python_code
stringlengths
0
66.4k
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import numpy.testing as npt from aepsych.config import Config from aepsych.generators import ManualGenerator class TestManualGenerator(unittest.TestCase): def test_batchmanual(self): points = np.random.rand(10, 3) mod = ManualGenerator( lb=[0, 0, 0], ub=[1, 1, 1], dim=3, points=points, shuffle=False ) npt.assert_allclose(points, mod.points) # make sure they weren't shuffled acq1 = mod.gen(num_points=2) self.assertEqual(acq1.shape, (2, 3)) acq2 = mod.gen(num_points=3) self.assertEqual(acq2.shape, (3, 3)) acq3 = mod.gen() self.assertEqual(acq3.shape, (1, 3)) with self.assertWarns(RuntimeWarning): acq4 = mod.gen(num_points=10) self.assertEqual(acq4.shape, (4, 3)) def test_manual_generator(self): points = [[0, 0], [0, 1], [1, 0], [1, 1]] config_str = f""" [common] lb = [0, 0] ub = [1, 1] parnames = [par1, par2] [ManualGenerator] points = {points} """ config = Config() config.update(config_str=config_str) gen = ManualGenerator.from_config(config) npt.assert_equal(gen.lb.numpy(), np.array([0, 0])) npt.assert_equal(gen.ub.numpy(), np.array([1, 1])) self.assertFalse(gen.finished) p1 = list(gen.gen()[0]) p2 = list(gen.gen()[0]) p3 = list(gen.gen()[0]) p4 = list(gen.gen()[0]) self.assertEqual(sorted([p1, p2, p3, p4]), points) self.assertTrue(gen.finished) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # This source code is licensed under the MIT license found in the # LICENSE file in the scripts directory. # -- Path setup -------------------------------------------------------------- import os import sys # from pkg_resources import get_distribution # sys.path.insert(0, os.path.abspath("../../")) current_dir = os.path.dirname(__file__) target_dir = os.path.abspath(os.path.join(current_dir, "../../")) sys.path.insert(0, target_dir) # base_path = os.path.abspath(os.path.join(__file__, "..", "..", "..", "aepsych")) # print(sys.path, base_path, "======") # sys.path.append(base_path) # -- Project information ----------------------------------------------------- project = "AEPsych" # copyright = "Meta, Inc." author = "Meta, Inc." # get version string # version = get_distribution("aepsych").version version = "" release = "" # -- General configuration --------------------------------------------------- # Sphinx extension modules extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", "sphinx.ext.doctest", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.ifconfig", "sphinx.ext.viewcode", ] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix(es) of source filenames # source_suffix = [".rst", ".md"] source_suffix = ".rst" # The main toctree document. index_doc = "index" # The language for content autogenerated by Sphinx. language = "en" # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # Default options for autodoc directives. Applied to all autodoc directives autodoc_default_options = { "undoc-members": True, "show-inheritance": True, "member-order": "bysource", } # show type hints in the method description autodoc_typehints = "description" # Inlcude init docstrings into body of autoclass directives autoclass_content = "both" # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "alabaster" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"] html_static_path = [] # for now we have no static files to track # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = False # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "aepsychdoc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (index_doc, "aepsych.tex", "AEPsych Documentation", "Meta, Inc.", "manual") ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(index_doc, "aepsych", "aepsych Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( index_doc, "aepsych", "AEPsych Documentation", author, "AEPsych", "AEPsych", "Miscellaneous", ) ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ["search.html"] # -- Extension configuration ------------------------------------------------- # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True autodoc_mock_imports = ["botorch"]
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from datetime import datetime import numpy as np constants = { "savefolder": "./databases/", "timestamp": datetime.now().strftime("%Y-%m-%d_%H-%M-%S"), "config_path": "./aepsych_config.ini", "seed": 1, } # base parameters in case we don't want AEPsych to manage all 8. base_params = { "spatial_frequency": 2, "orientation": 0, "pedestal": 0.5, "contrast": 0.75, "temporal_frequency": 0, "size": 10, "angle_dist": 0, "eccentricity": 0, } psychopy_vars = { "setSizePix": [1680, 1050], "setWidth": 47.475, "setDistance": 57, "pre_duration_s": 0.0, "stim_duration_s": 5.0, "post_duration_s": 1, "response_wait": 2, "iti": 0, }
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import experiment_config import numpy as np import torch from aepsych_client import AEPsychClient from helpers import HalfGrating from psychopy import core, data, event, gui, monitors, visual from psychopy.tools.filetools import toFile def run_experiment(): seed = experiment_config.constants["seed"] config_path = experiment_config.constants["config_path"] torch.manual_seed(seed) np.random.seed(seed) expInfo = {"observer": "default_observer"} expInfo["dateStr"] = data.getDateStr() # add the current time # present a dialogue to change params dlg = gui.DlgFromDict(expInfo, title="multi-D JND Exp", fixed=["dateStr"]) if dlg.OK: toFile("lastParams.pickle", expInfo) # save params to file for next time else: core.quit() # the user hit cancel so exit screen = monitors.Monitor("testMonitor", gamma=1) screen.setSizePix(experiment_config.psychopy_vars["setSizePix"]) screen.setWidth(experiment_config.psychopy_vars["setWidth"]) screen.setDistance(experiment_config.psychopy_vars["setDistance"]) win = visual.Window( allowGUI=True, units="deg", monitor=screen, bpc=(8, 8, 8), size=experiment_config.psychopy_vars["setSizePix"], fullscr=False, ) screen_text_g = visual.TextStim(win, text=None, alignHoriz="center", color="green") screen_text_r = visual.TextStim(win, text=None, alignHoriz="center", color="red") screen_text = visual.TextStim(win, text=None, alignHoriz="center", color="gray") # display instructions and wait message2 = visual.TextStim( win, pos=[0, +3], text="Hit the space bar key when ready and " "to advance to the next trial after you see a red cross.", ) message1 = visual.TextStim( win, pos=[0, -3], text="You'll see a stimulus. One side will have a grating and the other will be noise." " " "Press left or right corresponding to the side with noise. If you don't know, please guess.", ) message1.draw() message2.draw() win.flip() # to show our newly drawn 'stimuli' # pause until there's a keypress event.waitKeys() # start the trial: draw grating clock = core.Clock() screen_text_r.setText("+") screen_text_r.draw(win=win) win.flip() aepsych_client = AEPsychClient() aepsych_client.configure(config_path=config_path) # create stimulus stim = HalfGrating(**experiment_config.base_params, win=win) i = 0 is_finished = False while not is_finished: ask_response = aepsych_client.ask() trial_params = ask_response["config"] is_finished = ask_response["is_finished"] stim.update(trial_params) print(trial_params) bg_color = np.array([stim.pedestal_psychopy_scale] * 3) win.setColor(bg_color) win.color = bg_color win.flip() screen_text_r.setText("+") screen_text_r.draw(win=win) win.flip() core.wait(experiment_config.psychopy_vars["iti"]) fixation_keys = [] while not fixation_keys: fixation_keys = event.getKeys(keyList=["space"]) fixation_keys = ["space"] ## for debugging if "space" in fixation_keys: screen_text.setText("+") screen_text.draw(win=win) win.flip() noisy_half = "left" if np.random.randint(2) == 0 else "right" clock.reset() keys = stim.draw( noisy_half=noisy_half, win=win, pre_duration_s=experiment_config.psychopy_vars["pre_duration_s"], stim_duration_s=experiment_config.psychopy_vars["stim_duration_s"], ) # keys = event.waitKeys(keyList=["left", "right"]) # phil took out max wait rt = clock.getTime() response = noisy_half in keys print(f"keys:{keys}, ca:{noisy_half}, acc:{response}, rt:{rt}") win.flip() if response: screen_text_g.setText("Correct") screen_text_g.draw() win.flip() else: screen_text_r.setText("Incorrect") screen_text_r.draw() win.flip() # inform bayesopt of the response, needed to calculate next contrast aepsych_client.tell(config=trial_params, outcome=response, rt=rt) # core.wait(experiment_config.psychopy_vars["post_duration_s"]) event.clearEvents() print(f"trial {i}") i = i + 1 win.close() aepsych_client.finalize() core.quit() if __name__ == "__main__": run_experiment()
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import pyglet from psychopy import core, event from psychopy.visual import Window from psychopy.visual.image import ImageStim pyglet.options["debug_gl"] = False GL = pyglet.gl def polar_to_cartesian(r, theta): z = r * np.exp(1j * np.radians(theta)) return z.real, z.imag def cartesian_to_polar(x, y): z = x + 1j * y return (np.abs(z), np.angle(z, deg=True)) class AnimatedGrating: param_transforms = {"contrast": lambda x: 10 ** x, "pedestal": lambda x: 10 ** x} def __init__( self, spatial_frequency: float, orientation: float, pedestal: float, contrast: float, temporal_frequency: float, eccentricity: float, size: float, angle_dist: float, win: Window, cpd=60, # display cycles per degree Lmin=0, # min luminance in nits Lmax=255, # max luminance in nits res=256, # texture resolution noisy=False, *args, **kw, ): """Generate animated Gabor grating Args: spatial_frequency (float): Spatial frequency. orientation (float): Orientation (degrees) pedestal (float): Background luminance. contrast (float): Stimulus contrast. temporal_frequency (float): Temporal frequency (seconds). eccentricity (float): Stimulus eccentricity relative to center (degrees). size (float): Stimulus size. angle_dist (float): Stimulus angle relative to center. win (Window): Window to render to. cpd (int, optional): Display cycles per degree. Defaults to 60. """ self.spatial_frequency = spatial_frequency self.temporal_frequency = temporal_frequency self.orientation = orientation self.pedestal = pedestal self.contrast = contrast self.settable_params = ( "spatial_frequency", "temporal_frequency", "orientation", "pedestal", "contrast", "size", "eccentricity", "angle_dist", ) self.cpd = cpd self.Lmin = Lmin self.Lmax = Lmax self.res = res self.noisy = noisy self.initial_phase = np.random.uniform(low=0, high=0.2, size=(1)) img = np.zeros((self.res, self.res)) self.win = win self._stim = ImageStim(image=img, mask="gauss", win=win, *args, **kw) # these get set on _stim self.size = size self.eccentricity = eccentricity self.angle_dist = angle_dist def update(self, trial_config): for k, v in trial_config.items(): if k in self.settable_params: if k in self.param_transforms: setattr(self, k, self.param_transforms[k](v[0])) else: setattr(self, k, v[0]) @property def size(self): return self._stim.size @size.setter def size(self, x): self._stim.size = x @property def eccentricity(self): return cartesian_to_polar(*self._stim.pos)[0] @eccentricity.setter def eccentricity(self, x): current_coords = cartesian_to_polar(*self._stim.pos) self._stim.pos = polar_to_cartesian(x, current_coords[1]) @property def angle_dist(self): return cartesian_to_polar(*self._stim.pos)[1] @angle_dist.setter def angle_dist(self, deg): current_coords = cartesian_to_polar(*self._stim.pos) self._stim.pos = polar_to_cartesian(current_coords[0], deg + 90) @property def pedestal_psychopy_scale(self): return self.pedestal * 2 - 1 def draw( self, noisy=False, win=None, pre_duration_s=0.1, stim_duration_s=5.0, *args, **kwargs, ): win = win or self.win clock = core.Clock() clock.reset() self._stim.image = self.get_texture(self.initial_phase, noisy=noisy) while clock.getTime() < pre_duration_s: win.flip() start_time = clock.getTime() while clock.getTime() < pre_duration_s + stim_duration_s: if self.temporal_frequency > 0: newphase = (clock.getTime() - start_time) * self.temporal_frequency self._stim.image = self.get_texture( newphase + self.initial_phase, noisy=noisy ) self._stim.draw() def get_texture(self, phase=0, noisy=False): pedestal_lum = self.pedestal * (self.Lmax - self.Lmin) + self.Lmin grating_max = (self.contrast * (2 * pedestal_lum + self.Lmin) + self.Lmin) / 2 x = np.arange(0, self.res) / self.cpd + phase y = np.arange(0, self.res) / self.cpd + phase x_grid, y_grid = np.meshgrid(x, y) wave = x_grid * np.cos(np.radians(self.orientation)) + y_grid * np.sin( np.radians(self.orientation) ) scaled_imag_wave = 1j * 2 * np.pi * self.spatial_frequency * wave img = grating_max * np.real(np.exp(scaled_imag_wave)) + pedestal_lum # convert from luminance to values in [-1, 1] as psychopy wants img = img / ((self.Lmax - self.Lmin) / 2) - 1 if noisy: flatimg = img.flatten() np.random.shuffle(flatimg) img = flatimg.reshape(self.res, self.res) return img class HalfGrating(AnimatedGrating): """Gabor animated grating, half of which is scrambled into white noise.""" def noisify_half_texture(self, img, noisy_half): img = img.T # transpose so our indexing tricks work flatimg = img.flatten() if noisy_half == "left": noisy = flatimg[: (self.res ** 2) // 2] np.random.shuffle(noisy) img = np.r_[noisy, flatimg[(self.res ** 2) // 2 :]].reshape( self.res, self.res ) else: noisy = flatimg[(self.res ** 2) // 2 :] np.random.shuffle(noisy) img = np.r_[flatimg[: (self.res ** 2) // 2], noisy].reshape( self.res, self.res ) return img.T # untranspose def get_texture(self, phase, noisy_half): img = super().get_texture(phase, noisy=False) img = self.noisify_half_texture(img, noisy_half) return img def draw( self, noisy_half="left", win=None, pre_duration_s=0.1, stim_duration_s=5.0, *args, **kwargs, ): win = win or self.win clock = core.Clock() clock.reset() event.clearEvents() self._stim.image = self.get_texture(self.initial_phase, noisy_half=noisy_half) while clock.getTime() < pre_duration_s: win.flip() start_time = clock.getTime() while True: if self.temporal_frequency > 0: newphase = (clock.getTime() - start_time) * self.temporal_frequency self._stim.image = self.get_texture( newphase + self.initial_phase, noisy_half=noisy_half ) self._stim.draw() keys = event.getKeys(keyList=["left", "right"]) win.flip() if len(keys) > 0: return keys return keys class ExperimentAborted(Exception): pass class QuitHelper: """Helper to quit the experiment by pressing a key twice within 500ms. It quits by simply raising 'ExperimentAborted'. This is necessary because from the separate thread that psychopy checks its global key events in, you cannot raise an Exception in the main thread. """ def __init__(self): self.quit_requested = False self.debounce_timestamp = None def request_quit(self): """Must be called twice in 500ms to set a flag that causes ExperimentAborted to be raised when quit_if_requested is called. This indirection is needed if request_quit is called from a separate thread (as with psychopy global event keys) """ tprev = self.debounce_timestamp tnow = core.getTime() if tprev is not None and tnow - tprev < 0.5: self.quit_requested = True self.debounce_timestamp = tnow def quit_if_requested(self): """Raises ExperimentAborted if request_quit has been called twice in 500ms""" if self.quit_requested: raise ExperimentAborted return True
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # we have pretty verbose messaging by default, suppress that here import logging import warnings warnings.filterwarnings("ignore") logging.disable(logging.WARNING) # disable anything below warning import os import time from copy import copy from itertools import product from aepsych.benchmark import ( Problem, LSEProblem, BenchmarkLogger, PathosBenchmark, combine_benchmarks, ) from aepsych.benchmark.test_functions import ( make_songetal_testfun, novel_detection_testfun, novel_discrimination_testfun, ) os.environ["OMP_NUM_THREADS"] = "1" os.environ["MKL_NUM_THREADS"] = "1" os.environ["MKL_THREADING_LAYER"] = "GNU" nproc = 94 n_reps = 100 sobol_trials = 5 total_trials = 150 global_seed = 3 log_every = 5 # test functions and boundaries novel_names = ["novel_detection", "novel_discrimination"] novel_testfuns = [novel_detection_testfun, novel_discrimination_testfun] novel_bounds = [{"lb": [-1, -1], "ub": [1, 1]}, {"lb": [-1, -1], "ub": [1, 1]}] song_phenotypes = ["Metabolic", "Sensory", "Metabolic+Sensory", "Older-normal"] song_betavals = [0.2, 0.5, 1, 2, 5, 10] song_testfuns = [ make_songetal_testfun(p, b) for p, b in product(song_phenotypes, song_betavals) ] song_bounds = [{"lb": [-3, -20], "ub": [4, 120]}] * len(song_testfuns) song_names = [f"song_p{p}_b{b}" for p, b in product(song_phenotypes, song_betavals)] all_testfuns = song_testfuns + novel_testfuns all_bounds = song_bounds + novel_bounds all_names = song_names + novel_names combo_logger = BenchmarkLogger(log_every=log_every) # benchmark configs, have to subdivide into 5 # configs Sobol, MCLSETS, and Song vs ours get set up all differently # Song benches bench_config_nonsobol_song = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": [ "MCLevelSetEstimation", "BernoulliMCMutualInformation", "MCPosteriorVariance", ], "modelbridge_cls": "SingleProbitModelbridgeWithSongHeuristic", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "GPClassificationModel", "parnames": "[context,intensity]", }, "MCLevelSetEstimation": { "target": 0.75, "beta": 3.84, "objective": "ProbitObjective", }, "GPClassificationModel": { "inducing_size": 100, "dim": 2, "mean_covar_factory": [ "song_mean_covar_factory", ], }, "SingleProbitModelbridgeWithSongHeuristic": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [total_trials - sobol_trials], "refit_every": 1, }, } bench_config_sobol_song = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": "MCLevelSetEstimation", "modelbridge_cls": "SingleProbitModelbridgeWithSongHeuristic", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "GPClassificationModel", "parnames": "[context,intensity]", }, "MCLevelSetEstimation": { "target": 0.75, "beta": 3.84, "objective": "ProbitObjective", }, "GPClassificationModel": { "inducing_size": 100, "dim": 2, "mean_covar_factory": [ "song_mean_covar_factory", ], }, "SingleProbitModelbridgeWithSongHeuristic": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": list(range(sobol_trials, total_trials - 1, log_every)), }, "ModelWrapperStrategy": { "n_trials": [1], "refit_every": 1, }, } # non-Song benches bench_config_sobol_rbf = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": "MonotonicMCLSE", "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicGPLSETS", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicGPLSETS": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": list(range(sobol_trials, total_trials - 1, log_every)), }, "ModelWrapperStrategy": { "n_trials": [1], "refit_every": 1, }, } bench_config_all_but_gplsets_rbf = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": [ "MonotonicMCLSE", "MonotonicBernoulliMCMutualInformation", "MonotonicMCPosteriorVariance", ], "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicRejectionGP", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicBernoulliMCMutualInformation": {}, "MonotonicMCPosteriorVariance": {}, "MonotonicRejectionGP": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [total_trials - sobol_trials], "refit_every": 1, }, } bench_config_gplsets_rbf = { "common": {"outcome_type": "single_probit", "target": 0.75}, "experiment": { "acqf": "MonotonicMCLSE", "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicGPLSETS", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicGPLSETS": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [total_trials - sobol_trials], "refit_every": 1, }, } all_bench_configs = [ bench_config_sobol_song, bench_config_nonsobol_song, bench_config_sobol_rbf, bench_config_all_but_gplsets_rbf, bench_config_gplsets_rbf, ] def make_problemobj(testfun, lb, ub): # This constructs a Problem from a # test function and bounds class Inner(LSEProblem, Problem): def f(self, x): return testfun(x) obj = Inner(lb=lb, ub=ub) return obj def make_bench(testfun, logger, name, configs, lb, ub): # make a bench object from test function config # and bench config benches = [] problem = make_problemobj(testfun, lb, ub) for config in configs: full_config = copy(config) full_config["common"]["lb"] = str(lb) full_config["common"]["ub"] = str(ub) full_config["common"]["name"] = name benches.append( PathosBenchmark( nproc=nproc, problem=problem, logger=logger, configs=full_config, global_seed=global_seed, n_reps=n_reps, ) ) return combine_benchmarks(*benches) def aggregate_bench_results(all_benchmarks): combo_logger = BenchmarkLogger(log_every=log_every) for bench in all_benchmarks: combo_logger._log.extend(bench.logger._log) out_pd = combo_logger.pandas() return out_pd if __name__ == "__main__": # one benchmark per test function print("Creating benchmark objects...") all_benchmarks = [ make_bench(testfun, combo_logger, name, all_bench_configs, **bounds) for (testfun, bounds, name) in zip(all_testfuns, all_bounds, all_names) ] # start all the benchmarks print("Starting benchmarks...") for bench in all_benchmarks: bench_name = bench.combinations[0]["common"]["name"] print(f"starting {bench_name}...") bench.start_benchmarks() done = False # checkpoint every minute in case something breaks while not done: time.sleep(60) print("Checkpointing benches...") done = True for bench in all_benchmarks: bench_name = bench.combinations[0]["common"]["name"] bench.collate_benchmarks(wait=False) if bench.is_done: print(f"bench {bench_name} is done!") else: done = False temp_results = aggregate_bench_results(all_benchmarks) temp_results.to_csv(f"bench_checkpoint_seed{global_seed}.csv") print("Done with all benchmarks, saving!") final_results = aggregate_bench_results(all_benchmarks) final_results.to_csv(f"bench_final_seed{global_seed}.csv")
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from copy import copy import matplotlib.pyplot as plt import numpy as np import torch from aepsych.benchmark import ( Problem, LSEProblem, BenchmarkLogger, Benchmark, combine_benchmarks, ) from aepsych.benchmark.test_functions import ( make_songetal_testfun, novel_detection_testfun, novel_discrimination_testfun, ) from aepsych.config import Config from aepsych.plotting import plot_strat from aepsych.strategy import SequentialStrategy from scipy.stats import norm global_seed = 3 refit_every = 1 figdir = "./figs/" def plot_audiometric_lse_grids( sobol_trials, opt_trials, phenotype="Metabolic+Sensory", beta=2 ): """ Generates Fig. 8 """ logger = BenchmarkLogger(log_every=5) bench_rbf = { "common": {"pairwise": False, "target": 0.75}, "experiment": { "acqf": "MonotonicMCLSE", "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicRejectionGP", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicRejectionGP": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [opt_trials], "refit_every": [refit_every], }, } bench_song = { "common": {"pairwise": False, "target": 0.75}, "experiment": { "acqf": "BernoulliMCMutualInformation", "modelbridge_cls": "SingleProbitModelbridgeWithSongHeuristic", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "GPClassificationModel", "parnames": "[context,intensity]", }, "GPClassificationModel": { "inducing_size": 100, "dim": 2, "mean_covar_factory": [ "song_mean_covar_factory", ], }, "SingleProbitModelbridgeWithSongHeuristic": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [opt_trials], "refit_every": [refit_every], }, } all_bench_configs = [bench_rbf, bench_song] testfun = make_songetal_testfun(phenotype=phenotype, beta=beta) class AudiometricProblem(LSEProblem, Problem): def f(self, x): return testfun(x) lb = [-3, -20] ub = [4, 120] benches = [] problem = AudiometricProblem(lb, ub) for config in all_bench_configs: full_config = copy(config) full_config["common"]["lb"] = str(lb) full_config["common"]["ub"] = str(ub) benches.append( Benchmark( problem=problem, logger=logger, configs=full_config, global_seed=global_seed, n_reps=1, ) ) combo_bench = combine_benchmarks(*benches) strats = [] for config in combo_bench.combinations: strat = combo_bench.run_experiment(config, logger, seed=global_seed, rep=0) strats.append(strat) titles = [ "Monotonic RBF Model, LSE (ours)", "Nonmonotonic RBF Model, LSE (ours)", "Linear-Additive Model, BALD", ] fig, axes = plt.subplots(2, 2, figsize=(7.5, 6.5)) plotting_axes = [axes[1, 0], axes[0, 1], axes[0, 0]] fig.delaxes(axes[1, 1]) _ = [ plot_strat( strat=strat_, title=title_, ax=ax_, true_testfun=testfun, xlabel="Frequency (kHz)", ylabel="Intensity (dB HL)", flipx=True, logx=True, show=False, include_legend=False, include_colorbar=False ) for ax_, strat_, title_ in zip(plotting_axes, strats, titles) ] fig.tight_layout() handles, labels = axes[1, 0].get_legend_handles_labels() fig.legend(handles, labels, loc="lower right", bbox_to_anchor=(0.8, 0.2)) cbr = fig.colorbar(axes[1, 0].images[0], ax=plotting_axes) cbr.set_label("Probability of Detection") return fig def plot_novel_lse_grids(sobol_trials, opt_trials, funtype="detection"): """ Generates Fig. TBA """ logger = BenchmarkLogger(log_every=opt_trials) # we only care about final perf bench_rbf = { "common": {"pairwise": False, "target": 0.75}, "experiment": { "acqf": "MonotonicMCLSE", "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicRejectionGP", "parnames": "[context,intensity]", }, "MonotonicMCLSE": { "target": 0.75, "beta": 3.84, }, "MonotonicRejectionGP": { "inducing_size": 100, "mean_covar_factory": [ "monotonic_mean_covar_factory", ], "monotonic_idxs": ["[1]", "[]"], "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [opt_trials], "refit_every": [refit_every], }, } bench_song = { "common": {"pairwise": False, "target": 0.75}, "experiment": { "acqf": "BernoulliMCMutualInformation", "modelbridge_cls": "SingleProbitModelbridgeWithSongHeuristic", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "GPClassificationModel", "parnames": "[context,intensity]", }, "GPClassificationModel": { "inducing_size": 100, "dim": 2, "mean_covar_factory": [ "song_mean_covar_factory", ], }, "SingleProbitModelbridgeWithSongHeuristic": {"restarts": 10, "samps": 1000}, "SobolStrategy": { "n_trials": [sobol_trials], }, "ModelWrapperStrategy": { "n_trials": [opt_trials], "refit_every": [refit_every], }, } all_bench_configs = [bench_rbf, bench_song] if funtype == "detection": testfun = novel_detection_testfun yes_label = "Detected trial" no_label = "Nondetected trial" elif funtype == "discrimination": testfun = novel_discrimination_testfun yes_label = "Correct trial" no_label = "Incorrect trial" else: raise RuntimeError("unknown testfun") class NovelProblem(LSEProblem, Problem): def f(self, x): return testfun(x) lb = [-1, -1] ub = [1, 1] benches = [] problem = NovelProblem(lb, ub, gridsize=50) for config in all_bench_configs: full_config = copy(config) full_config["common"]["lb"] = str(lb) full_config["common"]["ub"] = str(ub) benches.append( Benchmark( problem=problem, logger=logger, configs=full_config, global_seed=global_seed, n_reps=1, ) ) combo_bench = combine_benchmarks(*benches) strats = [] for config in combo_bench.combinations: strat = combo_bench.run_experiment(config, logger, seed=global_seed, rep=0) strats.append(strat) titles = [ "Monotonic RBF Model, LSE (ours)", "Nonmonotonic RBF Model, LSE (ours)", "Linear-Additive Model, BALD", ] fig, axes = plt.subplots(2, 2, figsize=(7.5, 6.5)) plotting_axes = [axes[1, 0], axes[0, 1], axes[0, 0]] fig.delaxes(axes[1, 1]) _ = [ plot_strat( strat=strat_, title=title_, ax=ax_, true_testfun=testfun, yes_label=yes_label, no_label=no_label, show=False, include_legend=False, include_colorbar=False ) for ax_, strat_, title_ in zip(plotting_axes, strats, titles) ] fig.tight_layout() handles, labels = axes[1, 0].get_legend_handles_labels() fig.legend(handles, labels, loc="lower right", bbox_to_anchor=(0.8, 0.2)) cbr = fig.colorbar(axes[1, 0].images[0], ax=plotting_axes) cbr.set_label("Probability of Detection") return fig def plot_acquisition_examples(sobol_trials, opt_trials, target_level=0.75): ### Same model, different acqf figure #### configs = { "common": { "pairwise": False, "target": target_level, "lb": "[-3]", "ub": "[3]", }, "experiment": { "acqf": [ "MonotonicMCPosteriorVariance", "MonotonicBernoulliMCMutualInformation", "MonotonicMCLSE", ], "modelbridge_cls": "MonotonicSingleProbitModelbridge", "init_strat_cls": "SobolStrategy", "opt_strat_cls": "ModelWrapperStrategy", "model": "MonotonicRejectionGP", "parnames": "[intensity]", }, "MonotonicMCLSE": { "target": target_level, "beta": 3.84, }, "MonotonicRejectionGP": { "inducing_size": 100, "mean_covar_factory": "monotonic_mean_covar_factory", "monotonic_idxs": "[0]", "uniform_idxs": "[]", }, "MonotonicSingleProbitModelbridge": {"restarts": 10, "samps": 1000}, "SobolStrategy": {"n_trials": sobol_trials}, "ModelWrapperStrategy": { "n_trials": opt_trials, "refit_every": refit_every, }, } def true_testfun(x): return norm.cdf(3 * x) class SimpleLinearProblem(Problem): def f(self, x): return norm.ppf(true_testfun(x)) lb = [-3] ub = [3] logger = BenchmarkLogger() problem = SimpleLinearProblem(lb, ub) bench = Benchmark( problem=problem, logger=logger, configs=configs, global_seed=global_seed, n_reps=1, ) # sobol_trials # now run each for just init trials, taking care to reseed each time strats = [] for c in bench.combinations: np.random.seed(global_seed) torch.manual_seed(global_seed) s = SequentialStrategy.from_config(Config(config_dict=c)) for _ in range(sobol_trials): next_x = s.gen() s.add_data(next_x, [problem.sample_y(next_x)]) strats.append(s) # get first gen from all 3 first_gens = [s.gen() for s in strats] fig, ax = plt.subplots(2, 2) plot_strat( strat=strats[0], title=f"First active trial\n (after {sobol_trials} Sobol trials)", ax=ax[0, 0], true_testfun=true_testfun, target_level=target_level, show=False, include_legend=False ) samps = [ norm.cdf(s.sample(torch.Tensor(g), num_samples=10000)) for s, g in zip(strats, first_gens) ] predictions = [np.mean(s) for s in samps] names = ["First BALV sample", "First BALD sample", "First LSE sample"] markers = ["s", "*", "^"] for i in range(3): ax[0, 0].scatter( first_gens[i][0][0], predictions[i], label=names[i], marker=markers[i], color="black", ) # now run them all for the full duration for s in strats: for _tr in range(opt_trials): next_x = s.gen() s.add_data(next_x, [problem.sample_y(next_x)]) plotting_axes = [ax[0, 1], ax[1, 0], ax[1, 1]] titles = [ f"Monotonic RBF Model,\n BALV, after {sobol_trials+opt_trials} total trials", f"Monotonic RBF Model,\n BALD, after {sobol_trials+opt_trials} total trials", f"Monotonic RBF Model,\n LSE (ours) after {sobol_trials+opt_trials} total trials", ] _ = [ plot_strat( strat=s, title=t, ax=a, true_testfun=true_testfun, target_level=target_level, show=False, include_legend=False ) for a, s, t in zip(plotting_axes, strats, titles) ] fig.tight_layout() handles, labels = ax[0, 0].get_legend_handles_labels() lgd = fig.legend(handles, labels, loc="lower right", bbox_to_anchor=(1.5, 0.25)) # return legend so savefig works correctly return fig, lgd if __name__ == "__main__": audio_lse_grids_fig = plot_audiometric_lse_grids(sobol_trials=5, opt_trials=45) audio_lse_grids_fig.savefig(fname=figdir + "audio_lse_grids_fig.pdf", dpi=200) novel_detection_lse_grids_fig = plot_novel_lse_grids( sobol_trials=5, opt_trials=45, funtype="detection" ) novel_detection_lse_grids_fig.savefig( fname=figdir + "detection_lse_grids_fig.pdf", dpi=200 ) # this is extra hard, run more trials novel_discrimination_lse_grids_fig = plot_novel_lse_grids( sobol_trials=5, opt_trials=95, funtype="discrimination" ) novel_discrimination_lse_grids_fig.savefig( fname=figdir + "discrimination_lse_grids_fig.pdf", dpi=200 ) same_model_different_acq_fig, lgd = plot_acquisition_examples( sobol_trials=5, opt_trials=15 ) same_model_different_acq_fig.savefig( fname=figdir + "same_model_different_acq.pdf", bbox_extra_artists=(lgd,), bbox_inches="tight", dpi=200, )
