.init_random_frames:
(
total_losses,
actor_losses,
q_losses,
alpha_losses,
alphas,
entropies,
) = ([], [], [], [], [], [])
for _ in range(
max(1, args.frames_per_batch * args.utd_ratio // args.batch_size)
):
optim_steps += 1
# sample from replay buffer
sampled_tensordict = (
replay_buffer.sample(args.batch_size).clone().to(device)
)
loss_td = loss_module(sampled_tensordict)
actor_loss = loss_td["loss_actor"]
q_loss = loss_td["loss_qvalue"]
alpha_loss = loss_td["loss_alpha"]
loss = actor_loss + q_loss + alpha_loss
optimizer.zero_grad()
loss.backward()
gn = torch.nn.utils.clip_grad_norm_(params, args.clip_norm)
optimizer.step()
# update qnet_target params
target_net_updater.step()
# update priority
if args.prb:
replay_buffer.update_tensordict_priority(sampled_tensordict)
total_losses.append(loss.item())
actor_losses.append(actor_loss.item())
q_losses.append(q_loss.item())
alpha_losses.append(alpha_loss.item())
alphas.append(loss_td["alpha"].item())
entropies.append(loss_td["entropy"].item())
rewards.append((i, batch["reward"].mean().item()))
logger.log_scalar("train_reward", rewards[-1][1], step=collected_frames)
logger.log_scalar("optim_steps", optim_steps, step=collected_frames)
logger.log_scalar("episodes", episodes, step=collected_frames)
if loss is not None:
logger.log_scalar(
"total_loss", np.mean(total_losses), step=collected_frames
)
logger.log_scalar(
"actor_loss", np.mean(actor_losses), step=collected_frames
)
logger.log_scalar("q_loss", np.mean(q_losses), step=collected_frames)
logger.log_scalar(
"alpha_loss", np.mean(alpha_losses), step=collected_frames
)
logger.log_scalar("alpha", np.mean(alphas), step=collected_frames)
logger.log_scalar("entropy", np.mean(entropies), step=collected_frames)
logger.log_scalar("grad_norm", gn, step=collected_frames)
td_record = recorder(None)
if td_record is not None:
rewards_eval.append(
(
i,
td_record["r_evaluation"]
/ recorder.recorder.batch_size.numel(), # divide by number of eval worker
)
)
logger.log_scalar("test_reward", rewards_eval[-1][1], step=collected_frames)
solved = traj_is_solved(td_record["done"], td_record["success"])
logger.log_scalar("success", solved, step=collected_frames)
rwd_sparse = traj_total_reward(td_record["done"], td_record["rwd_sparse"])
logger.log_scalar("rwd_sparse", rwd_sparse, step=collected_frames)
if len(rewards_eval):
pbar.set_description(
f"reward: {rewards[-1][1]: 4.4f} (r0 = {r0: 4.4f}), test reward: {rewards_eval[-1][1]: 4.4f}, solved: {solved}"
)
del batch
# gc.collect()
if __name__ == "__main__":
main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from omegaconf import DictConfig
os.environ["sim_backend"] = "MUJOCO"
os.environ["MUJOCO_GL"] = "egl"
def main(args: DictConfig):
import numpy as np
import torch.cuda
import tqdm
from rlhive.rl_envs import RoboHiveEnv
from sac_loss import SACLoss
from tensordict import TensorDict
from torch import nn, optim
from torchrl.collectors import MultiaSyncDataCollector
from torchrl.data import TensorDictPrioritizedReplayBuffer, TensorDictReplayBuffer
from torchrl.data.replay_buffers.storages import LazyMemmapStorage
# from torchrl.envs import SerialEnv as ParallelEnv, R3MTransform, SelectTransform, TransformedEnv
from torchrl.envs import (
CatTensors,
EnvCreator,
ParallelEnv,
R3MTransform,
SelectTransform,
TransformedEnv,
)
from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling
from torchrl.envs.utils import set_exploration_mode, step_mdp
from torchrl.modules import MLP, NormalParamWrapper, SafeModule
from torchrl.modules.distributions import TanhNormal
from torchrl.modules.tensordict_module.actors import (
ProbabilisticActor,
ValueOperator,
)
from torchrl.objectives import SoftUpdate
from torchrl.record import VideoRecorder
from torchrl.record.loggers.wandb import WandbLogger
from torchrl.trainers import Recorder
# ===========================================================================================
# Env constructor
# ---------------
# - Use the RoboHiveEnv class to wrap robohive envs in torchrl's GymWrapper
# - Add transforms immediately after that:
# - SelectTransform: selects the relevant kesy from our output
# - R3MTransform
# - FlattenObservation: The images delivered by robohive have a singleton dim to start with, we need to flatten that
# - RewardScaling
#
# One can also possibly use ObservationNorm.
#
# TIPS:
# - For faster execution, you should follow this abstract scheme, where we reduce the data
# to be passed from worker to worker to a minimum, we apply R3M to a batch and append the
# rest of the transforms afterward:
#
# >>> env = TransformedEnv(
# ... ParallelEnv(N, lambda: TransformedEnv(RoboHiveEnv(...), SelectTransform(...))),
# ... Compose(
# ... R3MTransform(...),
# ... FlattenObservation(...),
# ... *other_transforms,
# ... ))
#
def traj_is_solved(done, solved):
solved = solved.view_as(done)
done_cumsum = done.cumsum(-2)
count = 0
_i = 0
for _i, u in enumerate(done_cumsum.unique()):
is_solved = solved[done_cumsum == u].any()
count += is_solved
return count / (_i + 1)
def traj_total_reward(done, reward):
reward = reward.view_as(done)
done_cumsum = done.cumsum(-2)
count = 0
_i = 0
for _i, u in enumerate(done_cumsum.unique()):
count += reward[done_cumsum == u].sum()
return count / (_i + 1)
def make_env(num_envs, task, visual_transform, reward_scaling, device):
if num_envs > 1:
base_env = ParallelEnv(
num_envs, EnvCreator(lambda: RoboHiveEnv(task, device=device))
)
else:
base_env = RoboHiveEnv(task, device=device)
env = make_transformed_env(
env=base_env,
reward_scaling=reward_scaling,
visual_transform=visual_transform,
)
return env
def make_transformed_env(
env,
reward_scaling=5.0,
visual_transform="r3m",
):
"""
Apply transforms to the env (such as reward scaling and state normalization)
"""
env = TransformedEnv(
env,
SelectTransform(
"solved", "pixels", "observation", "rwd_dense", "rwd_sparse"
),
)
if visual_transform == "r3m":
vec_keys = ["r3m_vec"]
selected_keys = ["observation", "r3m_vec"]
env.append_transform(
Compose(
R3MTransform("resnet50", in_keys=["pixels"], download=True).eval(),
FlattenObservation(-2, -1, in_keys=vec_keys),
)
) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802
elif visual_transform == "rrl":
vec_keys = ["r3m_vec"]
selected_keys = ["observation", "r3m_vec"]
env.append_transform(
Compose(
R3MTransform(
"resnet50", in_keys=["pixels"], download="IMAGENET1K_V2"
).eval(),
FlattenObservation(-2, -1, in_keys=vec_keys),
)
) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802
elif not visual_transform:
selected_keys = ["observation"]
else:
raise NotImplementedError(visual_transform)
env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling))
out_key = "observation_vector"
env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key))
return env
# ===========================================================================================
# Making a recorder
# -----------------
#
# A `Recorder` is a dedicated torchrl class that will run the policy in the test env
# once every X steps (eg X=1M).
#
def make_recorder(
task: str,
frame_skip: int,
record_interval: int,
actor_model_explore: object,
eval_traj: int,
env_configs: dict,
wandb_logger: WandbLogger,
num_envs: int,
):
test_env = make_env(num_envs=num_envs, task=task, **env_configs)
if "visual" in task:
test_env.insert_transform(
0, VideoRecorder(wandb_logger, "test", in_keys=["pixels"])
)
test_env.reset()
recorder_obj = Recorder(
record_frames=eval_traj * test_env.horizon,
frame_skip=frame_skip,
policy_exploration=actor_model_explore,
recorder=test_env,
exploration_mode="mean",
record_interval=record_interval,
log_keys=["reward", "solved", "done", "rwd_sparse"],
out_keys={
"reward": "r_evaluation",
"solved": "success",
"done": "done",
"rwd_sparse": "rwd_sparse",
},
)
return recorder_obj
# ===========================================================================================
# Relplay buffers
# ---------------
#
# TorchRL also provides prioritized RBs if needed.
#
def make_replay_buffer(
prb: bool,
buffer_size: int,
buffer_scratch_dir: str,
device: torch.device,
prefetch: int = 10,
):
if prb:
replay_buffer = TensorDictPrioritizedReplayBuffer(
alpha=0.7,
beta=0.5,
pin_memory=False,
prefetch=prefetch,
storage=LazyMemmapStorage(
buffer_size,
scratch_dir=buffer_scratch_dir,
device=device,
),
)
else:
replay_buffer = TensorDictReplayBuffer(
pin_memory=False,
prefetch=prefetch,
storage=LazyMemmapStorage(
buffer_size,
scratch_dir=buffer_scratch_dir,
device=device,
),
)
return replay_buffer
# ===========================================================================================
# Dataloader
# ----------
#
# This is a simplified version of the dataloder
#
@torch.no_grad()
@set_exploration_mode("random")
def dataloader(
total_frames, fpb, train_env, actor, actor_collection, device_collection
):
params = TensorDict(
{k: v for k, v in actor.named_parameters()}, batch_size=[]
).unflatten_keys(".")
params_collection = TensorDict(
{k: v for k, v in actor_collection.named_parameters()}, batch_size=[]
).unflatten_keys(".")
_prev = None
collected_frames = 0
while collected_frames < total_frames:
params_collection.update_(params)
batch = TensorDict(
{}, batch_size=[fpb, *train_env.batch_size], device=device_collection
)
for t in range(fpb):
if _prev is None:
_prev = train_env.reset()
_reset = _prev["_reset"] = _prev["done"].clone().squeeze(-1)
if _reset.any():
_prev = train_env.reset(_prev)
_new = train_env.step(actor_collection(_prev))
batch[t] = _new
_prev = step_mdp(_new, exclude_done=False)
collected_frames += batch.numel()
yield batch
# customize device at will
device = args.device
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Create Environment
env_configs = {
"reward_scaling": args.reward_scaling,
"visual_transform": args.visual_transform,
"device": device,
}
train_env = make_env(num_envs=args.env_per_collector, task=args.task, **env_configs)
# add forward pass for initialization with proof env
proof_env = make_env(num_envs=1, task=args.task, **env_configs)
# Create Agent
# Define Actor Network
in_keys = ["observation_vector"]
action_spec = proof_env.action_spec
actor_net_kwargs = {
"num_cells": [256, 256],
"out_features": 2 * action_spec.shape[-1],
"activation_class": nn.ReLU,
}
actor_net = MLP(**actor_net_kwargs)
dist_class = TanhNormal
dist_kwargs = {
"min": action_spec.space.minimum,
"max": action_spec.space.maximum,
"tanh_loc": True,
}
actor_net = NormalParamWrapper(
actor_net,
scale_mapping=f"biased_softplus_{1.0}",
scale_lb=0.1,
)
in_keys_actor = in_keys
actor_module = SafeModule(
actor_net,
in_keys=in_keys_actor,
out_keys=[
"loc",
"scale",
],
)
actor = ProbabilisticActor(
spec=action_spec,
in_keys=["loc", "scale"],
module=actor_module,
distribution_class=dist_class,
distribution_kwargs=dist_kwargs,
default_interaction_mode="random",
return_log_prob=True,
)
# Define Critic Network
qvalue_net_kwargs = {
"num_cells": [256, 256],
"out_features": 1,
"activation_class": nn.ReLU,
}
qvalue_net = MLP(
**qvalue_net_kwargs,
)
qvalue = ValueOperator(
in_keys=["action"] + in_keys,
module=qvalue_net,
)
model = actor, qvalue = nn.ModuleList([actor, qvalue]).to(device)
# init nets
with torch.no_grad(), set_exploration_mode("random"):
td = proof_env.reset()
td = td.to(device)
for net in model:
net(td)
del td
proof_env.close()
actor_model_explore = model[0]
# Create SAC loss
loss_module = SACLoss(
actor_network=model[0],
qvalue_network=model[1],
num_qvalue_nets=2,
gamma=args.gamma,
loss_function="smooth_l1",
)
# Define Target Network Updater
target_net_updater = SoftUpdate(loss_module, args.target_update_polyak)
# Make Replay Buffer
replay_buffer = make_replay_buffer(
prb=args.prb,
buffer_size=args.buffer_size,
buffer_scratch_dir=args.buffer_scratch_dir,
device=args.device,
)
# Optimizers
params = list(loss_module.parameters())
optimizer = optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
rewards = []
rewards_eval = []
# Main loop
target_net_updater.init_()
collected_frames = 0
episodes = 0
optim_steps = 0
pbar = tqdm.tqdm(total=args.total_frames)
r0 = None
loss = None
logger = WandbLogger(
exp_name=args.task,
project=args.wandb_project,
name=args.exp_name,
config=args,
entity=args.wandb_entity,
mode=args.wandb_mode,
)
# Trajectory recorder for evaluation
recorder = make_recorder(
task=args.task,
frame_skip=args.frame_skip,
record_interval=args.record_interval,
actor_model_explore=actor_model_explore,
eval_traj=args.eval_traj,
env_configs=env_configs,
wandb_logger=logger,
num_envs=args.num_record_envs,
)
collector_device = args.device_collection
if isinstance(collector_device, str):
collector_device = [collector_device]
collector = MultiaSyncDataCollector(
create_env_fn=[train_env for _ in collector_device],
policy=actor_model_explore,
total_frames=args.total_frames,
max_frames_per_traj=args.frames_per_batch,
frames_per_batch=args.frames_per_batch,
init_random_frames=args.init_random_frames,
reset_at_each_iter=False,
postproc=None,
split_trajs=False,
devices=collector_device,
# device for execution
storing_devices=collector_device,
# device where data will be stored and passed
seed=args.seed,
pin_memory=False,
update_at_each_batch=False,
exploration_mode="random",
)
for i, batch in enumerate(collector):
collector.update_policy_weights_()
if r0 is None:
r0 = batch["reward"].sum(-1).mean().item()
pbar.update(batch.numel())
# extend the replay buffer with the new data
batch = batch.cpu().view(-1)
current_frames = batch.numel()
collected_frames += current_frames
episodes += batch["done"].sum()
replay_buffer.extend(batch)
# optimization steps
if collected_frames >= args.init_random_frames:
(
total_losses,
actor_losses,
q_losses,
alpha_losses,
alphas,
entropies,
) = ([], [], [], [], [], [])
for _ in range(
max(1, args.frames_per_batch * args.utd_ratio // args.batch_size)
):
optim_steps += 1
# sample from replay buffer
sampled_tensordict = (
replay_buffer.sample(args.batch_size).clone().to(device)
)
loss_td = loss_module(sampled_tensordict)
actor_loss = loss_td["loss_actor"]
q_loss = loss_td["loss_qvalue"]
alpha_loss = loss_td["loss_alpha"]
loss = actor_loss + q_loss + alpha_loss
optimizer.zero_grad()
loss.backward()
gn = torch.nn.utils.clip_grad_norm_(params, args.clip_norm)
optimizer.step()
# update qnet_target params
target_net_updater.step()
# update priority
if args.prb:
replay_buffer.update_tensordict_priority(sampled_tensordict)
total_losses.append(loss.item())
actor_losses.append(actor_loss.item())
q_losses.append(q_loss.item())
alpha_losses.append(alpha_loss.item())
alphas.append(loss_td["alpha"].item())
entropies.append(loss_td["entropy"].item())
rewards.append((i, batch["reward"].mean().item()))
logger.log_scalar("train_reward", rewards[-1][1], step=collected_frames)
logger.log_scalar("optim_steps", optim_steps, step=collected_frames)
logger.log_scalar("episodes", episodes, step=collected_frames)
if loss is not None:
logger.log_scalar(
"total_loss", np.mean(total_losses), step=collected_frames
)
logger.log_scalar(
"actor_loss", np.mean(actor_losses), step=collected_frames
)
logger.log_scalar("q_loss", np.mean(q_losses), step=collected_frames)
logger.log_scalar(
"alpha_loss", np.mean(alpha_losses), step=collected_frames
)
logger.log_scalar("alpha", np.mean(alphas), step=collected_frames)
logger.log_scalar("entropy", np.mean(entropies), step=collected_frames)
logger.log_scalar("grad_norm", gn, step=collected_frames)
td_record = recorder(None)
if td_record is not None:
rewards_eval.append(
(
i,
td_record["r_evaluation"] / recorder.recorder.batch_size.numel(),
# divide by number of eval worker
)
)
logger.log_scalar("test_reward", rewards_eval[-1][1], step=collected_frames)
solved = traj_is_solved(td_record["done"], td_record["success"])
logger.log_scalar("success", solved, step=collected_frames)
rwd_sparse = traj_total_reward(td_record["done"], td_record["rwd_sparse"])
logger.log_scalar("rwd_sparse", rwd_sparse, step=collected_frames)
if len(rewards_eval):
pbar.set_description(
f"reward: {rewards[-1][1]: 4.4f} (r0 = {r0: 4.4f}), test reward: {rewards_eval[-1][1]: 4.4f}, solved: {solved}"
)
del batch
# gc.collect()
|
"""Entry point for RLHive"""
import hydra
from omegaconf import DictConfig
from redq import main as train_redq
from sac import main as train_sac
@hydra.main(config_name="sac_mixed.yaml", config_path="config")
def main(args: DictConfig):
if args.algo == "sac":
train_sac(args)
if args.algo == "redq":
train_redq(args)
else:
raise NotImplementedError
if __name__ == "__main__":
main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
os.environ["sim_backend"] = "MUJOCO"
import argparse
import time
import tqdm
from rlhive.rl_envs import RoboHiveEnv
from torchrl.collectors.collectors import MultiaSyncDataCollector, RandomPolicy
from torchrl.collectors.distributed import DistributedDataCollector, RPCDataCollector
from torchrl.envs import EnvCreator, ParallelEnv, R3MTransform, TransformedEnv
parser = argparse.ArgumentParser()
parser.add_argument("--num_workers", default=2, type=int)
parser.add_argument("--num_collectors", default=4, type=int)
parser.add_argument("--frames_per_batch", default=200, type=int)
parser.add_argument("--total_frames", default=20_000, type=int)
parser.add_argument("--r3m", action="store_true")
parser.add_argument("--env_name", default="franka_micro_random-v3")
if __name__ == "__main__":
args = parser.parse_args()
if args.num_workers > 1:
penv = ParallelEnv(
args.num_workers,
EnvCreator(lambda: RoboHiveEnv(args.env_name, device="cpu")),
)
else:
penv = RoboHiveEnv(args.env_name, device="cpu")
if "visual" in args.env_name:
if args.r3m:
tenv = TransformedEnv(
penv,
R3MTransform(in_keys=["pixels"], download=True, model_name="resnet50"),
)
else:
tenv = penv
else:
tenv = penv
# tenv.transform[-1].init_stats(reduce_dim=(0, 1), cat_dim=1,
# num_iter=1000)
policy = RandomPolicy(tenv.action_spec) # some random policy
device = "cpu"
slurm_conf = {
"timeout_min": 100,
"slurm_partition": "train",
"slurm_cpus_per_gpu": 12,
"slurm_gpus_per_task": 1,
}
collector = DistributedDataCollector(
[tenv] * args.num_collectors,
policy=policy,
frames_per_batch=args.frames_per_batch,
total_frames=args.total_frames,
storing_device=device,
split_trajs=False,
sync=True,
launcher="mp",
slurm_kwargs=slurm_conf,
backend="gloo",
)
pbar = tqdm.tqdm(total=args.total_frames)
for i, data in enumerate(collector):
if i == 3:
t0 = time.time()
total = 0
if i >= 3:
total += data.numel()
pbar.update(data.numel())
t = time.time() - t0
print(f"{args.env_name}, Time: {t:4.4f}, Rate: {args.total_frames / t: 4.4f} fps")
del collector
del tenv
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from numbers import Number
from typing import Union
import numpy as np
import torch
from tensordict.nn import TensorDictSequential
from tensordict.tensordict import TensorDict, TensorDictBase
from torch import Tensor
from torchrl.envs.utils import set_exploration_mode, step_mdp
from torchrl.modules import SafeModule
from torchrl.objectives.common import LossModule
from torchrl.objectives.utils import (
distance_loss,
next_state_value as get_next_state_value,
)
try:
from functorch import vmap
FUNCTORCH_ERR = ""
_has_functorch = True
except ImportError as err:
FUNCTORCH_ERR = str(err)
_has_functorch = False
class SACLoss(LossModule):
"""SAC Loss module.
Args:
actor_network (SafeModule): the actor to be trained
qvalue_network (SafeModule): a single Q-value network that will be multiplicated as many times as needed.
num_qvalue_nets (int, optional): Number of Q-value networks to be trained. Default is 10.
gamma (Number, optional): gamma decay factor. Default is 0.99.
priotity_key (str, optional): Key where to write the priority value for prioritized replay buffers. Default is
`"td_error"`.
loss_function (str, optional): loss function to be used for the Q-value. Can be one of `"smooth_l1"`, "l2",
"l1", Default is "smooth_l1".
alpha_init (float, optional): initial entropy multiplier.
Default is 1.0.
min_alpha (float, optional): min value of alpha.
Default is 0.1.
max_alpha (float, optional): max value of alpha.
Default is 10.0.
fixed_alpha (bool, optional): whether alpha should be trained to match a target entropy. Default is :obj:`False`.
target_entropy (Union[str, Number], optional): Target entropy for the stochastic policy. Default is "auto".
delay_qvalue (bool, optional): Whether to separate the target Q value networks from the Q value networks used
for data collection. Default is :obj:`False`.
gSDE (bool, optional): Knowing if gSDE is used is necessary to create random noise variables.
Default is False
"""
delay_actor: bool = False
_explicit: bool = False
def __init__(
self,
actor_network: SafeModule,
qvalue_network: SafeModule,
num_qvalue_nets: int = 2,
gamma: Number = 0.99,
priotity_key: str = "td_error",
loss_function: str = "smooth_l1",
alpha_init: float = 1.0,
min_alpha: float = 0.1,
max_alpha: float = 10.0,
fixed_alpha: bool = False,
target_entropy: Union[str, Number] = "auto",
delay_qvalue: bool = True,
gSDE: bool = False,
):
if not _has_functorch:
raise ImportError(
f"Failed to import functorch with error message:\n{FUNCTORCH_ERR}"
)
super().__init__()
self.convert_to_functional(
actor_network,
"actor_network",
create_target_params=self.delay_actor,
funs_to_decorate=["forward", "get_dist_params"],
)
# let's make sure that actor_network has `return_log_prob` set to True
self.actor_network.return_log_prob = True
self.delay_qvalue = delay_qvalue
self.convert_to_functional(
qvalue_network,
"qvalue_network",
num_qvalue_nets,
create_target_params=self.delay_qvalue,
compare_against=list(actor_network.parameters()),
)
self.num_qvalue_nets = num_qvalue_nets
self.register_buffer("gamma", torch.tensor(gamma))
self.priority_key = priotity_key
self.loss_function = loss_function
try:
device = next(self.parameters()).device
except AttributeError:
device = torch.device("cpu")
self.register_buffer("alpha_init", torch.tensor(alpha_init, device=device))
self.register_buffer(
"min_log_alpha", torch.tensor(min_alpha, device=device).log()
)
self.register_buffer(
"max_log_alpha", torch.tensor(max_alpha, device=device).log()
)
self.fixed_alpha = fixed_alpha
if fixed_alpha:
self.register_buffer(
"log_alpha", torch.tensor(math.log(alpha_init), device=device)
)
else:
self.register_parameter(
"log_alpha",
torch.nn.Parameter(torch.tensor(math.log(alpha_init), device=device)),
)
if target_entropy == "auto":
if actor_network.spec["action"] is None:
raise RuntimeError(
"Cannot infer the dimensionality of the action. Consider providing "
"the target entropy explicitely or provide the spec of the "
"action tensor in the actor network."
)
target_entropy = -float(np.prod(actor_network.spec["action"].shape))
self.register_buffer(
"target_entropy", torch.tensor(target_entropy, device=device)
)
self.gSDE = gSDE
@property
def alpha(self):
self.log_alpha.data.clamp_(self.min_log_alpha, self.max_log_alpha)
with torch.no_grad():
alpha = self.log_alpha.exp()
return alpha
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
if self._explicit:
# slow but explicit version
return self._forward_explicit(tensordict)
else:
return self._forward_vectorized(tensordict)
def _loss_alpha(self, log_pi: Tensor) -> Tensor:
if torch.is_grad_enabled() and not log_pi.requires_grad:
raise RuntimeError(
"expected log_pi to require gradient for the alpha loss)"
)
if self.target_entropy is not None:
# we can compute this loss even if log_alpha is not a parameter
alpha_loss = -self.log_alpha.exp() * (log_pi.detach() + self.target_entropy)
else:
# placeholder
alpha_loss = torch.zeros_like(log_pi)
return alpha_loss
def _forward_vectorized(self, tensordict: TensorDictBase) -> TensorDictBase:
obs_keys = self.actor_network.in_keys
tensordict_select = tensordict.select(
"reward", "done", "next", *obs_keys, "action"
)
actor_params = torch.stack(
[self.actor_network_params, self.target_actor_network_params], 0
)
tensordict_actor_grad = tensordict_select.select(
*obs_keys
) # to avoid overwriting keys
next_td_actor = step_mdp(tensordict_select).select(
*self.actor_network.in_keys
) # next_observation ->
tensordict_actor = torch.stack([tensordict_actor_grad, next_td_actor], 0)
tensordict_actor = tensordict_actor.contiguous()
with set_exploration_mode("random"):
if self.gSDE:
tensordict_actor.set(
"_eps_gSDE",
torch.zeros(tensordict_actor.shape, device=tensordict_actor.device),
)
# vmap doesn't support sampling, so we take it out from the vmap
td_params = vmap(self.actor_network.get_dist_params)(
tensordict_actor,
actor_params,
)
if isinstance(self.actor_network, TensorDictSequential):
sample_key = self.actor_network[-1].out_keys[0]
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
else:
sample_key = self.actor_network.out_keys[0]
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
tensordict_actor[sample_key] = self._rsample(tensordict_actor_dist)
tensordict_actor["sample_log_prob"] = tensordict_actor_dist.log_prob(
tensordict_actor[sample_key]
)
# repeat tensordict_actor to match the qvalue size
_actor_loss_td = (
tensordict_actor[0]
.select(*self.qvalue_network.in_keys)
.expand(self.num_qvalue_nets, *tensordict_actor[0].batch_size)
) # for actor loss
_qval_td = tensordict_select.select(*self.qvalue_network.in_keys).expand(
self.num_qvalue_nets,
*tensordict_select.select(*self.qvalue_network.in_keys).batch_size,
) # for qvalue loss
_next_val_td = (
tensordict_actor[1]
.select(*self.qvalue_network.in_keys)
.expand(self.num_qvalue_nets, *tensordict_actor[1].batch_size)
) # for next value estimation
tensordict_qval = torch.cat(
[
_actor_loss_td,
_next_val_td,
_qval_td,
],
0,
)
# cat params
q_params_detach = self.qvalue_network_params.detach()
qvalue_params = torch.cat(
[
q_params_detach,
self.target_qvalue_network_params,
self.qvalue_network_params,
],
0,
)
tensordict_qval = vmap(self.qvalue_network)(
tensordict_qval,
qvalue_params,
)
state_action_value = tensordict_qval.get("state_action_value").squeeze(-1)
(
state_action_value_actor,
next_state_action_value_qvalue,
state_action_value_qvalue,
) = state_action_value.split(
[self.num_qvalue_nets, self.num_qvalue_nets, self.num_qvalue_nets],
dim=0,
)
sample_log_prob = tensordict_actor.get("sample_log_prob").squeeze(-1)
(
action_log_prob_actor,
next_action_log_prob_qvalue,
) = sample_log_prob.unbind(0)
# E[alpha * log_pi(a) - Q(s, a)] where a is reparameterized
loss_actor = -(
state_action_value_actor.min(0)[0] - self.alpha * action_log_prob_actor
).mean()
next_state_value = (
next_state_action_value_qvalue.min(0)[0]
- self.alpha * next_action_log_prob_qvalue
)
target_value = get_next_state_value(
tensordict,
gamma=self.gamma,
pred_next_val=next_state_value,
)
pred_val = state_action_value_qvalue
td_error = (pred_val - target_value).pow(2)
loss_qval = (
distance_loss(
pred_val,
target_value.expand_as(pred_val),
loss_function=self.loss_function,
)
.mean(-1)
.sum()
* 0.5
)
tensordict.set("td_error", td_error.detach().max(0)[0])
loss_alpha = self._loss_alpha(sample_log_prob)
if not loss_qval.shape == loss_actor.shape:
raise RuntimeError(
f"QVal and actor loss have different shape: {loss_qval.shape} and {loss_actor.shape}"
)
td_out = TensorDict(
{
"loss_actor": loss_actor.mean(),
"loss_qvalue": loss_qval.mean(),
"loss_alpha": loss_alpha.mean(),
"alpha": self.alpha.detach(),
"entropy": -sample_log_prob.mean().detach(),
"state_action_value_actor": state_action_value_actor.mean().detach(),
"action_log_prob_actor": action_log_prob_actor.mean().detach(),
"next.state_value": next_state_value.mean().detach(),
"target_value": target_value.mean().detach(),
},
[],
)
return td_out
def _forward_explicit(self, tensordict: TensorDictBase) -> TensorDictBase:
loss_actor, sample_log_prob = self._loss_actor_explicit(tensordict.clone(False))
loss_qval, td_error = self._loss_qval_explicit(tensordict.clone(False))
tensordict.set("td_error", td_error.detach().max(0)[0])
loss_alpha = self._loss_alpha(sample_log_prob)
td_out = TensorDict(
{
"loss_actor": loss_actor.mean(),
"loss_qvalue": loss_qval.mean(),
"loss_alpha": loss_alpha.mean(),
"alpha": self.alpha.detach(),
"entropy": -sample_log_prob.mean().detach(),
# "state_action_value_actor": state_action_value_actor.mean().detach(),
# "action_log_prob_actor": action_log_prob_actor.mean().detach(),
# "next.state_value": next_state_value.mean().detach(),
# "target_value": target_value.mean().detach(),
},
[],
)
return td_out
def _rsample(
self,
dist,
):
# separated only for the purpose of making the sampling
# deterministic to compare methods
return dist.rsample()
def _sample_reparam(self, tensordict, params):
"""Given a policy param batch and input data in a tensordict, writes a reparam sample and log-prob key."""
with set_exploration_mode("random"):
if self.gSDE:
raise NotImplementedError
# vmap doesn't support sampling, so we take it out from the vmap
td_params = self.actor_network.get_dist_params(
tensordict,
params,
)
if isinstance(self.actor_network, TensorDictSequential):
sample_key = self.actor_network[-1].out_keys[0]
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
else:
sample_key = self.actor_network.out_keys[0]
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
tensordict[sample_key] = self._rsample(tensordict_actor_dist)
tensordict["sample_log_prob"] = tensordict_actor_dist.log_prob(
tensordict[sample_key]
)
return tensordict
def _loss_actor_explicit(self, tensordict):
tensordict_actor = tensordict.clone(False)
actor_params = self.actor_network_params
tensordict_actor = self._sample_reparam(tensordict_actor, actor_params)
action_log_prob_actor = tensordict_actor["sample_log_prob"]
tensordict_qval = tensordict_actor.select(*self.qvalue_network.in_keys).expand(
self.num_qvalue_nets, *tensordict_actor.batch_size
) # for actor loss
qvalue_params = self.qvalue_network_params.detach()
tensordict_qval = vmap(self.qvalue_network)(
tensordict_qval,
qvalue_params,
)
state_action_value_actor = tensordict_qval.get("state_action_value").squeeze(-1)
state_action_value_actor = state_action_value_actor.min(0)[0]
# E[alpha * log_pi(a) - Q(s, a)] where a is reparameterized
loss_actor = (
self.alpha * action_log_prob_actor - state_action_value_actor
).mean()
return loss_actor, action_log_prob_actor
def _loss_qval_explicit(self, tensordict):
next_tensordict = step_mdp(tensordict)
next_tensordict = self._sample_reparam(
next_tensordict, self.target_actor_network_params
)
next_action_log_prob_qvalue = next_tensordict["sample_log_prob"]
next_state_action_value_qvalue = vmap(self.qvalue_network, (None, 0))(
next_tensordict,
self.target_qvalue_network_params,
)["state_action_value"].squeeze(-1)
next_state_value = (
next_state_action_value_qvalue.min(0)[0]
- self.alpha * next_action_log_prob_qvalue
)
pred_val = vmap(self.qvalue_network, (None, 0))(
tensordict,
self.qvalue_network_params,
)["state_action_value"].squeeze(-1)
target_value = get_next_state_value(
tensordict,
gamma=self.gamma,
pred_next_val=next_state_value,
)
# 1/2 * E[Q(s,a) - (r + gamma * (Q(s,a)-alpha log pi(s, a)))
loss_qval = (
distance_loss(
pred_val,
target_value.expand_as(pred_val),
loss_function=self.loss_function,
)
.mean(-1)
.sum()
* 0.5
)
td_error = (pred_val - target_value).pow(2)
return loss_qval, td_error
if __name__ == "__main__":
from tensordict.nn import TensorDictModule
from torch import nn
from torchrl.data import BoundedTensorSpec
# Tests the vectorized version of SAC-v2 against plain implementation
from torchrl.modules import ProbabilisticActor, ValueOperator
from torchrl.modules.distributions import TanhNormal
torch.manual_seed(0)
action_spec = BoundedTensorSpec(-1, 1, shape=(3,))
class Splitter(nn.Linear):
def forward(self, x):
loc, scale = super().forward(x).chunk(2, -1)
return loc, scale.exp()
actor_module = TensorDictModule(
Splitter(6, 6), in_keys=["obs"], out_keys=["loc", "scale"]
)
actor = ProbabilisticActor(
spec=action_spec,
in_keys=["loc", "scale"],
module=actor_module,
distribution_class=TanhNormal,
default_interaction_mode="random",
return_log_prob=False,
)
class QVal(nn.Linear):
def forward(self, s: Tensor, a: Tensor) -> Tensor:
return super().forward(torch.cat([s, a], -1))
qvalue = ValueOperator(QVal(9, 1), in_keys=["obs", "action"])
_rsample_old = SACLoss._rsample
def _rsample_new(self, dist):
return torch.ones_like(_rsample_old(self, dist))
SACLoss._rsample = _rsample_new
loss = SACLoss(actor, qvalue)
for batch in ((), (2, 3)):
td_input = TensorDict(
{
"obs": torch.rand(*batch, 6),
"action": torch.rand(*batch, 3).clamp(-1, 1),
"next": {"obs": torch.rand(*batch, 6)},
"reward": torch.rand(*batch, 1),
"done": torch.zeros(*batch, 1, dtype=torch.bool),
},
batch,
)
loss._explicit = True
loss0 = loss(td_input)
loss._explicit = False
loss1 = loss(td_input)
print("a", loss0["loss_actor"] - loss1["loss_actor"])
print("q", loss0["loss_qvalue"] - loss1["loss_qvalue"])
|
import json
import random
import torch
import numpy as np
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(NpEncoder, self).default(obj)
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
def control_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def stack_tensor_list(tensor_list):
return np.array(tensor_list)
def stack_tensor_dict_list(tensor_dict_list):
"""
Stack a list of dictionaries of {tensors or dictionary of tensors}.
:param tensor_dict_list: a list of dictionaries of {tensors or dictionary of tensors}.
:return: a dictionary of {stacked tensors or dictionary of stacked tensors}
"""
keys = list(tensor_dict_list[0].keys())
ret = dict()
for k in keys:
example = tensor_dict_list[0][k]
if isinstance(example, dict):
v = stack_tensor_dict_list([x[k] for x in tensor_dict_list])
else:
v = stack_tensor_list([x[k] for x in tensor_dict_list])
ret[k] = v
return ret
def tensorize(var, device='cpu'):
"""
Convert input to torch.Tensor on desired device
:param var: type either torch.Tensor or np.ndarray
:param device: desired device for output (e.g. cpu, cuda)
:return: torch.Tensor mapped to the device
"""
if type(var) == torch.Tensor:
return var.to(device)
elif type(var) == np.ndarray:
return torch.from_numpy(var).float().to(device)
elif type(var) == float:
return torch.tensor(var).float()
else:
print("Variable type not compatible with function.")
return None
|
"""
Minimize bc loss (MLE, MSE, RWR etc.) with pytorch optimizers
"""
import logging
logging.disable(logging.CRITICAL)
import numpy as np
import torch
import time as timer
from tqdm import tqdm
from misc import tensorize
class BC:
def __init__(self, expert_paths,
policy,
epochs = 5,
batch_size = 64,
lr = 1e-3,
optimizer = None,
loss_type = 'MSE', # can be 'MLE' or 'MSE'
save_logs = True,
logger = None,
set_transforms = False,
*args, **kwargs,
):
self.policy = policy
self.expert_paths = expert_paths
self.epochs = epochs
self.mb_size = batch_size
self.logger = logger
self.loss_type = loss_type
self.save_logs = save_logs
self.device = self.policy.device
assert (self.loss_type == 'MSE' or self.loss_type == 'MLE')
if self.save_logs: assert not self.logger is None
if set_transforms:
in_shift, in_scale, out_shift, out_scale = self.compute_transformations()
self.set_transformations(in_shift, in_scale, out_shift, out_scale)
#self.set_variance_with_data(out_scale)
# construct optimizer
self.optimizer = torch.optim.Adam(self.policy.trainable_params, lr=lr) if optimizer is None else optimizer
# Loss criterion if required
if loss_type == 'MSE':
self.loss_criterion = torch.nn.MSELoss()
def compute_transformations(self):
# get transformations
if self.expert_paths == [] or self.expert_paths is None:
in_shift, in_scale, out_shift, out_scale = None, None, None, None
else:
print(type(self.expert_paths))
if type(self.expert_paths) is list:
observations = np.concatenate([path["observations"] for path in self.expert_paths])
actions = np.concatenate([path["actions"] for path in self.expert_paths])
else: # 'h5py._hl.files.File'
observations = np.concatenate([self.expert_paths[k]['observations'] for k in self.expert_paths.keys()])
actions = np.concatenate([self.expert_paths[k]['actions'] for k in self.expert_paths.keys()])
in_shift, in_scale = np.mean(observations, axis=0), np.std(observations, axis=0)
out_shift, out_scale = np.mean(actions, axis=0), np.std(actions, axis=0)
return in_shift, in_scale, out_shift, out_scale
def set_transformations(self, in_shift=None, in_scale=None, out_shift=None, out_scale=None):
# set scalings in the target policy
self.policy.set_transformations(in_shift, in_scale, out_shift, out_scale)
def set_variance_with_data(self, out_scale):
# set the variance of gaussian policy based on out_scale
out_scale = tensorize(out_scale, device=self.policy.device)
data_log_std = torch.log(out_scale + 1e-3)
self.policy.set_log_std(data_log_std)
def loss(self, data, idx=None):
if self.loss_type == 'MLE':
return self.mle_loss(data, idx)
elif self.loss_type == 'MSE':
return self.mse_loss(data, idx)
else:
print("Please use valid loss type")
return None
def mle_loss(self, data, idx):
# use indices if provided (e.g. for mini-batching)
# otherwise, use all the data
idx = range(data['observations'].shape[0]) if idx is None else idx
if type(data['observations']) == torch.Tensor:
idx = torch.LongTensor(idx)
obs = data['observations'][idx]
act = data['expert_actions'][idx]
mu, LL = self.policy.mean_LL(obs, act)
# minimize negative log likelihood
return -torch.mean(LL)
def mse_loss(self, data, idx=None):
idx = range(data['observations'].shape[0]) if idx is None else idx
if type(data['observations']) is torch.Tensor:
idx = torch.LongTensor(idx)
obs = data['observations'][idx]
act_expert = data['expert_actions'][idx]
act_expert = tensorize(act_expert, device=self.policy.device)
act_pi = self.policy.forward(obs)
return self.loss_criterion(act_pi, act_expert.detach())
def fit(self, data, suppress_fit_tqdm=False, **kwargs):
# data is a dict
# keys should have "observations" and "expert_actions"
validate_keys = all([k in data.keys() for k in ["observations", "expert_actions"]])
assert validate_keys is True
ts = timer.time()
num_samples = data["observations"].shape[0]
# log stats before
if self.save_logs:
loss_val = self.loss(data, idx=range(num_samples)).to('cpu').data.numpy().ravel()[0]
self.logger.log_scalar("train/loss_before", loss_val, step=0)
print('BC loss before', loss_val)
# train loop
for ep in config_tqdm(range(self.epochs), suppress_fit_tqdm):
avg_loss = 0.0
step = 0
for mb in range(int(num_samples / self.mb_size)):
rand_idx = np.random.choice(num_samples, size=self.mb_size)
self.optimizer.zero_grad()
loss = self.loss(data, idx=rand_idx)
loss.backward()
self.optimizer.step()
avg_loss = (avg_loss*step + loss.item())/(step+1)
step += 1
if self.save_logs:
self.logger.log_scalar("train/bc_loss", avg_loss, step=ep+1)
# log stats after
if self.save_logs:
loss_val = self.loss(data, idx=range(num_samples)).to('cpu').data.numpy().ravel()[0]
self.logger.log_scalar("train/loss_after", loss_val, step=self.epochs)
print('BC val loss', loss_val)
def train(self, **kwargs):
if not hasattr(self, 'data'):
observations = np.concatenate([path["observations"] for path in self.expert_paths])
expert_actions = np.concatenate([path["actions"] for path in self.expert_paths])
observations = tensorize(observations, device=self.policy.device)
expert_actions = tensorize(expert_actions, self.policy.device)
self.data = dict(observations=observations, expert_actions=expert_actions)
self.fit(self.data, **kwargs)
def train_h5(self, **kwargs):
if not hasattr(self, 'data'):
observations = np.concatenate([self.expert_paths[k]['observations'] for k in self.expert_paths.keys()])
expert_actions = np.concatenate([self.expert_paths[k]['actions'] for k in self.expert_paths.keys()])
observations = tensorize(observations, device=self.policy.device)
expert_actions = tensorize(expert_actions, self.policy.device)
self.data = dict(observations=observations, expert_actions=expert_actions)
self.fit(self.data, **kwargs)
def config_tqdm(range_inp, suppress_tqdm=False):
if suppress_tqdm:
return range_inp
else:
return tqdm(range_inp)
|
"""
Job script to learn policy using BC
"""
import os
import time
from os import environ
environ['CUDA_DEVICE_ORDER']='PCI_BUS_ID'
environ['MKL_THREADING_LAYER']='GNU'
import pickle
import yaml
import hydra
import gym
import wandb
import numpy as np
from omegaconf import DictConfig, OmegaConf, ListConfig
from batch_norm_mlp import BatchNormMLP
from gmm_policy import GMMPolicy
from behavior_cloning import BC
from misc import control_seed, \
bcolors, stack_tensor_dict_list
from torchrl.record.loggers.wandb import WandbLogger
from robohive.logger.grouped_datasets import Trace as Trace
def evaluate_policy(
policy,
env,
num_episodes,
epoch,
horizon=None,
gamma=1,
percentile=[],
get_full_dist=False,
eval_logger=None,
device='cpu',
seed=123,
verbose=True,
):
env.seed(seed)
horizon = env.horizon if horizon is None else horizon
mean_eval, std, min_eval, max_eval = 0.0, 0.0, -1e8, -1e8
ep_returns = np.zeros(num_episodes)
policy.eval()
paths = []
for ep in range(num_episodes):
observations=[]
actions=[]
rewards=[]
agent_infos = []
env_infos = []
o = env.reset()
t, done = 0, False
while t < horizon and (done == False):
a = policy.get_action(o)[1]['evaluation']
next_o, r, done, env_info = env.step(a)
ep_returns[ep] += (gamma ** t) * r
observations.append(o)
actions.append(a)
rewards.append(r)
agent_infos.append(None)
env_infos.append(env_info)
o = next_o
t += 1
if verbose:
print("Episode: {}; Reward: {}".format(ep, ep_returns[ep]))
path = dict(
observations=np.array(observations),
actions=np.array(actions),
rewards=np.array(rewards),
#agent_infos=stack_tensor_dict_list(agent_infos),
env_infos=stack_tensor_dict_list(env_infos),
terminated=done
)
paths.append(path)
mean_eval, std = np.mean(ep_returns), np.std(ep_returns)
min_eval, max_eval = np.amin(ep_returns), np.amax(ep_returns)
base_stats = [mean_eval, std, min_eval, max_eval]
percentile_stats = []
for p in percentile:
percentile_stats.append(np.percentile(ep_returns, p))
full_dist = ep_returns if get_full_dist is True else None
success = env.evaluate_success(paths, logger=None) ## Don't use the mj_envs logging function
if not eval_logger is None:
rwd_sparse = np.mean([np.mean(p['env_infos']['rwd_sparse']) for p in paths]) # return rwd/step
rwd_dense = np.mean([np.sum(p['env_infos']['rwd_dense'])/env.horizon for p in paths]) # return rwd/step
eval_logger.log_scalar('eval/rwd_sparse', rwd_sparse, step=epoch)
eval_logger.log_scalar('eval/rwd_dense', rwd_dense, step=epoch)
eval_logger.log_scalar('eval/success', success, step=epoch)
return [base_stats, percentile_stats, full_dist], success
class ObservationWrapper:
def __init__(self, env_name, visual_keys, encoder):
self.env = gym.make(env_name, visual_keys=visual_keys)
self.horizon = self.env.horizon
self.encoder = encoder
def reset(self, **kwargs):
obs = self.env.reset(**kwargs)
return self.get_obs(obs)
def step(self, action):
observation, reward, terminated, info = self.env.step(action)
return self.get_obs(observation), reward, terminated, info
def get_obs(self, observation=None):
if self.encoder == 'proprio':
proprio_vec = self.env.get_proprioception()[1]
return proprio_vec
if len(self.env.visual_keys) > 0:
visual_obs = self.env.get_exteroception()
final_visual_obs = None
for key in self.env.visual_keys:
if final_visual_obs is None:
final_visual_obs = visual_obs[key]
else:
final_visual_obs = np.concatenate((final_visual_obs, visual_obs[key]), axis=-1)
_, proprio_vec, _ = self.env.get_proprioception()
observation = np.concatenate((final_visual_obs, proprio_vec))
else:
observation = self.env.get_obs() if observation is None else observation
return observation
def seed(self, seed):
return self.env.seed(seed)
def set_env_state(self, state_dict):
return self.env.set_env_state(state_dict)
def evaluate_success(self, paths, logger=None):
return self.env.evaluate_success(paths, logger=logger)
def make_env(env_name, cam_name, encoder, from_pixels):
if from_pixels:
visual_keys = []
assert encoder in ["vc1s", "vc1l", "r3m18", "rrl18", "rrl50", "r3m50", "2d", "1d", "proprio"]
if encoder == "1d" or encoder == "2d":
visual_keys = [f'rgb:{cam_name}:84x84:{encoder}']
elif encoder == 'proprio':
visual_keys = []
else:
# cam_name is a list of cameras
if type(cam_name) == ListConfig:
visual_keys = []
for cam in cam_name:
visual_keys.append(f'rgb:{cam}:224x224:{encoder}')
else:
visual_keys = [f'rgb:{cam_name}:224x224:{encoder}']
print(f"Using visual keys {visual_keys}")
env = ObservationWrapper(env_name, visual_keys=visual_keys, encoder=encoder)
else:
env = gym.make(env_name)
return env
@hydra.main(config_name="bc.yaml", config_path="config")
def main(job_data: DictConfig):
OmegaConf.resolve(job_data)
job_data['policy_size'] = tuple(job_data['policy_size'])
exp_start = time.time()
OUT_DIR = os.getcwd()
if not os.path.exists(OUT_DIR): os.mkdir(OUT_DIR)
if not os.path.exists(OUT_DIR+'/iterations'): os.mkdir(OUT_DIR+'/iterations')
if not os.path.exists(OUT_DIR+'/logs'): os.mkdir(OUT_DIR+'/logs')
if job_data['from_pixels'] == False:
job_data['env_name'] = job_data['env_name'].replace('_v2d', '')
#exp_name = OUT_DIR.split('/')[-1] ## TODO: Customizer for logging
# Unpack args and make files for easy access
#logger = DataLog()
exp_name = job_data['env_name'] + '_pixels' + str(job_data['from_pixels']) + '_' + job_data['encoder']
logger = WandbLogger(
exp_name=exp_name,
config=job_data,
name=exp_name,
project=job_data['wandb_project'],
entity=job_data['wandb_entity'],
mode=job_data['wandb_mode'],
)
ENV_NAME = job_data['env_name']
EXP_FILE = OUT_DIR + '/job_data.yaml'
SEED = job_data['seed']
# base cases
if 'device' not in job_data.keys(): job_data['device'] = 'cpu'
assert 'data_file' in job_data.keys()
yaml_config = OmegaConf.to_yaml(job_data)
with open(EXP_FILE, 'w') as file: yaml.dump(yaml_config, file)
env = make_env(
env_name=job_data["env_name"],
cam_name=job_data["cam_name"],
encoder=job_data["encoder"],
from_pixels=job_data["from_pixels"]
)
# ===============================================================================
# Setup functions and environment
# ===============================================================================
control_seed(SEED)
env.seed(SEED)
paths_trace = Trace.load(job_data['data_file'])
bc_paths = []
for key, path in paths_trace.items():
path_dict = {}
traj_len = path['observations'].shape[0]
obs_list = []
ep_reward = 0.0
env.reset()
init_state_dict = {}
t0 = time.time()
for key, value in path['env_infos']['state'].items():
init_state_dict[key] = value[0]
env.set_env_state(init_state_dict)
obs = env.get_obs()
for step in range(traj_len-1):
next_obs, reward, done, env_info = env.step(path["actions"][step])
ep_reward += reward
obs_list.append(obs)
obs = next_obs
t1 = time.time()
obs_np = np.stack(obs_list, axis=0)
path_dict['observations'] = obs_np # [:-1]
path_dict['actions'] = path['actions'][()][:-1]
path_dict['env_infos'] = {'solved': path['env_infos']['solved'][()]}
print(f"Time to convert one trajectory: {(t1-t0)/60:4.2f}")
print("Converted episode reward:", ep_reward)
print("Original episode reward:", np.sum(path["rewards"]))
print(key, path_dict['observations'].shape, path_dict['actions'].shape)
bc_paths.append(path_dict)
expert_success = env.evaluate_success(bc_paths)
print(f"{bcolors.BOLD}{bcolors.OKGREEN}{exp_name} {bcolors.ENDC}")
print(f"{bcolors.BOLD}{bcolors.OKGREEN}Expert Success Rate: {expert_success}. {bcolors.ENDC}")
observation_dim = bc_paths[0]['observations'].shape[-1]
action_dim = bc_paths[0]['actions'].shape[-1]
print(f'Policy obs dim {observation_dim} act dim {action_dim}')
policy = GMMPolicy(
# network_kwargs
input_size=observation_dim,
output_size=action_dim,
hidden_size=job_data['policy_size'][0],
num_layers=len(job_data['policy_size']),
min_std=0.0001,
num_modes=5,
activation="softplus",
low_eval_noise=False,
# loss_kwargs
)
set_transforms = False
# ===============================================================================
# Model training
# ===============================================================================
print(f"{bcolors.OKBLUE}Training BC{bcolors.ENDC}")
policy.to(job_data['device'])
bc_agent = BC(
bc_paths,
policy,
epochs=job_data['eval_every_n'],
batch_size=job_data['bc_batch_size'],
lr=job_data['bc_lr'],
loss_type='MLE',
save_logs=True,
logger=logger,
set_transforms=set_transforms,
)
for ind in range(0, job_data['bc_epochs'], job_data['eval_every_n']):
policy.train()
bc_agent.train()
# bc_agent.train_h5()
policy.eval()
_, success_rate = evaluate_policy(
env=env,
policy=policy,
eval_logger=logger,
epoch=ind+job_data['eval_every_n'],
num_episodes=job_data['eval_traj'],
seed=job_data['seed'] + 123,
verbose=True,
device='cpu',
)
policy.to(job_data['device'])
exp_end = time.time()
print(f"{bcolors.BOLD}{bcolors.OKGREEN}Success Rate: {success_rate}. Time: {(exp_end - exp_start)/60:4.2f} minutes.{bcolors.ENDC}")
exp_end = time.time()
print(f"{bcolors.BOLD}{bcolors.OKGREEN}Success Rate: {success_rate}. Time: {(exp_end - exp_start)/60:4.2f} minutes.{bcolors.ENDC}")
# pickle.dump(bc_agent, open(OUT_DIR + '/iterations/agent_final.pickle', 'wb'))
pickle.dump(policy, open(OUT_DIR + '/iterations/policy_final.pickle', 'wb'))
wandb.finish()
if __name__ == '__main__':
main()
|
import torch
import numpy as np
import torch.nn as nn
from torch.autograd import Variable
class FCNetworkWithBatchNorm(nn.Module):
def __init__(self, obs_dim, act_dim,
hidden_sizes=(64,64),
nonlinearity='relu', # either 'tanh' or 'relu'
dropout=0, # probability to dropout activations (0 means no dropout)
*args, **kwargs,
):
super(FCNetworkWithBatchNorm, self).__init__()
self.obs_dim = obs_dim
self.act_dim = act_dim
assert type(hidden_sizes) == tuple
self.layer_sizes = (obs_dim, ) + hidden_sizes + (act_dim, )
self.device = 'cpu'
# hidden layers
self.fc_layers = nn.ModuleList([nn.Linear(self.layer_sizes[i], self.layer_sizes[i+1]) \
for i in range(len(self.layer_sizes) -1)])
self.nonlinearity = torch.relu if nonlinearity == 'relu' else torch.tanh
self.input_batchnorm = nn.BatchNorm1d(num_features=obs_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = x.to(self.device)
out = self.input_batchnorm(out)
for i in range(len(self.fc_layers)-1):
out = self.fc_layers[i](out)
out = self.dropout(out)
out = self.nonlinearity(out)
out = self.fc_layers[-1](out)
return out
def to(self, device):
self.device = device
return super().to(device)
def set_transformations(self, *args, **kwargs):
pass
class BatchNormMLP(nn.Module):
def __init__(self, env_spec=None,
action_dim=None,
observation_dim=None,
hidden_sizes=(64,64),
min_log_std=-3,
init_log_std=0,
seed=None,
nonlinearity='relu',
dropout=0,
device='cpu',
*args, **kwargs,
):
"""
:param env_spec: specifications of the env (see utils/gym_env.py)
:param hidden_sizes: network hidden layer sizes (currently 2 layers only)
:param min_log_std: log_std is clamped at this value and can't go below
:param init_log_std: initial log standard deviation
:param seed: random seed
"""
super(BatchNormMLP, self).__init__()
self.device = device
self.n = env_spec.observation_dim if observation_dim is None else observation_dim # number of states
self.m = env_spec.action_dim if action_dim is None else action_dim # number of actions
self.min_log_std = min_log_std
# Set seed
# ------------------------
if seed is not None:
torch.manual_seed(seed)
np.random.seed(seed)
# Policy network
# ------------------------
self.model = FCNetworkWithBatchNorm(self.n, self.m, hidden_sizes, nonlinearity, dropout)
# make weights small
for param in list(self.model.parameters())[-2:]: # only last layer
param.data = 1e-2 * param.data
self.log_std = Variable(torch.ones(self.m) * init_log_std, requires_grad=True)
self.trainable_params = list(self.model.parameters()) + [self.log_std]
self.model.eval()
# Easy access variables
# -------------------------
self.log_std_val = np.float64(self.log_std.data.numpy().ravel())
self.param_shapes = [p.data.numpy().shape for p in self.trainable_params]
self.param_sizes = [p.data.numpy().size for p in self.trainable_params]
self.d = np.sum(self.param_sizes) # total number of params
# Placeholders
# ------------------------
self.obs_var = Variable(torch.randn(self.n), requires_grad=False)
# Utility functions
# ============================================
def to(self, device):
super().to(device)
self.model = self.model.to(device)
print(self.model)
self.device = device
return self
# Main functions
# ============================================
def get_action(self, observation):
o = np.float32(observation.reshape(1, -1))
self.obs_var.data = torch.from_numpy(o)
mean = self.model(self.obs_var).to('cpu').data.numpy().ravel()
noise = np.exp(self.log_std_val) * np.random.randn(self.m)
action = mean + noise
return [action, {'mean': mean, 'log_std': self.log_std_val, 'evaluation': mean}]
# ============================================
def forward(self, observations):
if type(observations) == np.ndarray: observations = torch.from_numpy(observations).float()
assert type(observations) == torch.Tensor
observations = observations.to(self.device)
out = self.model(observations)
return out
|
import torch
import numpy as np
import torch.nn as nn
import torch.distributions as D
import torch.nn.functional as F
class GMMPolicy(nn.Module):
def __init__(self,
# network_kwargs
input_size,
output_size,
hidden_size=1024,
num_layers=2,
min_std=0.0001,
num_modes=5,
activation="softplus",
low_eval_noise=False,
# loss_kwargs
loss_coef=1.0):
super().__init__()
self.num_modes = num_modes
self.output_size = output_size
self.min_std = min_std
if num_layers > 0:
sizes = [input_size] + [hidden_size] * num_layers
layers = [nn.BatchNorm1d(num_features=input_size)]
for i in range(num_layers):
layers += [nn.Linear(sizes[i], sizes[i+1]), nn.ReLU()]
layers += [nn.Linear(sizes[-2], sizes[-1])]
self.share = nn.Sequential(*layers)
else:
self.share = nn.Identity()
self.mean_layer = nn.Linear(hidden_size, output_size * num_modes)
self.logstd_layer = nn.Linear(hidden_size, output_size * num_modes)
self.logits_layer = nn.Linear(hidden_size, num_modes)
self.low_eval_noise = low_eval_noise
self.loss_coef = loss_coef
if activation == "softplus":
self.actv = F.softplus
else:
self.actv = torch.exp
self.trainable_params = list(self.share.parameters()) + \
list(self.mean_layer.parameters()) + \
list(self.logstd_layer.parameters()) + \
list(self.logits_layer.parameters())
def to(self, device):
super().to(device)
self.device = device
return self
def forward_fn(self, x):
# x: (B, input_size)
share = self.share(x)
means = self.mean_layer(share).view(-1, self.num_modes, self.output_size)
means = torch.tanh(means)
logits = self.logits_layer(share)
if self.training or not self.low_eval_noise:
logstds = self.logstd_layer(share).view(-1, self.num_modes, self.output_size)
stds = self.actv(logstds) + self.min_std
else:
stds = torch.ones_like(means) * 1e-4
return means, stds, logits
def get_action(self, observation):
o = np.float32(observation.reshape(1, -1))
o = torch.from_numpy(o).to(self.device)
means, stds, logits = self.forward_fn(o)
compo = D.Normal(loc=means, scale=stds)
compo = D.Independent(compo, 1)
mix = D.Categorical(logits=logits)
gmm = D.MixtureSameFamily(mixture_distribution=mix,
component_distribution=compo)
action = gmm.sample()
mean = gmm.mean
mean = mean.detach().cpu().numpy().ravel()
return [action, {'mean': mean, 'std': stds, 'evaluation': mean}]
def forward(self, x):
means, scales, logits = self.forward_fn(x)
compo = D.Normal(loc=means, scale=scales)
compo = D.Independent(compo, 1)
mix = D.Categorical(logits=logits)
gmm = D.MixtureSameFamily(mixture_distribution=mix,
component_distribution=compo)
return gmm
def mean_LL(self, x, target):
gmm_dist = self.forward(x)
# return mean, log_prob of the gmm
return gmm_dist.mean, gmm_dist.log_prob(target)
def loss_fn(self, gmm, target, reduction='mean'):
log_probs = gmm.log_prob(target)
loss = -log_probs
if reduction == 'mean':
return loss.mean() * self.loss_coef
elif reduction == 'none':
return loss * self.loss_coef
elif reduction == 'sum':
return loss.sum() * self.loss_coef
else:
raise NotImplementedError
|
import torch
from rlhive.rl_envs import RoboHiveEnv
from rlhive.sim_algos.helpers.rrl_transform import RRLTransform
from torchrl.envs import (
CatTensors,
DoubleToFloat,
ObservationNorm,
R3MTransform,
SelectTransform,
TransformedEnv,
)
from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling
from torchrl.envs.utils import set_exploration_mode
def make_env(task, visual_transform, reward_scaling, device):
assert visual_transform in ("rrl", "r3m")
base_env = RoboHiveEnv(task, device=device)
env = make_transformed_env(
env=base_env, reward_scaling=reward_scaling, visual_transform=visual_transform
)
print(env)
# exit()
return env
def make_transformed_env(
env,
reward_scaling=5.0,
visual_transform="r3m",
stats=None,
):
"""
Apply transforms to the env (such as reward scaling and state normalization)
"""
env = TransformedEnv(env, SelectTransform("solved", "pixels", "observation"))
if visual_transform == "rrl":
vec_keys = ["rrl_vec"]
selected_keys = ["observation", "rrl_vec"]
env.append_transform(
Compose(
RRLTransform("resnet50", in_keys=["pixels"], download=True),
FlattenObservation(-2, -1, in_keys=vec_keys),
)
) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802
elif visual_transform == "r3m":
vec_keys = ["r3m_vec"]
selected_keys = ["observation", "r3m_vec"]
env.append_transform(
Compose(
R3MTransform("resnet50", in_keys=["pixels"], download=True),
FlattenObservation(-2, -1, in_keys=vec_keys),
)
) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802
else:
raise NotImplementedError
env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling))
out_key = "observation_vector"
env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key))
# we normalize the states
if stats is None:
_stats = {"loc": 0.0, "scale": 1.0}
else:
_stats = stats
env.append_transform(
ObservationNorm(**_stats, in_keys=[out_key], standard_normal=True)
)
env.append_transform(DoubleToFloat(in_keys=[out_key], in_keys_inv=[]))
return env
env = make_env(
task="visual_franka_slide_random-v3",
reward_scaling=5.0,
device=torch.device("cuda:0"),
visual_transform="rrl",
)
with torch.no_grad(), set_exploration_mode("random"):
td = env.reset()
td = env.rand_step()
print(td)
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import gc
import os
import hydra
import numpy as np
import torch
import torch.cuda
import tqdm
import wandb
from omegaconf import DictConfig
from rlhive.rl_envs import RoboHiveEnv
from rlhive.sim_algos.helpers.rrl_transform import RRLTransform
# from torchrl.objectives import SACLoss
from sac_loss import SACLoss
from torch import nn, optim
from torchrl.collectors import MultiaSyncDataCollector
from torchrl.data import TensorDictPrioritizedReplayBuffer, TensorDictReplayBuffer
from torchrl.data.replay_buffers.storages import LazyMemmapStorage
from torchrl.envs import (
CatTensors,
DoubleToFloat,
ObservationNorm,
R3MTransform,
SelectTransform,
TransformedEnv,
)
from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling
from torchrl.envs.utils import set_exploration_mode
from torchrl.modules import MLP, NormalParamWrapper, SafeModule
from torchrl.modules.distributions import TanhNormal
from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
from torchrl.objectives import SoftUpdate
from torchrl.trainers import Recorder
os.environ["WANDB_MODE"] = "offline" # offline sync. TODO: Remove this behavior
def make_env(task, visual_transform, reward_scaling, device, from_pixels):
assert visual_transform in ("rrl", "r3m")
base_env = RoboHiveEnv(task, device=device)
env = make_transformed_env(
env=base_env,
reward_scaling=reward_scaling,
visual_transform=visual_transform,
from_pixels=from_pixels,
)
print(env)
return env
def make_transformed_env(
env,
from_pixels,
reward_scaling=5.0,
visual_transform="r3m",
stats=None,
):
"""
Apply transforms to the env (such as reward scaling and state normalization)
"""
if from_pixels:
env = TransformedEnv(env, SelectTransform("solved", "pixels", "observation"))
if visual_transform == "rrl":
vec_keys = ["rrl_vec"]
selected_keys = ["observation", "rrl_vec"]
env.append_transform(
Compose(
RRLTransform("resnet50", in_keys=["pixels"], download=True),
FlattenObservation(-2, -1, in_keys=vec_keys),
)
) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802
elif visual_transform == "r3m":
vec_keys = ["r3m_vec"]
selected_keys = ["observation", "r3m_vec"]
env.append_transform(
Compose(
R3MTransform("resnet50", in_keys=["pixels"], download=True),
FlattenObservation(-2, -1, in_keys=vec_keys),
)
) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802
else:
raise NotImplementedError
else:
env = TransformedEnv(env, SelectTransform("solved", "observation"))
selected_keys = ["observation"]
env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling))
out_key = "observation_vector"
env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key))
# we normalize the states
if stats is None:
_stats = {"loc": 0.0, "scale": 1.0}
else:
_stats = stats
env.append_transform(
ObservationNorm(**_stats, in_keys=[out_key], standard_normal=True)
)
env.append_transform(DoubleToFloat(in_keys=[out_key], in_keys_inv=[]))
return env
def make_recorder(
task: str,
frame_skip: int,
record_interval: int,
actor_model_explore: object,
eval_traj: int,
env_configs: dict,
):
test_env = make_env(task=task, **env_configs)
recorder_obj = Recorder(
record_frames=eval_traj * test_env.horizon,
frame_skip=frame_skip,
policy_exploration=actor_model_explore,
recorder=test_env,
exploration_mode="mean",
record_interval=record_interval,
log_keys=["reward", "solved"],
out_keys={"reward": "r_evaluation", "solved": "success"},
)
return recorder_obj
def make_replay_buffer(
prb: bool,
buffer_size: int,
buffer_scratch_dir: str,
device: torch.device,
make_replay_buffer: int = 3,
):
if prb:
replay_buffer = TensorDictPrioritizedReplayBuffer(
alpha=0.7,
beta=0.5,
pin_memory=False,
prefetch=make_replay_buffer,
storage=LazyMemmapStorage(
buffer_size,
scratch_dir=buffer_scratch_dir,
device=device,
),
)
else:
replay_buffer = TensorDictReplayBuffer(
pin_memory=False,
prefetch=make_replay_buffer,
storage=LazyMemmapStorage(
buffer_size,
scratch_dir=buffer_scratch_dir,
device=device,
),
)
return replay_buffer
def evaluate_success(env_success_fn, td_record: dict, eval_traj: int):
td_record["success"] = td_record["success"].reshape((eval_traj, -1))
paths = []
for solved_traj in td_record["success"]:
path = {"env_infos": {"solved": solved_traj.data.cpu().numpy()}}
paths.append(path)
success_percentage = env_success_fn(paths)
return success_percentage
@hydra.main(config_name="sac.yaml", config_path="config")
def main(args: DictConfig):
device = (
torch.device("cuda:0")
if torch.cuda.is_available()
and torch.cuda.device_count() > 0
and args.device == "cuda:0"
else torch.device("cpu")
)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# Create Environment
env_configs = {
"reward_scaling": args.reward_scaling,
"visual_transform": args.visual_transform,
"device": args.device,
"from_pixels": args.from_pixels,
}
train_env = make_env(task=args.task, **env_configs)
# Create Agent
# Define Actor Network
in_keys = ["observation_vector"]
action_spec = train_env.action_spec
actor_net_kwargs = {
"num_cells": [256, 256],
"out_features": 2 * action_spec.shape[-1],
"activation_class": nn.ReLU,
}
actor_net = MLP(**actor_net_kwargs)
dist_class = TanhNormal
dist_kwargs = {
"min": action_spec.space.minimum,
"max": action_spec.space.maximum,
"tanh_loc": False,
}
actor_net = NormalParamWrapper(
actor_net,
scale_mapping=f"biased_softplus_{1.0}",
scale_lb=0.1,
)
in_keys_actor = in_keys
actor_module = SafeModule(
actor_net,
in_keys=in_keys_actor,
out_keys=[
"loc",
"scale",
],
)
actor = ProbabilisticActor(
spec=action_spec,
in_keys=["loc", "scale"],
module=actor_module,
distribution_class=dist_class,
distribution_kwargs=dist_kwargs,
default_interaction_mode="random",
return_log_prob=False,
)
# Define Critic Network
qvalue_net_kwargs = {
"num_cells": [256, 256],
"out_features": 1,
"activation_class": nn.ReLU,
}
qvalue_net = MLP(
**qvalue_net_kwargs,
)
qvalue = ValueOperator(
in_keys=["action"] + in_keys,
module=qvalue_net,
)
model = nn.ModuleList([actor, qvalue]).to(device)
# add forward pass for initialization with proof env
proof_env = make_env(task=args.task, **env_configs)
# init nets
with torch.no_grad(), set_exploration_mode("random"):
td = proof_env.reset()
td = td.to(device)
for net in model:
net(td)
del td
proof_env.close()
actor_model_explore = model[0]
# Create SAC loss
loss_module = SACLoss(
actor_network=model[0],
qvalue_network=model[1],
num_qvalue_nets=2,
gamma=args.gamma,
loss_function="smooth_l1",
)
# Define Target Network Updater
target_net_updater = SoftUpdate(loss_module, args.target_update_polyak)
# Make Off-Policy Collector
collector = MultiaSyncDataCollector(
create_env_fn=[train_env],
policy=actor_model_explore,
total_frames=args.total_frames,
max_frames_per_traj=args.frames_per_batch,
frames_per_batch=args.env_per_collector * args.frames_per_batch,
init_random_frames=args.init_random_frames,
reset_at_each_iter=False,
postproc=None,
split_trajs=True,
devices=[device], # device for execution
passing_devices=[device], # device where data will be stored and passed
seed=None,
pin_memory=False,
update_at_each_batch=False,
exploration_mode="random",
)
collector.set_seed(args.seed)
# Make Replay Buffer
replay_buffer = make_replay_buffer(
prb=args.prb,
buffer_size=args.buffer_size,
buffer_scratch_dir=args.buffer_scratch_dir,
device=device,
)
# Trajectory recorder for evaluation
recorder = make_recorder(
task=args.task,
frame_skip=args.frame_skip,
record_interval=args.record_interval,
actor_model_explore=actor_model_explore,
eval_traj=args.eval_traj,
env_configs=env_configs,
)
# Optimizers
params = list(loss_module.parameters()) + [loss_module.log_alpha]
optimizer_actor = optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
rewards = []
rewards_eval = []
# Main loop
target_net_updater.init_()
collected_frames = 0
episodes = 0
pbar = tqdm.tqdm(total=args.total_frames)
r0 = None
loss = None
with wandb.init(project="SAC_TorchRL", name=args.exp_name, config=args):
for i, tensordict in enumerate(collector):
# update weights of the inference policy
collector.update_policy_weights_()
if r0 is None:
r0 = tensordict["reward"].sum(-1).mean().item()
pbar.update(tensordict.numel())
# extend the replay buffer with the new data
if "mask" in tensordict.keys():
# if multi-step, a mask is present to help filter padded values
current_frames = tensordict["mask"].sum()
tensordict = tensordict[tensordict.get("mask").squeeze(-1)]
else:
tensordict = tensordict.view(-1)
current_frames = tensordict.numel()
collected_frames += current_frames
episodes += args.env_per_collector
replay_buffer.extend(tensordict.cpu())
# optimization steps
if collected_frames >= args.init_random_frames:
(
total_losses,
actor_losses,
q_losses,
alpha_losses,
alphas,
entropies,
) = ([], [], [], [], [], [])
for _ in range(
args.env_per_collector * args.frames_per_batch * args.utd_ratio
):
# sample from replay buffer
sampled_tensordict = replay_buffer.sample(args.batch_size).clone()
loss_td = loss_module(sampled_tensordict)
actor_loss = loss_td["loss_actor"]
q_loss = loss_td["loss_qvalue"]
alpha_loss = loss_td["loss_alpha"]
loss = actor_loss + q_loss + alpha_loss
optimizer_actor.zero_grad()
loss.backward()
optimizer_actor.step()
# update qnet_target params
target_net_updater.step()
# update priority
if args.prb:
replay_buffer.update_priority(sampled_tensordict)
total_losses.append(loss.item())
actor_losses.append(actor_loss.item())
q_losses.append(q_loss.item())
alpha_losses.append(alpha_loss.item())
alphas.append(loss_td["alpha"].item())
entropies.append(loss_td["entropy"].item())
rewards.append(
(i, tensordict["reward"].sum().item() / args.env_per_collector)
)
wandb.log(
{
"train_reward": rewards[-1][1],
"collected_frames": collected_frames,
"episodes": episodes,
}
)
if loss is not None:
wandb.log(
{
"total_loss": np.mean(total_losses),
"actor_loss": np.mean(actor_losses),
"q_loss": np.mean(q_losses),
"alpha_loss": np.mean(alpha_losses),
"alpha": np.mean(alphas),
"entropy": np.mean(entropies),
}
)
td_record = recorder(None)
success_percentage = evaluate_success(
env_success_fn=train_env.evaluate_success,
td_record=td_record,
eval_traj=args.eval_traj,
)
if td_record is not None:
rewards_eval.append(
(
i,
td_record["total_r_evaluation"]
/ 1, # divide by number of eval worker
)
)
wandb.log({"test_reward": rewards_eval[-1][1]})
wandb.log({"success": success_percentage})
if len(rewards_eval):
pbar.set_description(
f"reward: {rewards[-1][1]: 4.4f} (r0 = {r0: 4.4f}), test reward: {rewards_eval[-1][1]: 4.4f}"
)
del tensordict
gc.collect()
collector.shutdown()
if __name__ == "__main__":
main()
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from numbers import Number
from typing import Union
import numpy as np
import torch
from tensordict.nn import TensorDictSequential
from tensordict.tensordict import TensorDict, TensorDictBase
from torch import Tensor
from torchrl.envs.utils import set_exploration_mode, step_mdp
from torchrl.modules import SafeModule
from torchrl.objectives.common import LossModule
from torchrl.objectives.utils import (
distance_loss,
next_state_value as get_next_state_value,
)
try:
from functorch import vmap
FUNCTORCH_ERR = ""
_has_functorch = True
except ImportError as err:
FUNCTORCH_ERR = str(err)
_has_functorch = False
class SACLoss(LossModule):
"""SAC Loss module.