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import gpytorch import matplotlib.pyplot as plt import numpy as np import seaborn as sns import torch from botorch.utils.sampling import draw_sobol_samples from scipy.stats import norm sns.set_theme() from aepsych.config import Config from aepsych.factory import ( default_mean_covar_factory, song_mean_covar_factory, monotonic_mean_covar_factory, ) from aepsych.models import GPClassificationModel, MonotonicRejectionGP from aepsych.models.monotonic_rejection_gp import MixedDerivativeVariationalGP from aepsych.utils import _dim_grid global_seed = 3 def plot_prior_samps_1d(): config = Config( config_dict={ "common": { "outcome_type": "single_probit", "target": 0.75, "lb": "[-3]", "ub": "[3]", }, "default_mean_covar_factory": {}, "song_mean_covar_factory": {}, "monotonic_mean_covar_factory": {"monotonic_idxs": "[0]"}, } ) lb = torch.Tensor([-3]) ub = torch.Tensor([3]) nsamps = 10 gridsize = 50 grid = _dim_grid(lower=lb, upper=ub, dim=1, gridsize=gridsize) np.random.seed(global_seed) torch.random.manual_seed(global_seed) with gpytorch.settings.prior_mode(True): rbf_mean, rbf_covar = default_mean_covar_factory(config) rbf_model = GPClassificationModel( inducing_min=lb, inducing_max=ub, inducing_size=100, mean_module=rbf_mean, covar_module=rbf_covar, ) # add just two samples at high and low rbf_model.set_train_data( torch.Tensor([-3, 3])[:, None], torch.LongTensor([0, 1]) ) rbf_samps = rbf_model(grid).sample(torch.Size([nsamps])) song_mean, song_covar = song_mean_covar_factory(config) song_model = GPClassificationModel( inducing_min=lb, inducing_max=ub, inducing_size=100, mean_module=song_mean, covar_module=song_covar, ) song_model.set_train_data( torch.Tensor([-3, 3])[:, None], torch.LongTensor([0, 1]) ) song_samps = song_model(grid).sample(torch.Size([nsamps])) mono_mean, mono_covar = monotonic_mean_covar_factory(config) mono_model = MonotonicRejectionGP( likelihood="probit-bernoulli", monotonic_idxs=[0], mean_module=mono_mean, covar_module=mono_covar, ) bounds_ = torch.tensor([-3.0, 3.0])[:, None] # Select inducing points mono_model.inducing_points = draw_sobol_samples( bounds=bounds_, n=mono_model.num_induc, q=1 ).squeeze(1) inducing_points_aug = mono_model._augment_with_deriv_index( mono_model.inducing_points, 0 ) scales = ub - lb dummy_train_x = mono_model._augment_with_deriv_index( torch.Tensor([-3, 3])[:, None], 0 ) mono_model.model = MixedDerivativeVariationalGP( train_x=dummy_train_x, train_y=torch.LongTensor([0, 1]), inducing_points=inducing_points_aug, scales=scales, fixed_prior_mean=torch.Tensor([0.75]), covar_module=mono_covar, mean_module=mono_mean, ) mono_samps = mono_model.sample(grid, nsamps) fig, ax = plt.subplots(1, 3, figsize=(7.5, 3)) fig.tight_layout(rect=[0.01, 0.03, 1, 0.9]) fig.suptitle("GP prior samples (probit-transformed)") ax[0].plot(grid.squeeze(), norm.cdf(song_samps.T), "b") ax[0].set_ylabel("Response Probability") ax[0].set_title("Linear kernel") ax[1].plot(grid.squeeze(), norm.cdf(rbf_samps.T), "b") ax[1].set_xlabel("Intensity") ax[1].set_title("RBF kernel (nonmonotonic)") ax[2].plot(grid.squeeze(), norm.cdf(mono_samps.T), "b") ax[2].set_title("RBF kernel (monotonic)") return fig def plot_prior_samps_2d(): config = Config( config_dict={ "common": { "outcome_type": "single_probit", "target": 0.75, "lb": "[-3, -3]", "ub": "[3, 3]", }, "default_mean_covar_factory": {}, "song_mean_covar_factory": {}, "monotonic_mean_covar_factory": {"monotonic_idxs": "[1]"}, } ) lb = torch.Tensor([-3, -3]) ub = torch.Tensor([3, 3]) nsamps = 5 gridsize = 30 grid = _dim_grid(lower=lb, upper=ub, dim=2, gridsize=gridsize) np.random.seed(global_seed) torch.random.manual_seed(global_seed) with gpytorch.settings.prior_mode(True): rbf_mean, rbf_covar = default_mean_covar_factory(config) rbf_model = GPClassificationModel( inducing_min=lb, inducing_max=ub, inducing_size=100, mean_module=rbf_mean, covar_module=rbf_covar, ) # add just two samples at high and low rbf_model.set_train_data(torch.Tensor([-3, -3])[:, None], torch.LongTensor([0])) rbf_samps = rbf_model(grid).sample(torch.Size([nsamps])) song_mean, song_covar = song_mean_covar_factory(config) song_model = GPClassificationModel( inducing_min=lb, inducing_max=ub, inducing_size=100, mean_module=song_mean, covar_module=song_covar, ) song_model.set_train_data( torch.Tensor([-3, -3])[:, None], torch.LongTensor([0]) ) song_samps = song_model(grid).sample(torch.Size([nsamps])) mono_mean, mono_covar = monotonic_mean_covar_factory(config) mono_model = MonotonicRejectionGP( likelihood="probit-bernoulli", monotonic_idxs=[1], mean_module=mono_mean, covar_module=mono_covar, num_induc=1000, ) bounds_ = torch.tensor([-3.0, -3.0, 3.0, 3.0]).reshape(2, -1) # Select inducing points mono_model.inducing_points = draw_sobol_samples( bounds=bounds_, n=mono_model.num_induc, q=1 ).squeeze(1) inducing_points_aug = mono_model._augment_with_deriv_index( mono_model.inducing_points, 0 ) scales = ub - lb dummy_train_x = mono_model._augment_with_deriv_index( torch.Tensor([-3, 3])[None, :], 0 ) mono_model.model = MixedDerivativeVariationalGP( train_x=dummy_train_x, train_y=torch.LongTensor([0]), inducing_points=inducing_points_aug, scales=scales, fixed_prior_mean=torch.Tensor([0.75]), covar_module=mono_covar, mean_module=mono_mean, ) mono_samps = mono_model.sample(grid, nsamps) intensity_grid = np.linspace(-3, 3, gridsize) fig, ax = plt.subplots(1, 3, figsize=(7.5, 3)) fig.tight_layout(rect=[0, 0.03, 1, 0.9]) fig.suptitle("Prior samples") square_samps = np.array([s.reshape((gridsize,) * 2).numpy() for s in song_samps]) plotsamps = norm.cdf(square_samps[:, ::5, :]).T.reshape(gridsize, -1) ax[0].plot(intensity_grid, plotsamps, "b") ax[0].set_title("Linear kernel model") square_samps = np.array([s.reshape((gridsize,) * 2).numpy() for s in rbf_samps]) plotsamps = norm.cdf(square_samps[:, ::5, :]).T.reshape(gridsize, -1) ax[1].plot(intensity_grid, plotsamps, "b") ax[1].set_title("Nonmonotonic RBF kernel model") square_samps = np.array([s.reshape((gridsize,) * 2).numpy() for s in mono_samps]) plotsamps = norm.cdf(square_samps[:, ::5, :]).T.reshape(gridsize, -1) ax[2].plot(intensity_grid, plotsamps, "b") ax[2].set_title("Monotonic RBF kernel model") return fig if __name__ == "__main__": prior_samps_1d = plot_prior_samps_1d() prior_samps_1d.savefig("./figs/prior_samps.pdf", dpi=200)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the scripts directory. from __future__ import annotations import argparse import json import os import nbformat from bs4 import BeautifulSoup from nbconvert import HTMLExporter, PythonExporter TEMPLATE = """const CWD = process.cwd(); const React = require('react'); const Tutorial = require(`${{CWD}}/core/Tutorial.js`); class TutorialPage extends React.Component {{ render() {{ const {{config: siteConfig}} = this.props; const {{baseUrl}} = siteConfig; return <Tutorial baseUrl={{baseUrl}} tutorialID="{}"/>; }} }} module.exports = TutorialPage; """ JS_SCRIPTS = """ <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script> """ # noqa: E501 def validate_tutorial_links(repo_dir: str) -> None: """Checks that all .ipynb files that present are linked on the website, and vice versa, that any linked tutorial has an associated .ipynb file present. """ with open(os.path.join(repo_dir, "website", "tutorials.json"), "r") as infile: tutorial_config = json.load(infile) tutorial_ids = {x["id"] for v in tutorial_config.values() for x in v} tutorials_nbs = { fn.replace(".ipynb", "") for fn in os.listdir(os.path.join(repo_dir, "tutorials")) if fn[-6:] == ".ipynb" } missing_files = tutorial_ids - tutorials_nbs missing_ids = tutorials_nbs - tutorial_ids if missing_files: raise RuntimeError( "The following tutorials are linked on the website, but missing an " f"associated .ipynb file: {missing_files}." ) if missing_ids: print( '\033[93m' + 'Warning: ' + '\x1b[0m' + "The following tutorial files are present, but are not linked on the " "website: {}.".format(", ".join([nbid + ".ipynb" for nbid in missing_ids]))) # raise RuntimeError( # "The following tutorial files are present, but are not linked on the " # "website: {}.".format(", ".join([nbid + ".ipynb" for nbid in missing_ids])) # ) def gen_tutorials(repo_dir: str) -> None: """Generate HTML tutorials for AEPsych Docusaurus site from Jupyter notebooks. Also create ipynb and py versions of tutorial in Docusaurus site for download. """ with open(os.path.join(repo_dir, "website", "tutorials.json"), "r") as infile: tutorial_config = json.load(infile) # create output directories if necessary html_out_dir = os.path.join(repo_dir, "website", "_tutorials") files_out_dir = os.path.join(repo_dir, "website", "static", "files") for d in (html_out_dir, files_out_dir): if not os.path.exists(d): os.makedirs(d) tutorial_ids = {x["id"] for v in tutorial_config.values() for x in v} for tid in tutorial_ids: print(f"Generating {tid} tutorial") # convert notebook to HTML ipynb_in_path = os.path.join(repo_dir, "tutorials", f"{tid}.ipynb") with open(ipynb_in_path, "r") as infile: nb_str = infile.read() nb = nbformat.reads(nb_str, nbformat.NO_CONVERT) # displayname is absent from notebook metadata nb["metadata"]["kernelspec"]["display_name"] = "python3" exporter = HTMLExporter(template_name="classic") html, meta = exporter.from_notebook_node(nb) # pull out html div for notebook soup = BeautifulSoup(html, "html.parser") nb_meat = soup.find("div", {"id": "notebook-container"}) del nb_meat.attrs["id"] nb_meat.attrs["class"] = ["notebook"] html_out = JS_SCRIPTS + str(nb_meat) # generate html file html_out_path = os.path.join( html_out_dir, f"{tid}.html", ) with open(html_out_path, "w") as html_outfile: html_outfile.write(html_out) # generate JS file script = TEMPLATE.format(tid) js_out_path = os.path.join( repo_dir, "website", "pages", "tutorials", f"{tid}.js" ) with open(js_out_path, "w") as js_outfile: js_outfile.write(script) # output tutorial in both ipynb & py form ipynb_out_path = os.path.join(files_out_dir, f"{tid}.ipynb") with open(ipynb_out_path, "w") as ipynb_outfile: ipynb_outfile.write(nb_str) exporter = PythonExporter() script, meta = exporter.from_notebook_node(nb) # make sure to use python3 shebang script = script.replace("#!/usr/bin/env python", "#!/usr/bin/env python3") py_out_path = os.path.join(repo_dir, "website", "static", "files", f"{tid}.py") with open(py_out_path, "w") as py_outfile: py_outfile.write(script) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generate JS, HTML, ipynb, and py files for tutorials." ) parser.add_argument( "-w", "--repo_dir", metavar="path", required=True, help="aepsych repo directory.", ) args = parser.parse_args() validate_tutorial_links(args.repo_dir) gen_tutorials(args.repo_dir)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the scripts directory. from __future__ import annotations import argparse import os from bs4 import BeautifulSoup #The base_url must match the base url in the /website/siteConfig.js # Note if it is not updated API doc searchbar will not be displayed # 1) update base_url below base_url = "/" js_scripts = """ <script type="text/javascript" id="documentation_options" data-url_root="./" src="{0}js/documentation_options.js"></script> <script type="text/javascript" src="{0}js/jquery.js"></script> <script type="text/javascript" src="{0}js/underscore.js"></script> <script type="text/javascript" src="{0}js/doctools.js"></script> <script type="text/javascript" src="{0}js/language_data.js"></script> <script type="text/javascript" src="{0}js/searchtools.js"></script> """.format(base_url) # noqa: E501 # 2) update # Search.loadIndex("/<<update to match baseUrl>>/js/searchindex.js" search_js_scripts = """ <script type="text/javascript"> jQuery(function() { Search.loadIndex("/js/searchindex.js"); }); </script> <script type="text/javascript" id="searchindexloader"></script> """ def parse_sphinx(input_dir, output_dir): for cur, _, files in os.walk(input_dir): for fname in files: if fname.endswith(".html"): with open(os.path.join(cur, fname), "r") as f: soup = BeautifulSoup(f.read(), "html.parser") doc = soup.find("div", {"class": "document"}) wrapped_doc = doc.wrap(soup.new_tag("div", **{"class": "sphinx"})) # add js if fname == "search.html": out = js_scripts + search_js_scripts + str(wrapped_doc) else: out = js_scripts + str(wrapped_doc) output_path = os.path.join(output_dir, os.path.relpath(cur, input_dir)) os.makedirs(output_path, exist_ok=True) with open(os.path.join(output_path, fname), "w") as fout: fout.write(out) # update reference in JS file with open(os.path.join(input_dir, "_static/searchtools.js"), "r") as js_file: js = js_file.read() js = js.replace( "DOCUMENTATION_OPTIONS.URL_ROOT + '_sources/'", "'_sphinx-sources/'" ) with open(os.path.join(input_dir, "_static/searchtools.js"), "w") as js_file: js_file.write(js) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Strip HTML body from Sphinx docs.") parser.add_argument( "-i", "--input_dir", metavar="path", required=True, help="Input directory for Sphinx HTML.", ) parser.add_argument( "-o", "--output_dir", metavar="path", required=True, help="Output directory in Docusaurus.", ) args = parser.parse_args() parse_sphinx(args.input_dir, args.output_dir)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. from __future__ import annotations import argparse import json import os import shutil import nbformat from bs4 import BeautifulSoup from nbconvert import HTMLExporter TEMPLATE = """const CWD = process.cwd(); const React = require('react'); const Demo = require(`${{CWD}}/core/Demo.js`); class DemoPage extends React.Component {{ render() {{ const {{config: siteConfig}} = this.props; const {{baseUrl}} = siteConfig; return <Demo baseUrl={{baseUrl}} demoID="{}" hasWinDemo="{}" hasMacDemo="{}"/>; }} }} module.exports = DemoPage; """ JS_SCRIPTS = """ <script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script> """ def validate_demo_links(repo_dir: str) -> None: """Checks that all .zip files that present are linked on the website, and vice versa, that any linked demos has an associated .zip file present. """ with open(os.path.join(repo_dir, "website", "demos.json")) as f: demo_config = json.load(f) demo_ids = {x["id"] for v in demo_config.values() for x in v} demo_names = { fn.replace(".zip", "") for fn in os.listdir(os.path.join(repo_dir, "demos")) if fn[-4:] == ".zip" } # Check if the ID is present in the set and if both "_Mac" and "_Win" endings exist for id in demo_ids: if f"{id}_Mac" in demo_names and f"{id}_Win" in demo_names: print(f"Both '{id}_Mac' and {id}_Win' demos .zip files are present.") elif f"{id}_Mac" in demo_names: print(f"Only '{id}_Mac'.zip demo is present.") else: print(f"Only '{id}_Win'.zip demo is present.") def gen_demos(repo_dir: str) -> None: """Generate HTML demos for AEPsych Docusaurus site for download.""" with open(os.path.join(repo_dir, "website", "demos.json"), "r") as f: demo_config = json.load(f) # create output directories if necessary html_out_dir = os.path.join(repo_dir, "website", "_demos") files_out_dir = os.path.join(repo_dir, "website", "static", "files", "demos") for d in (html_out_dir, files_out_dir): if not os.path.exists(d): os.makedirs(d) demo_ids = {x["id"] for v in demo_config.values() for x in v} for d_id in demo_ids: print(f"Generating {d_id} demo") # convert markdown to HTML md_in_path = os.path.join(repo_dir, "demos", "markdown", f"{d_id}.md") with open(md_in_path, "r") as infile: markdown_content = infile.read() notebook_node = nbformat.v4.new_notebook() markdown_cell = nbformat.v4.new_markdown_cell(markdown_content) notebook_node["cells"] = [markdown_cell] exporter = HTMLExporter(template_name="classic") html, meta = exporter.from_notebook_node(notebook_node) # pull out html div for notebook soup = BeautifulSoup(html, "html.parser") nb_meat = soup.find("div", {"id": "notebook-container"}) del nb_meat.attrs["id"] nb_meat.attrs["class"] = ["notebook"] html_out = JS_SCRIPTS + str(nb_meat) # generate html file html_out_path = os.path.join( html_out_dir, f"{d_id}.html", ) with open(html_out_path, "w") as html_outfile: html_outfile.write(html_out) # generate JS file has_mac_demo = os.path.exists(os.path.join(repo_dir, "demos", f"{d_id}_Mac.zip")) has_win_demo = os.path.exists(os.path.join(repo_dir, "demos", f"{d_id}_Win.zip")) script = TEMPLATE.format(d_id,has_win_demo,has_mac_demo) js_out_path = os.path.join(repo_dir, "website", "pages", "demos", f"{d_id}.js") with open(js_out_path, "w") as js_outfile: js_outfile.write(script) # output demo in zip format if has_mac_demo: mac_source_path = os.path.join(repo_dir, "demos", f"{d_id}_Mac.zip") mac_zip_out_path = os.path.join(files_out_dir, f"{d_id}_Mac.zip") shutil.copy(mac_source_path, mac_zip_out_path) if has_win_demo: win_source_path = os.path.join(repo_dir, "demos", f"{d_id}_Win.zip") win_zip_out_path = os.path.join(files_out_dir, f"{d_id}_Win.zip") shutil.copy(win_source_path, win_zip_out_path) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generate JS, HTML, and zip files for demos." ) parser.add_argument( "-w", "--repo_dir", metavar="path", required=True, help="aepsych repo directory.", ) args = parser.parse_args() validate_demo_links(args.repo_dir) gen_demos(args.repo_dir)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Evaluation script for object localization import json import argparse import torch import itertools import numpy as np from collections import defaultdict from utils import bbox_overlaps_batch, get_frm_mask from stanfordcorenlp import StanfordCoreNLP from tqdm import tqdm class ANetGrdEval(object): def __init__(self, reference_file=None, submission_file=None, split_file=None, val_split=None, iou_thresh=0.5, verbose=False): if not reference_file: raise IOError('Please input a valid reference file!') if not submission_file: raise IOError('Please input a valid submission file!') self.iou_thresh = iou_thresh self.verbose = verbose self.val_split = val_split self.import_ref(reference_file, split_file) self.import_sub(submission_file) def import_ref(self, reference_file=None, split_file=None): with open(split_file) as f: split_dict = json.load(f) split = {} for s in self.val_split: split.update({i:i for i in split_dict[s]}) with open(reference_file) as f: ref = json.load(f)['annotations'] ref = {k:v for k,v in ref.items() if k in split} self.ref = ref def import_sub(self, submission_file=None): with open(submission_file) as f: pred = json.load(f)['results'] self.pred = pred def gt_grd_eval(self): ref = self.ref pred = self.pred print('Number of videos in the reference: {}, number of videos in the submission: {}'.format(len(ref), len(pred))) results = defaultdict(list) for vid, anns in ref.items(): for seg, ann in anns['segments'].items(): if len(ann['frame_ind']) == 0: continue # annotation not available ref_bbox_all = torch.cat((torch.Tensor(ann['process_bnd_box']), \ torch.Tensor(ann['frame_ind']).unsqueeze(-1)), dim=1) # 5-D coordinates sent_idx = set(itertools.chain.from_iterable(ann['process_idx'])) # index of word in sentence to evaluate for idx in sent_idx: sel_idx = [ind for ind, i in enumerate(ann['process_idx']) if idx in i] ref_bbox = ref_bbox_all[sel_idx] # select matched boxes # Note that despite discouraged, a single word could be annotated across multiple boxes/frames assert(ref_bbox.size(0) > 0) class_name = ann['process_clss'][sel_idx[0]][ann['process_idx'][sel_idx[0]].index(idx)] if vid not in pred: results[class_name].append(0) # video not grounded elif seg not in pred[vid]: results[class_name].append(0) # segment not grounded elif idx not in pred[vid][seg]['idx_in_sent']: results[class_name].append(0) # object not grounded else: pred_ind = pred[vid][seg]['idx_in_sent'].index(idx) pred_bbox = torch.cat((torch.Tensor(pred[vid][seg]['bbox_for_all_frames'][pred_ind])[:,:4], \ torch.Tensor(range(10)).unsqueeze(-1)), dim=1) frm_mask = torch.from_numpy(get_frm_mask(pred_bbox[:, 4].numpy(), \ ref_bbox[:, 4].numpy()).astype('uint8')) overlap = bbox_overlaps_batch(pred_bbox[:, :5].unsqueeze(0), \ ref_bbox[:, :5].unsqueeze(0), frm_mask.unsqueeze(0)) results[class_name].append(1 if torch.max(overlap) > self.iou_thresh else 0) print('Number of groundable objects in this split: {}'.format(len(results))) grd_accu = np.mean([sum(hm)*1./len(hm) for i,hm in results.items()]) print('-' * 80) print('The overall localization accuracy is {:.4f}'.format(grd_accu)) print('-' * 80) if self.verbose: print('Object frequency and grounding accuracy per class (descending by object frequency):') accu_per_clss = {(i, sum(hm)*1./len(hm)):len(hm) for i,hm in results.items()} accu_per_clss = sorted(accu_per_clss.items(), key=lambda x:x[1], reverse=True) for accu in accu_per_clss: print('{} ({}): {:.4f}'.format(accu[0][0], accu[1], accu[0][1])) return grd_accu def precision_recall_util(self, mode='all'): ref = self.ref pred = self.pred print('Number of videos in the reference: {}, number of videos in the submission: {}'.format(len(ref), len(pred))) nlp = StanfordCoreNLP('tools/stanford-corenlp-full-2018-02-27') props={'annotators': 'lemma','pipelineLanguage':'en', 'outputFormat':'json'} vocab_in_split = set() prec = defaultdict(list) prec_per_sent = defaultdict(list) for vid, anns in tqdm(ref.items()): for seg, ann in anns['segments'].items(): if len(ann['frame_ind']) == 0 or vid not in pred or seg not in pred[vid]: continue # do not penalize if sentence not annotated prec_per_sent_tmp = [] # for each sentence ref_bbox_all = torch.cat((torch.Tensor(ann['process_bnd_box']), torch.Tensor(ann['frame_ind']).unsqueeze(-1)), dim=1) # 5-D coordinates idx_in_sent = {} for box_idx, cls_lst in enumerate(ann['process_clss']): vocab_in_split.update(set(cls_lst)) for cls_idx, cls in enumerate(cls_lst): idx_in_sent[cls] = idx_in_sent.get(cls, []) + [ann['process_idx'][box_idx][cls_idx]] sent_idx = set(itertools.chain.from_iterable(ann['process_idx'])) # index of gt object words exclude_obj = {json.loads(nlp.annotate(token, properties=props) )['sentences'][0]['tokens'][0]['lemma']: 1 for token_idx, token in enumerate(ann['tokens'] ) if (token_idx not in sent_idx and token != '')} for pred_idx, class_name in enumerate(pred[vid][seg]['clss']): if class_name in idx_in_sent: gt_idx = min(idx_in_sent[class_name]) # always consider the first match... sel_idx = [idx for idx, i in enumerate(ann['process_idx']) if gt_idx in i] ref_bbox = ref_bbox_all[sel_idx] # select matched boxes assert (ref_bbox.size(0) > 0) pred_bbox = torch.cat((torch.Tensor(pred[vid][seg]['bbox_for_all_frames'][pred_idx])[:, :4], torch.Tensor(range(10)).unsqueeze(-1)), dim=1) frm_mask = torch.from_numpy(get_frm_mask(pred_bbox[:, 4].numpy(), ref_bbox[:, 4].numpy()).astype('uint8')) overlap = bbox_overlaps_batch(pred_bbox[:, :5].unsqueeze(0), ref_bbox[:, :5].unsqueeze(0), frm_mask.unsqueeze(0)) prec[class_name].append(1 if torch.max(overlap) > self.iou_thresh else 0) prec_per_sent_tmp.append(1 if torch.max(overlap) > self.iou_thresh else 0) elif json.loads(nlp.annotate(class_name, properties=props))['sentences'][0]['tokens'][0]['lemma'] in exclude_obj: pass # do not penalize if gt object word not annotated (missed) else: if mode == 'all': prec[class_name].append(0) # hallucinated object prec_per_sent_tmp.append(0) prec_per_sent[vid + seg] = prec_per_sent_tmp nlp.close() # recall recall = defaultdict(list) recall_per_sent = defaultdict(list) for vid, anns in ref.items(): for seg, ann in anns['segments'].items(): if len(ann['frame_ind']) == 0: # print('no annotation available') continue recall_per_sent_tmp = [] # for each sentence ref_bbox_all = torch.cat((torch.Tensor(ann['process_bnd_box']), \ torch.Tensor(ann['frame_ind']).unsqueeze(-1)), dim=1) # 5-D coordinates sent_idx = set(itertools.chain.from_iterable(ann['process_idx'])) # index of gt object words for gt_idx in sent_idx: sel_idx = [idx for idx, i in enumerate(ann['process_idx']) if gt_idx in i] ref_bbox = ref_bbox_all[sel_idx] # select matched boxes # Note that despite discouraged, a single word could be annotated across multiple boxes/frames assert(ref_bbox.size(0) > 0) class_name = ann['process_clss'][sel_idx[0]][ann['process_idx'][sel_idx[0]].index(gt_idx)] if vid not in pred: recall[class_name].append(0) # video not grounded recall_per_sent_tmp.append(0) elif seg not in pred[vid]: recall[class_name].append(0) # segment not grounded recall_per_sent_tmp.append(0) elif class_name in pred[vid][seg]['clss']: pred_idx = pred[vid][seg]['clss'].index(class_name) # always consider the first match... pred_bbox = torch.cat((torch.Tensor(pred[vid][seg]['bbox_for_all_frames'][pred_idx])[:,:4], \ torch.Tensor(range(10)).unsqueeze(-1)), dim=1) frm_mask = torch.from_numpy(get_frm_mask(pred_bbox[:, 4].numpy(), \ ref_bbox[:, 4].numpy()).astype('uint8')) overlap = bbox_overlaps_batch(pred_bbox[:, :5].unsqueeze(0), \ ref_bbox[:, :5].unsqueeze(0), frm_mask.unsqueeze(0)) recall[class_name].append(1 if torch.max(overlap) > self.iou_thresh else 0) recall_per_sent_tmp.append(1 if torch.max(overlap) > self.iou_thresh else 0) else: if mode == 'all': recall[class_name].append(0) # object not grounded recall_per_sent_tmp.append(0) recall_per_sent[vid + seg] = recall_per_sent_tmp return prec, recall, prec_per_sent, recall_per_sent, vocab_in_split def grd_eval(self, mode='all'): if mode == 'all': print('Evaluating on all object words.') elif mode == 'loc': print('Evaluating only on correctly-predicted object words.') else: raise Exception('Invalid loc mode!') prec, recall, prec_per_sent, rec_per_sent, vocab_in_split = self.precision_recall_util(mode=mode) # compute the per-class precision, recall, and F1 scores num_vocab = len(vocab_in_split) print('Number of groundable objects in this split: {}'.format(num_vocab)) print('Number of objects in prec and recall: {}, {}'.format(len(prec), len(recall))) prec_cls = np.sum([sum(hm)*1./len(hm) for i,hm in prec.items()])*1./num_vocab recall_cls = np.sum([sum(hm)*1./len(hm) for i,hm in recall.items()])*1./num_vocab f1_cls = 2. * prec_cls * recall_cls / (prec_cls + recall_cls) print('-' * 80) print('The overall precision_{0} / recall_{0} / F1_{0} are {1:.4f} / {2:.4f} / {3:.4f}'.format(mode, prec_cls, recall_cls, f1_cls)) print('-' * 80) if self.verbose: print('Object frequency and grounding accuracy per class (descending by object frequency):') accu_per_clss = {} for i in vocab_in_split: prec_clss = sum(prec[i])*1./len(prec[i]) if i in prec else 0 recall_clss = sum(recall[i])*1./len(recall[i]) if i in recall else 0 accu_per_clss[(i, prec_clss, recall_clss)] = (len(prec[i]), len(recall[i])) accu_per_clss = sorted(accu_per_clss.items(), key=lambda x:x[1][1], reverse=True) for accu in accu_per_clss: print('{} ({} / {}): {:.4f} / {:.4f}'.format(accu[0][0], accu[1][0], accu[1][1], accu[0][1], accu[0][2])) # compute the per-sent precision, recall, and F1 scores num_segment_without_labels = 0 prec, rec, f1 = [], [], [] for seg_id, prec_list in prec_per_sent.items(): if rec_per_sent[seg_id] == []: # skip the segment if no target objects num_segment_without_labels += 1 else: current_prec = 0 if prec_list == [] else np.mean(prec_list) # avoid empty prec_list current_rec = np.mean(rec_per_sent[seg_id]) # if precision and recall are both 0, set the f1 to be 0 if current_prec == 0.0 and current_rec == 0.0: current_f1_score = 0.0 else: current_f1_score = 2. * current_prec * current_rec / (current_prec + current_rec) # per-sent F1 prec.append(current_prec) rec.append(current_rec) f1.append(current_f1_score) num_predictions = 0 for _, pred_seg in self.pred.items(): num_predictions += len(pred_seg) # divide the scores with the total number of predictions avg_prec = np.sum(prec) / (num_predictions - num_segment_without_labels) avg_rec = np.sum(rec) / (num_predictions - num_segment_without_labels) avg_f1 = np.sum(f1) / (num_predictions - num_segment_without_labels) print('-' * 80) print('The overall precision_{0}_per_sent / recall_{0}_per_sent / F1_{0}_per_sent are {1:.4f} / {2:.4f} / {3:.4f}'.format(mode, avg_prec, avg_rec, avg_f1)) print('-' * 80) return prec_cls, recall_cls, f1_cls, avg_prec, avg_rec, avg_f1 def main(args): grd_evaluator = ANetGrdEval(reference_file=args.reference, submission_file=args.submission, split_file=args.split_file, val_split=args.split, iou_thresh=args.iou_thresh, verbose=args.verbose) if args.eval_mode == 'GT': print('Assuming the input boxes are based upon GT sentences.') grd_evaluator.gt_grd_eval() elif args.eval_mode == 'gen': print('Assuming the input boxes are based upon generated sentences.') grd_evaluator.grd_eval(mode=args.loc_mode) else: raise Exception('Invalid eval mode!') if __name__=='__main__': parser = argparse.ArgumentParser(description='ActivityNet-Entities object grounding evaluation script.') parser.add_argument('-s', '--submission', type=str, default='', help='submission grounding result file') parser.add_argument('-r', '--reference', type=str, default='data/anet_entities_cleaned_class_thresh50_trainval.json', help='reference file') parser.add_argument('--split_file', type=str, default='data/split_ids_anet_entities.json', help='path to the split file') parser.add_argument('--split', type=str, nargs='+', default=['validation'], help='which split(s) to evaluate') parser.add_argument('--eval_mode', type=str, default='GT', help='GT | gen, indicating whether the input is on GT sentences or generated sentences') parser.add_argument('--loc_mode', type=str, default='all', help='all | loc, when the input is on generate sentences, whether consider language error or not') parser.add_argument('--iou_thresh', type=float, default=0.5, help='the iou threshold for grounding correctness') parser.add_argument('-v', '--verbose', action='store_true') args = parser.parse_args() main(args)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to print stats on the NP annotation file import numpy as np import json import csv import sys src_file = sys.argv[1] # 'anet_entities.json' dataset_file = sys.argv[2] # 'anet_captions_all_splits.json' split_file = sys.argv[3] # 'split_ids_anet_entities.json' if __name__ == '__main__': with open(src_file) as f: data = json.load(f)['database'] with open(dataset_file) as f: raw_data = json.load(f) split_dict = {} with open(split_file) as f: split = json.load(f) for s,ids in split.items(): split_dict.update({i:s for i in ids}) num_seg = np.sum([len(dat['segments']) for vid, dat in data.items()]) total_box = {} total_dur = [] seg_splits = {} for vid, dat in data.items(): for seg, ann in dat['segments'].items(): total_box[split_dict[vid]] = total_box.get(split_dict[vid], 0)+len(ann['objects']) total_dur.append(float(raw_data[vid]['timestamps'][int(seg)][1]-raw_data[vid]['timestamps'][int(seg)][0])) seg_splits[split_dict[vid]] = seg_splits.get(split_dict[vid], 0)+1 print('number of annotated video: {}'.format(len(data))) print('number of annotated video segments: {}'.format(num_seg)) print('number of segments in each split: {}'.format(seg_splits)) print('total duration in hr: {}'.format(np.sum(total_dur)/3600)) print('total number of noun phrase boxes: {}'.format(total_box))
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Based on # https://github.com/jiasenlu/NeuralBabyTalk/blob/master/misc/bbox_transform.py # Licensed under The MIT License # Copyright (c) 2017 Jiasen Lu # -------------------------------------------------------- # Reorganized and modified by Jianwei Yang and Jiasen Lu # -------------------------------------------------------- # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- import torch import numpy as np def bbox_overlaps_batch(anchors, gt_boxes, frm_mask=None): """ anchors: (N, 4) ndarray of float gt_boxes: (b, K, 5) ndarray of float frm_mask: (b, N, K) ndarray of bool overlaps: (N, K) ndarray of overlap between boxes and query_boxes """ batch_size = gt_boxes.size(0) if anchors.dim() == 2: assert frm_mask == None, 'mask not implemented yet' # hasn't updated the mask yet N = anchors.size(0) K = gt_boxes.size(1) anchors = anchors.view(1, N, 4).expand(batch_size, N, 4).contiguous() gt_boxes = gt_boxes[:,:,:4].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4) query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) overlaps = iw * ih / ua # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) elif anchors.dim() == 3: N = anchors.size(1) K = gt_boxes.size(1) if anchors.size(2) == 5: anchors = anchors[:,:,:5].contiguous() else: anchors = anchors[:,:,1:6].contiguous() gt_boxes = gt_boxes[:,:,:5].contiguous() gt_boxes_x = (gt_boxes[:,:,2] - gt_boxes[:,:,0] + 1) gt_boxes_y = (gt_boxes[:,:,3] - gt_boxes[:,:,1] + 1) gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K) anchors_boxes_x = (anchors[:,:,2] - anchors[:,:,0] + 1) anchors_boxes_y = (anchors[:,:,3] - anchors[:,:,1] + 1) anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1) gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1) anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1) boxes = anchors.view(batch_size, N, 1, 5).expand(batch_size, N, K, 5) query_boxes = gt_boxes.view(batch_size, 1, K, 5).expand(batch_size, N, K, 5) iw = (torch.min(boxes[:,:,:,2], query_boxes[:,:,:,2]) - torch.max(boxes[:,:,:,0], query_boxes[:,:,:,0]) + 1) iw[iw < 0] = 0 ih = (torch.min(boxes[:,:,:,3], query_boxes[:,:,:,3]) - torch.max(boxes[:,:,:,1], query_boxes[:,:,:,1]) + 1) ih[ih < 0] = 0 ua = anchors_area + gt_boxes_area - (iw * ih) if frm_mask is not None: # proposal and gt should be on the same frame to overlap # frm_mask = ~frm_mask # bitwise not (~) does not work with uint8 in pytorch 1.3 frm_mask = 1 - frm_mask # print('Percentage of proposals that are in the annotated frame: {}'.format(torch.mean(frm_mask.float()))) overlaps = iw * ih / ua overlaps *= frm_mask.type(overlaps.type()) # mask the overlap here. overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0) overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1) else: raise ValueError('anchors input dimension is not correct.') return overlaps def get_frm_mask(proposals, gt_bboxs): # proposals: num_pps # gt_bboxs: num_box num_pps = proposals.shape[0] num_box = gt_bboxs.shape[0] return (np.tile(proposals.reshape(-1,1), (1,num_box)) != np.tile(gt_bboxs, (num_pps,1)))
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to preprocess the raw annotation output to NP/object annotation files import os import sys import json import argparse import numpy as np from collections import Counter, defaultdict from stanfordcorenlp import StanfordCoreNLP def define_split(database): with open(args.train_cap_file) as f: train_ids = json.load(f).keys() with open(args.val_cap_file) as f: valtest_ids = json.load(f).keys() val_split = np.random.rand(len(valtest_ids))>=0.5 # split a half as the test split val_ids = [valtest_ids[i] for i,j in enumerate(val_split) if j] test_ids = [valtest_ids[i] for i,j in enumerate(val_split) if ~j] vid_ids = set(database.keys()) train_ann_ids = vid_ids.intersection(set(train_ids)) val_ann_ids = vid_ids.intersection(set(val_ids)) test_ann_ids = vid_ids.intersection(set(test_ids)) print('All data - total: {}, train split: {}, val split: {}, test split: {}'.format(len(train_ids+val_ids+test_ids), len(train_ids), len(val_ids), len(test_ids))) print('Annotated data - total: {}, train split: {}, val split: {}, and test split: {}'.format( len(vid_ids), len(train_ann_ids), len(val_ann_ids), len(test_ann_ids))) return [train_ids, val_ids, test_ids] def extract_attr(database, splits): split_dict = {} for split in splits: split_dict.update({s:s for s in split}) print('Object classes defined on {} videos, freq threshold is {}'.format(len(split_dict), args.freq_thresh)) attr_all = [] # all the attributes for vid_id, vid in database.items(): if split_dict.get(vid_id, -1) != -1: for seg_id, seg in vid['segments'].items(): for obj in seg['objects']: assert(len(obj['frame_ind']) == 1) for box_id, box in obj['frame_ind'].items(): tmp = [] attr_lst = [] sorted_attr = sorted(box['attributes'], key=lambda x:x[0]) # the attributes are unordered for ind, attr in enumerate(sorted_attr): assert(attr[0] >= 0) if len(tmp) == 0: tmp.append(attr[1].lower()) # convert to lowercase else: if attr[0] == (sorted_attr[ind-1][0]+1): tmp.append(attr[1].lower()) else: attr_lst.append(tmp) tmp = [attr[1].lower()] if len(tmp) > 0: # the last one attr_lst.append(tmp) # exclude empty box (no attribute) # crowd boxes are ok for now if len(attr_lst) == 0: # or box['crowds'] == 1 pass # print('empty attribute at video {}, segment {}, box {}'.format(vid_id, seg_id, box_id)) else: attr_all.extend([' '.join(i) for i in attr_lst]) return attr_all def prep_all(database, database_cap, obj_cls_lst, w2l, nlp): w2d = {} for ind, obj in enumerate(obj_cls_lst): w2d[obj] = ind avg_box = [] # number of boxes per segment avg_attr = [] # number of attributes per box attr_all = [] # all the attributes crowd_all = [] # all the crowd labels attr_dict = defaultdict(list) with open(args.attr_to_video_file) as f: for line in f.readlines(): line_split = line.split(',') attr_id = line_split[0] vid_name = line_split[-1] attr = ','.join(line_split[1:-1]) vid_id, seg_id = vid_name.strip().split('_segment_') attr_dict[(vid_id, str(int(seg_id)))].append([int(attr_id), attr]) print('Number of segments with attributes: {}'.format(len(attr_dict))) vid_seg_dict = {} for vid_id, vid in database.items(): for seg_id, _ in vid['segments'].items(): vid_seg_dict[(vid_id, seg_id)] = vid_seg_dict.get((vid_id, seg_id), 0) + 1 new_database = {} new_database_np = {} seg_counter = 0 for vid_id, cap in database_cap.items(): new_database_np[vid_id] = {'segments':{}} new_seg = {} for cap_id in range(len(cap['sentences'])): new_obj_lst = defaultdict(list) seg_id = str(cap_id) new_database_np[vid_id]['segments'][seg_id] = {'objects':[]} if vid_seg_dict.get((vid_id, seg_id), 0) == 0: new_obj_lst['tokens'] = nlp.word_tokenize(cap['sentences'][cap_id].encode('utf-8')) # sentences not in ANet-BB else: vid = database[vid_id] seg = vid['segments'][seg_id] # preprocess attributes attr_sent = sorted(attr_dict[(vid_id, seg_id)], key=lambda x:x[0]) start_ind = attr_sent[0][0] # legacy token issues from our annotation tool for ind, tup in enumerate(attr_sent): if attr_sent[ind][1] == '\\,': attr_sent[ind][1] = ',' new_obj_lst['tokens'] = [i[1] for i in attr_sent] # all the word tokens for obj in seg['objects']: assert(len(obj['frame_ind']) == 1) np_ann = {} box_id = obj['frame_ind'].keys()[0] box = obj['frame_ind'].values()[0] np_ann['frame_ind'] = int(box_id) np_ann.update(box) if len(box['attributes']) > 0: # just in case the attribute is empty, though it should not be tmp = [] tmp_ind = [] tmp_obj = [] attr_lst = [] attr_ind_lst = [] tmp_np_ind = [] np_lst = [] sorted_attr = sorted(box['attributes'], key=lambda x:x[0]) # the attributes are unordered sorted_attr = [(x[0]-start_ind, x[1]) for x in sorted_attr] # index relative to the sent for ind, attr in enumerate(sorted_attr): assert(attr[0] >= 0) attr_w = attr[1].lower() if len(tmp) == 0: tmp.append(attr_w) # convert to lowercase tmp_np_ind.append(attr[0]) if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj.append(attr_l) tmp_ind.append(attr[0]) else: if attr[0] == (sorted_attr[ind-1][0]+1): tmp.append(attr_w) tmp_np_ind.append(attr[0]) if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj.append(attr_l) tmp_ind.append(attr[0]) else: np_lst.append([' '.join(tmp), tmp_np_ind]) if len(tmp_obj) >= 1: attr_lst.append(tmp_obj[-1]) # the last noun is usually the head noun attr_ind_lst.append(tmp_ind[-1]) tmp = [attr_w] tmp_np_ind = [attr[0]] if w2l.get(attr_w, -1) != -1: attr_l = w2l[attr_w] if w2d.get(attr_l, -1) != -1: tmp_obj = [attr_l] tmp_ind = [attr[0]] else: tmp_obj = [] tmp_ind = [] else: tmp_obj = [] tmp_ind = [] if len(tmp) > 0: # the last one np_lst.append([' '.join(tmp), tmp_np_ind]) if len(tmp_obj) >= 1: attr_lst.append(tmp_obj[-1]) # the last noun is usually the head noun attr_ind_lst.append(tmp_ind[-1]) assert(len(np_lst) > 0) np_ann['noun_phrases'] = np_lst np_ann.pop('attributes', None) new_database_np[vid_id]['segments'][seg_id]['objects'].append(np_ann) # exclude empty box (no attribute) # crowd boxes are ok for now if len(attr_lst) == 0: # or box['crowds'] == 1 pass # print('empty attribute at video {}, segment {}, box {}'.format(vid_id, seg_id, box_id)) else: new_obj_lst['process_bnd_box'].append([box['xtl'], box['ytl'], box['xbr'], box['ybr']]) new_obj_lst['frame_ind'].append(int(box_id)) new_obj_lst['crowds'].append(box['crowds']) new_obj_lst['process_clss'].append(attr_lst) new_obj_lst['process_idx'].append(attr_ind_lst) avg_attr.append(len(attr_lst)) attr_all.extend([' '.join(i) for i in attr_lst]) crowd_all.append(box['crowds']) avg_box.append(len(new_obj_lst['frame_ind'])) # cound be 0 if len(new_obj_lst['frame_ind']) == 0: new_obj_lst['process_bnd_box'] = [] new_obj_lst['frame_ind'] = [] # all empty new_obj_lst['crowds'] = [] new_obj_lst['process_clss'] = [] new_obj_lst['process_idx'] = [] seg_counter += 1 new_seg[seg_id] = new_obj_lst new_database_np[vid_id]['segments'][seg_id]['tokens'] = new_obj_lst['tokens'] new_database[vid_id] = {'segments':new_seg} # quick stats print('Number of videos: {} (including empty ones)'.format(len(new_database))) print('Number of segments: {}'.format(seg_counter)) print('Average number of valid segments per video: {}'.format(np.mean([len(vid['segments']) for vid_id, vid in new_database.items()]))) print('Average number of box per segment: {} and frequency: {}'.format(np.mean(avg_box), Counter(avg_box))) print('Average number of attributes per box: {} and frequency: {} (for valid box only)'.format(np.mean(avg_attr), Counter(avg_attr))) crowd_freq = Counter(crowd_all) print('Percentage of crowds: {} (for valid box only)'.format(crowd_freq[1]*1./(crowd_freq[1]+crowd_freq[0]))) return new_database, new_database_np def freq_obj_list(attr_all, nlp, props): # generate a list of object classes num_nn_per_attr = [] anet_obj_cls = [] nn_wo_noun = [] # noun phrases that contain no nouns w2lemma = defaultdict(list) for i, v in enumerate(attr_all): if i%10000 == 0: print(i) out = json.loads(nlp.annotate(v.encode('utf-8'), properties=props)) assert(out['sentences'] > 0) counter = 0 for token in out['sentences'][0]['tokens']: if ('NN' in token['pos']) or ('PRP' in token['pos']): lemma_w = token['lemma'] anet_obj_cls.append(lemma_w) w2lemma[token['word']].append(lemma_w) counter += 1 num_nn_per_attr.append(counter) if counter == 0: nn_wo_noun.append(v) top_nn_wo_noun = Counter(nn_wo_noun) print('Frequency of NPs w/o nouns:') print(top_nn_wo_noun.most_common(10)) print('Frequency of number of nouns per attribute:') print(Counter(num_nn_per_attr)) top_obj_cls = Counter(anet_obj_cls) print('Top 10 objects:', top_obj_cls.most_common(20)) obj_cls_lst = [] for w,freq in top_obj_cls.items(): if freq >= args.freq_thresh: obj_cls_lst.append(w.encode('ascii')) w2l = {} for w, l in w2lemma.items(): # manually correct some machine lemmatization mistakes spec_w2l = {'outfits':'outfit', 'mariachi':'mariachi', 'barrios':'barrio', 'mans':'man', 'bags':'bag', 'aerobics':'aerobic', 'motobikes':'motobike', 'graffiti':'graffiti', 'semi':'semi', 'los':'los', 'tutus':'tutu'} if spec_w2l.get(w, -1) != -1: # one special case... w2l[w] = spec_w2l[w] print('Ambiguous lemma for: {}'.format(w)) else: assert(len(set(l)) == 1) w2l[w] = list(set(l))[0] print('Number of words derived from lemma visual words {}'.format(len(w2l))) return obj_cls_lst, w2l def main(args): nlp = StanfordCoreNLP(args.corenlp_path) props={'annotators': 'ssplit, tokenize, lemma','pipelineLanguage':'en', 'outputFormat':'json'} # load anet captions with open(args.train_cap_file) as f: database_cap = json.load(f) with open(args.val_cap_file) as f: database_cap.update(json.load(f)) print('Number of videos in ActivityNet Captions (train+val): {}'.format(len(database_cap))) # load raw annotation output anet bb with open(args.src_file) as f: database = json.load(f)['database'] print('Number of videos in ActivityNet-BB (train+val): {}'.format(len(database))) if os.path.isfile(args.split_file): with open(args.split_file) as f: all_splits = json.load(f) splits = [all_splits['training'], all_splits['validation'], all_splits['testing']] else: raise '[WARNING] Cannot find the split file! Uncomment this if you want to create a new split.' splits = define_split(database) all_splits = {'training':splits[0], 'validation':splits[1], 'testing':splits[2]} with open(args.split_file, 'w') as f: json.dump(all_splits, f) attr_all = extract_attr(database, splits[:2]) # define object classes on train/val data obj_cls_lst, w2l = freq_obj_list(attr_all, nlp, props) new_database, new_database_np = prep_all(database, database_cap, obj_cls_lst, w2l, nlp) # write raw annotation file new_database_np = {'database':new_database_np} with open(args.target_np_file, 'w') as f: json.dump(new_database_np, f) # write pre-processed annotation file new_database = {'vocab':obj_cls_lst, 'annotations':new_database} with open(args.target_file, 'w') as f: json.dump(new_database, f) nlp.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='ActivityNet-Entities dataset preprocessing script.') parser.add_argument('--dataset_root', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/', help='dataset root directory') parser.add_argument('--corenlp_path', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttn/tools/stanford-corenlp-full-2018-02-27', help='path to stanford core nlp toolkit') parser.add_argument('--freq_thresh', type=int, default=50, help='frequency threshold for determining object classes') parser.add_argument('--train_cap_file', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/raw_annotation_file/train.json') parser.add_argument('--val_cap_file', type=str, default='/private/home/luoweizhou/subsystem/BottomUpAttnVid/data/anet/raw_annotation_file/val_1.json') args = parser.parse_args() args.src_file = args.dataset_root+'anet_bb.json' # the raw annotation file args.target_np_file = args.dataset_root+'anet_entities.json' # output np file args.target_file = args.dataset_root+'anet_entities_cleaned_class_thresh'+str(args.freq_thresh)+'.json' # output object file args.attr_to_video_file = args.dataset_root+'attr_to_video.txt' # from annotation tool args.split_file = args.dataset_root+'split_ids_anet_entities.json' # split file np.random.seed(123) # make reproducible main(args)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Script to print stats on the object annotation file import numpy as np import json import csv # import visdom import sys from collections import Counter src_file = sys.argv[1] # 'anet_entities_cleaned_class_thresh50_trainval.json' dataset_file = sys.argv[2] # 'anet_captions_all_splits.json' split_file = sys.argv[3] # 'split_ids_anet_entities.json' if __name__=='__main__': with open(src_file) as f: data = json.load(f)['annotations'] with open(dataset_file) as f: raw_data = json.load(f) split_dict = {} with open(split_file) as f: split = json.load(f) for s,ids in split.items(): split_dict.update({i:s for i in ids}) num_seg = np.sum([len(dat['segments']) for vid, dat in data.items()]) total_box = {} total_dur = [] seg_splits = {} box_per_seg = [] obj_per_box = [] count_obj = [] for vid, dat in data.items(): for seg, ann in dat['segments'].items(): total_box[split_dict[vid]] = total_box.get(split_dict[vid], 0)+len(ann['process_bnd_box']) total_dur.append(float(raw_data[vid]['timestamps'][int(seg)][1]-raw_data[vid]['timestamps'][int(seg)][0])) seg_splits[split_dict[vid]] = seg_splits.get(split_dict[vid], 0)+1 box_per_seg.append(len(ann['process_bnd_box'])) for c in ann['process_clss']: obj_per_box.append(len(c)) count_obj.extend(c) print('number of annotated video: {}'.format(len(data))) print('number of annotated video segments: {}'.format(num_seg)) print('number of segments in each split: {}'.format(seg_splits)) print('total duration in hr: {}'.format(np.sum(total_dur)/3600)) print('total number of phrase (not object) boxes: {}'.format(total_box)) print('box per segment, mean {}, std {}, count {}'.format(np.mean(box_per_seg), np.std(box_per_seg), Counter(box_per_seg))) print('object per box, mean {}, std {}, count {}'.format(np.mean(obj_per_box), np.std(obj_per_box), Counter(obj_per_box))) print('Top 10 object labels: {}'.format(Counter(count_obj).most_common(10))) """ # visualization vis = visdom.Visdom() vis.histogram(X=[i for i in box_per_seg if i < 20], opts={'numbins': 20, 'xtickmax':20, 'xtickmin':0, 'xmax':20, 'xmin':0, 'title':'Distribution of number of boxes per segment', 'xtickfont':{'size':14}, \ 'ytickfont':{'size':14}, 'xlabel':'Number of boxes', 'ylabel': 'Counts'}) vis.histogram(X=[i for i in obj_per_box if i < 100], opts={'numbins': 100, 'xtickmax':100, 'xtickmin':0, 'xmax':100, 'xmin':0, 'title':'Distribution of number of object labels per box', 'xtickfont':{'size':14}, \ 'ytickfont':{'size':14}, 'xlabel':'Number of object labels', 'ylabel': 'Counts'}) """
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import random import shutil import pandas as pd import tqdm if __name__ == "__main__": def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--data_dir", type=str, default="/disc/data/dir") parser.add_argument("--output_dir", type=str, default="/disc/data/dir") return parser params = get_parser().parse_args() copy_mode = 'symlink' print("Args:{}".format(json.dumps(vars(params)))) dest_ref10k_dir = os.path.join(params.output_dir, "references_10k") dest_ref990k_dir = os.path.join(params.output_dir, "references_990k") dest_query_40k_dir = os.path.join(params.output_dir, "queries_40k") os.makedirs(dest_ref10k_dir, exist_ok=True) os.makedirs(dest_ref990k_dir, exist_ok=True) os.makedirs(dest_query_40k_dir, exist_ok=True) print(f"Creating output directories: {dest_ref10k_dir}, {dest_ref990k_dir}, {dest_query_40k_dir}") print(f"Copying the reference images") reference_dir = os.path.join(params.data_dir, "references") filenames = [f'R{ii:06d}.jpg' for ii in range(1000000)] csv_path = os.path.join(params.data_dir, "groundtruth_matches.csv") df = pd.read_csv(csv_path, header=None, names=['Q', 'R']) rs = df['R'].values.tolist() rs.sort() is_img_in_query = {} for filename in filenames: is_img_in_query[filename] = False if len(rs) == 0: continue if rs[0] in filename: is_img_in_query[filename] = True rs.pop(0) print(f"Number of reference images that are used in query: {sum(is_img_in_query.values())}") for filename in tqdm.tqdm(filenames): img_path = os.path.join(reference_dir, filename) dest_dir = dest_ref10k_dir if is_img_in_query[filename] else dest_ref990k_dir if copy_mode == 'symlink': os.symlink(img_path, os.path.join(dest_dir, filename)) else: shutil.copy(img_path, os.path.join(dest_dir, filename)) print(f"Copying the query images") train_dir = os.path.join(params.data_dir, "train") filenames = [f'T{ii:06d}.jpg' for ii in range(1000000)] random.seed(0) filenames = random.sample(filenames, 40000) for filename in tqdm.tqdm(filenames): img_path = os.path.join(train_dir, filename) if copy_mode == 'symlink': os.symlink(img_path, os.path.join(dest_query_40k_dir, filename)) else: shutil.copy(img_path, os.path.join(dest_query_40k_dir, filename))
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os import tqdm import json import torch from torch import device from torchvision import transforms from activeindex import utils device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if __name__ == '__main__': def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--output_dir", type=str, default='output') parser.add_argument("--data_dir", type=str, default="/img/data/dir") parser.add_argument("--model_name", type=str, default="torchscript") parser.add_argument("--model_path", type=str, default="/path/to/model.torchscript.pt") parser.add_argument("--resize_size", type=int, default=288, help="Resize images to this size. (Default: 288)") parser.add_argument("--batch_size", type=int, default=256, help="Batch size.") return parser params = get_parser().parse_args() print("__log__:{}".format(json.dumps(vars(params)))) print('>>> Creating output directory...') os.makedirs(params.output_dir, exist_ok=True) print('>>> Building backbone...') model = utils.build_backbone(path=params.model_path, name=params.model_name) model.eval() model.to(device) print('>>> Creating dataloader...') NORMALIZE_IMAGENET = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) default_transform = transforms.Compose([ transforms.ToTensor(), NORMALIZE_IMAGENET, transforms.Resize((params.resize_size, params.resize_size)), ]) img_loader = utils.get_dataloader(params.data_dir, default_transform, batch_size=params.batch_size, collate_fn=None) print('>>> Extracting features...') features = [] with open(os.path.join(params.output_dir, "filenames.txt"), 'w') as f: with torch.no_grad(): for ii, imgs in enumerate(tqdm.tqdm(img_loader)): imgs = imgs.to(device) fts = model(imgs) features.append(fts.cpu()) for jj in range(fts.shape[0]): sample_fname = img_loader.dataset.samples[ii*params.batch_size + jj] f.write(sample_fname + "\n") print('>>> Saving features...') features = torch.concat(features, dim=0) torch.save(features, os.path.join(params.output_dir, 'fts.pth'))
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from augly.image import functional as aug_functional import torch from torchvision import transforms from torchvision.transforms import functional from . import augment_queries NORMALIZE_IMAGENET = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) UNNORMALIZE_IMAGENET = transforms.Normalize(mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225], std=[1/0.229, 1/0.224, 1/0.225]) image_std = torch.Tensor([0.229, 0.224, 0.225]).view(-1, 1, 1) def center_crop(x, scale): """ Perform center crop such that the target area of the crop is at a given scale Args: x: PIL image scale: target area scale """ scale = np.sqrt(scale) new_edges_size = [int(s*scale) for s in x.size][::-1] return functional.center_crop(x, new_edges_size) def resize(x, scale): """ Perform center crop such that the target area of the crop is at a given scale Args: x: PIL image scale: target area scale """ scale = np.sqrt(scale) new_edges_size = [int(s*scale) for s in x.size][::-1] return functional.resize(x, new_edges_size) def psnr(x, y): """ Return PSNR Args: x, y: Images tensor with imagenet normalization """ delta = 255 * (x - y) * image_std.to(x.device) psnr = 20*np.log10(255) - 10*torch.log10(torch.mean(delta**2)) return psnr def linf(x, y): """ Return Linf distance Args: x, y: Images tensor with imagenet normalization """ return torch.max(torch.abs(255 * (x - y) * image_std.to(x.device))) attacks_dict = { "none": lambda x : x, "rotation": lambda x, angle: functional.rotate(x, angle, functional.InterpolationMode('bilinear'), expand=True), "grayscale": functional.rgb_to_grayscale, "contrast": functional.adjust_contrast, "brightness": functional.adjust_brightness, "hue": functional.adjust_hue, "hflip": functional.hflip, "vflip": functional.vflip, "blur": functional.gaussian_blur, # sigma = ksize*0.15 + 0.35 - ksize = (sigma-0.35)/0.15 "jpeg": aug_functional.encoding_quality, "resize": resize, "center_crop": center_crop, "meme_format": aug_functional.meme_format, "overlay_emoji": aug_functional.overlay_emoji, "overlay_onto_screenshot": aug_functional.overlay_onto_screenshot, "auto": augment_queries.augment_img, } attacks = [{'attack': 'none'}] \ + [{'attack': 'auto'}] \ + [{'attack': 'meme_format'}] \ + [{'attack': 'overlay_onto_screenshot'}] \ + [{'attack': 'rotation', 'angle': angle} for angle in [25,90]] \ + [{'attack': 'center_crop', 'scale': 0.5}] \ + [{'attack': 'resize', 'scale': 0.5}] \ + [{'attack': 'blur', 'kernel_size': 11}] \ + [{'attack': 'jpeg', 'quality': 50}] \ + [{'attack': 'hue', 'hue_factor': 0.2}] \ + [{'attack': 'contrast', 'contrast_factor': cf} for cf in [0.5, 2.0]] \ + [{'attack': 'brightness', 'brightness_factor': bf} for bf in [0.5, 2.0]] \ # more attacks for the full evaluation attacks_2 = [{'attack': 'rotation', 'angle': jj} for jj in range(-90, 100,10)] \ + [{'attack': 'center_crop', 'scale': 0.1*jj} for jj in range(1,11)] \ + [{'attack': 'resize', 'scale': 0.1*jj} for jj in range(1,11)] \ + [{'attack': 'blur', 'kernel_size': 1+2*jj} for jj in range(1,15)] \ + [{'attack': 'jpeg', 'quality': 10*jj} for jj in range(1,11)] \ + [{'attack': 'contrast', 'contrast_factor': 0.5 + 0.1*jj} for jj in range(15)] \ + [{'attack': 'brightness', 'brightness_factor': 0.5 + 0.1*jj} for jj in range(15)] \ + [{'attack': 'hue', 'hue_factor': -0.5 + 0.1*jj} for jj in range(0,11)] \ def generate_attacks(img, attacks=attacks): """ Generate a list of attacked images from a PIL image. """ attacked_imgs = [] for attack in attacks: attack = attack.copy() attack_name = attack.pop('attack') attacked_imgs.append(attacks_dict[attack_name](img, **attack)) return attacked_imgs
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F class JND(nn.Module): """ https://ieeexplore.ieee.org/document/7885108 """ def __init__(self, preprocess = lambda x: x): super(JND, self).__init__() kernel_x = [[-1., 0., 1.], [-2., 0., 2.], [-1., 0., 1.]] kernel_y = [[1., 2., 1.], [0., 0., 0.], [-1., -2., -1.]] kernel_lum = [[1, 1, 1, 1, 1], [1, 2, 2, 2, 1], [1, 2, 0, 2, 1], [1, 2, 2, 2, 1], [1, 1, 1, 1, 1]] kernel_x = torch.FloatTensor(kernel_x).unsqueeze(0).unsqueeze(0) kernel_y = torch.FloatTensor(kernel_y).unsqueeze(0).unsqueeze(0) kernel_lum = torch.FloatTensor(kernel_lum).unsqueeze(0).unsqueeze(0) self.weight_x = nn.Parameter(data=kernel_x, requires_grad=False) self.weight_y = nn.Parameter(data=kernel_y, requires_grad=False) self.weight_lum = nn.Parameter(data=kernel_lum, requires_grad=False) self.preprocess = preprocess def jnd_la(self, x, alpha=1.0, eps=1e-3): """ Luminance masking: x must be in [0,255] """ la = F.conv2d(x, self.weight_lum, padding=2) / 32 mask_lum = la <= 127 la[mask_lum] = 17 * (1 - torch.sqrt(la[mask_lum]/127 + eps)) + 3 la[~mask_lum] = 3/128 * (la[~mask_lum] - 127) + 3 return alpha * la def jnd_cm(self, x, beta=0.117): """ Contrast masking: x must be in [0,255] """ grad_x = F.conv2d(x, self.weight_x, padding=1) grad_y = F.conv2d(x, self.weight_y, padding=1) cm = torch.sqrt(grad_x**2 + grad_y**2) cm = 16 * cm**2.4 / (cm**2 + 26**2) return beta * cm def heatmaps(self, x, clc=0.3): """ x must be in [0,1] """ x = 255 * self.preprocess(x) x = 0.299 * x[...,0:1,:,:] + 0.587 * x[...,1:2,:,:] + 0.114 * x[...,2:3,:,:] la = self.jnd_la(x) cm = self.jnd_cm(x) return torch.clamp_min(la + cm - clc * torch.minimum(la, cm), 5)/255 # b 1 h w