Args:
actor_network (SafeModule): the actor to be trained
qvalue_network (SafeModule): a single Q-value network that will be multiplicated as many times as needed.
num_qvalue_nets (int, optional): Number of Q-value networks to be trained. Default is 10.
gamma (Number, optional): gamma decay factor. Default is 0.99.
priotity_key (str, optional): Key where to write the priority value for prioritized replay buffers. Default is
`"td_error"`.
loss_function (str, optional): loss function to be used for the Q-value. Can be one of `"smooth_l1"`, "l2",
"l1", Default is "smooth_l1".
alpha_init (float, optional): initial entropy multiplier.
Default is 1.0.
min_alpha (float, optional): min value of alpha.
Default is 0.1.
max_alpha (float, optional): max value of alpha.
Default is 10.0.
fixed_alpha (bool, optional): whether alpha should be trained to match a target entropy. Default is :obj:`False`.
target_entropy (Union[str, Number], optional): Target entropy for the stochastic policy. Default is "auto".
delay_qvalue (bool, optional): Whether to separate the target Q value networks from the Q value networks used
for data collection. Default is :obj:`False`.
gSDE (bool, optional): Knowing if gSDE is used is necessary to create random noise variables.
Default is False
"""
delay_actor: bool = False
_explicit: bool = True
def __init__(
self,
actor_network: SafeModule,
qvalue_network: SafeModule,
num_qvalue_nets: int = 2,
gamma: Number = 0.99,
priotity_key: str = "td_error",
loss_function: str = "smooth_l1",
alpha_init: float = 1.0,
min_alpha: float = 0.1,
max_alpha: float = 10.0,
fixed_alpha: bool = False,
target_entropy: Union[str, Number] = "auto",
delay_qvalue: bool = True,
gSDE: bool = False,
):
if not _has_functorch:
raise ImportError(
f"Failed to import functorch with error message:\n{FUNCTORCH_ERR}"
)
super().__init__()
self.convert_to_functional(
actor_network,
"actor_network",
create_target_params=self.delay_actor,
funs_to_decorate=["forward", "get_dist_params"],
)
# let's make sure that actor_network has `return_log_prob` set to True
self.actor_network.return_log_prob = True
self.delay_qvalue = delay_qvalue
self.convert_to_functional(
qvalue_network,
"qvalue_network",
num_qvalue_nets,
create_target_params=self.delay_qvalue,
compare_against=list(actor_network.parameters()),
)
self.num_qvalue_nets = num_qvalue_nets
self.register_buffer("gamma", torch.tensor(gamma))
self.priority_key = priotity_key
self.loss_function = loss_function
try:
device = next(self.parameters()).device
except AttributeError:
device = torch.device("cpu")
self.register_buffer("alpha_init", torch.tensor(alpha_init, device=device))
self.register_buffer(
"min_log_alpha", torch.tensor(min_alpha, device=device).log()
)
self.register_buffer(
"max_log_alpha", torch.tensor(max_alpha, device=device).log()
)
self.fixed_alpha = fixed_alpha
if fixed_alpha:
self.register_buffer(
"log_alpha", torch.tensor(math.log(alpha_init), device=device)
)
else:
self.register_parameter(
"log_alpha",
torch.nn.Parameter(torch.tensor(math.log(alpha_init), device=device)),
)
if target_entropy == "auto":
if actor_network.spec["action"] is None:
raise RuntimeError(
"Cannot infer the dimensionality of the action. Consider providing "
"the target entropy explicitely or provide the spec of the "
"action tensor in the actor network."
)
target_entropy = -float(np.prod(actor_network.spec["action"].shape))
self.register_buffer(
"target_entropy", torch.tensor(target_entropy, device=device)
)
self.gSDE = gSDE
@property
def alpha(self):
self.log_alpha.data.clamp_(self.min_log_alpha, self.max_log_alpha)
with torch.no_grad():
alpha = self.log_alpha.exp()
return alpha
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
if self._explicit:
# slow but explicit version
return self._forward_explicit(tensordict)
else:
return self._forward_vectorized(tensordict)
def _loss_alpha(self, log_pi: Tensor) -> Tensor:
if torch.is_grad_enabled() and not log_pi.requires_grad:
raise RuntimeError(
"expected log_pi to require gradient for the alpha loss)"
)
if self.target_entropy is not None:
# we can compute this loss even if log_alpha is not a parameter
alpha_loss = -self.log_alpha.exp() * (log_pi.detach() + self.target_entropy)
else:
# placeholder
alpha_loss = torch.zeros_like(log_pi)
return alpha_loss
def _forward_vectorized(self, tensordict: TensorDictBase) -> TensorDictBase:
obs_keys = self.actor_network.in_keys
tensordict_select = tensordict.select(
"reward", "done", "next", *obs_keys, "action"
)
actor_params = torch.stack(
[self.actor_network_params, self.target_actor_network_params], 0
)
tensordict_actor_grad = tensordict_select.select(
*obs_keys
) # to avoid overwriting keys
next_td_actor = step_mdp(tensordict_select).select(
*self.actor_network.in_keys
) # next_observation ->
tensordict_actor = torch.stack([tensordict_actor_grad, next_td_actor], 0)
tensordict_actor = tensordict_actor.contiguous()
with set_exploration_mode("random"):
if self.gSDE:
tensordict_actor.set(
"_eps_gSDE",
torch.zeros(tensordict_actor.shape, device=tensordict_actor.device),
)
# vmap doesn't support sampling, so we take it out from the vmap
td_params = vmap(self.actor_network.get_dist_params)(
tensordict_actor,
actor_params,
)
if isinstance(self.actor_network, TensorDictSequential):
sample_key = self.actor_network[-1].out_keys[0]
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
else:
sample_key = self.actor_network.out_keys[0]
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
tensordict_actor[sample_key] = self._rsample(tensordict_actor_dist)
tensordict_actor["sample_log_prob"] = tensordict_actor_dist.log_prob(
tensordict_actor[sample_key]
)
# repeat tensordict_actor to match the qvalue size
_actor_loss_td = (
tensordict_actor[0]
.select(*self.qvalue_network.in_keys)
.expand(self.num_qvalue_nets, *tensordict_actor[0].batch_size)
) # for actor loss
_qval_td = tensordict_select.select(*self.qvalue_network.in_keys).expand(
self.num_qvalue_nets,
*tensordict_select.select(*self.qvalue_network.in_keys).batch_size,
) # for qvalue loss
_next_val_td = (
tensordict_actor[1]
.select(*self.qvalue_network.in_keys)
.expand(self.num_qvalue_nets, *tensordict_actor[1].batch_size)
) # for next value estimation
tensordict_qval = torch.cat(
[
_actor_loss_td,
_next_val_td,
_qval_td,
],
0,
)
# cat params
q_params_detach = self.qvalue_network_params.detach()
qvalue_params = torch.cat(
[
q_params_detach,
self.target_qvalue_network_params,
self.qvalue_network_params,
],
0,
)
tensordict_qval = vmap(self.qvalue_network)(
tensordict_qval,
qvalue_params,
)
state_action_value = tensordict_qval.get("state_action_value").squeeze(-1)
(
state_action_value_actor,
next_state_action_value_qvalue,
state_action_value_qvalue,
) = state_action_value.split(
[self.num_qvalue_nets, self.num_qvalue_nets, self.num_qvalue_nets],
dim=0,
)
sample_log_prob = tensordict_actor.get("sample_log_prob").squeeze(-1)
(
action_log_prob_actor,
next_action_log_prob_qvalue,
) = sample_log_prob.unbind(0)
# E[alpha * log_pi(a) - Q(s, a)] where a is reparameterized
loss_actor = -(
state_action_value_actor.min(0)[0] - self.alpha * action_log_prob_actor
).mean()
next_state_value = (
next_state_action_value_qvalue.min(0)[0]
- self.alpha * next_action_log_prob_qvalue
)
target_value = get_next_state_value(
tensordict,
gamma=self.gamma,
pred_next_val=next_state_value,
)
pred_val = state_action_value_qvalue
td_error = (pred_val - target_value).pow(2)
loss_qval = (
distance_loss(
pred_val,
target_value.expand_as(pred_val),
loss_function=self.loss_function,
)
.mean(-1)
.sum()
* 0.5
)
tensordict.set("td_error", td_error.detach().max(0)[0])
loss_alpha = self._loss_alpha(sample_log_prob)
if not loss_qval.shape == loss_actor.shape:
raise RuntimeError(
f"QVal and actor loss have different shape: {loss_qval.shape} and {loss_actor.shape}"
)
td_out = TensorDict(
{
"loss_actor": loss_actor.mean(),
"loss_qvalue": loss_qval.mean(),
"loss_alpha": loss_alpha.mean(),
"alpha": self.alpha.detach(),
"entropy": -sample_log_prob.mean().detach(),
"state_action_value_actor": state_action_value_actor.mean().detach(),
"action_log_prob_actor": action_log_prob_actor.mean().detach(),
"next.state_value": next_state_value.mean().detach(),
"target_value": target_value.mean().detach(),
},
[],
)
return td_out
def _forward_explicit(self, tensordict: TensorDictBase) -> TensorDictBase:
loss_actor, sample_log_prob = self._loss_actor_explicit(tensordict.clone(False))
loss_qval, td_error = self._loss_qval_explicit(tensordict.clone(False))
tensordict.set("td_error", td_error.detach().max(0)[0])
loss_alpha = self._loss_alpha(sample_log_prob)
td_out = TensorDict(
{
"loss_actor": loss_actor.mean(),
"loss_qvalue": loss_qval.mean(),
"loss_alpha": loss_alpha.mean(),
"alpha": self.alpha.detach(),
"entropy": -sample_log_prob.mean().detach(),
# "state_action_value_actor": state_action_value_actor.mean().detach(),
# "action_log_prob_actor": action_log_prob_actor.mean().detach(),
# "next.state_value": next_state_value.mean().detach(),
# "target_value": target_value.mean().detach(),
},
[],
)
return td_out
def _rsample(
self,
dist,
):
# separated only for the purpose of making the sampling
# deterministic to compare methods
return dist.rsample()
def _sample_reparam(self, tensordict, params):
"""Given a policy param batch and input data in a tensordict, writes a reparam sample and log-prob key."""
with set_exploration_mode("random"):
if self.gSDE:
raise NotImplementedError
# vmap doesn't support sampling, so we take it out from the vmap
td_params = self.actor_network.get_dist_params(
tensordict,
params,
)
if isinstance(self.actor_network, TensorDictSequential):
sample_key = self.actor_network[-1].out_keys[0]
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
else:
sample_key = self.actor_network.out_keys[0]
tensordict_actor_dist = self.actor_network.build_dist_from_params(
td_params
)
tensordict[sample_key] = self._rsample(tensordict_actor_dist)
tensordict["sample_log_prob"] = tensordict_actor_dist.log_prob(
tensordict[sample_key]
)
return tensordict
def _loss_actor_explicit(self, tensordict):
tensordict_actor = tensordict.clone(False)
actor_params = self.actor_network_params
tensordict_actor = self._sample_reparam(tensordict_actor, actor_params)
action_log_prob_actor = tensordict_actor["sample_log_prob"]
tensordict_qval = tensordict_actor.select(*self.qvalue_network.in_keys).expand(
self.num_qvalue_nets, *tensordict_actor.batch_size
) # for actor loss
qvalue_params = self.qvalue_network_params.detach()
tensordict_qval = vmap(self.qvalue_network)(
tensordict_qval,
qvalue_params,
)
state_action_value_actor = tensordict_qval.get("state_action_value").squeeze(-1)
state_action_value_actor = state_action_value_actor.min(0)[0]
# E[alpha * log_pi(a) - Q(s, a)] where a is reparameterized
loss_actor = (
self.alpha * action_log_prob_actor - state_action_value_actor
).mean()
return loss_actor, action_log_prob_actor
def _loss_qval_explicit(self, tensordict):
next_tensordict = step_mdp(tensordict)
next_tensordict = self._sample_reparam(
next_tensordict, self.target_actor_network_params
)
next_action_log_prob_qvalue = next_tensordict["sample_log_prob"]
next_state_action_value_qvalue = vmap(self.qvalue_network, (None, 0))(
next_tensordict,
self.target_qvalue_network_params,
)["state_action_value"].squeeze(-1)
next_state_value = (
next_state_action_value_qvalue.min(0)[0]
- self.alpha * next_action_log_prob_qvalue
)
pred_val = vmap(self.qvalue_network, (None, 0))(
tensordict,
self.qvalue_network_params,
)["state_action_value"].squeeze(-1)
target_value = get_next_state_value(
tensordict,
gamma=self.gamma,
pred_next_val=next_state_value,
)
# 1/2 * E[Q(s,a) - (r + gamma * (Q(s,a)-alpha log pi(s, a)))
loss_qval = (
distance_loss(
pred_val,
target_value.expand_as(pred_val),
loss_function=self.loss_function,
)
.mean(-1)
.sum()
* 0.5
)
td_error = (pred_val - target_value).pow(2)
return loss_qval, td_error
if __name__ == "__main__":
from tensordict.nn import TensorDictModule
from torch import nn
from torchrl.data import BoundedTensorSpec
# Tests the vectorized version of SAC-v2 against plain implementation
from torchrl.modules import ProbabilisticActor, ValueOperator
from torchrl.modules.distributions import TanhNormal
torch.manual_seed(0)
action_spec = BoundedTensorSpec(-1, 1, shape=(3,))
class Splitter(nn.Linear):
def forward(self, x):
loc, scale = super().forward(x).chunk(2, -1)
return loc, scale.exp()
actor_module = TensorDictModule(
Splitter(6, 6), in_keys=["obs"], out_keys=["loc", "scale"]
)
actor = ProbabilisticActor(
spec=action_spec,
in_keys=["loc", "scale"],
module=actor_module,
distribution_class=TanhNormal,
default_interaction_mode="random",
return_log_prob=False,
)
class QVal(nn.Linear):
def forward(self, s: Tensor, a: Tensor) -> Tensor:
return super().forward(torch.cat([s, a], -1))
qvalue = ValueOperator(QVal(9, 1), in_keys=["obs", "action"])
_rsample_old = SACLoss._rsample
def _rsample_new(self, dist):
return torch.ones_like(_rsample_old(self, dist))
SACLoss._rsample = _rsample_new
loss = SACLoss(actor, qvalue)
for batch in ((), (2, 3)):
td_input = TensorDict(
{
"obs": torch.rand(*batch, 6),
"action": torch.rand(*batch, 3).clamp(-1, 1),
"next": {"obs": torch.rand(*batch, 6)},
"reward": torch.rand(*batch, 1),
"done": torch.zeros(*batch, 1, dtype=torch.bool),
},
batch,
)
loss._explicit = True
loss0 = loss(td_input)
loss._explicit = False
loss1 = loss(td_input)
print("a", loss0["loss_actor"] - loss1["loss_actor"])
print("q", loss0["loss_qvalue"] - loss1["loss_qvalue"])
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import dataclasses
import hydra
import torch.cuda
from hydra.core.config_store import ConfigStore
from rlhive.rl_envs import RoboHiveEnv
from torchrl.envs import (
CatTensors,
DoubleToFloat,
EnvCreator,
ObservationNorm,
ParallelEnv,
R3MTransform,
SelectTransform,
TransformedEnv,
)
from torchrl.envs.transforms import Compose, FlattenObservation, RewardScaling
from torchrl.envs.utils import set_exploration_mode
from torchrl.modules import OrnsteinUhlenbeckProcessWrapper
from torchrl.record import VideoRecorder
from torchrl.trainers.helpers.collectors import (
make_collector_offpolicy,
OffPolicyCollectorConfig,
)
from torchrl.trainers.helpers.envs import (
EnvConfig,
initialize_observation_norm_transforms,
retrieve_observation_norms_state_dict,
)
from torchrl.trainers.helpers.logger import LoggerConfig
from torchrl.trainers.helpers.losses import LossConfig, make_redq_loss
from torchrl.trainers.helpers.models import make_redq_model, REDQModelConfig
from torchrl.trainers.helpers.replay_buffer import make_replay_buffer, ReplayArgsConfig
from torchrl.trainers.helpers.trainers import make_trainer, TrainerConfig
from torchrl.trainers.loggers.utils import generate_exp_name, get_logger
def make_env(
task,
reward_scaling,
device,
obs_norm_state_dict=None,
action_dim_gsde=None,
state_dim_gsde=None,
):
base_env = RoboHiveEnv(task, device=device)
env = make_transformed_env(env=base_env, reward_scaling=reward_scaling)
if obs_norm_state_dict is not None:
obs_norm = ObservationNorm(
**obs_norm_state_dict, in_keys=["observation_vector"]
)
env.append_transform(obs_norm)
if action_dim_gsde is not None:
env.append_transform(
gSDENoise(action_dim=action_dim_gsde, state_dim=state_dim_gsde)
)
return env
def make_transformed_env(
env,
reward_scaling=5.0,
stats=None,
):
"""
Apply transforms to the env (such as reward scaling and state normalization)
"""
env = TransformedEnv(env, SelectTransform("solved", "pixels", "observation"))
env.append_transform(
Compose(
R3MTransform("resnet50", in_keys=["pixels"], download=True),
FlattenObservation(-2, -1, in_keys=["r3m_vec"]),
)
) # Necessary to Compose R3MTransform with FlattenObservation; Track bug: https://github.com/pytorch/rl/issues/802
env.append_transform(RewardScaling(loc=0.0, scale=reward_scaling))
selected_keys = ["r3m_vec", "observation"]
out_key = "observation_vector"
env.append_transform(CatTensors(in_keys=selected_keys, out_key=out_key))
# we normalize the states
if stats is None:
_stats = {"loc": 0.0, "scale": 1.0}
else:
_stats = stats
env.append_transform(
ObservationNorm(**_stats, in_keys=[out_key], standard_normal=True)
)
env.append_transform(DoubleToFloat(in_keys=[out_key], in_keys_inv=[]))
return env
config_fields = [
(config_field.name, config_field.type, config_field)
for config_cls in (
TrainerConfig,
OffPolicyCollectorConfig,
EnvConfig,
LossConfig,
REDQModelConfig,
LoggerConfig,
ReplayArgsConfig,
)
for config_field in dataclasses.fields(config_cls)
]
Config = dataclasses.make_dataclass(cls_name="Config", fields=config_fields)
cs = ConfigStore.instance()
cs.store(name="config", node=Config)
DEFAULT_REWARD_SCALING = {
"Hopper-v1": 5,
"Walker2d-v1": 5,
"HalfCheetah-v1": 5,
"cheetah": 5,
"Ant-v2": 5,
"Humanoid-v2": 20,
"humanoid": 100,
}
@hydra.main(version_base=None, config_path=".", config_name="config")
def main(cfg: "DictConfig"): # noqa: F821
device = (
torch.device("cpu")
if torch.cuda.device_count() == 0
else torch.device("cuda:0")
)
exp_name = generate_exp_name("REDQ", cfg.exp_name)
logger = get_logger(
logger_type=cfg.logger, logger_name="redq_logging", experiment_name=exp_name
)
key, init_env_steps = None, None
if not cfg.vecnorm and cfg.norm_stats:
if not hasattr(cfg, "init_env_steps"):
raise AttributeError("init_env_steps missing from arguments.")
key = ("next", "observation_vector")
init_env_steps = cfg.init_env_steps
proof_env = make_env(
task=cfg.env_name,
reward_scaling=cfg.reward_scaling,
device=device,
)
initialize_observation_norm_transforms(
proof_environment=proof_env, num_iter=init_env_steps, key=key
)
_, obs_norm_state_dict = retrieve_observation_norms_state_dict(proof_env)[0]
print(proof_env)
model = make_redq_model(
proof_env,
cfg=cfg,
device=device,
in_keys=["observation_vector"],
)
loss_module, target_net_updater = make_redq_loss(model, cfg)
actor_model_explore = model[0]
if cfg.ou_exploration:
if cfg.gSDE:
raise RuntimeError("gSDE and ou_exploration are incompatible")
actor_model_explore = OrnsteinUhlenbeckProcessWrapper(
actor_model_explore,
annealing_num_steps=cfg.annealing_frames,
sigma=cfg.ou_sigma,
theta=cfg.ou_theta,
).to(device)
if device == torch.device("cpu"):
# mostly for debugging
actor_model_explore.share_memory()
if cfg.gSDE:
with torch.no_grad(), set_exploration_mode("random"):
# get dimensions to build the parallel env
proof_td = actor_model_explore(proof_env.reset().to(device))
action_dim_gsde, state_dim_gsde = proof_td.get("_eps_gSDE").shape[-2:]
del proof_td
else:
action_dim_gsde, state_dim_gsde = None, None
proof_env.close()
create_env_fn = make_env( # Pass EnvBase instead of the create_env_fn
task=cfg.env_name,
reward_scaling=cfg.reward_scaling,
device=device,
obs_norm_state_dict=obs_norm_state_dict,
action_dim_gsde=action_dim_gsde,
state_dim_gsde=state_dim_gsde,
)
collector = make_collector_offpolicy(
make_env=create_env_fn,
actor_model_explore=actor_model_explore,
cfg=cfg,
# make_env_kwargs=[
# {"device": device} if device >= 0 else {}
# for device in args.env_rendering_devices
# ],
)
replay_buffer = make_replay_buffer(device, cfg)
# recorder = transformed_env_constructor(
# cfg,
# video_tag=video_tag,
# norm_obs_only=True,
# obs_norm_state_dict=obs_norm_state_dict,
# logger=logger,
# use_env_creator=False,
# )()
recorder = make_env(
task=cfg.env_name,
reward_scaling=cfg.reward_scaling,
device=device,
obs_norm_state_dict=obs_norm_state_dict,
action_dim_gsde=action_dim_gsde,
state_dim_gsde=state_dim_gsde,
)
# remove video recorder from recorder to have matching state_dict keys
if cfg.record_video:
recorder_rm = TransformedEnv(recorder.base_env)
for transform in recorder.transform:
if not isinstance(transform, VideoRecorder):
recorder_rm.append_transform(transform.clone())
else:
recorder_rm = recorder
if isinstance(create_env_fn, ParallelEnv):
recorder_rm.load_state_dict(create_env_fn.state_dict()["worker0"])
create_env_fn.close()
elif isinstance(create_env_fn, EnvCreator):
recorder_rm.load_state_dict(create_env_fn().state_dict())
else:
recorder_rm.load_state_dict(create_env_fn.state_dict())
# reset reward scaling
for t in recorder.transform:
if isinstance(t, RewardScaling):
t.scale.fill_(1.0)
t.loc.fill_(0.0)
trainer = make_trainer(
collector,
loss_module,
recorder,
target_net_updater,
actor_model_explore,
replay_buffer,
logger,
cfg,
)
final_seed = collector.set_seed(cfg.seed)
print(f"init seed: {cfg.seed}, final seed: {final_seed}")
trainer.train()
return (logger.log_dir, trainer._log_dict)
if __name__ == "__main__":
main()
|
"""
This is a job script for running policy gradient algorithms on gym tasks.
Separate job scripts are provided to run few other algorithms
- For DAPG see here: https://github.com/aravindr93/hand_dapg/tree/master/dapg/examples
- For model-based NPG see here: https://github.com/aravindr93/mjrl/tree/master/mjrl/algos/model_accel
"""
from mjrl.utils.gym_env import GymEnv
from mjrl.policies.gaussian_mlp import MLP
from mjrl.baselines.mlp_baseline import MLPBaseline
from mjrl.algos.npg_cg import NPG
from mjrl.algos.batch_reinforce import BatchREINFORCE
from mjrl.algos.ppo_clip import PPO
from mjrl.utils.train_agent import train_agent
from mjrl.utils.logger import DataLog
from omegaconf import open_dict
import os
import json
import gym
# import mjrl.envs
import time as timer
import robohive
from robohive.envs.env_variants import register_env_variant
def train_loop(job_data) -> None:
if 'env_hyper_params' in job_data.keys():
job_data.env = register_env_variant(job_data.env, job_data.env_hyper_params)
e = GymEnv(job_data.env)
policy_size = tuple(eval(job_data.policy_size))
vf_hidden_size = tuple(eval(job_data.vf_hidden_size))
policy = MLP(e.spec, hidden_sizes=policy_size, seed=job_data.seed,
init_log_std=job_data.init_log_std, min_log_std=job_data.min_log_std)
baseline = MLPBaseline(e.spec, reg_coef=1e-3, batch_size=job_data.vf_batch_size, hidden_sizes=vf_hidden_size,
epochs=job_data.vf_epochs, learn_rate=job_data.vf_learn_rate)
# Construct the algorithm
if job_data.algorithm == 'NPG':
# Other hyperparameters (like number of CG steps) can be specified in config for pass through
# or default hyperparameters will be used
agent = NPG(e, policy, baseline, normalized_step_size=job_data.rl_step_size,
seed=job_data.seed, save_logs=True, **job_data.alg_hyper_params)
elif job_data.algorithm == 'VPG':
agent = BatchREINFORCE(e, policy, baseline, learn_rate=job_data.rl_step_size,
seed=job_data.seed, save_logs=True, **job_data.alg_hyper_params)
elif job_data.algorithm == 'NVPG':
agent = BatchREINFORCE(e, policy, baseline, desired_kl=job_data.rl_step_size,
seed=job_data.seed, save_logs=True, **job_data.alg_hyper_params)
elif job_data.algorithm == 'PPO':
# There are many hyperparameters for PPO. They can be specified in config for pass through
# or defaults in the PPO algorithm will be used
agent = PPO(e, policy, baseline, save_logs=True, **job_data.alg_hyper_params)
else:
NotImplementedError("Algorithm not found")
# Update logger if WandB in Config
if 'wandb_params' in job_data.keys() and job_data['wandb_params']['use_wandb']==True:
if 'wandb_logdir' in job_data['wandb_params']:
job_data['wandb_params']['wandb_logdir'] = job_data['wandb_params']['wandb_logdir']
else:
with open_dict(job_data):
job_data.wandb_params.wandb_logdir = os.getcwd()
agent.logger = DataLog(**job_data['wandb_params'], wandb_config=job_data)
print("========================================")
print("Starting policy learning")
print("========================================")
ts = timer.time()
train_agent(job_name='.',
agent=agent,
seed=job_data.seed,
niter=job_data.rl_num_iter,
gamma=job_data.rl_gamma,
gae_lambda=job_data.rl_gae,
num_cpu=job_data.num_cpu,
sample_mode=job_data.sample_mode,
num_traj=job_data.rl_num_traj,
num_samples=job_data.rl_num_samples,
save_freq=job_data.save_freq,
evaluation_rollouts=job_data.eval_rollouts)
print("========================================")
print("Job Finished. Time taken = %f" % (timer.time()-ts))
print("========================================")
|
"""
This is a launcher script for launching mjrl training using hydra
"""
import os
import time as timer
import hydra
from omegaconf import DictConfig, OmegaConf
from mjrl_job_script import train_loop
# ===============================================================================
# Process Inputs and configure job
# ===============================================================================
@hydra.main(config_name="hydra_npg_config", config_path="config")
def configure_jobs(job_data):
print("========================================")
print("Job Configuration")
print("========================================")
OmegaConf.resolve(job_data) # resolve configs
assert 'algorithm' in job_data.keys()
assert any([job_data.algorithm == a for a in ['NPG', 'NVPG', 'VPG', 'PPO']])
assert 'sample_mode' in job_data.keys()
assert any([job_data.sample_mode == m for m in ['samples', 'trajectories']])
job_data.alg_hyper_params = dict() if 'alg_hyper_params' not in job_data.keys() else job_data.alg_hyper_params
with open('job_config.yaml', 'w') as fp:
OmegaConf.save(config=job_data, f=fp.name)
if job_data.sample_mode == 'trajectories':
assert 'rl_num_traj' in job_data.keys()
job_data.rl_num_samples = 0 # will be ignored
elif job_data.sample_mode == 'samples':
assert 'rl_num_samples' in job_data.keys()
job_data.rl_num_traj = 0 # will be ignored
else:
print("Unknown sampling mode. Choose either trajectories or samples")
exit()
print(OmegaConf.to_yaml(job_data, resolve=True))
train_loop(job_data)
if __name__ == "__main__":
configure_jobs()
|
import robohive
import click
DESC="""
Script to render trajectories embeded in the env"
"""
@click.command(help=DESC)
@click.option('-s', '--suite', type=str, help='environment suite to train', default="arms")
@click.option('-l', '--launcher', type=click.Choice(['', None, "local", "slurm"]), default='')
@click.option('-cn', '--config_name', type=str, default=None)
@click.option('-cp', '--config_path', type=str, default='config')
def get_train_cmd(suite, launcher, config_name, config_path):
# Resolve Suite
if suite=="multitask_":
envs = ",".join(robohive.robohive_multitask_suite)
if config_name==None:
config_name="hydra_kitchen_config.yaml"
elif suite=="arms":
envs = ",".join(robohive.robohive_arm_suite)
if config_name==None:
config_name="hydra_arms_config.yaml"
elif suite=="hands":
envs = ",".join(robohive.robohive_hand_suite)
if config_name==None:
config_name="hydra_hand_config.yaml"
elif suite=="quads":
envs = ",".join(robohive.robohive_quad_suite)
if config_name==None:
config_name="hydra_quads_config.yaml"
elif suite=="myobase":
envs = ",".join(robohive.robohive_myobase_suite)
if config_name==None:
config_name="hydra_myo_config.yaml"
elif suite=="myochallenge":
envs = ",".join(robohive.robohive_myochal_suite)
if config_name==None:
config_name="hydra_myo_config.yaml"
elif suite=="myodm":
envs = ",".join(robohive.robohive_myodm_suite)
if config_name==None:
config_name="hydra_myo_config.yaml"
else:
raise ValueError(f"Unsupported suite:{suite}")
# Resolve launcher
if launcher=='' or launcher==None:
launcher_spec = ''
else:
launcher_spec = f"--multirun hydra/output={launcher} hydra/launcher={launcher}"
# Get final training command
print(f"To train NPG via mjrl on {suite} suite, run the following command: ")
print(f"python hydra_mjrl_launcher.py --config-path {config_path} --config-name {config_name} {launcher_spec} env={envs} seed=1,2,3")
if __name__ == '__main__':
get_train_cmd()
|
#!/usr/bin/env python
"""
MIT License
Copyright (c) 2017 Guillaume Papin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
A wrapper script around clang-format, suitable for linting multiple files
and to use for continuous integration.
This is an alternative API for the clang-format command line.
It runs over multiple files and directories in parallel.
A diff output is produced and a sensible exit code is returned.
"""
import argparse
import difflib
import fnmatch
import multiprocessing
import os
import signal
import subprocess
import sys
import traceback
from functools import partial
try:
from subprocess import DEVNULL # py3k
except ImportError:
DEVNULL = open(os.devnull, "wb")
DEFAULT_EXTENSIONS = "c,h,C,H,cpp,hpp,cc,hh,c++,h++,cxx,hxx,cu"
class ExitStatus:
SUCCESS = 0
DIFF = 1
TROUBLE = 2
def list_files(files, recursive=False, extensions=None, exclude=None):
if extensions is None:
extensions = []
if exclude is None:
exclude = []
out = []
for file in files:
if recursive and os.path.isdir(file):
for dirpath, dnames, fnames in os.walk(file):
fpaths = [os.path.join(dirpath, fname) for fname in fnames]
for pattern in exclude:
# os.walk() supports trimming down the dnames list
# by modifying it in-place,
# to avoid unnecessary directory listings.
dnames[:] = [
x
for x in dnames
if not fnmatch.fnmatch(os.path.join(dirpath, x), pattern)
]
fpaths = [x for x in fpaths if not fnmatch.fnmatch(x, pattern)]
for f in fpaths:
ext = os.path.splitext(f)[1][1:]
if ext in extensions:
out.append(f)
else:
out.append(file)
return out
def make_diff(file, original, reformatted):
return list(
difflib.unified_diff(
original,
reformatted,
fromfile=f"{file}\t(original)",
tofile=f"{file}\t(reformatted)",
n=3,
)
)
class DiffError(Exception):
def __init__(self, message, errs=None):
super().__init__(message)
self.errs = errs or []
class UnexpectedError(Exception):
def __init__(self, message, exc=None):
super().__init__(message)
self.formatted_traceback = traceback.format_exc()
self.exc = exc
def run_clang_format_diff_wrapper(args, file):
try:
ret = run_clang_format_diff(args, file)
return ret
except DiffError:
raise
except Exception as e:
raise UnexpectedError(f"{file}: {e.__class__.__name__}: {e}", e)
def run_clang_format_diff(args, file):
try:
with open(file, encoding="utf-8") as f:
original = f.readlines()
except OSError as exc:
raise DiffError(str(exc))
invocation = [args.clang_format_executable, file]
# Use of utf-8 to decode the process output.
#
# Hopefully, this is the correct thing to do.
#
# It's done due to the following assumptions (which may be incorrect):
# - clang-format will returns the bytes read from the files as-is,
# without conversion, and it is already assumed that the files use utf-8.
# - if the diagnostics were internationalized, they would use utf-8:
# > Adding Translations to Clang
# >
# > Not possible yet!
# > Diagnostic strings should be written in UTF-8,
# > the client can translate to the relevant code page if needed.
# > Each translation completely replaces the format string
# > for the diagnostic.
# > -- http://clang.llvm.org/docs/InternalsManual.html#internals-diag-translation
try:
proc = subprocess.Popen(
invocation,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True,
encoding="utf-8",
)
except OSError as exc:
raise DiffError(
f"Command '{subprocess.list2cmdline(invocation)}' failed to start: {exc}"
)
proc_stdout = proc.stdout
proc_stderr = proc.stderr
# hopefully the stderr pipe won't get full and block the process
outs = list(proc_stdout.readlines())
errs = list(proc_stderr.readlines())
proc.wait()
if proc.returncode:
raise DiffError(
"Command '{}' returned non-zero exit status {}".format(
subprocess.list2cmdline(invocation), proc.returncode
),
errs,
)
return make_diff(file, original, outs), errs
def bold_red(s):
return "\x1b[1m\x1b[31m" + s + "\x1b[0m"
def colorize(diff_lines):
def bold(s):
return "\x1b[1m" + s + "\x1b[0m"
def cyan(s):
return "\x1b[36m" + s + "\x1b[0m"
def green(s):
return "\x1b[32m" + s + "\x1b[0m"
def red(s):
return "\x1b[31m" + s + "\x1b[0m"
for line in diff_lines:
if line[:4] in ["--- ", "+++ "]:
yield bold(line)
elif line.startswith("@@ "):
yield cyan(line)
elif line.startswith("+"):
yield green(line)
elif line.startswith("-"):
yield red(line)
else:
yield line
def print_diff(diff_lines, use_color):
if use_color:
diff_lines = colorize(diff_lines)
sys.stdout.writelines(diff_lines)
def print_trouble(prog, message, use_colors):
error_text = "error:"
if use_colors:
error_text = bold_red(error_text)
print(f"{prog}: {error_text} {message}", file=sys.stderr)
def main():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--clang-format-executable",
metavar="EXECUTABLE",
help="path to the clang-format executable",
default="clang-format",
)
parser.add_argument(
"--extensions",
help=f"comma separated list of file extensions (default: {DEFAULT_EXTENSIONS})",
default=DEFAULT_EXTENSIONS,
)
parser.add_argument(
"-r",
"--recursive",
action="store_true",
help="run recursively over directories",
)
parser.add_argument("files", metavar="file", nargs="+")
parser.add_argument("-q", "--quiet", action="store_true")
parser.add_argument(
"-j",
metavar="N",
type=int,
default=0,
help="run N clang-format jobs in parallel (default number of cpus + 1)",
)
parser.add_argument(
"--color",
default="auto",
choices=["auto", "always", "never"],
help="show colored diff (default: auto)",
)
parser.add_argument(
"-e",
"--exclude",
metavar="PATTERN",
action="append",
default=[],
help="exclude paths matching the given glob-like pattern(s) from recursive search",
)
args = parser.parse_args()
# use default signal handling, like diff return SIGINT value on ^C
# https://bugs.python.org/issue14229#msg156446
signal.signal(signal.SIGINT, signal.SIG_DFL)
try:
signal.SIGPIPE
except AttributeError:
# compatibility, SIGPIPE does not exist on Windows
pass
else:
signal.signal(signal.SIGPIPE, signal.SIG_DFL)
colored_stdout = False
colored_stderr = False
if args.color == "always":
colored_stdout = True
colored_stderr = True
elif args.color == "auto":
colored_stdout = sys.stdout.isatty()
colored_stderr = sys.stderr.isatty()
version_invocation = [args.clang_format_executable, "--version"]
try:
subprocess.check_call(version_invocation, stdout=DEVNULL)
except subprocess.CalledProcessError as e:
print_trouble(parser.prog, str(e), use_colors=colored_stderr)
return ExitStatus.TROUBLE
except OSError as e:
print_trouble(
parser.prog,
f"Command '{subprocess.list2cmdline(version_invocation)}' failed to start: {e}",
use_colors=colored_stderr,
)
return ExitStatus.TROUBLE
retcode = ExitStatus.SUCCESS
files = list_files(
args.files,
recursive=args.recursive,
exclude=args.exclude,
extensions=args.extensions.split(","),
)
if not files:
return
njobs = args.j
if njobs == 0:
njobs = multiprocessing.cpu_count() + 1
njobs = min(len(files), njobs)
if njobs == 1:
# execute directly instead of in a pool,
# less overhead, simpler stacktraces
it = (run_clang_format_diff_wrapper(args, file) for file in files)
pool = None
else:
pool = multiprocessing.Pool(njobs)
it = pool.imap_unordered(partial(run_clang_format_diff_wrapper, args), files)
while True:
try:
outs, errs = next(it)
except StopIteration:
break
except DiffError as e:
print_trouble(parser.prog, str(e), use_colors=colored_stderr)
retcode = ExitStatus.TROUBLE
sys.stderr.writelines(e.errs)
except UnexpectedError as e:
print_trouble(parser.prog, str(e), use_colors=colored_stderr)
sys.stderr.write(e.formatted_traceback)
retcode = ExitStatus.TROUBLE
# stop at the first unexpected error,
# something could be very wrong,
# don't process all files unnecessarily
if pool:
pool.terminate()
break
else:
sys.stderr.writelines(errs)
if outs == []:
continue
if not args.quiet:
print_diff(outs, use_color=colored_stdout)
if retcode == ExitStatus.SUCCESS:
retcode = ExitStatus.DIFF
return retcode
if __name__ == "__main__":
sys.exit(main())
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Training script for permute MNIST experiment.
"""
from __future__ import print_function
import argparse
import os
import sys
import math
import time
import datetime
import numpy as np
import tensorflow as tf
from copy import deepcopy
from six.moves import cPickle as pickle
from utils.data_utils import construct_permute_mnist
from utils.utils import get_sample_weights, sample_from_dataset, update_episodic_memory, concatenate_datasets, samples_for_each_class, sample_from_dataset_icarl, compute_fgt, update_reservior
from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval
from model import Model
###############################################################
################ Some definitions #############################
### These will be edited by the command line options ##########
###############################################################
## Training Options
NUM_RUNS = 10 # Number of experiments to average over
TRAIN_ITERS = 5000 # Number of training iterations per task
BATCH_SIZE = 16
LEARNING_RATE = 1e-3
RANDOM_SEED = 1234
VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM']
OPTIM = 'SGD'
OPT_POWER = 0.9
OPT_MOMENTUM = 0.9
VALID_ARCHS = ['FC-S', 'FC-B']
ARCH = 'FC-S'
## Model options
MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'A-GEM', 'S-GEM', 'FTR_EXT', 'PNN', 'ER'] #List of valid models
IMP_METHOD = 'EWC'
SYNAP_STGTH = 75000
FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher)
FISHER_UPDATE_AFTER = 10 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper)
SAMPLES_PER_CLASS = 25 # Number of samples per task
INPUT_FEATURE_SIZE = 784
IMG_HEIGHT = 28
IMG_WIDTH = 28
IMG_CHANNELS = 1
TOTAL_CLASSES = 10 # Total number of classes in the dataset
EPS_MEM_BATCH_SIZE = 256
DEBUG_EPISODIC_MEMORY = False
USE_GPU = True
K_FOR_CROSS_VAL = 3
TIME_MY_METHOD = False
COUNT_VIOLATIONS = False
MEASURE_PERF_ON_EPS_MEMORY = False
## Logging, saving and testing options
LOG_DIR = './permute_mnist_results'
## Evaluation options
## Num Tasks
NUM_TASKS = 20
MULTI_TASK = False
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Script for permutted mnist experiment.")
parser.add_argument("--cross-validate-mode", action="store_true",
help="If option is chosen then snapshoting after each batch is disabled")
parser.add_argument("--online-cross-val", action="store_true",
help="If option is chosen then enable the online cross validation of the learning rate")
parser.add_argument("--train-single-epoch", action="store_true",
help="If option is chosen then train for single epoch")
parser.add_argument("--eval-single-head", action="store_true",
help="If option is chosen then evaluate on a single head setting.")
parser.add_argument("--arch", type=str, default=ARCH, help="Network Architecture for the experiment.\
\n \nSupported values: %s"%(VALID_ARCHS))
parser.add_argument("--num-runs", type=int, default=NUM_RUNS,
help="Total runs/ experiments over which accuracy is averaged.")
parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS,
help="Number of training iterations for each task.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Mini-batch size for each task.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random Seed.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Starting Learning rate for each task.")
parser.add_argument("--optim", type=str, default=OPTIM,
help="Optimizer for the experiment. \
\n \nSupported values: %s"%(VALID_OPTIMS))
parser.add_argument("--imp-method", type=str, default=IMP_METHOD,
help="Model to be used for LLL. \
\n \nSupported values: %s"%(MODELS))
parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH,
help="Synaptic strength for the regularization.")
parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY,
help="Exponential moving average decay for Fisher calculation at each step.")
parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER,
help="Number of training iterations after which the Fisher will be updated.")
parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS,
help="Number of samples per class from previous tasks.")
parser.add_argument("--eps-mem-batch", type=int, default=EPS_MEM_BATCH_SIZE,
help="Number of samples per class from previous tasks.")
parser.add_argument("--examples-per-task", type=int, default=1000,
help="Number of examples per task.")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Directory where the plots and model accuracies will be stored.")
return parser.parse_args()
def train_task_sequence(model, sess, args):
"""
Train and evaluate LLL system such that we only see a example once
Args:
Returns:
dict A dictionary containing mean and stds for the experiment
"""
# List to store accuracy for each run
runs = []
batch_size = args.batch_size
if model.imp_method == 'A-GEM' or model.imp_method == 'ER':
use_episodic_memory = True
else:
use_episodic_memory = False
# Loop over number of runs to average over
for runid in range(args.num_runs):
print('\t\tRun %d:'%(runid))
# Initialize the random seeds
np.random.seed(args.random_seed+runid)
# Load the permute mnist dataset
datasets = construct_permute_mnist(model.num_tasks)
episodic_mem_size = args.mem_size*model.num_tasks*TOTAL_CLASSES
# Initialize all the variables in the model
sess.run(tf.global_variables_initializer())
# Run the init ops
model.init_updates(sess)
# List to store accuracies for a run
evals = []
# List to store the classes that we have so far - used at test time
test_labels = np.arange(TOTAL_CLASSES)
if use_episodic_memory:
# Reserve a space for episodic memory
episodic_images = np.zeros([episodic_mem_size, INPUT_FEATURE_SIZE])
episodic_labels = np.zeros([episodic_mem_size, TOTAL_CLASSES])
count_cls = np.zeros(TOTAL_CLASSES, dtype=np.int32)
episodic_filled_counter = 0
examples_seen_so_far = 0
# Mask for softmax
# Since all the classes are present in all the tasks so nothing to mask
logit_mask = np.ones(TOTAL_CLASSES)
if model.imp_method == 'PNN':
pnn_train_phase = np.array(np.zeros(model.num_tasks), dtype=np.bool)
pnn_logit_mask = np.ones([model.num_tasks, TOTAL_CLASSES])
if COUNT_VIOLATIONS:
violation_count = np.zeros(model.num_tasks)
vc = 0
# Training loop for all the tasks
for task in range(len(datasets)):
print('\t\tTask %d:'%(task))
# If not the first task then restore weights from previous task
if(task > 0 and model.imp_method != 'PNN'):
model.restore(sess)
# Extract training images and labels for the current task
task_train_images = datasets[task]['train']['images']
task_train_labels = datasets[task]['train']['labels']
# If multi_task is set the train using datasets of all the tasks
if MULTI_TASK:
if task == 0:
for t_ in range(1, len(datasets)):
task_train_images = np.concatenate((task_train_images, datasets[t_]['train']['images']), axis=0)
task_train_labels = np.concatenate((task_train_labels, datasets[t_]['train']['labels']), axis=0)
else:
# Skip training for this task
continue
# Assign equal weights to all the examples
task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32)
total_train_examples = task_train_images.shape[0]
# Randomly suffle the training examples
perm = np.arange(total_train_examples)
np.random.shuffle(perm)
train_x = task_train_images[perm][:args.examples_per_task]
train_y = task_train_labels[perm][:args.examples_per_task]
task_sample_weights = task_sample_weights[perm][:args.examples_per_task]
print('Received {} images, {} labels at task {}'.format(train_x.shape[0], train_y.shape[0], task))
# Array to store accuracies when training for task T
ftask = []
num_train_examples = train_x.shape[0]
# Train a task observing sequence of data
if args.train_single_epoch:
num_iters = num_train_examples // batch_size
else:
num_iters = args.train_iters
# Training loop for task T
for iters in range(num_iters):
if args.train_single_epoch and not args.cross_validate_mode:
if (iters < 10) or (iters < 100 and iters % 10 == 0) or (iters % 100 == 0):
# Snapshot the current performance across all tasks after each mini-batch
fbatch = test_task_sequence(model, sess, datasets, args.online_cross_val)
ftask.append(fbatch)
offset = (iters * batch_size) % (num_train_examples - batch_size)
residual = batch_size
if model.imp_method == 'PNN':
pnn_train_phase[:] = False
pnn_train_phase[task] = True
feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_[task]: train_y[offset:offset+batch_size],
model.sample_weights: task_sample_weights[offset:offset+batch_size],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 1.0}
train_phase_dict = {m_t: i_t for (m_t, i_t) in zip(model.train_phase, pnn_train_phase)}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, pnn_logit_mask)}
feed_dict.update(train_phase_dict)
feed_dict.update(logit_mask_dict)
else:
feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_: train_y[offset:offset+batch_size],
model.sample_weights: task_sample_weights[offset:offset+batch_size],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: True}
if model.imp_method == 'VAN':
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'PNN':
feed_dict[model.task_id] = task
_, loss = sess.run([model.train[task], model.unweighted_entropy[task]], feed_dict=feed_dict)
elif model.imp_method == 'FTR_EXT':
if task == 0:
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
else:
_, loss = sess.run([model.train_classifier, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'EWC':
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Update fisher after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
sess.run(model.set_running_fisher)
sess.run(model.reset_tmp_fisher)
_, _, loss = sess.run([model.set_tmp_fisher, model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'PI':
_, _, _, loss = sess.run([model.weights_old_ops_grouped, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'MAS':
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'A-GEM':
if task == 0:
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
## Compute and store the reference gradients on the previous tasks
if episodic_filled_counter <= args.eps_mem_batch:
mem_sample_mask = np.arange(episodic_filled_counter)
else:
# Sample a random subset from episodic memory buffer
mem_sample_mask = np.random.choice(episodic_filled_counter, args.eps_mem_batch, replace=False) # Sample without replacement so that we don't sample an example more than once
# Store the reference gradient
sess.run(model.store_ref_grads, feed_dict={model.x: episodic_images[mem_sample_mask], model.y_: episodic_labels[mem_sample_mask],
model.keep_prob: 1.0, model.output_mask: logit_mask, model.train_phase: True})
if COUNT_VIOLATIONS:
vc, _, loss = sess.run([model.violation_count, model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
else:
# Compute the gradient for current task and project if need be
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
# Put the batch in the ring buffer
for er_x, er_y_ in zip(train_x[offset:offset+residual], train_y[offset:offset+residual]):
cls = np.unique(np.nonzero(er_y_))[-1]
# Write the example at the location pointed by count_cls[cls]
cls_to_index_map = cls
with_in_task_offset = args.mem_size * cls_to_index_map
mem_index = count_cls[cls] + with_in_task_offset + episodic_filled_counter
episodic_images[mem_index] = er_x
episodic_labels[mem_index] = er_y_
count_cls[cls] = (count_cls[cls] + 1) % args.mem_size
elif model.imp_method == 'RWALK':
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Update fisher and importance score after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
# Update the importance score using distance in riemannian manifold
sess.run(model.update_big_omega_riemann)
# Now that the score is updated, compute the new value for running Fisher
sess.run(model.set_running_fisher)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Reset the delta_L
sess.run([model.reset_small_omega])
_, _, _, _, loss = sess.run([model.set_tmp_fisher, model.weights_old_ops_grouped,
model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'ER':
mem_filled_so_far = examples_seen_so_far if (examples_seen_so_far < episodic_mem_size) else episodic_mem_size
if mem_filled_so_far < args.eps_mem_batch:
er_mem_indices = np.arange(mem_filled_so_far)
else:
er_mem_indices = np.random.choice(mem_filled_so_far, args.eps_mem_batch, replace=False)
np.random.shuffle(er_mem_indices)
# Train on a batch of episodic memory first
er_train_x_batch = np.concatenate((episodic_images[er_mem_indices], train_x[offset:offset+residual]), axis=0)
er_train_y_batch = np.concatenate((episodic_labels[er_mem_indices], train_y[offset:offset+residual]), axis=0)
feed_dict = {model.x: er_train_x_batch, model.y_: er_train_y_batch,
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: True}
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
for er_x, er_y_ in zip(train_x[offset:offset+residual], train_y[offset:offset+residual]):
update_reservior(er_x, er_y_, episodic_images, episodic_labels, episodic_mem_size, examples_seen_so_far)
examples_seen_so_far += 1
if (iters % 100 == 0):
print('Step {:d} {:.3f}'.format(iters, loss))
if (math.isnan(loss)):
print('ERROR: NaNs NaNs Nans!!!')
sys.exit(0)
print('\t\t\t\tTraining for Task%d done!'%(task))
# Upaate the episodic memory filled counter
if use_episodic_memory:
episodic_filled_counter += args.mem_size * TOTAL_CLASSES
if model.imp_method == 'A-GEM' and COUNT_VIOLATIONS:
violation_count[task] = vc
print('Task {}: Violation Count: {}'.format(task, violation_count))
sess.run(model.reset_violation_count, feed_dict=feed_dict)
# Compute the inter-task updates, Fisher/ importance scores etc
# Don't calculate the task updates for the last task
if (task < (len(datasets) - 1)) or MEASURE_PERF_ON_EPS_MEMORY:
model.task_updates(sess, task, task_train_images, np.arange(TOTAL_CLASSES))
print('\t\t\t\tTask updates after Task%d done!'%(task))
if args.train_single_epoch and not args.cross_validate_mode:
fbatch = test_task_sequence(model, sess, datasets, False)
ftask.append(fbatch)
ftask = np.array(ftask)
else:
if MEASURE_PERF_ON_EPS_MEMORY:
eps_mem = {
'images': episodic_images,
'labels': episodic_labels,
}
# Measure perf on episodic memory
ftask = test_task_sequence(model, sess, eps_mem, args.online_cross_val)
else:
# List to store accuracy for all the tasks for the current trained model
ftask = test_task_sequence(model, sess, datasets, args.online_cross_val)
# Store the accuracies computed at task T in a list
evals.append(ftask)
# Reset the optimizer
model.reset_optimizer(sess)
#-> End for loop task
runs.append(np.array(evals))
# End for loop runid
runs = np.array(runs)
return runs
def test_task_sequence(model, sess, test_data, cross_validate_mode):
"""
Snapshot the current performance
"""
if TIME_MY_METHOD:
# Only compute the training time
return np.zeros(model.num_tasks)
list_acc = []
if model.imp_method == 'PNN':
pnn_logit_mask = np.ones([model.num_tasks, TOTAL_CLASSES])
else:
logit_mask = np.ones(TOTAL_CLASSES)
if MEASURE_PERF_ON_EPS_MEMORY:
for task in range(model.num_tasks):
mem_offset = task*SAMPLES_PER_CLASS*TOTAL_CLASSES
feed_dict = {model.x: test_data['images'][mem_offset:mem_offset+SAMPLES_PER_CLASS*TOTAL_CLASSES],
model.y_: test_data['labels'][mem_offset:mem_offset+SAMPLES_PER_CLASS*TOTAL_CLASSES], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False}
acc = model.accuracy.eval(feed_dict = feed_dict)
list_acc.append(acc)
print(list_acc)
return list_acc
for task, _ in enumerate(test_data):
if model.imp_method == 'PNN':
pnn_train_phase = np.array(np.zeros(model.num_tasks), dtype=np.bool)
feed_dict = {model.x: test_data[task]['test']['images'],
model.y_[task]: test_data[task]['test']['labels'], model.keep_prob: 1.0}
train_phase_dict = {m_t: i_t for (m_t, i_t) in zip(model.train_phase, pnn_train_phase)}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, pnn_logit_mask)}
feed_dict.update(train_phase_dict)
feed_dict.update(logit_mask_dict)
acc = model.accuracy[task].eval(feed_dict = feed_dict)
else:
feed_dict = {model.x: test_data[task]['test']['images'],
model.y_: test_data[task]['test']['labels'], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False}
acc = model.accuracy.eval(feed_dict = feed_dict)
list_acc.append(acc)
return list_acc
def main():
"""
Create the model and start the training
"""
# Get the CL arguments
args = get_arguments()
# Check if the network architecture is valid
if args.arch not in VALID_ARCHS:
raise ValueError("Network architecture %s is not supported!"%(args.arch))
# Check if the method to compute importance is valid
if args.imp_method not in MODELS:
raise ValueError("Importance measure %s is undefined!"%(args.imp_method))
# Check if the optimizer is valid
if args.optim not in VALID_OPTIMS:
raise ValueError("Optimizer %s is undefined!"%(args.optim))
# Create log directories to store the results
if not os.path.exists(args.log_dir):
print('Log directory %s created!'%(args.log_dir))
os.makedirs(args.log_dir)
# Generate the experiment key and store the meta data in a file
exper_meta_data = {'DATASET': 'PERMUTE_MNIST',
'NUM_RUNS': args.num_runs,
'TRAIN_SINGLE_EPOCH': args.train_single_epoch,
'IMP_METHOD': args.imp_method,
'SYNAP_STGTH': args.synap_stgth,
'FISHER_EMA_DECAY': args.fisher_ema_decay,
'FISHER_UPDATE_AFTER': args.fisher_update_after,
'OPTIM': args.optim,
'LR': args.learning_rate,
'BATCH_SIZE': args.batch_size,
'MEM_SIZE': args.mem_size}
experiment_id = "PERMUTE_MNIST_HERDING_%s_%s_%s_%s_%r_%s-"%(args.arch, args.train_single_epoch, args.imp_method, str(args.synap_stgth).replace('.', '_'),
str(args.batch_size), str(args.mem_size)) + datetime.datetime.now().strftime("%y-%m-%d-%H-%M")
snapshot_experiment_meta_data(args.log_dir, experiment_id, exper_meta_data)
# Get the subset of data depending on training or cross-validation mode
if args.online_cross_val:
num_tasks = K_FOR_CROSS_VAL
else:
num_tasks = NUM_TASKS - K_FOR_CROSS_VAL
# Variables to store the accuracies and standard deviations of the experiment
acc_mean = dict()
acc_std = dict()
# Reset the default graph
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
# Set the random seed
tf.set_random_seed(args.random_seed)
# Define Input and Output of the model
x = tf.placeholder(tf.float32, shape=[None, INPUT_FEATURE_SIZE])
#x = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
if args.imp_method == 'PNN':
y_ = []
for i in range(num_tasks):
y_.append(tf.placeholder(tf.float32, shape=[None, TOTAL_CLASSES]))
else:
y_ = tf.placeholder(tf.float32, shape=[None, TOTAL_CLASSES])
# Define the optimizer
if args.optim == 'ADAM':
opt = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
elif args.optim == 'SGD':
opt = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate)
elif args.optim == 'MOMENTUM':
base_lr = tf.constant(args.learning_rate)
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - train_step / training_iters), OPT_POWER))
opt = tf.train.MomentumOptimizer(args.learning_rate, OPT_MOMENTUM)
# Create the Model/ contruct the graph
model = Model(x, y_, num_tasks, opt, args.imp_method, args.synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch)
# Set up tf session and initialize variables.
if USE_GPU:
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
else:
config = tf.ConfigProto(
device_count = {'GPU': 0}
)
time_start = time.time()
with tf.Session(config=config, graph=graph) as sess:
runs = train_task_sequence(model, sess, args)
# Close the session
sess.close()
time_end = time.time()
time_spent = time_end - time_start
# Store all the results in one dictionary to process later
exper_acc = dict(mean=runs)
# If cross-validation flag is enabled, store the stuff in a text file
if args.cross_validate_mode:
acc_mean = runs.mean(0)
acc_std = runs.std(0)
cross_validate_dump_file = args.log_dir + '/' + 'PERMUTE_MNIST_%s_%s'%(args.imp_method, args.optim) + '.txt'
with open(cross_validate_dump_file, 'a') as f:
if MULTI_TASK:
f.write('GPU:{} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {}\n'.format(USE_GPU, args.arch, args.learning_rate,
args.synap_stgth, acc_mean[-1, :].mean()))
else:
f.write('GPU: {} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {} \t Fgt: {} \t Time: {}\n'.format(USE_GPU, args.arch, args.learning_rate,
args.synap_stgth, acc_mean[-1, :].mean(), compute_fgt(acc_mean), str(time_spent)))
# Store the experiment output to a file
snapshot_experiment_eval(args.log_dir, experiment_id, exper_acc)
if __name__ == '__main__':
main()
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Training script for split AWA experiment.