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import random from typing import Any, Dict, List, NamedTuple, Tuple import augly.image as imaugs import augly.utils as utils import numpy as np from PIL import Image RNG = np.random.RandomState rng = np.random.RandomState(0) ParametersDistributions = NamedTuple class ParameterDistribution: """Define how to sample a parameter""" def __init__(self, low: Any, high: Any): self.low = low self.high = high def sample(self, rng: RNG) -> Any: raise NotImplementedError() class FixedVariable(ParameterDistribution): def __init__(self, value: Any): super().__init__(0, 0) self.value = value def sample(self, rng: RNG) -> Any: return self.value class UniformFloat(ParameterDistribution): def sample(self, rng: RNG) -> float: return float(rng.uniform(self.low, self.high)) class UniformInt(ParameterDistribution): def sample(self, rng: RNG) -> int: return int(rng.randint(self.low, self.high + 1)) class UniformColor(ParameterDistribution): def sample(self, rng: RNG) -> Tuple[int, int, int]: return tuple(int(rng.randint(self.low, self.high)) for _ in range(3)) class UniformChoice(ParameterDistribution): def __init__(self, choices: List[Any]): super().__init__(0, 0) self.choices = choices def sample(self, rng: RNG) -> Any: if not self.choices: return None index = rng.randint(0, len(self.choices)) return self.choices[index] class UniformBool(ParameterDistribution): def __init__(self): super().__init__(0, 0) def sample(self, rng: RNG) -> bool: return bool(UniformInt(0, 1).sample(rng)) class TextChoice(ParameterDistribution): def sample(self, rng: RNG) -> List[int]: length = UniformInt(self.low, self.high).sample(rng) return [UniformInt(0, 10000).sample(rng) for _ in range(length)] class ListPD(ParameterDistribution): def __init__(self, pds: List[ParameterDistribution]): super().__init__(0, 0) self.pds = pds def sample(self, rng: RNG) -> List[Any]: return [pd.sample(rng) for pd in self.pds] class TuplePD(ParameterDistribution): def __init__(self, pds: List[ParameterDistribution]): super().__init__(0, 0) self.pds = pds def sample(self, rng: RNG) -> Tuple: return tuple(pd.sample(rng) for pd in self.pds) class ExponentialInt(ParameterDistribution): def __init__(self, scale: float, low: int, high: int): super().__init__(low, high) self.scale = scale def sample(self, rng) -> int: # if we sample a value larger than `high`, we need to resample a new one # if we just take the min(x, high), it will change the distribution while True: r = rng.exponential(scale=self.scale) if int(r + self.low) <= self.high: return int(r + self.low) class SymmetricFactor(ParameterDistribution): def sample(self, rng: RNG) -> float: factor = float(rng.uniform(self.low, self.high)) invert = rng.randint(0, 2) return 1 / factor if invert else factor class UniformLeftRightFactor(ParameterDistribution): def sample(self, rng: np.random.RandomState) -> Tuple[float, float]: width = float(rng.uniform(self.low, self.high)) left = rng.uniform(0, 1 - width) right = left + width return left, right class MediaFilterParameters(NamedTuple): """Contains the parameters to apply a video filter. This defines a unique and reproducible transformation""" name: str kwargs: Dict[str, Any] def __repr__(self) -> str: return json.dumps({**{"name": self.name}, **self.kwargs}) class MediaFilterWithPD(NamedTuple): """Define a filter and how to sample all its parameters""" # filter name, must match one the function method in this file name: str # must contains only ParameterDistribution attributes pd: ParametersDistributions class AspectRatioPD(ParametersDistributions): ratio: UniformFloat = UniformFloat(0.5, 2.0) class BlurPD(ParametersDistributions): radius: UniformFloat = UniformFloat(5.0, 10.0) class BlurryMaskPD(ParametersDistributions): background_image: UniformChoice overlay_size: UniformFloat = UniformFloat(0.3, 0.8) x_pos: UniformFloat = UniformFloat(0, 1.0) y_pos: UniformFloat = UniformFloat(0, 1.0) class BrightnessPD(ParametersDistributions): factor: UniformFloat = UniformFloat(0.1, 1.9) class ClipImageSizePD(ParametersDistributions): min_resolution: UniformChoice = UniformChoice([500]) max_resolution: UniformChoice = UniformChoice([3000000]) class ConvertColorPD(ParametersDistributions): mode: UniformChoice = UniformChoice(["P"]) colors: UniformInt = UniformInt(2, 16) class CropPD(ParametersDistributions): xs: UniformLeftRightFactor = UniformLeftRightFactor(0.3, 0.6) ys: UniformLeftRightFactor = UniformLeftRightFactor(0.3, 0.6) class EncodingQualityPD(ParametersDistributions): quality: UniformInt = UniformInt(5, 25) class EnhanceEdgesPD(ParametersDistributions): pass class GrayscalePD(ParametersDistributions): pass class HFlipPD(ParametersDistributions): pass class IdentityPD(ParametersDistributions): pass class OverlayEmojiPD(ParametersDistributions): emoji_path: UniformChoice x_pos: UniformFloat = UniformFloat(0.0, 0.8) y_pos: UniformFloat = UniformFloat(0.0, 0.8) opacity: UniformFloat = UniformFloat(0.5, 1.0) emoji_size: UniformFloat = UniformFloat(0.4, 0.8) class OverlayOntoImagePD(ParametersDistributions): background_image: UniformChoice overlay_size: UniformFloat = UniformFloat(0.3, 0.6) x_pos: UniformFloat = UniformFloat(0, 0.4) y_pos: UniformFloat = UniformFloat(0, 0.4) class OverlayOntoScreenshotPD(ParametersDistributions): template_filepath: UniformChoice crop_src_to_fit: UniformChoice = UniformChoice([True]) class OverlayTextPD(ParametersDistributions): font_file: UniformChoice text: TextChoice = TextChoice(5, 15) font_size: UniformFloat = UniformFloat(0.1, 0.3) color: UniformColor = UniformColor(0, 255) x_pos: UniformFloat = UniformFloat(0.0, 0.6) y_pos: UniformFloat = UniformFloat(0.0, 0.6) class PadSquarePD(ParametersDistributions): color: UniformColor = UniformColor(0, 255) class PerspectiveTransformPD(ParametersDistributions): sigma: UniformFloat = UniformFloat(30.0, 60.0) crop_out_black_border: UniformChoice = UniformChoice([True]) class PixelizationPD(ParametersDistributions): ratio: UniformFloat = UniformFloat(0.2, 0.5) class RotatePD(ParametersDistributions): degrees: UniformFloat = UniformFloat(-90.0, 90.0) class SaturationPD(ParametersDistributions): factor: UniformFloat = UniformFloat(2.0, 5.0) class ShufflePixelsPD(ParametersDistributions): factor: UniformFloat = UniformFloat(0.1, 0.3) def sample(rng: RNG, filter_with_pd: MediaFilterWithPD) -> MediaFilterParameters: """Sample for each ParameterDistribution attribute and return a dict with sampled parameters """ kwargs = {key: pdi.sample(rng) for key, pdi in filter_with_pd.pd._asdict().items()} return MediaFilterParameters(name=filter_with_pd.name, kwargs=kwargs) def sample_img_filters_parameters(rng: RNG, available_filters: List[MediaFilterWithPD]) -> List[MediaFilterParameters]: """Sample parameters for each available filters""" return [sample(rng, vf) for vf in available_filters] def get_assets(emoji_dir: str, font_dir: str, screenshot_dir: str) -> Tuple[List[str], List[str], List[str]]: emojis = [] for fn in utils.pathmgr.ls(emoji_dir): fp = os.path.join(emoji_dir, fn) if utils.pathmgr.isdir(fp): emojis.extend([os.path.join(fp, f) for f in utils.pathmgr.ls(fp)]) fonts = [ os.path.join(font_dir, fn) for fn in utils.pathmgr.ls(font_dir) if fn.endswith(".ttf") ] template_filenames = [ os.path.join(screenshot_dir, fn) for fn in utils.pathmgr.ls(screenshot_dir) if fn.split(".")[-1] != "json" ] return emojis, fonts, template_filenames emojis, fonts, template_filenames = get_assets( utils.EMOJI_DIR, utils.FONTS_DIR, utils.SCREENSHOT_TEMPLATES_DIR ) primitives = { "color": [ MediaFilterWithPD(name="brightness", pd=BrightnessPD()), MediaFilterWithPD(name="grayscale", pd=GrayscalePD()), MediaFilterWithPD(name="saturation", pd=SaturationPD()), ], "overlay": [ MediaFilterWithPD( name="overlay_emoji", pd=OverlayEmojiPD(emoji_path=UniformChoice(emojis)), ), MediaFilterWithPD( name="overlay_text", pd=OverlayTextPD(font_file=UniformChoice(fonts)) ), ], "pixel-level": [ MediaFilterWithPD(name="blur", pd=BlurPD()), MediaFilterWithPD(name="convert_color", pd=ConvertColorPD()), MediaFilterWithPD(name="encoding_quality", pd=EncodingQualityPD()), MediaFilterWithPD(name="apply_pil_filter", pd=EnhanceEdgesPD()), MediaFilterWithPD(name="pixelization", pd=PixelizationPD()), MediaFilterWithPD(name="shuffle_pixels", pd=ShufflePixelsPD()), ], "spatial": [ MediaFilterWithPD(name="crop", pd=CropPD()), MediaFilterWithPD(name="hflip", pd=HFlipPD()), MediaFilterWithPD(name="change_aspect_ratio", pd=AspectRatioPD()), MediaFilterWithPD( name="overlay_onto_screenshot", pd=OverlayOntoScreenshotPD( template_filepath=UniformChoice(template_filenames) ), ), MediaFilterWithPD(name="pad_square", pd=PadSquarePD()), MediaFilterWithPD( name="perspective_transform", pd=PerspectiveTransformPD() ), MediaFilterWithPD(name="rotate", pd=RotatePD()), ], } post_filters = [] def augment_img_wrapper(img, rng: RNG = rng, return_params=False): """ Wrapper for augment_img to handle errors """ try: return augment_img(img, rng, return_params) except Exception as e: print(f"Error augmenting image: {e}") return img, ["none"] def augment_img(img, rng: RNG = rng, return_params=False): """ Sample augmentation parameters for img. Args: img: query image. """ # select filters to apply num_filters = rng.choice(np.arange(1, 5), p=[0.1, 0.2, 0.3, 0.4]) filter_types_to_apply = rng.choice( np.asarray(list(primitives.keys())), size=num_filters, replace=False ) filters_to_apply = [ primitives[ftype][rng.randint(0, len(primitives[ftype]))] for ftype in filter_types_to_apply ] filters_to_apply += post_filters # Ensure that crop is in first position if selected and that convert_color is in last position if selected for j, vf in enumerate(filters_to_apply): if vf.name == "crop": filters_to_apply[j], filters_to_apply[0] = ( filters_to_apply[0], filters_to_apply[j], ) if vf.name == "convert_color": filters_to_apply[j], filters_to_apply[-1] = ( filters_to_apply[-1], filters_to_apply[j], ) # sample parameters for each filter all_filters_parameters = sample_img_filters_parameters( rng, filters_to_apply ) # apply filters for j, ftr in enumerate(all_filters_parameters): aug_func = getattr(imaugs, ftr.name, None) kwargs = ftr.kwargs if ftr.name == "crop": x1, x2 = kwargs.pop("xs") y1, y2 = kwargs.pop("ys") kwargs["x1"], kwargs["x2"] = x1, x2 kwargs["y1"], kwargs["y2"] = y1, y2 img = aug_func(image=img, **kwargs) img = img.convert('RGB') if return_params: return img, all_filters_parameters else: return img if __name__ == '__main__': def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--output_dir", type=str, default='output') parser.add_argument("--data_dir", type=str, default="/img/data/dir/") parser.add_argument("--seed", type=int, default=42) return parser params = get_parser().parse_args() print("__log__:{}".format(json.dumps(vars(params)))) # set seed np.random.seed(params.seed) random.seed(params.seed) rng = np.random.RandomState(params.seed) # Load data print("Loading filenames from {}".format(params.data_dir)) filenames = os.listdir(params.data_dir) # Generate augmented images print("Generating augmented images into {}".format(params.output_dir)) augmentations = [] os.makedirs(params.output_dir, exist_ok=True) for filename in filenames: img_path = os.path.join(params.data_dir, filename) img = Image.open(img_path) img, filters = augment_img(img, rng, return_params=True) img.convert('RGB').save(os.path.join(params.output_dir, filename), quality=95) augmentations.append(filters) print(filename, "[" + ", ".join([str(ftr) for ftr in filters]) + "]") # break # Save augmentations print("Saving augmentations") with open(os.path.join(params.output_dir, "augmentations.txt"), "a") as f: for augmentation in augmentations: line = "[" + ", ".join([str(ftr) for ftr in augmentation]) + "]\n" f.write(line)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import time from typing import Callable import faiss import numpy as np import torch from torch import nn from torchvision.transforms import functional from . import utils, utils_img from .attenuations import JND device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') def get_targets( target: str, index: faiss.Index, fts: torch.Tensor, ivf_centroids: np.ndarray = None ) -> torch.Tensor: """ Get the target representations for the features. Args: target (str): Target representation to use. index (faiss.Index): Index to use for retrieval. fts (torch.Tensor): Features to get the targets for. batch_size x feature_dim ivf_centroids (np.ndarray): Centroids of the IVF index. Returns: targets (torch.Tensor): Target representations for the features. batch_size x feature_dim """ if target == 'pq_recons': targets = index.reconstruct_n(index.ntotal-fts.shape[0], fts.shape[0]) # reconstruct the PQ codes that have just been added targets = torch.tensor(targets) elif target == 'ori_ft': fts.clone() elif target == 'ivf_cluster': ivf_D, ivf_I = index.quantizer.search(fts.detach().cpu().numpy(), k=1) # find the closest cluster center for each feature targets = ivf_centroids.take(ivf_I.flatten(), axis=0) # get the cluster representation for each feature targets = torch.tensor(targets) elif target == 'ivf_cluster_half': ivf_D, ivf_I = index.quantizer.search(fts.detach().cpu().numpy(), k=1) centroids = ivf_centroids.take(ivf_I.flatten(), axis=0) targets = (torch.tensor(centroids) + fts.clone() / 2) else: raise NotImplementedError(f'Invalid target: {target}') return targets def activate_images( imgs: list[torch.Tensor], ori_fts: torch.Tensor, model: nn.Module, index: faiss.Index, ivf_centroids: np.ndarray, attenuation: JND, loss_f: Callable, loss_i: Callable, params: argparse.Namespace ) -> list[torch.Tensor]: """ Activate images. Args: imgs (list of torch.Tensor): Images to activate. batch_size * [3 x height x width] model (torch.nn.Module): Model for feature extraction. index (faiss.Index): Index to use for retrieval. ivf_centroids (np.ndarray): Centroids of the IVF index. attenuation (JND): To create Just Noticeable Difference heatmaps. loss_f (Callable): Loss function to use for the indexation loss. loss_i (Callable): Loss function to use for the image loss. params (argparse.Namespace): Parameters. Returns: activated images (list of torch.Tensor): Activated images. batch_size * [3 x height x width] """ targets = get_targets(params.target, index, ori_fts, ivf_centroids) targets = targets.to(device) # Just noticeable difference heatmaps alpha = torch.tensor([0.072*(1/0.299), 0.072*(1/0.587), 0.072*(1/0.114)]) alpha = alpha[:,None,None].to(device) # 3 x 1 x 1 heatmaps = [params.scaling * attenuation.heatmaps(img) for img in imgs] # init distortion + optimizer + scheduler deltas = [1e-6 * torch.randn_like(img).to(device) for img in imgs] # b (1 c h w) for distortion in deltas: distortion.requires_grad = True optim_params = utils.parse_params(params.optimizer) optimizer = utils.build_optimizer(model_params=deltas, **optim_params) if params.scheduler is not None: scheduler = utils.build_scheduler(optimizer=optimizer, **utils.parse_params(params.scheduler)) # begin optim iter_time = time.time() log_stats = [] for gd_it in range(params.iterations): gd_it_time = time.time() if params.scheduler is not None: scheduler.step(gd_it) # perceptual constraints percep_deltas = [torch.tanh(delta) for delta in deltas] if params.use_tanh else deltas percep_deltas = [delta * alpha for delta in percep_deltas] if params.scale_channels else percep_deltas imgs_t = [img + hm * delta for img, hm, delta in zip(imgs, heatmaps, percep_deltas)] # get features batch_imgs = [functional.resize(img_t, (params.resize_size, params.resize_size)) for img_t in imgs_t] batch_imgs = torch.stack(batch_imgs) fts = model(batch_imgs) # b d # compute losses lf = loss_f(fts, targets) li = loss_i(imgs_t, imgs) loss = params.lambda_f * lf + params.lambda_i * li # step optimizer.zero_grad() loss.backward() optimizer.step() # log stats psnrs = torch.tensor([utils_img.psnr(img_t, img) for img_t, img in zip(imgs_t, imgs)]) linfs = torch.tensor([utils_img.linf(img_t, img) for img_t, img in zip(imgs_t, imgs)]) log_stats.append({ 'gd_it': gd_it, 'loss': loss.item(), 'loss_f': lf.item(), 'loss_i': li.item(), 'psnr': torch.nanmean(psnrs).item(), 'linf': torch.nanmean(linfs).item(), 'lr': optimizer.param_groups[0]['lr'], 'gd_it_time': time.time() - gd_it_time, 'iter_time': time.time() - iter_time, 'max_mem': torch.cuda.max_memory_allocated() / (1024*1024), 'kw': 'optim', }) if (gd_it+1) % params.log_freq == 0: print(json.dumps(log_stats[-1])) # tqdm.tqdm.write(json.dumps(log_stats[-1])) # perceptual constraints percep_deltas = [torch.tanh(delta) for delta in deltas] if params.use_tanh else deltas percep_deltas = [delta * alpha for delta in percep_deltas] if params.scale_channels else percep_deltas imgs_t = [img + hm * delta for img, hm, delta in zip(imgs, heatmaps, percep_deltas)] return imgs_t
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import functools import logging import os import faiss from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import timm from timm import optim as timm_optim from timm import scheduler as timm_scheduler import torch import torch.nn as nn from torch.utils.data import DataLoader from torchvision import datasets, models from torchvision.datasets.folder import default_loader, is_image_file # Index def build_index_factory(idx_str, quant, fts_path, idx_path=None) -> faiss.Index: """ Builds index from string and fts_path. see https://github.com/facebookresearch/faiss/wiki/The-index-factory Args: idx_str: string describing the index quant: quantization type, either "L2" or "IP" (Inner Product) fts_path: path to the train features as a torch tensor .pt file idx_path: path to save the index """ fts = torch.load(fts_path) fts = fts.numpy() # b d D = fts.shape[-1] metric = faiss.METRIC_L2 if quant == 'L2' else faiss.METRIC_INNER_PRODUCT index = faiss.index_factory(D, idx_str, metric) index.train(fts) if idx_path is not None: print(f'Saving Index to {idx_path}...') faiss.write_index(index, idx_path) return index # Arguments helpers def bool_inst(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise ValueError('Boolean value expected in args') def parse_params(s): """ Parse parameters into a dictionary, used for optimizer and scheduler parsing. Example: "SGD,lr=0.01" -> {"name": "SGD", "lr": 0.01} """ s = s.replace(' ', '').split(',') params = {} params['name'] = s[0] for x in s[1:]: x = x.split('=') params[x[0]]=float(x[1]) return params # Optimizer and Scheduler def build_optimizer(name, model_params, **optim_params): """ Build optimizer from a dictionary of parameters """ tim_optimizers = sorted(name for name in timm_optim.__dict__ if name[0].isupper() and not name.startswith("__") and callable(timm_optim.__dict__[name])) torch_optimizers = sorted(name for name in torch.optim.__dict__ if name[0].isupper() and not name.startswith("__") and callable(torch.optim.__dict__[name])) if name in tim_optimizers: return getattr(timm_optim, name)(model_params, **optim_params) elif name in torch_optimizers: return getattr(torch.optim, name)(model_params, **optim_params) raise ValueError(f'Unknown optimizer "{name}", choose among {str(tim_optimizers+torch_optimizers)}') def build_scheduler(name, optimizer, **lr_scheduler_params): """ Build scheduler from a dictionary of parameters Args: name: name of the scheduler optimizer: optimizer to be used with the scheduler params: dictionary of scheduler parameters Ex: CosineLRScheduler, optimizer {t_initial=50, cycle_mul=2, cycle_limit=3, cycle_decay=0.5, warmup_lr_init=1e-6, warmup_t=5} """ tim_schedulers = sorted(name for name in timm_scheduler.__dict__ if name[0].isupper() and not name.startswith("__") and callable(timm_scheduler.__dict__[name])) torch_schedulers = sorted(name for name in torch.optim.lr_scheduler.__dict__ if name[0].isupper() and not name.startswith("__") and callable(torch.optim.lr_scheduler.__dict__[name])) if name in tim_schedulers: return getattr(timm_scheduler, name)(optimizer, **lr_scheduler_params) elif hasattr(torch.optim.lr_scheduler, name): return getattr(torch.optim.lr_scheduler, name)(optimizer, **lr_scheduler_params) raise ValueError(f'Unknown scheduler "{name}", choose among {str(tim_schedulers+torch_schedulers)}') # Model def build_backbone(path, name): """ Build a pretrained torchvision backbone from its name. Args: path: path to the checkpoint, can be an URL name: "torchscript" or name of the architecture from torchvision (see https://pytorch.org/vision/stable/models.html) or timm (see https://rwightman.github.io/pytorch-image-models/models/). Returns: model: nn.Module """ if name == 'torchscript': model = torch.jit.load(path) return model else: if hasattr(models, name): model = getattr(models, name)(pretrained=True) elif name in timm.list_models(): model = timm.models.create_model(name, num_classes=0) else: raise NotImplementedError('Model %s does not exist in torchvision'%name) model.head = nn.Identity() model.fc = nn.Identity() if path is not None: if path.startswith("http"): checkpoint = torch.hub.load_state_dict_from_url(path, progress=False) else: checkpoint = torch.load(path) state_dict = checkpoint for ckpt_key in ['state_dict', 'model_state_dict', 'teacher']: if ckpt_key in checkpoint: state_dict = checkpoint[ckpt_key] state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()} msg = model.load_state_dict(state_dict, strict=False) print(msg) return model # Data loading @functools.lru_cache() def get_image_paths(path): logging.info(f"Resolving files in: {path}") paths = [] for path, _, files in os.walk(path): for filename in files: paths.append(os.path.join(path, filename)) return sorted([fn for fn in paths if is_image_file(fn)]) class ImageFolder: """An image folder dataset without classes""" def __init__(self, path, transform=None, loader=default_loader): self.samples = get_image_paths(path) self.loader = loader self.transform = transform def __getitem__(self, idx: int): assert 0 <= idx < len(self) img = self.loader(self.samples[idx]) if self.transform: return self.transform(img) return img def __len__(self): return len(self.samples) def collate_fn(batch): """ Collate function for data loader. Allows to have img of different size""" return batch def get_dataloader(data_dir, transform, batch_size=128, num_workers=8, collate_fn=collate_fn): """ Get dataloader for the images in the data_dir. """ dataset = ImageFolder(data_dir, transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn, shuffle=False, pin_memory=True, drop_last=False) return dataloader
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os import random import faiss import tqdm import numpy as np import pandas as pd import torch import torch.nn as nn from torchvision import transforms from torchvision.transforms import functional from torchvision.utils import save_image from . import attenuations, augment_queries, utils, utils_img from .engine import activate_images device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') def get_parser(): parser = argparse.ArgumentParser() def aa(*args, **kwargs): group.add_argument(*args, **kwargs) group = parser.add_argument_group('Experiments parameters') aa("--output_dir", type=str, default="output/", help="Output directory for logs and images (Default: /output)") aa("--verbose", type=int, default=1) aa("--seed", type=int, default=0) group = parser.add_argument_group('Data parameters') aa("--fts_training_path", type=str, default="path/to/train/fts.pth") aa("--fts_reference_path", type=str, default="path/to/train/ref_990k.pth") aa("--data_dir", type=str, default="/path/to/disc/ref_10k.pth") aa("--query_nonmatch_dir", type=str, default="/path/to/disc/queries_40k") aa("--batch_size", type=int, default=16) aa("--batch_size_eval", type=int, default=128) aa("--resize_size", type=int, default=288, help="Resize images to this size. (Default: 288)") group = parser.add_argument_group('Model parameters') aa("--model_name", type=str, default="torchscript") aa("--model_path", type=str, default="/path/to/model.torchscript.pt") group = parser.add_argument_group('Index parameters') aa("--idx_dir", type=str, default="indexes", help="Directory where to save the index. (Default: index_disc_sscd288)") aa("--idx_factory", type=str, default="IVF4096,PQ8x8", help="String to create index from index factory. (Default: IVF4096,PQ8x8)") aa("--quant", type=str, default="L2", help="Quantizer type if IVF (L2, IP, etc.)") aa("--nprobe", type=int, default=1, help="Number of probes per query if IVF.") aa("--kneighbors", type=int, default=100, help="Number of nearest neighbors to return") group = parser.add_argument_group('Optimization parameters') aa("--iterations", type=int, default=10, help="Number of iterations for image optimization. (Default: 10)") aa("--optimizer", type=str, default="Adam,lr=1e-0", help="Optimizer to use. (Default: Adam)") aa("--scheduler", type=str, default=None, help="Scheduler to use. (Default: None)") aa("--target", type=str, default="pq_recons", help="Target to use. (Default: pq_recons)") aa("--loss_f", type=str, default="cossim", help="Loss w to use. Choose among mse, cossim (Default: cossim)") aa("--lambda_f", type=float, default=1.0, help="Weight of the feature loss. (Default: 1.0)") aa("--lambda_i", type=float, default=1e-2, help="Weight of the image loss. (Default: 1.0)") group = parser.add_argument_group('Distortion & Attenuation parameters') aa("--use_attenuation", type=utils.bool_inst, default=True, help="Use heatmap attenuation") aa("--scaling", type=float, default=3.0, help="Scaling factor for the heatmap attenuation") aa("--scale_channels", type=utils.bool_inst, default=True, help="Scale the RGB channels of the heatmap attenuation") aa("--use_tanh", type=utils.bool_inst, default=True, help="Use tanh for the heatmap attenuation") group = parser.add_argument_group('Evaluation parameters') aa("--use_attacks_2", type=utils.bool_inst, default=False, help="Use attacks_2 for augmentation evaluation. (Default: False)") aa("--eval_retrieval", type=utils.bool_inst, default=True, help="Evaluate retrieval. (Default: True)") aa("--eval_icd", type=utils.bool_inst, default=True, help="Evaluate icd. (Default: True)") group = parser.add_argument_group('Misc parameters') aa("--active", type=utils.bool_inst, default=True, help="Activate images") aa("--save_imgs", type=utils.bool_inst, default=True, help="Save images") aa("--log_freq", type=int, default=11, help="Log every n iterations. (Default: 1)") aa("--debug", type=utils.bool_inst, default=False, help="Debug mode. (Default: False)") return parser @torch.no_grad() def eval_retrieval(img_loader, image_indices, transform, model, index, kneighbors, use_attacks_2=False): """ Evaluate retrieval on the activated images. Args: img_loader (torch.utils.data.DataLoader): Data loader for the images. image_indices (list): List of ground-truth image indices. transform (torchvision.transforms): Transform to apply to the images. model (torch.nn.Module): Model to use for feature extraction. index (faiss.Index): Index to use for retrieval. kneighbors (int): Number of nearest neighbors to return. use_attacks_2 (bool): Use attacks_2 for augmentation evaluation. (Default: False) Returns: df (pandas.DataFrame): Dataframe with the results. """ logs = [] attacks = utils_img.attacks_2 if use_attacks_2 else utils_img.attacks base_count = 0 for ii, imgs in enumerate(tqdm.tqdm(img_loader)): # create attacks for each image of the batch attacked_imgs = [utils_img.generate_attacks(pil_img, attacks) for pil_img in imgs] # batchsize nattacks # create batches for each attack batch_attacked_imgs = [[] for _ in range(len(attacks))] # nattacks 0 for jj, attacked_img_jj in enumerate(attacked_imgs): for kk in range(len(attacks)): # nattacks 0 -> nattacks batchsize img_jj_attack_kk = transform(attacked_img_jj[kk]).unsqueeze(0).to(device) batch_attacked_imgs[kk].append(img_jj_attack_kk) batch_attacked_imgs = [torch.cat(batch_attacked_img, dim=0) for batch_attacked_img in batch_attacked_imgs] # nattacks batchsize # iterate over attacks for kk in range(len(attacks)): # create attack param attack = attacks[kk].copy() attack_name = attack.pop('attack') param_names = ['attack_param' for _ in range(len(attack.keys()))] attack_params = dict(zip(param_names,list(attack.values()))) # extract features fts = model(batch_attacked_imgs[kk]) fts = fts.detach().cpu().numpy() # retrieve nearest neighbors retrieved_Ds, retrieved_Is = index.search(fts, k=kneighbors) # iterate over images of the batch for jj in range(len(batch_attacked_imgs[kk])): image_index = image_indices[base_count+jj] retrieved_D, retrieved_I = retrieved_Ds[jj], retrieved_Is[jj] rank = [kk for kk in range(len(retrieved_I)) if retrieved_I[kk]==image_index] rank = rank[0] if rank else len(retrieved_I) logs.append({ 'batch': ii, 'image_index': image_index, "attack": attack_name, **attack_params, 'retrieved_distances': retrieved_D, 'retrieved_indices': retrieved_I, 'rank': rank, 'r@1': 1 if rank<1 else 0, 'r@10': 1 if rank<10 else 0, 'r@100': 1 if rank<100 else 0, 'ap': 1/(rank+1), "kw": "evaluation", }) # update count of images base_count += len(imgs) df = pd.DataFrame(logs).drop(columns='kw') return df @torch.no_grad() def eval_icd(img_loader, img_nonmatch_loader, image_indices, transform, model, index, kneighbors, seed=0): """ Evaluate icd on the activated images. Args: img_loader (torch.utils.data.DataLoader): Data loader for the images. img_nonmatch_loader (torch.utils.data.DataLoader): Data loader for the non-matching images. image_indices (list): List of ground-truth image indices. transform (torchvision.transforms): Transform to apply to the images. model (torch.nn.Module): Model to use for feature extraction. index (faiss.Index): Index to use for retrieval. kneighbors (int): Number of nearest neighbors to return. query_nonmatch_dir (str): Directory where the non-matching images are stored. seed (int): Seed for the random number generator. (Default: 0) Returns: df (pandas.DataFrame): Dataframe with the results. """ # stats on matching images rng = np.random.RandomState(seed) logs = [] ct_match = 0 # count of matching images for ii, imgs in enumerate(tqdm.tqdm(img_loader)): # create attack for each image of the batch attacked_imgs = [] attack_names = [] for jj, pil_img in enumerate(imgs): attacked_img, aug_params = augment_queries.augment_img_wrapper(pil_img, rng, return_params=True) attack_name = "[" + ", ".join([str(ftr) for ftr in aug_params]) attacked_img = transform(attacked_img).unsqueeze(0).to(device) attack_names.append(attack_name) attacked_imgs.append(attacked_img) attacked_imgs = torch.cat(attacked_imgs, dim=0) # extract features fts = model(attacked_imgs) fts = fts.detach().cpu().numpy() # nearest neighbors search retrieved_Ds, retrieved_Is = index.search(fts, k=kneighbors) # iterate over images of the batch for jj in range(len(imgs)): retrieved_D, retrieved_I = retrieved_Ds[jj], retrieved_Is[jj] image_index = image_indices[ct_match + jj] logs.append({ 'batch': ii, 'image_index': image_index, 'attack': attack_names[jj], 'retrieved_distances': retrieved_D, 'retrieved_ids': retrieved_I, "kw": "icd_evaluation", }) # update count of matching images ct_match += len(imgs) # stats non matching images for ii, imgs in enumerate(tqdm.tqdm(img_nonmatch_loader)): # create attack for each image of the batch attacked_imgs = [] attack_names = [] for jj, pil_img in enumerate(imgs): attacked_img, aug_params = augment_queries.augment_img_wrapper(pil_img, rng, return_params=True) attack_name = "[" + ", ".join([str(ftr) for ftr in aug_params]) attacked_img = transform(attacked_img).unsqueeze(0).to(device) attack_names.append(attack_name) attacked_imgs.append(attacked_img) attacked_imgs = torch.cat(attacked_imgs, dim=0) # extract features fts = model(attacked_imgs) fts = fts.detach().cpu().numpy() # nearest neighbors search retrieved_Ds, retrieved_Is = index.search(fts, k=kneighbors) # iterate over images of the batch for jj in range(len(imgs)): retrieved_D, retrieved_I = retrieved_Ds[jj], retrieved_Is[jj] logs.append({ 'batch': ii, 'image_index': -1, 'attack': attack_names[jj], 'retrieved_distances': retrieved_D, 'retrieved_ids': retrieved_I, "kw": "icd_evaluation", }) icd_df = pd.DataFrame(logs).drop(columns='kw') return icd_df def main(params): # Set seeds for reproductibility torch.manual_seed(params.seed) torch.cuda.manual_seed_all(params.seed) np.random.seed(params.seed) random.seed(params.seed) # Create the directories os.makedirs(params.idx_dir, exist_ok=True) os.makedirs(params.output_dir, exist_ok=True) imgs_dir = os.path.join(params.output_dir, 'imgs') os.makedirs(imgs_dir, exist_ok=True) print(f'>>> Starting. \n \t Index will be saved in {params.idx_dir} - images will be saved in {imgs_dir} - evaluation logs in {params.output_dir}') # Build Index - see https://github.com/facebookresearch/faiss/wiki/Faiss-indexes print(f'>>> Building Index') idx_path = os.path.join(params.idx_dir, f'idx={params.idx_factory}_quant={params.quant}.index') if os.path.exists(idx_path): print(f'>>> Loading Index from {idx_path}') index = faiss.read_index(idx_path) else: print(f'>>> Index not found. Building Index with fts from {params.fts_training_path}...') index = utils.build_index_factory(params.idx_factory, params.quant, params.fts_training_path, idx_path) index.nprobe = params.nprobe if 'IVF' in params.idx_factory: # optionally get the centroids ivf = faiss.extract_index_ivf(index) ivf_centroids = ivf.quantizer.reconstruct_n(0, ivf.nlist) else: ivf_centroids = None # Adding reference images to the index print(f'>>> Adding reference images to the index from {params.fts_reference_path}...') fts = torch.load(params.fts_reference_path) index.add(fts.detach().cpu().numpy()) n_index_ref = index.ntotal if 'IVF' in params.idx_factory: ivf.make_direct_map() # Build the feature extractor model print(f'>>> Building backbone from {params.model_path}...') model = utils.build_backbone(path=params.model_path, name=params.model_name) model.eval() model.to(device) for param in model.parameters(): param.requires_grad = False # loss for feature cossim = nn.CosineSimilarity(dim=-1) pdist = nn.PairwiseDistance(p=2) def loss_f(ft, target): if params.loss_f == 'cossim': dists = -cossim(ft, target) else: dists = pdist(ft, target)**2 return torch.mean(dists) # loss for image mse = nn.MSELoss() def loss_i(imgs, imgs_ori): li = 0 bb = len(imgs) for ii in range(bb): # imgs do not have same size so we cannot use batch mse li += mse(imgs[ii], imgs_ori[ii]) return li/bb # build perceptual attenuation attenuation = attenuations.JND(preprocess = utils_img.UNNORMALIZE_IMAGENET).to(device) attenuation.requires_grad = False # Load images to activate print(f'>>> Loading images from {params.data_dir}...') transform = transforms.Compose([ transforms.ToTensor(), utils_img.NORMALIZE_IMAGENET, ]) transform_with_resize = transforms.Compose([ transforms.ToTensor(), utils_img.NORMALIZE_IMAGENET, transforms.Resize((params.resize_size, params.resize_size)), ]) data_loader = utils.get_dataloader(params.data_dir, transform, params.batch_size) print(f'>>> Activating images...') all_imgs = [] for it, imgs in enumerate(tqdm.tqdm(data_loader)): if params.debug and it > 5: break imgs = [img.to(device) for img in imgs] # Add to index resized_imgs = [functional.resize(img, (params.resize_size, params.resize_size)) for img in imgs] batch_imgs = torch.stack([img for img in resized_imgs]) fts = model(batch_imgs) index.add(fts.detach().cpu().numpy()) if 'IVF' in params.idx_factory: ivf.make_direct_map() # update the direct map if needed # Activate if params.active: imgs = activate_images(imgs, fts, model, index, ivf_centroids, attenuation, loss_f, loss_i, params) # Save images for ii, img in enumerate(imgs): img = torch.clamp(utils_img.UNNORMALIZE_IMAGENET(img), 0, 1) img = torch.round(255 * img)/255 img = img.detach().cpu() if params.save_imgs: save_image(img, os.path.join(imgs_dir, f'{it*params.batch_size + ii:05d}.png')) else: all_imgs.append(transforms.ToPILImage()(img)) if params.save_imgs: # create loader from saved images img_loader = utils.get_dataloader(imgs_dir, transform=None, batch_size=params.batch_size_eval) else: # list of images to list of batches img_loader = [all_imgs[ii:ii + params.batch_size_eval] for ii in range(0, len(all_imgs), params.batch_size_eval)] if params.eval_retrieval: print(f'>>> Evaluating nearest neighbors search...') image_indices = range(n_index_ref, index.ntotal) df = eval_retrieval(img_loader, image_indices, transform_with_resize, model, index, params.kneighbors, params.use_attacks_2) df.to_csv(os.path.join(params.output_dir, 'retr_df.csv'), index=False) df.fillna(0, inplace=True) df_mean = df.groupby(['attack', 'attack_param'], as_index=False).mean() print(f'\n{df_mean}') if params.eval_icd: print(f'>>> Evaluating copy detection on query set...') image_indices = range(n_index_ref, index.ntotal) img_nonatch_loader = utils.get_dataloader(params.query_nonmatch_dir, transform=None, batch_size=params.batch_size_eval) icd_df = eval_icd(img_loader, img_nonatch_loader, image_indices, transform_with_resize, model, index, params.kneighbors) icd_df_path = os.path.join(params.output_dir,'icd_df.csv') icd_df.to_csv(icd_df_path, index=False) print(f'\n{icd_df}') if __name__ == '__main__': # generate parser / parse parameters parser = get_parser() params = parser.parse_args() # run experiment main(params)
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import setuptools setuptools.setup( name="pterotactyl", version="0.1.0", author="Facebook AI Research", description="", long_description_content_type="text/markdown", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering :: Artificial Intelligence :: Active Sensing", ], python_requires=">=3.6", )
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import torch from pterotactyl.utility import utils BASE_MESH_SIZE = 1824 BASE_CHART_SIZE = 25 # replay buffer used for learning RL models over the environment class ReplayMemory: def __init__(self, args): self.args = args # basic info which might be used by a learning method # _n denotes observations occuring after the action is perfromed self.mask = torch.zeros((self.args.mem_capacity, self.args.num_actions)) self.mask_n = torch.zeros((self.args.mem_capacity, self.args.num_actions)) self.actions = torch.zeros((self.args.mem_capacity)) self.rewards = torch.zeros(self.args.mem_capacity) self.score = torch.zeros(self.args.mem_capacity) self.score_n = torch.zeros(self.args.mem_capacity) self.first_score = torch.zeros(self.args.mem_capacity) if self.args.use_recon: num_fingers = 1 if self.args.finger else 4 mesh_shape = BASE_MESH_SIZE + ( BASE_CHART_SIZE * self.args.num_grasps * num_fingers ) self.mesh = torch.zeros((self.args.mem_capacity, mesh_shape, 4)) self.mesh_n = torch.zeros((self.args.mem_capacity, mesh_shape, 4)) if self.args.use_latent: latent_size = utils.load_model_config(self.args.auto_location)[ 0 ].encoding_size self.latent = torch.zeros((self.args.mem_capacity, latent_size)) self.latent_n = torch.zeros((self.args.mem_capacity, latent_size)) self.first_latent = torch.zeros((self.args.mem_capacity, latent_size)) self.position = 0 self.count_seen = 0 # add a set of transitions to the replay buffer def push(self, action, observation, next_observation, reward): for i in range(len(action)): self.actions[self.position] = action[i] self.rewards[self.position] = reward[i] self.score[self.position] = observation["score"][i] self.score_n[self.position] = next_observation["score"][i] self.first_score[self.position] = observation["first_score"][i] self.mask[self.position] = observation["mask"][i] self.mask_n[self.position] = next_observation["mask"][i] if self.args.use_recon: self.mesh[self.position] = observation["mesh"][i] self.mesh_n[self.position] = next_observation["mesh"][i] if self.args.use_latent: self.latent[self.position] = observation["latent"][i] self.latent_n[self.position] = next_observation["latent"][i] self.first_latent[self.position] = observation["first_latent"][i] self.count_seen += 1 self.position = (self.position + 1) % self.args.mem_capacity # sample a set of transitions from the replay buffer def sample(self): if ( self.count_seen < self.args.burn_in or self.count_seen < self.args.train_batch_size ): return None indices = np.random.choice( min(self.count_seen, self.args.mem_capacity), self.args.train_batch_size ) data = { "mask": self.mask[indices], "mask_n": self.mask_n[indices], "actions": self.actions[indices], "rewards": self.rewards[indices], "score": self.score[indices], "score_n": self.score_n[indices], "first_score": self.first_score[indices], } if self.args.use_recon: data["mesh"] = self.mesh[indices] data["mesh_n"] = self.mesh_n[indices] if self.args.use_latent: data["latent"] = self.latent[indices] data["latent_n"] = self.latent_n[indices] data["first_latent"] = self.first_latent[indices] return data # save the replay buffer to disk def save(self, directory): data = { "mask": self.mask, "mask_n": self.mask_n, "actions": self.actions, "rewards": self.rewards, "score": self.score, "first_score": self.first_score, "position": self.position, "count_seen": self.count_seen, } if self.args.use_recon: data["mesh"] = self.mesh data["mesh_n"] = self.mesh_n if self.args.use_latent: data["latent"] = self.latent data["latent_n"] = self.latent_n data["first_latent"] = self.first_latent temp_path = directory + "_replay_buffer_temp.pt" full_path = directory + "_replay_buffer.pt" torch.save(data, temp_path) os.rename(temp_path, full_path) # load the replay buffer from the disk def load(self, directory): data = torch.load(directory + "_replay_buffer.pt") self.mask = data["mask"] self.mask_n = data["mask_n"] self.actions = data["actions"] self.actions = data["actions"] self.rewards = data["rewards"] self.score = data["score"] self.first_score = data["first_score"] self.position = data["position"] self.count_seen = data["count_seen"] if self.args.use_recon: self.mesh = data["mesh"] self.mesh_n = data["mesh_n"] if self.args.use_latent: self.latent = data["latent"] self.latent_n = data["latent_n"] self.first_latent = data["first_latent"]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random import numpy as np import torch import torch.utils.data from pterotactyl.utility import utils from pterotactyl.utility import data_loaders from pterotactyl.reconstruction.touch import model as touch_model from pterotactyl.reconstruction.vision import model as vision_model from pterotactyl.reconstruction.autoencoder import model as auto_model import pterotactyl.objects as objects from pterotactyl.simulator.scene import sampler from pterotactyl.simulator.physics import grasping from pterotactyl import pretrained class ActiveTouch: def __init__(self, args): self.args = args self.seed(self.args.seed) self.current_information = {} self.steps = 0 self.touch_chart_location = os.path.join( os.path.dirname(objects.__file__), "touch_chart.obj" ) self.vision_chart_location = os.path.join( os.path.dirname(objects.__file__), "vision_charts.obj" ) self.pretrained_recon_models() self.setup_recon() self.get_loaders() self.sampler = sampler.Sampler( grasping.Agnostic_Grasp, bs=self.args.env_batch_size, vision=False ) # Fix seeds def seed(self, seed): self.seed = seed torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) # get dataloaders def get_loaders(self): if not self.args.eval: self.train_data = data_loaders.mesh_loader_active( self.args, set_type="RL_train" ) set_type = "valid" else: set_type = "test" self.valid_data = data_loaders.mesh_loader_active(self.args, set_type=set_type) def pretrained_recon_models(self): if self.args.pretrained_recon: self.args.touch_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/" ) if self.args.use_img: if self.args.finger: self.args.vision_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_p/" ) self.args.auto_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/v_t_p/" ) else: self.args.vision_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_g/" ) self.args.auto_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/v_t_g/" ) else: if self.args.finger: self.args.vision_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/" ) self.args.auto_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/" ) else: self.args.vision_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_g/" ) self.args.auto_location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_g/" ) # initialize and load the correct reconstruction models def setup_recon(self): self.touch_verts, _ = utils.load_mesh_touch(self.touch_chart_location) # load predtrained touch prediction model touch_args, _ = utils.load_model_config(self.args.touch_location) weights = self.args.touch_location + '/model' self.touch_prediction = touch_model.Encoder().cuda() self.touch_prediction.load_state_dict(torch.load(weights)) self.touch_prediction.eval() # load predtrained vision prediction model vision_args, _ = utils.load_model_config(self.args.vision_location) weights = self.args.vision_location + '/model' self.mesh_info, self.initial_mesh = utils.load_mesh_vision( vision_args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] self.deform = vision_model.Deformation( self.mesh_info, self.initial_mesh, vision_args ).cuda() self.deform.load_state_dict(torch.load(weights)) self.deform.eval() # load predtrained autoencoder model if self.args.use_latent: auto_args, _ = utils.load_model_config(self.args.auto_location) weights = self.args.auto_location + '/model' self.auto_encoder = auto_model.AutoEncoder( self.mesh_info, self.initial_mesh, auto_args, only_encode=True ).cuda() self.auto_encoder.load_state_dict(torch.load(weights), strict=False) self.auto_encoder.eval() # reset the environment with new objects def reset(self, batch): self.current_data = {} self.steps = 0 self.current_data["first_score"] = None self.current_data["batch"] = batch self.current_data["mask"] = torch.zeros( [self.args.env_batch_size, self.args.num_actions] ) self.sampler.load_objects(batch["names"], from_dataset=True) obs = self.compute_obs() self.current_data["score"] = obs["score"] return obs # take a set in the environment with supplied actions def step(self, actions): self.update_masks(actions) obs = self.compute_obs(actions=actions) reward = self.current_data["score"] - obs["score"] self.current_data["score"] = obs["score"] self.steps += 1 done = self.steps == self.args.budget return obs, reward, done # compute the best myopic greedy actions and perfrom them def best_step(self, greedy_checks=None): best_actions = [None for _ in range(self.args.env_batch_size)] best_score = [1000 for _ in range(self.args.env_batch_size)] if greedy_checks == None or ( greedy_checks is not None and greedy_checks >= self.args.num_actions ): for i in range(self.args.num_actions): actions = [i for _ in range(self.args.env_batch_size)] obs = self.compute_obs(actions) for e, s in enumerate(obs["score"]): if s < best_score[e] and self.current_data["mask"][e][i] == 0: best_actions[e] = actions[e] best_score[e] = s else: possible_actions = [ list(range(self.args.num_actions)) for _ in range(self.args.env_batch_size) ] for i in range(self.args.env_batch_size): seen = torch.where(self.current_data["mask"][i] != 0)[0] actions = list(seen.data.cpu().numpy()) actions.sort() actions.reverse() for action in actions: del possible_actions[i][action] checks = min(greedy_checks, len(possible_actions[0])) selected_actions = [ random.sample(possible_actions[i], checks) for i in range(self.args.env_batch_size) ] for i in range(checks): actions = [ selected_actions[j][i] for j in range(self.args.env_batch_size) ] obs = self.compute_obs(actions) for e, s in enumerate(obs["score"]): if s < best_score[e]: best_actions[e] = actions[e] best_score[e] = s actions = np.array(best_actions) obs, reward, done = self.step(actions) return actions, obs, reward, done # check the result of perfroming a specific action def check_step(self, actions): obs = self.compute_obs(actions=actions) return obs # perfrom a given action and compute the new state observations def compute_obs(self, actions=None): with torch.no_grad(): charts = self.get_inputs(actions) img = self.current_data["batch"]["img"].cuda() verts, mask = self.deform(img, charts) if self.args.use_latent: latent = self.auto_encoder(verts.detach(), mask) score = self.get_score( verts, self.current_data["batch"]["gt_points"].cuda() ) if self.current_data["first_score"] is None: self.current_data["first_score"] = score if self.args.use_latent: self.current_data["first_latent"] = latent.data.cpu() mesh = torch.cat((verts, mask), dim=-1).data.cpu() obs = { "score": score.data.cpu().clone(), "first_score": self.current_data["first_score"].clone(), "mask": self.current_data["mask"].data.cpu().clone(), "names": self.current_data["batch"]["names"], "mesh": mesh.data.cpu().clone(), } if self.args.use_latent: obs["first_latent"] = self.current_data["first_latent"] obs["latent"] = latent.data.cpu() return obs # compute the Chamfer distance of object predictions def get_score(self, verts, gt_points): loss = utils.chamfer_distance( verts, self.mesh_info["faces"], gt_points, num=self.args.number_points ) loss = self.args.loss_coeff * loss return loss.cpu() # perform a given action and a convert the resulting signals into expected input for the reconstructor def get_inputs(self, actions=None): num_fingers = 1 if self.args.finger else 4 # this occurs if a reset is being perfromed # here the input is defined with not touch information if actions is None: self.touch_charts = torch.zeros( (self.args.env_batch_size, num_fingers, self.args.num_grasps, 25, 3) ).cuda() self.touch_masks = torch.zeros( (self.args.env_batch_size, num_fingers, self.args.num_grasps, 25, 1) ).cuda() self.vision_charts = self.initial_mesh.unsqueeze(0).repeat( self.args.env_batch_size, 1, 1 ) self.vision_masks = 3 * torch.ones( self.vision_charts.shape[:-1] ).cuda().unsqueeze(-1) else: # perfrom the action signals = self.sampler.sample(actions, touch_point_cloud=True) if self.args.finger: touch = ( torch.FloatTensor( signals["touch_signal"].data.numpy().astype(np.uint8) )[:, 1] .permute(0, 3, 1, 2) .cuda() / 255.0 ) pos = signals["finger_transfrom_pos"][:, 1].cuda() rot = signals["finger_transform_rot_M"][:, 1].cuda() ref_frame = {"pos": pos, "rot": rot} # convert the touch signals to charts touch_verts = ( self.touch_verts.unsqueeze(0) .repeat(self.args.env_batch_size, 1, 1) .cuda() ) pred_touch_charts = self.touch_prediction( touch, ref_frame, touch_verts ).contiguous() # define the touch charts in the input mesh to the reconstructor for i in range(self.args.env_batch_size): if signals["touch_status"][i][1] == "touch": self.touch_charts[i, 0, self.steps] = pred_touch_charts[i] self.touch_masks[i, 0, self.steps] = 2 elif signals["touch_status"][i][1] == "no_touch": self.touch_charts[i, 0, self.steps] = ( pos[i].view(1, 1, 3).repeat(1, 25, 1) ) self.touch_masks[i, 0, self.steps] = 1 else: self.touch_charts[i, 0, self.steps] = 0 self.touch_masks[i, 0, self.steps] = 0 else: touch = ( signals["touch_signal"] .view(-1, 121, 121, 3) .permute(0, 3, 1, 2) .cuda() / 255.0 ) pos = signals["finger_transfrom_pos"].view(-1, 3).cuda() rot = signals["finger_transform_rot_M"].view(-1, 3, 3).cuda() ref_frame = {"pos": pos, "rot": rot} # convert the touch signals to charts touch_verts = ( self.touch_verts.unsqueeze(0) .repeat(self.args.env_batch_size * 4, 1, 1) .cuda() ) pred_touch_charts = self.touch_prediction( touch, ref_frame, touch_verts ).contiguous() # define the touch charts in the input mesh to the reconstructor for i in range(self.args.env_batch_size): for j in range(4): if signals["touch_status"][i][j] == "touch": self.touch_charts[i, j, self.steps] = pred_touch_charts[ i * 4 + j ] self.touch_masks[i, j, self.steps] = 2 elif signals["touch_status"][i][j] == "no_touch": self.touch_charts[i, j, self.steps] = ( pos[i * 4 + j].view(1, 1, 3).repeat(1, 25, 1) ) self.touch_masks[i, j, self.steps] = 1 else: self.touch_charts[i, j, self.steps] = 0 self.touch_masks[i, j, self.steps] = 0 charts = { "touch_charts": self.touch_charts.view( self.args.env_batch_size, num_fingers * 5 * 25, 3 ).clone(), "vision_charts": self.vision_charts.clone(), "touch_masks": self.touch_masks.view( self.args.env_batch_size, num_fingers * 5 * 25, 1 ).clone(), "vision_masks": self.vision_masks.clone(), } return charts # this is perfromed due to a meoery leak in pybullet where loaded meshes are not properly deleted def reset_pybullet(self): self.sampler.disconnect() del self.sampler self.sampler = sampler.Sampler( grasping.Agnostic_Grasp, bs=self.args.env_batch_size, vision=True ) # update the set of action which have been performed def update_masks(self, actions): for i in range(actions.shape[0]): self.current_data["mask"][i, actions[i]] = 1
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn import torch from pterotactyl.utility import utils class Latent_Model(nn.Module): def __init__(self, args): super().__init__() self.args = args latent_size = utils.load_model_config(self.args.auto_location)[0].encoding_size # for embedding previously performed actions layers = [] layers.append(nn.Sequential(nn.Linear(self.args.num_actions, 200), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(200, 100), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(100, latent_size))) self.action_model = nn.Sequential(*layers) # MLP taking as input embedding of actions, a latent embedding of first prediction, and current prediction # and predicts a value for every action hidden_sizes = ( [latent_size * 3] + [args.hidden_dim for _ in range(args.layers - 1)] + [self.args.num_actions] ) layers = [] for i in range(args.layers): if i < args.layers - 1: layers.append( nn.Sequential( nn.Linear(hidden_sizes[i], hidden_sizes[i + 1]), nn.ReLU() ) ) else: layers.append( nn.Sequential(nn.Linear(hidden_sizes[i], hidden_sizes[i + 1])) ) self.model = nn.Sequential(*layers) self.args = args def forward(self, obs): action_input = self.action_model(obs["mask"].float().cuda()) shape_input_1 = obs["latent"].float().cuda() shape_input_2 = obs["first_latent"].float().cuda() full_input = torch.cat((action_input, shape_input_1, shape_input_2), dim=-1) if self.args.normalize: value = torch.sigmoid(self.model(full_input)) * 2 - 1 elif self.args.use_img: value = torch.sigmoid(self.model(full_input)) * 6 - 3 else: value = torch.sigmoid(self.model(full_input)) * 200 - 100 return value
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import json import argparse from collections import namedtuple from tqdm import tqdm from torch.utils.data import DataLoader import torch import torch.optim as optim from torch.utils.tensorboard import SummaryWriter import numpy as np from pterotactyl.policies import environment from pterotactyl.policies.baselines import baselines from pterotactyl.policies.supervised import model as learning_model from pterotactyl.utility import utils from pterotactyl import pretrained class Engine: def __init__(self, args): self.args = args self.results_dir = os.path.join("results", args.exp_type, args.exp_id) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", args.exp_type, args.exp_id ) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) if not self.args.eval: utils.save_config(self.checkpoint_dir, args) def __call__(self): # setup the environment, policy and data self.env = environment.ActiveTouch(self.args) self.policy = baselines.even_sampler(self.args) train_loaders, valid_loaders = self.get_loaders() self.step = 0 self.models = [ learning_model.Latent_Model(self.args).cuda() for i in range(self.args.budget) ] # logging information writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) # evaluate the policy if self.args.eval: with torch.no_grad(): self.load(train=False) self.step = self.args.budget - 1 self.validate(valid_loaders, writer) return else: for i in range(self.args.budget): params = list(self.models[i].parameters()) self.optimizer = optim.Adam(params, lr=self.args.lr, weight_decay=0) self.load(train=True) for model in self.models: model.eval() self.epoch = 0 self.best_loss = 10000 self.last_improvement = 0 for j in range(self.args.epoch): self.train(train_loaders, writer) with torch.no_grad(): self.validate(valid_loaders, writer) if self.check_values(): break self.epoch += 1 self.step += 1 # load data using pytorch dataloader def get_loaders(self): if not self.args.eval: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=True, num_workers=4, collate_fn=self.env.train_data.collate, ) else: train_loader = [] valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader def train(self, dataloader, writer): total_loss = 0 iterations = 0.0 self.models[self.step].train() for v, batch in enumerate( tqdm(dataloader, total=min(self.args.train_steps, len(dataloader))) ): if v >= self.args.train_steps: break try: obs = self.env.reset(batch) except: continue # move to the correct step with torch.no_grad(): cur_actions = [] for i in range(self.step): values = self.models[i](obs) for acts in cur_actions: for e, act in enumerate(acts): values[e][act] = 1e10 actions = torch.argmin(values, dim=1) next_obs, reward, all_done = self.env.step(actions) obs = next_obs cur_actions.append(actions) # predict action values all_pred_values = self.models[self.step](obs) pred_values = [] # sample some random actions and compute their value random_actions = np.random.randint( 50, size=self.args.env_batch_size * 5 ).reshape(5, self.args.env_batch_size) target = [] for actions in random_actions: temp_obs = self.env.check_step(actions) if self.args.normalize: score = (temp_obs["first_score"] - temp_obs["score"]) / temp_obs[ "first_score" ] else: score = temp_obs["first_score"] - temp_obs["score"] cur_pred_values = [] for j, a in enumerate(actions): cur_pred_values.append(all_pred_values[j, a]) pred_values.append(torch.stack(cur_pred_values)) target.append(score) target = torch.stack(target).cuda() pred_values = torch.stack(pred_values) loss = ((target - pred_values) ** 2).mean() # backprop loss.backward() self.optimizer.step() # log message = f"Train || step {self.step + 1 } || Epoch: {self.epoch}, loss: {loss.item():.3f}, b_ptp: {self.best_loss:.3f}" tqdm.write(message) total_loss += loss.item() iterations += 1.0 self.train_loss = total_loss / iterations writer.add_scalars( f"train_loss_{self.step}", {self.args.exp_id: total_loss / iterations}, self.epoch, ) # perfrom the validation def validate(self, dataloader, writer): observations = [] scores = [] actions = [] names = [] self.models[self.step].eval() valid_length = int(len(dataloader) * 0.2) for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] try: obs = self.env.reset(batch) except: continue self.policy.reset() cur_scores = [obs["score"]] cur_actions = [] for i in range(self.step + 1): action_values = self.models[i](obs) for acts in cur_actions: for e, act in enumerate(acts): action_values[e][act] = 1e10 action = torch.argmin(action_values, dim=1) next_obs, _, _ = self.env.step(action) # record observation obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(action.data.cpu()) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || score: {print_score:.4f}, " message += f"reward = {print_reward:.4f}" tqdm.write(message) if self.args.visualize and v == 5 and self.args.eval: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() self.current_loss = current_loss print("*" * 30) message = f"Total Valid || step {self.step + 1 } || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if self.args.visualize and self.args.eval: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) if not self.args.eval: writer.add_scalars( f"valid_loss_{self.step}", {self.args.exp_id: current_loss}, self.epoch ) def check_values(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss print(f"Saving with {improvement:.3f} improvement on Validation Set ") self.best_loss = self.current_loss self.last_improvement = 0 self.save() return False else: self.last_improvement += 1 if self.last_improvement >= self.args.patience: print(f"Over {self.args.patience} steps since last imporvement") print("Moving to next step or exiting") return True def load(self, train=False): if self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/supervised/v_t_p" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/supervised/v_t_g" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/supervised/t_p" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/supervised/t_g" ) config_location = f"{location}/config.json" with open(config_location) as json_file: data = json.load(json_file) data["auto_location"] = self.args.auto_location data["eval"] = True data["visualize"] = self.args.visualize self.args = namedtuple("ObjectName", data.keys())(*data.values()) self.models = [ learning_model.Latent_Model(self.args).cuda() for i in range(self.args.budget) ] for i in range(self.args.budget): self.models[i].load_state_dict(torch.load(location + f"/model_{i}")) else: if train: for i in range(self.step): self.models[i].load_state_dict( torch.load(self.checkpoint_dir + f"/model_{i}") ) else: for i in range(self.args.budget): self.models[i].load_state_dict( torch.load(self.checkpoint_dir + f"/model_{i}") ) def save(self): torch.save( self.models[self.step].state_dict(), self.checkpoint_dir + f"/model_{self.step}", ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--auto_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/", help="the location of the autoencoder part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--epoch", type=int, default=3000, help="number of epochs per step" ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--num_actions", type=int, default=50, help="number of action options" ) parser.add_argument( "--eval", action="store_true", default=False, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name." ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment type." ) parser.add_argument( "--layers", type=int, default=4, help="Number of layers in the q network" ) parser.add_argument( "--patience", type=int, default=25, help="number of epochs without progress before stopping", ) parser.add_argument( "--training_actions", type=int, default=5, help="number of action values learned for each object in each iteration", ) parser.add_argument( "--hidden_dim", type=int, default=200, help="hidden dimension size in layers in the q network", ) parser.add_argument( "--train_steps", type=int, default=200, help="number of training steps per epoch", ) parser.add_argument( "--normalize", type=int, default=0, help="number of training steps per epoch" ) parser.add_argument( "--lr", type=float, default=0.001, help="Initial learning rate." ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() args.use_recon = False args.use_latent = True trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random import torch import torch.nn as nn import torch.optim as optim from pterotactyl.policies.DDQN import model from pterotactyl.policies.baselines import baselines # DDQN training module class DDQN(nn.Module): def __init__(self, args, adj_info, replay): super().__init__() self.args = args self.model = self.get_model(adj_info) self.replay = replay self.optimizer = optim.Adam(self.model.parameters(), lr=args.lr) self.args = args self.random_sampler = baselines.random_sampler(self.args) # set the value of perfromaed action to never be selected def penalise_actions(self, values, obs): values[obs["mask"] > 0] = -1e10 return values # select the model type required def get_model(self, adj): if self.args.pretrained: if self.args.use_latent: if self.args.use_img: if self.args.finger: self.args.hidden_dim = 300 self.args.layers = 5 else: self.args.hidden_dim = 300 self.args.layers = 5 else: if self.args.finger: self.args.hidden_dim = 300 self.args.layers = 5 else: self.args.hidden_dim = 300 self.args.layers = 2 else: if self.args.use_img: if self.args.finger: self.args.hidden_dim = 100 self.args.layers = 5 else: self.args.hidden_dim = 100 self.args.layers = 5 else: if self.args.finger: self.args.hidden_dim = 100 self.args.layers = 5 else: self.args.hidden_dim = 100 self.args.layers = 2 if self.args.use_latent: return model.Latent_Model(self.args).cuda() elif self.args.use_recon: return model.Graph_Model(self.args, adj).cuda() else: print("No Model type selected") exit() # decrease the epsilon value def update_epsilon(self, epsilon, args): return max(args.epsilon_end, epsilon * args.epsilon_decay) # add the observed transition to the replay buffer def add_experience(self, action, observation, next_observation, reward): self.replay.push(action, observation, next_observation, reward) # update the parameters of the model using DDQN update rule def update_parameters(self, target_net): self.model.train() batch = self.replay.sample() if batch is None: return None # get observations not_done_mask = batch["mask"].cuda().sum(dim=1) < self.args.budget - 1 actions = batch["actions"].cuda() rewards = batch["rewards"].cuda() cur_score = batch["score"].cuda() first_score = batch["first_score"].cuda() # normalize if needed if self.args.normalization == "first": rewards = rewards / first_score elif self.args.normalization == "current": rewards = rewards / cur_score # Standard DDQN update rule all_q_values_cur = self.forward(batch, penalize=False) q_values = all_q_values_cur.gather(1, actions.unsqueeze(1).long()).squeeze() with torch.no_grad(): best_next_action = self.forward(batch, next=True).detach().max(1)[1] target_values = target_net.forward( batch, next=True, penalize=False ).detach() all_q_values_next = torch.zeros((q_values.shape[0])).cuda() for i in range(q_values.shape[0]): if not_done_mask[i]: all_q_values_next[i] = target_values[i][best_next_action[i]] target_values = (self.args.gamma * all_q_values_next) + rewards loss = ((q_values - target_values) ** 2).mean() # backprop self.optimizer.zero_grad() loss.backward() for param in self.parameters(): if param.grad is not None: param.grad.data.clamp_(-1, 1) self.optimizer.step() return loss.item() def forward(self, obs, next=False, penalize=True): value = self.model(obs, next=next) if penalize: value = self.penalise_actions(value, obs) return value def get_action(self, obs, eps_threshold, give_random=False): sample = random.random() if sample < eps_threshold or give_random: return self.random_sampler.get_action(obs["mask"]) else: with torch.no_grad(): self.model.eval() q_values = self(obs) actions = torch.argmax(q_values, dim=1).data.cpu().numpy() return actions
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn as nn import torch from torch.nn.parameter import Parameter import torch.nn.functional as F import numpy as np from pterotactyl.utility import utils # DDQN Q network which makes use of a pertrained latent space of predicted objects class Latent_Model(nn.Module): def __init__(self, args): super().__init__() self.args = args latent_size = utils.load_model_config(self.args.auto_location)[0].encoding_size # for embedding previously performed actions layers = [] layers.append(nn.Sequential(nn.Linear(self.args.num_actions, 200), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(200, 100), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(100, latent_size))) self.action_model = nn.Sequential(*layers) # MLP taking as input embedding of actions, a latent embedding of first prediction, and current prediction # and predicts a value for every action hidden_sizes = ( [latent_size * 3] + [args.hidden_dim for _ in range(args.layers - 1)] + [self.args.num_actions] ) layers = [] for i in range(args.layers): if i < args.layers - 1: layers.append( nn.Sequential( nn.Linear(hidden_sizes[i], hidden_sizes[i + 1]), nn.ReLU() ) ) else: layers.append( nn.Sequential(nn.Linear(hidden_sizes[i], hidden_sizes[i + 1])) ) self.model = nn.Sequential(*layers) self.args = args def forward(self, obs, next=False): if next: action_input = self.action_model(obs["mask_n"].float().cuda()) shape_input_1 = obs["latent_n"].float().cuda() else: action_input = self.action_model(obs["mask"].float().cuda()) shape_input_1 = obs["latent"].float().cuda() shape_input_2 = obs["first_latent"].float().cuda() full_input = torch.cat((action_input, shape_input_1, shape_input_2), dim=-1) value = self.model(full_input) return value # DDQN Q network which makes use of full mesh prediction class Graph_Model(nn.Module): def __init__(self, args, adj): super().__init__() self.adj = adj["adj"].data.cpu().cuda() self.args = args self.num_layers = args.layers input_size = 100 # for embedding previously performed actions layers = [] layers.append(nn.Sequential(nn.Linear(50, 200), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(200, 100), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(100, input_size))) self.action_model = nn.Sequential(*layers) # embedding of vertex positions and masks self.positional_embedding = Positional_Encoder(input_size) self.mask_embedding = Mask_Encoder(input_size) # GCN for predicting actions values from input mesh hidden_sizes = ( [input_size * 3] + [args.hidden_dim for _ in range(args.layers - 1)] + [self.args.num_actions] ) layers = [] for i in range(args.layers): layers.append( GCN_layer( hidden_sizes[i], hidden_sizes[i + 1], cut=self.args.cut, do_cut=(i != self.num_layers - 1), ) ) self.layers = nn.ModuleList(layers) def forward(self, obs, next=False): if next: action_embedding = self.action_model(obs["mask_n"].float().cuda()) mesh = obs["mesh_n"][:, :, :3].float().cuda() mask = obs["mesh_n"][:, :, 3:].float().cuda() else: action_embedding = self.action_model(obs["mask"].float().cuda()) mesh = obs["mesh"][:, :, :3].float().cuda() mask = obs["mesh"][:, :, 3:].float().cuda() positional_embedding = self.positional_embedding(mesh) mask_embedding = self.mask_embedding(mask) action_embedding = action_embedding.unsqueeze(1).repeat(1, mesh.shape[1], 1) vertex_features = torch.cat( (action_embedding, positional_embedding, mask_embedding), dim=-1 ) # iterate through GCN layers x = self.layers[0](vertex_features, self.adj, F.relu) for i in range(1, self.num_layers): x = self.layers[i]( x, self.adj, F.relu if (i != self.num_layers - 1) else lambda x: x ) value = torch.max(x, dim=1)[0] return value # Graph convolutional network layer class GCN_layer(nn.Module): def __init__(self, in_features, out_features, cut=0.33, do_cut=True): super(GCN_layer, self).__init__() self.weight = Parameter(torch.Tensor(1, in_features, out_features)) self.bias = Parameter(torch.Tensor(out_features)) self.reset_parameters() self.cut_size = cut self.do_cut = do_cut def reset_parameters(self): stdv = 6.0 / math.sqrt((self.weight.size(1) + self.weight.size(0))) stdv *= 0.3 self.weight.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-0.1, 0.1) def forward(self, features, adj, activation): features = torch.matmul(features, self.weight) # uf we want to only share a subset of features with neighbors if self.do_cut: length = round(features.shape[-1] * self.cut_size) output = torch.matmul(adj, features[:, :, :length]) output = torch.cat((output, features[:, :, length:]), dim=-1) output[:, :, :length] += self.bias[:length] else: output = torch.matmul(adj, features) output = output + self.bias return activation(output) # encode the positional information of vertices using Nerf Embeddings class Positional_Encoder(nn.Module): def __init__(self, input_size): super(Positional_Encoder, self).__init__() layers = [] layers.append( nn.Linear(63, input_size // 4) ) # 10 nerf layers + original positions layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 4, input_size // 2)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 2, input_size)) self.model = nn.Sequential(*layers) # apply nerf embedding of the positional information def nerf_embedding(self, points): embeddings = [] for i in range(10): if i == 0: embeddings.append(torch.sin(np.pi * points)) embeddings.append(torch.cos(np.pi * points)) else: embeddings.append(torch.sin(np.pi * 2 * i * points)) embeddings.append(torch.cos(np.pi * 2 * i * points)) embeddings = torch.cat(embeddings, dim=-1) return embeddings def forward(self, positions): shape = positions.shape positions = positions.contiguous().view(shape[0] * shape[1], -1) # combine nerf embedding with origional positions positions = torch.cat((self.nerf_embedding((positions)), positions), dim=-1) embeding = self.model(positions).view(shape[0], shape[1], -1) return embeding # embedding network for vetex masks class Mask_Encoder(nn.Module): def __init__(self, input_size): super(Mask_Encoder, self).__init__() layers_mask = [] layers_mask.append(nn.Embedding(4, input_size)) self.model = nn.Sequential(*layers_mask) def forward(self, mask): shape = mask.shape mask = mask.contiguous().view(-1, 1) embeding_mask = self.model(mask.long()).view(shape[0], shape[1], -1) return embeding_mask
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader import torch import argparse from submitit.helpers import Checkpointable from tqdm import tqdm from pterotactyl.policies.DDQN import ddqn from pterotactyl.policies import environment from pterotactyl.policies import replay from pterotactyl.utility import utils from pterotactyl import pretrained # module for training the DDQN models class Engine(Checkpointable): def __init__(self, args): self.args = args self.steps = 0 self.episode = 0 self.epoch = 0 self.cur_loss = 10000 self.best_loss = 10000 self.epsilon = self.args.epsilon_start self.results_dir = os.path.join("results", args.exp_type, args.exp_id) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", self.args.exp_type, self.args.exp_id ) if not os.path.exists((self.checkpoint_dir)): os.makedirs(self.checkpoint_dir) utils.save_config(self.checkpoint_dir, args) def __call__(self): # initialize the learning environment self.env = environment.ActiveTouch(self.args) self.replay_memory = replay.ReplayMemory(self.args) self.policy = ddqn.DDQN(self.args, self.env.mesh_info, self.replay_memory) self.target_net = ddqn.DDQN(self.args, self.env.mesh_info, None) self.target_net.load_state_dict(self.policy.state_dict()) self.target_net.eval() self.writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) self.window_size = 1000 self.ave_reward = torch.zeros((self.window_size)).cuda() self.ave_recon = torch.zeros((self.window_size)).cuda() train_loader, valid_loaders = self.get_loaders() if self.args.eval: self.load(best=True) self.validate(valid_loaders) return self.resume() # training loop for epoch in range(self.epoch, self.args.epochs): self.train(train_loader) self.env.reset_pybullet() if self.steps >= self.args.burn_in: with torch.no_grad(): self.validate(valid_loaders) self.env.reset_pybullet() self.check_values_and_save() self.epoch += 1 # load the environment data into pytorch dataloaders def get_loaders(self): if self.args.eval: train_loader = "" else: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=True, num_workers=4, collate_fn=self.env.train_data.collate, ) valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader # training iteration def train(self, dataloader): for v, batch in enumerate(tqdm(dataloader, total=self.args.train_steps)): if v > self.args.train_steps - 1: break obs = self.env.reset(batch) all_done = False total_reward = 0 while not all_done: # update epsilon if self.steps >= self.args.burn_in: self.epsilon = self.policy.update_epsilon(self.epsilon, self.args) # get action get_random_action = self.steps < self.args.burn_in action = self.policy.get_action( obs, eps_threshold=self.epsilon, give_random=get_random_action ) # perform action with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # save experiance self.policy.add_experience(action, obs, next_obs, reward) # update policy if self.steps >= self.args.burn_in: self.policy.update_parameters(self.target_net) # update target network if ( self.steps % self.args.target_update == 0 and self.steps >= self.args.burn_in ): print("+" * 5 + " updating target " "+" * 5) self.target_net.load_state_dict(self.policy.state_dict()) torch.cuda.empty_cache() obs = next_obs self.steps += 1 # logs recon = float((obs["score"] / obs["first_score"]).mean().item()) reward = float( ((obs["first_score"] - obs["score"]) / obs["first_score"]).mean().item() ) self.ave_reward[self.episode % self.window_size] = reward self.ave_recon[self.episode % self.window_size] = float( (obs["score"] / obs["first_score"]).mean().item() ) ave_reward = self.ave_reward[: self.episode + 1].mean() ave_recon = self.ave_recon[: self.episode + 1].mean() message = ( f"T Epoch: {self.epoch} Ep: {self.episode}, recon: {recon:.2f}, " f"reward: {reward:.2f}, a_recon: {ave_recon:.2f}, a_reward: {ave_reward:.2f}, " f" eps: {self.epsilon:.3f}, best: {self.best_loss:.3f}" ) tqdm.write(message) self.episode += 1 # logs if self.steps >= self.args.burn_in: self.writer.add_scalars( "train_recon_|_", {self.args.exp_id: ave_recon}, self.steps ) self.writer.add_scalars( "train_reward_|_", {self.args.exp_id: ave_reward}, self.steps ) # validation iteration def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] print("*" * 30) print("Doing Validation") total = self.args.train_steps if not self.args.eval else None for v, batch in enumerate(tqdm(dataloader, total=total)): names += batch["names"] if v > self.args.valid_steps - 1 and not self.args.eval: break obs = self.env.reset(batch) all_done = False cur_scores = [obs["score"]] cur_actions = [] while not all_done: # select actions action = self.policy.get_action( obs, eps_threshold=-1, give_random=False ) # perform actions with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # record actions torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || E: {self.epoch}, score: {print_score:.2f}, best score: {self.best_loss:.2f} " message += f"reward = {print_reward:.2f}" tqdm.write(message) if self.args.visualize and v == 5 and self.args.eval: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) actions = torch.cat(actions) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() variation = torch.std(actions, dim=0).mean() self.current_loss = (scores[:, -1] / scores[:, 0]).mean() print("*" * 30) message = f"Total Valid || E: {self.epoch}, score: {self.current_loss:.4f}, best score: {self.best_loss:.4f} " message += f"reward = {rewards.mean():.2f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if not self.args.eval: self.writer.add_scalars( f"Valid_recon_|_", {self.args.exp_id: self.current_loss}, self.steps ) self.writer.add_scalars( f"Valid_reward_|_", {self.args.exp_id: rewards.mean()}, self.steps ) self.writer.add_scalars( "epsilon_|_", {self.args.exp_id: self.epsilon}, self.steps ) self.writer.add_scalars( f"Valid_variation_|_", {self.args.exp_id: variation}, self.steps ) if self.args.visualize and self.args.eval: utils.visualize_actions(self.results_dir, actions, self.args) # check if the new validation score if better and save checkpoint def check_values_and_save(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss print( f"Saving with {improvement:.3f} improvement in Chamfer Distance on Validation Set " ) self.best_loss = self.current_loss self.save(best=True) print(f"Saving DQN checkpoint") self.save(best=False) print("Saving replay memory.") self.replay_memory.save(self.checkpoint_dir) # resume training def resume(self): path = self.checkpoint_dir + "/recent" if os.path.exists(path + "_model"): print(f"Loading DQN checkpoint") self.load(best=False) print("Loading replay memory.") self.replay_memory.load(path) # save current state of training def save(self, best=False): if best: path = self.checkpoint_dir + "/best" else: path = self.checkpoint_dir + "/recent" self.replay_memory.save(path) torch.save( { "dqn_weights": self.policy.state_dict(), "target_weights": self.target_net.state_dict(), "args": self.args, "episode": self.episode, "steps": self.steps, "ave_reward": self.ave_reward, "ave_recon": self.ave_recon, "epsilon": self.epsilon, "epoch": self.epoch, }, path + "_model", ) # load previous state of training def load(self, best=True): if self.args.pretrained: prefix = "l" if self.args.use_latent else "g" if self.args.use_img: if self.args.finger: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_v_t_p" ) else: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_v_t_g" ) else: if self.args.finger: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_t_p" ) else: path = ( os.path.dirname(pretrained.__file__) + f"/policies/DDQN/{prefix}_t_g" ) checkpoint = torch.load(path) self.policy.load_state_dict(checkpoint["dqn_weights"]) else: if best: path = self.checkpoint_dir + "/best_model" else: path = self.checkpoint_dir + "/recent_model" checkpoint = torch.load(path) self.policy.load_state_dict(checkpoint["dqn_weights"]) self.episode = checkpoint["episode"] + 1 if not self.args.eval: self.target_net.load_state_dict(checkpoint["target_weights"]) self.steps = checkpoint["steps"] self.ave_reward = checkpoint["ave_reward"] self.ave_recon = checkpoint["ave_recon"] self.epsilon = checkpoint["epsilon"] self.epoch = checkpoint["epoch"] + 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cut", type=float, default=0.33, help="The shared size of features in the GCN.", ) parser.add_argument( "--layers", type=int, default=4, help="Number of layers in the q network" ) parser.add_argument( "--hidden_dim", type=int, default=200, help="hidden dimension size in layers in the q network", ) parser.add_argument( "--epochs", type=int, default=1000, help="Number of epochs to use." ) parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--auto_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/", help="the location of the autoencoder part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--lr", type=float, default=0.0003, help="Initial learning rate." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch of objects sampled from the environment", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Size of the batch of transitions sampled for training the q network.", ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name." ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--patience", type=int, default=70, help="How many epochs without imporvement before training stops.", ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--budget", type=int, default=5) parser.add_argument( "--normalization", type=str, choices=["first", "current", "none"], default="first", help="how to normalize the reward for the q network update ", ) parser.add_argument( "--mem_capacity", type=int, default=300, help="the size of the replay buffer" ) parser.add_argument("--burn_in", type=int, default=20, help="ddqn burn in time") parser.add_argument( "--num_actions", type=int, default=50, help=" number of possible actions" ) parser.add_argument("--gamma", type=float, default=0, help="ddqn gamma value") parser.add_argument( "--epsilon_start", type=float, default=1.0, help="ddqn initial epsilon value" ) parser.add_argument( "--epsilon_decay", type=float, default=0.9999, help="ddqn epsilon decay value" ) parser.add_argument( "--epsilon_end", type=float, default=0.01, help="ddqn minimum epsilon value" ) parser.add_argument( "--train_steps", type=int, default=20, help="number of training iterations per epoch", ) parser.add_argument( "--valid_steps", type=int, default=10, help="number of validation iterations per epoch", ) parser.add_argument( "--target_update", type=int, default=3000, help="frequency of target network updates", ) parser.add_argument( "--use_latent", action="store_true", default=False, help="if the latent embedding of objects is to be used", ) parser.add_argument( "--use_recon", action="store_true", default=False, help="if the object prediction is to be directly used", ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random from tqdm import tqdm from torch.utils.data import DataLoader import torch import argparse import numpy as np from submitit.helpers import Checkpointable from pterotactyl.policies import environment from pterotactyl.utility import utils from pterotactyl import pretrained class Engine(Checkpointable): def __init__(self, args): self.args = args def __call__(self): # setup the environment, policy and data self.env = environment.ActiveTouch(self.args) self.spot = 0 self.actions = [] self.latents = [] train_loaders, valid_loaders = self.get_loaders() self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", self.args.exp_type ) if not os.path.exists((self.checkpoint_dir)): os.makedirs(self.checkpoint_dir) self.checkpoint = self.checkpoint_dir + "actions.npy" # evaluate the policy with torch.no_grad(): self.load() if self.args.eval: self.validate(valid_loaders) else: self.train(train_loaders) self.save() # load data using pytorch dataloader def get_loaders(self): if not self.args.eval: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.train_data.collate, ) else: train_loader = [] valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader # compute the lowest error action for the current step def train(self, dataloader): # for all training data training_length = len(dataloader) random.seed(self.args.seed) training_instances = random.sample( range(training_length), int(training_length * 0.4) ) for v, batch in enumerate(tqdm(dataloader)): if v < self.spot: continue if v not in training_instances: continue self.spot = v obs = self.env.reset(batch) for i in range(self.args.budget): # find best action action, next_obs, reward, all_done = self.env.best_step( greedy_checks=self.args.greedy_checks ) # record action, embedding correspondence for i in range(self.args.env_batch_size): self.actions.append(action[i]) self.latents.append(obs["latent"][i]) obs = next_obs if v % 3 == 0: self.save() # perfrom the validation def validate(self, dataloader): self.latents = torch.stack(self.latents).cuda() observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) all_done = False cur_scores = [obs["score"]] cur_actions = [] while not all_done: action = [] for i in range(self.args.env_batch_size): latent_distance = ( (self.latents - obs["latent"][i].cuda()) ** 2 ).mean(dim=1) smallest_idxs = torch.topk( latent_distance, self.args.num_grasps * 5, largest=False, sorted=True, )[1] for idx in smallest_idxs: possible_action = self.actions[idx] if len(cur_actions) == 0: action.append(possible_action) break seen_actions = list( torch.stack(cur_actions)[:, i].data.cpu().numpy() ) if possible_action not in seen_actions: action.append(possible_action) break action = np.array(action) next_obs, reward, all_done = self.env.step(action) # record observation obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || score: {print_score:.4f}, " message += f"reward = {print_reward:.4f}" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) def load(self): if self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/NearestNeighbor/v_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/NearestNeighbor/v_t_g.npy" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/NearestNeighbor/t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/NearestNeighbor/t_g.npy" ) data = np.load(location, allow_pickle=True).item() self.actions = list(data["actions"]) self.latents = [torch.FloatTensor(d) for d in data["latents"]] self.spot = data["spot"] else: try: data = np.load(self.checkpoint, allow_pickle=True).item() self.actions = list(data["actions"]) self.latents = [torch.FloatTensor(d) for d in data["latents"]] self.spot = data["spot"] except: return def save(self): actions = np.array(self.actions) latents = torch.stack(self.latents).data.cpu().numpy() data = {"actions": actions, "latents": latents, "spot": self.spot} np.save(self.checkpoint, data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--auto_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/", help="the location of the autoencoder part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--num_actions", type=int, default=50, help="number of action options" ) parser.add_argument( "--eval", action="store_true", default=False, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--greedy_checks", type=int, default=50, help="Number of actions to check at each time step", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() args.use_recon = False args.use_latent = True trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import random # class for getting radnom samples from the space of action class random_sampler: def __init__(self, args): super().__init__() self.args = args def get_action(self, mask): batch_size = mask.shape[0] actions = [] for b in range(batch_size): propositions = list(np.arange(self.args.num_actions)) indexes = list(np.where(mask[b] > 0)[0]) if len(indexes) > 0: for index in sorted(indexes, reverse=True): del propositions[index] actions.append(random.choice(propositions)) return np.array(actions) # class for evenly spaced samples from the space of actions class even_sampler: def __init__(self, args): super().__init__() self.args = args self.generate_points() # precompute the actions to be used in the trajectory def generate_points(self): self.angles = [] for i in range(self.args.env_batch_size): spacing = self.args.num_actions // self.args.num_grasps set = [spacing * i for i in range(self.args.num_grasps)] update_num = random.choice(range(self.args.num_actions)) choice = [] for j in range(self.args.num_grasps): choice.append((set[j] + update_num) % self.args.num_actions) self.angles.append(choice) # reset the precomputed actions def reset(self): self.generate_points() def get_action(self, mask): batch_size = mask.shape[0] actions = [] for b in range(batch_size): actions.append(self.angles[b][0]) del self.angles[b][0] return np.array(actions)