"""
from __future__ import print_function
import argparse
import os
import sys
import math
import random
import time
import datetime
import numpy as np
import tensorflow as tf
from copy import deepcopy
from six.moves import cPickle as pickle
from utils.data_utils import image_scaling, random_crop_and_pad_image, random_horizontal_flip, construct_split_awa
from utils.utils import get_sample_weights, sample_from_dataset, update_episodic_memory, concatenate_datasets, samples_for_each_class, sample_from_dataset_icarl, compute_fgt, load_task_specific_data, load_task_specific_data_in_proportion
from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels
from model import Model
###############################################################
################ Some definitions #############################
### These will be edited by the command line options ##########
###############################################################
## Training Options
NUM_RUNS = 5 # Number of experiments to average over
TRAIN_ITERS = 2000 # Number of training iterations per task
BATCH_SIZE = 16
LEARNING_RATE = 0.1
RANDOM_SEED = 1234
VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM']
OPTIM = 'SGD'
OPT_MOMENTUM = 0.9
OPT_POWER = 0.9
VALID_ARCHS = ['CNN', 'VGG', 'RESNET-B']
ARCH = 'RESNET-B'
PRETRAIN = False
## Model options
#MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'M-EWC', 'GEM', 'A-GEM', 'S-GEM'] #List of valid models
MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'A-GEM'] #List of valid models
IMP_METHOD = 'VAN'
SYNAP_STGTH = 75000
FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher)
FISHER_UPDATE_AFTER = 50 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper)
SAMPLES_PER_CLASS = 20 # Number of samples per task
IMG_HEIGHT = 224
IMG_WIDTH = 224
IMG_CHANNELS = 3
TOTAL_CLASSES = 50 # Total number of classes in the dataset
MEASURE_CONVERGENCE_AFTER = 0.9
EPS_MEM_BATCH_SIZE = 128
DEBUG_EPISODIC_MEMORY = False
KEEP_EPISODIC_MEMORY_FULL = False
K_FOR_CROSS_VAL = 3
CLASSES_PER_TASK = 5
## Logging, saving and testing options
LOG_DIR = './split_awa_results'
SNAPSHOT_DIR = './awa_snapshots/sgd'
SAVE_MODEL_PARAMS = False
RESNET18_IMAGENET_CHECKPOINT = './resnet-18-pretrained-imagenet/model.ckpt'
## Evaluation options
## Task split
NUM_TASKS = 20
MULTI_TASK = False
## Dataset specific options
DATA_DIR= './AWA_data/Animals_with_Attributes2/'
AWA_TRAIN_LIST = './dataset_lists/AWA_train_list.txt'
AWA_VAL_LIST = './dataset_lists/AWA_val_list.txt'
AWA_TEST_LIST = './dataset_lists/AWA_test_list.txt'
#AWA_TRAIN_LIST = './dataset_lists/tmp_list_awa.txt'
#AWA_VAL_LIST = './dataset_lists/tmp_list_awa.txt'
#AWA_TEST_LIST = './dataset_lists/tmp_list_awa.txt'
# Define function to load/ store training weights. We will use ImageNet initialization later on
def save(saver, sess, logdir, step):
'''Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(saver, sess, ckpt_path):
'''Load trained weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Script for split AWA experiment.")
parser.add_argument("--cross-validate-mode", action="store_true",
help="If option is chosen then snapshoting after each batch is disabled")
parser.add_argument("--online-cross-val", action="store_true",
help="If option is chosen then enable the online cross validation of the learning rate")
parser.add_argument("--train-single-epoch", action="store_true",
help="If option is chosen then train for single epoch")
parser.add_argument("--eval-single-head", action="store_true",
help="If option is chosen then evaluate on a single head setting.")
parser.add_argument("--arch", type=str, default=ARCH,
help="Network Architecture for the experiment.\
\n \nSupported values: %s"%(VALID_ARCHS))
parser.add_argument("--num-runs", type=int, default=NUM_RUNS,
help="Total runs/ experiments over which accuracy is averaged.")
parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS,
help="Number of training iterations for each task.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Mini-batch size for each task.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random Seed.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Starting Learning rate for each task.")
parser.add_argument("--optim", type=str, default=OPTIM,
help="Optimizer for the experiment. \
\n \nSupported values: %s"%(VALID_OPTIMS))
parser.add_argument("--imp-method", type=str, default=IMP_METHOD,
help="Model to be used for LLL. \
\n \nSupported values: %s"%(MODELS))
parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH,
help="Synaptic strength for the regularization.")
parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY,
help="Exponential moving average decay for Fisher calculation at each step.")
parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER,
help="Number of training iterations after which the Fisher will be updated.")
parser.add_argument("--do-sampling", action="store_true",
help="Whether to do sampling")
parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS,
help="Number of samples per class from previous tasks.")
parser.add_argument("--is-herding", action="store_true",
help="Herding based sampling")
parser.add_argument("--data-dir", type=str, default=DATA_DIR,
help="Directory from where the AWA data will be read.\
NOTE: Provide path till <AWA_DIR>/Animals_with_Attributes2")
parser.add_argument("--init-checkpoint", type=str, default=RESNET18_IMAGENET_CHECKPOINT,
help="Path to TF checkpoint file or npz file containing initialization for ImageNet.\
NOTE: NPZ file for VGG and TF checkpoint for ResNet")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Directory where the plots and model accuracies will be stored.")
return parser.parse_args()
def train_task_sequence(model, sess, saver, datasets, cross_validate_mode, train_single_epoch, do_sampling, is_herding,
episodic_mem_size, train_iters, batch_size, num_runs, init_checkpoint, online_cross_val, random_seed):
"""
Train and evaluate LLL system such that we only see a example once
Args:
Returns:
dict A dictionary containing mean and stds for the experiment
"""
# List to store accuracy for each run
runs = []
task_labels_dataset = []
break_training = 0
# Loop over number of runs to average over
for runid in range(num_runs):
print('\t\tRun %d:'%(runid))
# Initialize the random seeds
np.random.seed(random_seed+runid)
random.seed(random_seed+runid)
# Get the task labels from the total number of tasks and full label space
task_labels = []
classes_per_task = CLASSES_PER_TASK
classes_appearing_in_tasks = dict()
for cls in range(TOTAL_CLASSES):
classes_appearing_in_tasks[cls] = 0
if online_cross_val:
label_array = np.arange(TOTAL_CLASSES)
for tt in range(model.num_tasks):
offset = tt * classes_per_task
task_labels.append(list(label_array[offset:offset+classes_per_task]))
else:
for tt in range(model.num_tasks):
task_labels.append(random.sample(range(K_FOR_CROSS_VAL*classes_per_task, TOTAL_CLASSES), classes_per_task))
for lab in task_labels[tt]:
classes_appearing_in_tasks[lab] += 1
print('Task: {}, Labels:{}'.format(tt, task_labels[tt]))
print('Class frequency in Tasks: {}'.format(classes_appearing_in_tasks))
# Store the task labels
task_labels_dataset.append(task_labels)
# Initialize all the variables in the model
sess.run(tf.global_variables_initializer())
if PRETRAIN:
# Load the variables from a checkpoint
if model.network_arch == 'RESNET-B':
# Define loader (weights which will be loaded from a checkpoint)
restore_vars = [v for v in model.trainable_vars if 'fc' not in v.name]
loader = tf.train.Saver(restore_vars)
load(loader, sess, init_checkpoint)
elif model.network_arch == 'VGG':
# Load the pretrained weights from the npz file
weights = np.load(init_checkpoint)
keys = sorted(weights.keys())
for i, key in enumerate(keys[:-2]): # Load everything except the last layer
sess.run(model.trainable_vars[i].assign(weights[key]))
# Run the init ops
model.init_updates(sess)
# List to store accuracies for a run
evals = []
if model.imp_method == 'S-GEM':
# List to store the episodic memories of the previous tasks
task_based_memory = []
if model.imp_method == 'A-GEM':
# Reserve a space for episodic memory
episodic_images = np.zeros([episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
episodic_labels = np.zeros([episodic_mem_size, model.num_tasks*TOTAL_CLASSES])
episodic_filled_counter = 0
a_gem_logit_mask = np.zeros([model.num_tasks, model.total_classes])
if do_sampling:
# List to store important samples from the previous tasks
last_task_x = None
last_task_y_ = None
# Mask for softmax
logit_mask = np.zeros(model.total_classes)
max_batch_dimension = 500
# Dict to store the number of times a class has already been seen in the training
class_seen_already = dict()
for cls in range(TOTAL_CLASSES):
class_seen_already[cls] = 0
# Training loop for all the tasks
for task in range(len(task_labels)):
print('\t\tTask %d:'%(task))
# If not the first task then restore weights from previous task
if(task > 0):
model.restore(sess)
# Increment the class seen count
for cls in task_labels[task]:
class_seen_already[cls] += 1
# Load the task specific dataset
task_train_images, task_train_labels = load_task_specific_data_in_proportion(datasets[0]['train'], task_labels[task], classes_appearing_in_tasks, class_seen_already)
print('Received {} images, {} labels at task {}'.format(task_train_images.shape[0], task_train_labels.shape[0], task))
print('Unique labels in the task: {}'.format(np.unique(np.nonzero(task_train_labels)[1])))
# Assign equal weights to all the examples
task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32)
num_train_examples = task_train_images.shape[0]
logit_mask[:] = 0
# Train a task observing sequence of data
if train_single_epoch:
# Ceiling operation
num_iters = (num_train_examples + batch_size - 1) // batch_size
else:
num_iters = train_iters
logit_mask_offset = task * TOTAL_CLASSES
classes_adjusted_for_head = [cls + logit_mask_offset for cls in task_labels[task]]
logit_mask[classes_adjusted_for_head] = 1.0
# Randomly suffle the training examples
perm = np.arange(num_train_examples)
np.random.shuffle(perm)
train_x = task_train_images[perm]
train_y = task_train_labels[perm]
task_sample_weights = task_sample_weights[perm]
# Array to store accuracies when training for task T
if cross_validate_mode:
# Because we will evalaute at the end
ftask = 0
elif train_single_epoch:
# Because we will evaluate after every mini-batch of every task
ftask = np.zeros([max_batch_dimension+1, model.num_tasks])
batch_dim_count = 0
else:
# Because we will evaluate after every task
ftask = []
# Number of iterations after which convergence is checked
convergence_iters = int(num_iters * MEASURE_CONVERGENCE_AFTER)
final_train_labels = np.zeros([batch_size, model.total_classes])
head_offset = task * TOTAL_CLASSES
# Training loop for task T
for iters in range(num_iters):
if train_single_epoch and not cross_validate_mode:
if (iters < 11):
# Snapshot the current performance across all tasks after each mini-batch
fbatch = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task, online_cross_val)
ftask[batch_dim_count] = fbatch
# Increment the batch_dim_count
batch_dim_count += 1
# Set the output labels over which the model needs to be trained
if model.imp_method == 'A-GEM':
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][classes_adjusted_for_head] = 1.0
else:
logit_mask[:] = 0
logit_mask[classes_adjusted_for_head] = 1.0
if train_single_epoch:
offset = iters * batch_size
if (offset+batch_size <= num_train_examples):
residual = batch_size
else:
residual = num_train_examples - offset
final_train_labels[:residual, head_offset:head_offset+TOTAL_CLASSES] = train_y[offset:offset+residual]
feed_dict = {model.x: train_x[offset:offset+residual], model.y_: final_train_labels[:residual],
model.sample_weights: task_sample_weights[offset:offset+residual],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
else:
offset = (iters * batch_size) % (num_train_examples - batch_size)
final_train_labels[:, head_offset:head_offset+TOTAL_CLASSES] = train_y[offset:offset+residual]
feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_: final_train_labels,
model.sample_weights: task_sample_weights[offset:offset+batch_size],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
if model.imp_method == 'VAN':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'EWC' or model.imp_method == 'M-EWC':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Update fisher after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
sess.run(model.set_running_fisher)
sess.run(model.reset_tmp_fisher)
if (iters >= convergence_iters) and (model.imp_method == 'M-EWC'):
_, _, _, _, loss = sess.run([model.weights_old_ops_grouped, model.set_tmp_fisher, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
else:
_, _, loss = sess.run([model.set_tmp_fisher, model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'PI':
feed_dict[model.output_mask] = logit_mask
_, _, _, loss = sess.run([model.weights_old_ops_grouped, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'MAS':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'S-GEM':
if task == 0:
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
# Randomly sample a task from the previous tasks
prev_task = np.random.randint(0, task)
# Set the logit mask for the randomly sampled task
logit_mask[:] = 0
logit_mask[task_labels[prev_task]] = 1.0
# Store the reference gradient
sess.run(model.store_ref_grads, feed_dict={model.x: task_based_memory[prev_task]['images'], model.y_: task_based_memory[prev_task]['labels'],
model.keep_prob: 1.0, model.output_mask: logit_mask, model.train_phase: True})
# Compute the gradient for current task and project if need be
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'A-GEM':
if task == 0:
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][classes_adjusted_for_head] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
## Compute and store the reference gradients on the previous tasks
# Reset the reference gradients
# Set the mask for all the previous tasks so far
a_gem_logit_mask[:] = 0
for tt in range(task):
logit_mask_offset = tt * TOTAL_CLASSES
classes_adjusted_for_head = [cls + logit_mask_offset for cls in task_labels[tt]]
a_gem_logit_mask[tt][classes_adjusted_for_head] = 1.0
if KEEP_EPISODIC_MEMORY_FULL:
mem_sample_mask = np.random.choice(episodic_mem_size, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
else:
if episodic_filled_counter <= EPS_MEM_BATCH_SIZE:
mem_sample_mask = np.arange(episodic_filled_counter)
else:
# Sample a random subset from episodic memory buffer
mem_sample_mask = np.random.choice(episodic_filled_counter, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
ref_feed_dict = {model.x: episodic_images[mem_sample_mask], model.y_: episodic_labels[mem_sample_mask],
model.keep_prob: 1.0, model.train_phase: True}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
ref_feed_dict.update(logit_mask_dict)
ref_feed_dict[model.mem_batch_size] = float(len(mem_sample_mask))
sess.run(model.store_ref_grads, feed_dict=ref_feed_dict)
# Compute the gradient for current task and project if need be
a_gem_logit_mask[:] = 0
logit_mask_offset = task * TOTAL_CLASSES
classes_adjusted_for_head = [cls + logit_mask_offset for cls in task_labels[task]]
a_gem_logit_mask[task][classes_adjusted_for_head] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'RWALK':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Update fisher and importance score after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
# Update the importance score using distance in riemannian manifold
sess.run(model.update_big_omega_riemann)
# Now that the score is updated, compute the new value for running Fisher
sess.run(model.set_running_fisher)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Reset the delta_L
sess.run([model.reset_small_omega])
_, _, _, _, loss = sess.run([model.set_tmp_fisher, model.weights_old_ops_grouped,
model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict)
if (iters % 100 == 0):
print('Step {:d} {:.3f}'.format(iters, loss))
if (math.isnan(loss)):
print('ERROR: NaNs NaNs NaNs!!!')
break_training = 1
break
print('\t\t\t\tTraining for Task%d done!'%(task))
if break_training:
break
# Compute the inter-task updates, Fisher/ importance scores etc
# Don't calculate the task updates for the last task
if task < (len(task_labels) - 1):
model.task_updates(sess, task, task_train_images, task_labels[task]) # TODO: For MAS, should the gradients be for current task or all the previous tasks
print('\t\t\t\tTask updates after Task%d done!'%(task))
# If importance method is '*-GEM' then store the episodic memory for the task
if 'GEM' in model.imp_method:
data_to_sample_from = {
'images': task_train_images,
'labels': task_train_labels,
}
if model.imp_method == 'S-GEM':
# Get the important samples from the current task
if is_herding: # Sampling based on MoF
# Compute the features of training data
features_dim = model.image_feature_dim
features = np.zeros([num_train_examples, features_dim])
samples_at_a_time = 32
residual = num_train_examples % samples_at_a_time
for i in range(num_train_examples// samples_at_a_time):
offset = i * samples_at_a_time
features[offset:offset+samples_at_a_time] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+samples_at_a_time],
model.y_: task_train_labels[offset:offset+samples_at_a_time], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if residual > 0:
offset = (i + 1) * samples_at_a_time
features[offset:offset+residual] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+residual],
model.y_: task_train_labels[offset:offset+residual], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
imp_images, imp_labels = sample_from_dataset_icarl(data_to_sample_from, features, task_labels[task], SAMPLES_PER_CLASS)
else: # Random sampling
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
task_memory = {
'images': deepcopy(imp_images),
'labels': deepcopy(imp_labels),
}
task_based_memory.append(task_memory)
elif model.imp_method == 'A-GEM':
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
if KEEP_EPISODIC_MEMORY_FULL:
update_episodic_memory(data_to_sample_from, importance_array, episodic_mem_size, task, episodic_images, episodic_labels)
else:
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
if not KEEP_EPISODIC_MEMORY_FULL: # Fill the memory to always keep M/T samples per task
total_imp_samples = imp_images.shape[0]
eps_offset = task * total_imp_samples
episodic_images[eps_offset:eps_offset+total_imp_samples] = imp_images
episodic_labels[eps_offset:eps_offset+total_imp_samples, head_offset:head_offset+TOTAL_CLASSES] = imp_labels
episodic_filled_counter += total_imp_samples
print('Unique labels in the episodic memory: {}'.format(np.unique(np.nonzero(episodic_labels)[1])))
# Inspect episodic memory
if DEBUG_EPISODIC_MEMORY:
# Which labels are present in the memory
unique_labels = np.unique(np.nonzero(episodic_labels)[-1])
print('Unique Labels present in the episodic memory'.format(unique_labels))
print('Labels count:')
for lbl in unique_labels:
print('Label {}: {} samples'.format(lbl, np.where(np.nonzero(episodic_labels)[-1] == lbl)[0].size))
# Is there any space which is not filled
print('Empty space: {}'.format(np.where(np.sum(episodic_labels, axis=1) == 0)))
print('Episodic memory of {} images at task {} saved!'.format(episodic_images.shape[0], task))
# If sampling flag is set, store few of the samples from previous task
if do_sampling:
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones([datasets[task]['train']['images'].shape[0]], dtype=np.float32)
# Get the important samples from the current task
imp_images, imp_labels = sample_from_dataset(datasets[task]['train'], importance_array,
task_labels[task], SAMPLES_PER_CLASS)
if imp_images is not None:
if last_task_x is None:
last_task_x = imp_images
last_task_y_ = imp_labels
else:
last_task_x = np.concatenate((last_task_x, imp_images), axis=0)
last_task_y_ = np.concatenate((last_task_y_, imp_labels), axis=0)
# Delete the importance array now that you don't need it in the current run
del importance_array
print('\t\t\t\tEpisodic memory is saved for Task%d!'%(task))
if cross_validate_mode:
# Only evaluate after the last task
if (task == model.num_tasks - 1) or MULTI_TASK:
# List to store accuracy for all the tasks for the current trained model
ftask = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task, online_cross_val)
elif train_single_epoch:
fbatch = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task, False)
print('Task: {} Acc: {}'.format(task, fbatch))
ftask[batch_dim_count] = fbatch
else:
# Multi-epoch training, so compute accuracy at the end
ftask = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task, online_cross_val)
if SAVE_MODEL_PARAMS:
save(saver, sess, SNAPSHOT_DIR, iters)
if not cross_validate_mode:
# Store the accuracies computed at task T in a list
evals.append(np.array(ftask))
# Reset the optimizer
model.reset_optimizer(sess)
#-> End for loop task
if not cross_validate_mode:
runs.append(np.array(evals))
if break_training:
break
# End for loop runid
if cross_validate_mode:
return np.mean(ftask), task_labels_dataset
else:
runs = np.array(runs)
return runs, task_labels_dataset
def test_task_sequence(model, sess, test_data, all_task_labels, task, cross_validate_mode):
"""
Snapshot the current performance
"""
final_acc = np.zeros(model.num_tasks)
test_set = 'test'
if model.imp_method == 'A-GEM':
logit_mask = np.zeros([model.num_tasks, model.total_classes])
else:
logit_mask = np.zeros(model.total_classes)
for tt, labels in enumerate(all_task_labels):
if tt > task:
return final_acc
samples_at_a_time = 10
task_images, task_labels = load_task_specific_data(test_data, labels)
global_class_indices = np.column_stack(np.nonzero(task_labels))
logit_mask_offset = tt * TOTAL_CLASSES
classes_adjusted_for_head = [cls + logit_mask_offset for cls in labels]
logit_mask[:] = 0
if model.imp_method == 'A-GEM':
logit_mask[tt][classes_adjusted_for_head] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, logit_mask)}
else:
logit_mask[classes_adjusted_for_head] = 1.0
acc = np.zeros(len(labels))
final_train_labels = np.zeros([samples_at_a_time, model.total_classes])
head_offset = tt * TOTAL_CLASSES
for cli, cls in enumerate(labels):
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] == cls][:,np.array([True, False])])
class_indices = np.sort(class_indices, axis=None)
task_test_images = task_images[class_indices]
task_test_labels = task_labels[class_indices]
total_test_samples = task_test_images.shape[0]
total_corrects = 0
if total_test_samples < samples_at_a_time:
i = -1
for i in range(total_test_samples/ samples_at_a_time):
offset = i*samples_at_a_time
final_train_labels[:, head_offset:head_offset+TOTAL_CLASSES] = task_test_labels[offset:offset+samples_at_a_time]
feed_dict = {model.x: task_test_images[offset:offset+samples_at_a_time],
model.y_: final_train_labels,
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
total_corrects += np.sum(sess.run(model.correct_predictions[tt], feed_dict=feed_dict))
else:
feed_dict[model.output_mask] = logit_mask
total_corrects += np.sum(sess.run(model.correct_predictions, feed_dict=feed_dict))
# Compute the corrects on residuals
offset = (i+1)*samples_at_a_time
num_residuals = total_test_samples % samples_at_a_time
final_train_labels[:num_residuals, head_offset:head_offset+TOTAL_CLASSES] = task_test_labels[offset:offset+num_residuals]
feed_dict = {model.x: task_test_images[offset:offset+num_residuals],
model.y_: final_train_labels[:num_residuals],
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
total_corrects += np.sum(sess.run(model.correct_predictions[tt], feed_dict=feed_dict))
else:
feed_dict[model.output_mask] = logit_mask
total_corrects += np.sum(sess.run(model.correct_predictions, feed_dict=feed_dict))
# Accuracy
if total_test_samples != 0:
acc[cli] = total_corrects/ float(total_test_samples)
final_acc[tt] = np.mean(acc)
return final_acc
def main():
"""
Create the model and start the training
"""
# Get the CL arguments
args = get_arguments()
# Initialize the random seed of numpy
np.random.seed(args.random_seed)
# Check if the network architecture is valid
if args.arch not in VALID_ARCHS:
raise ValueError("Network architecture %s is not supported!"%(args.arch))
# Check if the method to compute importance is valid
if args.imp_method not in MODELS:
raise ValueError("Importance measure %s is undefined!"%(args.imp_method))
# Check if the optimizer is valid
if args.optim not in VALID_OPTIMS:
raise ValueError("Optimizer %s is undefined!"%(args.optim))
# Create log directories to store the results
if not os.path.exists(args.log_dir):
print('Log directory %s created!'%(args.log_dir))
os.makedirs(args.log_dir)
if args.online_cross_val:
num_tasks = K_FOR_CROSS_VAL
else:
num_tasks = NUM_TASKS - K_FOR_CROSS_VAL
# Load the split AWA dataset for all the classes
data_labs = [np.arange(TOTAL_CLASSES)]
datasets = construct_split_awa(data_labs, args.data_dir, AWA_TRAIN_LIST, AWA_VAL_LIST, AWA_TEST_LIST, IMG_HEIGHT, IMG_WIDTH)
if args.cross_validate_mode:
#models_list = MODELS
#learning_rate_list = [0.1, 0.03, 0.01, 0.003, 0.0003]
models_list = [args.imp_method]
learning_rate_list = [0.01]
else:
models_list = [args.imp_method]
for imp_method in models_list:
if imp_method == 'VAN':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.001]
elif imp_method == 'PI':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10]
else:
synap_stgth_list = [1]
learning_rate_list = [0.003]
elif imp_method == 'EWC' or imp_method == 'M-EWC':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [100]
learning_rate_list = [0.003]
elif imp_method == 'MAS':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [1]
learning_rate_list = [0.003]
elif imp_method == 'RWALK':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [10] # Run again
learning_rate_list = [0.003]
elif imp_method == 'S-GEM':
synap_stgth_list = [0]
if args.online_cross_val:
pass
else:
learning_rate_list = [args.learning_rate]
elif imp_method == 'A-GEM':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.01]
for synap_stgth in synap_stgth_list:
for lr in learning_rate_list:
# Generate the experiment key and store the meta data in a file
exper_meta_data = {'ARCH': args.arch,
'DATASET': 'SPLIT_AWA',
'NUM_RUNS': args.num_runs,
'TRAIN_SINGLE_EPOCH': args.train_single_epoch,
'IMP_METHOD': imp_method,
'SYNAP_STGTH': synap_stgth,
'FISHER_EMA_DECAY': args.fisher_ema_decay,
'FISHER_UPDATE_AFTER': args.fisher_update_after,
'OPTIM': args.optim,
'LR': lr,
'BATCH_SIZE': args.batch_size,
'EPS_MEMORY': args.do_sampling,
'MEM_SIZE': args.mem_size,
'IS_HERDING': args.is_herding}
experiment_id = "SPLIT_AWA_ONE_HOT_HERDING_%r_%s_%r_%s_%s_%s_%s_%r_%s-"%(args.is_herding, args.arch, args.train_single_epoch, imp_method,
str(synap_stgth).replace('.', '_'), str(lr).replace('.', '_'),
str(args.batch_size), args.do_sampling, str(args.mem_size)) + datetime.datetime.now().strftime("%y-%m-%d-%H-%M")
snapshot_experiment_meta_data(args.log_dir, experiment_id, exper_meta_data)
# Reset the default graph
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
# Set the random seed
tf.set_random_seed(args.random_seed)
# Define Input and Output of the model
x = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
y_ = tf.placeholder(tf.float32, shape=[None, num_tasks*TOTAL_CLASSES])
if not args.train_single_epoch:
# Define ops for data augmentation
x_aug = image_scaling(x)
x_aug = random_crop_and_pad_image(x_aug, IMG_HEIGHT, IMG_WIDTH)
# Define the optimizer
if args.optim == 'ADAM':
opt = tf.train.AdamOptimizer(learning_rate=lr)
elif args.optim == 'SGD':
opt = tf.train.GradientDescentOptimizer(learning_rate=lr)
elif args.optim == 'MOMENTUM':
base_lr = tf.constant(lr)
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - train_step / training_iters), OPT_POWER))
opt = tf.train.MomentumOptimizer(lr, OPT_MOMENTUM)
# Create the Model/ contruct the graph
if args.train_single_epoch:
# When training using a single epoch then there is no need for data augmentation
model = Model(x, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True)
else:
model = Model(x_aug, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True, x_test=x)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
time_start = time.time()
with tf.Session(config=config, graph=graph) as sess:
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=100)
runs, task_labels_dataset = train_task_sequence(model, sess, saver, datasets, args.cross_validate_mode, args.train_single_epoch,
args.do_sampling, args.is_herding, args.mem_size*CLASSES_PER_TASK*num_tasks, args.train_iters, args.batch_size, args.num_runs, args.init_checkpoint, args.online_cross_val, args.random_seed)
# Close the session
sess.close()
time_end = time.time()
time_spent = time_end - time_start
print('Time spent: {}'.format(time_spent))
# Clean up
del model
if args.cross_validate_mode:
# If cross-validation flag is enabled, store the stuff in a text file
cross_validate_dump_file = args.log_dir + '/' + 'SPLIT_AWA_%s_%s'%(imp_method, args.optim) + '.txt'
with open(cross_validate_dump_file, 'a') as f:
f.write('HERDING: {} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {}\n'.format(args.is_herding, args.arch, lr, synap_stgth, runs))
else:
# Store all the results in one dictionary to process later
exper_acc = dict(mean=runs)
exper_labels = dict(labels=task_labels_dataset)
# Store the experiment output to a file
snapshot_experiment_eval(args.log_dir, experiment_id, exper_acc)
snapshot_task_labels(args.log_dir, experiment_id, exper_labels)
if __name__ == '__main__':
main()
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Training script for split CUB experiment.
"""
from __future__ import print_function
import argparse
import os
import sys
import math
import time
import datetime
import numpy as np
import tensorflow as tf
from copy import deepcopy
from six.moves import cPickle as pickle
from utils.data_utils import image_scaling, random_crop_and_pad_image, random_horizontal_flip, construct_split_cub
from utils.utils import get_sample_weights, sample_from_dataset, update_episodic_memory_with_less_data, concatenate_datasets, samples_for_each_class, sample_from_dataset_icarl, load_task_specific_data
from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels
from model import Model
###############################################################
################ Some definitions #############################
### These will be edited by the command line options ##########
###############################################################
## Training Options
NUM_RUNS = 5 # Number of experiments to average over
TRAIN_ITERS = 2000 # Number of training iterations per task
BATCH_SIZE = 16
LEARNING_RATE = 0.1
RANDOM_SEED = 1234
VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM']
OPTIM = 'SGD'
OPT_MOMENTUM = 0.9
OPT_POWER = 0.9
VALID_ARCHS = ['CNN', 'VGG', 'RESNET-B']
ARCH = 'RESNET-B'
PRETRAIN = True
## Model options
#MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'M-EWC', 'GEM', 'A-GEM', 'S-GEM'] #List of valid models
MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'A-GEM'] #List of valid models
IMP_METHOD = 'PI'
SYNAP_STGTH = 75000
FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher)
FISHER_UPDATE_AFTER = 50 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper)
SAMPLES_PER_CLASS = 5 # Number of samples per task
IMG_HEIGHT = 224
IMG_WIDTH = 224
IMG_CHANNELS = 3
TOTAL_CLASSES = 200 # Total number of classes in the dataset
EPS_MEM_BATCH_SIZE = 128
DEBUG_EPISODIC_MEMORY = False
KEEP_EPISODIC_MEMORY_FULL = False
K_FOR_CROSS_VAL = 3
## Logging, saving and testing options
LOG_DIR = './split_cub_results'
SNAPSHOT_DIR = './cub_snapshots/sgd'
SAVE_MODEL_PARAMS = False
## Evaluation options
## Task split
NUM_TASKS = 20
MULTI_TASK = False
## Dataset specific options
DATA_DIR='CUB_data/CUB_200_2011/images'
CUB_TRAIN_LIST = './dataset_lists/CUB_train_list.txt'
CUB_TEST_LIST = './dataset_lists/CUB_test_list.txt'
RESNET18_IMAGENET_CHECKPOINT = './resnet-18-pretrained-imagenet/model.ckpt'
# Define function to load/ store training weights. We will use ImageNet initialization later on
def save(saver, sess, logdir, step):
'''Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(saver, sess, ckpt_path):
'''Load trained weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Script for split CUB experiment.")
parser.add_argument("--cross-validate-mode", action="store_true",
help="If option is chosen then snapshoting after each batch is disabled")
parser.add_argument("--online-cross-val", action="store_true",
help="If option is chosen then enable the online cross validation of the learning rate")
parser.add_argument("--train-single-epoch", action="store_true",
help="If option is chosen then train for single epoch")
parser.add_argument("--eval-single-head", action="store_true",
help="If option is chosen then evaluate on a single head setting.")
parser.add_argument("--arch", type=str, default=ARCH,
help="Network Architecture for the experiment.\
\n \nSupported values: %s"%(VALID_ARCHS))
parser.add_argument("--num-runs", type=int, default=NUM_RUNS,
help="Total runs/ experiments over which accuracy is averaged.")
parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS,
help="Number of training iterations for each task.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Mini-batch size for each task.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random Seed.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Starting Learning rate for each task.")
parser.add_argument("--optim", type=str, default=OPTIM,
help="Optimizer for the experiment. \
\n \nSupported values: %s"%(VALID_OPTIMS))
parser.add_argument("--imp-method", type=str, default=IMP_METHOD,
help="Model to be used for LLL. \
\n \nSupported values: %s"%(MODELS))
parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH,
help="Synaptic strength for the regularization.")
parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY,
help="Exponential moving average decay for Fisher calculation at each step.")
parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER,
help="Number of training iterations after which the Fisher will be updated.")
parser.add_argument("--do-sampling", action="store_true",
help="Whether to do sampling")
parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS,
help="Number of samples per class from previous tasks.")
parser.add_argument("--is-herding", action="store_true",
help="Herding based sampling")
parser.add_argument("--data-dir", type=str, default=DATA_DIR,
help="Directory from where the CUB data will be read.\
NOTE: Provide path till <CUB_DIR>/images")
parser.add_argument("--init-checkpoint", type=str, default=RESNET18_IMAGENET_CHECKPOINT,
help="Path to TF checkpoint file or npz file containing initialization for ImageNet.\
NOTE: NPZ file for VGG and TF checkpoint for ResNet")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Directory where the plots and model accuracies will be stored.")
return parser.parse_args()
def train_task_sequence(model, sess, saver, datasets, cross_validate_mode, train_single_epoch, do_sampling, is_herding,
mem_per_class, train_iters, batch_size, num_runs, init_checkpoint, online_cross_val, random_seed):
"""
Train and evaluate LLL system such that we only see a example once
Args:
Returns:
dict A dictionary containing mean and stds for the experiment
"""
# List to store accuracy for each run
runs = []
task_labels_dataset = []
break_training = 0
# Loop over number of runs to average over
for runid in range(num_runs):
print('\t\tRun %d:'%(runid))
# Initialize the random seeds
np.random.seed(random_seed+runid)
# Get the task labels from the total number of tasks and full label space
task_labels = []
classes_per_task = TOTAL_CLASSES// NUM_TASKS
total_classes = classes_per_task * model.num_tasks
if online_cross_val:
label_array = np.arange(total_classes)
else:
class_label_offset = K_FOR_CROSS_VAL * classes_per_task
label_array = np.arange(class_label_offset, total_classes+class_label_offset)
np.random.shuffle(label_array)
for tt in range(model.num_tasks):
tt_offset = tt*classes_per_task
task_labels.append(list(label_array[tt_offset:tt_offset+classes_per_task]))
print('Task: {}, Labels:{}'.format(tt, task_labels[tt]))
# Store the task labels
task_labels_dataset.append(task_labels)
# Set episodic memory size
episodic_mem_size = mem_per_class * total_classes
# Initialize all the variables in the model
sess.run(tf.global_variables_initializer())
if PRETRAIN:
# Load the variables from a checkpoint
if model.network_arch == 'RESNET-B':
# Define loader (weights which will be loaded from a checkpoint)
restore_vars = [v for v in model.trainable_vars if 'fc' not in v.name]
loader = tf.train.Saver(restore_vars)
load(loader, sess, init_checkpoint)
elif model.network_arch == 'VGG':
# Load the pretrained weights from the npz file
weights = np.load(init_checkpoint)
keys = sorted(weights.keys())
for i, key in enumerate(keys[:-2]): # Load everything except the last layer
sess.run(model.trainable_vars[i].assign(weights[key]))
# Run the init ops
model.init_updates(sess)
# List to store accuracies for a run
evals = []
# List to store the classes that we have so far - used at test time
test_labels = []
if model.imp_method == 'S-GEM':
# List to store the episodic memories of the previous tasks
task_based_memory = []
if model.imp_method == 'A-GEM':
# Reserve a space for episodic memory
episodic_images = np.zeros([episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
episodic_labels = np.zeros([episodic_mem_size, TOTAL_CLASSES])
episodic_filled_counter = 0
a_gem_logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES])
if do_sampling:
# List to store important samples from the previous tasks
last_task_x = None
last_task_y_ = None
# Mask for softmax
logit_mask = np.zeros(TOTAL_CLASSES)
# Training loop for all the tasks
for task in range(len(task_labels)):
print('\t\tTask %d:'%(task))
# If not the first task then restore weights from previous task
if(task > 0):
model.restore(sess)
# If sampling flag is set append the previous datasets
if do_sampling:
task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[task])
if task > 0:
task_train_images, task_train_labels = concatenate_datasets(task_tr_images, task_tr_labels, last_task_x, last_task_y_)
else:
task_train_images = task_tr_images
task_train_labels = task_tr_labels
else:
# Extract training images and labels for the current task
task_train_images, task_train_labels = load_task_specific_data(datasets[0]['train'], task_labels[task])
# If multi_task is set then train using all the datasets of all the tasks
if MULTI_TASK:
if task == 0:
for t_ in range(1, len(task_labels)):
task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[t_])
task_train_images = np.concatenate((task_train_images, task_tr_images), axis=0)
task_train_labels = np.concatenate((task_train_labels, task_tr_labels), axis=0)
else:
# Skip training for this task
continue
print('Received {} images, {} labels at task {}'.format(task_train_images.shape[0], task_train_labels.shape[0], task))
print('Unique labels in the task: {}'.format(np.unique(np.nonzero(task_train_labels)[1])))
# Test for the tasks that we've seen so far
test_labels.extend(task_labels[task])
# Declare variables to store sample importance if sampling flag is set
if do_sampling:
# Get the sample weighting
task_sample_weights = get_sample_weights(task_train_labels, test_labels)
else:
# Assign equal weights to all the examples
task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32)
num_train_examples = task_train_images.shape[0]
logit_mask[:] = 0
# Train a task observing sequence of data
if train_single_epoch:
# Ceiling operation
num_iters = (num_train_examples + batch_size - 1) // batch_size
if cross_validate_mode:
if do_sampling:
logit_mask[test_labels] = 1.0
else:
logit_mask[task_labels[task]] = 1.0
else:
num_iters = train_iters
# Set the mask only once before starting the training for the task
if do_sampling:
logit_mask[test_labels] = 1.0
else:
logit_mask[task_labels[task]] = 1.0
if MULTI_TASK:
logit_mask[:] = 1.0
# Randomly suffle the training examples
perm = np.arange(num_train_examples)
np.random.shuffle(perm)
train_x = task_train_images[perm]
train_y = task_train_labels[perm]
task_sample_weights = task_sample_weights[perm]
# Array to store accuracies when training for task T
ftask = []
# Training loop for task T
for iters in range(num_iters):
if train_single_epoch and not cross_validate_mode and not MULTI_TASK:
if (iters < 10) or (iters % 5 == 0):
# Snapshot the current performance across all tasks after each mini-batch
fbatch = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task)
ftask.append(fbatch)
# Set the output labels over which the model needs to be trained
if model.imp_method == 'A-GEM':
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][task_labels[task]] = 1.0
else:
logit_mask[:] = 0
if do_sampling:
logit_mask[test_labels] = 1.0
else:
logit_mask[task_labels[task]] = 1.0
if train_single_epoch:
offset = iters * batch_size
if (offset+batch_size <= num_train_examples):
residual = batch_size
else:
residual = num_train_examples - offset
feed_dict = {model.x: train_x[offset:offset+residual], model.y_: train_y[offset:offset+residual],
model.sample_weights: task_sample_weights[offset:offset+residual],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
else:
offset = (iters * batch_size) % (num_train_examples - batch_size)
feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_: train_y[offset:offset+batch_size],
model.sample_weights: task_sample_weights[offset:offset+batch_size],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
if model.imp_method == 'VAN':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'EWC':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Update fisher after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
sess.run(model.set_running_fisher)
sess.run(model.reset_tmp_fisher)
_, _, loss = sess.run([model.set_tmp_fisher, model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'PI':
feed_dict[model.output_mask] = logit_mask
_, _, _, loss = sess.run([model.weights_old_ops_grouped, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'MAS':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'S-GEM':
if task == 0:
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
# Randomly sample a task from the previous tasks
prev_task = np.random.randint(0, task)
# Set the logit mask for the randomly sampled task
logit_mask[:] = 0
logit_mask[task_labels[prev_task]] = 1.0
# Store the reference gradient
sess.run(model.store_ref_grads, feed_dict={model.x: task_based_memory[prev_task]['images'], model.y_: task_based_memory[prev_task]['labels'],
model.keep_prob: 1.0, model.output_mask: logit_mask, model.train_phase: True})
# Compute the gradient for current task and project if need be
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'A-GEM':
if task == 0:
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][task_labels[task]] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
## Compute and store the reference gradients on the previous tasks
# Set the mask for all the previous tasks so far
a_gem_logit_mask[:] = 0
for tt in range(task):
a_gem_logit_mask[tt][task_labels[tt]] = 1.0
if KEEP_EPISODIC_MEMORY_FULL:
mem_sample_mask = np.random.choice(episodic_mem_size, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
else:
if episodic_filled_counter <= EPS_MEM_BATCH_SIZE:
mem_sample_mask = np.arange(episodic_filled_counter)
else:
# Sample a random subset from episodic memory buffer
mem_sample_mask = np.random.choice(episodic_filled_counter, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
# Store the reference gradient
ref_feed_dict = {model.x: episodic_images[mem_sample_mask], model.y_: episodic_labels[mem_sample_mask],
model.keep_prob: 1.0, model.train_phase: True}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
ref_feed_dict.update(logit_mask_dict)
ref_feed_dict[model.mem_batch_size] = float(len(mem_sample_mask))
sess.run(model.store_ref_grads, feed_dict=ref_feed_dict)
# Compute the gradient for current task and project if need be
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][task_labels[task]] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'RWALK':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Update fisher and importance score after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
# Update the importance score using distance in riemannian manifold
sess.run(model.update_big_omega_riemann)
# Now that the score is updated, compute the new value for running Fisher
sess.run(model.set_running_fisher)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Reset the delta_L
sess.run([model.reset_small_omega])
_, _, _, _, loss = sess.run([model.set_tmp_fisher, model.weights_old_ops_grouped,
model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict)
if (iters % 50 == 0):
print('Step {:d} {:.3f}'.format(iters, loss))
if (math.isnan(loss)):
print('ERROR: NaNs NaNs NaNs!!!')
break_training = 1
break
print('\t\t\t\tTraining for Task%d done!'%(task))
if break_training:
break
# Compute the inter-task updates, Fisher/ importance scores etc
# Don't calculate the task updates for the last task
if task < (len(task_labels) - 1):
model.task_updates(sess, task, task_train_images, task_labels[task]) # TODO: For MAS, should the gradients be for current task or all the previous tasks
print('\t\t\t\tTask updates after Task%d done!'%(task))
# If importance method is '*-GEM' then store the episodic memory for the task
if 'GEM' in model.imp_method:
data_to_sample_from = {
'images': task_train_images,
'labels': task_train_labels,
}
if model.imp_method == 'S-GEM':
# Get the important samples from the current task
if is_herding: # Sampling based on MoF
# Compute the features of training data
features_dim = model.image_feature_dim
features = np.zeros([num_train_examples, features_dim])
samples_at_a_time = 32
residual = num_train_examples % samples_at_a_time
for i in range(num_train_examples// samples_at_a_time):
offset = i * samples_at_a_time
features[offset:offset+samples_at_a_time] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+samples_at_a_time],
model.y_: task_train_labels[offset:offset+samples_at_a_time], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if residual > 0:
offset = (i + 1) * samples_at_a_time
features[offset:offset+residual] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+residual],
model.y_: task_train_labels[offset:offset+residual], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
imp_images, imp_labels = sample_from_dataset_icarl(data_to_sample_from, features, task_labels[task], SAMPLES_PER_CLASS)
else: # Random sampling
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
task_memory = {
'images': deepcopy(imp_images),
'labels': deepcopy(imp_labels),
}
task_based_memory.append(task_memory)
elif model.imp_method == 'A-GEM':
if is_herding: # Sampling based on MoF
# Compute the features of training data
features_dim = model.image_feature_dim
features = np.zeros([num_train_examples, features_dim])
samples_at_a_time = 32
residual = num_train_examples % samples_at_a_time
for i in range(num_train_examples// samples_at_a_time):
offset = i * samples_at_a_time
features[offset:offset+samples_at_a_time] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+samples_at_a_time],
model.y_: task_train_labels[offset:offset+samples_at_a_time], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if residual > 0:
offset = (i + 1) * samples_at_a_time
features[offset:offset+residual] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+residual],
model.y_: task_train_labels[offset:offset+residual], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if KEEP_EPISODIC_MEMORY_FULL:
update_episodic_memory(data_to_sample_from, features, episodic_mem_size, task, episodic_images, episodic_labels, task_labels=task_labels[task], is_herding=True)
else:
imp_images, imp_labels = sample_from_dataset_icarl(data_to_sample_from, features, task_labels[task], SAMPLES_PER_CLASS)
else: # Random sampling
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
if KEEP_EPISODIC_MEMORY_FULL:
update_episodic_memory(data_to_sample_from, importance_array, episodic_mem_size, task, episodic_images, episodic_labels)
else:
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
if not KEEP_EPISODIC_MEMORY_FULL: # Fill the memory to always keep M/T samples per task
total_imp_samples = imp_images.shape[0]
eps_offset = task * total_imp_samples
episodic_images[eps_offset:eps_offset+total_imp_samples] = imp_images
episodic_labels[eps_offset:eps_offset+total_imp_samples] = imp_labels
episodic_filled_counter += total_imp_samples
print('Unique labels in the episodic memory: {}'.format(np.unique(np.nonzero(episodic_labels)[1])))
# Inspect episodic memory
if DEBUG_EPISODIC_MEMORY:
# Which labels are present in the memory
unique_labels = np.unique(np.nonzero(episodic_labels)[-1])
print('Unique Labels present in the episodic memory'.format(unique_labels))
print('Labels count:')
for lbl in unique_labels:
print('Label {}: {} samples'.format(lbl, np.where(np.nonzero(episodic_labels)[-1] == lbl)[0].size))
# Is there any space which is not filled
print('Empty space: {}'.format(np.where(np.sum(episodic_labels, axis=1) == 0)))
print('Episodic memory of {} images at task {} saved!'.format(episodic_images.shape[0], task))
# If sampling flag is set, store few of the samples from previous task
if do_sampling:
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones([task_train_images.shape[0]], dtype=np.float32)
# Get the important samples from the current task
task_data = {
'images': task_tr_images,
'labels': task_tr_labels,
}
imp_images, imp_labels = sample_from_dataset(task_data, importance_array, task_labels[task], SAMPLES_PER_CLASS)
if imp_images is not None:
if last_task_x is None:
last_task_x = imp_images
last_task_y_ = imp_labels
else:
last_task_x = np.concatenate((last_task_x, imp_images), axis=0)
last_task_y_ = np.concatenate((last_task_y_, imp_labels), axis=0)
# Delete the importance array now that you don't need it in the current run
del importance_array
print('\t\t\t\tEpisodic memory is saved for Task%d!'%(task))
if cross_validate_mode:
# Only evaluate after the last task
if (task == model.num_tasks - 1) or MULTI_TASK:
# List to store accuracy for all the tasks for the current trained model
ftask = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task)
elif train_single_epoch:
fbatch = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task)
print('Task: {} Acc: {}'.format(task, fbatch))
ftask.append(fbatch)
else:
# Multi-epoch training, so compute accuracy at the end
ftask = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task)
if SAVE_MODEL_PARAMS:
save(saver, sess, SNAPSHOT_DIR, iters)
if not cross_validate_mode:
# Store the accuracies computed at task T in a list
evals.append(np.array(ftask))
# Reset the optimizer
model.reset_optimizer(sess)
#-> End for loop task
if not cross_validate_mode:
runs.append(np.array(evals))
if break_training:
break
# End for loop runid
if cross_validate_mode:
return np.mean(ftask), task_labels_dataset
else:
runs = np.array(runs)
return runs, task_labels_dataset
def test_task_sequence(model, sess, test_data, test_tasks, task):
"""
Snapshot the current performance
"""
final_acc = np.zeros(model.num_tasks)
if model.imp_method == 'A-GEM':
logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES])
else:
logit_mask = np.zeros(TOTAL_CLASSES)
for tt, labels in enumerate(test_tasks):
if not MULTI_TASK:
if tt > task:
return final_acc
task_test_images, task_test_labels = load_task_specific_data(test_data, labels)
total_test_samples = task_test_images.shape[0]
samples_at_a_time = 10
total_corrects = 0
logit_mask[:] = 0
if model.imp_method == 'A-GEM':
logit_mask[tt][labels] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, logit_mask)}
else:
logit_mask[labels] = 1.0
for i in range(total_test_samples/ samples_at_a_time):
offset = i*samples_at_a_time
feed_dict = {model.x: task_test_images[offset:offset+samples_at_a_time],
model.y_: task_test_labels[offset:offset+samples_at_a_time],
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
total_corrects += np.sum(sess.run(model.correct_predictions[tt], feed_dict=feed_dict))
else:
feed_dict[model.output_mask] = logit_mask
total_corrects += np.sum(sess.run(model.correct_predictions, feed_dict=feed_dict))
# Compute the corrects on residuals
offset = (i+1)*samples_at_a_time
num_residuals = total_test_samples % samples_at_a_time
feed_dict = {model.x: task_test_images[offset:offset+num_residuals],
model.y_: task_test_labels[offset:offset+num_residuals],
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
total_corrects += np.sum(sess.run(model.correct_predictions[tt], feed_dict=feed_dict))
else:
feed_dict[model.output_mask] = logit_mask
total_corrects += np.sum(sess.run(model.correct_predictions, feed_dict=feed_dict))
# Mean accuracy on the task
acc = total_corrects/ float(total_test_samples)
final_acc[tt] = acc
return final_acc
def main():
"""
Create the model and start the training
"""
# Get the CL arguments
args = get_arguments()
# Check if the network architecture is valid
if args.arch not in VALID_ARCHS:
raise ValueError("Network architecture %s is not supported!"%(args.arch))
# Check if the method to compute importance is valid
if args.imp_method not in MODELS:
raise ValueError("Importance measure %s is undefined!"%(args.imp_method))
# Check if the optimizer is valid
if args.optim not in VALID_OPTIMS:
raise ValueError("Optimizer %s is undefined!"%(args.optim))
# Create log directories to store the results
if not os.path.exists(args.log_dir):
print('Log directory %s created!'%(args.log_dir))
os.makedirs(args.log_dir)
if args.online_cross_val:
num_tasks = K_FOR_CROSS_VAL
else:
num_tasks = NUM_TASKS - K_FOR_CROSS_VAL
# Load the split CUB dataset
data_labs = [np.arange(TOTAL_CLASSES)]
datasets = construct_split_cub(data_labs, args.data_dir, CUB_TRAIN_LIST, CUB_TEST_LIST, IMG_HEIGHT, IMG_WIDTH)
if args.cross_validate_mode:
#models_list = MODELS
#learning_rate_list = [0.3, 0.1, 0.01, 0.003, 0.001]
models_list = [args.imp_method]
learning_rate_list = [0.03]
else:
models_list = [args.imp_method]
for imp_method in models_list:
if imp_method == 'VAN':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.03]
elif imp_method == 'PI':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10]
else:
synap_stgth_list = [0.1]
learning_rate_list = [0.03]
elif imp_method == 'EWC' or imp_method == 'M-EWC':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [1]
learning_rate_list = [0.03]
elif imp_method == 'MAS':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [0.1]
learning_rate_list = [0.03]
elif imp_method == 'RWALK':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [1]
learning_rate_list = [0.03]
elif imp_method == 'S-GEM':
synap_stgth_list = [0]
if args.online_cross_val:
pass
else:
learning_rate_list = [args.learning_rate]
elif imp_method == 'A-GEM':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.03]
for synap_stgth in synap_stgth_list:
for lr in learning_rate_list:
# Generate the experiment key and store the meta data in a file
exper_meta_data = {'ARCH': args.arch,
'DATASET': 'SPLIT_CUB',
'NUM_RUNS': args.num_runs,
'TRAIN_SINGLE_EPOCH': args.train_single_epoch,
'IMP_METHOD': imp_method,
'SYNAP_STGTH': synap_stgth,
'FISHER_EMA_DECAY': args.fisher_ema_decay,
'FISHER_UPDATE_AFTER': args.fisher_update_after,
'OPTIM': args.optim,
'LR': lr,
'BATCH_SIZE': args.batch_size,
'EPS_MEMORY': args.do_sampling,
'MEM_SIZE': args.mem_size,
'IS_HERDING': args.is_herding}
experiment_id = "SPLIT_CUB_ONE_HOT_HERDING_%r_%s_%r_%s_%s_%s_%s_%r_%s-"%(args.is_herding, args.arch, args.train_single_epoch, imp_method,
str(synap_stgth).replace('.', '_'), str(lr).replace('.', '_'),
str(args.batch_size), args.do_sampling, str(args.mem_size)) + datetime.datetime.now().strftime("%y-%m-%d-%H-%M")
snapshot_experiment_meta_data(args.log_dir, experiment_id, exper_meta_data)
# Reset the default graph
#tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
# Set the random seed
tf.set_random_seed(RANDOM_SEED)
# Define Input and Output of the model
x = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
y_ = tf.placeholder(tf.float32, shape=[None, TOTAL_CLASSES])
if not args.train_single_epoch:
# Define ops for data augmentation
x_aug = image_scaling(x)
x_aug = random_crop_and_pad_image(x_aug, IMG_HEIGHT, IMG_WIDTH)
# Define the optimizer
if args.optim == 'ADAM':
opt = tf.train.AdamOptimizer(learning_rate=lr)
elif args.optim == 'SGD':
opt = tf.train.GradientDescentOptimizer(learning_rate=lr)
elif args.optim == 'MOMENTUM':
base_lr = tf.constant(lr)
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - train_step / training_iters), OPT_POWER))
opt = tf.train.MomentumOptimizer(lr, OPT_MOMENTUM)
# Create the Model/ contruct the graph
if args.train_single_epoch:
# When training using a single epoch then there is no need for data augmentation
model = Model(x, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True)
else:
model = Model(x_aug, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True, x_test=x)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
time_start = time.time()
with tf.Session(config=config, graph=graph) as sess:
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=100)
runs, task_labels_dataset = train_task_sequence(model, sess, saver, datasets, args.cross_validate_mode, args.train_single_epoch,
args.do_sampling, args.is_herding, args.mem_size, args.train_iters, args.batch_size, args.num_runs, args.init_checkpoint, args.online_cross_val, args.random_seed)
# Close the session
sess.close()
time_end = time.time()
time_spent = time_end - time_start
print('Time spent: {}'.format(time_spent))
# Clean up
del model
if args.cross_validate_mode:
# If cross-validation flag is enabled, store the stuff in a text file
cross_validate_dump_file = args.log_dir + '/' + 'SPLIT_CUB_%s_%s'%(imp_method, args.optim) + '.txt'
with open(cross_validate_dump_file, 'a') as f:
f.write('HERDING: {} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {}\n'.format(args.is_herding, args.arch, lr, synap_stgth, runs))
else:
# Store all the results in one dictionary to process later
exper_acc = dict(mean=runs)
exper_labels = dict(labels=task_labels_dataset)
# Store the experiment output to a file
snapshot_experiment_eval(args.log_dir, experiment_id, exper_acc)
snapshot_task_labels(args.log_dir, experiment_id, exper_labels)
if __name__ == '__main__':
main()
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Training script for split CIFAR 100 experiment.
"""
from __future__ import print_function
import argparse
import os
import sys
import math
import time
import datetime
import numpy as np
import tensorflow as tf
from copy import deepcopy
from six.moves import cPickle as pickle
from utils.data_utils import construct_split_cifar
from utils.utils import get_sample_weights, sample_from_dataset, update_episodic_memory, concatenate_datasets, samples_for_each_class, sample_from_dataset_icarl, compute_fgt, load_task_specific_data
from utils.utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior
from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels
from model import Model
###############################################################
################ Some definitions #############################
### These will be edited by the command line options ##########
###############################################################
## Training Options
NUM_RUNS = 5 # Number of experiments to average over
TRAIN_ITERS = 2000 # Number of training iterations per task
BATCH_SIZE = 16
LEARNING_RATE = 0.1
RANDOM_SEED = 1234
VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM']
OPTIM = 'SGD'
OPT_MOMENTUM = 0.9
OPT_POWER = 0.9
VALID_ARCHS = ['CNN', 'RESNET-S', 'RESNET-B', 'VGG']
ARCH = 'RESNET-S'
## Model options
MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'M-EWC', 'S-GEM', 'A-GEM', 'FTR_EXT', 'PNN', 'ER'] #List of valid models
IMP_METHOD = 'EWC'
SYNAP_STGTH = 75000
FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher)
FISHER_UPDATE_AFTER = 50 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper)
SAMPLES_PER_CLASS = 13
IMG_HEIGHT = 32
IMG_WIDTH = 32
IMG_CHANNELS = 3
TOTAL_CLASSES = 100 # Total number of classes in the dataset
VISUALIZE_IMPORTANCE_MEASURE = False
MEASURE_CONVERGENCE_AFTER = 0.9
EPS_MEM_BATCH_SIZE = 256
DEBUG_EPISODIC_MEMORY = False
K_FOR_CROSS_VAL = 3
TIME_MY_METHOD = False
COUNT_VIOLATONS = False
MEASURE_PERF_ON_EPS_MEMORY = False
## Logging, saving and testing options
LOG_DIR = './split_cifar_results'
RESNET18_CIFAR10_CHECKPOINT = './resnet-18-pretrained-cifar10/model.ckpt-19999'
## Evaluation options
## Task split
NUM_TASKS = 20
MULTI_TASK = False
# Define function to load/ store training weights. We will use ImageNet initialization later on
def save(saver, sess, logdir, step):
'''Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(saver, sess, ckpt_path):
'''Load trained weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Script for split cifar experiment.")
parser.add_argument("--cross-validate-mode", action="store_true",
help="If option is chosen then snapshoting after each batch is disabled")
parser.add_argument("--online-cross-val", action="store_true",
help="If option is chosen then enable the online cross validation of the learning rate")
parser.add_argument("--train-single-epoch", action="store_true",
help="If option is chosen then train for single epoch")
parser.add_argument("--eval-single-head", action="store_true",
help="If option is chosen then evaluate on a single head setting.")
parser.add_argument("--arch", type=str, default=ARCH,
help="Network Architecture for the experiment.\
\n \nSupported values: %s"%(VALID_ARCHS))
parser.add_argument("--num-runs", type=int, default=NUM_RUNS,
help="Total runs/ experiments over which accuracy is averaged.")
parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS,
help="Number of training iterations for each task.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Mini-batch size for each task.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random Seed.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Starting Learning rate for each task.")
parser.add_argument("--optim", type=str, default=OPTIM,
help="Optimizer for the experiment. \
\n \nSupported values: %s"%(VALID_OPTIMS))
parser.add_argument("--imp-method", type=str, default=IMP_METHOD,
help="Model to be used for LLL. \
\n \nSupported values: %s"%(MODELS))
parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH,
help="Synaptic strength for the regularization.")
parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY,
help="Exponential moving average decay for Fisher calculation at each step.")
parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER,
help="Number of training iterations after which the Fisher will be updated.")
parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS,
help="Total size of episodic memory.")
parser.add_argument("--eps-mem-batch", type=int, default=EPS_MEM_BATCH_SIZE,
help="Number of samples per class from previous tasks.")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Directory where the plots and model accuracies will be stored.")
return parser.parse_args()
def train_task_sequence(model, sess, datasets, args):
"""
Train and evaluate LLL system such that we only see a example once
Args:
Returns:
dict A dictionary containing mean and stds for the experiment
"""
# List to store accuracy for each run
runs = []
task_labels_dataset = []
if model.imp_method == 'A-GEM' or model.imp_method == 'ER':
use_episodic_memory = True
else:
use_episodic_memory = False
batch_size = args.batch_size
# Loop over number of runs to average over
for runid in range(args.num_runs):
print('\t\tRun %d:'%(runid))
# Initialize the random seeds
np.random.seed(args.random_seed+runid)
# Get the task labels from the total number of tasks and full label space
task_labels = []
classes_per_task = TOTAL_CLASSES// NUM_TASKS
total_classes = classes_per_task * model.num_tasks
if args.online_cross_val:
label_array = np.arange(total_classes)
else:
class_label_offset = K_FOR_CROSS_VAL * classes_per_task
label_array = np.arange(class_label_offset, total_classes+class_label_offset)
np.random.shuffle(label_array)
for tt in range(model.num_tasks):
tt_offset = tt*classes_per_task
task_labels.append(list(label_array[tt_offset:tt_offset+classes_per_task]))
print('Task: {}, Labels:{}'.format(tt, task_labels[tt]))
# Store the task labels
task_labels_dataset.append(task_labels)
# Set episodic memory size
episodic_mem_size = args.mem_size * total_classes
# Initialize all the variables in the model
sess.run(tf.global_variables_initializer())
# Run the init ops
model.init_updates(sess)
# List to store accuracies for a run
evals = []
# List to store the classes that we have so far - used at test time
test_labels = []
if use_episodic_memory:
# Reserve a space for episodic memory
episodic_images = np.zeros([episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
episodic_labels = np.zeros([episodic_mem_size, TOTAL_CLASSES])
episodic_filled_counter = 0
nd_logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES])
count_cls = np.zeros(TOTAL_CLASSES, dtype=np.int32)
episodic_filled_counter = 0
examples_seen_so_far = 0
# Mask for softmax
logit_mask = np.zeros(TOTAL_CLASSES)
if COUNT_VIOLATONS:
violation_count = np.zeros(model.num_tasks)
vc = 0
# Training loop for all the tasks
for task in range(len(task_labels)):
print('\t\tTask %d:'%(task))
# If not the first task then restore weights from previous task
if(task > 0 and model.imp_method != 'PNN'):
model.restore(sess)
if model.imp_method == 'PNN':
pnn_train_phase = np.array(np.zeros(model.num_tasks), dtype=np.bool)
pnn_train_phase[task] = True
pnn_logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES])
# If not in the cross validation mode then concatenate the train and validation sets
task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[task])
task_val_images, task_val_labels = load_task_specific_data(datasets[0]['validation'], task_labels[task])
task_train_images, task_train_labels = concatenate_datasets(task_tr_images, task_tr_labels, task_val_images, task_val_labels)
# If multi_task is set then train using all the datasets of all the tasks
if MULTI_TASK:
if task == 0:
for t_ in range(1, len(task_labels)):
task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[t_])
task_train_images = np.concatenate((task_train_images, task_tr_images), axis=0)
task_train_labels = np.concatenate((task_train_labels, task_tr_labels), axis=0)
else:
# Skip training for this task
continue
print('Received {} images, {} labels at task {}'.format(task_train_images.shape[0], task_train_labels.shape[0], task))
print('Unique labels in the task: {}'.format(np.unique(np.nonzero(task_train_labels)[1])))
# Test for the tasks that we've seen so far
test_labels += task_labels[task]
# Assign equal weights to all the examples
task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32)
num_train_examples = task_train_images.shape[0]
logit_mask[:] = 0
# Train a task observing sequence of data
if args.train_single_epoch:
# Ceiling operation
num_iters = (num_train_examples + batch_size - 1) // batch_size
if args.cross_validate_mode:
logit_mask[task_labels[task]] = 1.0
else:
num_iters = args.train_iters
# Set the mask only once before starting the training for the task
logit_mask[task_labels[task]] = 1.0
if MULTI_TASK:
logit_mask[:] = 1.0
# Randomly suffle the training examples
perm = np.arange(num_train_examples)
np.random.shuffle(perm)
train_x = task_train_images[perm]
train_y = task_train_labels[perm]
task_sample_weights = task_sample_weights[perm]
# Array to store accuracies when training for task T
ftask = []
# Number of iterations after which convergence is checked
convergence_iters = int(num_iters * MEASURE_CONVERGENCE_AFTER)
# Training loop for task T
for iters in range(num_iters):
if args.train_single_epoch and not args.cross_validate_mode and not MULTI_TASK:
if (iters <= 20) or (iters > 20 and iters % 50 == 0):
# Snapshot the current performance across all tasks after each mini-batch
fbatch = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task)
ftask.append(fbatch)
if model.imp_method == 'PNN':
pnn_train_phase[:] = False
pnn_train_phase[task] = True
pnn_logit_mask[:] = 0
pnn_logit_mask[task][task_labels[task]] = 1.0
elif model.imp_method == 'A-GEM':
nd_logit_mask[:] = 0
nd_logit_mask[task][task_labels[task]] = 1.0
else:
# Set the output labels over which the model needs to be trained
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
if args.train_single_epoch:
offset = iters * batch_size
if (offset+batch_size <= num_train_examples):
residual = batch_size
else:
residual = num_train_examples - offset
if model.imp_method == 'PNN':
feed_dict = {model.x: train_x[offset:offset+residual], model.y_[task]: train_y[offset:offset+residual],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5}
train_phase_dict = {m_t: i_t for (m_t, i_t) in zip(model.train_phase, pnn_train_phase)}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, pnn_logit_mask)}
feed_dict.update(train_phase_dict)
feed_dict.update(logit_mask_dict)
else:
feed_dict = {model.x: train_x[offset:offset+residual], model.y_: train_y[offset:offset+residual],
model.sample_weights: task_sample_weights[offset:offset+residual],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
else:
offset = (iters * batch_size) % (num_train_examples - batch_size)
if model.imp_method == 'PNN':
feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_[task]: train_y[offset:offset+batch_size],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5}
train_phase_dict = {m_t: i_t for (m_t, i_t) in zip(model.train_phase, pnn_train_phase)}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, pnn_logit_mask)}
feed_dict.update(train_phase_dict)
feed_dict.update(logit_mask_dict)
else:
feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_: train_y[offset:offset+batch_size],
model.sample_weights: task_sample_weights[offset:offset+batch_size],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
if model.imp_method == 'VAN':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'PNN':
_, loss = sess.run([model.train[task], model.unweighted_entropy[task]], feed_dict=feed_dict)
elif model.imp_method == 'FTR_EXT':
feed_dict[model.output_mask] = logit_mask
if task == 0:
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
else:
_, loss = sess.run([model.train_classifier, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'EWC' or model.imp_method == 'M-EWC':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Update fisher after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
sess.run(model.set_running_fisher)
sess.run(model.reset_tmp_fisher)
if (iters >= convergence_iters) and (model.imp_method == 'M-EWC'):
_, _, _, _, loss = sess.run([model.weights_old_ops_grouped, model.set_tmp_fisher, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
else:
_, _, loss = sess.run([model.set_tmp_fisher, model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'PI':
feed_dict[model.output_mask] = logit_mask
_, _, _, loss = sess.run([model.weights_old_ops_grouped, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'MAS':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'A-GEM':
if task == 0:
nd_logit_mask[:] = 0
nd_logit_mask[task][task_labels[task]] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, nd_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
## Compute and store the reference gradients on the previous tasks
# Set the mask for all the previous tasks so far
nd_logit_mask[:] = 0
for tt in range(task):
nd_logit_mask[tt][task_labels[tt]] = 1.0
if episodic_filled_counter <= args.eps_mem_batch:
mem_sample_mask = np.arange(episodic_filled_counter)
else:
# Sample a random subset from episodic memory buffer
mem_sample_mask = np.random.choice(episodic_filled_counter, args.eps_mem_batch, replace=False) # Sample without replacement so that we don't sample an example more than once
# Store the reference gradient
ref_feed_dict = {model.x: episodic_images[mem_sample_mask], model.y_: episodic_labels[mem_sample_mask],
model.keep_prob: 1.0, model.train_phase: True}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, nd_logit_mask)}
ref_feed_dict.update(logit_mask_dict)
ref_feed_dict[model.mem_batch_size] = float(len(mem_sample_mask))
sess.run(model.store_ref_grads, feed_dict=ref_feed_dict)
# Compute the gradient for current task and project if need be
nd_logit_mask[:] = 0
nd_logit_mask[task][task_labels[task]] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, nd_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
if COUNT_VIOLATONS:
vc, _, loss = sess.run([model.violation_count, model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
else:
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
# Put the batch in the ring buffer
for er_x, er_y_ in zip(train_x[offset:offset+residual], train_y[offset:offset+residual]):
cls = np.unique(np.nonzero(er_y_))[-1]
# Write the example at the location pointed by count_cls[cls]
cls_to_index_map = np.where(np.array(task_labels[task]) == cls)[0][0]
with_in_task_offset = args.mem_size * cls_to_index_map
mem_index = count_cls[cls] + with_in_task_offset + episodic_filled_counter
episodic_images[mem_index] = er_x
episodic_labels[mem_index] = er_y_
count_cls[cls] = (count_cls[cls] + 1) % args.mem_size
elif model.imp_method == 'RWALK':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Update fisher and importance score after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
# Update the importance score using distance in riemannian manifold
sess.run(model.update_big_omega_riemann)
# Now that the score is updated, compute the new value for running Fisher
sess.run(model.set_running_fisher)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Reset the delta_L
sess.run([model.reset_small_omega])
_, _, _, _, loss = sess.run([model.set_tmp_fisher, model.weights_old_ops_grouped,
model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'ER':
mem_filled_so_far = examples_seen_so_far if (examples_seen_so_far < episodic_mem_size) else episodic_mem_size
if mem_filled_so_far < args.eps_mem_batch:
er_mem_indices = np.arange(mem_filled_so_far)
else:
er_mem_indices = np.random.choice(mem_filled_so_far, args.eps_mem_batch, replace=False)
np.random.shuffle(er_mem_indices)
nd_logit_mask[:] = 0
for tt in range(task+1):
nd_logit_mask[tt][task_labels[tt]] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, nd_logit_mask)}
er_train_x_batch = np.concatenate((episodic_images[er_mem_indices], train_x[offset:offset+residual]), axis=0)
er_train_y_batch = np.concatenate((episodic_labels[er_mem_indices], train_y[offset:offset+residual]), axis=0)
feed_dict = {model.x: er_train_x_batch, model.y_: er_train_y_batch,
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 1.0,
model.train_phase: True}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = float(er_train_x_batch.shape[0])
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
# Reservoir update
for er_x, er_y_ in zip(train_x[offset:offset+residual], train_y[offset:offset+residual]):
update_reservior(er_x, er_y_, episodic_images, episodic_labels, episodic_mem_size, examples_seen_so_far)
examples_seen_so_far += 1
if (iters % 100 == 0):
print('Step {:d} {:.3f}'.format(iters, loss))
if (math.isnan(loss)):
print('ERROR: NaNs NaNs NaNs!!!')
sys.exit(0)
print('\t\t\t\tTraining for Task%d done!'%(task))
if use_episodic_memory:
episodic_filled_counter += args.mem_size * classes_per_task
if model.imp_method == 'A-GEM':
if COUNT_VIOLATONS:
violation_count[task] = vc
print('Task {}: Violation Count: {}'.format(task, violation_count))
sess.run(model.reset_violation_count, feed_dict=feed_dict)
# Compute the inter-task updates, Fisher/ importance scores etc
# Don't calculate the task updates for the last task
if (task < (len(task_labels) - 1)) or MEASURE_PERF_ON_EPS_MEMORY:
model.task_updates(sess, task, task_train_images, task_labels[task]) # TODO: For MAS, should the gradients be for current task or all the previous tasks
print('\t\t\t\tTask updates after Task%d done!'%(task))
if VISUALIZE_IMPORTANCE_MEASURE:
if runid == 0:
for i in range(len(model.fisher_diagonal_at_minima)):
if i == 0:
flatten_fisher = np.array(model.fisher_diagonal_at_minima[i].eval()).flatten()
else:
flatten_fisher = np.concatenate((flatten_fisher,
np.array(model.fisher_diagonal_at_minima[i].eval()).flatten()))
#flatten_fisher [flatten_fisher > 0.1] = 0.1
if args.train_single_epoch:
plot_histogram(flatten_fisher, 100, '/private/home/arslanch/Dropbox/LLL_experiments/Single_Epoch/importance_vis/single_epoch/m_ewc/hist_fisher_task%s.png'%(task))
else:
plot_histogram(flatten_fisher, 100, '/private/home/arslanch/Dropbox/LLL_experiments/Single_Epoch/importance_vis/single_epoch/m_ewc/hist_fisher_task%s.png'%(task))
if args.train_single_epoch and not args.cross_validate_mode:
fbatch = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task)
print('Task: {}, Acc: {}'.format(task, fbatch))
ftask.append(fbatch)
ftask = np.array(ftask)
if model.imp_method == 'PNN':
pnn_train_phase[:] = False
pnn_train_phase[task] = True
pnn_logit_mask[:] = 0
pnn_logit_mask[task][task_labels[task]] = 1.0
else:
if MEASURE_PERF_ON_EPS_MEMORY:
eps_mem = {
'images': episodic_images,
'labels': episodic_labels,
}
# Measure perf on episodic memory
ftask = test_task_sequence(model, sess, eps_mem, task_labels, task, classes_per_task=classes_per_task)
else:
# List to store accuracy for all the tasks for the current trained model
ftask = test_task_sequence(model, sess, datasets[0]['test'], task_labels, task)
print('Task: {}, Acc: {}'.format(task, ftask))
# Store the accuracies computed at task T in a list
evals.append(ftask)
# Reset the optimizer
model.reset_optimizer(sess)
#-> End for loop task
runs.append(np.array(evals))
# End for loop runid
runs = np.array(runs)
return runs, task_labels_dataset
def test_task_sequence(model, sess, test_data, test_tasks, task, classes_per_task=0):
"""
Snapshot the current performance
"""
if TIME_MY_METHOD:
# Only compute the training time
return np.zeros(model.num_tasks)
final_acc = np.zeros(model.num_tasks)
if model.imp_method == 'PNN' or model.imp_method == 'A-GEM' or model.imp_method == 'ER':
logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES])
else:
logit_mask = np.zeros(TOTAL_CLASSES)
if MEASURE_PERF_ON_EPS_MEMORY:
for tt, labels in enumerate(test_tasks):
# Multi-head evaluation setting
logit_mask[:] = 0
logit_mask[labels] = 1.0
mem_offset = tt*SAMPLES_PER_CLASS*classes_per_task
feed_dict = {model.x: test_data['images'][mem_offset:mem_offset+SAMPLES_PER_CLASS*classes_per_task],
model.y_: test_data['labels'][mem_offset:mem_offset+SAMPLES_PER_CLASS*classes_per_task], model.keep_prob: 1.0, model.train_phase: False, model.output_mask: logit_mask}
acc = model.accuracy.eval(feed_dict = feed_dict)
final_acc[tt] = acc
return final_acc
for tt, labels in enumerate(test_tasks):
if not MULTI_TASK:
if tt > task:
return final_acc
task_test_images, task_test_labels = load_task_specific_data(test_data, labels)
if model.imp_method == 'PNN':
pnn_train_phase = np.array(np.zeros(model.num_tasks), dtype=np.bool)
logit_mask[:] = 0
logit_mask[tt][labels] = 1.0
feed_dict = {model.x: task_test_images,
model.y_[tt]: task_test_labels, model.keep_prob: 1.0}
train_phase_dict = {m_t: i_t for (m_t, i_t) in zip(model.train_phase, pnn_train_phase)}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, logit_mask)}
feed_dict.update(train_phase_dict)
feed_dict.update(logit_mask_dict)
acc = model.accuracy[tt].eval(feed_dict = feed_dict)
elif model.imp_method == 'A-GEM' or model.imp_method == 'ER':
logit_mask[:] = 0
logit_mask[tt][labels] = 1.0
feed_dict = {model.x: task_test_images,
model.y_: task_test_labels, model.keep_prob: 1.0, model.train_phase: False}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, logit_mask)}
feed_dict.update(logit_mask_dict)
acc = model.accuracy[tt].eval(feed_dict = feed_dict)
else:
logit_mask[:] = 0
logit_mask[labels] = 1.0
feed_dict = {model.x: task_test_images,
model.y_: task_test_labels, model.keep_prob: 1.0, model.train_phase: False, model.output_mask: logit_mask}
acc = model.accuracy.eval(feed_dict = feed_dict)
final_acc[tt] = acc
return final_acc
def main():
"""
Create the model and start the training
"""
# Get the CL arguments
args = get_arguments()
# Check if the network architecture is valid
if args.arch not in VALID_ARCHS:
raise ValueError("Network architecture %s is not supported!"%(args.arch))
# Check if the method to compute importance is valid
if args.imp_method not in MODELS:
raise ValueError("Importance measure %s is undefined!"%(args.imp_method))
# Check if the optimizer is valid
if args.optim not in VALID_OPTIMS:
raise ValueError("Optimizer %s is undefined!"%(args.optim))
# Create log directories to store the results
if not os.path.exists(args.log_dir):
print('Log directory %s created!'%(args.log_dir))
os.makedirs(args.log_dir)
# Generate the experiment key and store the meta data in a file
exper_meta_data = {'ARCH': args.arch,
'DATASET': 'SPLIT_CIFAR',
'NUM_RUNS': args.num_runs,
'TRAIN_SINGLE_EPOCH': args.train_single_epoch,
'IMP_METHOD': args.imp_method,
'SYNAP_STGTH': args.synap_stgth,
'FISHER_EMA_DECAY': args.fisher_ema_decay,
'FISHER_UPDATE_AFTER': args.fisher_update_after,
'OPTIM': args.optim,
'LR': args.learning_rate,
'BATCH_SIZE': args.batch_size,
'MEM_SIZE': args.mem_size}
experiment_id = "SPLIT_CIFAR_HERDING_%s_%r_%s_%s_%s_%s_%s-"%(args.arch, args.train_single_epoch, args.imp_method,
str(args.synap_stgth).replace('.', '_'), str(args.learning_rate).replace('.', '_'),
str(args.batch_size), str(args.mem_size)) + datetime.datetime.now().strftime("%y-%m-%d-%H-%M")
snapshot_experiment_meta_data(args.log_dir, experiment_id, exper_meta_data)
# Get the task labels from the total number of tasks and full label space
if args.online_cross_val:
num_tasks = K_FOR_CROSS_VAL
else:
num_tasks = NUM_TASKS - K_FOR_CROSS_VAL
# Load the split cifar dataset
data_labs = [np.arange(TOTAL_CLASSES)]
datasets = construct_split_cifar(data_labs)
# Variables to store the accuracies and standard deviations of the experiment
acc_mean = dict()
acc_std = dict()
# Reset the default graph
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
# Set the random seed
tf.set_random_seed(args.random_seed)
# Define Input and Output of the model
x = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
if args.imp_method == 'PNN':
y_ = []
for i in range(num_tasks):
y_.append(tf.placeholder(tf.float32, shape=[None, TOTAL_CLASSES]))
else:
y_ = tf.placeholder(tf.float32, shape=[None, TOTAL_CLASSES])
# Define the optimizer
if args.optim == 'ADAM':
opt = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
elif args.optim == 'SGD':
opt = tf.train.GradientDescentOptimizer(learning_rate=args.learning_rate)
elif args.optim == 'MOMENTUM':
base_lr = tf.constant(args.learning_rate)
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - train_step / training_iters), OPT_POWER))
opt = tf.train.MomentumOptimizer(args.learning_rate, OPT_MOMENTUM)
# Create the Model/ contruct the graph
model = Model(x, y_, num_tasks, opt, args.imp_method, args.synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
time_start = time.time()
with tf.Session(config=config, graph=graph) as sess:
runs, task_labels_dataset = train_task_sequence(model, sess, datasets, args)
# Close the session
sess.close()
time_end = time.time()
time_spent = time_end - time_start
# Store all the results in one dictionary to process later
exper_acc = dict(mean=runs)
exper_labels = dict(labels=task_labels_dataset)
# If cross-validation flag is enabled, store the stuff in a text file
if args.cross_validate_mode:
acc_mean, acc_std = average_acc_stats_across_runs(runs, model.imp_method)
fgt_mean, fgt_std = average_fgt_stats_across_runs(runs, model.imp_method)
cross_validate_dump_file = args.log_dir + '/' + 'SPLIT_CIFAR_%s_%s'%(args.imp_method, args.optim) + '.txt'
with open(cross_validate_dump_file, 'a') as f:
if MULTI_TASK:
f.write('HERDING: {} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {}\n'.format(args.arch, args.learning_rate, args.synap_stgth, acc_mean[-1,:].mean()))
else:
f.write('ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {} \t Fgt: {} \t Time: {}\n'.format(args.arch, args.learning_rate,
args.synap_stgth, acc_mean, fgt_mean, str(time_spent)))
# Store the experiment output to a file
snapshot_experiment_eval(args.log_dir, experiment_id, exper_acc)
snapshot_task_labels(args.log_dir, experiment_id, exper_labels)
if __name__ == '__main__':
main()
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Training script for split AWA experiment with hybrid learning.
"""
from __future__ import print_function
import argparse
import os
import sys
import math
import random
import time
import datetime
import numpy as np
import tensorflow as tf
from copy import deepcopy
from six.moves import cPickle as pickle
from utils.data_utils import image_scaling, random_crop_and_pad_image, random_horizontal_flip, construct_split_awa
from utils.utils import get_sample_weights, sample_from_dataset, concatenate_datasets, update_episodic_memory, samples_for_each_class, sample_from_dataset_icarl, load_task_specific_data, load_task_specific_data_in_proportion
from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels
from model import Model
###############################################################
################ Some definitions #############################
### These will be edited by the command line options ##########
###############################################################
## Training Options
NUM_RUNS = 5 # Number of experiments to average over
TRAIN_ITERS = 2000 # Number of training iterations per task
BATCH_SIZE = 16
LEARNING_RATE = 0.1
RANDOM_SEED = 1234
VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM']
OPTIM = 'SGD'
OPT_MOMENTUM = 0.9
OPT_POWER = 0.9
VALID_ARCHS = ['CNN', 'VGG', 'RESNET-B']
ARCH = 'RESNET-B'
PRETRAIN = False
## Model options
MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'A-GEM'] #List of valid models
IMP_METHOD = 'VAN'
SYNAP_STGTH = 75000
FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher)
FISHER_UPDATE_AFTER = 50 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper)
SAMPLES_PER_CLASS = 20 # Number of samples per task
IMG_HEIGHT = 224
IMG_WIDTH = 224
IMG_CHANNELS = 3
TOTAL_CLASSES = 50 # Total number of classes in the dataset
MEASURE_CONVERGENCE_AFTER = 0.9
EPS_MEM_BATCH_SIZE = 128
DEBUG_EPISODIC_MEMORY = False
KEEP_EPISODIC_MEMORY_FULL = False
K_FOR_CROSS_VAL = 3
CLASSES_PER_TASK = 5
## Logging, saving and testing options
LOG_DIR = './split_awa_results'
SNAPSHOT_DIR = './awa_snapshots'
SAVE_MODEL_PARAMS = False
RESNET18_IMAGENET_CHECKPOINT = './resnet-18-pretrained-imagenet/model.ckpt'
## Evaluation options
## Task split
NUM_TASKS = 20
MULTI_TASK = False
## Dataset specific options
ATTR_DIMS = 85
DATA_DIR= './AWA_data/Animals_with_Attributes2/'
AWA_TRAIN_LIST = './dataset_lists/AWA_train_list.txt'
AWA_VAL_LIST = './dataset_lists/AWA_val_list.txt'
AWA_TEST_LIST = './dataset_lists/AWA_test_list.txt'
#AWA_TRAIN_LIST = './dataset_lists/tmp_list_awa.txt'
#AWA_VAL_LIST = './dataset_lists/tmp_list_awa.txt'
#AWA_TEST_LIST = './dataset_lists/tmp_list_awa.txt'
AWA_ATTR_LIST = 'dataset_lists/AWA_attr_in_order.pickle'
# Define function to load/ store training weights. We will use ImageNet initialization later on
def save(saver, sess, logdir, step):
'''Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(saver, sess, ckpt_path):
'''Load trained weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Script for split AWA Hybrid experiment.")
parser.add_argument("--cross-validate-mode", action="store_true",
help="If option is chosen then snapshoting after each batch is disabled")
parser.add_argument("--online-cross-val", action="store_true",
help="If option is chosen then enable the online cross validation of the learning rate")
parser.add_argument("--train-single-epoch", action="store_true",
help="If option is chosen then train for single epoch")
parser.add_argument("--set-hybrid", action="store_true",
help="If option is chosen then train using hybrid model")
parser.add_argument("--eval-single-head", action="store_true",
help="If option is chosen then evaluate on a single head setting.")
parser.add_argument("--arch", type=str, default=ARCH,
help="Network Architecture for the experiment.\
\n \nSupported values: %s"%(VALID_ARCHS))
parser.add_argument("--num-runs", type=int, default=NUM_RUNS,
help="Total runs/ experiments over which accuracy is averaged.")
parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS,
help="Number of training iterations for each task.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Mini-batch size for each task.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random Seed.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Starting Learning rate for each task.")
parser.add_argument("--optim", type=str, default=OPTIM,
help="Optimizer for the experiment. \
\n \nSupported values: %s"%(VALID_OPTIMS))
parser.add_argument("--imp-method", type=str, default=IMP_METHOD,
help="Model to be used for LLL. \
\n \nSupported values: %s"%(MODELS))
parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH,
help="Synaptic strength for the regularization.")
parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY,
help="Exponential moving average decay for Fisher calculation at each step.")
parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER,
help="Number of training iterations after which the Fisher will be updated.")
parser.add_argument("--do-sampling", action="store_true",
help="Whether to do sampling")
parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS,
help="Number of samples per class from previous tasks.")
parser.add_argument("--is-herding", action="store_true",
help="Herding based sampling")
parser.add_argument("--data-dir", type=str, default=DATA_DIR,
help="Directory from where the AWA data will be read.\
NOTE: Provide path till <AWA_DIR>/Animals_with_Attributes2")
parser.add_argument("--init-checkpoint", type=str, default=RESNET18_IMAGENET_CHECKPOINT,
help="TF checkpoint file containing initialization for ImageNet.\
NOTE: NPZ file for VGG and TF Checkpoint for ResNet")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Directory where the plots and model accuracies will be stored.")
return parser.parse_args()
def train_task_sequence(model, sess, saver, datasets, class_attr, num_classes_per_task, cross_validate_mode, train_single_epoch, do_sampling, is_herding,
episodic_mem_size, train_iters, batch_size, num_runs, init_checkpoint, online_cross_val, random_seed):
"""
Train and evaluate LLL system such that we only see a example once
Args:
Returns:
dict A dictionary containing mean and stds for the experiment
"""
# List to store accuracy for each run
runs = []
task_labels_dataset = []
break_training = 0
# Loop over number of runs to average over
for runid in range(num_runs):
print('\t\tRun %d:'%(runid))
# Initialize the random seeds
np.random.seed(random_seed+runid)
random.seed(random_seed+runid)
# Get the task labels from the total number of tasks and full label space
task_labels = []
classes_per_task = num_classes_per_task
classes_appearing_in_tasks = dict()
for cls in range(TOTAL_CLASSES):
classes_appearing_in_tasks[cls] = 0
if online_cross_val:
label_array = np.arange(TOTAL_CLASSES)
for tt in range(model.num_tasks):
offset = tt * classes_per_task
task_labels.append(list(label_array[offset:offset+classes_per_task]))
else:
for tt in range(model.num_tasks):
task_labels.append(random.sample(range(K_FOR_CROSS_VAL*classes_per_task, TOTAL_CLASSES), classes_per_task))
for lab in task_labels[tt]:
classes_appearing_in_tasks[lab] += 1
print('Task: {}, Labels:{}'.format(tt, task_labels[tt]))
print('Class frequency in Tasks: {}'.format(classes_appearing_in_tasks))
# Store the task labels
task_labels_dataset.append(task_labels)
# Initialize all the variables in the model
sess.run(tf.global_variables_initializer())
if PRETRAIN:
# Load the variables from a checkpoint
if model.network_arch == 'RESNET-B':
# Define loader (weights which will be loaded from a checkpoint)
restore_vars = [v for v in model.trainable_vars if 'fc' not in v.name and 'attr_embed' not in v.name]
loader = tf.train.Saver(restore_vars)
load(loader, sess, init_checkpoint)
elif model.network_arch == 'VGG':
# Load the pretrained weights from the npz file
weights = np.load(init_checkpoint)
keys = sorted(weights.keys())
for i, key in enumerate(keys[:-2]): # Load everything except the last layer
sess.run(model.trainable_vars[i].assign(weights[key]))
# Run the init ops
model.init_updates(sess)
# List to store accuracies for a run
evals = []
if model.imp_method == 'S-GEM':
# List to store the episodic memories of the previous tasks
task_based_memory = []
if model.imp_method == 'A-GEM':
# Reserve a space for episodic memory
episodic_images = np.zeros([episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
episodic_labels = np.zeros([episodic_mem_size, model.num_tasks*TOTAL_CLASSES])
episodic_filled_counter = 0
a_gem_logit_mask = np.zeros([model.num_tasks, model.total_classes])
# Labels for all the tasks that we have seen in the past
prev_task_labels = []
prev_class_attrs = np.zeros([model.total_classes, class_attr.shape[1]])
if do_sampling:
# List to store important samples from the previous tasks
last_task_x = None
last_task_y_ = None
# Mask for softmax
logit_mask = np.zeros(model.total_classes)
max_batch_dimension = 500
# Dict to store the number of times a class has already been seen in the training
class_seen_already = dict()
for cls in range(TOTAL_CLASSES):
class_seen_already[cls] = 0
# Training loop for all the tasks
for task in range(len(task_labels)):
print('\t\tTask %d:'%(task))
# If not the first task then restore weights from previous task
if(task > 0):
model.restore(sess)
# Increment the class seen count
for cls in task_labels[task]:
class_seen_already[cls] += 1
task_train_images, task_train_labels = load_task_specific_data_in_proportion(datasets[0]['train'], task_labels[task], classes_appearing_in_tasks, class_seen_already)
print('Received {} images, {} labels at task {}'.format(task_train_images.shape[0], task_train_labels.shape[0], task))
print('Unique labels in the task: {}'.format(np.unique(np.nonzero(task_train_labels)[1])))
# Assign equal weights to all the examples
task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32)
num_train_examples = task_train_images.shape[0]
# Train a task observing sequence of data
logit_mask[:] = 0
if train_single_epoch:
# Ceiling operation
num_iters = (num_train_examples + batch_size - 1) // batch_size
else:
num_iters = train_iters
logit_mask_offset = task * TOTAL_CLASSES
classes_adjusted_for_head = [cls + logit_mask_offset for cls in task_labels[task]]
logit_mask[classes_adjusted_for_head] = 1.0
# Randomly suffle the training examples
perm = np.arange(num_train_examples)
np.random.shuffle(perm)
train_x = task_train_images[perm]
train_y = task_train_labels[perm]
task_sample_weights = task_sample_weights[perm]
# Array to store accuracies when training for task T
if cross_validate_mode:
# Because we will evaluate at the end
ftask = 0
elif train_single_epoch:
# Because we will evaluate after every mini-batch of every task
ftask = np.zeros([max_batch_dimension+1, model.num_tasks])
batch_dim_count = 0
else:
# Multi-epoch because we will evaluate after every task
ftask = []
# Attribute mask
masked_class_attrs = np.zeros([model.total_classes, class_attr.shape[1]])
masked_class_attrs[classes_adjusted_for_head] = class_attr[task_labels[task]]
#masked_class_attrs[task_labels[task]] = class_attr[task_labels[task]]
# Number of iterations after which convergence is checked
convergence_iters = int(num_iters * MEASURE_CONVERGENCE_AFTER)
final_train_labels = np.zeros([batch_size, model.total_classes])
head_offset = task * TOTAL_CLASSES
# Training loop for task T
for iters in range(num_iters):
if train_single_epoch and not cross_validate_mode:
if (iters < 11):
# Snapshot the current performance across all tasks after each mini-batch
fbatch = test_task_sequence(model, sess, datasets[0]['test'], class_attr, num_classes_per_task, task_labels, task, online_cross_val)
ftask[batch_dim_count] = fbatch
# Increment the batch_dim_count
batch_dim_count += 1
# Set the output labels over which the model needs to be trained
if model.imp_method == 'A-GEM':
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][classes_adjusted_for_head] = 1.0
else:
logit_mask[:] = 0
logit_mask[classes_adjusted_for_head] = 1.0
offset = iters * batch_size
if (offset+batch_size <= num_train_examples):
residual = batch_size
else:
residual = num_train_examples - offset
final_train_labels[:residual, head_offset:head_offset+TOTAL_CLASSES] = train_y[offset:offset+residual]
feed_dict = {model.x: train_x[offset:offset+residual], model.y_: final_train_labels[:residual],
model.class_attr: masked_class_attrs,
model.sample_weights: task_sample_weights[offset:offset+residual],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
if model.imp_method == 'VAN':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'EWC' or model.imp_method == 'M-EWC':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Update fisher after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
sess.run(model.set_running_fisher)
sess.run(model.reset_tmp_fisher)
if (iters >= convergence_iters) and (model.imp_method == 'M-EWC'):
_, _, _, _, loss = sess.run([model.weights_old_ops_grouped, model.set_tmp_fisher, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
else:
_, _, loss = sess.run([model.set_tmp_fisher, model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'PI':
feed_dict[model.output_mask] = logit_mask
_, _, _, loss = sess.run([model.weights_old_ops_grouped, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'MAS':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'S-GEM':
if task == 0:
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
# Randomly sample a task from the previous tasks
prev_task = np.random.randint(0, task)
# Set the logit mask for the randomly sampled task
logit_mask[:] = 0
logit_mask[task_labels[prev_task]] = 1.0
prev_class_attrs = np.zeros_like(class_attr)
if online_cross_val:
attr_offset = prev_task * num_classes_per_task
else:
attr_offset = (prev_task + K_FOR_CROSS_VAL) * num_classes_per_task
prev_class_attrs[attr_offset:attr_offset+num_classes_per_task] = class_attr[attr_offset:attr_offset+num_classes_per_task]
# Store the reference gradient
sess.run(model.store_ref_grads, feed_dict={model.x: task_based_memory[prev_task]['images'], model.y_: task_based_memory[prev_task]['labels'],
model.class_attr: prev_class_attrs,
model.keep_prob: 1.0, model.output_mask: logit_mask, model.train_phase: True})
# Compute the gradient for current task and project if need be
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'A-GEM':
if task == 0:
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][classes_adjusted_for_head] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
## Compute and store the reference gradients on the previous tasks
# Set the mask for all the previous tasks so far
a_gem_logit_mask[:] = 0
for tt in range(task):
logit_mask_offset = tt * TOTAL_CLASSES
classes_adjusted_for_head = [cls + logit_mask_offset for cls in task_labels[tt]]
a_gem_logit_mask[tt][classes_adjusted_for_head] = 1.0
if KEEP_EPISODIC_MEMORY_FULL:
mem_sample_mask = np.random.choice(episodic_mem_size, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
else:
if episodic_filled_counter <= EPS_MEM_BATCH_SIZE:
mem_sample_mask = np.arange(episodic_filled_counter)
else:
# Sample a random subset from episodic memory buffer
mem_sample_mask = np.random.choice(episodic_filled_counter, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
# Store the reference gradient
ref_feed_dict = {model.x: episodic_images[mem_sample_mask], model.y_: episodic_labels[mem_sample_mask], model.class_attr: prev_class_attrs,
model.keep_prob: 1.0, model.train_phase: True}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
ref_feed_dict.update(logit_mask_dict)
ref_feed_dict[model.mem_batch_size] = float(len(mem_sample_mask))
sess.run(model.store_ref_grads, feed_dict=ref_feed_dict)
# Compute the gradient for current task and project if need be
a_gem_logit_mask[:] = 0
logit_mask_offset = task * TOTAL_CLASSES
classes_adjusted_for_head = [cls + logit_mask_offset for cls in task_labels[task]]
a_gem_logit_mask[task][classes_adjusted_for_head] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'RWALK':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Update fisher and importance score after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
# Update the importance score using distance in riemannian manifold
sess.run(model.update_big_omega_riemann)
# Now that the score is updated, compute the new value for running Fisher
sess.run(model.set_running_fisher)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Reset the delta_L
sess.run([model.reset_small_omega])
_, _, _, _, loss = sess.run([model.set_tmp_fisher, model.weights_old_ops_grouped,
model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict)
if (iters % 100 == 0):
print('Step {:d} {:.3f}'.format(iters, loss))
if (math.isnan(loss)):
print('ERROR: NaNs NaNs NaNs!!!')
break_training = 1
break
print('\t\t\t\tTraining for Task%d done!'%(task))
if model.imp_method == 'A-GEM':
# Update the previous task labels
prev_task_labels.extend(classes_adjusted_for_head)
prev_class_attrs[classes_adjusted_for_head] = class_attr[task_labels[task]]
if break_training:
break
# Compute the inter-task updates, Fisher/ importance scores etc
# Don't calculate the task updates for the last task
if task < (len(task_labels) - 1):
# TODO: For MAS, should the gradients be for current task or all the previous tasks
model.task_updates(sess, task, task_train_images, task_labels[task], num_classes_per_task=num_classes_per_task, class_attr=class_attr, online_cross_val=online_cross_val)
print('\t\t\t\tTask updates after Task%d done!'%(task))
# If importance method is '*-GEM' then store the episodic memory for the task
if 'GEM' in model.imp_method:
data_to_sample_from = {
'images': task_train_images,
'labels': task_train_labels,
}
if model.imp_method == 'S-GEM':
# Get the important samples from the current task
if is_herding: # Sampling based on MoF
# Compute the features of training data
features_dim = model.image_feature_dim
features = np.zeros([num_train_examples, features_dim])
samples_at_a_time = 32
residual = num_train_examples % samples_at_a_time
for i in range(num_train_examples// samples_at_a_time):
offset = i * samples_at_a_time
features[offset:offset+samples_at_a_time] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+samples_at_a_time],
model.y_: task_train_labels[offset:offset+samples_at_a_time], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if residual > 0:
offset = (i + 1) * samples_at_a_time
features[offset:offset+residual] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+residual],
model.y_: task_train_labels[offset:offset+residual], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
imp_images, imp_labels = sample_from_dataset_icarl(data_to_sample_from, features, task_labels[task], SAMPLES_PER_CLASS)
else: # Random sampling
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
task_memory = {
'images': deepcopy(imp_images),
'labels': deepcopy(imp_labels),
}
task_based_memory.append(task_memory)
elif model.imp_method == 'A-GEM':
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
if KEEP_EPISODIC_MEMORY_FULL:
update_episodic_memory(data_to_sample_from, importance_array, episodic_mem_size, task, episodic_images, episodic_labels)
else:
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
if not KEEP_EPISODIC_MEMORY_FULL: # Fill the memory to always keep M/T samples per task
total_imp_samples = imp_images.shape[0]
eps_offset = task * total_imp_samples
episodic_images[eps_offset:eps_offset+total_imp_samples] = imp_images
episodic_labels[eps_offset:eps_offset+total_imp_samples, head_offset:head_offset+TOTAL_CLASSES] = imp_labels
episodic_filled_counter += total_imp_samples
print('Unique labels in the episodic memory: {}'.format(np.unique(np.nonzero(episodic_labels)[1])))
# Inspect episodic memory
if DEBUG_EPISODIC_MEMORY:
# Which labels are present in the memory
unique_labels = np.unique(np.nonzero(episodic_labels)[-1])
print('Unique Labels present in the episodic memory'.format(unique_labels))
print('Labels count:')
for lbl in unique_labels:
print('Label {}: {} samples'.format(lbl, np.where(np.nonzero(episodic_labels)[-1] == lbl)[0].size))
# Is there any space which is not filled
print('Empty space: {}'.format(np.where(np.sum(episodic_labels, axis=1) == 0)))
print('Episodic memory of {} images at task {} saved!'.format(episodic_images.shape[0], task))
# If sampling flag is set, store few of the samples from previous task
if do_sampling:
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones([datasets[task]['train']['images'].shape[0]], dtype=np.float32)
# Get the important samples from the current task
imp_images, imp_labels = sample_from_dataset(datasets[task]['train'], importance_array,
task_labels[task], SAMPLES_PER_CLASS)
if imp_images is not None:
if last_task_x is None:
last_task_x = imp_images
last_task_y_ = imp_labels
else:
last_task_x = np.concatenate((last_task_x, imp_images), axis=0)
last_task_y_ = np.concatenate((last_task_y_, imp_labels), axis=0)
# Delete the importance array now that you don't need it in the current run
del importance_array
print('\t\t\t\tEpisodic memory is saved for Task%d!'%(task))
if cross_validate_mode:
if (task == model.num_tasks - 1) or MULTI_TASK:
# List to store accuracy for all the tasks for the current trained model
ftask = test_task_sequence(model, sess, datasets[0]['test'], class_attr, num_classes_per_task, task_labels, task, online_cross_val)
elif train_single_epoch:
fbatch = test_task_sequence(model, sess, datasets[0]['test'], class_attr, num_classes_per_task, task_labels, task, False)
ftask[batch_dim_count] = fbatch
print('Task: {}, {}'.format(task, fbatch))
else:
# Multi-epoch training, so compute accuracy at the end
ftask = test_task_sequence(model, sess, datasets[0]['test'], class_attr, num_classes_per_task, task_labels, task, online_cross_val)
if SAVE_MODEL_PARAMS:
save(saver, sess, SNAPSHOT_DIR, iters)
if not cross_validate_mode:
# Store the accuracies computed at task T in a list
evals.append(np.array(ftask))
# Reset the optimizer
model.reset_optimizer(sess)
#-> End for loop task
if not cross_validate_mode:
runs.append(np.array(evals))
if break_training:
break
# End for loop runid
if cross_validate_mode:
return np.mean(ftask)
else:
runs = np.array(runs)
return runs, task_labels_dataset
def test_task_sequence(model, sess, test_data, class_attr, num_classes_per_task, all_task_labels, task, online_cross_val):
"""
Snapshot the current performance
"""
final_acc = np.zeros(model.num_tasks)
test_set = 'test'
if model.imp_method == 'A-GEM':
logit_mask = np.zeros([model.num_tasks, model.total_classes])
else:
logit_mask = np.zeros(model.total_classes)
for tt, labels in enumerate(all_task_labels):
if tt > task:
return final_acc
samples_at_a_time = 10
task_images, task_labels = load_task_specific_data(test_data, labels)
global_class_indices = np.column_stack(np.nonzero(task_labels))
logit_mask_offset = tt * TOTAL_CLASSES
classes_adjusted_for_head = [cls + logit_mask_offset for cls in labels]
logit_mask[:] = 0
if model.imp_method == 'A-GEM':
logit_mask[tt][classes_adjusted_for_head] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, logit_mask)}
else:
logit_mask[classes_adjusted_for_head] = 1.0
#masked_class_attrs = np.zeros_like(class_attr)
#masked_class_attrs[labels] = class_attr[labels]
masked_class_attrs = np.zeros([model.total_classes, class_attr.shape[1]])
masked_class_attrs[classes_adjusted_for_head] = class_attr[labels]
final_train_labels = np.zeros([samples_at_a_time, model.total_classes])
head_offset = tt * TOTAL_CLASSES
acc = np.zeros(len(labels))
for cli, cls in enumerate(labels):
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] == cls][:,np.array([True, False])])
class_indices = np.sort(class_indices, axis=None)
task_test_images = task_images[class_indices]
task_test_labels = task_labels[class_indices]
total_test_samples = task_test_images.shape[0]
total_corrects = 0
if total_test_samples < samples_at_a_time:
i = -1
for i in range(total_test_samples/ samples_at_a_time):
offset = i*samples_at_a_time
final_train_labels[:, head_offset:head_offset+TOTAL_CLASSES] = task_test_labels[offset:offset+samples_at_a_time]
feed_dict = {model.x: task_test_images[offset:offset+samples_at_a_time],
model.y_: final_train_labels,
model.class_attr: masked_class_attrs,
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
corrects = sess.run(model.correct_predictions[tt], feed_dict=feed_dict)
else:
feed_dict[model.output_mask] = logit_mask
corrects = sess.run(model.correct_predictions, feed_dict=feed_dict)
total_corrects += np.sum(corrects)
# Compute the corrects on residuals
offset = (i+1)*samples_at_a_time
num_residuals = total_test_samples % samples_at_a_time
final_train_labels[:num_residuals, head_offset:head_offset+TOTAL_CLASSES] = task_test_labels[offset:offset+num_residuals]
feed_dict = {model.x: task_test_images[offset:offset+num_residuals],
model.y_: final_train_labels[:num_residuals],
model.class_attr: masked_class_attrs,
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
corrects = sess.run(model.correct_predictions[tt], feed_dict=feed_dict)
else:
feed_dict[model.output_mask] = logit_mask
corrects = sess.run(model.correct_predictions, feed_dict=feed_dict)
total_corrects += np.sum(corrects)
if total_test_samples != 0:
# Mean accuracy on the task
acc[cli] = total_corrects/ float(total_test_samples)
final_acc[tt] = np.mean(acc)
return final_acc
def main():
"""
Create the model and start the training
"""
# Get the CL arguments
args = get_arguments()
# Initialize the random seed of numpy
np.random.seed(args.random_seed)
# Check if the network architecture is valid
if args.arch not in VALID_ARCHS:
raise ValueError("Network architecture %s is not supported!"%(args.arch))
# Check if the method to compute importance is valid
if args.imp_method not in MODELS:
raise ValueError("Importance measure %s is undefined!"%(args.imp_method))
# Check if the optimizer is valid
if args.optim not in VALID_OPTIMS:
raise ValueError("Optimizer %s is undefined!"%(args.optim))
# Create log directories to store the results
if not os.path.exists(args.log_dir):
print('Log directory %s created!'%(args.log_dir))
os.makedirs(args.log_dir)
if args.online_cross_val:
num_tasks = K_FOR_CROSS_VAL
else:
num_tasks = NUM_TASKS - K_FOR_CROSS_VAL
# Load the split AWA dataset
data_labs = [np.arange(TOTAL_CLASSES)]
datasets, AWA_attr = construct_split_awa(data_labs, args.data_dir, AWA_TRAIN_LIST, AWA_VAL_LIST, AWA_TEST_LIST, IMG_HEIGHT, IMG_WIDTH, attr_file=AWA_ATTR_LIST)
if args.online_cross_val:
AWA_attr[K_FOR_CROSS_VAL*CLASSES_PER_TASK:] = 0
else:
AWA_attr[:K_FOR_CROSS_VAL*CLASSES_PER_TASK] = 0
print('Attributes: {}'.format(np.sum(AWA_attr, axis=1)))
if args.cross_validate_mode:
models_list = MODELS
learning_rate_list = [0.1, 0.03, 0.01, 0.001, 0.0003]
else:
models_list = [args.imp_method]
for imp_method in models_list:
if imp_method == 'VAN':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.003]
elif imp_method == 'PI':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10]
else:
synap_stgth_list = [10]
learning_rate_list = [0.003]
elif imp_method == 'EWC' or imp_method == 'M-EWC':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [100]
learning_rate_list = [0.003]
elif imp_method == 'MAS':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [0.1]
learning_rate_list = [0.001]
elif imp_method == 'RWALK':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [10] # Check again!
learning_rate_list = [0.003]
elif imp_method == 'S-GEM':
synap_stgth_list = [0]
if args.online_cross_val:
pass
else:
learning_rate_list = [args.learning_rate]
elif imp_method == 'A-GEM':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.003]
for synap_stgth in synap_stgth_list:
for lr in learning_rate_list:
# Generate the experiment key and store the meta data in a file
exper_meta_data = {'ARCH': args.arch,
'DATASET': 'SPLIT_AWA',
'HYBRID': args.set_hybrid,
'NUM_RUNS': args.num_runs,
'TRAIN_SINGLE_EPOCH': args.train_single_epoch,
'IMP_METHOD': imp_method,
'SYNAP_STGTH': synap_stgth,
'FISHER_EMA_DECAY': args.fisher_ema_decay,
'FISHER_UPDATE_AFTER': args.fisher_update_after,
'OPTIM': args.optim,
'LR': lr,
'BATCH_SIZE': args.batch_size,
'EPS_MEMORY': args.do_sampling,
'MEM_SIZE': args.mem_size,
'IS_HERDING': args.is_herding}
experiment_id = "SPLIT_AWA_HERDING_%r_HYB_%r_%s_%r_%s_%s_%s_%r_%s-"%(args.is_herding, args.set_hybrid, args.arch, args.train_single_epoch, imp_method,
str(synap_stgth).replace('.', '_'),
str(args.batch_size), args.do_sampling, str(args.mem_size)) + datetime.datetime.now().strftime("%y-%m-%d-%H-%M")
snapshot_experiment_meta_data(args.log_dir, experiment_id, exper_meta_data)
# Reset the default graph
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
# Set the random seed
tf.set_random_seed(args.random_seed)
# Define Input and Output of the model
x = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
y_ = tf.placeholder(tf.float32, shape=[None, num_tasks*TOTAL_CLASSES])
attr = tf.placeholder(tf.float32, shape=[num_tasks*TOTAL_CLASSES, ATTR_DIMS])
if not args.train_single_epoch:
# Define ops for data augmentation
x_aug = image_scaling(x)
x_aug = random_crop_and_pad_image(x_aug, IMG_HEIGHT, IMG_WIDTH)
# Define the optimizer
if args.optim == 'ADAM':
opt = tf.train.AdamOptimizer(learning_rate=lr)
elif args.optim == 'SGD':
opt = tf.train.GradientDescentOptimizer(learning_rate=lr)
elif args.optim == 'MOMENTUM':
base_lr = tf.constant(lr)
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - train_step / training_iters), OPT_POWER))
opt = tf.train.MomentumOptimizer(lr, OPT_MOMENTUM)
# Create the Model/ contruct the graph
if args.train_single_epoch:
# When training using a single epoch then there is no need for data augmentation
model = Model(x, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True, attr=attr)
else:
model = Model(x_aug, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True, x_test=x, attr=attr)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
time_start = time.time()
with tf.Session(config=config, graph=graph) as sess:
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=100)
runs, task_labels_dataset = train_task_sequence(model, sess, saver, datasets, AWA_attr, CLASSES_PER_TASK, args.cross_validate_mode,
args.train_single_epoch, args.do_sampling, args.is_herding, args.mem_size*CLASSES_PER_TASK*num_tasks, args.train_iters,
args.batch_size, args.num_runs, args.init_checkpoint, args.online_cross_val, args.random_seed)
# Close the session
sess.close()
time_end = time.time()
time_spent = time_end - time_start
print('Time spent: {}'.format(time_spent))
# Clean up
del model
if args.cross_validate_mode:
# If cross-validation flag is enabled, store the stuff in a text file
cross_validate_dump_file = args.log_dir + '/' + 'SPLIT_AWA_HYBRID_%s_%s'%(imp_method, args.optim) + '.txt'
with open(cross_validate_dump_file, 'a') as f:
f.write('HERDING: {} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {}\n'.format(args.is_herding, args.arch, lr, synap_stgth, runs))
else:
# Store all the results in one dictionary to process later
exper_acc = dict(mean=runs)
exper_labels = dict(labels=task_labels_dataset)
# Store the experiment output to a file
snapshot_experiment_eval(args.log_dir, experiment_id, exper_acc)
snapshot_task_labels(args.log_dir, experiment_id, exper_labels)
if __name__ == '__main__':
main()
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Training script for split CUB experiment with zero shot transfer.
"""
from __future__ import print_function
import argparse
import os
import sys
import math
import time
import datetime
import numpy as np
import tensorflow as tf
from copy import deepcopy
from six.moves import cPickle as pickle
from utils.data_utils import image_scaling, random_crop_and_pad_image, random_horizontal_flip, construct_split_cub
from utils.utils import get_sample_weights, sample_from_dataset, concatenate_datasets, update_episodic_memory_with_less_data, samples_for_each_class, sample_from_dataset_icarl, load_task_specific_data
from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels
from model import Model
###############################################################
################ Some definitions #############################
### These will be edited by the command line options ##########
###############################################################
## Training Options
NUM_RUNS = 5 # Number of experiments to average over
TRAIN_ITERS = 2000 # Number of training iterations per task
BATCH_SIZE = 16
LEARNING_RATE = 0.1
RANDOM_SEED = 1234
VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM']
OPTIM = 'SGD'
OPT_MOMENTUM = 0.9
OPT_POWER = 0.9
VALID_ARCHS = ['CNN', 'VGG', 'RESNET-B']
ARCH = 'RESNET-B'
PRETRAIN = True
## Model options
MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'A-GEM'] #List of valid models
IMP_METHOD = 'EWC'
SYNAP_STGTH = 75000
FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher)
FISHER_UPDATE_AFTER = 50 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper)
SAMPLES_PER_CLASS = 5 # Number of samples per task
IMG_HEIGHT = 224
IMG_WIDTH = 224
IMG_CHANNELS = 3
TOTAL_CLASSES = 200 # Total number of classes in the dataset
EPS_MEM_BATCH_SIZE = 128
DEBUG_EPISODIC_MEMORY = False
KEEP_EPISODIC_MEMORY_FULL = False
K_FOR_CROSS_VAL = 3
## Logging, saving and testing options
LOG_DIR = './split_cub_results'
SNAPSHOT_DIR = './cub_snapshots'
SAVE_MODEL_PARAMS = False
## Evaluation options
## Task split
NUM_TASKS = 20
MULTI_TASK = False
## Dataset specific options
ATTR_DIMS = 312
DATA_DIR='CUB_data/CUB_200_2011/images'
#CUB_TRAIN_LIST = 'dataset_lists/tmp_list.txt'
#CUB_TEST_LIST = 'dataset_lists/tmp_list.txt'
CUB_TRAIN_LIST = 'dataset_lists/CUB_train_list.txt'
CUB_TEST_LIST = 'dataset_lists/CUB_test_list.txt'
CUB_ATTR_LIST = 'dataset_lists/CUB_attr_in_order.pickle'
RESNET18_IMAGENET_CHECKPOINT = './resnet-18-pretrained-imagenet/model.ckpt'
# Define function to load/ store training weights. We will use ImageNet initialization later on
def save(saver, sess, logdir, step):
'''Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(saver, sess, ckpt_path):
'''Load trained weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Script for split CUB hybrid experiment.")
parser.add_argument("--cross-validate-mode", action="store_true",
help="If option is chosen then snapshoting after each batch is disabled")
parser.add_argument("--online-cross-val", action="store_true",
help="If option is chosen then enable the online cross validation of the learning rate")
parser.add_argument("--train-single-epoch", action="store_true",
help="If option is chosen then train for single epoch")
parser.add_argument("--set-hybrid", action="store_true",
help="If option is chosen then train using hybrid model")
parser.add_argument("--eval-single-head", action="store_true",
help="If option is chosen then evaluate on a single head setting.")
parser.add_argument("--arch", type=str, default=ARCH,
help="Network Architecture for the experiment.\
\n \nSupported values: %s"%(VALID_ARCHS))
parser.add_argument("--num-runs", type=int, default=NUM_RUNS,
help="Total runs/ experiments over which accuracy is averaged.")
parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS,
help="Number of training iterations for each task.")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Mini-batch size for each task.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random Seed.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Starting Learning rate for each task.")
parser.add_argument("--optim", type=str, default=OPTIM,
help="Optimizer for the experiment. \
\n \nSupported values: %s"%(VALID_OPTIMS))
parser.add_argument("--imp-method", type=str, default=IMP_METHOD,
help="Model to be used for LLL. \
\n \nSupported values: %s"%(MODELS))
parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH,
help="Synaptic strength for the regularization.")
parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY,
help="Exponential moving average decay for Fisher calculation at each step.")
parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER,
help="Number of training iterations after which the Fisher will be updated.")
parser.add_argument("--do-sampling", action="store_true",
help="Whether to do sampling")
parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS,
help="Number of samples per class from previous tasks.")
parser.add_argument("--is-herding", action="store_true",
help="Herding based sampling")
parser.add_argument("--data-dir", type=str, default=DATA_DIR,
help="Directory from where the CUB data will be read.\
NOTE: Provide path till <CUB_DIR>/images")
parser.add_argument("--init-checkpoint", type=str, default=RESNET18_IMAGENET_CHECKPOINT,
help="TF checkpoint file containing initialization for ImageNet.\
NOTE: NPZ file for VGG and TF Checkpoint for ResNet")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Directory where the plots and model accuracies will be stored.")
return parser.parse_args()
def train_task_sequence(model, sess, saver, datasets, class_attr, classes_per_task, cross_validate_mode, train_single_epoch, do_sampling, is_herding,
mem_per_class, train_iters, batch_size, num_runs, init_checkpoint, online_cross_val, random_seed):
"""
Train and evaluate LLL system such that we only see a example once
Args:
Returns:
dict A dictionary containing mean and stds for the experiment
"""
# List to store accuracy for each run
runs = []
task_labels_dataset = []
break_training = 0
# Loop over number of runs to average over
for runid in range(num_runs):
print('\t\tRun %d:'%(runid))
# Initialize the random seeds
np.random.seed(random_seed+runid)
# Get the task labels from the total number of tasks and full label space
task_labels = []
total_classes = classes_per_task * model.num_tasks
if online_cross_val:
label_array = np.arange(total_classes)
else:
class_label_offset = K_FOR_CROSS_VAL * classes_per_task
label_array = np.arange(class_label_offset, total_classes+class_label_offset)
np.random.shuffle(label_array)
for tt in range(model.num_tasks):
tt_offset = tt*classes_per_task
task_labels.append(list(label_array[tt_offset:tt_offset+classes_per_task]))
print('Task: {}, Labels:{}'.format(tt, task_labels[tt]))
# Store the task labels
task_labels_dataset.append(task_labels)
# Set episodic memory size
episodic_mem_size = mem_per_class * total_classes
# Initialize all the variables in the model
sess.run(tf.global_variables_initializer())
if PRETRAIN:
# Load the variables from a checkpoint
if model.network_arch == 'RESNET-B':
# Define loader (weights which will be loaded from a checkpoint)
restore_vars = [v for v in model.trainable_vars if 'fc' not in v.name and 'attr_embed' not in v.name]
loader = tf.train.Saver(restore_vars)
load(loader, sess, init_checkpoint)
elif model.network_arch == 'VGG':
# Load the pretrained weights from the npz file
weights = np.load(init_checkpoint)
keys = sorted(weights.keys())
for i, key in enumerate(keys[:-2]): # Load everything except the last layer
sess.run(model.trainable_vars[i].assign(weights[key]))
# Run the init ops
model.init_updates(sess)
# List to store accuracies for a run
evals = []
# List to store the classes that we have so far - used at test time
test_labels = []
if model.imp_method == 'S-GEM':
# List to store the episodic memories of the previous tasks
task_based_memory = []
if model.imp_method == 'A-GEM':
# Reserve a space for episodic memory
episodic_images = np.zeros([episodic_mem_size, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
episodic_labels = np.zeros([episodic_mem_size, TOTAL_CLASSES])
episodic_filled_counter = 0
a_gem_logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES])
# Labels for all the tasks that we have seen in the past
prev_task_labels = []
prev_class_attrs = np.zeros_like(class_attr)
if do_sampling:
# List to store important samples from the previous tasks
last_task_x = None
last_task_y_ = None
# Mask for the softmax
logit_mask = np.zeros(TOTAL_CLASSES)
# Training loop for all the tasks
for task in range(len(task_labels)):
print('\t\tTask %d:'%(task))
# If not the first task then restore weights from previous task
if(task > 0):
model.restore(sess)
# If sampling flag is set append the previous datasets
if do_sampling:
task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[task])
if task > 0:
task_train_images, task_train_labels = concatenate_datasets(task_tr_images, task_tr_labels, last_task_x, last_task_y_)
else:
task_train_images = task_tr_images
task_train_labels = task_tr_labels
else:
# Extract training images and labels for the current task
task_train_images, task_train_labels = load_task_specific_data(datasets[0]['train'], task_labels[task])
# If multi_task is set then train using all the datasets of all the tasks
if MULTI_TASK:
if task == 0:
for t_ in range(1, len(task_labels)):
task_tr_images, task_tr_labels = load_task_specific_data(datasets[0]['train'], task_labels[t_])
task_train_images = np.concatenate((task_train_images, task_tr_images), axis=0)
task_train_labels = np.concatenate((task_train_labels, task_tr_labels), axis=0)
else:
# Skip training for this task
continue
print('Received {} images, {} labels at task {}'.format(task_train_images.shape[0], task_train_labels.shape[0], task))
# Test for the tasks that we've seen so far
test_labels.extend(task_labels[task])
# Declare variables to store sample importance if sampling flag is set
if do_sampling:
# Get the sample weighting
task_sample_weights = get_sample_weights(task_train_labels, test_labels)
else:
# Assign equal weights to all the examples
task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32)
num_train_examples = task_train_images.shape[0]
# Train a task observing sequence of data
logit_mask[:] = 0
if train_single_epoch:
# Ceiling operation
num_iters = (num_train_examples + batch_size - 1) // batch_size
if cross_validate_mode:
if do_sampling:
logit_mask[test_labels] = 1.0
else:
logit_mask[task_labels[task]] = 1.0
else:
num_iters = train_iters
if do_sampling:
logit_mask[test_labels] = 1.0
else:
logit_mask[task_labels[task]] = 1.0
# Randomly suffle the training examples
perm = np.arange(num_train_examples)
np.random.shuffle(perm)
train_x = task_train_images[perm]
train_y = task_train_labels[perm]
task_sample_weights = task_sample_weights[perm]
# Array to store accuracies when training for task T
ftask = []
if MULTI_TASK:
logit_mask[:] = 1.0
masked_class_attrs = class_attr
else:
# Attribute mask
masked_class_attrs = np.zeros_like(class_attr)
if do_sampling:
masked_class_attrs[test_labels] = class_attr[test_labels]
else:
masked_class_attrs[task_labels[task]] = class_attr[task_labels[task]]
# Training loop for task T
for iters in range(num_iters):
if train_single_epoch and not cross_validate_mode and not MULTI_TASK:
#if (iters <= 50 and iters % 5 == 0) or (iters > 50 and iters % 50 == 0):
if (iters < 10) or (iters % 5 == 0):
# Snapshot the current performance across all tasks after each mini-batch
fbatch = test_task_sequence(model, sess, datasets[0]['test'], class_attr, classes_per_task, task_labels, task)
ftask.append(fbatch)
# Set the output labels over which the model needs to be trained
if model.imp_method == 'A-GEM':
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][task_labels[task]] = 1.0
else:
logit_mask[:] = 0
if do_sampling:
logit_mask[test_labels] = 1.0
else:
logit_mask[task_labels[task]] = 1.0
if train_single_epoch:
offset = iters * batch_size
if (offset+batch_size <= num_train_examples):
residual = batch_size
else:
residual = num_train_examples - offset
feed_dict = {model.x: train_x[offset:offset+residual], model.y_: train_y[offset:offset+residual],
model.class_attr: masked_class_attrs,
model.sample_weights: task_sample_weights[offset:offset+residual],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
else:
offset = (iters * batch_size) % (num_train_examples - batch_size)
feed_dict = {model.x: train_x[offset:offset+batch_size], model.y_: train_y[offset:offset+batch_size],
model.class_attr: masked_class_attrs,
model.sample_weights: task_sample_weights[offset:offset+batch_size],
model.training_iters: num_iters, model.train_step: iters, model.keep_prob: 0.5,
model.train_phase: True}
if model.imp_method == 'VAN':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'EWC':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Update fisher after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
sess.run(model.set_running_fisher)
sess.run(model.reset_tmp_fisher)
_, _, loss = sess.run([model.set_tmp_fisher, model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'PI':
feed_dict[model.output_mask] = logit_mask
_, _, _, loss = sess.run([model.weights_old_ops_grouped, model.train, model.update_small_omega,
model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'MAS':
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train, model.reg_loss], feed_dict=feed_dict)
elif model.imp_method == 'S-GEM':
if task == 0:
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
# Randomly sample a task from the previous tasks
prev_task = np.random.randint(0, task)
# Set the logit mask for the randomly sampled task
logit_mask[:] = 0
logit_mask[task_labels[prev_task]] = 1.0
prev_class_attrs = np.zeros_like(class_attr)
prev_class_attrs[task_labels[prev_task]] = class_attr[task_labels[prev_task]]
# Store the reference gradient
sess.run(model.store_ref_grads, feed_dict={model.x: task_based_memory[prev_task]['images'], model.y_: task_based_memory[prev_task]['labels'],
model.class_attr: prev_class_attrs,
model.keep_prob: 1.0, model.output_mask: logit_mask, model.train_phase: True})
# Compute the gradient for current task and project if need be
logit_mask[:] = 0
logit_mask[task_labels[task]] = 1.0
feed_dict[model.output_mask] = logit_mask
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'A-GEM':
if task == 0:
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][task_labels[task]] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
# Normal application of gradients
_, loss = sess.run([model.train_first_task, model.agem_loss], feed_dict=feed_dict)
else:
## Compute and store the reference gradients on the previous tasks
# Set the mask for all the previous tasks so far
a_gem_logit_mask[:] = 0
for tt in range(task):
a_gem_logit_mask[tt][task_labels[tt]] = 1.0
if KEEP_EPISODIC_MEMORY_FULL:
mem_sample_mask = np.random.choice(episodic_mem_size, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
else:
if episodic_filled_counter <= EPS_MEM_BATCH_SIZE:
mem_sample_mask = np.arange(episodic_filled_counter)
else:
# Sample a random subset from episodic memory buffer
mem_sample_mask = np.random.choice(episodic_filled_counter, EPS_MEM_BATCH_SIZE, replace=False) # Sample without replacement so that we don't sample an example more than once
ref_feed_dict = {model.x: episodic_images[mem_sample_mask], model.y_: episodic_labels[mem_sample_mask],
model.class_attr: prev_class_attrs, model.keep_prob: 1.0, model.train_phase: True}
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
ref_feed_dict.update(logit_mask_dict)
ref_feed_dict[model.mem_batch_size] = float(len(mem_sample_mask))
sess.run(model.store_ref_grads, feed_dict=ref_feed_dict)
# Compute the gradient for current task and project if need be
a_gem_logit_mask[:] = 0
a_gem_logit_mask[task][task_labels[task]] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, a_gem_logit_mask)}
feed_dict.update(logit_mask_dict)
feed_dict[model.mem_batch_size] = batch_size
_, loss = sess.run([model.train_subseq_tasks, model.agem_loss], feed_dict=feed_dict)
elif model.imp_method == 'RWALK':
feed_dict[model.output_mask] = logit_mask
# If first iteration of the first task then set the initial value of the running fisher
if task == 0 and iters == 0:
sess.run([model.set_initial_running_fisher], feed_dict=feed_dict)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Update fisher and importance score after every few iterations
if (iters + 1) % model.fisher_update_after == 0:
# Update the importance score using distance in riemannian manifold
sess.run(model.update_big_omega_riemann)
# Now that the score is updated, compute the new value for running Fisher
sess.run(model.set_running_fisher)
# Store the current value of the weights
sess.run(model.weights_delta_old_grouped)
# Reset the delta_L
sess.run([model.reset_small_omega])
_, _, _, _, loss = sess.run([model.set_tmp_fisher, model.weights_old_ops_grouped,
model.train, model.update_small_omega, model.reg_loss], feed_dict=feed_dict)
if (iters % 50 == 0):
print('Step {:d} {:.3f}'.format(iters, loss))
if (math.isnan(loss)):
print('ERROR: NaNs NaNs NaNs!!!')
break_training = 1
break
print('\t\t\t\tTraining for Task%d done!'%(task))
if model.imp_method == 'A-GEM':
# Update the previous task labels and attributes
prev_task_labels += task_labels[task]
prev_class_attrs[prev_task_labels] = class_attr[prev_task_labels]
if break_training:
break
# Compute the inter-task updates, Fisher/ importance scores etc
# Don't calculate the task updates for the last task
if task < (len(task_labels) - 1):
# TODO: For MAS, should the gradients be for current task or all the previous tasks
model.task_updates(sess, task, task_train_images, task_labels[task], num_classes_per_task=classes_per_task, class_attr=class_attr, online_cross_val=online_cross_val)
print('\t\t\t\tTask updates after Task%d done!'%(task))
# If importance method is '*-GEM' then store the episodic memory for the task
if 'GEM' in model.imp_method:
data_to_sample_from = {
'images': task_train_images,
'labels': task_train_labels,
}
if model.imp_method == 'S-GEM':
# Get the important samples from the current task
if is_herding: # Sampling based on MoF
# Compute the features of training data
features_dim = model.image_feature_dim
features = np.zeros([num_train_examples, features_dim])
samples_at_a_time = 32
residual = num_train_examples % samples_at_a_time
for i in range(num_train_examples// samples_at_a_time):
offset = i * samples_at_a_time
features[offset:offset+samples_at_a_time] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+samples_at_a_time],
model.y_: task_train_labels[offset:offset+samples_at_a_time], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if residual > 0:
offset = (i + 1) * samples_at_a_time
features[offset:offset+residual] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+residual],
model.y_: task_train_labels[offset:offset+residual], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
imp_images, imp_labels = sample_from_dataset_icarl(data_to_sample_from, features, task_labels[task], SAMPLES_PER_CLASS)
else: # Random sampling
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
task_memory = {
'images': deepcopy(imp_images),
'labels': deepcopy(imp_labels),
}
task_based_memory.append(task_memory)
elif model.imp_method == 'A-GEM':
if is_herding: # Sampling based on MoF
# Compute the features of training data
features_dim = model.image_feature_dim
features = np.zeros([num_train_examples, features_dim])
samples_at_a_time = 32
residual = num_train_examples % samples_at_a_time
for i in range(num_train_examples// samples_at_a_time):
offset = i * samples_at_a_time
features[offset:offset+samples_at_a_time] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+samples_at_a_time],
model.y_: task_train_labels[offset:offset+samples_at_a_time], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if residual > 0:
offset = (i + 1) * samples_at_a_time
features[offset:offset+residual] = sess.run(model.features, feed_dict={model.x: task_train_images[offset:offset+residual],
model.y_: task_train_labels[offset:offset+residual], model.keep_prob: 1.0,
model.output_mask: logit_mask, model.train_phase: False})
if KEEP_EPISODIC_MEMORY_FULL:
update_episodic_memory(data_to_sample_from, features, episodic_mem_size, task, episodic_images, episodic_labels, task_labels=task_labels[task], is_herding=True)
else:
imp_images, imp_labels = sample_from_dataset_icarl(data_to_sample_from, features, task_labels[task], SAMPLES_PER_CLASS)
else: # Random sampling
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones(num_train_examples, dtype=np.float32)
if KEEP_EPISODIC_MEMORY_FULL:
update_episodic_memory(data_to_sample_from, importance_array, episodic_mem_size, task, episodic_images, episodic_labels)
else:
imp_images, imp_labels = sample_from_dataset(data_to_sample_from, importance_array, task_labels[task], SAMPLES_PER_CLASS)
if not KEEP_EPISODIC_MEMORY_FULL: # Fill the memory to always keep M/T samples per task
total_imp_samples = imp_images.shape[0]
eps_offset = task * total_imp_samples
episodic_images[eps_offset:eps_offset+total_imp_samples] = imp_images
episodic_labels[eps_offset:eps_offset+total_imp_samples] = imp_labels
episodic_filled_counter += total_imp_samples
# Inspect episodic memory
if DEBUG_EPISODIC_MEMORY:
# Which labels are present in the memory
unique_labels = np.unique(np.nonzero(episodic_labels)[-1])
print('Unique Labels present in the episodic memory'.format(unique_labels))
print('Labels count:')
for lbl in unique_labels:
print('Label {}: {} samples'.format(lbl, np.where(np.nonzero(episodic_labels)[-1] == lbl)[0].size))
# Is there any space which is not filled
print('Empty space: {}'.format(np.where(np.sum(episodic_labels, axis=1) == 0)))
print('Episodic memory of {} images at task {} saved!'.format(episodic_images.shape[0], task))
# If sampling flag is set, store few of the samples from previous task
if do_sampling:
# Do the uniform sampling/ only get examples from current task
importance_array = np.ones([task_train_images.shape[0]], dtype=np.float32)
# Get the important samples from the current task
task_data = {
'images': task_tr_images,
'labels': task_tr_labels,
}
imp_images, imp_labels = sample_from_dataset(task_data, importance_array, task_labels[task], SAMPLES_PER_CLASS)
if imp_images is not None:
if last_task_x is None:
last_task_x = imp_images
last_task_y_ = imp_labels
else:
last_task_x = np.concatenate((last_task_x, imp_images), axis=0)
last_task_y_ = np.concatenate((last_task_y_, imp_labels), axis=0)
# Delete the importance array now that you don't need it in the current run
del importance_array
print('\t\t\t\tEpisodic memory is saved for Task%d!'%(task))
if cross_validate_mode:
if (task == model.num_tasks - 1) or MULTI_TASK:
# List to store accuracy for all the tasks for the current trained model
ftask = test_task_sequence(model, sess, datasets[0]['test'], class_attr, classes_per_task, task_labels, task)
elif train_single_epoch:
fbatch = test_task_sequence(model, sess, datasets[0]['test'], class_attr, classes_per_task, task_labels, task)
print('Task: {} Acc: {}'.format(task, fbatch))
ftask.append(fbatch)
else:
# Multi-epoch training, so compute accuracy at the end
ftask = test_task_sequence(model, sess, datasets[0]['test'], class_attr, classes_per_task, task_labels, task)
if SAVE_MODEL_PARAMS:
save(saver, sess, SNAPSHOT_DIR, iters)
if not cross_validate_mode:
# Store the accuracies computed at task T in a list
evals.append(np.array(ftask))
# Reset the optimizer
model.reset_optimizer(sess)
#-> End for loop task
if not cross_validate_mode:
runs.append(np.array(evals))
if break_training:
break
# End for loop runid
if cross_validate_mode:
return np.mean(ftask)
else:
runs = np.array(runs)
return runs, task_labels_dataset
def test_task_sequence(model, sess, test_data, class_attr, num_classes_per_task, test_tasks, task):
"""
Snapshot the current performance
"""
final_acc = np.zeros(model.num_tasks)
if model.imp_method == 'A-GEM':
logit_mask = np.zeros([model.num_tasks, TOTAL_CLASSES])
else:
logit_mask = np.zeros(TOTAL_CLASSES)
for tt, labels in enumerate(test_tasks):
if not MULTI_TASK:
if tt > task:
return final_acc
masked_class_attrs = np.zeros_like(class_attr)
masked_class_attrs[labels] = class_attr[labels]
task_test_images, task_test_labels = load_task_specific_data(test_data, labels)
total_test_samples = task_test_images.shape[0]
samples_at_a_time = 10
total_corrects = 0
logit_mask[:] = 0
if model.imp_method == 'A-GEM':
logit_mask[tt][labels] = 1.0
logit_mask_dict = {m_t: i_t for (m_t, i_t) in zip(model.output_mask, logit_mask)}
else:
logit_mask[labels] = 1.0
for i in range(total_test_samples/ samples_at_a_time):
offset = i*samples_at_a_time
feed_dict = {model.x: task_test_images[offset:offset+samples_at_a_time],
model.y_: task_test_labels[offset:offset+samples_at_a_time],
model.class_attr: masked_class_attrs,
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
total_corrects += np.sum(sess.run(model.correct_predictions[tt], feed_dict=feed_dict))
else:
feed_dict[model.output_mask] = logit_mask
total_corrects += np.sum(sess.run(model.correct_predictions, feed_dict=feed_dict))
# Compute the corrects on residuals
offset = (i+1)*samples_at_a_time
num_residuals = total_test_samples % samples_at_a_time
feed_dict = {model.x: task_test_images[offset:offset+num_residuals],
model.y_: task_test_labels[offset:offset+num_residuals],
model.class_attr: masked_class_attrs,
model.keep_prob: 1.0, model.train_phase: False}
if model.imp_method == 'A-GEM':
feed_dict.update(logit_mask_dict)
total_corrects += np.sum(sess.run(model.correct_predictions[tt], feed_dict=feed_dict))
else:
feed_dict[model.output_mask] = logit_mask
total_corrects += np.sum(sess.run(model.correct_predictions, feed_dict=feed_dict))
# Mean accuracy on the task
acc = total_corrects/ float(total_test_samples)
final_acc[tt] = acc
return final_acc
def main():
"""
Create the model and start the training
"""
# Get the CL arguments
args = get_arguments()
# Check if the network architecture is valid
if args.arch not in VALID_ARCHS:
raise ValueError("Network architecture %s is not supported!"%(args.arch))
# Check if the method to compute importance is valid
if args.imp_method not in MODELS:
raise ValueError("Importance measure %s is undefined!"%(args.imp_method))
# Check if the optimizer is valid
if args.optim not in VALID_OPTIMS:
raise ValueError("Optimizer %s is undefined!"%(args.optim))
# Create log directories to store the results
if not os.path.exists(args.log_dir):
print('Log directory %s created!'%(args.log_dir))
os.makedirs(args.log_dir)
# Get the task labels from the total number of tasks and full label space
classes_per_task = TOTAL_CLASSES// NUM_TASKS
if args.online_cross_val:
num_tasks = K_FOR_CROSS_VAL
else:
num_tasks = NUM_TASKS - K_FOR_CROSS_VAL
# Load the split CUB dataset
data_labs = [np.arange(TOTAL_CLASSES)]
datasets, CUB_attr = construct_split_cub(data_labs, args.data_dir, CUB_TRAIN_LIST, CUB_TEST_LIST, IMG_HEIGHT, IMG_WIDTH, attr_file=CUB_ATTR_LIST)
if args.online_cross_val:
CUB_attr[K_FOR_CROSS_VAL*classes_per_task:] = 0
else:
CUB_attr[:K_FOR_CROSS_VAL*classes_per_task] = 0
if args.cross_validate_mode:
models_list = MODELS
learning_rate_list = [0.3, 0.1, 0.01, 0.003, 0.001]
else:
models_list = [args.imp_method]
for imp_method in models_list:
if imp_method == 'VAN':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.03]
elif imp_method == 'PI':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10]
else:
synap_stgth_list = [0.1]
learning_rate_list = [0.03]
elif imp_method == 'EWC' or imp_method == 'M-EWC':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [10]
learning_rate_list = [0.03]
elif imp_method == 'MAS':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [0.1]
learning_rate_list = [0.03]
elif imp_method == 'RWALK':
if args.online_cross_val or args.cross_validate_mode:
synap_stgth_list = [0.1, 1, 10, 100]
else:
synap_stgth_list = [1]
learning_rate_list = [0.03]
elif imp_method == 'S-GEM':
synap_stgth_list = [0]
if args.online_cross_val:
pass
else:
learning_rate_list = [args.learning_rate]
elif imp_method == 'A-GEM':
synap_stgth_list = [0]
if args.online_cross_val or args.cross_validate_mode:
pass
else:
learning_rate_list = [0.03]
for synap_stgth in synap_stgth_list:
for lr in learning_rate_list:
# Generate the experiment key and store the meta data in a file
exper_meta_data = {'ARCH': args.arch,
'DATASET': 'SPLIT_CUB',
'HYBRID': args.set_hybrid,
'NUM_RUNS': args.num_runs,
'TRAIN_SINGLE_EPOCH': args.train_single_epoch,
'IMP_METHOD': imp_method,
'SYNAP_STGTH': synap_stgth,
'FISHER_EMA_DECAY': args.fisher_ema_decay,
'FISHER_UPDATE_AFTER': args.fisher_update_after,
'OPTIM': args.optim,
'LR': lr,
'BATCH_SIZE': args.batch_size,
'EPS_MEMORY': args.do_sampling,
'MEM_SIZE': args.mem_size,
'IS_HERDING': args.is_herding}
experiment_id = "SPLIT_CUB_HERDING_%r_HYB_%r_%s_%r_%s_%s_%s_%r_%s-"%(args.is_herding, args.set_hybrid, args.arch, args.train_single_epoch, imp_method,
str(synap_stgth).replace('.', '_'),
str(args.batch_size), args.do_sampling, str(args.mem_size)) + datetime.datetime.now().strftime("%y-%m-%d-%H-%M")
snapshot_experiment_meta_data(args.log_dir, experiment_id, exper_meta_data)
# Reset the default graph
tf.reset_default_graph()
graph = tf.Graph()
with graph.as_default():
# Set the random seed
tf.set_random_seed(RANDOM_SEED)
# Define Input and Output of the model
x = tf.placeholder(tf.float32, shape=[None, IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS])
y_ = tf.placeholder(tf.float32, shape=[None, TOTAL_CLASSES])
attr = tf.placeholder(tf.float32, shape=[TOTAL_CLASSES, ATTR_DIMS])
if not args.train_single_epoch:
# Define ops for data augmentation
x_aug = image_scaling(x)
x_aug = random_crop_and_pad_image(x_aug, IMG_HEIGHT, IMG_WIDTH)
# Define the optimizer
if args.optim == 'ADAM':
opt = tf.train.AdamOptimizer(learning_rate=lr)
elif args.optim == 'SGD':
opt = tf.train.GradientDescentOptimizer(learning_rate=lr)
elif args.optim == 'MOMENTUM':
base_lr = tf.constant(lr)
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - train_step / training_iters), OPT_POWER))
opt = tf.train.MomentumOptimizer(lr, OPT_MOMENTUM)
# Create the Model/ contruct the graph
if args.train_single_epoch:
# When training using a single epoch then there is no need for data augmentation
model = Model(x, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True, attr=attr)
else:
model = Model(x_aug, y_, num_tasks, opt, imp_method, synap_stgth, args.fisher_update_after,
args.fisher_ema_decay, network_arch=args.arch, is_ATT_DATASET=True, x_test=x, attr=attr)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
time_start = time.time()
with tf.Session(config=config, graph=graph) as sess:
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=100)
runs, task_labels_dataset = train_task_sequence(model, sess, saver, datasets, CUB_attr, classes_per_task, args.cross_validate_mode,
args.train_single_epoch, args.do_sampling, args.is_herding, args.mem_size, args.train_iters,
args.batch_size, args.num_runs, args.init_checkpoint, args.online_cross_val, args.random_seed)
# Close the session
sess.close()
time_end = time.time()
time_spent = time_end - time_start
print('Time spent: {}'.format(time_spent))
# Clean up
del model
if args.cross_validate_mode:
# If cross-validation flag is enabled, store the stuff in a text file
cross_validate_dump_file = args.log_dir + '/' + 'SPLIT_CUB_%s_%s'%(imp_method, args.optim) + '.txt'
with open(cross_validate_dump_file, 'a') as f:
f.write('HERDING: {} \t ARCH: {} \t LR:{} \t LAMBDA: {} \t ACC: {}\n'.format(args.is_herding, args.arch, lr, synap_stgth, runs))
else:
# Store all the results in one dictionary to process later
exper_acc = dict(mean=runs)
exper_labels = dict(labels=task_labels_dataset)
# Store the experiment output to a file
snapshot_experiment_eval(args.log_dir, experiment_id, exper_acc)
snapshot_task_labels(args.log_dir, experiment_id, exper_labels)
if __name__ == '__main__':
main()
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import tensorflow as tf
import numpy as np
def vgg_conv_layer(x, kernel_size, out_channels, stride, var_list, pad="SAME", name="conv"):
"""
Define API for conv operation. This includes kernel declaration and
conv operation both followed by relu.
"""
in_channels = x.get_shape().as_list()[-1]
with tf.variable_scope(name):
#n = kernel_size * kernel_size * out_channels
n = kernel_size * in_channels
stdv = 1.0 / math.sqrt(n)
w = tf.get_variable('kernel_weights', [kernel_size, kernel_size, in_channels, out_channels],
tf.float32,
initializer=tf.random_uniform_initializer(-stdv, stdv))
b = tf.get_variable('kernel_biases', [out_channels], tf.float32, initializer=tf.random_uniform_initializer(-stdv, stdv))
# Append the variable to the trainable variables list
var_list.append(w)
var_list.append(b)
# Do the convolution operation
bias = tf.nn.bias_add(tf.nn.conv2d(x, w, [1, stride, stride, 1], padding=pad), b)
relu = tf.nn.relu(bias)
return relu
def vgg_fc_layer(x, out_dim, var_list, apply_relu=True, name="fc"):
"""
Define API for the fully connected layer. This includes both the variable
declaration and matmul operation.
"""
in_dim = x.get_shape().as_list()[1]
stdv = 1.0 / math.sqrt(in_dim)
with tf.variable_scope(name):
# Define the weights and biases for this layer
w = tf.get_variable('weights', [in_dim, out_dim], tf.float32,
initializer=tf.random_uniform_initializer(-stdv, stdv))
b = tf.get_variable('biases', [out_dim], tf.float32, initializer=tf.random_uniform_initializer(-stdv, stdv))
# Append the variable to the trainable variables list
var_list.append(w)
var_list.append(b)
# Do the FC operation
output = tf.matmul(x, w) + b
# Apply relu if needed
if apply_relu:
output = tf.nn.relu(output)
return output
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .data_utils import construct_permute_mnist, construct_split_mnist, construct_split_cifar, construct_split_cub, construct_split_imagenet
from .data_utils import image_scaling, random_crop_and_pad_image, random_horizontal_flip
from .utils import clone_variable_list, create_fc_layer, create_conv_layer, sample_from_dataset, update_episodic_memory, update_episodic_memory_with_less_data, concatenate_datasets
from .utils import samples_for_each_class, sample_from_dataset_icarl, get_sample_weights, compute_fgt, load_task_specific_data, load_task_specific_data_in_proportion
from .utils import average_acc_stats_across_runs, average_fgt_stats_across_runs, update_reservior
from .vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval, snapshot_task_labels
from .resnet_utils import _conv, _fc, _bn, _residual_block, _residual_block_first
from .vgg_utils import vgg_conv_layer, vgg_fc_layer
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import tensorflow as tf
import numpy as np
def _conv(x, kernel_size, out_channels, stride, var_list, pad="SAME", name="conv"):
"""
Define API for conv operation. This includes kernel declaration and
conv operation both.
"""
in_channels = x.get_shape().as_list()[-1]
with tf.variable_scope(name):
#n = kernel_size * kernel_size * out_channels
n = kernel_size * in_channels
stdv = 1.0 / math.sqrt(n)
w = tf.get_variable('kernel', [kernel_size, kernel_size, in_channels, out_channels],
tf.float32,
initializer=tf.random_uniform_initializer(-stdv, stdv))
#initializer=tf.random_normal_initializer(stddev=np.sqrt(2.0/n)))
# Append the variable to the trainable variables list
var_list.append(w)
# Do the convolution operation
output = tf.nn.conv2d(x, w, [1, stride, stride, 1], padding=pad)
return output
def _fc(x, out_dim, var_list, name="fc", is_cifar=False):
"""
Define API for the fully connected layer. This includes both the variable
declaration and matmul operation.
"""
in_dim = x.get_shape().as_list()[1]
stdv = 1.0 / math.sqrt(in_dim)
with tf.variable_scope(name):
# Define the weights and biases for this layer
w = tf.get_variable('weights', [in_dim, out_dim], tf.float32,
initializer=tf.random_uniform_initializer(-stdv, stdv))
#initializer=tf.truncated_normal_initializer(stddev=0.1))
if is_cifar:
b = tf.get_variable('biases', [out_dim], tf.float32, initializer=tf.random_uniform_initializer(-stdv, stdv))
else:
b = tf.get_variable('biases', [out_dim], tf.float32, initializer=tf.constant_initializer(0))
# Append the variable to the trainable variables list
var_list.append(w)
var_list.append(b)
# Do the FC operation
output = tf.matmul(x, w) + b
return output
def _bn(x, var_list, train_phase, name='bn_'):
"""
Batch normalization on convolutional maps.
Args:
Return:
"""
n_out = x.get_shape().as_list()[3]
with tf.variable_scope(name):
beta = tf.get_variable('beta', shape=[n_out], dtype=tf.float32, initializer=tf.constant_initializer(0.0))
gamma = tf.get_variable('gamma', shape=[n_out], dtype=tf.float32, initializer=tf.constant_initializer(1.0))
var_list.append(beta)
var_list.append(gamma)
batch_mean, batch_var = tf.nn.moments(x, [0,1,2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=0.9)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(train_phase,
mean_var_with_update,
lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, 1e-3)
return normed
def _residual_block(x, trainable_vars, train_phase, apply_relu=True, name="unit"):
"""
ResNet block when the number of channels across the skip connections are the same
"""
in_channels = x.get_shape().as_list()[-1]
with tf.variable_scope(name) as scope:
shortcut = x
x = _conv(x, 3, in_channels, 1, trainable_vars, name='conv_1')
x = _bn(x, trainable_vars, train_phase, name="bn_1")
x = tf.nn.relu(x)
x = _conv(x, 3, in_channels, 1, trainable_vars, name='conv_2')
x = _bn(x, trainable_vars, train_phase, name="bn_2")
x = x + shortcut
if apply_relu == True:
x = tf.nn.relu(x)
return x
def _residual_block_first(x, out_channels, strides, trainable_vars, train_phase, apply_relu=True, name="unit", is_ATT_DATASET=False):
"""
A generic ResNet Block
"""
in_channels = x.get_shape().as_list()[-1]
with tf.variable_scope(name) as scope:
# Figure out the shortcut connection first
if in_channels == out_channels:
if strides == 1:
shortcut = tf.identity(x)
else:
shortcut = tf.nn.max_pool(x, [1, strides, strides, 1], [1, strides, strides, 1], 'VALID')
else:
shortcut = _conv(x, 1, out_channels, strides, trainable_vars, name="shortcut")
if not is_ATT_DATASET:
shortcut = _bn(shortcut, trainable_vars, train_phase, name="bn_0")
# Residual block
x = _conv(x, 3, out_channels, strides, trainable_vars, name="conv_1")
x = _bn(x, trainable_vars, train_phase, name="bn_1")
x = tf.nn.relu(x)
x = _conv(x, 3, out_channels, 1, trainable_vars, name="conv_2")
x = _bn(x, trainable_vars, train_phase, name="bn_2")
x = x + shortcut
if apply_relu:
x = tf.nn.relu(x)
return x
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Define utility functions for manipulating datasets
"""
import os
import numpy as np
import sys
from copy import deepcopy
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from six.moves.urllib.request import urlretrieve
from six.moves import cPickle as pickle
import tarfile
import zipfile
import random
import cv2
#IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
IMG_MEAN = np.array((103.94,116.78,123.68), dtype=np.float32)
############################################################
### Data augmentation utils ################################
############################################################
def image_scaling(images):
"""
Randomly scales the images between 0.5 to 1.5 times the original size.
Args:
images: Training images to scale.
"""
scale = tf.random_uniform([1], minval=0.5, maxval=1.5, dtype=tf.float32, seed=None)
h_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(images)[1]), scale))
w_new = tf.to_int32(tf.multiply(tf.to_float(tf.shape(images)[2]), scale))
new_shape = tf.squeeze(tf.stack([h_new, w_new]), squeeze_dims=[1])
images = tf.image.resize_images(images, new_shape)
result = tf.map_fn(lambda img: tf.image.random_flip_left_right(img), images)
return result
def random_crop_and_pad_image(images, crop_h, crop_w):
"""
Randomly crop and pads the input images.
Args:
images: Training i mages to crop/ pad.
crop_h: Height of cropped segment.
crop_w: Width of cropped segment.