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from tqdm import tqdm import os from torch.utils.data import DataLoader import torch import argparse from pterotactyl.policies import environment from pterotactyl.policies.baselines import baselines from pterotactyl.utility import utils from pterotactyl import pretrained class Engine: def __init__(self, args): self.args = args def __call__(self): # set up environment and policy and data utils.set_seeds(self.args.seed) self.env = environment.ActiveTouch(self.args) self.policy = baselines.even_sampler(self.args) valid_loaders = self.get_loaders() self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) # compute accuracy with torch.no_grad(): self.validate(valid_loaders) # load data with pytorch dataloader def get_loaders(self): valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=10, collate_fn=self.env.valid_data.collate, ) return valid_loader # perform the even policy def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) self.policy.reset() all_done = False cur_observations = [obs] cur_scores = [obs["score"]] cur_actions = [] while not all_done: # select actions action = self.policy.get_action(obs["mask"]) # perform actions with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # record actions torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() temp_scored = torch.cat(scores) current_loss = (temp_scored[:, -1] / temp_scored[:, 0]).mean() message = f"Valid || score: {print_score:.4f} " message += f"reward = {print_reward:.4f} ave: {100*current_loss:.4f} %" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the vision part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--num_actions", type=int, default=50) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", type=bool, default=True, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) args = parser.parse_args() trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from tqdm import tqdm import os from torch.utils.data import DataLoader import torch import argparse from pterotactyl.policies import environment from pterotactyl.policies.baselines import baselines from pterotactyl.utility import utils from pterotactyl import pretrained class Engine: def __init__(self, args): self.args = args def __call__(self): # setup the environment, policy and data utils.set_seeds(self.args.seed) self.env = environment.ActiveTouch(self.args) self.policy = baselines.even_sampler(self.args) self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) valid_loaders = self.get_loaders() # evaluate the policy with torch.no_grad(): self.validate(valid_loaders) # load data using pytorch dataloader def get_loaders(self): valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return valid_loader # perfrom the validation def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) self.policy.reset() all_done = False cur_scores = [obs["score"]] cur_actions = [] while not all_done: # perform actions with torch.no_grad(): action, next_obs, reward, all_done = self.env.best_step( greedy_checks=self.args.greedy_checks ) # record observation torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() temp_scored = torch.cat(scores) current_loss = (temp_scored[:, -1] / temp_scored[:, 0]).mean() message = f"Valid || score: {print_score:.4f} " message += f"reward = {print_reward:.4f} ave: {100 * current_loss:.4f} %" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--greedy_checks", type=int, default=50, help="Number of actions to check at each time step", ) parser.add_argument( "--num_actions", type=int, default=50, help="number of action options" ) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", type=bool, default=True, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) args = parser.parse_args() trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from tqdm import tqdm from torch.utils.data import DataLoader import torch import argparse from pterotactyl.policies import environment from pterotactyl.policies.baselines import baselines from pterotactyl.utility import utils from pterotactyl import pretrained class Engine: def __init__(self, args): self.args = args def __call__(self): # set up environment and policy and data utils.set_seeds(self.args.seed) self.env = environment.ActiveTouch(self.args) self.policy = baselines.random_sampler(self.args) valid_loaders = self.get_loaders() self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) # compute accuracy with torch.no_grad(): self.validate(valid_loaders) # load data with pytorch dataloader def get_loaders(self): valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return valid_loader # perform the random policy def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) all_done = False cur_scores = [obs["score"]] cur_actions = [] while not all_done: # select actions action = self.policy.get_action(obs["mask"]) # perform actions with torch.no_grad(): next_obs, reward, all_done = self.env.step(action) # record observations torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(action)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() temp_scored = torch.cat(scores) current_loss = (temp_scored[:, -1] / temp_scored[:, 0]).mean() message = f"Valid || score: {print_score:.4f} " message += f"reward = {print_reward:.4f} ave: {100 * current_loss:.4f} %" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() if self.args.visualize: print("visualizing") actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the vision part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--num_actions", type=int, default=50) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", type=bool, default=True, help="for evaluating on test set" ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) args = parser.parse_args() trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random from tqdm import tqdm import numpy as np from torch.utils.data import DataLoader import torch import argparse from submitit.helpers import Checkpointable from pterotactyl.policies import environment from pterotactyl.utility import utils from pterotactyl import pretrained class Engine(Checkpointable): def __init__(self, args): self.args = args def __call__(self): # setup the environment, and data self.env = environment.ActiveTouch(self.args) data_loaders, valid_loaders = self.get_loaders() self.chosen_actions = [] self.step = 0 self.spot = 0 self.counts = np.array([0.0 for i in range(self.args.num_actions)]) # save location for the computed trajectory self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", "MFBA", self.args.exp_type ) if not os.path.exists((self.checkpoint_dir)): os.makedirs(self.checkpoint_dir) self.checkpoint = self.checkpoint_dir + "actions.npy" with torch.no_grad(): self.load() if self.args.eval: self.validate(valid_loaders) else: # find the best action at every step for i in range(self.step, self.args.num_grasps): self.train(data_loaders) self.save() # load data using pytorch dataloader def get_loaders(self): if not self.args.eval: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.train_data.collate, ) else: train_loader = [] valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader # compute the lowest error action for the current step def train(self, dataloader): print(f"Getting best action for step {len(self.chosen_actions)+1}") training_length = len(dataloader) random.seed(self.args.seed) training_instances = random.sample( range(training_length), int(training_length * 0.4) ) for v, batch in enumerate(tqdm(dataloader)): if v < self.spot: continue if v not in training_instances: continue self.spot = v self.env.reset(batch) # check the accuracy of every action for action in self.chosen_actions: actions = np.array([action for _ in range(self.args.env_batch_size)]) self.env.step(actions) actions, _, _, _ = self.env.best_step(greedy_checks=self.args.greedy_checks) # update the count for most successful action for a in actions: self.counts[a] += 1 if v % 20 == 0: self.save() self.chosen_actions.append(np.argmax(self.counts)) self.counts = np.array( [ 0 if i not in self.chosen_actions else -1e20 for i in range(self.args.num_actions) ] ) self.spot = 0 self.step += 1 # evaluate the policy def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) cur_scores = [obs["score"]] cur_actions = [] for action in self.chosen_actions: best_actions = np.array( [action for _ in range(self.args.env_batch_size)] ) # perform actions with torch.no_grad(): next_obs, _, _ = self.env.step(best_actions) # record actions torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(best_actions)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || score: {print_score:.4f}, " message += f"reward = {print_reward:.4f}" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) def load(self): if self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/MFBA_v_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/MFBA_v_t_g.npy" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/MFBA_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/MFBA_t_g.npy" ) data = np.load(location, allow_pickle=True).item() self.counts = data["counts"] self.chosen_actions = data["chosen_actions"] self.spot = data["spot"] self.step = data["step"] else: try: data = np.load(self.checkpoint, allow_pickle=True).item() self.counts = data["counts"] self.chosen_actions = data["chosen_actions"] self.spot = data["spot"] self.step = data["step"] except: return def save(self): data = { "counts": self.counts, "chosen_actions": self.chosen_actions, "step": self.step, "spot": self.spot, } np.save(self.checkpoint, data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--num_actions", type=int, default=50) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--greedy_checks", type=int, default=50, help="Number of actions to check at each time step", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random from tqdm.notebook import tqdm import numpy as np from torch.utils.data import DataLoader import torch import argparse from submitit.helpers import Checkpointable from pterotactyl.policies import environment from pterotactyl.utility import utils from pterotactyl import pretrained class Engine(Checkpointable): def __init__(self, args): self.args = args def __call__(self) -> float: # setup the environment, and data self.env = environment.ActiveTouch(self.args) data_loaders, valid_loaders = self.get_loaders() self.chosen_actions = [] self.step = 0 self.spot = 0 self.action_scores = np.array( [ 1e10 if i not in self.chosen_actions else 1e20 for i in range(self.args.num_actions) ] ) self.checks = np.array([1.0 for i in range(self.args.num_actions)]) # save location for the computed trajectory self.results_dir = os.path.join("results", self.args.exp_type) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", "LEBA", self.args.exp_type ) if not os.path.exists((self.checkpoint_dir)): os.makedirs(self.checkpoint_dir) self.checkpoint = self.checkpoint_dir + "actions.npy" with torch.no_grad(): self.load() if self.args.eval: self.validate(valid_loaders) else: # find the best action at every step for i in range(self.step, self.args.num_grasps): self.train(data_loaders) self.save() # load data using pytorch dataloader def get_loaders(self): if not self.args.eval: train_loader = DataLoader( self.env.train_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.train_data.collate, ) else: train_loader = [] valid_loader = DataLoader( self.env.valid_data, batch_size=self.args.env_batch_size, shuffle=False, num_workers=4, collate_fn=self.env.valid_data.collate, ) return train_loader, valid_loader # compute the lowest error action for the current step def train(self, dataloader): print(f"Getting best action for step {len(self.chosen_actions)+1}") # for all training data training_length = len(dataloader) random.seed(self.args.seed) training_instances = random.sample( range(training_length), int(training_length * 0.4) ) for v, batch in enumerate(tqdm(dataloader)): if v < self.spot: continue if v not in training_instances: continue self.spot = v self.env.reset(batch) # check the accuracy of every action for action in self.chosen_actions: actions = np.array([action for _ in range(self.args.env_batch_size)]) self.env.step(actions) remaining_actions = [ i for i in range(self.args.num_actions) if i not in self.chosen_actions ] remaining_actions = [ remaining_actions for i in range(self.args.env_batch_size) ] if self.args.greedy_checks < self.args.num_actions: for i in range(self.args.env_batch_size): remaining_actions[i] = random.sample( remaining_actions[i], self.args.greedy_checks ) for i in range(len(remaining_actions[0])): actions = np.array( [remaining_actions[j][i] for j in range(self.args.env_batch_size)] ) scores = ( self.env.check_step(actions)["score"] / self.env.check_step(actions)["first_score"] ) for action, score in zip(actions, scores): if self.action_scores[action] == 1e10: self.action_scores[action] = score else: self.action_scores[action] += score self.checks[action] += 1.0 if v % 20 == 0: self.save() # record the lowest error action action_scores = self.action_scores / self.checks self.chosen_actions.append(np.argmin(action_scores)) self.action_scores = np.array( [ 1e10 if i not in self.chosen_actions else 1e20 for i in range(self.args.num_actions) ] ) self.checks = np.array([1.0 for i in range(self.args.num_actions)]) self.spot = 0 self.step += 1 # validate the chosen trajectory def validate(self, dataloader): observations = [] scores = [] actions = [] names = [] for v, batch in enumerate(tqdm(dataloader)): names += batch["names"] obs = self.env.reset(batch) cur_scores = [obs["score"]] cur_actions = [] for action in self.chosen_actions: best_actions = np.array( [action for _ in range(self.args.env_batch_size)] ) # perform actions with torch.no_grad(): next_obs, _, _ = self.env.step(best_actions) # record actions torch.cuda.empty_cache() obs = next_obs cur_scores.append(obs["score"]) cur_actions.append(torch.FloatTensor(best_actions)) observations.append(obs["mesh"]) scores.append(torch.stack(cur_scores).permute(1, 0)) actions.append(torch.stack(cur_actions).permute(1, 0)) print_score = (scores[-1][:, -1] / scores[-1][:, 0]).mean() print_reward = ( (scores[-1][:, 0] - scores[-1][:, -1]) / scores[-1][:, 0] ).mean() message = f"Valid || score: {print_score:.4f}, " message += f"reward = {print_reward:.4f}" tqdm.write(message) if self.args.visualize and v == 5: meshes = torch.cat(observations, dim=0)[:, :, :3] utils.visualize_prediction( self.results_dir, meshes, self.env.mesh_info["faces"], names ) self.env.reset_pybullet() scores = torch.cat(scores) rewards = ((scores[:, 0] - scores[:, -1]) / scores[:, 0]).mean() current_loss = (scores[:, -1] / scores[:, 0]).mean() if self.args.visualize: actions = torch.stack(actions).view(-1, self.args.budget) utils.visualize_actions(self.results_dir, actions, self.args) print("*" * 30) message = f"Total Valid || score: {current_loss:.4f}, " message += f"reward = {rewards.mean():.4f}" tqdm.write("*" * len(message)) tqdm.write(message) tqdm.write("*" * len(message)) def load(self): if self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/LEBA_v_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/LEBA_v_t_g.npy" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/LEBA_t_p.npy" ) else: location = ( os.path.dirname(pretrained.__file__) + "/policies/dataset_specific/LEBA_t_g.npy" ) data = np.load(location, allow_pickle=True).item() self.action_scores = data["action_scores"] self.checks = data["checks"] self.chosen_actions = data["chosen_actions"] self.spot = data["spot"] self.step = data["step"] else: try: data = np.load(self.checkpoint, allow_pickle=True).item() self.action_scores = data["action_scores"] self.checks = data["checks"] self.chosen_actions = data["chosen_actions"] self.spot = data["spot"] self.step = data["step"] except: return def save(self): data = { "action_scores": self.action_scores, "checks": self.checks, "chosen_actions": self.chosen_actions, "step": self.step, "spot": self.spot, } np.save(self.checkpoint, data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--touch_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/", help="the location of the touch part prediction.", ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the touch part prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--env_batch_size", type=int, default=3, help="Size of the batch." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument("--num_actions", type=int, default=50) parser.add_argument("--use_latent", action="store_true", default=False) parser.add_argument("--use_recon", action="store_true", default=False) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument( "--budget", type=int, default=5, help="number of graspsp to perform" ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--greedy_checks", type=int, default=50, help="Number of actions to check at each time step", ) parser.add_argument( "--pretrained_recon", action="store_true", default=False, help="use the pretrained reconstruction models to train", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="use the pretrained policy", ) args = parser.parse_args() trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os os.environ["PYOPENGL_PLATFORM"] = "egl" import numpy as np from scipy.spatial.transform import Rotation as R import pyrender import trimesh import pterotactyl.objects as objects from pterotactyl.utility import utils from random import randrange HAND_COLOUR = [119, 136, 153, 255] DIGIT_COLOUR = [119, 225, 153, 175] class Renderer: def __init__(self, hand, pb, cameraResolution=[256, 256]): self.scene = self.init_scene() self.hand = hand self.pb = pb self.hand_nodes = [] self.object_nodes = [] self.init_camera() self.init_hand() self.update_hand() self.r = pyrender.OffscreenRenderer(cameraResolution[0], cameraResolution[1]) # scene is initialized with fixed lights, this can be easily changed to match the desired environment def init_scene(self): scene = pyrender.Scene(ambient_light=[0.3, 0.3, 0.3]) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[0, -0.8, 0.3], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.0) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[0, 0.8, 0.3], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.0) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[-1, 0, 1], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.0) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[1, 0, 1], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.0) scene.add(light, pose=light_pose) return scene def init_camera(self): # initializes the camera parameters camera = pyrender.PerspectiveCamera( yfov=60.0 / 180.0 * np.pi, znear=0.01, zfar=10.0, aspectRatio=1.0 ) camera_pose = utils.euler2matrix( xyz="xyz", angles=[0, 0, 0], translation=[0, 0, 0], degrees=True ) camera_node = pyrender.Node(camera=camera, matrix=camera_pose) self.scene.add_node(camera_node) self.scene.main_camera_node = camera_node self.camera = camera_node # this viewpoint is used in the paper # if you change this, you will need to update the camaera parameter matrix in the reconstruction model as well initial_matrix = R.from_euler("xyz", [45.0, 0, 270.0], degrees=True).as_matrix() self.update_camera_pose([-0.3, 0, 0.3], initial_matrix) def add_object( self, mesh, position=[0, 0, 0], orientation=[0, 0, 0], colour=[228, 217, 111, 255], ): mesh.visual.vertex_colors = colour mesh = pyrender.Mesh.from_trimesh(mesh) pose = utils.euler2matrix(angles=orientation, translation=position) obj_node = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(obj_node) self.object_nodes.append(obj_node) # defines the hand in the scene def init_hand(self): hand_location = os.path.join( os.path.dirname(objects.__file__), "hand/meshes_obj/" ) base_obj = trimesh.load(hand_location + "0_base.obj") base_obj = trimesh.Trimesh(vertices=base_obj.vertices, faces=base_obj.faces) base_obj.visual.vertex_colors = HAND_COLOUR self.add_hand_obj(base_obj) for _ in range(3): for i in range(1, 5): element = trimesh.load(hand_location + f"{i}_finger.obj") element = trimesh.Trimesh( vertices=element.vertices, faces=element.faces ) element.visual.vertex_colors = HAND_COLOUR self.add_hand_obj(element) element = trimesh.load(hand_location + "5_digit.obj") element = trimesh.Trimesh(vertices=element.vertices, faces=element.faces) element.visual.vertex_colors = DIGIT_COLOUR self.add_hand_obj(element) for i in range(6, 10): element = trimesh.load(hand_location + f"{i}_thumb.obj") element = trimesh.Trimesh(vertices=element.vertices, faces=element.faces) element.visual.vertex_colors = HAND_COLOUR self.add_hand_obj(element) element = trimesh.load(hand_location + "5_digit.obj") element = trimesh.Trimesh(vertices=element.vertices, faces=element.faces) element.visual.vertex_colors = DIGIT_COLOUR self.add_hand_obj(element) def add_hand_obj(self, obj_location): mesh = pyrender.Mesh.from_trimesh(obj_location) pose = utils.euler2matrix(angles=[0, 0, 0], translation=[0, 0, 0]) obj_node = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(obj_node) self.hand_nodes.append(obj_node) # gets the various hand element's position and orientation and uses them to update the hand in the scene def update_hand(self): # base of the hand position, orientation = self.pb.getBasePositionAndOrientation(self.hand) orientation = self.pb.getEulerFromQuaternion(orientation) pose = utils.euler2matrix(angles=orientation, translation=position) self.scene.set_pose(self.hand_nodes[0], pose=pose) indices = [ 0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, ] # all other elements for node, index in zip(self.hand_nodes[1:], indices): position, orientation = self.pb.getLinkState(self.hand, index)[:2] orientation = self.pb.getEulerFromQuaternion(orientation) pose = utils.euler2matrix(angles=orientation, translation=position) self.scene.set_pose(node, pose=pose) # moves the hand our of the perspective of the camera def remove_hand(self): for node in self.hand_nodes: pose = utils.euler2matrix(angles=[0, 0, 0], translation=[0, 0, -10.0]) self.scene.set_pose(node, pose=pose) def remove_objects(self): for obj in self.object_nodes: self.scene.remove_node(obj) self.object_nodes = [] def update_camera_pose(self, position, orientation): pose = np.eye(4) if np.array(orientation).shape == (3,): orientation = R.from_euler("xyz", orientation, degrees=True).as_matrix() pose[:3, 3] = position pose[:3, :3] = orientation self.camera.matrix = pose def render(self, get_depth=False): colour, depth = self.r.render(self.scene) if get_depth: return colour, depth return colour
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os os.environ["PYOPENGL_PLATFORM"] = "egl" import numpy as np import cv2 import pyrender import trimesh from scipy.spatial.transform import Rotation as R from pterotactyl.utility import utils class Renderer: def __init__(self, cameraResolution=[120, 160]): """ :param width: scalar :param height: scalar """ self.width = cameraResolution[0] self.height = cameraResolution[1] self._background_real = None self.force_enabled = False self._init_pyrender() def _init_pyrender(self): """ Initialize pyrender """ # Create scene for pybullet sync self.scene = pyrender.Scene() self.object_nodes = [] self.current_light_nodes = [] self.cam_light_ids = None self._init_gel() self._init_camera() self._init_light() self.r = pyrender.OffscreenRenderer(self.width, self.height) colors, depths = self.render(noise=False, calibration=False) self._background_sim = colors def _init_gel(self): """ Add gel surface in the scene """ # Create gel surface (flat/curve surface based on config file) gel_trimesh = self._generate_gel_trimesh() mesh_gel = pyrender.Mesh.from_trimesh(gel_trimesh, smooth=False) self.gel_pose0 = np.eye(4) self.gel_node = pyrender.Node(mesh=mesh_gel, matrix=self.gel_pose0) self.scene.add_node(self.gel_node) def _generate_gel_trimesh(self): # Load config origin = [0.022, 0, 0.015] X0, Y0, Z0 = origin[0], origin[1], origin[2] W, H = 0.02, 0.03 # Curved gel surface N = 100 M = int(N * H / W) R = 0.1 zrange = 0.005 y = np.linspace(Y0 - W / 2, Y0 + W / 2, N) z = np.linspace(Z0 - H / 2, Z0 + H / 2, M) yy, zz = np.meshgrid(y, z) h = R - np.maximum(0, R ** 2 - (yy - Y0) ** 2 - (zz - Z0) ** 2) ** 0.5 xx = X0 - zrange * h / h.max() gel_trimesh = self._generate_trimesh_from_depth(xx) return gel_trimesh def _generate_trimesh_from_depth(self, depth): # Load config origin = [0.022, 0, 0.015] _, Y0, Z0 = origin[0], origin[1], origin[2] W, H = 0.02, 0.03 N = depth.shape[1] M = depth.shape[0] # Create grid mesh vertices = [] faces = [] y = np.linspace(Y0 - W / 2, Y0 + W / 2, N) z = np.linspace(Z0 - H / 2, Z0 + H / 2, M) yy, zz = np.meshgrid(y, z) # Vertex format: [x, y, z] vertices = np.zeros([N * M, 3]) # Add x, y, z position to vertex vertices[:, 0] = depth.reshape([-1]) vertices[:, 1] = yy.reshape([-1]) vertices[:, 2] = zz.reshape([-1]) # Create faces faces = np.zeros([(N - 1) * (M - 1) * 6], dtype=np.uint) # calculate id for each vertex: (i, j) => i * m + j xid = np.arange(N) yid = np.arange(M) yyid, xxid = np.meshgrid(xid, yid) ids = yyid[:-1, :-1].reshape([-1]) + xxid[:-1, :-1].reshape([-1]) * N # create upper triangle faces[::6] = ids # (i, j) faces[1::6] = ids + N # (i+1, j) faces[2::6] = ids + 1 # (i, j+1) # create lower triangle faces[3::6] = ids + 1 # (i, j+1) faces[4::6] = ids + N # (i+1, j) faces[5::6] = ids + N + 1 # (i+1, j+1) faces = faces.reshape([-1, 3]) # camera_pose = utils.euler2matrix( # angles=np.deg2rad([90, 0, -90]), translation=[0, 0, 0.015], # ) vertices = vertices - np.array([0, 0, 0.015]).reshape(1, 3) orientation = R.from_euler("xyz", [90, 0, -90], degrees=True).as_matrix() vertices = vertices.dot(orientation) # position = [0, 0, 0.015] gel_trimesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False) return gel_trimesh def _init_camera(self): """ Set up camera """ camera = pyrender.PerspectiveCamera(yfov=np.deg2rad(60), znear=0.001) camera_pose = utils.euler2matrix( angles=np.deg2rad([0, 0, 0]), translation=[0, 0, -0.0035] ) self.camera_pose = camera_pose # Add camera node into scene camera_node = pyrender.Node(camera=camera, matrix=camera_pose) self.scene.add_node(camera_node) self.camera = camera_node self.cam_light_ids = list([0, 1, 2]) def _init_light(self): """ Set up light """ # Load light from config file origin = np.array([0.005, 0, 0.015]) xyz = [] # Apply polar coordinates thetas = [30, 150, 270] rs = [0.02, 0.02, 0.02] xs = [0, 0, 0] for i in range(len(thetas)): theta = np.pi / 180 * thetas[i] xyz.append([xs[i], rs[i] * np.cos(theta), rs[i] * np.sin(theta)]) colors = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) intensities = [1, 1, 1] # Save light nodes self.light_nodes = [] self.light_poses0 = [] for i in range(len(colors)): color = colors[i] position = xyz[i] + origin - np.array([0, 0, 0.015]) orientation = R.from_euler("xyz", [90, 0, -90], degrees=True).as_matrix() position = position.dot(orientation) orientation = np.deg2rad([90, 0, -90]) light_pose_0 = utils.euler2matrix(angles=orientation, translation=position) light = pyrender.PointLight(color=color, intensity=intensities[i]) light_node = pyrender.Node(light=light, matrix=light_pose_0) self.scene.add_node(light_node) self.light_nodes.append(light_node) self.light_poses0.append(light_pose_0) self.current_light_nodes.append(light_node) def add_object(self, objTrimesh, position=[0, 0, 0], orientation=[0, 0, 0]): mesh = trimesh.Trimesh( vertices=objTrimesh.vertices, faces=objTrimesh.faces, process=False ) mesh = pyrender.Mesh.from_trimesh(mesh, smooth=False) pose = utils.euler2matrix(angles=orientation, translation=position) objNode = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(objNode) self.object_nodes.append(objNode) def update_camera_pose(self, position, orientation): pose = np.eye(4) pose[:3, 3] = position pose[:3, :3] = orientation self.camera.matrix = pose.dot(self.camera_pose) # Update gel gel_pose = pose.dot(self.gel_pose0) self.gel_node.matrix = gel_pose # Update light for i in range(len(self.light_nodes)): light_pose = pose.dot(self.light_poses0[i]) light_node = self.light_nodes[i] light_node.matrix = light_pose def update_objects_pose(self, position, orientation): pose = utils.euler2matrix(angles=orientation, translation=position) for obj in self.object_nodes: self.scene.set_pose(obj, pose=pose) def remove_objects(self): for obj in self.object_nodes: self.scene.remove_node(obj) self.object_nodes = [] def update_light(self, lightIDList): """ Update the light node based on lightIDList, remove the previous light """ # Remove previous light nodes for node in self.current_light_nodes: self.scene.remove_node(node) # Add light nodes self.current_light_nodes = [] for i in lightIDList: light_node = self.light_nodes[i] self.scene.add_node(light_node) self.current_light_nodes.append(light_node) def _add_noise(self, color): """ Add Gaussian noise to the RGB image :param color: :return: """ # Add noise to the RGB image mean = 0 std = 7 noise = np.random.normal(mean, std, color.shape) # Gaussian noise color = np.clip(color + noise, 0, 255).astype(np.uint8) # Add noise and clip return color def _calibrate(self, color): if self._background_real is not None: # Simulated difference image, with scaling factor 0.5 diff = (color.astype(np.float) - self._background_sim) * 0.5 # Add low-pass filter to match real readings diff = cv2.GaussianBlur(diff, (7, 7), 0) # Combine the simulated difference image with real background image color = np.clip((diff[:, :, :3] + self._background_real), 0, 255).astype( np.uint8 ) return color def _post_process(self, color, depth, noise=True, calibration=True): if calibration: color = self._calibrate(color) if noise: color = self._add_noise(color) return color, depth def render(self, noise=True, calibration=True): self.scene.main_camera_node = self.camera self.update_light(self.cam_light_ids) color, depth = self.r.render(self.scene) color, depth = self._post_process(color, depth, noise, calibration) return color, depth
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os os.environ["PYOPENGL_PLATFORM"] = "egl" import numpy as np import pyrender from pterotactyl.utility import utils class Renderer: def __init__(self, cameraResolution=[120, 160]): self.scene = pyrender.Scene(ambient_light=[0.1, 0.1, 0.1]) self.object_nodes = [] self.initialize_camera() self.r = pyrender.OffscreenRenderer(cameraResolution[0], cameraResolution[1]) def initialize_camera(self): camera = pyrender.PerspectiveCamera( yfov=40.0 / 180.0 * np.pi, znear=0.0001, zfar=10.0 ) self.camera_pose = utils.euler2matrix( xyz="xyz", angles=[0, 0, 0], translation=[0, 0, 0], degrees=True ) # Add camera node into scene camera_node = pyrender.Node(camera=camera, matrix=self.camera_pose) self.scene.add_node(camera_node) self.camera = camera_node def add_object(self, objTrimesh, position=[0, 0, 0], orientation=[0, 0, 0]): mesh = pyrender.Mesh.from_trimesh(objTrimesh) pose = utils.euler2matrix(angles=orientation, translation=position) objNode = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(objNode) self.object_nodes.append(objNode) def update_objects_pose(self, position, orientation): pose = utils.euler2matrix(angles=orientation, translation=position) for obj in self.object_nodes: self.scene.set_pose(obj, pose=pose) def remove_objects(self): for obj in self.object_nodes: self.scene.remove_node(obj) self.object_nodes = [] def update_camera_pose(self, position, orientation): pose = np.eye(4) pose[:3, 3] = position pose[:3, :3] = orientation self.camera.matrix = pose.dot(self.camera_pose) def render(self): self.scene.main_camera_node = self.camera _, depth = self.r.render(self.scene) return depth