"""
image_shape = tf.shape(images)
image_pad = tf.image.pad_to_bounding_box(images, 0, 0, tf.maximum(crop_h, image_shape[1]), tf.maximum(crop_w, image_shape[2]))
img_crop = tf.map_fn(lambda img: tf.random_crop(img, [crop_h,crop_w,3]), image_pad)
return img_crop
def random_horizontal_flip(x):
"""
Randomly flip a batch of images horizontally
Args:
x Tensor of shape B x H x W x C
Returns:
random_flipped Randomly flipped tensor of shape B x H x W x C
"""
# Define random horizontal flip
flips = [(slice(None, None, None), slice(None, None, random.choice([-1, None])), slice(None, None, None))
for _ in xrange(x.shape[0])]
random_flipped = np.array([img[flip] for img, flip in zip(x, flips)])
return random_flipped
############################################################
### AWA dataset utils #####################################
############################################################
def _AWA_read_img_from_file(data_dir, file_name, img_height, img_width):
count = 0
imgs = []
labels = []
def dense_to_one_hot(labels_dense, num_classes=50):
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
with open(file_name) as f:
for line in f:
img_name, img_label = line.split()
img_file = data_dir.rstrip('\/') + '/' + img_name
img = cv2.imread(img_file).astype(np.float32)
# HWC -> WHC, compatible with caffe weights
#img = np.transpose(img, [1, 0, 2])
img = cv2.resize(img, (img_width, img_height))
# Convert RGB to BGR
img_r, img_g, img_b = np.split(img, 3, axis=2)
img = np.concatenate((img_b, img_g, img_r), axis=2)
# Extract mean
img -= IMG_MEAN
imgs += [img]
labels += [int(img_label)]
count += 1
if count % 1000 == 0:
print 'Finish reading {:07d}'.format(count)
# Convert the labels to one-hot
y = dense_to_one_hot(np.array(labels))
return np.array(imgs), y
def _AWA_get_data(data_dir, train_list_file, val_list_file, test_list_file, img_height, img_width):
""" Reads and parses examples from AWA dataset """
dataset = dict()
dataset['train'] = []
dataset['validation'] = []
dataset['test'] = []
num_val_img = 0 # you can change the number of validation images here TODO: Pass this as argument
train_img = []
train_label = []
validation_img = []
validation_label = []
test_img = []
test_label = []
# Read train, validation and test files
train_img, train_label = _AWA_read_img_from_file(data_dir, train_list_file, img_height, img_width)
#validation_img, validation_label = _AWA_read_img_from_file(data_dir, val_list_file, img_height, img_width)
test_img, test_label = _AWA_read_img_from_file(data_dir, test_list_file, img_height, img_width)
dataset['train'].append(train_img)
dataset['train'].append(train_label)
#dataset['validation'].append(validation_img)
#dataset['validation'].append(validation_label)
dataset['test'].append(test_img)
dataset['test'].append(test_label)
return dataset
def construct_split_awa(task_labels, data_dir, train_list_file, val_list_file, test_list_file, img_height, img_width, attr_file=None):
"""
Construct Split AWA dataset
Args:
task_labels Labels of different tasks
data_dir Data directory from where the AWA dataset will be read
train_list_file File containing names of training images
al_list_file File containing names of val images
test_list_file File containing names of test images
img_height Height of image
img_width Width of image
attr_file File from where to load the attributes
"""
# Get the awa dataset
awa_data = _AWA_get_data(data_dir, train_list_file, val_list_file, test_list_file, img_height, img_width)
# Get the attribute vector
if attr_file:
with open(attr_file, 'rb') as f:
awa_attr = pickle.load(f)
# Define a list for storing the data for different tasks
datasets = []
# Data splits
#sets = ["train", "validation", "test"]
sets = ["train", "test"]
for task in task_labels:
for set_name in sets:
this_set = awa_data[set_name]
global_class_indices = np.column_stack(np.nonzero(this_set[1]))
count = 0
for cls in task:
if count == 0:
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] ==
cls][:,np.array([True, False])])
else:
class_indices = np.append(class_indices, np.squeeze(global_class_indices[global_class_indices[:,1] ==\
cls][:,np.array([True, False])]))
count += 1
class_indices = np.sort(class_indices, axis=None)
if set_name == "train":
train = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
elif set_name == "validation":
validation = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
elif set_name == "test":
test = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
awa = {
'train': train,
#'validation': validation,
'test': test,
}
datasets.append(awa)
if attr_file:
return datasets, awa_attr
else:
return datasets
############################################################
### CUB dataset utils #####################################
############################################################
def _CUB_read_img_from_file(data_dir, file_name, img_height, img_width):
count = 0
imgs = []
labels = []
def dense_to_one_hot(labels_dense, num_classes=200):
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
with open(file_name) as f:
for line in f:
img_name, img_label = line.split()
img_file = data_dir.rstrip('\/') + '/' + img_name
img = cv2.imread(img_file).astype(np.float32)
# HWC -> WHC, compatible with caffe weights
#img = np.transpose(img, [1, 0, 2])
img = cv2.resize(img, (img_width, img_height))
# Convert RGB to BGR
img_r, img_g, img_b = np.split(img, 3, axis=2)
img = np.concatenate((img_b, img_g, img_r), axis=2)
# Extract mean
img -= IMG_MEAN
imgs += [img]
labels += [int(img_label)]
count += 1
if count % 1000 == 0:
print 'Finish reading {:07d}'.format(count)
# Convert the labels to one-hot
y = dense_to_one_hot(np.array(labels))
return np.array(imgs), y
def _CUB_get_data(data_dir, train_list_file, test_list_file, img_height, img_width):
""" Reads and parses examples from CUB dataset """
dataset = dict()
dataset['train'] = []
dataset['test'] = []
num_val_img = 0 # you can change the number of validation images here TODO: Pass this as argument
train_img = []
train_label = []
test_img = []
test_label = []
# Read train and test files
train_img, train_label = _CUB_read_img_from_file(data_dir, train_list_file, img_height, img_width)
test_img, test_label = _CUB_read_img_from_file(data_dir, test_list_file, img_height, img_width)
dataset['train'].append(train_img)
dataset['train'].append(train_label)
dataset['test'].append(test_img)
dataset['test'].append(test_label)
return dataset
def construct_split_cub(task_labels, data_dir, train_list_file, test_list_file, img_height, img_width, attr_file=None):
"""
Construct Split CUB-200 dataset
Args:
task_labels Labels of different tasks
data_dir Data directory from where the CUB-200 dataset will be read
train_list_file File containing names of training images
test_list_file File containing names of test images
img_height Height of image
img_width Width of image
attr_fil File from where to load the attributes
"""
# Get the cub dataset
cub_data = _CUB_get_data(data_dir, train_list_file, test_list_file, img_height, img_width)
# Get the attribute vector
if attr_file:
with open(attr_file, 'rb') as f:
cub_attr = pickle.load(f)
# Define a list for storing the data for different tasks
datasets = []
# Data splits
sets = ["train", "test"]
for task in task_labels:
for set_name in sets:
this_set = cub_data[set_name]
global_class_indices = np.column_stack(np.nonzero(this_set[1]))
count = 0
for cls in task:
if count == 0:
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] ==
cls][:,np.array([True, False])])
else:
class_indices = np.append(class_indices, np.squeeze(global_class_indices[global_class_indices[:,1] ==\
cls][:,np.array([True, False])]))
count += 1
class_indices = np.sort(class_indices, axis=None)
if set_name == "train":
train = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
elif set_name == "test":
test = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
cub = {
'train': train,
'test': test,
}
datasets.append(cub)
if attr_file:
return datasets, cub_attr
else:
return datasets
############################################################
### CIFAR download utils ###################################
############################################################
CIFAR_10_URL = "http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
CIFAR_100_URL = "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
CIFAR_10_DIR = "/cifar_10"
CIFAR_100_DIR = "/cifar_100"
def construct_split_cifar(task_labels, is_cifar_100=True):
"""
Construct Split CIFAR-10 and CIFAR-100 datasets
Args:
task_labels Labels of different tasks
data_dir Data directory where the CIFAR data will be saved
"""
data_dir = 'CIFAR_data'
# Get the cifar dataset
cifar_data = _get_cifar(data_dir, is_cifar_100)
# Define a list for storing the data for different tasks
datasets = []
# Data splits
sets = ["train", "validation", "test"]
for task in task_labels:
for set_name in sets:
this_set = cifar_data[set_name]
global_class_indices = np.column_stack(np.nonzero(this_set[1]))
count = 0
for cls in task:
if count == 0:
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] ==
cls][:,np.array([True, False])])
else:
class_indices = np.append(class_indices, np.squeeze(global_class_indices[global_class_indices[:,1] ==\
cls][:,np.array([True, False])]))
count += 1
class_indices = np.sort(class_indices, axis=None)
if set_name == "train":
train = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
elif set_name == "validation":
validation = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
elif set_name == "test":
test = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
cifar = {
'train': train,
'validation': validation,
'test': test,
}
datasets.append(cifar)
return datasets
def _get_cifar(data_dir, is_cifar_100):
"""
Get the CIFAR-10 and CIFAR-100 datasets
Args:
data_dir Directory where the downloaded data will be stored
"""
x_train = None
y_train = None
x_validation = None
y_validation = None
x_test = None
y_test = None
l = None
# Download the dataset if needed
_cifar_maybe_download_and_extract(data_dir)
# Dictionary to store the dataset
dataset = dict()
dataset['train'] = []
dataset['validation'] = []
dataset['test'] = []
def dense_to_one_hot(labels_dense, num_classes=100):
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
if is_cifar_100:
# Load the training data of CIFAR-100
f = open(data_dir + CIFAR_100_DIR + '/train', 'rb')
datadict = pickle.load(f)
f.close()
_X = datadict['data']
_Y = np.array(datadict['fine_labels'])
_Y = dense_to_one_hot(_Y, num_classes=100)
_X = np.array(_X, dtype=float) / 255.0
_X = _X.reshape([-1, 3, 32, 32])
_X = _X.transpose([0, 2, 3, 1])
# Compute the data mean for normalization
x_train_mean = np.mean(_X, axis=0)
x_train = _X[:40000]
y_train = _Y[:40000]
x_validation = _X[40000:]
y_validation = _Y[40000:]
else:
# Load all the training batches of the CIFAR-10
for i in range(5):
f = open(data_dir + CIFAR_10_DIR + '/data_batch_' + str(i + 1), 'rb')
datadict = pickle.load(f)
f.close()
_X = datadict['data']
_Y = np.array(datadict['labels'])
_Y = dense_to_one_hot(_Y, num_classes=10)
_X = np.array(_X, dtype=float) / 255.0
_X = _X.reshape([-1, 3, 32, 32])
_X = _X.transpose([0, 2, 3, 1])
if x_train is None:
x_train = _X
y_train = _Y
else:
x_train = np.concatenate((x_train, _X), axis=0)
y_train = np.concatenate((y_train, _Y), axis=0)
# Compute the data mean for normalization
x_train_mean = np.mean(x_train, axis=0)
x_validation = x_train[:40000] # We don't use validation set with CIFAR-10
y_validation = y_train[40000:]
# Normalize the train and validation sets
x_train -= x_train_mean
x_validation -= x_train_mean
dataset['train'].append(x_train)
dataset['train'].append(y_train)
dataset['train'].append(l)
dataset['validation'].append(x_validation)
dataset['validation'].append(y_validation)
dataset['validation'].append(l)
if is_cifar_100:
# Load the test batch of CIFAR-100
f = open(data_dir + CIFAR_100_DIR + '/test', 'rb')
datadict = pickle.load(f)
f.close()
_X = datadict['data']
_Y = np.array(datadict['fine_labels'])
_Y = dense_to_one_hot(_Y, num_classes=100)
else:
# Load the test batch of CIFAR-10
f = open(data_dir + CIFAR_10_DIR + '/test_batch', 'rb')
datadict = pickle.load(f)
f.close()
_X = datadict["data"]
_Y = np.array(datadict['labels'])
_Y = dense_to_one_hot(_Y, num_classes=10)
_X = np.array(_X, dtype=float) / 255.0
_X = _X.reshape([-1, 3, 32, 32])
_X = _X.transpose([0, 2, 3, 1])
x_test = _X
y_test = _Y
# Normalize the test set
x_test -= x_train_mean
dataset['test'].append(x_test)
dataset['test'].append(y_test)
dataset['test'].append(l)
return dataset
def _print_download_progress(count, block_size, total_size):
"""
Show the download progress of the cifar data
"""
pct_complete = float(count * block_size) / total_size
msg = "\r- Download progress: {0:.1%}".format(pct_complete)
sys.stdout.write(msg)
sys.stdout.flush()
def _cifar_maybe_download_and_extract(data_dir):
"""
Routine to download and extract the cifar dataset
Args:
data_dir Directory where the downloaded data will be stored
"""
cifar_10_directory = data_dir + CIFAR_10_DIR
cifar_100_directory = data_dir + CIFAR_100_DIR
# If the data_dir does not exist, create the directory and download
# the data
if not os.path.exists(data_dir):
os.makedirs(data_dir)
url = CIFAR_10_URL
filename = url.split('/')[-1]
file_path = os.path.join(data_dir, filename)
zip_cifar_10 = file_path
file_path, _ = urlretrieve(url=url, filename=file_path, reporthook=_print_download_progress)
print()
print("Download finished. Extracting files.")
if file_path.endswith(".zip"):
zipfile.ZipFile(file=file_path, mode="r").extractall(data_dir)
elif file_path.endswith((".tar.gz", ".tgz")):
tarfile.open(name=file_path, mode="r:gz").extractall(data_dir)
print("Done.")
url = CIFAR_100_URL
filename = url.split('/')[-1]
file_path = os.path.join(data_dir, filename)
zip_cifar_100 = file_path
file_path, _ = urlretrieve(url=url, filename=file_path, reporthook=_print_download_progress)
print()
print("Download finished. Extracting files.")
if file_path.endswith(".zip"):
zipfile.ZipFile(file=file_path, mode="r").extractall(data_dir)
elif file_path.endswith((".tar.gz", ".tgz")):
tarfile.open(name=file_path, mode="r:gz").extractall(data_dir)
print("Done.")
os.rename(data_dir + "/cifar-10-batches-py", cifar_10_directory)
os.rename(data_dir + "/cifar-100-python", cifar_100_directory)
os.remove(zip_cifar_10)
os.remove(zip_cifar_100)
#########################################
## MNIST Utils ##########################
#########################################
def reformat_mnist(datasets):
"""
Routine to Reformat the mnist dataset into a 3d tensor
"""
image_size = 28 # Height of MNIST dataset
num_channels = 1 # Gray scale
for i in range(len(datasets)):
sets = ["train", "validation", "test"]
for set_name in sets:
datasets[i]['%s'%set_name]['images'] = datasets[i]['%s'%set_name]['images'].reshape\
((-1, image_size, image_size, num_channels)).astype(np.float32)
return datasets
def construct_permute_mnist(num_tasks):
"""
Construct a dataset of permutted mnist images
Args:
num_tasks Number of tasks
Returns
dataset A permutted mnist dataset
"""
# Download and store mnist dataset
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
datasets = []
for i in range(num_tasks):
perm_inds = range(mnist.train.images.shape[1])
np.random.shuffle(perm_inds)
copied_mnist = deepcopy(mnist)
sets = ["train", "validation", "test"]
for set_name in sets:
this_set = getattr(copied_mnist, set_name) # shallow copy
this_set._images = np.transpose(np.array([this_set.images[:,c] for c in perm_inds]))
if set_name == "train":
train = {
'images':this_set._images,
'labels':this_set.labels,
}
elif set_name == "validation":
validation = {
'images':this_set._images,
'labels':this_set.labels,
}
elif set_name == "test":
test = {
'images':this_set._images,
'labels':this_set.labels,
}
dataset = {
'train': train,
'validation': validation,
'test': test,
}
datasets.append(dataset)
return datasets
def construct_split_mnist(task_labels):
"""
Construct a split mnist dataset
Args:
task_labels List of split labels
Returns:
dataset A list of split datasets
"""
# Download and store mnist dataset
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
datasets = []
sets = ["train", "validation", "test"]
for task in task_labels:
for set_name in sets:
this_set = getattr(mnist, set_name)
global_class_indices = np.column_stack(np.nonzero(this_set.labels))
count = 0
for cls in task:
if count == 0:
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] ==\
cls][:,np.array([True, False])])
else:
class_indices = np.append(class_indices, np.squeeze(global_class_indices[global_class_indices[:,1] ==\
cls][:,np.array([True, False])]))
count += 1
class_indices = np.sort(class_indices, axis=None)
if set_name == "train":
train = {
'images':deepcopy(mnist.train.images[class_indices, :]),
'labels':deepcopy(mnist.train.labels[class_indices, :]),
}
elif set_name == "validation":
validation = {
'images':deepcopy(mnist.validation.images[class_indices, :]),
'labels':deepcopy(mnist.validation.labels[class_indices, :]),
}
elif set_name == "test":
test = {
'images':deepcopy(mnist.test.images[class_indices, :]),
'labels':deepcopy(mnist.test.labels[class_indices, :]),
}
mnist2 = {
'train': train,
'validation': validation,
'test': test,
}
datasets.append(mnist2)
return datasets
###################################################
###### ImageNet Utils #############################
###################################################
def construct_split_imagenet(task_labels, data_dir):
"""
Construct Split ImageNet dataset
Args:
task_labels Labels of different tasks
data_dir Data directory from where to load the imagenet data
"""
# Load the imagenet dataset
imagenet_data = _load_imagenet(data_dir)
# Define a list for storing the data for different tasks
datasets = []
# Data splits
sets = ["train", "test"]
for task in task_labels:
for set_name in sets:
this_set = imagenet_data[set_name]
global_class_indices = np.column_stack(np.nonzero(this_set[1]))
count = 0
for cls in task:
if count == 0:
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] ==
cls][:,np.array([True, False])])
else:
class_indices = np.append(class_indices, np.squeeze(global_class_indices[global_class_indices[:,1] ==\
cls][:,np.array([True, False])]))
count += 1
class_indices = np.sort(class_indices, axis=None)
if set_name == "train":
train = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
elif set_name == "test":
test = {
'images':deepcopy(this_set[0][class_indices, :]),
'labels':deepcopy(this_set[1][class_indices, :]),
}
imagenet = {
'train': train,
'test': test,
}
datasets.append(imagenet)
return datasets
def _load_imagenet(data_dir):
"""
Load the ImageNet data
Args:
data_dir Directory where the pickle files have been dumped
"""
x_train = None
y_train = None
x_test = None
y_test = None
# Dictionary to store the dataset
dataset = dict()
dataset['train'] = []
dataset['test'] = []
def dense_to_one_hot(labels_dense, num_classes=100):
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
# Load the training batches
for i in range(4):
f = open(data_dir + '/train_batch_' + str(i), 'rb')
datadict = pickle.load(f)
f.close()
_X = datadict['data']
_Y = np.array(datadict['labels'])
# Convert the lables to one-hot
_Y = dense_to_one_hot(_Y)
# Normalize the images
_X = np.array(_X, dtype=float)/ 255.0
_X = _X.reshape([-1, 224, 224, 3])
if x_train is None:
x_train = _X
y_train = _Y
else:
x_train = np.concatenate((x_train, _X), axis=0)
y_train = np.concatenate((y_train, _Y), axis=0)
dataset['train'].append(x_train)
dataset['train'].append(y_train)
# Load test batches
for i in range(4):
f = open(data_dir + '/test_batch_' + str(i), 'rb')
datadict = pickle.load(f)
f.close()
_X = datadict['data']
_Y = np.array(datadict['labels'])
# Convert the lables to one-hot
_Y = dense_to_one_hot(_Y)
# Normalize the images
_X = np.array(_X, dtype=float)/ 255.0
_X = _X.reshape([-1, 224, 224, 3])
if x_test is None:
x_test = _X
y_test = _Y
else:
x_test = np.concatenate((x_test, _X), axis=0)
y_test = np.concatenate((y_test, _Y), axis=0)
dataset['test'].append(x_test)
dataset['test'].append(y_test)
return dataset
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Define some utility functions
"""
import numpy as np
import tensorflow as tf
def clone_variable_list(variable_list):
"""
Clone the variable list
"""
return [tf.identity(var) for var in variable_list]
def create_fc_layer(input, w, b, apply_relu=True):
"""
Construct a Fully Connected layer
Args:
w Weights
b Biases
apply_relu Apply relu (T/F)?
Returns:
Output of an FC layer
"""
with tf.name_scope('fc_layer'):
output = tf.matmul(input, w) + b
# Apply relu
if apply_relu:
output = tf.nn.relu(output)
return output
def create_conv_layer(input, w, b, stride=1, apply_relu=True):
"""
Construct a convolutional layer
Args:
w Weights
b Biases
pre_activations List where the pre_activations will be stored
apply_relu Apply relu (T/F)?
Returns:
Output of a conv layer
"""
with tf.name_scope('conv_layer'):
# Do the convolution operation
output = tf.nn.conv2d(input, w, [1, stride, stride, 1], padding='SAME') + b
# Apply relu
if apply_relu:
output = tf.nn.relu(output)
return output
def load_task_specific_data_in_proportion(datasets, task_labels, classes_appearing_in_tasks, class_seen_already):
"""
Loads task specific data from the datasets proportionate to classes appearing in different tasks
"""
global_class_indices = np.column_stack(np.nonzero(datasets['labels']))
count = 0
for cls in task_labels:
if count == 0:
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] == cls][:,np.array([True, False])])
total_class_instances = class_indices.size
num_instances_to_choose = total_class_instances // classes_appearing_in_tasks[cls]
offset = (class_seen_already[cls] - 1) * num_instances_to_choose
final_class_indices = class_indices[offset: offset+num_instances_to_choose]
else:
current_class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] == cls][:,np.array([True, False])])
total_class_instances = current_class_indices.size
num_instances_to_choose = total_class_instances // classes_appearing_in_tasks[cls]
offset = (class_seen_already[cls] - 1) * num_instances_to_choose
final_class_indices = np.append(final_class_indices, current_class_indices[offset: offset+num_instances_to_choose])
count += 1
final_class_indices = np.sort(final_class_indices, axis=None)
return datasets['images'][final_class_indices, :], datasets['labels'][final_class_indices, :]
def load_task_specific_data(datasets, task_labels):
"""
Loads task specific data from the datasets
"""
global_class_indices = np.column_stack(np.nonzero(datasets['labels']))
count = 0
for cls in task_labels:
if count == 0:
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] == cls][:,np.array([True, False])])
else:
class_indices = np.append(class_indices, np.squeeze(global_class_indices[global_class_indices[:,1] == cls][:,np.array([True, False])]))
count += 1
class_indices = np.sort(class_indices, axis=None)
return datasets['images'][class_indices, :], datasets['labels'][class_indices, :]
def samples_for_each_class(dataset_labels, task):
"""
Numbers of samples for each class in the task
Args:
dataset_labels Labels to count samples from
task Labels with in a task
Returns
"""
num_samples = np.zeros([len(task)], dtype=np.float32)
i = 0
for label in task:
global_class_indices = np.column_stack(np.nonzero(dataset_labels))
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] == label][:,np.array([True, False])])
class_indices = np.sort(class_indices, axis=None)
num_samples[i] = len(class_indices)
i += 1
return num_samples
def get_sample_weights(labels, tasks):
weights = np.zeros([labels.shape[0]], dtype=np.float32)
for label in tasks:
global_class_indices = np.column_stack(np.nonzero(labels))
class_indices = np.array(np.squeeze(global_class_indices[global_class_indices[:,1] == label][:,np.array([True, False])]))
total_class_samples = class_indices.shape[0]
weights[class_indices] = 1.0/ total_class_samples
# Rescale the weights such that min is 1. This will make the weights of less observed
# examples 1.
weights /= weights.min()
return weights
def update_episodic_memory_with_less_data(task_dataset, importance_array, total_mem_size, task, episodic_images, episodic_labels, task_labels=None, is_herding=False):
"""
Update the episodic memory when the task data is less than the memory size
Args:
Returns:
"""
num_examples_in_task = task_dataset['images'].shape[0]
# Empty spaces in the episodic memory
empty_spaces = np.sum(np.sum(episodic_labels, axis=1) == 0)
if empty_spaces >= num_examples_in_task:
# Find where the empty spaces are in order
empty_indices = np.where(np.sum(episodic_labels, axis=1) == 0)[0]
# Store the whole task data in the episodic memory
episodic_images[empty_indices[:num_examples_in_task]] = task_dataset['images']
episodic_labels[empty_indices[:num_examples_in_task]] = task_dataset['labels']
elif empty_spaces == 0:
# Compute the amount of space in the episodic memory for the new task
space_for_new_task = total_mem_size// (task + 1) # task 0, 1, ...
# Get the indices to update in the episodic memory
eps_mem_indices = np.random.choice(total_mem_size, space_for_new_task, replace=False) # Sample without replacement
# Get the indices of important samples from the task dataset
label_importance = importance_array + 1e-32
label_importance /= np.sum(label_importance) # Convert to a probability distribution
task_mem_indices = np.random.choice(num_examples_in_task, space_for_new_task, p=label_importance, replace=False) # Sample without replacement
# Update the episodic memory
episodic_images[eps_mem_indices] = task_dataset['images'][task_mem_indices]
episodic_labels[eps_mem_indices] = task_dataset['labels'][task_mem_indices]
else:
# When there is some free space but not enough to store the whole task
# Find where the empty spaces are in order
empty_indices = np.where(np.sum(episodic_labels, axis=1) == 0)[0]
# Store some of the examples from task in the memory
episodic_images[empty_indices] = task_dataset['images'][:len(empty_indices)]
episodic_labels[empty_indices] = task_dataset['labels'][:len(empty_indices)]
# Adjust the remanining samples in the episodic memory
space_for_new_task = (total_mem_size // (task + 1)) - len(empty_indices) # task 0, 1, ...
# Get the indices to update in the episodic memory
eps_mem_indices = np.random.choice((total_mem_size - len(empty_indices)), space_for_new_task, replace=False) # Sample without replacement
# Get the indices of important samples from the task dataset
label_importance = importance_array[len(empty_indices):] + 1e-32
label_importance /= np.sum(label_importance) # Convert to a probability distribution
updated_num_examples_in_task = num_examples_in_task - len(empty_indices)
task_mem_indices = np.random.choice(updated_num_examples_in_task, space_for_new_task, p=label_importance, replace=False) # Sample without replacement
task_mem_indices += len(empty_indices) # Add the offset
# Update the episodic memory
episodic_images[eps_mem_indices] = task_dataset['images'][task_mem_indices]
episodic_labels[eps_mem_indices] = task_dataset['labels'][task_mem_indices]
def update_episodic_memory(task_dataset, importance_array, total_mem_size, task, episodic_images, episodic_labels, task_labels=None, is_herding=False):
"""
Update the episodic memory with new task data
Args:
Reruns:
"""
num_examples_in_task = task_dataset['images'].shape[0]
# Compute the amount of space in the episodic memory for the new task
space_for_new_task = total_mem_size// (task + 1) # task 0, 1, ...
# Get the indices to update in the episodic memory
eps_mem_indices = np.random.choice(total_mem_size, space_for_new_task, replace=False) # Sample without replacement
if is_herding and task_labels is not None:
# Get the samples based on herding
imp_images, imp_labels = sample_from_dataset_icarl(task_dataset, importance_array, task_labels, space_for_new_task//len(task_labels))
episodic_images[eps_mem_indices[np.arange(imp_images.shape[0])]] = imp_images
episodic_labels[eps_mem_indices[np.arange(imp_images.shape[0])]] = imp_labels
else:
# Get the indices of important samples from the task dataset
label_importance = importance_array + 1e-32
label_importance /= np.sum(label_importance) # Convert to a probability distribution
task_mem_indices = np.random.choice(num_examples_in_task, space_for_new_task, p=label_importance, replace=False) # Sample without replacement
# Update the episodic memory
episodic_images[eps_mem_indices] = task_dataset['images'][task_mem_indices]
episodic_labels[eps_mem_indices] = task_dataset['labels'][task_mem_indices]
def sample_from_dataset(dataset, importance_array, task, samples_count, preds=None):
"""
Samples from a dataset based on a probability distribution
Args:
dataset Dataset to sample from
importance_array Importance scores (not necessarily have to be a prob distribution)
task Labels with in a task
samples_count Number of samples to return
Return:
images Important images
labels Important labels
"""
count = 0
# For each label in the task extract the important samples
for label in task:
global_class_indices = np.column_stack(np.nonzero(dataset['labels']))
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] == label][:,np.array([True, False])])
class_indices = np.sort(class_indices, axis=None)
if (preds is not None):
# Find the indices where prediction match the correct label
pred_indices = np.where(preds == label)[0]
# Find the correct prediction indices
correct_pred_indices = np.intersect1d(pred_indices, class_indices)
else:
correct_pred_indices = class_indices
# Extract the importance for the label
label_importance = importance_array[correct_pred_indices] + 1e-32
label_importance /= np.sum(label_importance)
actual_samples_count = min(samples_count, np.count_nonzero(label_importance))
#print('Storing {} samples from {} class'.format(actual_samples_count, label))
# If no samples are correctly classified then skip saving the samples
if (actual_samples_count != 0):
# Extract the important indices
imp_indices = np.random.choice(correct_pred_indices, actual_samples_count, p=label_importance, replace=False)
if count == 0:
images = dataset['images'][imp_indices]
labels = dataset['labels'][imp_indices]
else:
images = np.vstack((images, dataset['images'][imp_indices]))
labels = np.vstack((labels, dataset['labels'][imp_indices]))
count += 1
if count != 0:
return images, labels
else:
return None, None
def concatenate_datasets(current_images, current_labels, prev_images, prev_labels):
"""
Concatnates current dataset with the previous one. This will be used for
adding important samples from the previous datasets
Args:
current_images Images of current dataset
current_labels Labels of current dataset
prev_images List containing images of previous datasets
prev_labels List containing labels of previous datasets
Returns:
images Concatenated images
labels Concatenated labels
"""
"""
images = current_images
labels = current_labels
for i in range(len(prev_images)):
images = np.vstack((images, prev_images[i]))
labels = np.vstack((labels, prev_labels[i]))
"""
images = np.concatenate((current_images, prev_images), axis=0)
labels = np.concatenate((current_labels, prev_labels), axis=0)
return images, labels
def sample_from_dataset_icarl(dataset, features, task, samples_count, preds=None):
"""
Samples from a dataset based on a icarl - mean of features
Args:
dataset Dataset to sample from
features Features - activation before the last layer
task Labels with in a task
samples_count Number of samples to return
Return:
images Important images
labels Important labels
"""
print('Herding based sampling!')
#samples_count = min(samples_count, dataset['images'].shape[0])
count = 0
# For each label in the task extract the important samples
for label in task:
global_class_indices = np.column_stack(np.nonzero(dataset['labels']))
class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] == label][:,np.array([True, False])])
class_indices = np.sort(class_indices, axis=None)
if (preds is not None):
# Find the indices where prediction match the correct label
pred_indices = np.where(preds == label)[0]
# Find the correct prediction indices
correct_pred_indices = np.intersect1d(pred_indices, class_indices)
else:
correct_pred_indices = class_indices
mean_feature = np.mean(features[correct_pred_indices, :], axis=0)
actual_samples_count = min(samples_count, len(correct_pred_indices))
# If no samples are correctly classified then skip saving the samples
imp_indices = np.zeros(actual_samples_count, dtype=np.int32)
sample_sum= np.zeros(mean_feature.shape)
if (actual_samples_count != 0):
# Extract the important indices
for i in range(actual_samples_count):
sample_mean = (features[correct_pred_indices, :] +
np.tile(sample_sum, [len(correct_pred_indices),1]))/ float(i + 1)
norm_distance = np.linalg.norm((np.tile(mean_feature, [len(correct_pred_indices),1])
- sample_mean), ord=2, axis=1)
imp_indices[i] = correct_pred_indices[np.argmin(norm_distance)]
sample_sum = sample_sum + features[imp_indices[i], :]
if count == 0:
images = dataset['images'][imp_indices]
labels = dataset['labels'][imp_indices]
else:
images = np.vstack((images, dataset['images'][imp_indices]))
labels = np.vstack((labels, dataset['labels'][imp_indices]))
count += 1
if count != 0:
return images, labels
else:
return None, None
def average_acc_stats_across_runs(data, key):
"""
Compute the average accuracy statistics (mean and std) across runs
"""
num_runs = data.shape[0]
avg_acc = np.zeros(num_runs)
for i in range(num_runs):
avg_acc[i] = np.mean(data[i][-1])
return avg_acc.mean()*100, avg_acc.std()*100
def average_fgt_stats_across_runs(data, key):
"""
Compute the forgetting statistics (mean and std) across runs
"""
num_runs = data.shape[0]
fgt = np.zeros(num_runs)
wst_fgt = np.zeros(num_runs)
for i in range(num_runs):
fgt[i] = compute_fgt(data[i])
return fgt.mean(), fgt.std()
def compute_fgt(data):
"""
Given a TxT data matrix, compute average forgetting at T-th task
"""
num_tasks = data.shape[0]
T = num_tasks - 1
fgt = 0.0
for i in range(T):
fgt += np.max(data[:T,i]) - data[T, i]
avg_fgt = fgt/ float(num_tasks - 1)
return avg_fgt
def update_reservior(current_image, current_label, episodic_images, episodic_labels, M, N):
"""
Update the episodic memory with current example using the reservior sampling
"""
if M > N:
episodic_images[N] = current_image
episodic_labels[N] = current_label
else:
j = np.random.randint(0, N)
if j < M:
episodic_images[j] = current_image
episodic_labels[j] = current_label
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Define some utility functions
"""
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.colors as colors
import matplotlib.cm as cmx
import matplotlib.pyplot as plt
import matplotlib.figure as figure
from six.moves import cPickle as pickle
def snapshot_experiment_eval(logdir, experiment_id, data):
"""
Store the output of the experiment in a file
"""
snapshot_file = logdir + '/' + experiment_id + '.pickle'
with open(snapshot_file, 'wb') as f:
pickle.dump(data, f)
print('Experimental Eval has been snapshotted to %s!'%(snapshot_file))
def snapshot_task_labels(logdir, experiment_id, data):
"""
Store the output of the experiment in a file
"""
snapshot_file = logdir + '/' + experiment_id + '_task_labels.pickle'
with open(snapshot_file, 'wb') as f:
pickle.dump(data, f)
print('Experimental Eval has been snapshotted to %s!'%(snapshot_file))
def snapshot_experiment_meta_data(logdir, experiment_id, exper_meta_data):
"""
Store the meta-data of the experiment in a file
"""
meta_file = logdir + '/' + experiment_id + '.txt'
with open(meta_file, 'wb') as f:
for key in exper_meta_data:
print('{}: {}'.format(key, exper_meta_data[key]))
f.write('{}:{} \n'.format(key, exper_meta_data[key]))
print('Experimental meta-data has been snapshotted to %s!'%(meta_file))
def plot_acc_multiple_runs(data, task_labels, valid_measures, n_stats, plot_name=None):
"""
Plots the accuracies
Args:
task_labels List of tasks
n_stats Number of runs
plot_name Name of the file where the plot will be saved
Returns:
"""
n_tasks = len(task_labels)
plt.figure(figsize=(14, 3))
axs = [plt.subplot(1,n_tasks+1,1)]
for i in range(1, n_tasks + 1):
axs.append(plt.subplot(1, n_tasks+1, i+1, sharex=axs[0], sharey=axs[0]))
fmt_chars = ['o', 's', 'd']
fmts = []
for i in range(len(valid_measures)):
fmts.append(fmt_chars[i%len(fmt_chars)])
plot_keys = sorted(data['mean'].keys())
for k, cval in enumerate(plot_keys):
label = "c=%g"%cval
mean_vals = data['mean'][cval]
std_vals = data['std'][cval]
for j in range(n_tasks+1):
plt.sca(axs[j])
errorbar_kwargs = dict(fmt="%s-"%fmts[k], markersize=5)
if j < n_tasks:
norm= np.sqrt(n_stats) # np.sqrt(n_stats) for SEM or 1 for STDEV
axs[j].errorbar(np.arange(n_tasks)+1, mean_vals[:, j], yerr=std_vals[:, j]/norm, label=label, **errorbar_kwargs)
else:
mean_stuff = []
std_stuff = []
for i in range(len(data['mean'][cval])):
mean_stuff.append(data['mean'][cval][i][:i+1].mean())
std_stuff.append(np.sqrt((data['std'][cval][i][:i+1]**2).sum())/(n_stats*np.sqrt(n_stats)))
plt.errorbar(range(1,n_tasks+1), mean_stuff, yerr=std_stuff, label="%s"%valid_measures[k], **errorbar_kwargs)
plt.xticks(np.arange(n_tasks)+1)
plt.xlim((1.0,5.5))
"""
# Uncomment this if clutter along y-axis needs to be removed
if j == 0:
axs[j].set_yticks([0.5,1])
else:
plt.setp(axs[j].get_yticklabels(), visible=False)
plt.ylim((0.45,1.1))
"""
for i, ax in enumerate(axs):
if i < n_tasks:
ax.set_title((['Task %d (%d to %d)'%(j+1,task_labels[j][0], task_labels[j][-1])\
for j in range(n_tasks)] + ['average'])[i], fontsize=8)
else:
ax.set_title("Average", fontsize=8)
ax.axhline(0.5, color='k', linestyle=':', label="chance", zorder=0)
handles, labels = axs[-1].get_legend_handles_labels()
# Reorder legend so chance is last
axs[-1].legend([handles[j] for j in [i for i in range(len(valid_measures)+1)]],
[labels[j] for j in [i for i in range(len(valid_measures)+1)]], loc='best', fontsize=6)
axs[0].set_xlabel("Tasks")
axs[0].set_ylabel("Accuracy")
plt.gcf().tight_layout()
plt.grid('on')
if plot_name == None:
plt.show()
else:
plt.savefig(plot_name)
def plot_histogram(data, n_bins=10, plot_name='my_hist'):
plt.hist(data, bins=n_bins)
plt.savefig(plot_name)
plt.close()
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .model import Model
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Model defintion
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from IPython import display
from utils import clone_variable_list, create_fc_layer, create_conv_layer
from utils.resnet_utils import _conv, _fc, _bn, _residual_block, _residual_block_first
from utils.vgg_utils import vgg_conv_layer, vgg_fc_layer
PARAM_XI_STEP = 1e-3
NEG_INF = -1e32
EPSILON = 1e-32
HYBRID_ALPHA = 0.5
TRAIN_ENTROPY_BASED_SUM = False
def weight_variable(shape, name='fc', init_type='default'):
"""
Define weight variables
Args:
shape Shape of the bias variable tensor
Returns:
A tensor of size shape initialized from a random normal
"""
with tf.variable_scope(name):
if init_type == 'default':
weights = tf.get_variable('weights', shape, tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.1))
#weights = tf.Variable(tf.truncated_normal(shape, stddev=0.1), name='weights')
elif init_type == 'zero':
weights = tf.get_variable('weights', shape, tf.float32, initializer=tf.constant_initializer(0.1))
#weights = tf.Variable(tf.constant(0.1, shape=shape, dtype=np.float32), name='weights')
return weights
def bias_variable(shape, name='fc'):
"""
Define bias variables
Args:
shape Shape of the bias variable tensor
Returns:
A tensor of size shape initialized from a constant
"""
with tf.variable_scope(name):
biases = tf.get_variable('biases', shape, initializer=tf.constant_initializer(0.1))
return biases
#return tf.Variable(tf.constant(0.1, shape=shape, dtype=np.float32), name='biases') #TODO: Should we initialize it from 0
class Model:
"""
A class defining the model
"""
def __init__(self, x_train, y_, num_tasks, opt, imp_method, synap_stgth, fisher_update_after, fisher_ema_decay, network_arch='FC-S',
is_ATT_DATASET=False, x_test=None, attr=None):
"""
Instantiate the model
"""
# Define some placeholders which are used to feed the data to the model
self.y_ = y_
if imp_method == 'PNN':
self.train_phase = []
self.total_classes = int(self.y_[0].get_shape()[1])
self.train_phase = [tf.placeholder(tf.bool, name='train_phase_%d'%(i)) for i in range(num_tasks)]
self.output_mask = [tf.placeholder(dtype=tf.float32, shape=[self.total_classes]) for i in range(num_tasks)]
else:
self.total_classes = int(self.y_.get_shape()[1])
self.train_phase = tf.placeholder(tf.bool, name='train_phase')
if (imp_method == 'A-GEM' or imp_method == 'ER') and 'FC-' not in network_arch: # Only for Split-X setups
self.output_mask = [tf.placeholder(dtype=tf.float32, shape=[self.total_classes]) for i in range(num_tasks)]
self.mem_batch_size = tf.placeholder(dtype=tf.float32, shape=())
else:
self.output_mask = tf.placeholder(dtype=tf.float32, shape=[self.total_classes])
self.sample_weights = tf.placeholder(tf.float32, shape=[None])
self.task_id = tf.placeholder(dtype=tf.int32, shape=())
self.store_grad_batches = tf.placeholder(dtype=tf.float32, shape=())
self.keep_prob = tf.placeholder(dtype=tf.float32, shape=())
self.train_samples = tf.placeholder(dtype=tf.float32, shape=())
self.training_iters = tf.placeholder(dtype=tf.float32, shape=())
self.train_step = tf.placeholder(dtype=tf.float32, shape=())
self.violation_count = tf.Variable(0, dtype=tf.float32, trainable=False)
self.is_ATT_DATASET = is_ATT_DATASET # To use a different (standard one) ResNet-18 for CUB
if x_test is not None:
# If CUB datatset then use augmented x (x_train) for training and non-augmented x (x_test) for testing
self.x = tf.cond(self.train_phase, lambda: tf.identity(x_train), lambda: tf.identity(x_test))
train_shape = x_train.get_shape().as_list()
x = tf.reshape(self.x, [-1, train_shape[1], train_shape[2], train_shape[3]])
else:
# We don't use data augmentation for other datasets
self.x = x_train
x = self.x
# Class attributes for zero shot transfer
self.class_attr = attr
if self.class_attr is not None:
self.attr_dims = int(self.class_attr.get_shape()[1])
# Save the arguments passed from the main script
self.opt = opt
self.num_tasks = num_tasks
self.imp_method = imp_method
self.fisher_update_after = fisher_update_after
self.fisher_ema_decay = fisher_ema_decay
self.network_arch = network_arch
# A scalar variable for previous syanpse strength
self.synap_stgth = tf.constant(synap_stgth, shape=[1], dtype=tf.float32)
self.triplet_loss_scale = 2.1
# Define different variables
self.weights_old = []
self.star_vars = []
self.small_omega_vars = []
self.big_omega_vars = []
self.big_omega_riemann_vars = []
self.fisher_diagonal_at_minima = []
self.hebbian_score_vars = []
self.running_fisher_vars = []
self.tmp_fisher_vars = []
self.max_fisher_vars = []
self.min_fisher_vars = []
self.max_score_vars = []
self.min_score_vars = []
self.normalized_score_vars = []
self.score_vars = []
self.normalized_fisher_at_minima_vars = []
self.weights_delta_old_vars = []
self.ref_grads = []
self.projected_gradients_list = []
if self.class_attr is not None:
self.loss_and_train_ops_for_attr_vector(x, self.y_)
else:
self.loss_and_train_ops_for_one_hot_vector(x, self.y_)
# Set the operations to reset the optimier when needed
self.reset_optimizer_ops()
####################################################################################
#### Internal APIs of the class. These should not be called/ exposed externally ####
####################################################################################
def loss_and_train_ops_for_one_hot_vector(self, x, y_):
"""
Loss and training operations for the training of one-hot vector based classification model
"""
# Define approproate network
if self.network_arch == 'FC-S':
input_dim = int(x.get_shape()[1])
layer_dims = [input_dim, 256, 256, self.total_classes]
if self.imp_method == 'PNN':
self.task_logits = []
self.task_pruned_logits = []
self.unweighted_entropy = []
for i in range(self.num_tasks):
if i == 0:
self.task_logits.append(self.init_fc_column_progNN(layer_dims, x))
self.task_pruned_logits.append(tf.where(tf.tile(tf.equal(self.output_mask[i][None,:], 1.0), [tf.shape(self.task_logits[i])[0], 1]), self.task_logits[i], NEG_INF*tf.ones_like(self.task_logits[i])))
self.unweighted_entropy.append(tf.squeeze(tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_[i], logits=self.task_pruned_logits[i])))) # mult by mean(y_[i]) puts unwaranted loss to 0
else:
self.task_logits.append(self.extensible_fc_column_progNN(layer_dims, x, i))
self.task_pruned_logits.append(tf.where(tf.tile(tf.equal(self.output_mask[i][None,:], 1.0), [tf.shape(self.task_logits[i])[0], 1]), self.task_logits[i], NEG_INF*tf.ones_like(self.task_logits[i])))
self.unweighted_entropy.append(tf.squeeze(tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_[i], logits=self.task_pruned_logits[i])))) # mult by mean(y_[i]) puts unwaranted loss to 0
else:
self.fc_variables(layer_dims)
logits = self.fc_feedforward(x, self.weights, self.biases)
elif self.network_arch == 'FC-B':
input_dim = int(x.get_shape()[1])
layer_dims = [input_dim, 2000, 2000, self.total_classes]
self.fc_variables(layer_dims)
logits = self.fc_feedforward(x, self.weights, self.biases)
elif self.network_arch == 'CNN':
num_channels = int(x.get_shape()[-1])
self.image_size = int(x.get_shape()[1])
kernels = [3, 3, 3, 3, 3]
depth = [num_channels, 32, 32, 64, 64, 512]
self.conv_variables(kernels, depth)
logits = self.conv_feedforward(x, self.weights, self.biases, apply_dropout=True)
elif self.network_arch == 'VGG':
# VGG-16
logits = self.vgg_16_conv_feedforward(x)
elif 'RESNET-' in self.network_arch:
if self.network_arch == 'RESNET-S':
# Same resnet-18 as used in GEM paper
kernels = [3, 3, 3, 3, 3]
filters = [20, 20, 40, 80, 160]
strides = [1, 0, 2, 2, 2]
elif self.network_arch == 'RESNET-B':
# Standard ResNet-18
kernels = [7, 3, 3, 3, 3]
filters = [64, 64, 128, 256, 512]
strides = [2, 0, 2, 2, 2]
if self.imp_method == 'PNN':
self.task_logits = []
self.task_pruned_logits = []
self.unweighted_entropy = []
for i in range(self.num_tasks):
if i == 0:
self.task_logits.append(self.init_resent_column_progNN(x, kernels, filters, strides))
else:
self.task_logits.append(self.extensible_resnet_column_progNN(x, kernels, filters, strides, i))
self.task_pruned_logits.append(tf.where(tf.tile(tf.equal(self.output_mask[i][None,:], 1.0), [tf.shape(self.task_logits[i])[0], 1]), self.task_logits[i], NEG_INF*tf.ones_like(self.task_logits[i])))
self.unweighted_entropy.append(tf.squeeze(tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_[i], logits=self.task_pruned_logits[i]))))
elif self.imp_method == 'A-GEM' or self.imp_method == 'ER':
logits = self.resnet18_conv_feedforward(x, kernels, filters, strides)
self.task_pruned_logits = []
self.unweighted_entropy = []
for i in range(self.num_tasks):
self.task_pruned_logits.append(tf.where(tf.tile(tf.equal(self.output_mask[i][None,:], 1.0), [tf.shape(logits)[0], 1]), logits, NEG_INF*tf.ones_like(logits)))
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=self.task_pruned_logits[i])
adjusted_entropy = tf.reduce_sum(tf.cast(tf.tile(tf.equal(self.output_mask[i][None,:], 1.0), [tf.shape(y_)[0], 1]), dtype=tf.float32) * y_, axis=1) * cross_entropy
self.unweighted_entropy.append(tf.reduce_sum(adjusted_entropy)) # We will average it later on
else:
logits = self.resnet18_conv_feedforward(x, kernels, filters, strides)
# Prune the predictions to only include the classes for which
# the training data is present
if (self.imp_method != 'PNN') and ((self.imp_method != 'A-GEM' and self.imp_method != 'ER') or 'FC-' in self.network_arch):
self.pruned_logits = tf.where(tf.tile(tf.equal(self.output_mask[None,:], 1.0), [tf.shape(logits)[0], 1]), logits, NEG_INF*tf.ones_like(logits))
# Create list of variables for storing different measures
# Note: This method has to be called before calculating fisher
# or any other importance measure
self.init_vars()
# Different entropy measures/ loss definitions
if (self.imp_method != 'PNN') and ((self.imp_method != 'A-GEM' and self.imp_method != 'ER') or 'FC-' in self.network_arch):
self.mse = 2.0*tf.nn.l2_loss(self.pruned_logits) # tf.nn.l2_loss computes sum(T**2)/ 2
self.weighted_entropy = tf.reduce_mean(tf.losses.softmax_cross_entropy(y_,
self.pruned_logits, self.sample_weights, reduction=tf.losses.Reduction.NONE))
self.unweighted_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_,
logits=self.pruned_logits))
# Create operations for loss and gradient calculation
self.loss_and_gradients(self.imp_method)
if self.imp_method != 'PNN':
# Store the current weights before doing a train step
self.get_current_weights()
# For GEM variants train ops will be defined later
if 'GEM' not in self.imp_method:
# Define the training operation here as Pathint ops depend on the train ops
self.train_op()
# Create operations to compute importance depending on the importance methods
if self.imp_method == 'EWC':
self.create_fisher_ops()
elif self.imp_method == 'M-EWC':
self.create_fisher_ops()
self.create_pathint_ops()
self.combined_fisher_pathint_ops()
elif self.imp_method == 'PI':
self.create_pathint_ops()
elif self.imp_method == 'RWALK':
self.create_fisher_ops()
self.create_pathint_ops()
elif self.imp_method == 'MAS':
self.create_hebbian_ops()
elif self.imp_method == 'A-GEM' or self.imp_method == 'S-GEM':
self.create_stochastic_gem_ops()
if self.imp_method != 'PNN':
# Create weight save and store ops
self.weights_store_ops()
# Summary operations for visualization
tf.summary.scalar("unweighted_entropy", self.unweighted_entropy)
for v in self.trainable_vars:
tf.summary.histogram(v.name.replace(":", "_"), v)
self.merged_summary = tf.summary.merge_all()
# Accuracy measure
if (self.imp_method == 'PNN') or ((self.imp_method == 'A-GEM' or self.imp_method == 'ER') and 'FC-' not in self.network_arch):
self.correct_predictions = []
self.accuracy = []
for i in range(self.num_tasks):
if self.imp_method == 'PNN':
self.correct_predictions.append(tf.equal(tf.argmax(self.task_pruned_logits[i], 1), tf.argmax(y_[i], 1)))
else:
self.correct_predictions.append(tf.equal(tf.argmax(self.task_pruned_logits[i], 1), tf.argmax(y_, 1)))
self.accuracy.append(tf.reduce_mean(tf.cast(self.correct_predictions[i], tf.float32)))
else:
self.correct_predictions = tf.equal(tf.argmax(self.pruned_logits, 1), tf.argmax(y_, 1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_predictions, tf.float32))
def loss_and_train_ops_for_attr_vector(self, x, y_):
"""
Loss and training operations for the training of joined embedding model
"""
# Define approproate network
if self.network_arch == 'FC-S':
input_dim = int(x.get_shape()[1])
layer_dims = [input_dim, 256, 256, self.total_classes]
self.fc_variables(layer_dims)
logits = self.fc_feedforward(x, self.weights, self.biases)
elif self.network_arch == 'FC-B':
input_dim = int(x.get_shape()[1])
layer_dims = [input_dim, 2000, 2000, self.total_classes]
self.fc_variables(layer_dims)
logits = self.fc_feedforward(x, self.weights, self.biases)
elif self.network_arch == 'CNN':
num_channels = int(x.get_shape()[-1])
self.image_size = int(x.get_shape()[1])
kernels = [3, 3, 3, 3, 3]
depth = [num_channels, 32, 32, 64, 64, 512]
self.conv_variables(kernels, depth)
logits = self.conv_feedforward(x, self.weights, self.biases, apply_dropout=True)
elif self.network_arch == 'VGG':
# VGG-16
phi_x = self.vgg_16_conv_feedforward(x)
elif self.network_arch == 'RESNET-S':
# Standard ResNet-18
kernels = [3, 3, 3, 3, 3]
filters = [20, 20, 40, 80, 160]
strides = [1, 0, 2, 2, 2]
# Get the image features
phi_x = self.resnet18_conv_feedforward(x, kernels, filters, strides)
elif self.network_arch == 'RESNET-B':
# Standard ResNet-18
kernels = [7, 3, 3, 3, 3]
filters = [64, 64, 128, 256, 512]
strides = [2, 0, 2, 2, 2]
# Get the image features
phi_x = self.resnet18_conv_feedforward(x, kernels, filters, strides)
# Get the attributes embedding
attr_embed = self.get_attribute_embedding(self.class_attr) # Does not contain biases yet, Dimension: TOTAL_CLASSES x image_feature_dim
# Add the biases now
last_layer_biases = bias_variable([self.total_classes], name='attr_embed_b')
self.trainable_vars.append(last_layer_biases)
# Now that we have all the trainable variables, initialize the different book keeping variables
# Note: This method has to be called before calculating fisher
# or any other importance measure
self.init_vars()
# Compute the logits for the ZST case
zst_logits = tf.matmul(phi_x, tf.transpose(attr_embed)) + last_layer_biases
# Prune the predictions to only include the classes for which
# the training data is present
if self.imp_method == 'A-GEM':
pruned_zst_logits = []
self.unweighted_entropy = []
for i in range(self.num_tasks):
pruned_zst_logits.append(tf.where(tf.tile(tf.equal(self.output_mask[i][None,:], 1.0), [tf.shape(zst_logits)[0], 1]), zst_logits, NEG_INF*tf.ones_like(zst_logits)))
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=pruned_zst_logits[i])
adjusted_entropy = tf.reduce_sum(tf.cast(tf.tile(tf.equal(self.output_mask[i][None,:], 1.0), [tf.shape(y_)[0], 1]), dtype=tf.float32) * y_, axis=1) * cross_entropy
self.unweighted_entropy.append(tf.reduce_sum(adjusted_entropy))
else:
pruned_zst_logits = tf.where(tf.tile(tf.equal(self.output_mask[None,:], 1.0),
[tf.shape(zst_logits)[0], 1]), zst_logits, NEG_INF*tf.ones_like(zst_logits))
self.unweighted_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=pruned_zst_logits))
self.mse = 2.0*tf.nn.l2_loss(pruned_zst_logits) # tf.nn.l2_loss computes sum(T**2)/ 2
# Create operations for loss and gradient calculation
self.loss_and_gradients(self.imp_method)
# Store the current weights before doing a train step
self.get_current_weights()
if 'GEM' not in self.imp_method:
self.train_op()
# Create operations to compute importance depending on the importance methods
if self.imp_method == 'EWC':
self.create_fisher_ops()
elif self.imp_method == 'M-EWC':
self.create_fisher_ops()
self.create_pathint_ops()
self.combined_fisher_pathint_ops()
elif self.imp_method == 'PI':
self.create_pathint_ops()
elif self.imp_method == 'RWALK':
self.create_fisher_ops()
self.create_pathint_ops()
elif self.imp_method == 'MAS':
self.create_hebbian_ops()
elif (self.imp_method == 'A-GEM') or (self.imp_method == 'S-GEM'):
self.create_stochastic_gem_ops()
# Create weight save and store ops
self.weights_store_ops()
# Summary operations for visualization
tf.summary.scalar("triplet_loss", self.unweighted_entropy)
for v in self.trainable_vars:
tf.summary.histogram(v.name.replace(":", "_"), v)
self.merged_summary = tf.summary.merge_all()
# Accuracy measure
if self.imp_method == 'A-GEM' and 'FC-' not in self.network_arch:
self.correct_predictions = []
self.accuracy = []
for i in range(self.num_tasks):
self.correct_predictions.append(tf.equal(tf.argmax(pruned_zst_logits[i], 1), tf.argmax(y_, 1)))
self.accuracy.append(tf.reduce_mean(tf.cast(self.correct_predictions[i], tf.float32)))
else:
self.correct_predictions = tf.equal(tf.argmax(pruned_zst_logits, 1), tf.argmax(y_, 1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_predictions, tf.float32))
def init_fc_column_progNN(self, layer_dims, h, apply_dropout=False):
"""
Defines the first column of Progressive NN - FC Networks
"""
self.trainable_vars = []
self.h_pnn = []
self.trainable_vars.append([])
self.h_pnn.append([])
self.h_pnn[0].append(h)
for i in range(len(layer_dims)-1):
w = weight_variable([layer_dims[i], layer_dims[i+1]], name='fc_w_%d_t0'%(i))
b = bias_variable([layer_dims[i+1]], name='fc_b_%d_t0'%(i))
self.trainable_vars[0].append(w)
self.trainable_vars[0].append(b)
if i == len(layer_dims) - 2:
# Last layer (logits) - don't apply the relu
h = create_fc_layer(h, w, b, apply_relu=False)
else:
h = create_fc_layer(h, w, b)
if apply_dropout:
h = tf.nn.dropout(h, 1)
self.h_pnn[0].append(h)
return h
def extensible_fc_column_progNN(self, layer_dims, h, task, apply_dropout=False):
"""
Define the subsequent columns of the progressive NN - FC Networks
"""
self.trainable_vars.append([])
self.h_pnn.append([])
self.h_pnn[task].append(h)
for i in range(len(layer_dims)-1):
w = weight_variable([layer_dims[i], layer_dims[i+1]], name='fc_w_%d_t%d'%(i, task))
b = bias_variable([layer_dims[i+1]], name='fc_b_%d_t%d'%(i, task))
self.trainable_vars[task].append(w)
self.trainable_vars[task].append(b)
preactivation = create_fc_layer(h, w, b, apply_relu=False)
for tt in range(task):
U_w = weight_variable([layer_dims[i], layer_dims[i+1]], name='fc_uw_%d_t%d_tt%d'%(i, task, tt))
U_b = bias_variable([layer_dims[i+1]], name='fc_ub_%d_t%d_tt%d'%(i, task, tt))
self.trainable_vars[task].append(U_w)
self.trainable_vars[task].append(U_b)
preactivation += create_fc_layer(self.h_pnn[tt][i], U_w, U_b, apply_relu=False)
if i == len(layer_dims) - 2:
# Last layer (logits) - don't apply the relu
h = preactivation
else:
# layer < last layer, apply relu
h = tf.nn.relu(preactivation)
if apply_dropout:
h = tf.nn.dropout(h)
self.h_pnn[task].append(h)
return h
def init_resent_column_progNN(self, x, kernels, filters, strides):
"""
Defines the first column of Progressive NN - ResNet-18
"""
self.trainable_vars = []
self.h_pnn = []
self.trainable_vars.append([])
self.h_pnn.append([])
self.h_pnn[0].append(x)
# Conv1
h = _conv(x, kernels[0], filters[0], strides[0], self.trainable_vars[0], name='conv_1_t0')
h = _bn(h, self.trainable_vars[0], self.train_phase[0], name='bn_1_t0')
h = tf.nn.relu(h)
self.h_pnn[0].append(h)
# Conv2_x
h = _residual_block(h, self.trainable_vars[0], self.train_phase[0], name='conv2_1_t0')
h = _residual_block(h, self.trainable_vars[0], self.train_phase[0], name='conv2_2_t0')
self.h_pnn[0].append(h)
# Conv3_x
h = _residual_block_first(h, filters[2], strides[2], self.trainable_vars[0], self.train_phase[0], name='conv3_1_t0', is_ATT_DATASET=self.is_ATT_DATASET)
h = _residual_block(h, self.trainable_vars[0], self.train_phase[0], name='conv3_2_t0')
self.h_pnn[0].append(h)
# Conv4_x
h = _residual_block_first(h, filters[3], strides[3], self.trainable_vars[0], self.train_phase[0], name='conv4_1_t0', is_ATT_DATASET=self.is_ATT_DATASET)
h = _residual_block(h, self.trainable_vars[0], self.train_phase[0], name='conv4_2_t0')
self.h_pnn[0].append(h)
# Conv5_x
h = _residual_block_first(h, filters[4], strides[4], self.trainable_vars[0], self.train_phase[0], name='conv5_1_t0', is_ATT_DATASET=self.is_ATT_DATASET)
h = _residual_block(h, self.trainable_vars[0], self.train_phase[0], name='conv5_2_t0')
self.h_pnn[0].append(h)
# Apply average pooling
h = tf.reduce_mean(h, [1, 2])
if self.network_arch == 'RESNET-S':
logits = _fc(h, self.total_classes, self.trainable_vars[0], name='fc_1_t0', is_cifar=True)
else:
logits = _fc(h, self.total_classes, self.trainable_vars[0], name='fc_1_t0')
self.h_pnn[0].append(logits)
return logits
def extensible_resnet_column_progNN(self, x, kernels, filters, strides, task):
"""
Define the subsequent columns of the progressive NN - ResNet-18
"""
self.trainable_vars.append([])
self.h_pnn.append([])
self.h_pnn[task].append(x)
# Conv1
h = _conv(x, kernels[0], filters[0], strides[0], self.trainable_vars[task], name='conv_1_t%d'%(task))
h = _bn(h, self.trainable_vars[task], self.train_phase[task], name='bn_1_t%d'%(task))
# Add lateral connections
for tt in range(task):
U_w = weight_variable([1, 1, self.h_pnn[tt][0].get_shape().as_list()[-1], h.get_shape().as_list()[-1]], name='conv_1_w_t%d_tt%d'%(task, tt))
U_b = bias_variable([h.get_shape().as_list()[-1]], name='conv_1_b_t%d_tt%d'%(task, tt))
self.trainable_vars[task].append(U_w)
self.trainable_vars[task].append(U_b)
h += create_conv_layer(self.h_pnn[tt][0], U_w, U_b, apply_relu=False)
h = tf.nn.relu(h)
self.h_pnn[task].append(h)
# Conv2_x
h = _residual_block(h, self.trainable_vars[task], self.train_phase[task], name='conv2_1_t%d'%(task))
h = _residual_block(h, self.trainable_vars[task], self.train_phase[task], apply_relu=False, name='conv2_2_t%d'%(task))
# Add lateral connections
for tt in range(task):
U_w = weight_variable([1, 1, self.h_pnn[tt][1].get_shape().as_list()[-1], h.get_shape().as_list()[-1]], name='conv_2_w_t%d_tt%d'%(task, tt))
U_b = bias_variable([h.get_shape().as_list()[-1]], name='conv_2_b_t%d_tt%d'%(task, tt))
self.trainable_vars[task].append(U_w)
self.trainable_vars[task].append(U_b)
h += create_conv_layer(self.h_pnn[tt][1], U_w, U_b, apply_relu=False)
h = tf.nn.relu(h)
self.h_pnn[task].append(h)
# Conv3_x
h = _residual_block_first(h, filters[2], strides[2], self.trainable_vars[task], self.train_phase[task], name='conv3_1_t%d'%(task), is_ATT_DATASET=self.is_ATT_DATASET)
h = _residual_block(h, self.trainable_vars[task], self.train_phase[task], apply_relu=False, name='conv3_2_t%d'%(task))
# Add lateral connections
for tt in range(task):
U_w = weight_variable([1, 1, self.h_pnn[tt][2].get_shape().as_list()[-1], h.get_shape().as_list()[-1]], name='conv_3_w_t%d_tt%d'%(task, tt))
U_b = bias_variable([h.get_shape().as_list()[-1]], name='conv_3_b_t%d_tt%d'%(task, tt))
self.trainable_vars[task].append(U_w)
self.trainable_vars[task].append(U_b)
h += create_conv_layer(self.h_pnn[tt][2], U_w, U_b, stride=strides[2], apply_relu=False)
h = tf.nn.relu(h)
self.h_pnn[task].append(h)
# Conv4_x
h = _residual_block_first(h, filters[3], strides[3], self.trainable_vars[task], self.train_phase[task], name='conv4_1_t%d'%(task), is_ATT_DATASET=self.is_ATT_DATASET)
h = _residual_block(h, self.trainable_vars[task], self.train_phase[task], apply_relu=False, name='conv4_2_t%d'%(task))
# Add lateral connections
for tt in range(task):
U_w = weight_variable([1, 1, self.h_pnn[tt][3].get_shape().as_list()[-1], h.get_shape().as_list()[-1]], name='conv_4_w_t%d_tt%d'%(task, tt))
U_b = bias_variable([h.get_shape().as_list()[-1]], name='conv_4_b_t%d_tt%d'%(task, tt))
self.trainable_vars[task].append(U_w)
self.trainable_vars[task].append(U_b)
h += create_conv_layer(self.h_pnn[tt][3], U_w, U_b, stride=strides[3], apply_relu=False)
h = tf.nn.relu(h)
self.h_pnn[task].append(h)
# Conv5_x
h = _residual_block_first(h, filters[4], strides[4], self.trainable_vars[task], self.train_phase[task], name='conv5_1_t%d'%(task), is_ATT_DATASET=self.is_ATT_DATASET)
h = _residual_block(h, self.trainable_vars[task], self.train_phase[task], apply_relu=False, name='conv5_2_t%d'%(task))
# Add lateral connections
for tt in range(task):
U_w = weight_variable([1, 1, self.h_pnn[tt][4].get_shape().as_list()[-1], h.get_shape().as_list()[-1]], name='conv_5_w_t%d_tt%d'%(task, tt))
U_b = bias_variable([h.get_shape().as_list()[-1]], name='conv_5_b_t%d_tt%d'%(task, tt))
self.trainable_vars[task].append(U_w)
self.trainable_vars[task].append(U_b)
h += create_conv_layer(self.h_pnn[tt][4], U_w, U_b, stride=strides[4], apply_relu=False)
h = tf.nn.relu(h)
self.h_pnn[task].append(h)
# Apply average pooling
h = tf.reduce_mean(h, [1, 2])
if self.network_arch == 'RESNET-S':
logits = _fc(h, self.total_classes, self.trainable_vars[task], name='fc_1_t%d'%(task), is_cifar=True)
else:
logits = _fc(h, self.total_classes, self.trainable_vars[task], name='fc_1_t%d'%(task))
for tt in range(task):
h_tt = tf.reduce_mean(self.h_pnn[tt][5], [1, 2])
U_w = weight_variable([h_tt.get_shape().as_list()[1], self.total_classes], name='fc_uw_1_t%d_tt%d'%(task, tt))
U_b = bias_variable([self.total_classes], name='fc_ub_1_t%d_tt%d'%(task, tt))
self.trainable_vars[task].append(U_w)
self.trainable_vars[task].append(U_b)
logits += create_fc_layer(h_tt, U_w, U_b, apply_relu=False)
self.h_pnn[task].append(logits)
return logits
def fc_variables(self, layer_dims):
"""
Defines variables for a 3-layer fc network
Args:
Returns:
"""
self.weights = []
self.biases = []
self.trainable_vars = []
for i in range(len(layer_dims)-1):
w = weight_variable([layer_dims[i], layer_dims[i+1]], name='fc_%d'%(i))
b = bias_variable([layer_dims[i+1]], name='fc_%d'%(i))
self.weights.append(w)
self.biases.append(b)
self.trainable_vars.append(w)
self.trainable_vars.append(b)
def fc_feedforward(self, h, weights, biases, apply_dropout=False):
"""
Forward pass through a fc network
Args:
h Input image (tensor)
weights List of weights for a fc network
biases List of biases for a fc network
apply_dropout Whether to apply droupout (True/ False)
Returns:
Logits of a fc network
"""
if apply_dropout:
h = tf.nn.dropout(h, 1) # Apply dropout on Input?
for (w, b) in list(zip(weights, biases))[:-1]:
h = create_fc_layer(h, w, b)
if apply_dropout:
h = tf.nn.dropout(h, 1) # Apply dropout on hidden layers?
# Store image features
self.features = h
self.image_feature_dim = h.get_shape().as_list()[-1]
return create_fc_layer(h, weights[-1], biases[-1], apply_relu=False)
def conv_variables(self, kernel, depth):
"""
Defines variables of a 5xconv-1xFC convolutional network
Args:
Returns:
"""
self.weights = []
self.biases = []
self.trainable_vars = []
div_factor = 1
for i in range(len(kernel)):
w = weight_variable([kernel[i], kernel[i], depth[i], depth[i+1]], name='conv_%d'%(i))
b = bias_variable([depth[i+1]], name='conv_%d'%(i))
self.weights.append(w)
self.biases.append(b)
self.trainable_vars.append(w)
self.trainable_vars.append(b)
# Since we maxpool after every two conv layers
if ((i+1) % 2 == 0):
div_factor *= 2
flat_units = (self.image_size // div_factor) * (self.image_size // div_factor) * depth[-1]
w = weight_variable([flat_units, self.total_classes], name='fc_%d'%(i))
b = bias_variable([self.total_classes], name='fc_%d'%(i))
self.weights.append(w)
self.biases.append(b)
self.trainable_vars.append(w)
self.trainable_vars.append(b)
def conv_feedforward(self, h, weights, biases, apply_dropout=True):
"""
Forward pass through a convolutional network
Args:
h Input image (tensor)
weights List of weights for a conv network
biases List of biases for a conv network
apply_dropout Whether to apply droupout (True/ False)
Returns:
Logits of a conv network
"""
for i, (w, b) in enumerate(list(zip(weights, biases))[:-1]):
# Apply conv operation till the second last layer, which is a FC layer
h = create_conv_layer(h, w, b)
if ((i+1) % 2 == 0):
# Apply max pool after every two conv layers
h = tf.nn.max_pool(h, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# Apply dropout
if apply_dropout:
h = tf.nn.dropout(h, self.keep_prob)
# Construct FC layers
shape = h.get_shape().as_list()
h = tf.reshape(h, [-1, shape[1] * shape[2] * shape[3]])
# Store image features
self.features = h
self.image_feature_dim = h.get_shape().as_list()[-1]
return create_fc_layer(h, weights[-1], biases[-1], apply_relu=False)
def vgg_16_conv_feedforward(self, h):
"""
Forward pass through a VGG 16 network
Return:
Logits of a VGG 16 network
"""
self.trainable_vars = []
# Conv1
h = vgg_conv_layer(h, 3, 64, 1, self.trainable_vars, name='conv1_1')
h = vgg_conv_layer(h, 3, 64, 1, self.trainable_vars, name='conv1_2')
h = tf.nn.max_pool(h, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1')
# Conv2
h = vgg_conv_layer(h, 3, 128, 1, self.trainable_vars, name='conv2_1')
h = vgg_conv_layer(h, 3, 128, 1, self.trainable_vars, name='conv2_2')
h = tf.nn.max_pool(h, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2')
# Conv3
h = vgg_conv_layer(h, 3, 256, 1, self.trainable_vars, name='conv3_1')
h = vgg_conv_layer(h, 3, 256, 1, self.trainable_vars, name='conv3_2')
h = vgg_conv_layer(h, 3, 256, 1, self.trainable_vars, name='conv3_3')
h = tf.nn.max_pool(h, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool3')
# Conv4
h = vgg_conv_layer(h, 3, 512, 1, self.trainable_vars, name='conv4_1')
h = vgg_conv_layer(h, 3, 512, 1, self.trainable_vars, name='conv4_2')
h = vgg_conv_layer(h, 3, 512, 1, self.trainable_vars, name='conv4_3')
h = tf.nn.max_pool(h, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool4')
# Conv5
h = vgg_conv_layer(h, 3, 512, 1, self.trainable_vars, name='conv5_1')
h = vgg_conv_layer(h, 3, 512, 1, self.trainable_vars, name='conv5_2')
h = vgg_conv_layer(h, 3, 512, 1, self.trainable_vars, name='conv5_3')
h = tf.nn.max_pool(h, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool5')
# FC layers
shape = h.get_shape().as_list()
h = tf.reshape(h, [-1, shape[1] * shape[2] * shape[3]])
# fc6
h = vgg_fc_layer(h, 4096, self.trainable_vars, apply_relu=True, name='fc6')
# fc7
h = vgg_fc_layer(h, 4096, self.trainable_vars, apply_relu=True, name='fc7')
# Store image features
self.features = h
self.image_feature_dim = h.get_shape().as_list()[-1]
# fc8
if self.class_attr is not None:
# Return the image features
return h
else:
logits = vgg_fc_layer(h, self.total_classes, self.trainable_vars, apply_relu=False, name='fc8')
return logits
def resnet18_conv_feedforward(self, h, kernels, filters, strides):
"""
Forward pass through a ResNet-18 network
Returns:
Logits of a resnet-18 conv network
"""
self.trainable_vars = []
# Conv1
h = _conv(h, kernels[0], filters[0], strides[0], self.trainable_vars, name='conv_1')
h = _bn(h, self.trainable_vars, self.train_phase, name='bn_1')
h = tf.nn.relu(h)
# Conv2_x
h = _residual_block(h, self.trainable_vars, self.train_phase, name='conv2_1')
h = _residual_block(h, self.trainable_vars, self.train_phase, name='conv2_2')
# Conv3_x
h = _residual_block_first(h, filters[2], strides[2], self.trainable_vars, self.train_phase, name='conv3_1', is_ATT_DATASET=self.is_ATT_DATASET)
h = _residual_block(h, self.trainable_vars, self.train_phase, name='conv3_2')
# Conv4_x
h = _residual_block_first(h, filters[3], strides[3], self.trainable_vars, self.train_phase, name='conv4_1', is_ATT_DATASET=self.is_ATT_DATASET)
h = _residual_block(h, self.trainable_vars, self.train_phase, name='conv4_2')
# Conv5_x
h = _residual_block_first(h, filters[4], strides[4], self.trainable_vars, self.train_phase, name='conv5_1', is_ATT_DATASET=self.is_ATT_DATASET)
h = _residual_block(h, self.trainable_vars, self.train_phase, name='conv5_2')
# Apply average pooling
h = tf.reduce_mean(h, [1, 2])
# Store the feature mappings
self.features = h
self.image_feature_dim = h.get_shape().as_list()[-1]
if self.class_attr is not None:
# Return the image features
return h
else:
if self.network_arch == 'RESNET-S':
logits = _fc(h, self.total_classes, self.trainable_vars, name='fc_1', is_cifar=True)
else:
logits = _fc(h, self.total_classes, self.trainable_vars, name='fc_1')
return logits
def get_attribute_embedding(self, attr):
"""
Get attribute embedding using a simple FC network
Returns:
Embedding vector of k x ATTR_DIMS
"""
w = weight_variable([self.attr_dims, self.image_feature_dim], name='attr_embed_w')
self.trainable_vars.append(w)
# Return the inner product of attribute matrix and weight vector.
return tf.matmul(attr, w) # Dimension should be TOTAL_CLASSES x image_feature_dim
def loss_and_gradients(self, imp_method):
"""
Defines task based and surrogate losses and their
gradients
Args:
Returns:
"""
reg = 0.0
if imp_method == 'VAN' or imp_method == 'PNN' or imp_method == 'ER' or 'GEM' in imp_method:
pass
elif imp_method == 'EWC' or imp_method == 'M-EWC':
reg = tf.add_n([tf.reduce_sum(tf.square(w - w_star) * f) for w, w_star,
f in zip(self.trainable_vars, self.star_vars, self.normalized_fisher_at_minima_vars)])
elif imp_method == 'PI':
reg = tf.add_n([tf.reduce_sum(tf.square(w - w_star) * f) for w, w_star,
f in zip(self.trainable_vars, self.star_vars, self.big_omega_vars)])
elif imp_method == 'MAS':
reg = tf.add_n([tf.reduce_sum(tf.square(w - w_star) * f) for w, w_star,
f in zip(self.trainable_vars, self.star_vars, self.hebbian_score_vars)])
elif imp_method == 'RWALK':
reg = tf.add_n([tf.reduce_sum(tf.square(w - w_star) * (f + scr)) for w, w_star,
f, scr in zip(self.trainable_vars, self.star_vars, self.normalized_fisher_at_minima_vars,
self.normalized_score_vars)])
"""
# ***** DON't USE THIS WITH MULTI-HEAD SETTING SINCE THIS WILL UPDATE ALL THE WEIGHTS *****
# If CNN arch, then use the weight decay
if self.is_ATT_DATASET:
self.unweighted_entropy += tf.add_n([0.0005 * tf.nn.l2_loss(v) for v in self.trainable_vars if 'weights' in v.name or 'kernel' in v.name])
"""
if imp_method == 'PNN':
# Compute the gradients of regularized loss
self.reg_gradients_vars = []
for i in range(self.num_tasks):
self.reg_gradients_vars.append([])
self.reg_gradients_vars[i] = self.opt.compute_gradients(self.unweighted_entropy[i], var_list=self.trainable_vars[i])
elif imp_method != 'A-GEM': # For A-GEM we will define the losses and gradients later on
if imp_method == 'ER' and 'FC-' not in self.network_arch:
self.reg_loss = tf.add_n([self.unweighted_entropy[i] for i in range(self.num_tasks)])/ self.mem_batch_size
else:
# Regularized training loss
self.reg_loss = tf.squeeze(self.unweighted_entropy + self.synap_stgth * reg)
# Compute the gradients of the vanilla loss
self.vanilla_gradients_vars = self.opt.compute_gradients(self.unweighted_entropy,
var_list=self.trainable_vars)
# Compute the gradients of regularized loss
self.reg_gradients_vars = self.opt.compute_gradients(self.reg_loss,
var_list=self.trainable_vars)
def train_op(self):
"""
Defines the training operation (a single step during training)
Args:
Returns:
"""
if self.imp_method == 'VAN' or self.imp_method == 'ER':
# Define training operation
self.train = self.opt.apply_gradients(self.reg_gradients_vars)
elif self.imp_method == 'PNN':
# Define training operation
self.train = [self.opt.apply_gradients(self.reg_gradients_vars[i]) for i in range(self.num_tasks)]
elif self.imp_method == 'FTR_EXT':
# Define a training operation for the first and subsequent tasks
self.train = self.opt.apply_gradients(self.reg_gradients_vars)
self.train_classifier = self.opt.apply_gradients(self.reg_gradients_vars[-2:])
else:
# Get the value of old weights first
with tf.control_dependencies([self.weights_old_ops_grouped]):
# Define a training operation
self.train = self.opt.apply_gradients(self.reg_gradients_vars)
def init_vars(self):
"""
Defines different variables that will be used for the
weight consolidation
Args:
Returns:
"""
if self.imp_method == 'PNN':
return
for v in range(len(self.trainable_vars)):
# List of variables for weight updates
self.weights_old.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
self.weights_delta_old_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
self.star_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False,
name=self.trainable_vars[v].name.rsplit(':')[0]+'_star'))
# List of variables for pathint method
self.small_omega_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
self.big_omega_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
self.big_omega_riemann_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
# List of variables to store fisher information
self.fisher_diagonal_at_minima.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
self.normalized_fisher_at_minima_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False, dtype=tf.float32))
self.tmp_fisher_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
self.running_fisher_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
self.score_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
# New variables for conv setting for fisher and score normalization
self.max_fisher_vars.append(tf.Variable(tf.zeros(1), dtype=tf.float32, trainable=False))
self.min_fisher_vars.append(tf.Variable(tf.zeros(1), dtype=tf.float32, trainable=False))
self.max_score_vars.append(tf.Variable(tf.zeros(1), dtype=tf.float32, trainable=False))
self.min_score_vars.append(tf.Variable(tf.zeros(1), dtype=tf.float32, trainable=False))
self.normalized_score_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
if self.imp_method == 'MAS':
# List of variables to store hebbian information
self.hebbian_score_vars.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
elif self.imp_method == 'A-GEM' or self.imp_method == 'S-GEM':
self.ref_grads.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
self.projected_gradients_list.append(tf.Variable(tf.zeros(self.trainable_vars[v].get_shape()), trainable=False))
def get_current_weights(self):
"""
Get the values of current weights
Note: These weights are different from star_vars as those
store the weights after training for the last task.
Args:
Returns:
"""
weights_old_ops = []
weights_delta_old_ops = []
for v in range(len(self.trainable_vars)):
weights_old_ops.append(tf.assign(self.weights_old[v], self.trainable_vars[v]))
weights_delta_old_ops.append(tf.assign(self.weights_delta_old_vars[v], self.trainable_vars[v]))
self.weights_old_ops_grouped = tf.group(*weights_old_ops)
self.weights_delta_old_grouped = tf.group(*weights_delta_old_ops)
def weights_store_ops(self):
"""
Defines weight restoration operations
Args:
Returns:
"""
restore_weights_ops = []
set_star_vars_ops = []
for v in range(len(self.trainable_vars)):
restore_weights_ops.append(tf.assign(self.trainable_vars[v], self.star_vars[v]))
set_star_vars_ops.append(tf.assign(self.star_vars[v], self.trainable_vars[v]))
self.restore_weights = tf.group(*restore_weights_ops)
self.set_star_vars = tf.group(*set_star_vars_ops)
def reset_optimizer_ops(self):
"""
Defines operations to reset the optimizer
Args:
Returns:
"""
# Set the operation for resetting the optimizer
self.optimizer_slots = [self.opt.get_slot(var, name) for name in self.opt.get_slot_names()\
for var in tf.global_variables() if self.opt.get_slot(var, name) is not None]
self.slot_names = self.opt.get_slot_names()
self.opt_init_op = tf.variables_initializer(self.optimizer_slots)
def create_pathint_ops(self):
"""
Defines operations for path integral-based importance
Args:
Returns:
"""
reset_small_omega_ops = []
update_small_omega_ops = []
update_big_omega_ops = []
update_big_omega_riemann_ops = []
for v in range(len(self.trainable_vars)):
# Make sure that the variables are updated before calculating delta(theta)
with tf.control_dependencies([self.train]):
update_small_omega_ops.append(tf.assign_add(self.small_omega_vars[v],
-(self.vanilla_gradients_vars[v][0] * (self.trainable_vars[v] - self.weights_old[v]))))
# Ops to reset the small omega
reset_small_omega_ops.append(tf.assign(self.small_omega_vars[v], self.small_omega_vars[v]*0.0))
if self.imp_method == 'PI':
# Update the big omegas at the end of the task using the Eucldeian distance
update_big_omega_ops.append(tf.assign_add(self.big_omega_vars[v],
tf.nn.relu(tf.div(self.small_omega_vars[v], (PARAM_XI_STEP + tf.square(self.trainable_vars[v] - self.star_vars[v]))))))
elif self.imp_method == 'RWALK':
# Update the big omegas after small intervals using distance in riemannian manifold (KL-divergence)
update_big_omega_riemann_ops.append(tf.assign_add(self.big_omega_riemann_vars[v],
tf.nn.relu(tf.div(self.small_omega_vars[v],
(PARAM_XI_STEP + self.running_fisher_vars[v] * tf.square(self.trainable_vars[v] - self.weights_delta_old_vars[v]))))))
self.update_small_omega = tf.group(*update_small_omega_ops)
self.reset_small_omega = tf.group(*reset_small_omega_ops)
if self.imp_method == 'PI':
self.update_big_omega = tf.group(*update_big_omega_ops)
elif self.imp_method == 'RWALK':
self.update_big_omega_riemann = tf.group(*update_big_omega_riemann_ops)
self.big_omega_riemann_reset = [tf.assign(tensor, tf.zeros_like(tensor)) for tensor in self.big_omega_riemann_vars]
if self.imp_method == 'RWALK':
# For the first task, scale the scores so that division does not have an effect
self.scale_score = [tf.assign(s, s*2.0) for s in self.big_omega_riemann_vars]
# To reduce the rigidity after each task the importance scores are averaged
self.update_score = [tf.assign_add(scr, tf.div(tf.add(scr, riemm_omega), 2.0))
for scr, riemm_omega in zip(self.score_vars, self.big_omega_riemann_vars)]
# Get the min and max in each layer of the scores
self.get_max_score_vars = [tf.assign(var, tf.expand_dims(tf.squeeze(tf.reduce_max(scr, keepdims=True)),
axis=0)) for var, scr in zip(self.max_score_vars, self.score_vars)]
self.get_min_score_vars = [tf.assign(var, tf.expand_dims(tf.squeeze(tf.reduce_min(scr, keepdims=True)),
axis=0)) for var, scr in zip(self.min_score_vars, self.score_vars)]
self.max_score = tf.reduce_max(tf.convert_to_tensor(self.max_score_vars))
self.min_score = tf.reduce_min(tf.convert_to_tensor(self.min_score_vars))
with tf.control_dependencies([self.max_score, self.min_score]):
self.normalize_scores = [tf.assign(tgt, (var - self.min_score)/ (self.max_score - self.min_score + EPSILON))
for tgt, var in zip(self.normalized_score_vars, self.score_vars)]
# Sparsify all the layers except last layer
sparsify_score_ops = []
for v in range(len(self.normalized_score_vars) - 2):
sparsify_score_ops.append(tf.assign(self.normalized_score_vars[v],
tf.nn.dropout(self.normalized_score_vars[v], self.keep_prob)))
self.sparsify_scores = tf.group(*sparsify_score_ops)
def create_fisher_ops(self):
"""
Defines the operations to compute online update of Fisher
Args:
Returns:
"""
ders = tf.gradients(self.unweighted_entropy, self.trainable_vars)
fisher_ema_at_step_ops = []
fisher_accumulate_at_step_ops = []
# ops for running fisher
self.set_tmp_fisher = [tf.assign_add(f, tf.square(d)) for f, d in zip(self.tmp_fisher_vars, ders)]
# Initialize the running fisher to non-zero value
self.set_initial_running_fisher = [tf.assign(r_f, s_f) for r_f, s_f in zip(self.running_fisher_vars,
self.tmp_fisher_vars)]
self.set_running_fisher = [tf.assign(f, (1 - self.fisher_ema_decay) * f + (1.0/ self.fisher_update_after) *
self.fisher_ema_decay * tmp) for f, tmp in zip(self.running_fisher_vars, self.tmp_fisher_vars)]
self.get_fisher_at_minima = [tf.assign(var, f) for var, f in zip(self.fisher_diagonal_at_minima,
self.running_fisher_vars)]
self.reset_tmp_fisher = [tf.assign(tensor, tf.zeros_like(tensor)) for tensor in self.tmp_fisher_vars]
# Get the min and max in each layer of the Fisher
self.get_max_fisher_vars = [tf.assign(var, tf.expand_dims(tf.squeeze(tf.reduce_max(scr, keepdims=True)), axis=0))
for var, scr in zip(self.max_fisher_vars, self.fisher_diagonal_at_minima)]
self.get_min_fisher_vars = [tf.assign(var, tf.expand_dims(tf.squeeze(tf.reduce_min(scr, keepdims=True)), axis=0))
for var, scr in zip(self.min_fisher_vars, self.fisher_diagonal_at_minima)]
self.max_fisher = tf.reduce_max(tf.convert_to_tensor(self.max_fisher_vars))
self.min_fisher = tf.reduce_min(tf.convert_to_tensor(self.min_fisher_vars))
with tf.control_dependencies([self.max_fisher, self.min_fisher]):
self.normalize_fisher_at_minima = [tf.assign(tgt,
(var - self.min_fisher)/ (self.max_fisher - self.min_fisher + EPSILON))
for tgt, var in zip(self.normalized_fisher_at_minima_vars, self.fisher_diagonal_at_minima)]
self.clear_attr_embed_reg = tf.assign(self.normalized_fisher_at_minima_vars[-2], tf.zeros_like(self.normalized_fisher_at_minima_vars[-2]))
# Sparsify all the layers except last layer
sparsify_fisher_ops = []
for v in range(len(self.normalized_fisher_at_minima_vars) - 2):
sparsify_fisher_ops.append(tf.assign(self.normalized_fisher_at_minima_vars[v],
tf.nn.dropout(self.normalized_fisher_at_minima_vars[v], self.keep_prob)))
self.sparsify_fisher = tf.group(*sparsify_fisher_ops)
def combined_fisher_pathint_ops(self):
"""
Define the operations to refine Fisher information based on parameters convergence
Args:
Returns:
"""
#self.refine_fisher_at_minima = [tf.assign(f, f*(1.0/(s+1e-12))) for f, s in zip(self.fisher_diagonal_at_minima, self.small_omega_vars)]
self.refine_fisher_at_minima = [tf.assign(f, f*tf.exp(-100.0*s)) for f, s in zip(self.fisher_diagonal_at_minima, self.small_omega_vars)]
def create_hebbian_ops(self):
"""
Define operations for hebbian measure of importance (MAS)
"""
# Compute the gradients of mse loss
self.mse_gradients = tf.gradients(self.mse, self.trainable_vars)
#with tf.control_dependencies([self.mse_gradients]):
# Keep on adding gradients to the omega
self.accumulate_hebbian_scores = [tf.assign_add(omega, tf.abs(grad)) for omega, grad in zip(self.hebbian_score_vars, self.mse_gradients)]
# Average across the total images
self.average_hebbian_scores = [tf.assign(omega, omega*(1.0/self.train_samples)) for omega in self.hebbian_score_vars]
# Reset the hebbian importance variables
self.reset_hebbian_scores = [tf.assign(omega, tf.zeros_like(omega)) for omega in self.hebbian_score_vars]
def create_stochastic_gem_ops(self):
"""
Define operations for Stochastic GEM
"""
if 'FC-' in self.network_arch or self.imp_method == 'S-GEM':
self.agem_loss = self.unweighted_entropy
else:
self.agem_loss = tf.add_n([self.unweighted_entropy[i] for i in range(self.num_tasks)])/ self.mem_batch_size
ref_grads = tf.gradients(self.agem_loss, self.trainable_vars)
# Reference gradient for previous tasks
self.store_ref_grads = [tf.assign(ref, grad) for ref, grad in zip(self.ref_grads, ref_grads)]
flat_ref_grads = tf.concat([tf.reshape(grad, [-1]) for grad in self.ref_grads], 0)
# Grandient on the current task
task_grads = tf.gradients(self.agem_loss, self.trainable_vars)
flat_task_grads = tf.concat([tf.reshape(grad, [-1]) for grad in task_grads], 0)
with tf.control_dependencies([flat_task_grads]):
dotp = tf.reduce_sum(tf.multiply(flat_task_grads, flat_ref_grads))
ref_mag = tf.reduce_sum(tf.multiply(flat_ref_grads, flat_ref_grads))
proj = flat_task_grads - ((dotp/ ref_mag) * flat_ref_grads)
self.reset_violation_count = self.violation_count.assign(0)
def increment_violation_count():
with tf.control_dependencies([tf.assign_add(self.violation_count, 1)]):
return tf.identity(self.violation_count)
self.violation_count = tf.cond(tf.greater_equal(dotp, 0), lambda: tf.identity(self.violation_count), increment_violation_count)
projected_gradients = tf.cond(tf.greater_equal(dotp, 0), lambda: tf.identity(flat_task_grads), lambda: tf.identity(proj))
# Convert the flat projected gradient vector into a list
offset = 0
store_proj_grad_ops = []
for v in self.projected_gradients_list:
shape = v.get_shape()
v_params = 1
for dim in shape:
v_params *= dim.value
store_proj_grad_ops.append(tf.assign(v, tf.reshape(projected_gradients[offset:offset+v_params], shape)))
offset += v_params
self.store_proj_grads = tf.group(*store_proj_grad_ops)
# Define training operations for the tasks > 1
with tf.control_dependencies([self.store_proj_grads]):
self.train_subseq_tasks = self.opt.apply_gradients(zip(self.projected_gradients_list, self.trainable_vars))
# Define training operations for the first task
self.first_task_gradients_vars = self.opt.compute_gradients(self.agem_loss, var_list=self.trainable_vars)
self.train_first_task = self.opt.apply_gradients(self.first_task_gradients_vars)
#################################################################################
#### External APIs of the class. These will be called/ exposed externally #######
#################################################################################
def reset_optimizer(self, sess):
"""
Resets the optimizer state
Args:
sess TF session
Returns:
"""
# Call the reset optimizer op
sess.run(self.opt_init_op)
def set_active_outputs(self, sess, labels):
"""
Set the mask for the labels seen so far
Args:
sess TF session
labels Mask labels
Returns:
"""
new_mask = np.zeros(self.total_classes)
new_mask[labels] = 1.0
"""
for l in labels:
new_mask[l] = 1.0
"""
sess.run(self.output_mask.assign(new_mask))
def init_updates(self, sess):
"""
Initialization updates
Args:
sess TF session
Returns:
"""
# Set the star values to the initial weights, so that we can calculate
# big_omegas reliably
if self.imp_method != 'PNN':
sess.run(self.set_star_vars)
def task_updates(self, sess, task, train_x, train_labels, num_classes_per_task=10, class_attr=None, online_cross_val=False):
"""
Updates different variables when a task is completed
Args:
sess TF session
task Task ID
train_x Training images for the task
train_labels Labels in the task
class_attr Class attributes (only needed for ZST transfer)
Returns:
"""
if self.imp_method == 'VAN' or self.imp_method == 'PNN':
# We'll store the current parameters at the end of this function
pass
elif self.imp_method == 'EWC':
# Get the fisher at the end of a task
sess.run(self.get_fisher_at_minima)
# Normalize the fisher
sess.run([self.get_max_fisher_vars, self.get_min_fisher_vars])
sess.run([self.min_fisher, self.max_fisher, self.normalize_fisher_at_minima])
# Don't regularize over the attribute-embedding vectors
#sess.run(self.clear_attr_embed_reg)
# Reset the tmp fisher vars
sess.run(self.reset_tmp_fisher)
elif self.imp_method == 'M-EWC':
# Get the fisher at the end of a task
sess.run(self.get_fisher_at_minima)
# Refine Fisher based on the convergence info
sess.run(self.refine_fisher_at_minima)
# Normalize the fisher
sess.run([self.get_max_fisher_vars, self.get_min_fisher_vars])
sess.run([self.min_fisher, self.max_fisher, self.normalize_fisher_at_minima])
# Reset the tmp fisher vars
sess.run(self.reset_tmp_fisher)
# Reset the small_omega_vars
sess.run(self.reset_small_omega)
elif self.imp_method == 'PI':
# Update big omega variables
sess.run(self.update_big_omega)
# Reset the small_omega_vars because big_omega_vars are updated before it
sess.run(self.reset_small_omega)
elif self.imp_method == 'RWALK':
if task == 0:
# If first task then scale by a factor of 2, so that subsequent averaging does not hurt
sess.run(self.scale_score)
# Get the updated importance score
sess.run(self.update_score)
# Normalize the scores
sess.run([self.get_max_score_vars, self.get_min_score_vars])
sess.run([self.min_score, self.max_score, self.normalize_scores])
# Sparsify scores
"""
# TODO: Tmp remove this?
kp = 0.8 + (task*0.5)
if (kp > 1):
kp = 1.0
"""
#sess.run(self.sparsify_scores, feed_dict={self.keep_prob: kp})
# Get the fisher at the end of a task
sess.run(self.get_fisher_at_minima)
# Normalize fisher
sess.run([self.get_max_fisher_vars, self.get_min_fisher_vars])
sess.run([self.min_fisher, self.max_fisher, self.normalize_fisher_at_minima])
# Sparsify fisher
#sess.run(self.sparsify_fisher, feed_dict={self.keep_prob: kp})
# Store the weights
sess.run(self.weights_delta_old_grouped)
# Reset the small_omega_vars because big_omega_vars are updated before it
sess.run(self.reset_small_omega)
# Reset the big_omega_riemann because importance score is stored in the scores array
sess.run(self.big_omega_riemann_reset)
# Reset the tmp fisher vars
sess.run(self.reset_tmp_fisher)
elif self.imp_method == 'MAS':
# zero out any previous values
sess.run(self.reset_hebbian_scores)
if self.class_attr is not None:
# Define mask based on the class attributes
masked_class_attrs = np.zeros_like(class_attr)
masked_class_attrs[train_labels] = class_attr[train_labels]
# Logits mask
logit_mask = np.zeros(self.total_classes)
logit_mask[train_labels] = 1.0
# Loop over the entire training dataset to compute the parameter importance
batch_size = 10
num_samples = train_x.shape[0]
for iters in range(num_samples// batch_size):
offset = iters * batch_size
if self.class_attr is not None:
sess.run(self.accumulate_hebbian_scores, feed_dict={self.x: train_x[offset:offset+batch_size], self.keep_prob: 1.0,
self.class_attr: masked_class_attrs, self.output_mask: logit_mask, self.train_phase: False})
else:
sess.run(self.accumulate_hebbian_scores, feed_dict={self.x: train_x[offset:offset+batch_size], self.keep_prob: 1.0,
self.output_mask: logit_mask, self.train_phase: False})
# Average the hebbian scores across the training examples
sess.run(self.average_hebbian_scores, feed_dict={self.train_samples: num_samples})
# Store current weights
self.init_updates(sess)
def restore(self, sess):
"""
Restore the weights from the star variables
Args:
sess TF session
Returns:
"""
sess.run(self.restore_weights)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
from setuptools import find_packages, setup
REQUIRES = [
"matplotlib",
"torch",
"scipy",
"SQLAlchemy==1.4.46",
"dill",
"pandas",
"aepsych_client==0.3.0",
"statsmodels",
"ax-platform==0.3.1",
"botorch==0.8.3",
]
BENCHMARK_REQUIRES = ["tqdm", "pathos", "multiprocess"]
DEV_REQUIRES = BENCHMARK_REQUIRES + [
"coverage",
"flake8",
"black",
"numpy>=1.20",
"sqlalchemy-stubs", # for mypy stubs
"mypy",
"parameterized",
"scikit-learn", # used in unit tests
]
VISUALIZER_REQUIRES = [
"voila==0.3.6",
"ipywidgets==7.6.5",
]
with open("README.md", "r") as fh:
long_description = fh.read()
with open(os.path.join("aepsych", "version.py"), "r") as fh:
for line in fh.readlines():
if line.startswith("__version__"):
version = line.split('"')[1]
setup(
name="aepsych",
version=version,
python_requires=">=3.8",
packages=find_packages(),
description="Adaptive experimetation for psychophysics",
long_description=long_description,
long_description_content_type="text/markdown",
install_requires=REQUIRES,
extras_require={
"dev": DEV_REQUIRES,
"benchmark": BENCHMARK_REQUIRES,
"visualizer": VISUALIZER_REQUIRES,
},
entry_points={
"console_scripts": [
"aepsych_server = aepsych.server.server:main",
"aepsych_database = aepsych.server.utils:main",
],
},
)
|
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from os import path
from setuptools import find_packages, setup
this_directory = path.abspath(path.dirname(__file__))
with open(path.join(this_directory, "Readme.md"), encoding="utf-8") as f:
long_description = f.read()
setup(
name="aepsych_client",
version="0.3.0",
packages=find_packages(),
long_description=long_description,
long_description_content_type="text/markdown",
)
|
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import unittest
import uuid
from unittest.mock import MagicMock, patch
import torch
from aepsych.acquisition import MCPosteriorVariance
from aepsych.generators import OptimizeAcqfGenerator, SobolGenerator
from aepsych.models import GPClassificationModel
from aepsych.server import AEPsychServer
from aepsych_client import AEPsychClient
from torch import tensor
class MockStrategy:
def gen(self, num_points):
self._count = self._count + num_points
return torch.tensor([[0.0]])
class RemoteServerTestCase(unittest.TestCase):
def setUp(self):
database_path = "./{}.db".format(str(uuid.uuid4().hex))
self.s = AEPsychServer(database_path=database_path)
self.client = AEPsychClient(connect=False)
self.client._send_recv = MagicMock(
wraps=lambda x: json.dumps(self.s.handle_request(x))
)
def tearDown(self):
self.s.cleanup()
# cleanup the db
if self.s.db is not None:
self.s.db.delete_db()
@patch(
"aepsych.strategy.Strategy.gen",
new=MockStrategy.gen,
)
def test_client(self):
config_str = """
[common]
lb = [0]
ub = [1]
parnames = [x]
stimuli_per_trial = 1
outcome_types = [binary]
strategy_names = [init_strat, opt_strat]
acqf = MCPosteriorVariance
model = GPClassificationModel
[init_strat]
min_asks = 1
generator = SobolGenerator
min_total_outcome_occurrences = 0
[opt_strat]
min_asks = 1
generator = OptimizeAcqfGenerator
min_total_outcome_occurrences = 0
"""
self.client.configure(config_str=config_str, config_name="first_config")
self.assertEqual(self.s.strat_id, 0)
self.assertEqual(self.s.strat.strat_list[0].min_asks, 1)
self.assertEqual(self.s.strat.strat_list[1].min_asks, 1)
self.assertIsInstance(self.s.strat.strat_list[0].generator, SobolGenerator)
self.assertIsInstance(
self.s.strat.strat_list[1].generator, OptimizeAcqfGenerator
)
self.assertIsInstance(self.s.strat.strat_list[1].model, GPClassificationModel)
self.assertEqual(self.s.strat.strat_list[1].generator.acqf, MCPosteriorVariance)
response = self.client.ask()
self.assertSetEqual(set(response["config"].keys()), {"x"})
self.assertEqual(len(response["config"]["x"]), 1)
self.assertTrue(0 <= response["config"]["x"][0] <= 1)
self.assertFalse(response["is_finished"])
self.assertEqual(self.s.strat._count, 1)
self.client.tell(config={"x": [0]}, outcome=1)
self.assertEqual(self.s._strats[0].x, tensor([[0.0]]))
self.assertEqual(self.s._strats[0].y, tensor([[1.0]]))
self.client.tell(config={"x": [0]}, outcome=1, model_data=False)
self.assertEqual(self.s._strats[0].x, tensor([[0.0]]))
self.assertEqual(self.s._strats[0].y, tensor([[1.0]]))
response = self.client.ask()
self.assertTrue(response["is_finished"])
self.client.configure(config_str=config_str, config_name="second_config")
self.assertEqual(self.s.strat._count, 0)
self.assertEqual(self.s.strat_id, 1)
self.client.resume(config_name="first_config")
self.assertEqual(self.s.strat_id, 0)
self.client.resume(config_name="second_config")
self.assertEqual(self.s.strat_id, 1)
self.client.finalize()
class LocalServerTestCase(RemoteServerTestCase):
def setUp(self):
database_path = "./{}.db".format(str(uuid.uuid4().hex))
self.s = AEPsychServer(database_path=database_path)
self.client = AEPsychClient(server=self.s)
def test_warns_ignored_args(self):
with self.assertWarns(UserWarning):
AEPsychClient(ip="0.0.0.0", port=5555, server=self.s)
if __name__ == "__main__":
unittest.main()
|
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import socket
import warnings
from typing import Any, Dict, List, Optional, TYPE_CHECKING, Union
if TYPE_CHECKING:
from aepsych.server import AEPsychServer
class ServerError(RuntimeError):
pass
class AEPsychClient:
def __init__(
self,
ip: Optional[str] = None,
port: Optional[int] = None,
connect: bool = True,
server: "AEPsychServer" = None,
) -> None:
"""Python client for AEPsych using built-in python sockets. By default it connects
to a localhost server matching AEPsych defaults.
Args:
ip (str, optional): IP to connect to (default: localhost).
port (str, optional): Port to connect on (default: 5555).
connect (bool): Connect as part of init? Defaults to True.
server (AEPsychServer, optional): An in-memory AEPsychServer object to connect to.
If this is not None, the other arguments will be ignored.
"""
self.configs = []
self.config_names = {}
self.server = server
if server is not None and (ip is not None or port is not None):
warnings.warn(
"AEPsychClient will ignore ip and port since it was given a server object!",
UserWarning,
)
if server is None:
ip = ip or "0.0.0.0"
port = port or 5555
self.socket = socket.socket()
if connect:
self.connect(ip, port)
def load_config_index(self) -> None:
"""Loads the config index when server is not None"""
self.configs = []
for i in range(self.server.n_strats):
self.configs.append(i)
def connect(self, ip: str, port: int) -> None:
"""Connect to the server.
Args:
ip (str): IP to connect to.
port (str): Port to connect on.
"""
addr = (ip, port)
self.socket.connect(addr)
def finalize(self) -> None:
"""Let the server know experiment is complete."""
request = {"message": "", "type": "exit"}
self._send_recv(request)
def _send_recv(self, message) -> str:
if self.server is not None:
return self.server.handle_request(message)
message = bytes(json.dumps(message), encoding="utf-8")
self.socket.send(message)
response = self.socket.recv(4096).decode("utf-8")
# TODO this is hacky but we don't consistencly return json
# from the server so we can't check for a status
if response[:12] == "server_error":
error_message = response[13:]
raise ServerError(error_message)
return response
def ask(
self, num_points: int = 1
) -> Union[Dict[str, List[float]], Dict[int, Dict[str, Any]]]:
"""Get next configuration from server.
Args:
num_points[int]: Number of points to return.
Returns:
Dict[int, Dict[str, Any]]: Next configuration(s) to evaluate.
If using the legacy backend, this is formatted as a dictionary where keys are parameter names and values
are lists of parameter values.
If using the Ax backend, this is formatted as a dictionary of dictionaries where the outer keys are trial indices,
the inner keys are parameter names, and the values are parameter values.
"""
request = {"message": {"num_points": num_points}, "type": "ask"}
response = self._send_recv(request)
if isinstance(response, str):
response = json.loads(response)
return response
def tell_trial_by_index(
self,
trial_index: int,
outcome: int,
model_data: bool = True,
**metadata: Dict[str, Any],
) -> None:
"""Update the server on a trial that already has a trial index, as provided by `ask`.
Args:
outcome (int): Outcome that was obtained.
model_data (bool): If True, the data will be recorded in the db and included in the server's model. If False,
the data will be recorded in the db, but will not be used by the model. Defaults to True.
trial_index (int): The associated trial index of the config.
metadata (optional kwargs) is passed to the extra_info field on the server.
Raises:
AssertionError if server failed to acknowledge the tell.
"""
request = {
"type": "tell",
"message": {
"outcome": outcome,
"model_data": model_data,
"trial_index": trial_index,
},
"extra_info": metadata,
}
self._send_recv(request)
def tell(
self,
config: Dict[str, List[Any]],
outcome: int,
model_data: bool = True,
**metadata: Dict[str, Any],
) -> None:
"""Update the server on a configuration that was executed. Use this method when using the legacy backend or for
manually-generated trials without an associated trial_index when uding the Ax backend.
Args:
config (Dict[str, str]): Config that was evaluated.
outcome (int): Outcome that was obtained.
metadata (optional kwargs) is passed to the extra_info field on the server.
model_data (bool): If True, the data will be recorded in the db and included in the server's model. If False,
the data will be recorded in the db, but will not be used by the model. Defaults to True.
Raises:
AssertionError if server failed to acknowledge the tell.
"""
request = {
"type": "tell",
"message": {
"config": config,
"outcome": outcome,
"model_data": model_data,
},
"extra_info": metadata,
}
self._send_recv(request)
def configure(
self, config_path: str = None, config_str: str = None, config_name: str = None
) -> None:
"""Configure the server and prepare for data collection.
Note that either config_path or config_str must be passed.
Args:
config_path (str, optional): Path to a config.ini. Defaults to None.
config_str (str, optional): Config.ini encoded as a string. Defaults to None.
config_name (str, optional): A name to assign to this config internally for convenience.
Raises:
AssertionError if neither config path nor config_str is passed.
"""
if config_path is not None:
assert config_str is None, "if config_path is passed, don't pass config_str"
with open(config_path, "r") as f:
config_str = f.read()
elif config_str is not None:
assert (
config_path is None
), "if config_str is passed, don't pass config_path"
request = {
"type": "setup",
"message": {"config_str": config_str},
}
idx = int(self._send_recv(request))
self.configs.append(idx)
if config_name is not None:
self.config_names[config_name] = idx
def resume(self, config_id: int = None, config_name: str = None):
"""Resume a previous config from this session. To access available configs,
use client.configs or client.config_names
Args:
config_id (int, optional): ID of config to resume.
config_name (str, optional): Name config to resume.
Raises:
AssertionError if name or ID does not exist, or if both name and ID are passed.
"""
if config_id is not None:
assert config_name is None, "if config_id is passed, don't pass config_name"
assert (
config_id in self.configs
), f"No strat with index {config_id} was created!"
elif config_name is not None:
assert config_id is None, "if config_name is passed, don't pass config_id"
assert (
config_name in self.config_names.keys()
), f"{config_name} not known, know {self.config_names.keys()}!"
config_id = self.config_names[config_name]
request = {
"type": "resume",
"message": {"strat_id": config_id},
}
self._send_recv(request)
def __del___(self):
self.finalize()
|
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .client import AEPsychClient
__all__ = ["AEPsychClient"]
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import abc
import ast
import configparser
import json
import warnings
from types import ModuleType
from typing import Any, ClassVar, Dict, List, Mapping, Optional, Sequence, TypeVar
import botorch
import gpytorch
import numpy as np
import torch
from aepsych.version import __version__
_T = TypeVar("_T")
class Config(configparser.ConfigParser):
# names in these packages can be referred to by string name
registered_names: ClassVar[Dict[str, object]] = {}
def __init__(
self,
config_dict: Optional[Mapping[str, Any]] = None,
config_fnames: Optional[Sequence[str]] = None,
config_str: Optional[str] = None,
):
"""Initialize the AEPsych config object. This can be used to instantiate most
objects in AEPsych by calling object.from_config(config).
Args:
config_dict (Mapping[str, str], optional): Mapping to build configuration from.
Keys are section names, values are dictionaries with keys and values that
should be present in the section. Defaults to None.
config_fnames (Sequence[str], optional): List of INI filenames to load
configuration from. Defaults to None.
config_str (str, optional): String formatted as an INI file to load configuration
from. Defaults to None.
"""
super().__init__(
inline_comment_prefixes=("#"),
empty_lines_in_values=False,
default_section="common",
interpolation=configparser.ExtendedInterpolation(),
converters={
"list": self._str_to_list,
"tensor": self._str_to_tensor,
"obj": self._str_to_obj,
"array": self._str_to_array,
},
allow_no_value=True,
)
self.update(
config_dict=config_dict,
config_fnames=config_fnames,
config_str=config_str,
)
def _get(
self,
section,
conv,
option,
*,
raw=False,
vars=None,
fallback=configparser._UNSET,
**kwargs,
):
"""
Override configparser to:
1. Return from common if a section doesn't exist. This comes
up any time we have a module fully configured from the
common/default section.
2. Pass extra **kwargs to the converter.
"""
try:
return conv(
self.get(
section=section,
option=option,
raw=raw,
vars=vars,
fallback=fallback,
),
**kwargs,
)
except configparser.NoSectionError:
return conv(
self.get(
section="common",
option=option,
raw=raw,
vars=vars,
fallback=fallback,
),
**kwargs,
)
# Convert config into a dictionary (eliminate duplicates from defaulted 'common' section.)
def to_dict(self, deduplicate=True):
_dict = {}
for section in self:
_dict[section] = {}
for setting in self[section]:
if deduplicate and section != "common" and setting in self["common"]:
continue
_dict[section][setting] = self[section][setting]
return _dict
# Turn the metadata section into JSON.
def jsonifyMetadata(self) -> str:
configdict = self.to_dict()
return json.dumps(configdict["metadata"])
# Turn the entire config into JSON format.
def jsonifyAll(self) -> str:
configdict = self.to_dict()
return json.dumps(configdict)
def update(
self,
config_dict: Mapping[str, str] = None,
config_fnames: Sequence[str] = None,
config_str: str = None,
):
"""Update this object with a new configuration.
Args:
config_dict (Mapping[str, str], optional): Mapping to build configuration from.
Keys are section names, values are dictionaries with keys and values that
should be present in the section. Defaults to None.
config_fnames (Sequence[str], optional): List of INI filenames to load
configuration from. Defaults to None.
config_str (str, optional): String formatted as an INI file to load configuration
from. Defaults to None.
"""
if config_dict is not None:
self.read_dict(config_dict)
if config_fnames is not None:
read_ok = self.read(config_fnames)
if len(read_ok) < 1:
raise FileNotFoundError
if config_str is not None:
self.read_string(config_str)
# Deprecation warning for "experiment" section
if "experiment" in self:
for i in self["experiment"]:
self["common"][i] = self["experiment"][i]
del self["experiment"]
def _str_to_list(self, v: str, element_type: _T = float) -> List[_T]:
if v[0] == "[" and v[-1] == "]":
if v == "[]": # empty list
return []
else:
return [element_type(i.strip()) for i in v[1:-1].split(",")]
else:
return [v.strip()]
def _str_to_array(self, v: str) -> np.ndarray:
v = ast.literal_eval(v)
return np.array(v, dtype=float)
def _str_to_tensor(self, v: str) -> torch.Tensor:
return torch.Tensor(self._str_to_list(v))
def _str_to_obj(self, v: str, fallback_type: _T = str, warn: bool = True) -> object:
try:
return self.registered_names[v]
except KeyError:
if warn:
warnings.warn(f'No known object "{v}"!')
return fallback_type(v)
def __repr__(self):
return f"Config at {hex(id(self))}: \n {str(self)}"
@classmethod
def register_module(cls: _T, module: ModuleType):
"""Register a module with Config so that objects in it can
be referred to by their string name in config files.
Args:
module (ModuleType): Module to register.
"""
cls.registered_names.update(
{
name: getattr(module, name)
for name in module.__all__
if not isinstance(getattr(module, name), ModuleType)
}
)
@classmethod
def register_object(cls: _T, obj: object):
"""Register an object with Config so that it can be
referred to by its string name in config files.
Args:
obj (object): Object to register.
"""
if obj.__name__ in cls.registered_names.keys():
warnings.warn(
f"Registering {obj.__name__} but already"
+ f"have {cls.registered_names[obj.__name__]}"
+ "registered under that name!"
)
cls.registered_names.update({obj.__name__: obj})
def get_section(self, section):
sec = {}
for setting in self[section]:
if section != "common" and setting in self["common"]:
continue
sec[setting] = self[section][setting]
return sec
def __str__(self):
_str = ""
for section in self:
sec = self.get_section(section)
_str += f"[{section}]\n"
for setting in sec:
_str += f"{setting} = {self[section][setting]}\n"
return _str
def convert_to_latest(self):
self.convert(self.version, __version__)
def convert(self, from_version: str, to_version: str) -> None:
"""Converts a config from an older version to a newer version.
Args:
from_version (str): The version of the config to be converted.
to_version (str): The version the config should be converted to.
"""
if from_version == "0.0":
self["common"]["strategy_names"] = "[init_strat, opt_strat]"
if "experiment" in self:
for i in self["experiment"]:
self["common"][i] = self["experiment"][i]
bridge = self["common"]["modelbridge_cls"]
n_sobol = self["SobolStrategy"]["n_trials"]
n_opt = self["ModelWrapperStrategy"]["n_trials"]
if bridge == "PairwiseProbitModelbridge":
self["init_strat"] = {
"generator": "PairwiseSobolGenerator",
"min_asks": n_sobol,
}
self["opt_strat"] = {
"generator": "PairwiseOptimizeAcqfGenerator",
"model": "PairwiseProbitModel",
"min_asks": n_opt,
}
if "PairwiseProbitModelbridge" in self:
self["PairwiseOptimizeAcqfGenerator"] = self[
"PairwiseProbitModelbridge"
]
if "PairwiseGP" in self:
self["PairwiseProbitModel"] = self["PairwiseGP"]
elif bridge == "MonotonicSingleProbitModelbridge":
self["init_strat"] = {
"generator": "SobolGenerator",
"min_asks": n_sobol,
}
self["opt_strat"] = {
"generator": "MonotonicRejectionGenerator",
"model": "MonotonicRejectionGP",
"min_asks": n_opt,
}
if "MonotonicSingleProbitModelbridge" in self:
self["MonotonicRejectionGenerator"] = self[
"MonotonicSingleProbitModelbridge"
]
elif bridge == "SingleProbitModelbridge":
self["init_strat"] = {
"generator": "SobolGenerator",
"min_asks": n_sobol,
}
self["opt_strat"] = {
"generator": "OptimizeAcqfGenerator",
"model": "GPClassificationModel",
"min_asks": n_opt,
}
if "SingleProbitModelbridge" in self:
self["OptimizeAcqfGenerator"] = self["SingleProbitModelbridge"]
else:
raise NotImplementedError(
f"Refactor for {bridge} has not been implemented!"
)
if "ModelWrapperStrategy" in self:
if "refit_every" in self["ModelWrapperStrategy"]:
self["opt_strat"]["refit_every"] = self["ModelWrapperStrategy"][
"refit_every"
]
del self["common"]["model"]
if to_version == __version__:
if self["common"]["outcome_type"] == "single_probit":
self["common"]["stimuli_per_trial"] = "1"
self["common"]["outcome_types"] = "[binary]"
if self["common"]["outcome_type"] == "single_continuous":
self["common"]["stimuli_per_trial"] = "1"
self["common"]["outcome_types"] = "[continuous]"
if self["common"]["outcome_type"] == "pairwise_probit":
self["common"]["stimuli_per_trial"] = "2"
self["common"]["outcome_types"] = "[binary]"
del self["common"]["outcome_type"]
@property
def version(self) -> str:
"""Returns the version number of the config."""
# TODO: implement an explicit versioning system
# Try to infer the version
if "stimuli_per_trial" in self["common"] and "outcome_types" in self["common"]:
return __version__
if "common" in self and "strategy_names" in self["common"]:
return "0.1"
elif (
"SobolStrategy" in self
or "ModelWrapperStrategy" in self
or "EpsilonGreedyModelWrapperStrategy" in self
):
return "0.0"
else:
raise RuntimeError("Unrecognized config format!")
class ConfigurableMixin(abc.ABC):
@abc.abstractclassmethod
def get_config_options(cls, config: Config, name: str) -> Dict[str, Any]: # noqa
raise NotImplementedError(
f"get_config_options hasn't been defined for {cls.__name__}!"
)
@classmethod
def from_config(cls, config: Config, name: Optional[str] = None):
return cls(**cls.get_config_options(config, name))
Config.register_module(gpytorch.likelihoods)
Config.register_module(gpytorch.kernels)
Config.register_module(botorch.acquisition)
Config.registered_names["None"] = None
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
__version__ = "0.4.0"
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from typing import Callable, Iterable, List, Optional, Union
import matplotlib.pyplot as plt
import numpy as np
from aepsych.strategy import Strategy
from aepsych.utils import get_lse_contour, get_lse_interval, make_scaled_sobol
from scipy.stats import norm
def plot_strat(
strat: Strategy,
ax: Optional[plt.Axes] = None,
true_testfun: Optional[Callable] = None,
cred_level: float = 0.95,
target_level: Optional[float] = 0.75,
xlabel: Optional[str] = None,
ylabel: Optional[str] = None,
yes_label: str = "Yes trial",
no_label: str = "No trial",
flipx: bool = False,
logx: bool = False,
gridsize: int = 30,
title: str = "",
save_path: Optional[str] = None,
show: bool = True,
include_legend: bool = True,
include_colorbar: bool = True,
) -> None:
"""Creates a plot of a strategy, showing participants responses on each trial, the estimated response function and
threshold, and optionally a ground truth response threshold.
Args:
strat (Strategy): Strategy object to be plotted. Must have a dimensionality of 2 or less.
ax (plt.Axes, optional): Matplotlib axis to plot on (if None, creates a new axis). Default: None.
true_testfun (Callable, optional): Ground truth response function. Should take a n_samples x n_parameters tensor
as input and produce the response probability at each sample as output. Default: None.
cred_level (float): Percentage of posterior mass around the mean to be shaded. Default: 0.95.
target_level (float): Response probability to estimate the threshold of. Default: 0.75.
xlabel (str): Label of the x-axis. Default: "Context (abstract)".
ylabel (str): Label of the y-axis (if None, defaults to "Response Probability" for 1-d plots or
"Intensity (Abstract)" for 2-d plots). Default: None.
yes_label (str): Label of trials with response of 1. Default: "Yes trial".
no_label (str): Label of trials with response of 0. Default: "No trial".
flipx (bool): Whether the values of the x-axis should be flipped such that the min becomes the max and vice
versa.
(Only valid for 2-d plots.) Default: False.
logx (bool): Whether the x-axis should be log-transformed. (Only valid for 2-d plots.) Default: False.
gridsize (int): The number of points to sample each dimension at. Default: 30.
title (str): Title of the plot. Default: ''.
save_path (str, optional): File name to save the plot to. Default: None.
show (bool): Whether the plot should be shown in an interactive window. Default: True.
include_legend (bool): Whether to include the legend in the figure. Default: True.
include_colorbar (bool): Whether to include the colorbar indicating the probability of "Yes" trials.
Default: True.
"""
assert (
"binary" in strat.outcome_types
), f"Plotting not supported for outcome_type {strat.outcome_types[0]}"
if target_level is not None and not hasattr(strat.model, "monotonic_idxs"):
warnings.warn(
"Threshold estimation may not be accurate for non-monotonic models."
)
if ax is None:
_, ax = plt.subplots()
if xlabel is None:
xlabel = "Context (abstract)"
dim = strat.dim
if dim == 1:
if ylabel is None:
ylabel = "Response Probability"
_plot_strat_1d(
strat,
ax,
true_testfun,
cred_level,
target_level,
xlabel,
ylabel,
yes_label,
no_label,
gridsize,
)
elif dim == 2:
if ylabel is None:
ylabel = "Intensity (abstract)"
_plot_strat_2d(
strat,
ax,
true_testfun,
cred_level,
target_level,
xlabel,
ylabel,
yes_label,
no_label,
flipx,
logx,
gridsize,
include_colorbar,
)
elif dim == 3:
raise RuntimeError("Use plot_strat_3d for 3d plots!")
else:
raise NotImplementedError("No plots for >3d!")
ax.set_title(title)
if include_legend:
anchor = (1.4, 0.5) if include_colorbar and dim > 1 else (1, 0.5)
plt.legend(loc="center left", bbox_to_anchor=anchor)
if save_path is not None:
plt.savefig(save_path, bbox_inches="tight")
if show:
plt.tight_layout()
if include_legend or (include_colorbar and dim > 1):
plt.subplots_adjust(left=0.1, bottom=0.25, top=0.75)
plt.show()
def _plot_strat_1d(
strat: Strategy,
ax: plt.Axes,
true_testfun: Optional[Callable],
cred_level: float,
target_level: Optional[float],
xlabel: str,
ylabel: str,
yes_label: str,
no_label: str,
gridsize: int,
):
"""Helper function for creating 1-d plots. See plot_strat for an explanation of the arguments."""
x, y = strat.x, strat.y
assert x is not None and y is not None, "No data to plot!"
grid = strat.model.dim_grid(gridsize=gridsize)
samps = norm.cdf(strat.model.sample(grid, num_samples=10000).detach())
phimean = samps.mean(0)
ax.plot(np.squeeze(grid), phimean)
if cred_level is not None:
upper = np.quantile(samps, cred_level, axis=0)
lower = np.quantile(samps, 1 - cred_level, axis=0)
ax.fill_between(
np.squeeze(grid),
lower,
upper,
alpha=0.3,
hatch="///",
edgecolor="gray",
label=f"{cred_level*100:.0f}% posterior mass",
)
if target_level is not None:
from aepsych.utils import interpolate_monotonic
threshold_samps = [
interpolate_monotonic(
grid.squeeze().numpy(), s, target_level, strat.lb[0], strat.ub[0]
)
for s in samps
]
thresh_med = np.mean(threshold_samps)
thresh_lower = np.quantile(threshold_samps, q=1 - cred_level)
thresh_upper = np.quantile(threshold_samps, q=cred_level)
ax.errorbar(
thresh_med,
target_level,
xerr=np.r_[thresh_med - thresh_lower, thresh_upper - thresh_med][:, None],
capsize=5,
elinewidth=1,
label=f"Est. {target_level*100:.0f}% threshold \n(with {cred_level*100:.0f}% posterior \nmass marked)",
)
if true_testfun is not None:
true_f = true_testfun(grid)
ax.plot(grid, true_f.squeeze(), label="True function")
if target_level is not None:
true_thresh = interpolate_monotonic(
grid.squeeze().numpy(),
true_f.squeeze(),
target_level,
strat.lb[0],
strat.ub[0],
)
ax.plot(
true_thresh,
target_level,
"o",
label=f"True {target_level*100:.0f}% threshold",
)
ax.scatter(
x[y == 0, 0],
np.zeros_like(x[y == 0, 0]),
marker=3,
color="r",
label=no_label,
)
ax.scatter(
x[y == 1, 0],
np.zeros_like(x[y == 1, 0]),
marker=3,
color="b",
label=yes_label,
)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
return ax
def _plot_strat_2d(
strat: Strategy,
ax: plt.Axes,
true_testfun: Optional[Callable],
cred_level: float,
target_level: Optional[float],
xlabel: str,
ylabel: str,
yes_label: str,
no_label: str,
flipx: bool,
logx: bool,
gridsize: int,
include_colorbar: bool,
):
"""Helper function for creating 2-d plots. See plot_strat for an explanation of the arguments."""
x, y = strat.x, strat.y
assert x is not None and y is not None, "No data to plot!"
# make sure the model is fit well if we've been limiting fit time
strat.model.fit(train_x=x, train_y=y, max_fit_time=None)
grid = strat.model.dim_grid(gridsize=gridsize)
fmean, _ = strat.model.predict(grid)
phimean = norm.cdf(fmean.reshape(gridsize, gridsize).detach().numpy()).T
extent = np.r_[strat.lb[0], strat.ub[0], strat.lb[1], strat.ub[1]]
colormap = ax.imshow(
phimean, aspect="auto", origin="lower", extent=extent, alpha=0.5
)
if flipx:
extent = np.r_[strat.lb[0], strat.ub[0], strat.ub[1], strat.lb[1]]
colormap = ax.imshow(
phimean, aspect="auto", origin="upper", extent=extent, alpha=0.5
)
else:
extent = np.r_[strat.lb[0], strat.ub[0], strat.lb[1], strat.ub[1]]
colormap = ax.imshow(
phimean, aspect="auto", origin="lower", extent=extent, alpha=0.5
)
# hacky relabel to be in logspace
if logx:
locs = np.arange(strat.lb[0], strat.ub[0])
ax.set_xticks(ticks=locs)
ax.set_xticklabels(2.0**locs)
ax.plot(x[y == 0, 0], x[y == 0, 1], "ro", alpha=0.7, label=no_label)
ax.plot(x[y == 1, 0], x[y == 1, 1], "bo", alpha=0.7, label=yes_label)
if target_level is not None: # plot threshold
mono_grid = np.linspace(strat.lb[1], strat.ub[1], num=gridsize)
context_grid = np.linspace(strat.lb[0], strat.ub[0], num=gridsize)
thresh_75, lower, upper = get_lse_interval(
model=strat.model,
mono_grid=mono_grid,
target_level=target_level,
cred_level=cred_level,
mono_dim=1,
lb=mono_grid.min(),
ub=mono_grid.max(),
gridsize=gridsize,
)
ax.plot(
context_grid,
thresh_75,
label=f"Est. {target_level*100:.0f}% threshold \n(with {cred_level*100:.0f}% posterior \nmass shaded)",
)
ax.fill_between(
context_grid, lower, upper, alpha=0.3, hatch="///", edgecolor="gray"
)
if true_testfun is not None:
true_f = true_testfun(grid).reshape(gridsize, gridsize)
true_thresh = get_lse_contour(
true_f, mono_grid, level=target_level, lb=strat.lb[-1], ub=strat.ub[-1]
)
ax.plot(context_grid, true_thresh, label="Ground truth threshold")
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
if include_colorbar:
colorbar = plt.colorbar(colormap, ax=ax)
colorbar.set_label(f"Probability of {yes_label}")
def plot_strat_3d(
strat: Strategy,
parnames: Optional[List[str]] = None,
outcome_label: str = "Yes Trial",
slice_dim: int = 0,
slice_vals: Union[List[float], int] = 5,
contour_levels: Optional[Union[Iterable[float], bool]] = None,
probability_space: bool = False,
gridsize: int = 30,
extent_multiplier: Optional[List[float]] = None,
save_path: Optional[str] = None,
show: bool = True,
):
"""Creates a plot of a 2d slice of a 3D strategy, showing the estimated model or probability response and contours
Args:
strat (Strategy): Strategy object to be plotted. Must have a dimensionality of 3.
parnames (str list): list of the parameter names
outcome_label (str): The label of the outcome variable
slice_dim (int): dimension to slice on
dim_vals (list of floats or int): values to take slices; OR number of values to take even slices from
contour_levels (iterable of floats or bool, optional): List contour values to plot. Default: None. If true, all integer levels.
probability_space (bool): Whether to plot probability. Default: False
gridsize (int): The number of points to sample each dimension at. Default: 30.
extent_multiplier (list, optional): multipliers for each of the dimensions when plotting. Default:None
save_path (str, optional): File name to save the plot to. Default: None.
show (bool): Whether the plot should be shown in an interactive window. Default: True.
"""
assert strat.model is not None, "Cannot plot without a model!"
contour_levels_list = contour_levels or []
if parnames is None:
parnames = ["x1", "x2", "x3"]
# Get global min/max for all slices
if probability_space:
vmax = 1
vmin = 0
if contour_levels is True:
contour_levels_list = [0.75]
else:
d = make_scaled_sobol(strat.lb, strat.ub, 2000)
post = strat.model.posterior(d)
fmean = post.mean.squeeze().detach().numpy()
vmax = np.max(fmean)
vmin = np.min(fmean)
if contour_levels is True:
contour_levels_list = np.arange(np.ceil(vmin), vmax + 1)
# slice_vals is either a list of values or an integer number of values to slice on
if type(slice_vals) is int:
slices = np.linspace(strat.lb[slice_dim], strat.ub[slice_dim], slice_vals)
slices = np.around(slices, 4)
elif type(slice_vals) is not list:
raise TypeError("slice_vals must be either an integer or a list of values")
else:
slices = np.array(slice_vals)
_, axs = plt.subplots(1, len(slices), constrained_layout=True, figsize=(20, 3))
for _i, dim_val in enumerate(slices):
img = plot_slice(
axs[_i],
strat,
parnames,
slice_dim,
dim_val,
vmin,
vmax,
gridsize,
contour_levels_list,
probability_space,
extent_multiplier,
)
plt_parnames = np.delete(parnames, slice_dim)
axs[0].set_ylabel(plt_parnames[1])
cbar = plt.colorbar(img, ax=axs[-1])
if probability_space:
cbar.ax.set_ylabel(f"Probability of {outcome_label}")
else:
cbar.ax.set_ylabel(outcome_label)
for clevel in contour_levels_list: # type: ignore
cbar.ax.axhline(y=clevel, c="w")
if save_path is not None:
plt.savefig(save_path)
if show:
plt.show()
def plot_slice(
ax,
strat,
parnames,
slice_dim,
slice_val,
vmin,
vmax,
gridsize=30,
contour_levels=None,
lse=False,
extent_multiplier=None,
):
"""Creates a plot of a 2d slice of a 3D strategy, showing the estimated model or probability response and contours
Args:
strat (Strategy): Strategy object to be plotted. Must have a dimensionality of 3.
ax (plt.Axes): Matplotlib axis to plot on
parnames (str list): list of the parameter names
slice_dim (int): dimension to slice on
slice_vals (float): value to take the slice along that dimension
vmin (float): global model minimum to use for plotting
vmax (float): global model maximum to use for plotting
gridsize (int): The number of points to sample each dimension at. Default: 30.
contour_levels (int list): Contours to plot. Default: None
lse (bool): Whether to plot probability. Default: False
extent_multiplier (list, optional): multipliers for each of the dimensions when plotting. Default:None
"""
extent = np.c_[strat.lb, strat.ub].reshape(-1)
x = strat.model.dim_grid(gridsize=gridsize, slice_dims={slice_dim: slice_val})
if lse:
fmean, fvar = strat.predict(x)
fmean = fmean.detach().numpy().reshape(gridsize, gridsize)
fmean = norm.cdf(fmean)
else:
post = strat.model.posterior(x)
fmean = post.mean.squeeze().detach().numpy().reshape(gridsize, gridsize)
# optionally rescale extents to correct values
if extent_multiplier is not None:
extent_scaled = extent * np.repeat(extent_multiplier, 2)
dim_val_scaled = slice_val * extent_multiplier[slice_dim]
else:
extent_scaled = extent
dim_val_scaled = slice_val
plt_extents = np.delete(extent_scaled, [slice_dim * 2, slice_dim * 2 + 1])
plt_parnames = np.delete(parnames, slice_dim)
img = ax.imshow(
fmean.T, extent=plt_extents, origin="lower", aspect="auto", vmin=vmin, vmax=vmax
)
ax.set_title(parnames[slice_dim] + "=" + str(dim_val_scaled))
ax.set_xlabel(plt_parnames[0])
if len(contour_levels) > 0:
ax.contour(
fmean.T,
contour_levels,
colors="w",
extent=plt_extents,
origin="lower",
aspect="auto",
)
return img
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import sys
from gpytorch.likelihoods import BernoulliLikelihood, GaussianLikelihood
from . import acquisition, config, factory, generators, models, strategy, utils
from .config import Config
from .likelihoods import BernoulliObjectiveLikelihood
from .models import GPClassificationModel
from .strategy import SequentialStrategy, Strategy
__all__ = [
# modules
"acquisition",
"config",
"factory",
"models",
"strategy",
"utils",
"generators",
# classes
"GPClassificationModel",
"Strategy",
"SequentialStrategy",
"BernoulliObjectiveLikelihood",
"BernoulliLikelihood",
"GaussianLikelihood",
]
try:
from . import benchmark
__all__ += ["benchmark"]
except ImportError:
pass
Config.register_module(sys.modules[__name__])
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import time
import warnings
from copy import copy
from typing import Any, Dict, List, Optional, Sequence, Tuple, Type, Union
import numpy as np
import torch
from aepsych.config import Config, ConfigurableMixin
from aepsych.generators.base import AEPsychGenerationStep, AEPsychGenerator
from aepsych.generators.sobol_generator import AxSobolGenerator, SobolGenerator
from aepsych.models.base import ModelProtocol
from aepsych.utils import (
_process_bounds,
get_objectives,
get_parameters,
make_scaled_sobol,
)
from aepsych.utils_logging import getLogger
from ax.core.base_trial import TrialStatus
from ax.modelbridge.generation_strategy import GenerationStrategy
from ax.plot.contour import interact_contour
from ax.plot.slice import plot_slice
from ax.service.ax_client import AxClient
from ax.utils.notebook.plotting import render
from botorch.exceptions.errors import ModelFittingError
logger = getLogger()
def ensure_model_is_fresh(f):
def wrapper(self, *args, **kwargs):
if self.can_fit and not self._model_is_fresh:
starttime = time.time()
if self._count % self.refit_every == 0 or self.refit_every == 1:
logger.info("Starting fitting (no warm start)...")
# don't warm start
self.fit()
else:
logger.info("Starting fitting (warm start)...")
# warm start
self.update()
logger.info(f"Fitting done, took {time.time()-starttime}")
self._model_is_fresh = True
return f(self, *args, **kwargs)
return wrapper
class Strategy(object):
"""Object that combines models and generators to generate points to sample."""
_n_eval_points: int = 1000
def __init__(
self,
generator: AEPsychGenerator,
lb: Union[np.ndarray, torch.Tensor],
ub: Union[np.ndarray, torch.Tensor],
stimuli_per_trial: int,
outcome_types: Sequence[Type[str]],
dim: Optional[int] = None,
min_total_tells: int = 0,
min_asks: int = 0,
model: Optional[ModelProtocol] = None,
refit_every: int = 1,
min_total_outcome_occurrences: int = 1,
max_asks: Optional[int] = None,
keep_most_recent: Optional[int] = None,
min_post_range: Optional[float] = None,
name: str = "",
run_indefinitely: bool = False,
):
"""Initialize the strategy object.
Args:
generator (AEPsychGenerator): The generator object that determines how points are sampled.
lb (Union[numpy.ndarray, torch.Tensor]): Lower bounds of the parameters.
ub (Union[numpy.ndarray, torch.Tensor]): Upper bounds of the parameters.
dim (int, optional): The number of dimensions in the parameter space. If None, it is inferred from the size
of lb and ub.
min_total_tells (int): The minimum number of total observations needed to complete this strategy.
min_asks (int): The minimum number of points that should be generated from this strategy.
model (ModelProtocol, optional): The AEPsych model of the data.
refit_every (int): How often to refit the model from scratch.
min_total_outcome_occurrences (int): The minimum number of total observations needed for each outcome before the strategy will finish.
Defaults to 1 (i.e., for binary outcomes, there must be at least one "yes" trial and one "no" trial).
max_asks (int, optional): The maximum number of trials to generate using this strategy.
If None, there is no upper bound (default).
keep_most_recent (int, optional): Experimental. The number of most recent data points that the model will be fitted on.
This may be useful for discarding noisy data from trials early in the experiment that are not as informative
as data collected from later trials. When None, the model is fitted on all data.
min_post_range (float, optional): Experimental. The required difference between the posterior's minimum and maximum value in
probablity space before the strategy will finish. Ignored if None (default).
name (str): The name of the strategy. Defaults to the empty string.
run_indefinitely (bool): If true, the strategy will run indefinitely until finish() is explicitly called. Other stopping criteria will
be ignored. Defaults to False.
"""
self.is_finished = False
if run_indefinitely:
warnings.warn(
f"Strategy {name} will run indefinitely until finish() is explicitly called. Other stopping criteria will be ignored."
)
elif min_total_tells > 0 and min_asks > 0:
warnings.warn(
"Specifying both min_total_tells and min_asks > 0 may lead to unintended behavior."
)
if model is not None:
assert (
len(outcome_types) == model._num_outputs
), f"Strategy has {len(outcome_types)} outcomes, but model {type(model).__name__} supports {model._num_outputs}!"
assert (
stimuli_per_trial == model.stimuli_per_trial
), f"Strategy has {stimuli_per_trial} stimuli_per_trial, but model {type(model).__name__} supports {model.stimuli_per_trial}!"
if isinstance(model.outcome_type, str):
assert (
len(outcome_types) == 1 and outcome_types[0] == model.outcome_type
), f"Strategy outcome types is {outcome_types} but model outcome type is {model.outcome_type}!"
else:
assert set(outcome_types) == set(
model.outcome_type
), f"Strategy outcome types is {outcome_types} but model outcome type is {model.outcome_type}!"
self.run_indefinitely = run_indefinitely
self.lb, self.ub, self.dim = _process_bounds(lb, ub, dim)
self.min_total_outcome_occurrences = min_total_outcome_occurrences
self.max_asks = max_asks
self.keep_most_recent = keep_most_recent
self.min_post_range = min_post_range
if self.min_post_range is not None:
assert model is not None, "min_post_range must be None if model is None!"
self.eval_grid = make_scaled_sobol(
lb=self.lb, ub=self.ub, size=self._n_eval_points
)
self.x = None
self.y = None
self.n = 0
self.min_asks = min_asks
self._count = 0
self.min_total_tells = min_total_tells
self.stimuli_per_trial = stimuli_per_trial
self.outcome_types = outcome_types
if self.stimuli_per_trial == 1:
self.event_shape: Tuple[int, ...] = (self.dim,)
if self.stimuli_per_trial == 2:
self.event_shape = (self.dim, self.stimuli_per_trial)
self.model = model
self.refit_every = refit_every
self._model_is_fresh = False
self.generator = generator
self.has_model = self.model is not None
if self.generator._requires_model:
assert self.model is not None, f"{self.generator} requires a model!"
if self.min_asks == self.min_total_tells == 0:
warnings.warn(
"strategy.min_asks == strategy.min_total_tells == 0. This strategy will not generate any points!",
UserWarning,
)
self.name = name
def normalize_inputs(self, x, y):
"""converts inputs into normalized format for this strategy
Args:
x (np.ndarray): training inputs
y (np.ndarray): training outputs
Returns:
x (np.ndarray): training inputs, normalized
y (np.ndarray): training outputs, normalized
n (int): number of observations
"""
assert (
x.shape == self.event_shape or x.shape[1:] == self.event_shape
), f"x shape should be {self.event_shape} or batch x {self.event_shape}, instead got {x.shape}"
if x.shape == self.event_shape:
x = x[None, :]
if self.x is None:
x = np.r_[x]
else:
x = np.r_[self.x, x]
if self.y is None:
y = np.r_[y]
else:
y = np.r_[self.y, y]
n = y.shape[0]
return torch.Tensor(x), torch.Tensor(y), n
# TODO: allow user to pass in generator options
@ensure_model_is_fresh
def gen(self, num_points: int = 1):
"""Query next point(s) to run by optimizing the acquisition function.
Args:
num_points (int, optional): Number of points to query. Defaults to 1.
Other arguments are forwared to underlying model.
Returns:
np.ndarray: Next set of point(s) to evaluate, [num_points x dim].
"""
self._count = self._count + num_points
return self.generator.gen(num_points, self.model)
@ensure_model_is_fresh
def get_max(self, constraints=None):
constraints = constraints or {}
return self.model.get_max(constraints)
@ensure_model_is_fresh
def get_min(self, constraints=None):
constraints = constraints or {}
return self.model.get_min(constraints)
@ensure_model_is_fresh
def inv_query(self, y, constraints=None, probability_space=False):
constraints = constraints or {}
return self.model.inv_query(y, constraints, probability_space)
@ensure_model_is_fresh
def predict(self, x, probability_space=False):
return self.model.predict(x=x, probability_space=probability_space)
@ensure_model_is_fresh
def get_jnd(self, *args, **kwargs):
return self.model.get_jnd(*args, **kwargs)
@ensure_model_is_fresh
def sample(self, x, num_samples=None):
return self.model.sample(x, num_samples=num_samples)
def finish(self):
self.is_finished = True
@property
def finished(self):
if self.is_finished:
return True
if self.run_indefinitely:
return False
if hasattr(self.generator, "finished"): # defer to generator if possible
return self.generator.finished
if self.y is None: # always need some data before switching strats
return False
if self.max_asks is not None and self._count >= self.max_asks:
return True
if "binary" in self.outcome_types:
n_yes_trials = (self.y == 1).sum()
n_no_trials = (self.y == 0).sum()
sufficient_outcomes = (
n_yes_trials >= self.min_total_outcome_occurrences
and n_no_trials >= self.min_total_outcome_occurrences
)
else:
sufficient_outcomes = True
if self.min_post_range is not None:
fmean, _ = self.model.predict(self.eval_grid, probability_space=True)
meets_post_range = (fmean.max() - fmean.min()) >= self.min_post_range
else:
meets_post_range = True
finished = (
self._count >= self.min_asks
and self.n >= self.min_total_tells
and sufficient_outcomes
and meets_post_range
)
return finished
@property
def can_fit(self):
return self.has_model and self.x is not None and self.y is not None
@property
def n_trials(self):
warnings.warn(
"'n_trials' is deprecated and will be removed in a future release. Specify 'min_asks' instead.",
DeprecationWarning,
)
return self.min_asks
def add_data(self, x, y):
self.x, self.y, self.n = self.normalize_inputs(x, y)
self._model_is_fresh = False
def fit(self):
if self.can_fit:
if self.keep_most_recent is not None:
try:
self.model.fit(
self.x[-self.keep_most_recent :],
self.y[-self.keep_most_recent :],
)
except (ModelFittingError):
logger.warning(
"Failed to fit model! Predictions may not be accurate!"
)
else:
try:
self.model.fit(self.x, self.y)
except (ModelFittingError):
logger.warning(
"Failed to fit model! Predictions may not be accurate!"
)
else:
warnings.warn("Cannot fit: no model has been initialized!", RuntimeWarning)
def update(self):
if self.can_fit:
if self.keep_most_recent is not None:
try:
self.model.update(
self.x[-self.keep_most_recent :],
self.y[-self.keep_most_recent :],
)
except (ModelFittingError):
logger.warning(
"Failed to fit model! Predictions may not be accurate!"
)
else:
try:
self.model.update(self.x, self.y)
except (ModelFittingError):
logger.warning(
"Failed to fit model! Predictions may not be accurate!"
)
else:
warnings.warn("Cannot fit: no model has been initialized!", RuntimeWarning)
@classmethod
def from_config(cls, config: Config, name: str):
lb = config.gettensor(name, "lb")
ub = config.gettensor(name, "ub")
dim = config.getint(name, "dim", fallback=None)
stimuli_per_trial = config.getint(name, "stimuli_per_trial", fallback=1)
outcome_types = config.getlist(name, "outcome_types", element_type=str)
gen_cls = config.getobj(name, "generator", fallback=SobolGenerator)
generator = gen_cls.from_config(config)
model_cls = config.getobj(name, "model", fallback=None)
if model_cls is not None:
model = model_cls.from_config(config)
else:
model = None
acqf_cls = config.getobj(name, "acqf", fallback=None)
if acqf_cls is not None and hasattr(generator, "acqf"):
if generator.acqf is None:
generator.acqf = acqf_cls
generator.acqf_kwargs = generator._get_acqf_options(acqf_cls, config)
min_asks = config.getint(name, "min_asks", fallback=0)
min_total_tells = config.getint(name, "min_total_tells", fallback=0)
refit_every = config.getint(name, "refit_every", fallback=1)
if model is not None and not generator._requires_model:
if refit_every < min_asks:
warnings.warn(
f"Strategy '{name}' has refit_every < min_asks even though its generator does not require a model. Consider making refit_every = min_asks to speed up point generation.",
UserWarning,
)
keep_most_recent = config.getint(name, "keep_most_recent", fallback=None)
min_total_outcome_occurrences = config.getint(
name,
"min_total_outcome_occurrences",
fallback=1 if "binary" in outcome_types else 0,
)
min_post_range = config.getfloat(name, "min_post_range", fallback=None)
keep_most_recent = config.getint(name, "keep_most_recent", fallback=None)
n_trials = config.getint(name, "n_trials", fallback=None)
if n_trials is not None:
warnings.warn(
"'n_trials' is deprecated and will be removed in a future release. Specify 'min_asks' instead.",
DeprecationWarning,
)
min_asks = n_trials
return cls(
lb=lb,
ub=ub,
stimuli_per_trial=stimuli_per_trial,
outcome_types=outcome_types,
dim=dim,
model=model,
generator=generator,
min_asks=min_asks,
refit_every=refit_every,
min_total_outcome_occurrences=min_total_outcome_occurrences,
min_post_range=min_post_range,
keep_most_recent=keep_most_recent,
min_total_tells=min_total_tells,
name=name,
)
class SequentialStrategy(object):
"""Runs a sequence of strategies defined by its config
All getter methods defer to the current strat
Args:
strat_list (list[Strategy]): TODO make this nicely typed / doc'd
"""
def __init__(self, strat_list: List[Strategy]):
self.strat_list = strat_list
self._strat_idx = 0
self._suggest_count = 0
@property
def _strat(self):
return self.strat_list[self._strat_idx]
def __getattr__(self, name: str):
# return current strategy's attr if it's not a container attr
if "strat_list" not in vars(self):
raise AttributeError("Have no strategies in container, what happened?")
return getattr(self._strat, name)
def _make_next_strat(self):
if (self._strat_idx + 1) >= len(self.strat_list):
warnings.warn(
"Ran out of generators, staying on final generator!", RuntimeWarning
)
return
# populate new model with final data from last model
assert (
self.x is not None and self.y is not None
), "Cannot initialize next strategy; no data has been given!"
self.strat_list[self._strat_idx + 1].add_data(self.x, self.y)
self._suggest_count = 0
self._strat_idx = self._strat_idx + 1
def gen(self, num_points: int = 1, **kwargs):
if self._strat.finished:
self._make_next_strat()
self._suggest_count = self._suggest_count + num_points
return self._strat.gen(num_points=num_points, **kwargs)
def finish(self):
self._strat.finish()
@property
def finished(self):
return self._strat_idx == (len(self.strat_list) - 1) and self._strat.finished
def add_data(self, x, y):
self._strat.add_data(x, y)
@classmethod
def from_config(cls, config: Config):
strat_names = config.getlist("common", "strategy_names", element_type=str)
# ensure strat_names are unique
assert len(strat_names) == len(
set(strat_names)
), f"Strategy names {strat_names} are not all unique!"
strats = []
for name in strat_names:
strat = Strategy.from_config(config, str(name))
strats.append(strat)
return cls(strat_list=strats)
class AEPsychStrategy(ConfigurableMixin):
is_finished = False
def __init__(self, ax_client: AxClient):
self.ax_client = ax_client
self.ax_client.experiment.num_asks = 0
@classmethod
def get_config_options(cls, config: Config, name: Optional[str] = None) -> Dict:
# TODO: Fix the mypy errors
strat_names: List[str] = config.getlist("common", "strategy_names", element_type=str) # type: ignore
steps = []
for name in strat_names:
generator = config.getobj(name, "generator", fallback=AxSobolGenerator) # type: ignore
opts = generator.get_config_options(config, name)
step = AEPsychGenerationStep(**opts)
steps.append(step)
# Add an extra step at the end that we can `ask` endlessly.
final_step = copy(step)
final_step.completion_criteria = []
steps.append(final_step)
parameters = get_parameters(config)
parameter_constraints = config.getlist(
"common", "par_constraints", element_type=str, fallback=None
)
objectives = get_objectives(config)
seed = config.getint("common", "random_seed", fallback=None)
strat = GenerationStrategy(steps=steps)
ax_client = AxClient(strat, random_seed=seed)
ax_client.create_experiment(
name="experiment",
parameters=parameters,
parameter_constraints=parameter_constraints,
objectives=objectives,
)
return {"ax_client": ax_client}
@property
def finished(self) -> bool:
if self.is_finished:
return True
self.strat._maybe_move_to_next_step()
return len(self.strat._steps) == (self.strat.current_step.index + 1)
def finish(self):
self.is_finished = True
def gen(self, num_points: int = 1):
x, _ = self.ax_client.get_next_trials(max_trials=num_points)
self.strat.experiment.num_asks += num_points
return x
def complete_new_trial(self, config, outcome):
_, trial_index = self.ax_client.attach_trial(config)
self.complete_existing_trial(trial_index, outcome)
def complete_existing_trial(self, trial_index, outcome):
self.ax_client.complete_trial(trial_index, outcome)
@property
def experiment(self):
return self.ax_client.experiment
@property
def strat(self):
return self.ax_client.generation_strategy
@property
def can_fit(self):
return (
self.strat.model is not None
and len(self.experiment.trial_indices_by_status[TrialStatus.COMPLETED]) > 0
)
def _warn_on_outcome_mismatch(self):
ax_model = self.ax_client.generation_strategy.model
aepsych_model = ax_model.model.surrogate.model
if (
hasattr(aepsych_model, "outcome_type")
and aepsych_model.outcome_type != "continuous"
):
warnings.warn(
"Cannot directly plot non-continuous outcomes. Plotting the latent function instead."
)
def plot_contours(
self, density: int = 50, slice_values: Optional[Dict[str, Any]] = None
):
"""Plot predictions for a 2-d slice of the parameter space.
Args:
density: Number of points along each parameter to evaluate predictions.
slice_values: A dictionary {name: val} for the fixed values of the
other parameters. If not provided, then the mean of numeric
parameters or the mode of choice parameters will be used.
"""
assert (
len(self.experiment.parameters) > 1
), "plot_contours requires at least 2 parameters! Use 'plot_slice' instead."
ax_model = self.ax_client.generation_strategy.model
self._warn_on_outcome_mismatch()
render(
interact_contour(
model=ax_model,
metric_name="objective",
density=density,
slice_values=slice_values,
)
)
def plot_slice(
self,
param_name: str,
density: int = 50,
slice_values: Optional[Dict[str, Any]] = None,
):
"""Plot predictions for a 1-d slice of the parameter space.
Args:
param_name: Name of parameter that will be sliced
density: Number of points along slice to evaluate predictions.
slice_values: A dictionary {name: val} for the fixed values of the
other parameters. If not provided, then the mean of numeric
parameters or the mode of choice parameters will be used.
"""
self._warn_on_outcome_mismatch()
ax_model = self.ax_client.generation_strategy.model
render(
plot_slice(
model=ax_model,
param_name=param_name,
metric_name="objective",
density=density,
slice_values=slice_values,
)
)
def get_pareto_optimal_parameters(self):
return self.ax_client.get_pareto_optimal_parameters()
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import logging.config
import os
logger = logging.getLogger()
def getLogger(level=logging.INFO, log_path="logs") -> logging.Logger:
my_format = "%(asctime)-15s [%(levelname)-7s] %(message)s"
os.makedirs(log_path, exist_ok=True)
logging_config = {
"version": 1,
"disable_existing_loggers": True,
"formatters": {"standard": {"format": my_format}},
"handlers": {
"default": {
"level": level,
"class": "logging.StreamHandler",
"formatter": "standard",
},
"file": {
"class": "logging.FileHandler",
"level": logging.DEBUG,
"filename": f"{log_path}/bayes_opt_server.log",
"formatter": "standard",
},
},
"loggers": {
"": {"handlers": ["default", "file"], "level": level, "propagate": False},
},
}
logging.config.dictConfig(logging_config)
return logger
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from collections.abc import Iterable
from configparser import NoOptionError
from typing import Dict, List, Mapping, Optional, Tuple
import numpy as np
import torch
from ax.service.utils.instantiation import ObjectiveProperties
from scipy.stats import norm
from torch.quasirandom import SobolEngine
def make_scaled_sobol(lb, ub, size, seed=None):
lb, ub, ndim = _process_bounds(lb, ub, None)
grid = SobolEngine(dimension=ndim, scramble=True, seed=seed).draw(size)
# rescale from [0,1] to [lb, ub]
grid = lb + (ub - lb) * grid
return grid
def promote_0d(x):
if not isinstance(x, Iterable):
return [x]
return x
def dim_grid(
lower: torch.Tensor,
upper: torch.Tensor,
dim: int,
gridsize: int = 30,
slice_dims: Optional[Mapping[int, float]] = None,
) -> torch.Tensor:
"""Create a grid
Create a grid based on lower, upper, and dim.
Parameters
----------
- lower ('int') - lower bound
- upper ('int') - upper bound
- dim ('int) - dimension
- gridsize ('int') - size for grid
- slice_dims (Optional, dict) - values to use for slicing axes, as an {index:value} dict
Returns
----------
grid : torch.FloatTensor
Tensor
"""
slice_dims = slice_dims or {}
lower, upper, _ = _process_bounds(lower, upper, None)
mesh_vals = []
for i in range(dim):
if i in slice_dims.keys():
mesh_vals.append(slice(slice_dims[i] - 1e-10, slice_dims[i] + 1e-10, 1))
else:
mesh_vals.append(slice(lower[i].item(), upper[i].item(), gridsize * 1j))
return torch.Tensor(np.mgrid[mesh_vals].reshape(dim, -1).T)
def _process_bounds(lb, ub, dim) -> Tuple[torch.Tensor, torch.Tensor, int]:
"""Helper function for ensuring bounds are correct shape and type."""
lb = promote_0d(lb)
ub = promote_0d(ub)
if not isinstance(lb, torch.Tensor):
lb = torch.tensor(lb)
if not isinstance(ub, torch.Tensor):
ub = torch.tensor(ub)
lb = lb.float()
ub = ub.float()
assert lb.shape[0] == ub.shape[0], "bounds should be of equal shape!"
if dim is not None:
if lb.shape[0] == 1:
lb = lb.repeat(dim)
ub = ub.repeat(dim)
else:
assert lb.shape[0] == dim, "dim does not match shape of bounds!"
else:
dim = lb.shape[0]
for i, (l, u) in enumerate(zip(lb, ub)):
assert (
l <= u
), f"Lower bound {l} is not less than or equal to upper bound {u} on dimension {i}!"
return lb, ub, dim
def interpolate_monotonic(x, y, z, min_x=-np.inf, max_x=np.inf):
# Ben Letham's 1d interpolation code, assuming monotonicity.
# basic idea is find the nearest two points to the LSE and
# linearly interpolate between them (I think this is bisection
# root-finding)
idx = np.searchsorted(y, z)
if idx == len(y):
return float(max_x)
elif idx == 0:
return float(min_x)
x0 = x[idx - 1]
x1 = x[idx]
y0 = y[idx - 1]
y1 = y[idx]
x_star = x0 + (x1 - x0) * (z - y0) / (y1 - y0)
return x_star
def get_lse_interval(
model,
mono_grid,
target_level,
cred_level=None,
mono_dim=-1,
n_samps=500,
lb=-np.inf,
ub=np.inf,
gridsize=30,
**kwargs,
):
xgrid = torch.Tensor(
np.mgrid[
[
slice(model.lb[i].item(), model.ub[i].item(), gridsize * 1j)
for i in range(model.dim)
]
]
.reshape(model.dim, -1)
.T
)
samps = model.sample(xgrid, num_samples=n_samps, **kwargs)
samps = [s.reshape((gridsize,) * model.dim) for s in samps.detach().numpy()]
contours = np.stack(
[
get_lse_contour(norm.cdf(s), mono_grid, target_level, mono_dim, lb, ub)
for s in samps
]
)
if cred_level is None:
return np.mean(contours, 0.5, axis=0)
else:
alpha = 1 - cred_level
qlower = alpha / 2
qupper = 1 - alpha / 2
upper = np.quantile(contours, qupper, axis=0)
lower = np.quantile(contours, qlower, axis=0)
median = np.quantile(contours, 0.5, axis=0)
return median, lower, upper
def get_lse_contour(post_mean, mono_grid, level, mono_dim=-1, lb=-np.inf, ub=np.inf):
return np.apply_along_axis(
lambda p: interpolate_monotonic(mono_grid, p, level, lb, ub),
mono_dim,
post_mean,
)
def get_jnd_1d(post_mean, mono_grid, df=1, mono_dim=-1, lb=-np.inf, ub=np.inf):
interpolate_to = post_mean + df
return (
np.array(
[interpolate_monotonic(mono_grid, post_mean, ito) for ito in interpolate_to]
)
- mono_grid
)
def get_jnd_multid(post_mean, mono_grid, df=1, mono_dim=-1, lb=-np.inf, ub=np.inf):
return np.apply_along_axis(
lambda p: get_jnd_1d(p, mono_grid, df=df, mono_dim=mono_dim, lb=lb, ub=ub),
mono_dim,
post_mean,
)
def _get_ax_parameters(config):
range_parnames = config.getlist("common", "parnames", element_type=str, fallback=[])
lb = config.getlist("common", "lb", element_type=float, fallback=[])
ub = config.getlist("common", "ub", element_type=float, fallback=[])
assert (
len(range_parnames) == len(lb) == len(ub)
), f"Length of parnames ({range_parnames}), lb ({lb}), and ub ({ub}) don't match!"
range_params = [
{
"name": parname,
"type": "range",
"value_type": config.get(parname, "value_type", fallback="float"),
"log_scale": config.getboolean(parname, "log_scale", fallback=False),
"bounds": [l, u],
}
for parname, l, u in zip(range_parnames, lb, ub)
]
choice_parnames = config.getlist(
"common", "choice_parnames", element_type=str, fallback=[]
)
choices = [
config.getlist(parname, "choices", element_type=str, fallback=["True", "False"])
for parname in choice_parnames
]
choice_params = [
{
"name": parname,
"type": "choice",
"value_type": config.get(parname, "value_type", fallback="str"),
"is_ordered": config.getboolean(parname, "is_ordered", fallback=False),
"values": choice,
}
for parname, choice in zip(choice_parnames, choices)
]
fixed_parnames = config.getlist(
"common", "fixed_parnames", element_type=str, fallback=[]
)
values = []
for parname in fixed_parnames:
try:
try:
value = config.getfloat(parname, "value")
except ValueError:
value = config.get(parname, "value")
values.append(value)
except NoOptionError:
raise RuntimeError(f"Missing value for fixed parameter {parname}!")
fixed_params = [
{
"name": parname,
"type": "fixed",
"value": value,
}
for parname, value in zip(fixed_parnames, values)
]
return range_params, choice_params, fixed_params
def get_parameters(config) -> List[Dict]:
range_params, choice_params, fixed_params = _get_ax_parameters(config)
return range_params + choice_params + fixed_params
def get_dim(config) -> int:
range_params, choice_params, _ = _get_ax_parameters(config)
# Need to sum dimensions added by both range and choice parameters
dim = len(range_params) # 1 dim per range parameter
for par in choice_params:
if par["is_ordered"]:
dim += 1 # Ordered choice params are encoded like continuous parameters
elif len(par["values"]) > 2:
dim += len(
par["values"]
) # Choice parameter is one-hot encoded such that they add 1 dim for every choice
else:
dim += (
len(par["values"]) - 1
) # Choice parameters with n_choices < 3 add n_choices - 1 dims
return dim
def get_objectives(config) -> Dict:
outcome_types: List[str] = config.getlist(
"common", "outcome_types", element_type=str
)
if len(outcome_types) > 1:
for out_type in outcome_types:
assert (
out_type == "continuous"
), "Multiple outcomes is only currently supported for continuous outcomes!"
outcome_names: List[str] = config.getlist(
"common", "outcome_names", element_type=str, fallback=None
)
if outcome_names is None:
outcome_names = [f"outcome_{i+1}" for i in range(len(outcome_types))]
objectives = {}
for out_name in outcome_names:
minimize = config.getboolean(out_name, "minimize", fallback=False)
threshold = config.getfloat(out_name, "threshold", fallback=None)
objectives[out_name] = ObjectiveProperties(
minimize=minimize, threshold=threshold
)
return objectives
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import itertools
import time
from random import shuffle
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union
import numpy as np
import pandas as pd
import torch
from aepsych.config import Config
from aepsych.strategy import ensure_model_is_fresh, SequentialStrategy
from tqdm.contrib.itertools import product as tproduct
from .problem import Problem
class Benchmark:
"""
Benchmark base class.
This class wraps standard functionality for benchmarking models including
generating cartesian products of run configurations, running the simulated
experiment loop, and logging results.
TODO make a benchmarking tutorial and link/refer to it here.
"""
def __init__(
self,
problems: List[Problem],
configs: Mapping[str, Union[str, list]],
seed: Optional[int] = None,
n_reps: int = 1,
log_every: Optional[int] = 10,
) -> None:
"""Initialize benchmark.
Args:
problems (List[Problem]): Problem objects containing the test function to evaluate.
configs (Mapping[str, Union[str, list]]): Dictionary of configs to run.
Lists at leaves are used to construct a cartesian product of configurations.
seed (int, optional): Random seed to use for reproducible benchmarks.
Defaults to randomized seeds.
n_reps (int, optional): Number of repetitions to run of each configuration. Defaults to 1.
log_every (int, optional): Logging interval during an experiment. Defaults to logging every 10 trials.
"""
self.problems = problems
self.n_reps = n_reps
self.combinations = self.make_benchmark_list(**configs)
self._log: List[Dict[str, object]] = []
self.log_every = log_every
# shuffle combinations so that intermediate results have a bit of everything
shuffle(self.combinations)
if seed is None:
# explicit cast because int and np.int_ are different types
self.seed = int(np.random.randint(0, 200))
else:
self.seed = seed
def make_benchmark_list(self, **bench_config) -> List[Dict[str, float]]:
"""Generate a list of benchmarks to run from configuration.
This constructs a cartesian product of config dicts using lists at
the leaves of the base config
Returns:
List[dict[str, float]]: List of dictionaries, each of which can be passed
to aepsych.config.Config.
"""
# This could be a generator but then we couldn't
# know how many params we have, tqdm wouldn't work, etc,
# so we materialize the full list.
def gen_combinations(d):
keys, values = d.keys(), d.values()
# only go cartesian on list leaves
values = [v if type(v) == list else [v] for v in values]
combinations = itertools.product(*values)
return [dict(zip(keys, c)) for c in combinations]
keys, values = bench_config.keys(), bench_config.values()
return [
dict(zip(keys, c))
for c in itertools.product(*(gen_combinations(v) for v in values))
]
def materialize_config(self, config_dict):
materialized_config = {}
for key, value in config_dict.items():
materialized_config[key] = {
k: v._evaluate(config_dict) if isinstance(v, DerivedValue) else v
for k, v in value.items()
}
return materialized_config
@property
def num_benchmarks(self) -> int:
"""Return the total number of runs in this benchmark.
Returns:
int: Total number of runs in this benchmark.
"""
return len(self.problems) * len(self.combinations) * self.n_reps
def make_strat_and_flatconfig(
self, config_dict: Mapping[str, str]
) -> Tuple[SequentialStrategy, Dict[str, str]]:
"""From a config dict, generate a strategy (for running) and
flattened config (for logging)
Args:
config_dict (Mapping[str, str]): A run configuration dictionary.
Returns:
Tuple[SequentialStrategy, Dict[str,str]]: A tuple containing a strategy
object and a flat config.
"""
config = Config()
config.update(config_dict=config_dict)
strat = SequentialStrategy.from_config(config)
flatconfig = self.flatten_config(config)
return strat, flatconfig
def run_experiment(
self,
problem: Problem,
config_dict: Dict[str, Any],
seed: int,
rep: int,
) -> Tuple[List[Dict[str, Any]], Union[SequentialStrategy, None]]:
"""Run one simulated experiment.
Args:
config_dict (Dict[str, str]): AEPsych configuration to use.
seed (int): Random seed for this run.
rep (int): Index of this repetition.
Returns:
Tuple[List[Dict[str, object]], SequentialStrategy]: A tuple containing a log of the results and the strategy as
of the end of the simulated experiment. This is ignored in large-scale benchmarks but useful for
one-off visualization.
"""
torch.manual_seed(seed)
np.random.seed(seed)
config_dict["common"]["lb"] = str(problem.lb.tolist())
config_dict["common"]["ub"] = str(problem.ub.tolist())
config_dict["problem"] = problem.metadata
materialized_config = self.materialize_config(config_dict)
# no-op config
is_invalid = materialized_config["common"].get("invalid_config", False)
if is_invalid:
return [{}], None
strat, flatconfig = self.make_strat_and_flatconfig(materialized_config)
problem_metadata = {
f"problem_{key}": value for key, value in problem.metadata.items()
}
total_gentime = 0.0
total_fittime = 0.0
i = 0
results = []
while not strat.finished:
starttime = time.time()
next_x = strat.gen()
gentime = time.time() - starttime
total_gentime += gentime
next_y = [problem.sample_y(next_x)]
strat.add_data(next_x, next_y)
# strat usually defers model fitting until it is needed
# (e.g. for gen or predict) so that we don't refit
# unnecessarily. But for benchmarking we want to time
# fit and gen separately, so we force a strat update
# so we can time fit vs gen. TODO make this less awkward
starttime = time.time()
ensure_model_is_fresh(lambda x: None)(strat._strat)
fittime = time.time() - starttime
total_fittime += fittime
if (self.log_at(i) or strat.finished) and strat.has_model:
metrics = problem.evaluate(strat)
result = {
"fit_time": fittime,
"cum_fit_time": total_fittime,
"gen_time": gentime,
"cum_gen_time": total_gentime,
"trial_id": i,
"rep": rep,
"seed": seed,
"final": strat.finished,
"strat_idx": strat._strat_idx,
}
result.update(problem_metadata)
result.update(flatconfig)
result.update(metrics)
results.append(result)
i = i + 1
return results, strat
def run_benchmarks(self):
"""Run all the benchmarks, sequentially."""
for i, (rep, config, problem) in enumerate(
tproduct(range(self.n_reps), self.combinations, self.problems)
):
local_seed = i + self.seed
results, _ = self.run_experiment(problem, config, seed=local_seed, rep=rep)
if results != [{}]:
self._log.extend(results)
def flatten_config(self, config: Config) -> Dict[str, str]:
"""Flatten a config object for logging.
Args:
config (Config): AEPsych config object.
Returns:
Dict[str,str]: A flat dictionary (that can be used to build a flat pandas data frame).
"""
flatconfig = {}
for s in config.sections():
flatconfig.update({f"{s}_{k}": v for k, v in config[s].items()})
return flatconfig
def log_at(self, i: int) -> bool:
"""Check if we should log on this trial index.
Args:
i (int): Trial index to (maybe) log at.
Returns:
bool: True if this trial should be logged.
"""
if self.log_every is not None:
return i % self.log_every == 0
else:
return False
def pandas(self) -> pd.DataFrame:
return pd.DataFrame(self._log)
class DerivedValue(object):
"""
A class for dynamically generating config values from other config values during benchmarking.
"""
def __init__(self, args: List[Tuple[str, str]], func: Callable) -> None:
"""Initialize DerivedValue.
Args:
args (List[Tuple[str]]): Each tuple in this list is a pair of strings that refer to keys in a nested dictionary.
func (Callable): A function that accepts args as input.
For example, consider the following:
benchmark_config = {
"common": {
"model": ["GPClassificationModel", "FancyNewModelToBenchmark"],
"acqf": "MCLevelSetEstimation"
},
"init_strat": {
"min_asks": [10, 20],
"generator": "SobolGenerator"
},
"opt_strat": {
"generator": "OptimizeAcqfGenerator",
"min_asks":
DerivedValue(
[("init_strat", "min_asks"), ("common", "model")],
lambda x,y : 100 - x if y == "GPClassificationModel" else 50 - x)
}
}
Four separate benchmarks would be generated from benchmark_config:
1. model = GPClassificationModel; init trials = 10; opt trials = 90
2. model = GPClassificationModel; init trials = 20; opt trials = 80
3. model = FancyNewModelToBenchmark; init trials = 10; opt trials = 40
4. model = FancyNewModelToBenchmark; init trials = 20; opt trials = 30
Note that if you can also access problem names into func by including ("problem", "name") in args.
"""
self.args = args
self.func = func
def _evaluate(self, benchmark_config: Dict) -> Any:
"""Fetches values of self.args from benchmark_config and evaluates self.func on them."""
_args = [benchmark_config[outer][inner] for outer, inner in self.args]
return self.func(*_args)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
import time
import traceback
from copy import deepcopy
from pathlib import Path
from random import shuffle
from typing import Any, Dict, List, Mapping, Optional, Tuple, Union
import aepsych.utils_logging as utils_logging
import multiprocess.context as ctx
import numpy as np
import pathos
import torch
from aepsych.benchmark import Benchmark
from aepsych.benchmark.problem import Problem
from aepsych.strategy import SequentialStrategy
ctx._force_start_method("spawn") # fixes problems with CUDA and fork
logger = utils_logging.getLogger(logging.INFO)
class PathosBenchmark(Benchmark):
"""Benchmarking class for parallelized benchmarks using pathos"""
def __init__(self, nproc: int = 1, *args, **kwargs):
"""Initialize pathos benchmark.
Args:
nproc (int, optional): Number of cores to use. Defaults to 1.
"""
super().__init__(*args, **kwargs)
# parallelize over jobs, so each job should be 1 thread only
num_threads = torch.get_num_threads()
num_interopt_threads = torch.get_num_interop_threads()
if num_threads > 1 or num_interopt_threads > 1:
raise RuntimeError(
"PathosBenchmark parallelizes over threads,"
+ "and as such is incompatible with torch being threaded. "
+ "Please call `torch.set_num_threads(1)` and "
+ "`torch.set_num_interop_threads(1)` before using PathosBenchmark!"
)
cores_available = pathos.multiprocessing.cpu_count()
if nproc >= cores_available:
raise RuntimeError(
f"Requesting a benchmark with {nproc} cores but "
+ f"machine has {cores_available} cores! It is highly "
"recommended to leave at least 1-2 cores open for OS tasks."
)
self.pool = pathos.pools.ProcessPool(nodes=nproc)
def __del__(self):
# destroy the pool (for when we're testing or running
# multiple benchmarks in one script) but if the GC already
# cleared the underlying multiprocessing object (usually on
# the final call), don't do anything.
if hasattr(self, "pool") and self.pool is not None:
try:
self.pool.close()
self.pool.join()
self.pool.clear()
except TypeError:
pass
def run_experiment(
self,
problem: Problem,
config_dict: Dict[str, Any],
seed: int,
rep: int,
) -> Tuple[List[Dict[str, Any]], Union[SequentialStrategy, None]]:
"""Run one simulated experiment.
Args:
config_dict (Dict[str, Any]): AEPsych configuration to use.
seed (int): Random seed for this run.
rep (int): Index of this repetition.
Returns:
Tuple[List[Dict[str, Any]], SequentialStrategy]: A tuple containing a log of the results and the strategy as
of the end of the simulated experiment. This is ignored in large-scale benchmarks but useful for
one-off visualization.
"""
# copy things that we mutate
local_config = deepcopy(config_dict)
try:
return super().run_experiment(problem, local_config, seed, rep)
except Exception as e:
logging.error(
f"Error on config {config_dict}: {e}!"
+ f"Traceback follows:\n{traceback.format_exc()}"
)
return [], SequentialStrategy([])
def __getstate__(self):
self_dict = self.__dict__.copy()
if "pool" in self_dict.keys():
del self_dict["pool"]
if "futures" in self_dict.keys():
del self_dict["futures"]
return self_dict
def run_benchmarks(self):
"""Run all the benchmarks,
Note that this blocks while waiting for benchmarks to complete. If you
would like to start benchmarks and periodically collect partial results,
use start_benchmarks and then call collate_benchmarks(wait=False) on some
interval.
"""
self.start_benchmarks()
self.collate_benchmarks(wait=True)
def start_benchmarks(self):
"""Start benchmark run.
This does not block: after running it, self.futures holds the
status of benchmarks running in parallel.
"""
def run_discard_strat(*conf):
logger, _ = self.run_experiment(*conf)
return logger
self.all_sim_configs = [
(problem, config_dict, self.seed + seed, rep)
for seed, (problem, config_dict, rep) in enumerate(
itertools.product(self.problems, self.combinations, range(self.n_reps))
)
]
shuffle(self.all_sim_configs)
self.futures = [
self.pool.apipe(run_discard_strat, *conf) for conf in self.all_sim_configs
]
@property
def is_done(self) -> bool:
"""Check if the benchmark is done.
Returns:
bool: True if all futures are cleared and benchmark is done.
"""
return len(self.futures) == 0
def collate_benchmarks(self, wait: bool = False) -> None:
"""Collect benchmark results from completed futures.
Args:
wait (bool, optional): If true, this method blocks and waits
on all futures to complete. Defaults to False.
"""
newfutures = []
while self.futures:
item = self.futures.pop()
if wait or item.ready():
results = item.get()
# filter out empty results from invalid configs
results = [r for r in results if r != {}]
if isinstance(results, list):
self._log.extend(results)
else:
newfutures.append(item)
self.futures = newfutures
def run_benchmarks_with_checkpoints(
out_path: str,
benchmark_name: str,
problems: List[Problem],
configs: Mapping[str, Union[str, list]],
global_seed: Optional[int] = None,
n_chunks: int = 1,
n_reps_per_chunk: int = 1,
log_every: Optional[int] = None,
checkpoint_every: int = 60,
n_proc: int = 1,
serial_debug: bool = False,
) -> None:
"""Runs a series of benchmarks, saving both final and intermediate results to .csv files. Benchmarks are run in
sequential chunks, each of which runs all combinations of problems/configs/reps in parallel. This function should
always be used using the "if __name__ == '__main__': ..." idiom.
Args:
out_path (str): The path to save the results to.
benchmark_name (str): A name give to this set of benchmarks. Results will be saved in files named like
"out_path/benchmark_name_chunk{chunk_number}_out.csv"
problems (List[Problem]): Problem objects containing the test function to evaluate.
configs (Mapping[str, Union[str, list]]): Dictionary of configs to run.
Lists at leaves are used to construct a cartesian product of configurations.
global_seed (int, optional): Global seed to use for reproducible benchmarks.
Defaults to randomized seeds.
n_chunks (int): The number of chunks to break the results into. Each chunk will contain at least 1 run of every
combination of problem and config.
n_reps_per_chunk (int, optional): Number of repetitions to run each problem/config in each chunk.
log_every (int, optional): Logging interval during an experiment. Defaults to only logging at the end.
checkpoint_every (int): Save intermediate results every checkpoint_every seconds.
n_proc (int): Number of processors to use.
serial_debug: debug serially?
"""
Path(out_path).mkdir(
parents=True, exist_ok=True
) # make an output folder if not exist
if serial_debug:
out_fname = Path(f"{out_path}/{benchmark_name}_out.csv")
print(f"Starting {benchmark_name} benchmark (serial debug mode)...")
bench = Benchmark(
problems=problems,
configs=configs,
seed=global_seed,
n_reps=n_reps_per_chunk * n_chunks,
log_every=log_every,
)
bench.run_benchmarks()
final_results = bench.pandas()
final_results.to_csv(out_fname)
else:
for chunk in range(n_chunks):
out_fname = Path(f"{out_path}/{benchmark_name}_chunk{chunk}_out.csv")
intermediate_fname = Path(
f"{out_path}/{benchmark_name}_chunk{chunk}_checkpoint.csv"
)
print(f"Starting {benchmark_name} benchmark... chunk {chunk} ")
bench = PathosBenchmark(
nproc=n_proc,
problems=problems,
configs=configs,
seed=None,
n_reps=n_reps_per_chunk,
log_every=log_every,
)
if global_seed is None:
global_seed = int(np.random.randint(0, 200))
bench.seed = (
global_seed + chunk * bench.num_benchmarks
) # HACK. TODO: make num_benchmarks a property of bench configs
bench.start_benchmarks()
while not bench.is_done:
time.sleep(checkpoint_every)
collate_start = time.time()
print(
f"Checkpointing {benchmark_name} chunk {chunk}..., {len(bench.futures)}/{bench.num_benchmarks} alive"
)
bench.collate_benchmarks(wait=False)
temp_results = bench.pandas()
if len(temp_results) > 0:
temp_results["rep"] = temp_results["rep"] + n_reps_per_chunk * chunk
temp_results.to_csv(intermediate_fname)
print(
f"Collate done in {time.time()-collate_start} seconds, {len(bench.futures)}/{bench.num_benchmarks} left"
)
print(f"{benchmark_name} chunk {chunk} fully done!")
final_results = bench.pandas()
final_results["rep"] = final_results["rep"] + n_reps_per_chunk * chunk
final_results.to_csv(out_fname)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .benchmark import Benchmark, DerivedValue
from .pathos_benchmark import PathosBenchmark, run_benchmarks_with_checkpoints
from .problem import LSEProblem, Problem
from .test_functions import (
discrim_highdim,
make_songetal_testfun,
modified_hartmann6,
novel_detection_testfun,
novel_discrimination_testfun,
)
__all__ = [
"Benchmark",
"DerivedValue",
"PathosBenchmark",
"PathosBenchmark",
"Problem",
"LSEProblem",
"make_songetal_testfun",
"novel_detection_testfun",
"novel_discrimination_testfun",
"modified_hartmann6",
"discrim_highdim",
"run_benchmarks_with_checkpoints",
]
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import cached_property
from typing import Any, Dict, Union
import aepsych
import numpy as np
import torch
from aepsych.strategy import SequentialStrategy, Strategy
from aepsych.utils import make_scaled_sobol
from scipy.stats import bernoulli, norm, pearsonr
class Problem:
"""Wrapper for a problem or test function. Subclass from this
and override f() to define your test function.
"""
n_eval_points = 1000
@cached_property
def eval_grid(self):
return make_scaled_sobol(lb=self.lb, ub=self.ub, size=self.n_eval_points)
@property
def name(self) -> str:
raise NotImplementedError
def f(self, x):
raise NotImplementedError
@cached_property
def lb(self):
return self.bounds[0]
@cached_property
def ub(self):
return self.bounds[1]
@property
def bounds(self):
raise NotImplementedError
@property
def metadata(self) -> Dict[str, Any]:
"""A dictionary of metadata passed to the Benchmark to be logged. Each key will become a column in the
Benchmark's output dataframe, with its associated value stored in each row."""
return {"name": self.name}
def p(self, x: np.ndarray) -> np.ndarray:
"""Evaluate response probability from test function.
Args:
x (np.ndarray): Points at which to evaluate.
Returns:
np.ndarray: Response probability at queries points.
"""
return norm.cdf(self.f(x))
def sample_y(self, x: np.ndarray) -> np.ndarray:
"""Sample a response from test function.
Args:
x (np.ndarray): Points at which to sample.
Returns:
np.ndarray: A single (bernoulli) sample at points.
"""
return bernoulli.rvs(self.p(x))
def f_hat(self, model: aepsych.models.base.ModelProtocol) -> torch.Tensor:
"""Generate mean predictions from the model over the evaluation grid.
Args:
model (aepsych.models.base.ModelProtocol): Model to evaluate.
Returns:
torch.Tensor: Posterior mean from underlying model over the evaluation grid.
"""
f_hat, _ = model.predict(self.eval_grid)
return f_hat
@cached_property
def f_true(self) -> np.ndarray:
"""Evaluate true test function over evaluation grid.
Returns:
torch.Tensor: Values of true test function over evaluation grid.
"""
return self.f(self.eval_grid).detach().numpy()
@cached_property
def p_true(self) -> torch.Tensor:
"""Evaluate true response probability over evaluation grid.
Returns:
torch.Tensor: Values of true response probability over evaluation grid.
"""
return norm.cdf(self.f_true)
def p_hat(self, model: aepsych.models.base.ModelProtocol) -> torch.Tensor:
"""Generate mean predictions from the model over the evaluation grid.
Args:
model (aepsych.models.base.ModelProtocol): Model to evaluate.
Returns:
torch.Tensor: Posterior mean from underlying model over the evaluation grid.
"""
p_hat, _ = model.predict(self.eval_grid, probability_space=True)
return p_hat
def evaluate(
self,
strat: Union[Strategy, SequentialStrategy],
) -> Dict[str, float]:
"""Evaluate the strategy with respect to this problem.
Extend this in subclasses to add additional metrics.
Metrics include:
- mae (mean absolute error), mae (mean absolute error), max_abs_err (max absolute error),
pearson correlation. All of these are computed over the latent variable f and the
outcome probability p, w.r.t. the posterior mean. Squared and absolute errors (miae, mise) are
also computed in expectation over the posterior, by sampling.
- Brier score, which measures how well-calibrated the outcome probability is, both at the posterior
mean (plain brier) and in expectation over the posterior (expected_brier).
Args:
strat (aepsych.strategy.Strategy): Strategy to evaluate.
Returns:
Dict[str, float]: A dictionary containing metrics and their values.
"""
# we just use model here but eval gets called on strat in case we need it in downstream evals
# for example to separate out sobol vs opt trials
model = strat.model
assert model is not None, "Cannot evaluate strategy without a model!"
# always eval f
f_hat = self.f_hat(model).detach().numpy()
p_hat = self.p_hat(model).detach().numpy()
assert (
self.f_true.shape == f_hat.shape
), f"self.f_true.shape=={self.f_true.shape} != f_hat.shape=={f_hat.shape}"
mae_f = np.mean(np.abs(self.f_true - f_hat))
mse_f = np.mean((self.f_true - f_hat) ** 2)
max_abs_err_f = np.max(np.abs(self.f_true - f_hat))
corr_f = pearsonr(self.f_true.flatten(), f_hat.flatten())[0]
mae_p = np.mean(np.abs(self.p_true - p_hat))
mse_p = np.mean((self.p_true - p_hat) ** 2)
max_abs_err_p = np.max(np.abs(self.p_true - p_hat))
corr_p = pearsonr(self.p_true.flatten(), p_hat.flatten())[0]
brier = np.mean(2 * np.square(self.p_true - p_hat))
# eval in samp-based expectation over posterior instead of just mean
fsamps = model.sample(self.eval_grid, num_samples=1000).detach().numpy()
try:
psamps = (
model.sample(self.eval_grid, num_samples=1000, probability_space=True) # type: ignore
.detach()
.numpy()
)
except TypeError: # vanilla models don't have proba_space samps, TODO maybe we should add them
psamps = norm.cdf(fsamps)
ferrs = fsamps - self.f_true[None, :]
miae_f = np.mean(np.abs(ferrs))
mise_f = np.mean(ferrs**2)
perrs = psamps - self.p_true[None, :]
miae_p = np.mean(np.abs(perrs))
mise_p = np.mean(perrs**2)
expected_brier = (2 * np.square(self.p_true[None, :] - psamps)).mean()
metrics = {
"mean_abs_err_f": mae_f,
"mean_integrated_abs_err_f": miae_f,
"mean_square_err_f": mse_f,
"mean_integrated_square_err_f": mise_f,
"max_abs_err_f": max_abs_err_f,
"pearson_corr_f": corr_f,
"mean_abs_err_p": mae_p,
"mean_integrated_abs_err_p": miae_p,
"mean_square_err_p": mse_p,
"mean_integrated_square_err_p": mise_p,
"max_abs_err_p": max_abs_err_p,
"pearson_corr_p": corr_p,
"brier": brier,
"expected_brier": expected_brier,
}
return metrics
class LSEProblem(Problem):
"""Level set estimation problem.
This extends the base problem class to evaluate the LSE/threshold estimate
in addition to the function estimate.
"""
threshold = 0.75
@property
def metadata(self) -> Dict[str, Any]:
"""A dictionary of metadata passed to the Benchmark to be logged. Each key will become a column in the
Benchmark's output dataframe, with its associated value stored in each row."""
md = super().metadata
md["threshold"] = self.threshold
return md
def f_threshold(self, model=None):
try:
inverse_torch = model.likelihood.objective.inverse
def inverse_link(x):
return inverse_torch(torch.tensor(x)).numpy()
except AttributeError:
inverse_link = norm.ppf
return float(inverse_link(self.threshold))
@cached_property
def true_below_threshold(self) -> np.ndarray:
"""
Evaluate whether the true function is below threshold over the eval grid
(used for proper scoring and threshold missclassification metric).
"""
return (self.p(self.eval_grid) <= self.threshold).astype(float)
def evaluate(self, strat: Union[Strategy, SequentialStrategy]) -> Dict[str, float]:
"""Evaluate the model with respect to this problem.
For level set estimation, we add metrics w.r.t. the true threshold:
- brier_p_below_{thresh), the brier score w.r.t. p(f(x)<thresh), in contrast to
regular brier, which is the brier score for p(phi(f(x))=1), and the same
for misclassification error.
Args:
strat (aepsych.strategy.Strategy): Strategy to evaluate.
Returns:
Dict[str, float]: A dictionary containing metrics and their values,
including parent class metrics.
"""
metrics = super().evaluate(strat)
# we just use model here but eval gets called on strat in case we need it in downstream evals
# for example to separate out sobol vs opt trials
model = strat.model
assert model is not None, "Cannot make predictions without a model!"
# TODO bring back more threshold error metrics when we more clearly
# define what "threshold" means in high-dim.
# Predict p(below threshold) at test points
p_l = model.p_below_threshold(self.eval_grid, self.f_threshold(model))
# Brier score on level-set probabilities
thresh = self.threshold
brier_name = f"brier_p_below_{thresh}"
metrics[brier_name] = np.mean(2 * np.square(self.true_below_threshold - p_l))
# Classification error
classerr_name = f"missclass_on_thresh_{thresh}"
metrics[classerr_name] = np.mean(
p_l * (1 - self.true_below_threshold)
+ (1 - p_l) * self.true_below_threshold
)
return metrics
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import io
import math
from typing import Callable
import numpy as np
import pandas as pd
from scipy.interpolate import CubicSpline, interp1d
from scipy.stats import norm
# manually scraped data from doi:10.1007/s10162-013-0396-x fig 2
raw = """\
freq,thresh,phenotype
0.25,6.816404934,Older-normal
0.5,5.488517768,Older-normal
1,3.512856308,Older-normal
2,5.909671334,Older-normal
3,6.700337017,Older-normal
4,10.08761498,Older-normal
6,13.46962853,Older-normal
8,12.97026073,Older-normal
0.25,5.520856346,Sensory
0.5,4.19296918,Sensory
1,5.618122764,Sensory
2,19.83681866,Sensory
3,42.00403606,Sensory
4,53.32679981,Sensory
6,62.0527006,Sensory
8,66.08775286,Sensory
0.25,21.2291323,Metabolic
0.5,22.00676227,Metabolic
1,24.24163372,Metabolic
2,33.92590956,Metabolic
3,41.35626176,Metabolic
4,47.17294402,Metabolic
6,54.1174655,Metabolic
8,58.31446133,Metabolic
0.25,20.25772154,Metabolic+Sensory
0.5,20.71121368,Metabolic+Sensory
1,21.97442369,Metabolic+Sensory
2,37.48866818,Metabolic+Sensory
3,53.17814263,Metabolic+Sensory
4,64.01507567,Metabolic+Sensory
6,75.00818649,Metabolic+Sensory
8,76.61433583,Metabolic+Sensory"""
dubno_data = pd.read_csv(io.StringIO(raw))
def make_songetal_threshfun(x: np.ndarray, y: np.ndarray) -> Callable[[float], float]:
"""Generate a synthetic threshold function by interpolation of real data.
Real data is from Dubno et al. 2013, and procedure follows Song et al. 2017, 2018.
See make_songetal_testfun for more detail.
Args:
x (np.ndarray): Frequency
y (np.ndarray): Threshold
Returns:
Callable[[float], float]: Function that interpolates the given
frequencies and thresholds and returns threshold as a function
of frequency.
"""
f_interp = CubicSpline(x, y, extrapolate=False)
f_extrap = interp1d(x, y, fill_value="extrapolate")
def f_combo(x):
# interpolate first
interpolated = f_interp(x)
# whatever is nan needs extrapolating
interpolated[np.isnan(interpolated)] = f_extrap(x[np.isnan(interpolated)])
return interpolated
return f_combo
def make_songetal_testfun(
phenotype: str = "Metabolic", beta: float = 1
) -> Callable[[np.ndarray, bool], np.ndarray]:
"""Make an audiometric test function following Song et al. 2017.
To do so,we first compute a threshold by interpolation/extrapolation
from real data, then assume a linear psychometric function in intensity
with slope beta.
Args:
phenotype (str, optional): Audiometric phenotype from Dubno et al. 2013.
Specifically, one of "Metabolic", "Sensory", "Metabolic+Sensory",
or "Older-normal". Defaults to "Metabolic".
beta (float, optional): Psychometric function slope. Defaults to 1.
Returns:
Callable[[np.ndarray, bool], np.ndarray]: A test function taking a [b x 2] array of points and returning the psychometric function value at those points.
Raises:
AssertionError: if an invalid phenotype is passed.
References:
Song, X. D., Garnett, R., & Barbour, D. L. (2017).
Psychometric function estimation by probabilistic classification.
The Journal of the Acoustical Society of America, 141(4), 2513–2525.
https://doi.org/10.1121/1.4979594
"""
valid_phenotypes = ["Metabolic", "Sensory", "Metabolic+Sensory", "Older-normal"]
assert phenotype in valid_phenotypes, f"Phenotype must be one of {valid_phenotypes}"
x = dubno_data[dubno_data.phenotype == phenotype].freq.values
y = dubno_data[dubno_data.phenotype == phenotype].thresh.values
# first, make the threshold fun
threshfun = make_songetal_threshfun(x, y)
# now make it into a test function
def song_testfun(x, cdf=False):
logfreq = x[..., 0]
intensity = x[..., 1]
thresh = threshfun(2**logfreq)
return (
norm.cdf((intensity - thresh) / beta)
if cdf
else (intensity - thresh) / beta
)
return song_testfun
def novel_discrimination_testfun(x: np.ndarray) -> np.ndarray:
"""Evaluate novel discrimination test function from Owen et al.
The threshold is roughly parabolic with context, and the slope
varies with the threshold. Adding to the difficulty is the fact
that the function is minimized at f=0 (or p=0.5), corresponding
to discrimination being at chance at zero stimulus intensity.
Args:
x (np.ndarray): Points at which to evaluate.
Returns:
np.ndarray: Value of function at these points.
"""
freq = x[..., 0]
amp = x[..., 1]
context = 2 * (0.05 + 0.4 * (-1 + 0.2 * freq) ** 2 * freq**2)
return 2 * (amp + 1) / context
def novel_detection_testfun(x: np.ndarray) -> np.ndarray:
"""Evaluate novel detection test function from Owen et al.
The threshold is roughly parabolic with context, and the slope
varies with the threshold.
Args:
x (np.ndarray): Points at which to evaluate.
Returns:
np.ndarray: Value of function at these points.
"""
freq = x[..., 0]
amp = x[..., 1]
context = 2 * (0.05 + 0.4 * (-1 + 0.2 * freq) ** 2 * freq**2)
return 4 * (amp + 1) / context - 4
def discrim_highdim(x: np.ndarray) -> np.ndarray:
amp = x[..., 0]
freq = x[..., 1]
vscale = x[..., 2]
vshift = x[..., 3]
variance = x[..., 4]
asym = x[..., 5]
phase = x[..., 6]
period = x[..., 7]
context = (
-0.5 * vscale * np.cos(period * 0.6 * math.pi * freq + phase)
+ vscale / 2
+ vshift
) * (
-1 * asym * np.sin(period * 0.6 * math.pi * 0.5 * freq + phase) + (2 - asym)
) - 1
z = (amp - context) / (variance + variance * (1 + context))
p = norm.cdf(z)
p = (1 - 0.5) * p + 0.5 # Floor at p=0.5
p = np.clip(p, 0.5, 1 - 1e-5) # clip so that norm.ppf doesn't go to inf
return norm.ppf(p)
def modified_hartmann6(X):
"""
The modified Hartmann6 function used in Lyu et al.
"""
C = np.r_[0.2, 0.22, 0.28, 0.3]
a_t = np.c_[
[8, 3, 10, 3.5, 1.7, 6],
[0.5, 8, 10, 1.0, 6, 9],
[3, 3.5, 1.7, 8, 10, 6],
[10, 6, 0.5, 8, 1.0, 9],
].T
p_t = (
10 ** (-4)
* np.c_[
[1312, 1696, 5569, 124, 8283, 5886],
[2329, 4135, 8307, 3736, 1004, 9991],
[2348, 1451, 3522, 2883, 3047, 6650],
[4047, 8828, 8732, 5743, 1091, 381],
].T
)
y = 0.0
for i, C_i in enumerate(C):
t = 0
for j in range(6):
t += a_t[i, j] * ((X[j] - p_t[i, j]) ** 2)
y += C_i * np.exp(-t)
return -10 * (float(y) - 0.1)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import logging
import os
import uuid
from contextlib import contextmanager
from pathlib import Path
from typing import Dict
import aepsych.database.tables as tables
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm.session import close_all_sessions
logger = logging.getLogger()
class Database:
def __init__(self, db_path=None):
if db_path is None:
db_path = "./databases/default.db"
db_dir, db_name = os.path.split(db_path)
self._db_name = db_name
self._db_dir = db_dir
if os.path.exists(db_path):
logger.info(f"Found DB at {db_path}, appending!")
else:
logger.info(f"No DB found at {db_path}, creating a new DB!")
self._engine = self.get_engine()
def get_engine(self):
if not hasattr(self, "_engine") or self._engine is None:
self._full_db_path = Path(self._db_dir)
self._full_db_path.mkdir(parents=True, exist_ok=True)
self._full_db_path = self._full_db_path.joinpath(self._db_name)
self._engine = create_engine(f"sqlite:///{self._full_db_path.as_posix()}")
# create the table metadata and tables
tables.Base.metadata.create_all(self._engine)
# create an ongoing session to be used. Provides a conduit
# to the db so the instantiated objects work properly.
Session = sessionmaker(bind=self.get_engine())
self._session = Session()
return self._engine
def delete_db(self):
if self._engine is not None and self._full_db_path.exists():
close_all_sessions()
self._full_db_path.unlink()
self._engine = None
def is_update_required(self):
return (
tables.DBMasterTable.requires_update(self._engine)
or tables.DbReplayTable.requires_update(self._engine)
or tables.DbStratTable.requires_update(self._engine)
or tables.DbConfigTable.requires_update(self._engine)
or tables.DbRawTable.requires_update(self._engine)
or tables.DbParamTable.requires_update(self._engine)
or tables.DbOutcomeTable.requires_update(self._engine)
)
def perform_updates(self):
"""Perform updates on known tables. SQLAlchemy doesn't do alters so they're done the old fashioned way."""
tables.DBMasterTable.update(self._engine)
tables.DbReplayTable.update(self._engine)
tables.DbStratTable.update(self._engine)
tables.DbConfigTable.update(self._engine)
tables.DbRawTable.update(self, self._engine)
tables.DbParamTable.update(self._engine)
tables.DbOutcomeTable.update(self._engine)
@contextmanager
def session_scope(self):
"""Provide a transactional scope around a series of operations."""
Session = sessionmaker(bind=self.get_engine())
session = Session()
try:
yield session
session.commit()
except Exception as err:
logger.error(f"db session use failed: {err}")
session.rollback()
raise
finally:
session.close()
# @retry(stop_max_attempt_number=8, wait_exponential_multiplier=1.8)
def execute_sql_query(self, query: str, vals: Dict[str, str]):
"""Execute an arbitrary query written in sql."""
with self.session_scope() as session:
return session.execute(query, vals).fetchall()
def get_master_records(self):
"""Grab the list of master records."""
records = self._session.query(tables.DBMasterTable).all()
return records
def get_master_record(self, experiment_id):
"""Grab the list of master record for a specific experiment (master) id."""
records = (
self._session.query(tables.DBMasterTable)
.filter(tables.DBMasterTable.experiment_id == experiment_id)
.all()
)
if 0 < len(records):
return records[0]
return None
def get_replay_for(self, master_id):
"""Get the replay records for a specific master row."""
master_record = self.get_master_record(master_id)
if master_record is not None:
return master_record.children_replay
return None
def get_strats_for(self, master_id=0):
"""Get the strat records for a specific master row."""
master_record = self.get_master_record(master_id)
if master_record is not None and len(master_record.children_strat) > 0:
return [c.strat for c in master_record.children_strat]
return None
def get_strat_for(self, master_id, strat_id=-1):
"""Get a specific strat record for a specific master row."""
master_record = self.get_master_record(master_id)
if master_record is not None and len(master_record.children_strat) > 0:
return master_record.children_strat[strat_id].strat
return None
def get_config_for(self, master_id):
"""Get the strat records for a specific master row."""
master_record = self.get_master_record(master_id)
if master_record is not None:
return master_record.children_config[0].config
return None
def get_raw_for(self, master_id):
"""Get the raw data for a specific master row."""
master_record = self.get_master_record(master_id)
if master_record is not None:
return master_record.children_raw
return None
def get_all_params_for(self, master_id):
"""Get the parameters for all the iterations of a specific experiment."""
raw_record = self.get_raw_for(master_id)
params = []
if raw_record is not None:
for raw in raw_record:
for param in raw.children_param:
params.append(param)
return params
return None
def get_param_for(self, master_id, iteration_id):
"""Get the parameters for a specific iteration of a specific experiment."""
raw_record = self.get_raw_for(master_id)
if raw_record is not None:
for raw in raw_record:
if raw.unique_id == iteration_id:
return raw.children_param
return None
def get_all_outcomes_for(self, master_id):
"""Get the outcomes for all the iterations of a specific experiment."""
raw_record = self.get_raw_for(master_id)
outcomes = []
if raw_record is not None:
for raw in raw_record:
for outcome in raw.children_outcome:
outcomes.append(outcome)
return outcomes
return None
def get_outcome_for(self, master_id, iteration_id):
"""Get the outcomes for a specific iteration of a specific experiment."""
raw_record = self.get_raw_for(master_id)
if raw_record is not None:
for raw in raw_record:
if raw.unique_id == iteration_id:
return raw.children_outcome
return None
def record_setup(
self,
description,
name,
extra_metadata=None,
id=None,
request=None,
participant_id=None,
) -> str:
self.get_engine()
if id is None:
master_table = tables.DBMasterTable()
master_table.experiment_description = description
master_table.experiment_name = name
master_table.experiment_id = str(uuid.uuid4())
if participant_id is not None:
master_table.participant_id = participant_id
else:
master_table.participant_id = str(
uuid.uuid4()
) # no p_id specified will result in a generated UUID
master_table.extra_metadata = extra_metadata
self._session.add(master_table)
logger.debug(f"record_setup = [{master_table}]")
else:
master_table = self.get_master_record(id)
if master_table is None:
raise RuntimeError(f"experiment id {id} doesn't exist in the db.")
record = tables.DbReplayTable()
record.message_type = "setup"
record.message_contents = request
if "extra_info" in request:
record.extra_info = request["extra_info"]
record.timestamp = datetime.datetime.now()
record.parent = master_table
logger.debug(f"record_setup = [{record}]")
self._session.add(record)
self._session.commit()
# return the master table if it has a link to the list of child rows
# tis needs to be passed into all future calls to link properly
return master_table
def record_message(self, master_table, type, request) -> None:
# create a linked setup table
record = tables.DbReplayTable()
record.message_type = type
record.message_contents = request
if "extra_info" in request:
record.extra_info = request["extra_info"]
record.timestamp = datetime.datetime.now()
record.parent = master_table
self._session.add(record)
self._session.commit()
def record_raw(self, master_table, model_data, timestamp=None):
raw_entry = tables.DbRawTable()
raw_entry.model_data = model_data
if timestamp is None:
raw_entry.timestamp = datetime.datetime.now()
else:
raw_entry.timestamp = timestamp
raw_entry.parent = master_table
self._session.add(raw_entry)
self._session.commit()
return raw_entry
def record_param(self, raw_table, param_name, param_value) -> None:
param_entry = tables.DbParamTable()
param_entry.param_name = param_name
param_entry.param_value = param_value
param_entry.parent = raw_table
self._session.add(param_entry)
self._session.commit()
def record_outcome(self, raw_table, outcome_name, outcome_value) -> None:
outcome_entry = tables.DbOutcomeTable()
outcome_entry.outcome_name = outcome_name
outcome_entry.outcome_value = outcome_value
outcome_entry.parent = raw_table
self._session.add(outcome_entry)
self._session.commit()
def record_strat(self, master_table, strat):
strat_entry = tables.DbStratTable()
strat_entry.strat = strat
strat_entry.timestamp = datetime.datetime.now()
strat_entry.parent = master_table
self._session.add(strat_entry)
self._session.commit()
def record_config(self, master_table, config):
config_entry = tables.DbConfigTable()
config_entry.config = config
config_entry.timestamp = datetime.datetime.now()
config_entry.parent = master_table
self._session.add(config_entry)
self._session.commit()
def list_master_records(self):
master_records = self.get_master_records()
print("Listing master records:")
for record in master_records:
print(
f'\t{record.unique_id} - name: "{record.experiment_name}" experiment id: {record.experiment_id}'
)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import pickle
from collections.abc import Iterable
from aepsych.config import Config
from aepsych.version import __version__
from sqlalchemy import (
Boolean,
Column,
DateTime,
Float,
ForeignKey,
Integer,
PickleType,
String,
)
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship, sessionmaker
logger = logging.getLogger()
Base = declarative_base()
"""
Original Schema
CREATE TABLE master (
unique_id INTEGER NOT NULL,
experiment_name VARCHAR(256),
experiment_description VARCHAR(2048),
experiment_id VARCHAR(10),
PRIMARY KEY (unique_id),
UNIQUE (experiment_id)
);
CREATE TABLE replay_data (
unique_id INTEGER NOT NULL,
timestamp DATETIME,
message_type VARCHAR(64),
message_contents BLOB,
master_table_id INTEGER,
PRIMARY KEY (unique_id),
FOREIGN KEY(master_table_id) REFERENCES master (unique_id)
);
"""
class DBMasterTable(Base):
"""
Master table to keep track of all experiments and unique keys associated with the experiment
"""
__tablename__ = "master"
unique_id = Column(Integer, primary_key=True, autoincrement=True)
experiment_name = Column(String(256))
experiment_description = Column(String(2048))
experiment_id = Column(String(10), unique=True)
participant_id = Column(String(50), unique=True)
extra_metadata = Column(String(4096)) # JSON-formatted metadata
children_replay = relationship("DbReplayTable", back_populates="parent")
children_strat = relationship("DbStratTable", back_populates="parent")
children_config = relationship("DbConfigTable", back_populates="parent")
children_raw = relationship("DbRawTable", back_populates="parent")
@classmethod
def from_sqlite(cls, row):
this = DBMasterTable()
this.unique_id = row["unique_id"]
this.experiment_name = row["experiment_name"]
this.experiment_description = row["experiment_description"]
this.experiment_id = row["experiment_id"]
return this
def __repr__(self):
return (
f"<DBMasterTable(unique_id={self.unique_id})"
f", experiment_name={self.experiment_name}, "
f"experiment_description={self.experiment_description}, "
f"experiment_id={self.experiment_id})>"
)
@staticmethod
def update(engine):
logger.info("DBMasterTable : update called")
if not DBMasterTable._has_column(engine, "extra_metadata"):
DBMasterTable._add_column(engine, "extra_metadata")
if not DBMasterTable._has_column(engine, "participant_id"):
DBMasterTable._add_column(engine, "participant_id")
@staticmethod
def requires_update(engine):
return not DBMasterTable._has_column(
engine, "extra_metadata"
) or not DBMasterTable._has_column(engine, "participant_id")
@staticmethod
def _has_column(engine, column: str):
result = engine.execute(
"SELECT COUNT(*) FROM pragma_table_info('master') WHERE name='{0}'".format(
column
)
)
rows = result.fetchall()
count = rows[0][0]
return count != 0
@staticmethod
def _add_column(engine, column: str):
try:
result = engine.execute(
"SELECT COUNT(*) FROM pragma_table_info('master') WHERE name='{0}'".format(
column
)
)
rows = result.fetchall()
count = rows[0][0]
if 0 == count:
logger.debug(
"Altering the master table to add the {0} column".format(column)
)
engine.execute(
"ALTER TABLE master ADD COLUMN {0} VARCHAR".format(column)
)
engine.commit()
except Exception as e:
logger.debug(f"Column already exists, no need to alter. [{e}]")
class DbReplayTable(Base):
__tablename__ = "replay_data"
use_extra_info = False
unique_id = Column(Integer, primary_key=True, autoincrement=True)
timestamp = Column(DateTime)
message_type = Column(String(64))
# specify the pickler to allow backwards compatibility between 3.7 and 3.8
message_contents = Column(PickleType(pickler=pickle))
extra_info = Column(PickleType(pickler=pickle))
master_table_id = Column(Integer, ForeignKey("master.unique_id"))
parent = relationship("DBMasterTable", back_populates="children_replay")
__mapper_args__ = {}
@classmethod
def from_sqlite(cls, row):
this = DbReplayTable()
this.unique_id = row["unique_id"]
this.timestamp = row["timestamp"]
this.message_type = row["message_type"]
this.message_contents = row["message_contents"]
this.master_table_id = row["master_table_id"]
if "extra_info" in row:
this.extra_info = row["extra_info"]
else:
this.extra_info = None
this.strat = row["strat"]
return this
def __repr__(self):
return (
f"<DbReplayTable(unique_id={self.unique_id})"
f", timestamp={self.timestamp}, "
f"message_type={self.message_type}"
f", master_table_id={self.master_table_id})>"
)
@staticmethod
def _has_extra_info(engine):
result = engine.execute(
"SELECT COUNT(*) FROM pragma_table_info('replay_data') WHERE name='extra_info'"
)
rows = result.fetchall()
count = rows[0][0]
return count != 0
@staticmethod
def _configs_require_conversion(engine):
Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)
session = Session()
results = session.query(DbReplayTable).all()
for result in results:
if result.message_contents["type"] == "setup":
config_str = result.message_contents["message"]["config_str"]
config = Config(config_str=config_str)
if config.version < __version__:
return True # assume that if any config needs to be refactored, all of them do
return False
@staticmethod
def update(engine):
logger.info("DbReplayTable : update called")
if not DbReplayTable._has_extra_info(engine):
DbReplayTable._add_extra_info(engine)
if DbReplayTable._configs_require_conversion(engine):
DbReplayTable._convert_configs(engine)
@staticmethod
def requires_update(engine):
return not DbReplayTable._has_extra_info(
engine
) or DbReplayTable._configs_require_conversion(engine)
@staticmethod
def _add_extra_info(engine):
try:
result = engine.execute(
"SELECT COUNT(*) FROM pragma_table_info('replay_data') WHERE name='extra_info'"
)
rows = result.fetchall()
count = rows[0][0]
if 0 == count:
logger.debug(
"Altering the replay_data table to add the extra_info column"
)
engine.execute("ALTER TABLE replay_data ADD COLUMN extra_info BLOB")
engine.commit()
except Exception as e:
logger.debug(f"Column already exists, no need to alter. [{e}]")
@staticmethod
def _convert_configs(engine):
Session = sessionmaker(bind=engine)
session = Session()
results = session.query(DbReplayTable).all()
for result in results:
if result.message_contents["type"] == "setup":
config_str = result.message_contents["message"]["config_str"]
config = Config(config_str=config_str)
if config.version < __version__:
config.convert_to_latest()
new_str = str(config)
new_message = {"type": "setup", "message": {"config_str": new_str}}
if "version" in result.message_contents:
new_message["version"] = result.message_contents["version"]
result.message_contents = new_message
session.commit()
logger.info("DbReplayTable : updated old configs.")
class DbStratTable(Base):
__tablename__ = "strat_data"
unique_id = Column(Integer, primary_key=True, autoincrement=True)
timestamp = Column(DateTime)
strat = Column(PickleType(pickler=pickle))
master_table_id = Column(Integer, ForeignKey("master.unique_id"))
parent = relationship("DBMasterTable", back_populates="children_strat")
@classmethod
def from_sqlite(cls, row):
this = DbStratTable()
this.unique_id = row["unique_id"]
this.timestamp = row["timestamp"]
this.strat = row["strat"]
this.master_table_id = row["master_table_id"]
return this
def __repr__(self):
return (
f"<DbStratTable(unique_id={self.unique_id})"
f", timestamp={self.timestamp} "
f", master_table_id={self.master_table_id})>"
)
@staticmethod
def update(engine):
logger.info("DbStratTable : update called")
@staticmethod
def requires_update(engine):
return False
class DbConfigTable(Base):
__tablename__ = "config_data"
unique_id = Column(Integer, primary_key=True, autoincrement=True)
timestamp = Column(DateTime)
config = Column(PickleType(pickler=pickle))
master_table_id = Column(Integer, ForeignKey("master.unique_id"))
parent = relationship("DBMasterTable", back_populates="children_config")
@classmethod
def from_sqlite(cls, row):
this = DbConfigTable()
this.unique_id = row["unique_id"]
this.timestamp = row["timestamp"]
this.strat = row["config"]
this.master_table_id = row["master_table_id"]
return this
def __repr__(self):
return (
f"<DbStratTable(unique_id={self.unique_id})"
f", timestamp={self.timestamp} "
f", master_table_id={self.master_table_id})>"
)
@staticmethod
def update(engine):
logger.info("DbConfigTable : update called")
@staticmethod
def requires_update(engine):
return False
class DbRawTable(Base):
"""
Fact table to store the raw data of each iteration of an experiment.
"""
__tablename__ = "raw_data"
unique_id = Column(Integer, primary_key=True, autoincrement=True)
timestamp = Column(DateTime)
model_data = Column(Boolean)
master_table_id = Column(Integer, ForeignKey("master.unique_id"))
parent = relationship("DBMasterTable", back_populates="children_raw")
children_param = relationship("DbParamTable", back_populates="parent")
children_outcome = relationship("DbOutcomeTable", back_populates="parent")
@classmethod
def from_sqlite(cls, row):
this = DbRawTable()
this.unique_id = row["unique_id"]
this.timestamp = row["timestamp"]
this.model_data = row["model_data"]
this.master_table_id = row["master_table_id"]
return this
def __repr__(self):
return (
f"<DbRawTable(unique_id={self.unique_id})"
f", timestamp={self.timestamp} "
f", master_table_id={self.master_table_id})>"
)
@staticmethod
def update(db, engine):
logger.info("DbRawTable : update called")
# Get every master table
for master_table in db.get_master_records():
# Get raw tab
for message in master_table.children_replay:
if message.message_type != "tell":
continue
timestamp = message.timestamp
# Deserialize pickle message
message_contents = message.message_contents
# Get outcome
outcomes = message_contents["message"]["outcome"]
# Get parameters
params = message_contents["message"]["config"]
# Get model_data
model_data = message_contents["message"].get("model_data", True)
db_raw_record = db.record_raw(
master_table=master_table,
model_data=bool(model_data),
timestamp=timestamp,
)
for param_name, param_value in params.items():
if isinstance(param_value, Iterable) and type(param_value) != str:
if len(param_value) == 1:
db.record_param(
raw_table=db_raw_record,
param_name=str(param_name),
param_value=float(param_value[0]),
)
else:
for j, v in enumerate(param_value):
db.record_param(
raw_table=db_raw_record,
param_name=str(param_name) + "_stimuli" + str(j),
param_value=float(v),
)
else:
db.record_param(
raw_table=db_raw_record,
param_name=str(param_name),
param_value=float(param_value),
)
if isinstance(outcomes, Iterable) and type(outcomes) != str:
for j, outcome_value in enumerate(outcomes):
if (
isinstance(outcome_value, Iterable)
and type(outcome_value) != str
):
if len(outcome_value) == 1:
outcome_value = outcome_value[0]
else:
raise ValueError(
"Multi-outcome values must be a list of lists of length 1!"
)
db.record_outcome(
raw_table=db_raw_record,
outcome_name="outcome_" + str(j),
outcome_value=float(outcome_value),
)
else:
db.record_outcome(
raw_table=db_raw_record,
outcome_name="outcome",
outcome_value=float(outcomes),
)
@staticmethod
def requires_update(engine):
"""Check if the raw table is empty, and data already exists."""
n_raws = engine.execute("SELECT COUNT (*) FROM raw_data").fetchone()[0]
n_tells = engine.execute(
"SELECT COUNT (*) FROM replay_data \
WHERE message_type = 'tell'"
).fetchone()[0]
if n_raws == 0 and n_tells != 0:
return True
return False
class DbParamTable(Base):
"""
Dimension table to store the parameters of each iteration of an experiment.
Supports multiple parameters per iteration, and multiple stimuli per parameter.
"""
__tablename__ = "param_data"
unique_id = Column(Integer, primary_key=True, autoincrement=True)
param_name = Column(String(50))
param_value = Column(String(50))
iteration_id = Column(Integer, ForeignKey("raw_data.unique_id"))
parent = relationship("DbRawTable", back_populates="children_param")
@classmethod
def from_sqlite(cls, row):
this = DbParamTable()
this.unique_id = row["unique_id"]
this.param_name = row["param_name"]
this.param_value = row["param_value"]
this.iteration_id = row["iteration_id"]
return this
def __repr__(self):
return (
f"<DbParamTable(unique_id={self.unique_id})"
f", iteration_id={self.iteration_id}>"
)
@staticmethod
def update(engine):
logger.info("DbParamTable : update called")
@staticmethod
def requires_update(engine):
return False
class DbOutcomeTable(Base):
"""
Dimension table to store the outcomes of each iteration of an experiment.
Supports multiple outcomes per iteration.
"""
__tablename__ = "outcome_data"
unique_id = Column(Integer, primary_key=True, autoincrement=True)
outcome_name = Column(String(50))
outcome_value = Column(Float)
iteration_id = Column(Integer, ForeignKey("raw_data.unique_id"))
parent = relationship("DbRawTable", back_populates="children_outcome")
@classmethod
def from_sqlite(cls, row):
this = DbOutcomeTable()
this.unique_id = row["unique_id"]
this.outcome_name = row["outcome_name"]
this.outcome_value = row["outcome_value"]
this.iteration_id = row["iteration_id"]
return this
def __repr__(self):
return (
f"<DbOutcomeTable(unique_id={self.unique_id})"
f", iteration_id={self.iteration_id}>"
)
@staticmethod
def update(engine):
logger.info("DbOutcomeTable : update called")
@staticmethod
def requires_update(engine):
return False
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Any
import torch
from gpytorch.kernels.rbf_kernel_grad import RBFKernelGrad
class RBFKernelPartialObsGrad(RBFKernelGrad):
"""An RBF kernel over observations of f, and partial/non-overlapping
observations of the gradient of f.
gpytorch.kernels.rbf_kernel_grad assumes a block structure where every
partial derivative is observed at the same set of points at which x is
observed. This generalizes that by allowing f and any subset of the
derivatives of f to be observed at different sets of points.
The final column of x1 and x2 needs to be an index that identifies what is
observed at that point. It should be 0 if this observation is of f, and i
if it is of df/dxi.
"""
def forward(
self, x1: torch.Tensor, x2: torch.Tensor, diag: bool = False, **params: Any
) -> torch.Tensor:
# Extract grad index from each
grad_idx1 = x1[..., -1].to(dtype=torch.long)
grad_idx2 = x2[..., -1].to(dtype=torch.long)
K = super().forward(x1[..., :-1], x2[..., :-1], diag=diag, **params)
# Compute which elements to return
n1 = x1.shape[-2]
n2 = x2.shape[-2]
d = x1.shape[-1] - 1
p1 = [(i * (d + 1)) + int(grad_idx1[i]) for i in range(n1)]
p2 = [(i * (d + 1)) + int(grad_idx2[i]) for i in range(n2)]
if not diag:
return K[..., p1, :][..., p2]
else:
return K[..., p1]
def num_outputs_per_input(self, x1: torch.Tensor, x2: torch.Tensor) -> int:
return 1
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
r"""
"""
from __future__ import annotations
from typing import Optional
import torch
from aepsych.acquisition.monotonic_rejection import MonotonicMCAcquisition
from botorch.acquisition.input_constructors import acqf_input_constructor
from botorch.acquisition.monte_carlo import MCAcquisitionFunction
from botorch.acquisition.objective import MCAcquisitionObjective
from botorch.models.model import Model
from botorch.sampling.base import MCSampler
from botorch.sampling.normal import SobolQMCNormalSampler
from botorch.utils.transforms import t_batch_mode_transform
from torch import Tensor
from torch.distributions.bernoulli import Bernoulli
def bald_acq(obj_samples: torch.Tensor) -> torch.Tensor:
"""Evaluate Mutual Information acquisition function.
With latent function F and X a hypothetical observation at a new point,
I(F; X) = I(X; F) = H(X) - H(X |F),
H(X |F ) = E_{f} (H(X |F =f )
i.e., we take the posterior entropy of the (Bernoulli) observation X given the
current model posterior and subtract the conditional entropy on F, that being
the mean entropy over the posterior for F. This is equivalent to the BALD
acquisition function in Houlsby et al. NeurIPS 2012.
Args:
obj_samples (torch.Tensor): Objective samples from the GP, of
shape num_samples x batch_shape x d_out
Returns:
torch.Tensor: Value of acquisition at samples.
"""
mean_p = obj_samples.mean(dim=0)
posterior_entropies = Bernoulli(mean_p).entropy().squeeze(-1)
sample_entropies = Bernoulli(obj_samples).entropy()
conditional_entropies = sample_entropies.mean(dim=0).squeeze(-1)
return posterior_entropies - conditional_entropies
class BernoulliMCMutualInformation(MCAcquisitionFunction):
"""Mutual Information acquisition function for a bernoulli outcome.
Given a model and an objective link function, calculate the mutual
information of a trial at a new point and the distribution on the
latent function.
Objective here should give values in (0, 1) (e.g. logit or probit).
"""
def __init__(
self,
model: Model,
objective: MCAcquisitionObjective,
sampler: Optional[MCSampler] = None,
) -> None:
r"""Single Bernoulli mutual information for active learning
Args:
model (Model): A fitted model.
objective (MCAcquisitionObjective): An MCAcquisitionObjective representing the link function
(e.g., logistic or probit)
sampler (MCSampler, optional): The sampler used for drawing MC samples.
"""
if sampler is None:
sampler = SobolQMCNormalSampler(sample_shape=torch.Size([1024]))
super().__init__(
model=model, sampler=sampler, objective=objective, X_pending=None
)
@t_batch_mode_transform()
def forward(self, X: Tensor) -> Tensor:
r"""Evaluate mutual information on the candidate set `X`.
Args:
X: A `batch_size x q x d`-dim Tensor.
Returns:
Tensor of shape `batch_size x q` representing the mutual
information of a hypothetical trial at X that active
learning hopes to maximize.
"""
post = self.model.posterior(X)
samples = self.sampler(post)
return self.acquisition(self.objective(samples, X))
def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor:
"""Evaluate the acquisition function value based on samples.
Args:
obj_samples (torch.Tensor): Samples from the model, transformed through the objective.
Returns:
torch.Tensor: value of the acquisition function (BALD) at the input samples.
"""
# RejectionSampler drops the final dim so we reaugment it
# here for compatibility with non-Monotonic MCAcquisition
if len(obj_samples.shape) == 2:
obj_samples = obj_samples[..., None]
return bald_acq(obj_samples)
@acqf_input_constructor(BernoulliMCMutualInformation)
def construct_inputs_mi(
model,
training_data,
objective=None,
sampler=None,
**kwargs,
):
return {
"model": model,
"objective": objective,
"sampler": sampler,
}
class MonotonicBernoulliMCMutualInformation(MonotonicMCAcquisition):
def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor:
"""Evaluate the acquisition function value based on samples.
Args:
obj_samples (torch.Tensor): Samples from the model, transformed through the objective.
Returns:
torch.Tensor: value of the acquisition function (BALD) at the input samples.
"""
# TODO this is identical to nono-monotonic BALV acquisition with a different
# base class mixin, consider redesigning?
# RejectionSampler drops the final dim so we reaugment it
# here for compatibility with non-Monotonic MCAcquisition
if len(obj_samples.shape) == 2:
obj_samples = obj_samples[..., None]
return bald_acq(obj_samples)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Union
import torch
from aepsych.acquisition.objective import ProbitObjective
from botorch.acquisition.input_constructors import acqf_input_constructor
from botorch.acquisition.monte_carlo import (
MCAcquisitionFunction,
MCAcquisitionObjective,
MCSampler,
)
from botorch.models.model import Model
from botorch.sampling.normal import SobolQMCNormalSampler
from botorch.utils.transforms import t_batch_mode_transform
from torch import Tensor
class MCLevelSetEstimation(MCAcquisitionFunction):
def __init__(
self,
model: Model,
target: Union[float, Tensor] = 0.75,
beta: Union[float, Tensor] = 3.84,
objective: Optional[MCAcquisitionObjective] = None,
sampler: Optional[MCSampler] = None,
) -> None:
r"""Monte-carlo level set estimation.
Args:
model: A fitted model.
target: the level set (after objective transform) to be estimated
beta: a parameter that governs explore-exploit tradeoff
objective: An MCAcquisitionObjective representing the link function
(e.g., logistic or probit.) applied on the samples.
Can be implemented via GenericMCObjective.
sampler: The sampler used for drawing MC samples.
"""
if sampler is None:
sampler = SobolQMCNormalSampler(sample_shape=torch.Size([512]))
if objective is None:
objective = ProbitObjective()
super().__init__(model=model, sampler=sampler, objective=None, X_pending=None)
self.objective = objective
self.beta = beta
self.target = target
def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor:
"""Evaluate the acquisition based on objective samples.
Usually you should not call this directly unless you are
subclassing this class and modifying how objective samples
are generated.
Args:
obj_samples (torch.Tensor): Samples from the model, transformed
by the objective. Should be samples x batch_shape.
Returns:
torch.Tensor: Acquisition function at the sampled values.
"""
mean = obj_samples.mean(dim=0)
variance = obj_samples.var(dim=0)
# prevent numerical issues if probit makes all the values 1 or 0
variance = torch.clamp(variance, min=1e-5)
delta = torch.sqrt(self.beta * variance)
return delta - torch.abs(mean - self.target)
@t_batch_mode_transform()
def forward(self, X: torch.Tensor) -> torch.Tensor:
"""Evaluate the acquisition function
Args:
X (torch.Tensor): Points at which to evaluate.
Returns:
torch.Tensor: Value of the acquisition functiona at these points.
"""
post = self.model.posterior(X)
samples = self.sampler(post) # num_samples x batch_shape x q x d_out
return self.acquisition(self.objective(samples, X)).squeeze(-1)
@acqf_input_constructor(MCLevelSetEstimation)
def construct_inputs_lse(
model,
training_data,
objective=None,
target=0.75,
beta=3.84,
sampler=None,
**kwargs,
):
return {
"model": model,
"objective": objective,
"target": target,
"beta": beta,
"sampler": sampler,
}
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, Optional, Tuple
import torch
from botorch.acquisition.objective import PosteriorTransform
from gpytorch.models import GP
from gpytorch.utils.quadrature import GaussHermiteQuadrature1D
from torch import Tensor
from torch.distributions import Normal
from .bvn import bvn_cdf
def posterior_at_xstar_xq(
model: GP,
Xstar: Tensor,
Xq: Tensor,
posterior_transform: Optional[PosteriorTransform] = None,
) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
"""
Evaluate the posteriors of f at single point Xstar and set of points Xq.
Args:
model: The model to evaluate.
Xstar: (b x 1 x d) tensor.
Xq: (b x m x d) tensor.
Returns:
Mu_s: (b x 1) mean at Xstar.
Sigma2_s: (b x 1) variance at Xstar.
Mu_q: (b x m) mean at Xq.
Sigma2_q: (b x m) variance at Xq.
Sigma_sq: (b x m) covariance between Xstar and each point in Xq.
"""
# Evaluate posterior and extract needed components
Xext = torch.cat((Xstar, Xq), dim=-2)
posterior = model.posterior(Xext, posterior_transform=posterior_transform)
mu = posterior.mean[..., :, 0]
Mu_s = mu[..., 0].unsqueeze(-1)
Mu_q = mu[..., 1:]
Cov = posterior.distribution.covariance_matrix
Sigma2_s = Cov[..., 0, 0].unsqueeze(-1)
Sigma2_q = torch.diagonal(Cov[..., 1:, 1:], dim1=-1, dim2=-2)
Sigma_sq = Cov[..., 0, 1:]
return Mu_s, Sigma2_s, Mu_q, Sigma2_q, Sigma_sq
def lookahead_levelset_at_xstar(
model: GP,
Xstar: Tensor,
Xq: Tensor,
posterior_transform: Optional[PosteriorTransform] = None,
**kwargs: Dict[str, Any],
):
"""
Evaluate the look-ahead level-set posterior at Xq given observation at xstar.
Args:
model: The model to evaluate.
Xstar: (b x 1 x d) observation point.
Xq: (b x m x d) reference points.
gamma: Threshold in f-space.
Returns:
Px: (b x m) Level-set posterior at Xq, before observation at xstar.
P1: (b x m) Level-set posterior at Xq, given observation of 1 at xstar.
P0: (b x m) Level-set posterior at Xq, given observation of 0 at xstar.
py1: (b x 1) Probability of observing 1 at xstar.
"""
Mu_s, Sigma2_s, Mu_q, Sigma2_q, Sigma_sq = posterior_at_xstar_xq(
model=model, Xstar=Xstar, Xq=Xq, posterior_transform=posterior_transform
)
try:
gamma = kwargs.get("gamma")
except KeyError:
raise RuntimeError("lookahead_levelset_at_xtar requires passing gamma!")
# Compute look-ahead components
Norm = torch.distributions.Normal(0, 1)
Sigma_q = torch.sqrt(Sigma2_q)
b_q = (gamma - Mu_q) / Sigma_q
Phi_bq = Norm.cdf(b_q)
denom = torch.sqrt(1 + Sigma2_s)
a_s = Mu_s / denom
Phi_as = Norm.cdf(a_s)
Z_rho = -Sigma_sq / (Sigma_q * denom)
Z_qs = bvn_cdf(a_s, b_q, Z_rho)
Px = Phi_bq
py1 = Phi_as
P1 = Z_qs / py1
P0 = (Phi_bq - Z_qs) / (1 - py1)
return Px, P1, P0, py1
def lookahead_p_at_xstar(
model: GP,
Xstar: Tensor,
Xq: Tensor,
posterior_transform: Optional[PosteriorTransform] = None,
**kwargs: Dict[str, Any],
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""
Evaluate the look-ahead response probability posterior at Xq given observation at xstar.
Uses the approximation given in expr. 9 in:
Zhao, Guang, et al. "Efficient active learning for Gaussian process classification by
error reduction." Advances in Neural Information Processing Systems 34 (2021): 9734-9746.
Args:
model: The model to evaluate.
Xstar: (b x 1 x d) observation point.
Xq: (b x m x d) reference points.
kwargs: ignored (here for compatibility with other kinds of lookahead)
Returns:
Px: (b x m) Response posterior at Xq, before observation at xstar.
P1: (b x m) Response posterior at Xq, given observation of 1 at xstar.
P0: (b x m) Response posterior at Xq, given observation of 0 at xstar.
py1: (b x 1) Probability of observing 1 at xstar.
"""
Mu_s, Sigma2_s, Mu_q, Sigma2_q, Sigma_sq = posterior_at_xstar_xq(
model=model, Xstar=Xstar, Xq=Xq, posterior_transform=posterior_transform
)
probit = Normal(0, 1).cdf
def lookahead_inner(f_q):
mu_tilde_star = Mu_s + (f_q - Mu_q) * Sigma_sq / Sigma2_q
sigma_tilde_star = Sigma2_s - (Sigma_sq**2) / Sigma2_q
return probit(mu_tilde_star / torch.sqrt(sigma_tilde_star + 1)) * probit(f_q)
pstar_marginal_1 = probit(Mu_s / torch.sqrt(1 + Sigma2_s))
pstar_marginal_0 = 1 - pstar_marginal_1
pq_marginal_1 = probit(Mu_q / torch.sqrt(1 + Sigma2_q))
quad = GaussHermiteQuadrature1D()
fq_mvn = Normal(Mu_q, torch.sqrt(Sigma2_q))
joint_ystar1_yq1 = quad(lookahead_inner, fq_mvn)
joint_ystar0_yq1 = pq_marginal_1 - joint_ystar1_yq1
# now we need from the joint to the marginal on xq
lookahead_pq1 = joint_ystar1_yq1 / pstar_marginal_1
lookahead_pq0 = joint_ystar0_yq1 / pstar_marginal_0
return pq_marginal_1, lookahead_pq1, lookahead_pq0, pstar_marginal_1
def approximate_lookahead_levelset_at_xstar(
model: GP,
Xstar: Tensor,
Xq: Tensor,
gamma: float,
posterior_transform: Optional[PosteriorTransform] = None,
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
"""
The look-ahead posterior approximation of Lyu et al.
Args:
model: The model to evaluate.
Xstar: (b x 1 x d) observation point.
Xq: (b x m x d) reference points.
gamma: Threshold in f-space.
Returns:
Px: (b x m) Level-set posterior at Xq, before observation at xstar.
P1: (b x m) Level-set posterior at Xq, given observation of 1 at xstar.
P0: (b x m) Level-set posterior at Xq, given observation of 0 at xstar.
py1: (b x 1) Probability of observing 1 at xstar.
"""
Mu_s, Sigma2_s, Mu_q, Sigma2_q, Sigma_sq = posterior_at_xstar_xq(
model=model, Xstar=Xstar, Xq=Xq, posterior_transform=posterior_transform
)
Norm = torch.distributions.Normal(0, 1)
Mu_s_pdf = torch.exp(Norm.log_prob(Mu_s))
Mu_s_cdf = Norm.cdf(Mu_s)
# Formulae from the supplement of the paper (Result 2)
vnp1_p = Mu_s_pdf**2 / Mu_s_cdf**2 + Mu_s * Mu_s_pdf / Mu_s_cdf # (C.4)
p_p = Norm.cdf(Mu_s / torch.sqrt(1 + Sigma2_s)) # (C.5)
vnp1_n = Mu_s_pdf**2 / (1 - Mu_s_cdf) ** 2 - Mu_s * Mu_s_pdf / (
1 - Mu_s_cdf
) # (C.6)
p_n = 1 - p_p # (C.7)
vtild = vnp1_p * p_p + vnp1_n * p_n
Sigma2_q_np1 = Sigma2_q - Sigma_sq**2 / ((1 / vtild) + Sigma2_s) # (C.8)
Px = Norm.cdf((gamma - Mu_q) / torch.sqrt(Sigma2_q))
P1 = Norm.cdf((gamma - Mu_q) / torch.sqrt(Sigma2_q_np1))
P0 = P1 # Same because we ignore value of y in this approximation
py1 = 0.5 * torch.ones(*Px.shape[:-1], 1) # Value doesn't matter because P1 = P0
return Px, P1, P0, py1
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import torch
from botorch.posteriors import Posterior
from botorch.sampling.base import MCSampler
from torch import Tensor
class RejectionSampler(MCSampler):
"""
Samples from a posterior subject to the constraint that samples in constrained_idx
should be >= 0.
If not enough feasible samples are generated, will return the least violating
samples.
"""
def __init__(
self, num_samples: int, num_rejection_samples: int, constrained_idx: Tensor
):
"""Initialize RejectionSampler
Args:
num_samples (int): Number of samples to return. Note that if fewer samples
than this number are positive in the required dimension, the remaining
samples returned will be the "least violating", i.e. closest to 0.
num_rejection_samples (int): Number of samples to draw before rejecting.
constrained_idx (Tensor): Indices of input dimensions that should be
constrained positive.
"""
self.num_samples = num_samples
self.num_rejection_samples = num_rejection_samples
self.constrained_idx = constrained_idx
super().__init__(sample_shape=torch.Size([num_samples]))
def forward(self, posterior: Posterior) -> Tensor:
"""Run the rejection sampler.
Args:
posterior (Posterior): The unconstrained GP posterior object
to perform rejection samples on.
Returns:
Tensor: Kept samples.
"""
samples = posterior.rsample(
sample_shape=torch.Size([self.num_rejection_samples])
)
assert (
samples.shape[-1] == 1
), "Batches not supported" # TODO T68656582 handle batches later
constrained_samps = samples[:, self.constrained_idx, 0]
valid = (constrained_samps >= 0).all(dim=1)
if valid.sum() < self.num_samples:
worst_violation = constrained_samps.min(dim=1)[0]
keep = torch.argsort(worst_violation, descending=True)[: self.num_samples]
else:
keep = torch.where(valid)[0][: self.num_samples]
return samples[keep, :, :]
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import sys
from ..config import Config
from .lookahead import ApproxGlobalSUR, EAVC, GlobalMI, GlobalSUR, LocalMI, LocalSUR
from .lse import MCLevelSetEstimation
from .mc_posterior_variance import MCPosteriorVariance, MonotonicMCPosteriorVariance
from .monotonic_rejection import MonotonicMCLSE
from .mutual_information import (
BernoulliMCMutualInformation,
MonotonicBernoulliMCMutualInformation,
)
from .objective import (
FloorGumbelObjective,
FloorLogitObjective,
FloorProbitObjective,
ProbitObjective,
semi_p,
)
lse_acqfs = [
MonotonicMCLSE,
GlobalMI,
GlobalSUR,
ApproxGlobalSUR,
EAVC,
LocalMI,
LocalSUR,
]
__all__ = [
"BernoulliMCMutualInformation",
"MonotonicBernoulliMCMutualInformation",
"MonotonicMCLSE",
"MCPosteriorVariance",
"MonotonicMCPosteriorVariance",
"MCPosteriorVariance",
"MCLevelSetEstimation",
"ProbitObjective",
"FloorProbitObjective",
"FloorLogitObjective",
"FloorGumbelObjective",
"GlobalMI",
"GlobalSUR",
"ApproxGlobalSUR",
"EAVC",
"LocalMI",
"LocalSUR",
"semi_p",
]
Config.register_module(sys.modules[__name__])
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional
import torch
from aepsych.acquisition.monotonic_rejection import MonotonicMCAcquisition
from aepsych.acquisition.objective import ProbitObjective
from botorch.acquisition.input_constructors import acqf_input_constructor
from botorch.acquisition.monte_carlo import MCAcquisitionFunction
from botorch.acquisition.objective import MCAcquisitionObjective
from botorch.models.model import Model
from botorch.sampling.base import MCSampler
from botorch.sampling.normal import SobolQMCNormalSampler
from botorch.utils.transforms import t_batch_mode_transform
from torch import Tensor
def balv_acq(obj_samps: torch.Tensor) -> torch.Tensor:
"""Evaluate BALV (posterior variance) on a set of objective samples.
Args:
obj_samps (torch.Tensor): Samples from the GP, transformed by the objective.
Should be samples x batch_shape.
Returns:
torch.Tensor: Acquisition function value.
"""
# the output of objective is of shape num_samples x batch_shape x d_out
# objective should project the last dimension to 1d,
# so incoming should be samples x batch_shape, we take var in samp dim
return obj_samps.var(dim=0).squeeze(-1)
class MCPosteriorVariance(MCAcquisitionFunction):
r"""Posterior variance, computed using samples so we can use objective/transform"""
def __init__(
self,
model: Model,
objective: Optional[MCAcquisitionObjective] = None,
sampler: Optional[MCSampler] = None,
) -> None:
r"""Posterior Variance of Link Function
Args:
model: A fitted model.
objective: An MCAcquisitionObjective representing the link function
(e.g., logistic or probit.) applied on the difference of (usually 1-d)
two samples. Can be implemented via GenericMCObjective.
sampler: The sampler used for drawing MC samples.
"""
if sampler is None:
sampler = SobolQMCNormalSampler(sample_shape=torch.Size([512]))
if objective is None:
objective = ProbitObjective()
super().__init__(model=model, sampler=sampler, objective=None, X_pending=None)
self.objective = objective
@t_batch_mode_transform()
def forward(self, X: Tensor) -> Tensor:
r"""Evaluate MCPosteriorVariance on the candidate set `X`.
Args:
X: A `batch_size x q x d`-dim Tensor
Returns:
Posterior variance of link function at X that active learning
hopes to maximize
"""
# the output is of shape batch_shape x q x d_out
post = self.model.posterior(X)
samples = self.sampler(post) # num_samples x batch_shape x q x d_out
return self.acquisition(self.objective(samples, X))
def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor:
# RejectionSampler drops the final dim so we reaugment it
# here for compatibility with non-Monotonic MCAcquisition
if len(obj_samples.shape) == 2:
obj_samples = obj_samples[..., None]
return balv_acq(obj_samples)
@acqf_input_constructor(MCPosteriorVariance)
def construct_inputs(
model,
training_data,
objective=None,
sampler=None,
**kwargs,
):
return {
"model": model,
"objective": objective,
"sampler": sampler,
}
class MonotonicMCPosteriorVariance(MonotonicMCAcquisition):
def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor:
return balv_acq(obj_samples)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from math import pi as _pi
import torch
inv_2pi = 1 / (2 * _pi)
_neg_inv_sqrt2 = -1 / (2**0.5)
def _gauss_legendre20(dtype):
_abscissae = torch.tensor(
[
0.9931285991850949,
0.9639719272779138,
0.9122344282513259,
0.8391169718222188,
0.7463319064601508,
0.6360536807265150,
0.5108670019508271,
0.3737060887154196,
0.2277858511416451,
0.07652652113349733,
],
dtype=dtype,
)
_weights = torch.tensor(
[
0.01761400713915212,
0.04060142980038694,
0.06267204833410906,
0.08327674157670475,
0.1019301198172404,
0.1181945319615184,
0.1316886384491766,
0.1420961093183821,
0.1491729864726037,
0.1527533871307259,
],
dtype=dtype,
)
abscissae = torch.cat([1.0 - _abscissae, 1.0 + _abscissae], dim=0)
weights = torch.cat([_weights, _weights], dim=0)
return abscissae, weights
def _ndtr(x: torch.Tensor) -> torch.Tensor:
"""
Standard normal CDF. Called <phid> in Genz's original code.
"""
return 0.5 * torch.erfc(_neg_inv_sqrt2 * x)
def _bvnu(
dh: torch.Tensor,
dk: torch.Tensor,
r: torch.Tensor,
) -> torch.Tensor:
"""
Primary subroutine for bvnu()
"""
# Precompute some terms
h = dh
k = dk
hk = h * k
x, w = _gauss_legendre20(dtype=dh.dtype)
asr = 0.5 * torch.asin(r)
sn = torch.sin(asr[..., None] * x)
res = (sn * hk[..., None] - 0.5 * (h**2 + k**2)[..., None]) / (1 - sn**2)
res = torch.sum(w * torch.exp(res), dim=-1)
res = res * inv_2pi * asr + _ndtr(-h) * _ndtr(-k)
return torch.clip(res, 0, 1)
def bvn_cdf(
xu: torch.Tensor,
yu: torch.Tensor,
r: torch.Tensor,
) -> torch.Tensor:
"""
Evaluate the bivariate normal CDF.
WARNING: Implements only the routine for moderate levels of correlation. Will be
inaccurate and should not be used for correlations larger than 0.925.
Standard (mean 0, var 1) bivariate normal distribution with correlation r.
Evaluated from -inf to xu, and -inf to yu.
Based on function developed by Alan Genz:
http://www.math.wsu.edu/faculty/genz/software/matlab/bvn.m
based in turn on
Drezner, Z and G.O. Wesolowsky, (1989),
On the computation of the bivariate normal inegral,
Journal of Statist. Comput. Simul. 35, pp. 101-107.
Args:
xu: Upper limits for cdf evaluation in x
yu: Upper limits for cdf evaluation in y
r: BVN correlation
Returns: Tensor of cdf evaluations of same size as xu, yu, and r.
"""
p = 1 - _ndtr(-xu) - _ndtr(-yu) + _bvnu(xu, yu, r)
return torch.clip(p, 0, 1)
|
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Optional, Tuple
from ax.models.torch.botorch_modular.acquisition import Acquisition
from botorch.acquisition.objective import MCAcquisitionObjective, PosteriorTransform
class AEPsychAcquisition(Acquisition):
def get_botorch_objective_and_transform(
self, **kwargs
) -> Tuple[Optional[MCAcquisitionObjective], Optional[PosteriorTransform]]:
objective, transform = super().get_botorch_objective_and_transform(**kwargs)
if "objective" in self.options:
objective = self.options.pop("objective")
return objective, transform
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional, Tuple, cast
import numpy as np
import torch
from aepsych.utils import make_scaled_sobol
from botorch.acquisition import AcquisitionFunction
from botorch.acquisition.input_constructors import acqf_input_constructor
from botorch.acquisition.objective import PosteriorTransform
from botorch.models.gpytorch import GPyTorchModel
from botorch.utils.transforms import t_batch_mode_transform
from scipy.stats import norm
from torch import Tensor
from .lookahead_utils import (
approximate_lookahead_levelset_at_xstar,
lookahead_levelset_at_xstar,
lookahead_p_at_xstar,
)
def Hb(p: Tensor):
"""
Binary entropy.
Args:
p: Tensor of probabilities.
Returns: Binary entropy for each probability.
"""
epsilon = torch.tensor(np.finfo(float).eps)
p = torch.clamp(p, min=epsilon, max=1 - epsilon)
return -torch.nan_to_num(p * torch.log2(p) + (1 - p) * torch.log2(1 - p))
def MI_fn(Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
"""
Average mutual information.
H(p) - E_y*[H(p | y*)]
Args:
Px: (b x m) Level-set posterior before observation
P1: (b x m) Level-set posterior given observation of 1
P0: (b x m) Level-set posterior given observation of 0
py1: (b x 1) Probability of observing 1
Returns: (b) tensor of mutual information averaged over Xq.
"""
mi = Hb(Px) - py1 * Hb(P1) - (1 - py1) * Hb(P0)
return mi.sum(dim=-1)
def ClassErr(p: Tensor) -> Tensor:
"""
Expected classification error, min(p, 1-p).
"""
return torch.min(p, 1 - p)
def SUR_fn(Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
"""
Stepwise uncertainty reduction.
Expected reduction in expected classification error given observation at Xstar,
averaged over Xq.
Args:
Px: (b x m) Level-set posterior before observation
P1: (b x m) Level-set posterior given observation of 1
P0: (b x m) Level-set posterior given observation of 0
py1: (b x 1) Probability of observing 1
Returns: (b) tensor of SUR values.
"""
sur = ClassErr(Px) - py1 * ClassErr(P1) - (1 - py1) * ClassErr(P0)
return sur.sum(dim=-1)
def EAVC_fn(Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
"""
Expected absolute value change.
Expected absolute change in expected level-set volume given observation at Xstar.
Args:
Px: (b x m) Level-set posterior before observation
P1: (b x m) Level-set posterior given observation of 1
P0: (b x m) Level-set posterior given observation of 0
py1: (b x 1) Probability of observing 1
Returns: (b) tensor of EAVC values.
"""
avc1 = torch.abs((Px - P1).sum(dim=-1))
avc0 = torch.abs((Px - P0).sum(dim=-1))
return py1.squeeze(-1) * avc1 + (1 - py1).squeeze(-1) * avc0
class LookaheadAcquisitionFunction(AcquisitionFunction):
def __init__(
self,
model: GPyTorchModel,
target: Optional[float],
lookahead_type: str = "levelset",
) -> None:
"""
A localized look-ahead acquisition function.
Args:
model: The gpytorch model.
target: Threshold value to target in p-space.
"""
super().__init__(model=model)
if lookahead_type == "levelset":
self.lookahead_fn = lookahead_levelset_at_xstar
assert target is not None, "Need a target for levelset lookahead!"
self.gamma = norm.ppf(target)
elif lookahead_type == "posterior":
self.lookahead_fn = lookahead_p_at_xstar
self.gamma = None
else:
raise RuntimeError(f"Got unknown lookahead type {lookahead_type}!")
## Local look-ahead acquisitions
class LocalLookaheadAcquisitionFunction(LookaheadAcquisitionFunction):
def __init__(
self,
model: GPyTorchModel,
lookahead_type: str = "levelset",
target: Optional[float] = None,
posterior_transform: Optional[PosteriorTransform] = None,
) -> None:
"""
A localized look-ahead acquisition function.
Args:
model: The gpytorch model.
target: Threshold value to target in p-space.
"""
super().__init__(model=model, target=target, lookahead_type=lookahead_type)
self.posterior_transform = posterior_transform
@t_batch_mode_transform(expected_q=1)
def forward(self, X: Tensor) -> Tensor:
"""
Evaluate acquisition function at X.
Args:
X: (b x 1 x d) point at which to evalaute acquisition function.
Returns: (b) tensor of acquisition values.
"""
Px, P1, P0, py1 = self.lookahead_fn(
model=self.model,
Xstar=X,
Xq=X,
gamma=self.gamma,
posterior_transform=self.posterior_transform,
) # Return shape here has m=1.
return self._compute_acqf(Px, P1, P0, py1)
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
raise NotImplementedError
class LocalMI(LocalLookaheadAcquisitionFunction):
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
return MI_fn(Px, P1, P0, py1)
class LocalSUR(LocalLookaheadAcquisitionFunction):
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
return SUR_fn(Px, P1, P0, py1)
@acqf_input_constructor(LocalMI, LocalSUR)
def construct_inputs_local_lookahead(
model: GPyTorchModel,
training_data,
lookahead_type="levelset",
target: Optional[float] = None,
posterior_transform: Optional[PosteriorTransform] = None,
**kwargs,
):
return {
"model": model,
"lookahead_type": lookahead_type,
"target": target,
"posterior_transform": posterior_transform,
}
## Global look-ahead acquisitions
class GlobalLookaheadAcquisitionFunction(LookaheadAcquisitionFunction):
def __init__(
self,
model: GPyTorchModel,
lookahead_type: str = "levelset",
target: Optional[float] = None,
posterior_transform: Optional[PosteriorTransform] = None,
query_set_size: Optional[int] = 256,
Xq: Optional[Tensor] = None,
) -> None:
"""
A global look-ahead acquisition function.
Args:
model: The gpytorch model.
target: Threshold value to target in p-space.
Xq: (m x d) global reference set.
"""
super().__init__(model=model, target=target, lookahead_type=lookahead_type)
self.posterior_transform = posterior_transform
assert (
Xq is not None or query_set_size is not None
), "Must pass either query set size or a query set!"
if Xq is not None and query_set_size is not None:
assert Xq.shape[0] == query_set_size, (
"If passing both Xq and query_set_size,"
+ "first dim of Xq should be query_set_size, got {Xq.shape[0]} != {query_set_size}"
)
if Xq is None:
# cast to an int in case we got a float from Config, which
# would raise on make_scaled_sobol
query_set_size = cast(int, query_set_size) # make mypy happy
assert int(query_set_size) == query_set_size # make sure casting is safe
# if the asserts above pass and Xq is None, query_set_size is not None so this is safe
query_set_size = int(query_set_size) # cast
Xq = make_scaled_sobol(model.lb, model.ub, query_set_size)
self.register_buffer("Xq", Xq)
@t_batch_mode_transform(expected_q=1)
def forward(self, X: Tensor) -> Tensor:
"""
Evaluate acquisition function at X.
Args:
X: (b x 1 x d) point at which to evalaute acquisition function.
Returns: (b) tensor of acquisition values.
"""
Px, P1, P0, py1 = self._get_lookahead_posterior(X)
return self._compute_acqf(Px, P1, P0, py1)
def _get_lookahead_posterior(
self, X: Tensor
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
Xq_batch = self.Xq.expand(X.shape[0], *self.Xq.shape)
return self.lookahead_fn(
model=self.model,
Xstar=X,
Xq=Xq_batch,
gamma=self.gamma,
posterior_transform=self.posterior_transform,
)
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
raise NotImplementedError
class GlobalMI(GlobalLookaheadAcquisitionFunction):
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
return MI_fn(Px, P1, P0, py1)
class GlobalSUR(GlobalLookaheadAcquisitionFunction):
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
return SUR_fn(Px, P1, P0, py1)
class ApproxGlobalSUR(GlobalSUR):
def __init__(
self,
model: GPyTorchModel,
lookahead_type="levelset",
target: Optional[float] = None,
query_set_size: Optional[int] = 256,
Xq: Optional[Tensor] = None,
) -> None:
assert (
lookahead_type == "levelset"
), f"ApproxGlobalSUR only supports lookahead on level set, got {lookahead_type}!"
super().__init__(
model=model,
target=target,
lookahead_type=lookahead_type,
query_set_size=query_set_size,
Xq=Xq,
)
def _get_lookahead_posterior(
self, X: Tensor
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
Xq_batch = self.Xq.expand(X.shape[0], *self.Xq.shape)
return approximate_lookahead_levelset_at_xstar(
model=self.model,
Xstar=X,
Xq=Xq_batch,
gamma=self.gamma,
posterior_transform=self.posterior_transform,
)
class EAVC(GlobalLookaheadAcquisitionFunction):
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
return EAVC_fn(Px, P1, P0, py1)
class MOCU(GlobalLookaheadAcquisitionFunction):
"""
MOCU acquisition function given in expr. 4 of:
Zhao, Guang, et al. "Uncertainty-aware active learning for optimal Bayesian classifier."
International Conference on Learning Representations (ICLR) 2021.
"""
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
current_max_query = torch.maximum(Px, 1 - Px)
# expectation w.r.t. y* of the max of pq
lookahead_pq1_max = torch.maximum(P1, 1 - P1)
lookahead_pq0_max = torch.maximum(P0, 1 - P0)
lookahead_max_query = lookahead_pq1_max * py1 + lookahead_pq0_max * (1 - py1)
return (lookahead_max_query - current_max_query).mean(-1)
class SMOCU(GlobalLookaheadAcquisitionFunction):
"""
SMOCU acquisition function given in expr. 11 of:
Zhao, Guang, et al. "Bayesian active learning by soft mean objective cost of uncertainty."
International Conference on Artificial Intelligence and Statistics (AISTATS) 2021.
"""
def __init__(self, k, *args, **kwargs):
super().__init__(*args, **kwargs)
self.k = k
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
stacked = torch.stack((Px, 1 - Px), dim=-1)
current_softmax_query = torch.logsumexp(self.k * stacked, dim=-1) / self.k
# expectation w.r.t. y* of the max of pq
lookahead_pq1_max = torch.maximum(P1, 1 - P1)
lookahead_pq0_max = torch.maximum(P0, 1 - P0)
lookahead_max_query = lookahead_pq1_max * py1 + lookahead_pq0_max * (1 - py1)
return (lookahead_max_query - current_softmax_query).mean(-1)
class BEMPS(GlobalLookaheadAcquisitionFunction):
"""
BEMPS acquisition function given in:
Tan, Wei, et al. "Diversity Enhanced Active Learning with Strictly Proper Scoring Rules."
Advances in Neural Information Processing Systems 34 (2021).
"""
def __init__(self, scorefun, *args, **kwargs):
super().__init__(*args, **kwargs)
self.scorefun = scorefun
def _compute_acqf(self, Px: Tensor, P1: Tensor, P0: Tensor, py1: Tensor) -> Tensor:
current_score = self.scorefun(Px)
lookahead_pq1_score = self.scorefun(P1)
lookahead_pq0_score = self.scorefun(P0)
lookahead_expected_score = lookahead_pq1_score * py1 + lookahead_pq0_score * (
1 - py1
)
return (lookahead_expected_score - current_score).mean(-1)
@acqf_input_constructor(GlobalMI, GlobalSUR, ApproxGlobalSUR, EAVC, MOCU, SMOCU, BEMPS)
def construct_inputs_global_lookahead(
model: GPyTorchModel,
training_data,
lookahead_type="levelset",
target: Optional[float] = None,
posterior_transform: Optional[PosteriorTransform] = None,
query_set_size: Optional[int] = 256,
Xq: Optional[Tensor] = None,
**kwargs,
):
lb = [bounds[0] for bounds in kwargs["bounds"]]
ub = [bounds[1] for bounds in kwargs["bounds"]]
Xq = Xq if Xq is not None else make_scaled_sobol(lb, ub, query_set_size)
return {
"model": model,
"lookahead_type": lookahead_type,
"target": target,
"posterior_transform": posterior_transform,
"query_set_size": query_set_size,
"Xq": Xq,
}
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Optional
import torch
from botorch.acquisition.acquisition import AcquisitionFunction
from botorch.acquisition.objective import IdentityMCObjective, MCAcquisitionObjective
from botorch.models.model import Model
from torch import Tensor
from .rejection_sampler import RejectionSampler
class MonotonicMCAcquisition(AcquisitionFunction):
"""
Acquisition function base class for use with the rejection sampling
monotonic GP. This handles the bookkeeping of the derivative
constraint points -- implement specific monotonic MC acquisition
in subclasses.
"""
def __init__(
self,
model: Model,
deriv_constraint_points: torch.Tensor,
num_samples: int = 32,
num_rejection_samples: int = 1024,
objective: Optional[MCAcquisitionObjective] = None,
) -> None:
"""Initialize MonotonicMCAcquisition
Args:
model (Model): Model to use, usually a MonotonicRejectionGP.
num_samples (int, optional): Number of samples to keep from the rejection sampler. . Defaults to 32.
num_rejection_samples (int, optional): Number of rejection samples to draw. Defaults to 1024.
objective (Optional[MCAcquisitionObjective], optional): Objective transform of the GP output
before evaluating the acquisition. Defaults to identity transform.
"""
super().__init__(model=model)
self.deriv_constraint_points = deriv_constraint_points
self.num_samples = num_samples
self.num_rejection_samples = num_rejection_samples
self.sampler_shape = torch.Size([])
if objective is None:
assert model.num_outputs == 1
objective = IdentityMCObjective()
else:
assert isinstance(objective, MCAcquisitionObjective)
self.add_module("objective", objective)
def forward(self, X: Tensor) -> Tensor:
"""Evaluate the acquisition function at a set of points.
Args:
X (Tensor): Points at which to evaluate the acquisition function.
Should be (b) x q x d, and q should be 1.
Returns:
Tensor: Acquisition function value at these points.
"""
# This is currently doing joint samples over (b), and requiring q=1
# TODO T68656582 support batches properly.
if len(X.shape) == 3:
assert X.shape[1] == 1, "q must be 1"
Xfull = torch.cat((X[:, 0, :], self.deriv_constraint_points), dim=0)
else:
Xfull = torch.cat((X, self.deriv_constraint_points), dim=0)
if not hasattr(self, "sampler") or Xfull.shape != self.sampler_shape:
self._set_sampler(X.shape)
self.sampler_shape = Xfull.shape
posterior = self.model.posterior(Xfull)
samples = self.sampler(posterior)
assert len(samples.shape) == 3
# Drop derivative samples
samples = samples[:, : X.shape[0], :]
# NOTE: Squeeze below makes sure that we pass in the same `X` that was used
# to generate the `samples`. This is necessitated by `MCAcquisitionObjective`,
# which verifies that `samples` and `X` have the same q-batch size.
obj_samples = self.objective(samples, X=X.squeeze(-2) if X.ndim == 3 else X)
return self.acquisition(obj_samples)
def _set_sampler(self, Xshape: torch.Size) -> None:
sampler = RejectionSampler(
num_samples=self.num_samples,
num_rejection_samples=self.num_rejection_samples,
constrained_idx=torch.arange(
Xshape[0], Xshape[0] + self.deriv_constraint_points.shape[0]
),
)
self.add_module("sampler", sampler)
def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
class MonotonicMCLSE(MonotonicMCAcquisition):
def __init__(
self,
model: Model,
deriv_constraint_points: torch.Tensor,
target: float,
num_samples: int = 32,
num_rejection_samples: int = 1024,
beta: float = 3.84,
objective: Optional[MCAcquisitionObjective] = None,
) -> None:
"""Level set estimation acquisition function for use with monotonic models.
Args:
model (Model): Underlying model object, usually should be MonotonicRejectionGP.
target (float): Level set value to target (after the objective).
num_samples (int, optional): Number of MC samples to draw in MC acquisition. Defaults to 32.
num_rejection_samples (int, optional): Number of rejection samples from which to subsample monotonic ones. Defaults to 1024.
beta (float, optional): Parameter of the LSE acquisition function that governs exploration vs
exploitation (similarly to the same parameter in UCB). Defaults to 3.84 (1.96 ** 2), which maps to the straddle
heuristic of Bryan et al. 2005.
objective (Optional[MCAcquisitionObjective], optional): Objective transform. Defaults to identity transform.
"""
self.beta = beta
self.target = target
super().__init__(
model=model,
deriv_constraint_points=deriv_constraint_points,
num_samples=num_samples,
num_rejection_samples=num_rejection_samples,
objective=objective,
)
def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor:
mean = obj_samples.mean(dim=0)
variance = obj_samples.var(dim=0)
# prevent numerical issues if probit makes all the values 1 or 0
variance = torch.clamp(variance, min=1e-5)
delta = torch.sqrt(self.beta * variance)
return delta - torch.abs(mean - self.target)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Optional
import torch
from botorch.acquisition.objective import MCAcquisitionObjective
from torch import Tensor
from torch.distributions.normal import Normal
class AEPsychObjective(MCAcquisitionObjective):
def inverse(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
raise NotImplementedError
class ProbitObjective(AEPsychObjective):
"""Probit objective
Transforms the input through the normal CDF (probit).
"""
def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
"""Evaluates the objective (normal CDF).
Args:
samples (Tensor): GP samples.
X (Optional[Tensor], optional): ignored, here for compatibility
with MCAcquisitionObjective.
Returns:
Tensor: [description]
"""
return Normal(loc=0, scale=1).cdf(samples.squeeze(-1))
def inverse(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
"""Evaluates the inverse of the objective (normal PPF).
Args:
samples (Tensor): GP samples.
X (Optional[Tensor], optional): ignored, here for compatibility
with MCAcquisitionObjective.
Returns:
Tensor: [description]
"""
return Normal(loc=0, scale=1).icdf(samples.squeeze(-1))
class FloorLinkObjective(AEPsychObjective):
"""
Wrapper for objectives to add a floor, when
the probability is known not to go below it.
"""
def __init__(self, floor=0.5):
self.floor = floor
super().__init__()
def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
"""Evaluates the objective for input x and floor f
Args:
samples (Tensor): GP samples.
X (Optional[Tensor], optional): ignored, here for compatibility
with MCAcquisitionObjective.
Returns:
Tensor: outcome probability.
"""
return self.link(samples.squeeze(-1)) * (1 - self.floor) + self.floor
def inverse(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
"""Evaluates the inverse of the objective.
Args:
samples (Tensor): GP samples.
X (Optional[Tensor], optional): ignored, here for compatibility
with MCAcquisitionObjective.
Returns:
Tensor: [description]
"""
return self.inverse_link((samples - self.floor) / (1 - self.floor))
def link(self, samples):
raise NotImplementedError
def inverse_link(self, samples):
raise NotImplementedError
@classmethod
def from_config(cls, config):
floor = config.getfloat(cls.__name__, "floor")
return cls(floor=floor)
class FloorLogitObjective(FloorLinkObjective):
"""
Logistic sigmoid (aka expit, aka logistic CDF),
but with a floor so that its output is
between floor and 1.0.
"""
def link(self, samples):
return torch.special.expit(samples)
def inverse_link(self, samples):
return torch.special.logit(samples)
class FloorGumbelObjective(FloorLinkObjective):
"""
Gumbel CDF but with a floor so that its output
is between floor and 1.0. Note that this is not
the standard Gumbel distribution, but rather the
left-skewed Gumbel that arises as the log of the Weibull
distribution, e.g. Treutwein 1995, doi:10.1016/0042-6989(95)00016-X.
"""
def link(self, samples):
return torch.nan_to_num(
-torch.special.expm1(-torch.exp(samples)), posinf=1.0, neginf=0.0
)
def inverse_link(self, samples):
return torch.log(-torch.special.log1p(-samples))
class FloorProbitObjective(FloorLinkObjective):
"""
Probit (aka Gaussian CDF), but with a floor
so that its output is between floor and 1.0.
"""
def link(self, samples):
return Normal(0, 1).cdf(samples)
def inverse_link(self, samples):
return Normal(0, 1).icdf(samples)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Optional
import torch
from aepsych.config import Config
from aepsych.likelihoods import LinearBernoulliLikelihood
from botorch.acquisition.objective import MCAcquisitionObjective
from gpytorch.likelihoods import Likelihood
from torch import Tensor
class SemiPObjectiveBase(MCAcquisitionObjective):
"""Wraps the semi-parametric transform into an objective
that correctly extracts various things
"""
# because we have an extra dim for the SemiP batch dimension,
# all the q-batch output shape checks fail, disable them here
_verify_output_shape: bool = False
def __init__(self, stim_dim: int = 0):
super().__init__()
self.stim_dim = stim_dim
class SemiPProbabilityObjective(SemiPObjectiveBase):
"""Wraps the semi-parametric transform into an objective
that gives outcome probabilities
"""
def __init__(self, likelihood: Likelihood = None, *args, **kwargs):
"""Evaluates the probability objective.
Args:
likelihood (Likelihood). Underlying SemiP likelihood (which we use for its objective/link)
other arguments are passed to the base class (notably, stim_dim).
"""
super().__init__(*args, **kwargs)
self.likelihood = likelihood or LinearBernoulliLikelihood()
def forward(self, samples: Tensor, X: Tensor) -> Tensor:
"""Evaluates the probability objective.
Args:
samples (Tensor): GP samples.
X (Tensor): Inputs at which to evaluate objective. Unlike most AEPsych objectives,
we need X here to split out the intensity dimension.
Returns:
Tensor: Response probabilities at the specific X values and function samples.
"""
Xi = X[..., self.stim_dim]
# the output of LinearBernoulliLikelihood is (nsamp x b x n x 1)
# but the output of MCAcquisitionObjective should be `nsamp x *batch_shape x q`
# so we remove the final dim
return self.likelihood.p(function_samples=samples, Xi=Xi).squeeze(-1)
@classmethod
def from_config(cls, config: Config):
classname = cls.__name__
likelihood_cls = config.getobj(classname, "likelihood", fallback=None)
if likelihood_cls is not None:
if hasattr(likelihood_cls, "from_config"):
likelihood = likelihood_cls.from_config(config)
else:
likelihood = likelihood_cls()
else:
likelihood = None # fall back to __init__ default
return cls(likelihood=likelihood)
class SemiPThresholdObjective(SemiPObjectiveBase):
"""Wraps the semi-parametric transform into an objective
that gives the threshold distribution.
"""
def __init__(self, target: float, likelihood=None, *args, **kwargs):
"""Evaluates the probability objective.
Args:
target (float): the threshold to evaluate.
likelihood (Likelihood): Underlying SemiP likelihood (which we use for its inverse link)
other arguments are passed to the base class (notably, stim_dim).
"""
super().__init__(*args, **kwargs)
self.likelihood = likelihood or LinearBernoulliLikelihood()
self.fspace_target = self.likelihood.objective.inverse(torch.tensor(target))
def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
"""Evaluates the probability objective.
Args:
samples (Tensor): GP samples.
X (Tensor, optional): Ignored, here for compatibility with the objective API.
Returns:
Tensor: Threshold probabilities at the specific GP sample values.
"""
offset = samples[..., 0, :]
slope = samples[..., 1, :]
return (self.fspace_target + slope * offset) / slope
@classmethod
def from_config(cls, config: Config):
classname = cls.__name__
likelihood_cls = config.getobj(classname, "likelihood", fallback=None)
if likelihood_cls is not None:
if hasattr(likelihood_cls, "from_config"):
likelihood = likelihood_cls.from_config(config)
else:
likelihood = likelihood_cls()
else:
likelihood = None # fall back to __init__ default
target = config.getfloat(classname, "target", fallback=0.75)
return cls(likelihood=likelihood, target=target)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import sys
from ...config import Config
from .objective import (
AEPsychObjective,
FloorGumbelObjective,
FloorLogitObjective,
FloorProbitObjective,
ProbitObjective,
)
from .semi_p import SemiPProbabilityObjective, SemiPThresholdObjective
__all__ = [
"AEPsychObjective",
"FloorGumbelObjective",
"FloorLogitObjective",
"FloorProbitObjective",
"ProbitObjective",
"SemiPProbabilityObjective",
"SemiPThresholdObjective",
]
Config.register_module(sys.modules[__name__])
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import torch
from gpytorch.means.constant_mean import ConstantMean
class ConstantMeanPartialObsGrad(ConstantMean):
"""A mean function for use with partial gradient observations.
This follows gpytorch.means.constant_mean_grad and sets the prior mean for
derivative observations to 0, though unlike that function it allows for
partial observation of derivatives.
The final column of input should be an index that is 0 if the observation
is of f, or i if it is of df/dxi.
"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
idx = input[..., -1].to(dtype=torch.long) > 0
mean_fit = super(ConstantMeanPartialObsGrad, self).forward(input[..., ~idx, :])
sz = mean_fit.shape[:-1] + torch.Size([input.shape[-2]])
mean = torch.zeros(sz)
mean[~idx] = mean_fit
return mean
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import io
import logging
import os
import sys
import threading
import traceback
import warnings
from typing import Optional
import aepsych.database.db as db
import aepsych.utils_logging as utils_logging
import dill
import numpy as np
import pandas as pd
import torch
from aepsych.server.message_handlers import MESSAGE_MAP
from aepsych.server.message_handlers.handle_ask import ask
from aepsych.server.message_handlers.handle_setup import configure
from aepsych.server.replay import (
get_dataframe_from_replay,
get_strat_from_replay,
get_strats_from_replay,
replay,
)
from aepsych.server.sockets import BAD_REQUEST, DummySocket, PySocket
logger = utils_logging.getLogger(logging.INFO)
DEFAULT_DESC = "default description"
DEFAULT_NAME = "default name"
def get_next_filename(folder, fname, ext):
"""Generates appropriate filename for logging purposes."""
n = sum(1 for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f)))
return f"{folder}/{fname}_{n+1}.{ext}"
class AEPsychServer(object):
def __init__(self, socket=None, database_path=None):
"""Server for doing black box optimization using gaussian processes.
Keyword Arguments:
socket -- socket object that implements `send` and `receive` for json
messages (default: DummySocket()).
TODO actually make an abstract interface to subclass from here
"""
if socket is None:
self.socket = DummySocket()
else:
self.socket = socket
self.db = None
self.is_performing_replay = False
self.exit_server_loop = False
self._db_master_record = None
self._db_raw_record = None
self.db = db.Database(database_path)
self.skip_computations = False
self.strat_names = None
if self.db.is_update_required():
self.db.perform_updates()
self._strats = []
self._parnames = []
self._configs = []
self.strat_id = -1
self._pregen_asks = []
self.enable_pregen = False
self.debug = False
self.receive_thread = threading.Thread(
target=self._receive_send, args=(self.exit_server_loop,), daemon=True
)
self.queue = []
def cleanup(self):
"""Close the socket and terminate connection to the server.
Returns:
None
"""
self.socket.close()
def _receive_send(self, is_exiting: bool) -> None:
"""Receive messages from the client.
Args:
is_exiting (bool): True to terminate reception of new messages from the client, False otherwise.
Returns:
None
"""
while True:
request = self.socket.receive(is_exiting)
if request != BAD_REQUEST:
self.queue.append(request)
if self.exit_server_loop:
break
logger.info("Terminated input thread")
def _handle_queue(self) -> None:
"""Handles the queue of messages received by the server.
Returns:
None
"""
if self.queue:
request = self.queue.pop(0)
try:
result = self.handle_request(request)
except Exception as e:
error_message = f"Request '{request}' raised error '{e}'!"
result = f"server_error, {error_message}"
logger.error(f"{error_message}! Full traceback follows:")
logger.error(traceback.format_exc())
self.socket.send(result)
else:
if self.can_pregen_ask and (len(self._pregen_asks) == 0):
self._pregen_asks.append(ask(self))
def serve(self) -> None:
"""Run the server. Note that all configuration outside of socket type and port
happens via messages from the client. The server simply forwards messages from
the client to its `setup`, `ask` and `tell` methods, and responds with either
acknowledgment or other response as needed. To understand the server API, see
the docs on the methods in this class.
Returns:
None
Raises:
RuntimeError: if a request from a client has no request type
RuntimeError: if a request from a client has no known request type
TODO make things a little more robust to bad messages from client; this
requires resetting the req/rep queue status.
"""
logger.info("Server up, waiting for connections!")
logger.info("Ctrl-C to quit!")
# yeah we're not sanitizing input at all
# Start the method to accept a client connection
self.socket.accept_client()
self.receive_thread.start()
while True:
self._handle_queue()
if self.exit_server_loop:
break
# Close the socket and terminate with code 0
self.cleanup()
sys.exit(0)
def _unpack_strat_buffer(self, strat_buffer):
if isinstance(strat_buffer, io.BytesIO):
strat = torch.load(strat_buffer, pickle_module=dill)
strat_buffer.seek(0)
elif isinstance(strat_buffer, bytes):
warnings.warn(
"Strat buffer is not in bytes format!"
+ " This is a deprecated format, loading using dill.loads.",
DeprecationWarning,
)
strat = dill.loads(strat_buffer)
else:
raise RuntimeError("Trying to load strat in unknown format!")
return strat
def generate_experiment_table(
self,
experiment_id: str,
table_name: str = "experiment_table",
return_df: bool = False,
) -> Optional[pd.DataFrame]:
"""Generate a table of a given experiment with all the raw data.
This table is generated from the database, and is added to the
experiment's database.
Args:
experiment_id (str): The experiment ID to generate the table for.
table_name (str): The name of the table. Defaults to
"experiment_table".
return_df (bool): If True, also return the dataframe.
Returns:
pd.DataFrame: The dataframe of the experiment table, if
return_df is True.
"""
param_space = self.db.get_param_for(experiment_id, 1)
outcome_space = self.db.get_outcome_for(experiment_id, 1)
columns = []
columns.append("iteration_id")
for param in param_space:
columns.append(param.param_name)
for outcome in outcome_space:
columns.append(outcome.outcome_name)
columns.append("timestamp")
# Create dataframe
df = pd.DataFrame(columns=columns)
# Fill dataframe
for raw in self.db.get_raw_for(experiment_id):
row = {}
row["iteration_id"] = raw.unique_id
for param in raw.children_param:
row[param.param_name] = param.param_value
for outcome in raw.children_outcome:
row[outcome.outcome_name] = outcome.outcome_value
row["timestamp"] = raw.timestamp
# concat to dataframe
df = pd.concat([df, pd.DataFrame([row])], ignore_index=True)
# Make iteration_id the index
df.set_index("iteration_id", inplace=True)
# Save to .db file
df.to_sql(table_name, self.db.get_engine(), if_exists="replace")
if return_df:
return df
else:
return None
### Properties that are set on a per-strat basis
@property
def strat(self):
if self.strat_id == -1:
return None
else:
return self._strats[self.strat_id]
@strat.setter
def strat(self, s):
self._strats.append(s)
@property
def config(self):
if self.strat_id == -1:
return None
else:
return self._configs[self.strat_id]
@config.setter
def config(self, s):
self._configs.append(s)
@property
def parnames(self):
if self.strat_id == -1:
return []
else:
return self._parnames[self.strat_id]
@parnames.setter
def parnames(self, s):
self._parnames.append(s)
@property
def n_strats(self):
return len(self._strats)
@property
def can_pregen_ask(self):
return self.strat is not None and self.enable_pregen
def _tensor_to_config(self, next_x):
config = {}
for name, val in zip(self.parnames, next_x):
if val.dim() == 0:
config[name] = [float(val)]
else:
config[name] = np.array(val)
return config
def _config_to_tensor(self, config):
unpacked = [config[name] for name in self.parnames]
# handle config elements being either scalars or length-1 lists
if isinstance(unpacked[0], list):
x = torch.tensor(np.stack(unpacked, axis=0)).squeeze(-1)
else:
x = torch.tensor(np.stack(unpacked))
return x
def __getstate__(self):
# nuke the socket since it's not pickleble
state = self.__dict__.copy()
del state["socket"]
del state["db"]
return state
def write_strats(self, termination_type):
if self._db_master_record is not None and self.strat is not None:
logger.info(f"Dumping strats to DB due to {termination_type}.")
for strat in self._strats:
buffer = io.BytesIO()
torch.save(strat, buffer, pickle_module=dill)
buffer.seek(0)
self.db.record_strat(master_table=self._db_master_record, strat=buffer)
def generate_debug_info(self, exception_type, dumptype):
fname = get_next_filename(".", dumptype, "pkl")
logger.exception(f"Got {exception_type}, exiting! Server dump in {fname}")
dill.dump(self, open(fname, "wb"))
def handle_request(self, request):
if "type" not in request.keys():
raise RuntimeError(f"Request {request} contains no request type!")
else:
type = request["type"]
if type in MESSAGE_MAP.keys():
logger.info(f"Received msg [{type}]")
ret_val = MESSAGE_MAP[type](self, request)
return ret_val
else:
exception_message = (
f"unknown type: {type}. Allowed types [{MESSAGE_MAP.keys()}]"
)
raise RuntimeError(exception_message)
def replay(self, uuid_to_replay, skip_computations=False):
return replay(self, uuid_to_replay, skip_computations)
def get_strats_from_replay(self, uuid_of_replay=None, force_replay=False):
return get_strats_from_replay(self, uuid_of_replay, force_replay)
def get_strat_from_replay(self, uuid_of_replay=None, strat_id=-1):
return get_strat_from_replay(self, uuid_of_replay, strat_id)
def get_dataframe_from_replay(self, uuid_of_replay=None, force_replay=False):
return get_dataframe_from_replay(self, uuid_of_replay, force_replay)
#! THIS IS WHAT START THE SERVER
def startServerAndRun(
server_class, socket=None, database_path=None, config_path=None, uuid_of_replay=None
):
server = server_class(socket=socket, database_path=database_path)
try:
if config_path is not None:
with open(config_path) as f:
config_str = f.read()
configure(server, config_str=config_str)
if socket is not None:
if uuid_of_replay is not None:
server.replay(uuid_of_replay, skip_computations=True)
server._db_master_record = server.db.get_master_record(uuid_of_replay)
server.serve()
else:
if config_path is not None:
logger.info(
"You have passed in a config path but this is a replay. If there's a config in the database it will be used instead of the passed in config path."
)
server.replay(uuid_of_replay)
except KeyboardInterrupt:
exception_type = "CTRL+C"
dump_type = "dump"
server.write_strats(exception_type)
server.generate_debug_info(exception_type, dump_type)
except RuntimeError as e:
exception_type = "RuntimeError"
dump_type = "crashdump"
server.write_strats(exception_type)
server.generate_debug_info(exception_type, dump_type)
raise RuntimeError(e)
def parse_argument():
parser = argparse.ArgumentParser(description="AEPsych Server!")
parser.add_argument(
"--port", metavar="N", type=int, default=5555, help="port to serve on"
)
parser.add_argument(
"--ip",
metavar="M",
type=str,
default="0.0.0.0",
help="ip to bind",
)
parser.add_argument(
"-s",
"--stratconfig",
help="Location of ini config file for strat",
type=str,
)
parser.add_argument(
"--logs",
type=str,
help="The logs path to use if not the default (./logs).",
default="logs",
)
parser.add_argument(
"-d",
"--db",
type=str,
help="The database to use if not the default (./databases/default.db).",
default=None,
)
parser.add_argument(
"-r", "--replay", type=str, help="UUID of the experiment to replay."
)
parser.add_argument(
"-m", "--resume", action="store_true", help="Resume server after replay."
)
args = parser.parse_args()
return args
def start_server(server_class, args):
logger.info("Starting the AEPsychServer")
try:
if "db" in args and args.db is not None:
database_path = args.db
if "replay" in args and args.replay is not None:
logger.info(f"Attempting to replay {args.replay}")
if args.resume is True:
sock = PySocket(port=args.port)
logger.info(f"Will resume {args.replay}")
else:
sock = None
startServerAndRun(
server_class,
socket=sock,
database_path=database_path,
uuid_of_replay=args.replay,
config_path=args.stratconfig,
)
else:
logger.info(f"Setting the database path {database_path}")
sock = PySocket(port=args.port)
startServerAndRun(
server_class,
database_path=database_path,
socket=sock,
config_path=args.stratconfig,
)
else:
sock = PySocket(port=args.port)
startServerAndRun(server_class, socket=sock, config_path=args.stratconfig)
except (KeyboardInterrupt, SystemExit):
logger.exception("Got Ctrl+C, exiting!")
sys.exit()
except RuntimeError as e:
fname = get_next_filename(".", "dump", "pkl")
logger.exception(f"CRASHING!! dump in {fname}")
raise RuntimeError(e)
def main(server_class=AEPsychServer):
args = parse_argument()
if args.logs:
# overide logger path
log_path = args.logs
logger = utils_logging.getLogger(logging.DEBUG, log_path)
logger.info(f"Saving logs to path: {log_path}")
start_server(server_class, args)
if __name__ == "__main__":
main(AEPsychServer)
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from .server import AEPsychServer
__all__ = ["AEPsychServer"]
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import warnings
import aepsych.utils_logging as utils_logging
import pandas as pd
from aepsych.server.message_handlers.handle_tell import flatten_tell_record
logger = utils_logging.getLogger(logging.INFO)
def replay(server, uuid_to_replay, skip_computations=False):
"""
Run a replay against the server. The UUID will be looked up in the database.
if skip_computations is true, skip all the asks and queries, which should make the replay much faster.
"""
if uuid_to_replay is None:
raise RuntimeError("UUID is a required parameter to perform a replay")
if server.db is None:
raise RuntimeError("A database is required to perform a replay")
if skip_computations is True:
logger.info(
"skip_computations=True, make sure to refit the final strat before doing anything!"
)
master_record = server.db.get_master_record(uuid_to_replay)
if master_record is None:
raise RuntimeError(
f"The UUID {uuid_to_replay} isn't in the database. Unable to perform replay."
)
# this prevents writing back to the DB and creating a circular firing squad
server.is_performing_replay = True
server.skip_computations = skip_computations
for result in master_record.children_replay:
request = result.message_contents
logger.debug(f"replay - type = {result.message_type} request = {request}")
server.handle_request(request)
def get_strats_from_replay(server, uuid_of_replay=None, force_replay=False):
if uuid_of_replay is None:
records = server.db.get_master_records()
if len(records) > 0:
uuid_of_replay = records[-1].experiment_id
else:
raise RuntimeError("Server has no experiment records!")
if force_replay:
warnings.warn(
"Force-replaying to get non-final strats is deprecated after the ability"
+ " to save all strats was added, and will eventually be removed.",
DeprecationWarning,
)
replay(server, uuid_of_replay, skip_computations=True)
for strat in server._strats:
if strat.has_model:
strat.model.fit(strat.x, strat.y)
return server._strats
else:
strat_buffers = server.db.get_strats_for(uuid_of_replay)
return [server._unpack_strat_buffer(sb) for sb in strat_buffers]
def get_strat_from_replay(server, uuid_of_replay=None, strat_id=-1):
if uuid_of_replay is None:
records = server.db.get_master_records()
if len(records) > 0:
uuid_of_replay = records[-1].experiment_id
else:
raise RuntimeError("Server has no experiment records!")
strat_buffer = server.db.get_strat_for(uuid_of_replay, strat_id)
if strat_buffer is not None:
return server._unpack_strat_buffer(strat_buffer)
else:
warnings.warn(
"No final strat found (likely due to old DB,"
+ " trying to replay tells to generate a final strat. Note"
+ " that this fallback will eventually be removed!",
DeprecationWarning,
)
# sometimes there's no final strat, e.g. if it's a very old database
# (we dump strats on crash) in this case, replay the setup and tells
replay(server, uuid_of_replay, skip_computations=True)
# then if the final strat is model-based, refit
strat = server._strats[strat_id]
if strat.has_model:
strat.model.fit(strat.x, strat.y)
return strat
def get_dataframe_from_replay(server, uuid_of_replay=None, force_replay=False):
warnings.warn(
"get_dataframe_from_replay is deprecated."
+ " Use generate_experiment_table with return_df = True instead.",
DeprecationWarning,
stacklevel=2,
)
if uuid_of_replay is None:
records = server.db.get_master_records()
if len(records) > 0:
uuid_of_replay = records[-1].experiment_id
else:
raise RuntimeError("Server has no experiment records!")
recs = server.db.get_replay_for(uuid_of_replay)
strats = get_strats_from_replay(server, uuid_of_replay, force_replay=force_replay)
out = pd.DataFrame(
[flatten_tell_record(server, rec) for rec in recs if rec.message_type == "tell"]
)
# flatten any final nested lists
def _flatten(x):
return x[0] if len(x) == 1 else x
for col in out.columns:
if out[col].dtype == object:
out.loc[:, col] = out[col].apply(_flatten)
n_tell_records = len(out)
n_strat_datapoints = 0
post_means = []
post_vars = []
# collect posterior means and vars
for strat in strats:
if strat.has_model:
post_mean, post_var = strat.predict(strat.x)
n_tell_records = len(out)
n_strat_datapoints += len(post_mean)
post_means.extend(post_mean.detach().numpy())
post_vars.extend(post_var.detach().numpy())
if n_tell_records == n_strat_datapoints:
out["post_mean"] = post_means
out["post_var"] = post_vars
else:
logger.warn(
f"Number of tell records ({n_tell_records}) does not match "
+ f"number of datapoints in strat ({n_strat_datapoints}) "
+ "cowardly refusing to populate GP mean and var to dataframe!"
)
return out
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import logging
import os
import sys
import aepsych.database.db as db
import aepsych.utils_logging as utils_logging
logger = utils_logging.getLogger(logging.INFO)
def get_next_filename(folder, fname, ext):
n = sum(1 for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f)))
return f"{folder}/{fname}_{n+1}.{ext}"
def parse_argument():
parser = argparse.ArgumentParser(description="AEPsych Database!")
parser.add_argument(
"-l",
"--list",
help="Lists available experiments in the database.",
action="store_true",
)
parser.add_argument(
"-d",
"--db",
type=str,
help="The database to use if not the default (./databases/default.db).",
default=None,
)
parser.add_argument(
"-u",
"--update",
action="store_true",
help="Update the database tables with the most recent columns and tables.",
)
args = parser.parse_args()
return args
def run_database(args):
logger.info("Starting AEPsych Database!")
try:
database_path = args.db
database = db.Database(database_path)
if args.list is True:
database.list_master_records()
elif "update" in args and args.update:
logger.info(f"Updating the database {database_path}")
if database.is_update_required():
database.perform_updates()
logger.info(f"- updated database {database_path}")
else:
logger.info(f"- update not needed for database {database_path}")
except (KeyboardInterrupt, SystemExit):
logger.exception("Got Ctrl+C, exiting!")
sys.exit()
except RuntimeError as e:
fname = get_next_filename(".", "dump", "pkl")
logger.exception(f"CRASHING!! dump in {fname}")
raise RuntimeError(e)
def main():
args = parse_argument()
run_database(args)
if __name__ == "__main__":
main()
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import json
import logging
import select
import socket
import sys
import aepsych.utils_logging as utils_logging
import numpy as np
logger = utils_logging.getLogger(logging.INFO)
BAD_REQUEST = "bad request"
def SimplifyArrays(message):
return {
k: v.tolist()
if type(v) == np.ndarray
else SimplifyArrays(v)
if type(v) is dict
else v
for k, v in message.items()
}
class DummySocket(object):
def close(self):
pass
class PySocket(object):
def __init__(self, port, ip=""):
addr = (ip, port) # all interfaces
if socket.has_dualstack_ipv6():
self.socket = socket.create_server(
addr, family=socket.AF_INET6, dualstack_ipv6=True
)
else:
self.socket = socket.create_server(addr)
self.conn, self.addr = None, None
def close(self):
self.socket.close()
def return_socket(self):
return self.socket
def accept_client(self):
client_not_connected = True
logger.info("Waiting for connection...")
while client_not_connected:
rlist, wlist, xlist = select.select([self.socket], [], [], 0)
if rlist:
for sock in rlist:
try:
self.conn, self.addr = sock.accept()
logger.info(
f"Connected by {self.addr}, waiting for messages..."
)
client_not_connected = False
except Exception as e:
logger.info(f"Connection to client failed with error {e}")
raise Exception
def receive(self, server_exiting):
while not server_exiting:
rlist, wlist, xlist = select.select(
[self.conn], [], [], 0
) # 0 Here is the timeout. It makes the server constantly poll for output. Timeout can be added to save CPU usage.
# rlist,wlist,xlist represent lists of sockets to check against. Rlist is sockets to read from, wlist is sockets to write to, xlist is sockets to listen to for errors.
for sock in rlist:
try:
if rlist:
recv_result = sock.recv(
1024 * 512
) # 1024 * 512 is the max size of the message
msg = json.loads(recv_result)
logger.debug(f"receive : result = {recv_result}")
logger.info(f"Got: {msg}")
return msg
except Exception:
return BAD_REQUEST
def send(self, message):
if self.conn is None:
logger.error("No connection to send to!")
return
if type(message) == str:
pass # keep it as-is
elif type(message) == int:
message = str(message)
else:
message = json.dumps(SimplifyArrays(message))
logger.info(f"Sending: {message}")
sys.stdout.flush()
self.conn.sendall(bytes(message, "utf-8"))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.