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import numpy as np import trimesh from scipy.spatial.transform import Rotation as R from scipy.spatial import ConvexHull from pterotactyl.utility import utils class Agnostic_Grasp: def __init__(self, pb, hand): self.pb = pb self.hand = hand self.directions = -utils.get_circle(50).points.data.numpy() self.convex_mesh = None self.verts = None def set_object(self, verts, faces): hull = ConvexHull(verts.data.numpy()) self.convex_mesh = trimesh.Trimesh( vertices=verts, faces=hull.simplices, process=False ) self.verts = verts.data.numpy() def remove_object(self): self.convex_mesh = None self.verts = None # converts selected action into the corresponding hand rotation def action_to_params( self, action ): # converts action selection into hand parameters direction = self.directions[action] rotation = 0 return direction, rotation def grasp(self, action): self.reset_hand() direction, rotation = self.action_to_params( action ) # convert action into grasping parameters success = self.set_hand_hull( direction, rotation ) # identify point on convex hull which intersection the chosen hand direction # if no intersection is found if not success: return False else: # set all joint angles to maximum to perfrom grasp joint_angles = [10 for _ in range(28)] self.pb.setJointMotorControlArray( self.hand, range(28), self.pb.POSITION_CONTROL, targetPositions=joint_angles, ) for i in range(5): self.pb.stepSimulation() return True def set_hand_hull(self, direction, rotation, hand_distance=0.013): # define ray from the center of the object to outwards in the chosen direction ray_origins = np.array([[0, 0, 0]]) ray_directions = np.array([direction]) # find intersection with ray and convex hull locations, index_ray, index_tri = self.convex_mesh.ray.intersects_location( ray_origins=ray_origins, ray_directions=ray_directions ) # if no intersection were found if len(locations) == 0: return False else: # find furtherest interesection from the ceneter of the object test_locations = np.array(locations) test_locations = (test_locations ** 2).sum(axis=-1) max_location = np.argmax(test_locations) point = locations[max_location] face = self.convex_mesh.faces[index_tri[0]] # place the hand above the convex hull at the intersection point hand_position, surface_normal = self.get_position_on_hull( self.verts, face, point, hand_distance ) hand_orientation = self.pb.getQuaternionFromEuler([rotation, 0, 0]) surface_normal -= 0.001 handUpdateOrientation = utils.quats_from_vectors([-1, 0, 0], surface_normal) hand_orientation = utils.combine_quats( handUpdateOrientation, hand_orientation ) # place the middle finger tip on the point instead of the hand center # displacement of the fingertip from the center of the hand v = [0, 0, 0.133] matrix = (R.from_quat(hand_orientation)).as_matrix() hand_position -= matrix.dot(v) # transfrom the hand self.pb.resetBasePositionAndOrientation( self.hand, hand_position, hand_orientation ) return True # find the normal face which the ray intersections with, and a point just above the siurface in this direction def get_position_on_hull(self, verts, face, point, distance): p1, p2, p3 = verts[face[0]], verts[face[1]], verts[face[2]] normal = utils.normal_from_triangle(p1, p2, p3) p1 = np.array([0, 0, 0]) p2 = point p3 = point + normal * 0.0001 # check the normal is pointing away from the mesh if ((p1 - p2) ** 2).sum() > ((p1 - p3) ** 2).sum(): normal = normal * -1 # move position of the finger to slightly above the mesh point = point + normal * distance return point, normal def reset_hand(self): # moves hand away from the object to avoid intersections self.pb.resetBasePositionAndOrientation(self.hand, [20, 0, 0], [1, 0, 0, 0]) # sets all joints to the initial angles joint_angles = [0 for _ in range(28)] # sets thumb as oppositng fingers joint_angles[20] = 1.2 joint_angles[22] = 0.7 for i in range(28): self.pb.resetJointState(self.hand, i, joint_angles[i])
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import os import pybullet as pb import numpy as np import trimesh import torch from scipy.spatial.transform import Rotation as R from scipy import ndimage from pterotactyl.simulator.rendering import touch_renderer from pterotactyl.simulator.rendering import tacto_renderer from pterotactyl.simulator.rendering import vision_renderer from pterotactyl.utility import utils import pterotactyl.objects as objects class Scene: def __init__( self, grasp_class, max_depth=0.025, conn=pb, vision=True, resolution=[256, 256], object_colour=[228, 217, 111, 255], TACTO=False, ): hand_location = os.path.join( os.path.dirname(objects.__file__), "hand/allegro_hand.urdf" ) self.hand = conn.loadURDF( hand_location, [0, 0, 0], conn.getQuaternionFromEuler([0, 0, 0]), useFixedBase=1, ) # the indices of the hand definition which correspond to the finger's perspective self.touch_cameras = [6, 13, 20, 27] # furthest distance from the fingers which is obseravble by the touch sensors self.max_depth = max_depth if TACTO: self.max_depth = min(self.max_depth, 0.015) self.pb = conn self.obj = None self.grasper = grasp_class(self.pb, self.hand) self.depths = None self.TACTO = TACTO # if vision signals are desired self.vision = vision if self.vision: self.object_colour = object_colour self.camera_renderer = vision_renderer.Renderer( self.hand, pb, cameraResolution=resolution ) if self.TACTO: self.touch_renderer = tacto_renderer.Renderer(cameraResolution=[121, 121]) else: self.touch_renderer = touch_renderer.Renderer(cameraResolution=[121, 121]) def grasp(self, action): return self.grasper.grasp(action) def get_hand_pose(self): poses = [] for i in range(28): poses.append(self.get_pose(self.hand, i)) return poses def get_pose(self, objID, linkID): if linkID <= 0: position, orientation = self.pb.getBasePositionAndOrientation(objID) else: position, orientation = self.pb.getLinkState( objID, linkID, computeLinkVelocity=False, computeForwardKinematics=True )[:2] orientation = self.pb.getEulerFromQuaternion(orientation) return position, orientation def load_obj(self, verts, faces, urdf_location): # adding repeating faces to ensure they are observed faces = utils.add_faces(faces) # loading into pybullet self.obj = self.pb.loadURDF( urdf_location, [0, 0, 0], [0, 0, 0, 1], useFixedBase=1 ) # loading into pyrender mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False) self.touch_renderer.add_object(mesh, position=[0, 0, 0], orientation=[0, 0, 0]) if self.vision: self.camera_renderer.add_object( mesh, position=[0, 0, 0], orientation=[0, 0, 0], colour=self.object_colour, ) # loading into grasp function self.obj_verts = torch.FloatTensor(verts) self.obj_faces = torch.LongTensor(faces) self.grasper.set_object(self.obj_verts, self.obj_faces) def remove_obj(self): if self.obj is not None: self.pb.removeBody(self.obj) self.touch_renderer.remove_objects() self.obj = None self.hull_faces = None if self.vision: self.camera_renderer.remove_objects() self.grasper.remove_object() # render depth from the perspective of each finger def render_depth(self): statuses = [] depths = [] colours = [] for i in range(4): # update position of the scene camera position, orientation = self.get_pose(self.hand, self.touch_cameras[i]) rot_off_finger = R.from_euler("xyz", [0, -90, 0], degrees=True).as_matrix() rot_finger = R.from_euler("xyz", orientation, degrees=False).as_matrix() orientation_update = np.matmul(rot_finger, rot_off_finger) self.touch_renderer.update_camera_pose( position=position, orientation=orientation_update ) # render depth if self.TACTO: colour, depth = self.touch_renderer.render() colours.append(colour) else: depth = self.touch_renderer.render() # check if object is close enough to register on touch sensor if (depth <= self.max_depth).sum() - (depth == 0).sum() > 0: statuses.append("touch") else: statuses.append("no_touch") depths.append(depth) self.depths = depths self.statuses = statuses if self.TACTO: self.colours = colours return statuses # converts depth map into point cloud in the reference frame of the object def depth_to_points(self): if self.TACTO: fov = 60.0 / 180.0 * np.pi # intrinsic camera parameter else: fov = 40.0 / 180.0 * np.pi # intrinsic camera parameter points = [] depths = np.array(self.depths) out_of_range = depths > self.max_depth # sets depth beyond touch sensor to 1 depths[out_of_range] = 1.0 # sets infinite depth to 1 instead of 0 depths[depths == 0] = 1 for i in range(4): if self.statuses[i] == "touch": depth = depths[i] # creates grid of points ys = np.arange(0, 121) ys = np.tile(ys, (121, 1)) - 60 ys = ys.transpose() xs = ys.transpose() # updates grid with depth point_cloud = np.zeros((121, 121, 3)) angle = np.arctan((np.abs(xs) / 60.0) * np.tan(fov / 2.0)) point_cloud[:, :, 0] = depth * np.tan(angle) * np.sign(xs) angle = np.arctan((np.abs(ys) / 60.0) * np.tan(fov / 2.0)) point_cloud[:, :, 1] = depth * np.tan(angle) * -np.sign(ys) point_cloud[:, :, 2] = -depth # removes depth beyond sensor range point_cloud = point_cloud[depth < 1.0] point_cloud = point_cloud.reshape((-1, 3)) # transforms points to reference frame of the finger position, orientation = self.get_pose(self.hand, self.touch_cameras[i]) rot_z = np.array([0, -90.0, 0]) r1 = R.from_euler("xyz", rot_z, degrees=True).as_matrix() r2 = R.from_euler("xyz", orientation, degrees=False).as_matrix() orientation = np.matmul(r2, r1) if self.TACTO: point_cloud[:, -1] = point_cloud[:, -1] - 0.0035 point_cloud = orientation.dot(point_cloud.T).T + position points.append(point_cloud) else: points.append(np.array([])) return points # simulates touch signal from depth def depth_to_touch(self, depth): # set depth which werent obsevred to 1 instead of zero out_of_range = depth > self.max_depth depth[out_of_range] = 1.0 depth[depth == 0] = 1 dim = depth.shape[-1] zeros = depth >= self.max_depth depth = -(depth - self.max_depth) depth[zeros] = 0 gel_depths = depth * 6 / self.max_depth # smooth depth values depth = gel_depths / (30.0) + 0.4 filter_size = 7 k = np.ones((filter_size, filter_size)) / (filter_size ** 2) depth_smoothed = ndimage.convolve(depth, k, mode="reflect") # fix "infinite" depths to zeros depth[zeros] = depth_smoothed[zeros] # add rgb and ambient lights light_positions = np.array( [[-0.5, 0.5, 1.0], [1.3, -0.4, 1.0], [1.3, 1.4, 1.0]] ) # set to zero, qulitativly better ambient_intensity = np.array([0.0, 0.0, 0.0]) diffuse_constant = 2.0 touch = np.zeros((dim, dim, 3)) touch[:, :] += ambient_intensity # calculate normal of surface zy, zx = np.gradient(depth) normal = np.dstack((-zx, -zy, np.ones_like(depth))) normal = utils.normalize_vector(normal) # calc depth positions depth_positions = np.arange(dim).repeat(dim).reshape(dim, dim) / float(dim) depth_positions = np.stack( (depth_positions, depth_positions.transpose(), depth) ).transpose((1, 2, 0)) # compute intensity from light normal using phong model, assuming no specularity for i in range(3): light_direction = light_positions[i] - depth_positions light_direction = utils.normalize_vector(light_direction) touch[:, :, i] += np.clip( diffuse_constant * np.multiply(normal, light_direction).sum(-1), 0, 1 ) touch = np.clip(touch * 255.0, 0, 255) # clip within reasonable range return touch def render_touch(self): touches = [] depths = np.array(self.depths) if self.TACTO: return self.colours else: for depth in depths: touches.append(self.depth_to_touch(depth)) return touches def get_finger_frame(self): positions = [] rots = [] for i in range(4): position, orientation = self.get_pose(self.hand, self.touch_cameras[i]) rot = R.from_euler("xyz", orientation, degrees=False).as_matrix() positions.append(position) rots.append(rot) frame = {"pos": torch.FloatTensor(positions), "rot_M": torch.FloatTensor(rots)} return frame def scene_render(self, occluded=True, parameters=None): if occluded: self.camera_renderer.update_hand() else: self.camera_renderer.remove_hand() if parameters is not None: self.camera_renderer.update_camera_pose(parameters[0], parameters[1]) image = self.camera_renderer.render() return image
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import os import numpy as np import pybullet_utils.bullet_client as bc import pybullet as pb import pybullet_data import torch from pterotactyl.simulator.scene import instance from pterotactyl.utility import utils class Sampler: def __init__( self, grasp_class, bs=1, vision=True, max_depth=0.025, object_colours=[228, 217, 111, 255], resolution=[256, 256], TACTO=False, ): self.pybullet_connections = [] self.pybullet_scenes = [] self.bs = bs self.vision = vision # make a connection for every element in the batch for i in range(bs): self.pybullet_connections.append(bc.BulletClient(connection_mode=pb.DIRECT)) self.pybullet_connections[i].setAdditionalSearchPath( pybullet_data.getDataPath() ) if np.array(object_colours).shape == (4,): colour = object_colours else: colour = object_colours[i] self.pybullet_scenes.append( instance.Scene( grasp_class, max_depth=max_depth, conn=self.pybullet_connections[i], vision=self.vision, object_colour=colour, resolution=resolution, TACTO=TACTO, ) ) # disconnets the pybullet threads def disconnect(self): for i in range(self.bs): self.pybullet_connections[i].disconnect() # loads the objects into each pybullet thread def load_objects(self, batch, from_dataset=True, scale=3.1): self.remove_objects() assert len(batch) == self.bs for i in range(self.bs): obj_location = batch[i] # if the object information has already been extracted if from_dataset: verts = np.load(obj_location + "_verts.npy") faces = np.load(obj_location + "_faces.npy") faces = utils.add_faces(faces) urdf_location = obj_location + ".urdf" # extract and record the object information else: obj_location = obj_location + ".obj" urdf_location = obj_location + ".urdf" verts, faces = utils.get_obj_data(obj_location, scale=scale) utils.make_urdf(verts, faces, urdf_location) self.pybullet_scenes[i].load_obj(verts, faces, urdf_location) def remove_objects(self): for i in range(self.bs): self.pybullet_scenes[i].remove_obj() def grasp(self, i, actions): return self.pybullet_scenes[i].grasp(actions[i]) # perfrom the grasp and extracted the requested information def sample( self, actions, touch=True, touch_point_cloud=False, vision=False, vision_occluded=False, parameters=None, ): success = [] poses = [] dict = {} # check if the grasps are feasible for i in range(self.bs): # perfrom the grasps success.append(self.grasp(i, actions)) if success[-1]: poses.append(self.pybullet_scenes[i].get_hand_pose()) else: poses.append(None) dict["hand_pose"] = poses # get touch signal from grasp if touch: touch_status = [ ["no_intersection" for _ in range(4)] for _ in range(self.bs) ] touch_signal = torch.zeros((self.bs, 4, 121, 121, 3)) depths = torch.zeros((self.bs, 4, 121, 121)) finger_transform_pos = torch.zeros((self.bs, 4, 3)) finger_transform_rot_M = torch.zeros((self.bs, 4, 3, 3)) for i in range(self.bs): if success[i]: # depth from camera touch_status[i] = self.pybullet_scenes[i].render_depth() # simulated touch from depth touch = self.pybullet_scenes[i].render_touch() ref_frame = self.pybullet_scenes[i].get_finger_frame() touch_signal[i] = torch.FloatTensor(touch) depths[i] = torch.FloatTensor(self.pybullet_scenes[i].depths) finger_transform_pos[i] = torch.FloatTensor(ref_frame["pos"]) finger_transform_rot_M[i] = torch.FloatTensor(ref_frame["rot_M"]) dict["touch_status"] = touch_status dict["touch_signal"] = touch_signal dict["depths"] = depths dict["finger_transfrom_pos"] = finger_transform_pos dict["finger_transform_rot_M"] = finger_transform_rot_M # get pointcloud of touch site in the object frame of reference if touch_point_cloud: point_clouds = [] for i in range(self.bs): point_clouds.append(self.pybullet_scenes[i].depth_to_points()) dict["touch_point_cloud"] = point_clouds # get image of the grasp if vision_occluded: vision_occluded_imgs = [] for i in range(self.bs): if parameters is not None: param = parameters[i] else: param = None img = self.pybullet_scenes[i].scene_render( occluded=True, parameters=param ) vision_occluded_imgs.append(img) dict["vision_occluded"] = vision_occluded_imgs # get image of the object if vision: vision_imgs = [] for i in range(self.bs): if parameters is not None: param = parameters[i] else: param = None img = self.pybullet_scenes[i].scene_render( occluded=False, parameters=param ) vision_imgs.append(img) dict["vision"] = vision_imgs return dict
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn as nn import torch import numpy as np from torch.nn.parameter import Parameter import torch.nn.functional as F # class for the autoencoder # for extracting latent vector from predicted shape class AutoEncoder(nn.Module): def __init__(self, adj_info, inital_positions, args, only_encode=False): super(AutoEncoder, self).__init__() self.adj_info = adj_info self.initial_positions = inital_positions self.args = args # feature size passed to the GCN input_size = 50 self.only_encode = only_encode self.positional_encoder = Positional_Encoder(input_size) self.mask_encoder = Mask_Encoder(input_size) self.encoder = Encoder(input_size, args) if not self.only_encode: self.decoder = Decoder(args).cuda() def forward(self, verts, mask, only_encode=False): positional_features = self.positional_encoder(verts) mask_features = self.mask_encoder(mask) # combine mesh features vertex_features = positional_features + mask_features latent = self.encoder(vertex_features, self.adj_info) if self.only_encode or only_encode: return latent pred_points = self.decoder(latent) return pred_points.permute(0, 2, 1), latent # encoder for the auto encoder class Encoder(nn.Module): def __init__(self, input_features, args): super(Encoder, self).__init__() self.num_layers = args.num_GCN_layers # define output sizes for each GCN layer hidden_values = [input_features] + [ args.hidden_GCN_size for _ in range(self.num_layers) ] # define layers layers = [] for i in range(self.num_layers): layers.append( GCN_layer( hidden_values[i], hidden_values[i + 1], args.cut, do_cut=i < self.num_layers - 1, ) ) self.layers = nn.ModuleList(layers) # MLP layers hidden_values = [args.hidden_GCN_size, 500, 400, 300, args.encoding_size] num_layers = len(hidden_values) - 1 layers = [] for i in range(num_layers): if i < num_layers - 1: layers.append( nn.Sequential( nn.Linear(hidden_values[i], hidden_values[i + 1]), nn.ReLU() ) ) else: layers.append( nn.Sequential(nn.Linear(hidden_values[i], hidden_values[i + 1])) ) self.mlp = nn.Sequential(*layers) def forward(self, features, adj_info): adj = adj_info["adj"] for i in range(self.num_layers): activation = F.relu if i < self.num_layers - 1 else lambda x: x features = self.layers[i](features, adj, activation) features = features.max(dim=1)[0] features = self.mlp(features) return features # Graph convolutional network layer class GCN_layer(nn.Module): def __init__(self, in_features, out_features, cut=0.33, do_cut=True): super(GCN_layer, self).__init__() self.weight = Parameter(torch.Tensor(1, in_features, out_features)) self.bias = Parameter(torch.Tensor(out_features)) self.reset_parameters() self.cut_size = cut self.do_cut = do_cut def reset_parameters(self): stdv = 6.0 / math.sqrt((self.weight.size(1) + self.weight.size(0))) stdv *= 0.3 self.weight.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-0.1, 0.1) def forward(self, features, adj, activation): features = torch.matmul(features, self.weight) # if we want to only share a subset of features with neighbors if self.do_cut: length = round(features.shape[-1] * self.cut_size) output = torch.matmul(adj, features[:, :, :length]) output = torch.cat((output, features[:, :, length:]), dim=-1) output[:, :, :length] += self.bias[:length] else: output = torch.matmul(adj, features) output = output + self.bias return activation(output) # decoder for the autoencoder # this is just Foldingnet class Decoder(nn.Module): def __init__(self, args, rank=0): super(Decoder, self).__init__() self.model = FoldingNetDec(rank=rank) self.initial = nn.Linear(args.encoding_size, 512) def forward(self, features): features = self.initial(features) points = self.model(features) return points # foldingnet definition class FoldingNetDecFold1(nn.Module): def __init__(self): super(FoldingNetDecFold1, self).__init__() self.conv1 = nn.Conv1d(514, 512, 1) self.conv2 = nn.Conv1d(512, 512, 1) self.conv3 = nn.Conv1d(512, 3, 1) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.conv3(x) return x # foldingnet definition def GridSamplingLayer(batch_size, meshgrid): ret = np.meshgrid(*[np.linspace(it[0], it[1], num=it[2]) for it in meshgrid]) ndim = len(meshgrid) grid = np.zeros( (np.prod([it[2] for it in meshgrid]), ndim), dtype=np.float32 ) # MxD for d in range(ndim): grid[:, d] = np.reshape(ret[d], -1) g = np.repeat(grid[np.newaxis, ...], repeats=batch_size, axis=0) return g # foldingnet definition class FoldingNetDecFold2(nn.Module): def __init__(self): super(FoldingNetDecFold2, self).__init__() self.conv1 = nn.Conv1d(515, 512, 1) self.conv2 = nn.Conv1d(512, 512, 1) self.conv3 = nn.Conv1d(512, 3, 1) self.relu = nn.ReLU() def forward(self, x): # input x = batch,515,45^2 x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.conv3(x) return x # foldingnet definition class FoldingNetDec(nn.Module): def __init__(self, rank=0): super(FoldingNetDec, self).__init__() self.rank = rank self.fold1 = FoldingNetDecFold1() self.fold2 = FoldingNetDecFold2() def forward(self, x): batch_size = x.size(0) x = torch.unsqueeze(x, 1) # x = batch,1,512 x = x.repeat(1, 80 ** 2, 1) # x = batch,45^2,512 code = x.transpose(2, 1) # x = batch,512,45^2 meshgrid = [[-0.5, 0.5, 80], [-0.5, 0.5, 80]] grid = GridSamplingLayer(batch_size, meshgrid) # grid = batch,45^2,2 grid = torch.from_numpy(grid).cuda(self.rank) x = torch.cat((x, grid), 2) # x = batch,45^2,514 x = x.transpose(2, 1) # x = batch,514,45^2 x = self.fold1(x) # x = batch,3,45^2 x = torch.cat((code, x), 1) # x = batch,515,45^2 x = self.fold2(x) # x = batch,3,45^2 return x # encode the positional information of vertices using Nerf Embeddings class Positional_Encoder(nn.Module): def __init__(self, input_size): super(Positional_Encoder, self).__init__() layers = [] layers.append( nn.Linear(63, input_size // 4) ) # 10 nerf layers + original positions layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 4, input_size // 2)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 2, input_size)) self.model = nn.Sequential(*layers) # apply nerf embedding of the positional information def nerf_embedding(self, points): embeddings = [] for i in range(10): if i == 0: embeddings.append(torch.sin(np.pi * points)) embeddings.append(torch.cos(np.pi * points)) else: embeddings.append(torch.sin(np.pi * 2 * i * points)) embeddings.append(torch.cos(np.pi * 2 * i * points)) embeddings = torch.cat(embeddings, dim=-1) return embeddings def forward(self, positions): shape = positions.shape positions = positions.contiguous().view(shape[0] * shape[1], -1) # combine nerf embedding with origional positions positions = torch.cat((self.nerf_embedding((positions)), positions), dim=-1) embeding = self.model(positions).view(shape[0], shape[1], -1) return embeding # make embedding token of the mask information for each vertex class Mask_Encoder(nn.Module): def __init__(self, input_size): super(Mask_Encoder, self).__init__() layers_mask = [] layers_mask.append(nn.Embedding(4, input_size)) self.model = nn.Sequential(*layers_mask) def forward(self, mask): shape = mask.shape mask = mask.contiguous().view(-1, 1) embeding_mask = self.model(mask.long()).view(shape[0], shape[1], -1) return embeding_mask
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import torch import numpy as np from tqdm import tqdm import argparse import random from PIL import Image from torch.utils.tensorboard import SummaryWriter import torch.optim as optim from torch.utils.data import DataLoader from pterotactyl.reconstruction.autoencoder import model from pterotactyl.utility import utils from pterotactyl.utility import data_loaders from pterotactyl.reconstruction.vision import model as vision_model import pterotactyl.objects as objects from pterotactyl import pretrained import pterotactyl.object_data as object_data IMAGE_LOCATION = os.path.join(os.path.dirname(object_data.__file__), "images_colourful/") class Engine: def __init__(self, args): # set seeds np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # set initial data values self.epoch = 0 self.best_loss = 10000 self.args = args self.last_improvement = 0 self.vision_chart_location = os.path.join( os.path.dirname(objects.__file__), "vision_charts.obj" ) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", args.exp_type, args.exp_id ) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) self.results_dir = os.path.join("results", self.args.exp_type, self.args.exp_id) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) utils.save_config(self.checkpoint_dir, args) def __call__(self) -> float: # define the model and optimizer vision_args, weights = utils.load_model_config(self.args.vision_location) self.mesh_info, self.initial_mesh = utils.load_mesh_vision( vision_args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] self.deform = vision_model.Deformation( self.mesh_info, self.initial_mesh, vision_args ).cuda() self.deform.load_state_dict(torch.load(weights)) self.auto_encoder = model.AutoEncoder( self.mesh_info, self.initial_mesh, self.args ) params = list(self.auto_encoder.parameters()) self.auto_encoder.cuda() self.optimizer = optim.Adam(params, lr=self.args.lr, weight_decay=0) self.load() # logging information writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) self.train_loss = 0 # get data train_loader, valid_loaders = self.get_loaders() # evaluate on the test set if self.args.eval: self.load() with torch.no_grad(): self.validate(valid_loaders, writer) return # train and validate for epoch in range(0, self.args.epochs): self.epoch = epoch self.train(train_loader, writer) with torch.no_grad(): self.validate(valid_loaders, writer) self.check_values() # get dataloaders def get_loaders(self): train_loader, valid_loader = "", "" # training loader if not self.args.eval: train_data = data_loaders.mesh_loader_vision( self.args, set_type="auto_train" ) train_loader = DataLoader( train_data, batch_size=self.args.batch_size, shuffle=True, num_workers=16, collate_fn=train_data.collate, ) # evaluation loaders set_type = "test" if self.args.eval else "valid" valid_data = data_loaders.mesh_loader_vision(self.args, set_type=set_type) valid_loader = DataLoader( valid_data, batch_size=self.args.batch_size, shuffle=False, num_workers=16, collate_fn=valid_data.collate, ) return train_loader, valid_loader def train(self, data, writer): total_loss = 0 iterations = 0 self.auto_encoder.train() for k, batch in enumerate(tqdm(data, smoothing=0)): self.optimizer.zero_grad() # initialize data img = batch["img"].cuda() # inference with torch.no_grad(): charts = vision_model.prepare_mesh(batch, self.initial_mesh, self.args) verts, mask = self.deform(img, charts) pred_points, latent = self.auto_encoder(verts.detach(), mask) loss = utils.chamfer_distance( verts.detach(), self.mesh_info["faces"], pred_points, num=self.args.number_points, ) loss = self.args.loss_coeff * loss.mean() # backprop loss.backward() self.optimizer.step() # log message = f"Train || Epoch: {self.epoch}, loss: {loss.item():.2f}, b_ptp: {self.best_loss:.2f}" tqdm.write(message) total_loss += loss.item() iterations += 1.0 self.train_loss = total_loss / iterations writer.add_scalars( "train_loss", {self.args.exp_id: total_loss / iterations}, self.epoch ) def validate(self, valid_loader, writer): total_loss = 0 self.auto_encoder.eval() num_examples = 0 latents = [] names = [] for v, batch in enumerate(tqdm(valid_loader)): self.optimizer.zero_grad() # initialize data img = batch["img"].cuda() batch_size = img.shape[0] # inference charts = vision_model.prepare_mesh(batch, self.initial_mesh, self.args) verts, mask = self.deform(img, charts) pred_points, latent = self.auto_encoder(verts.detach(), mask) names += batch["names"] latents.append(latent) loss = utils.chamfer_distance( verts.detach(), self.mesh_info["faces"], pred_points, num=self.args.number_points, ) loss = self.args.loss_coeff * loss.mean() * batch_size # logs num_examples += float(batch_size) total_loss += loss total_loss = total_loss / num_examples message = f"Valid || Epoch: {self.epoch}, train loss: {self.train_loss:.4f}, val loss: {total_loss:.4f}, b_ptp: {self.best_loss:.4f}" tqdm.write(message) print("*******************************************************") print(f"Validation Accuracy: {total_loss}") print("*******************************************************") if not self.args.eval: writer.add_scalars("valid_ptp", {self.args.exp_id: total_loss}, self.epoch) self.current_loss = total_loss if self.args.eval: latents = torch.cat(latents) self.cluster(latents, names) # save the model def save(self): torch.save(self.auto_encoder.state_dict(), self.checkpoint_dir + "/model") torch.save(self.optimizer.state_dict(), self.checkpoint_dir + "/optim") # load the model def load(self): if self.args.eval and self.args.pretrained: if self.args.use_img: if self.args.finger: location_vision = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_p/" ) location_auto = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/v_t_p/" ) else: location_vision = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_g/" ) location_auto = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/v_t_g/" ) else: if self.args.finger: location_vision = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/" ) location_auto = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_p/" ) else: location_vision = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_g/" ) location_auto = ( os.path.dirname(pretrained.__file__) + "/reconstruction/auto/t_g/" ) # define the vision model vision_args, _ = utils.load_model_config(location_vision) weights = location_vision + 'model' self.mesh_info, self.initial_mesh = utils.load_mesh_vision( vision_args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] self.deform = vision_model.Deformation( self.mesh_info, self.initial_mesh, vision_args ) self.deform.cuda() self.deform.load_state_dict(torch.load(weights)) self.deform.eval() # define the autoencoder model auto_args, _ = utils.load_model_config(location_auto) weights = location_auto + '/model' self.auto_encoder = model.AutoEncoder( self.mesh_info, self.initial_mesh, auto_args ) self.auto_encoder.cuda() self.auto_encoder.load_state_dict(torch.load(weights)) else: try: self.auto_encoder.load_state_dict( torch.load(self.checkpoint_dir + "/model") ) self.optimizer.load_state_dict( torch.load(self.checkpoint_dir + "/optim") ) except: return # check if current validation is better, and if so save model def check_values(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss print( f"Saving with {improvement:.3f} improvement in Chamfer Distance on Validation Set " ) self.best_loss = self.current_loss self.last_improvement = 0 self.save() else: self.last_improvement += 1 if self.last_improvement >= self.args.patience: print(f"Over {self.args.patience} steps since last imporvement") print("Exiting now") exit() def cluster(self, latents, names): example_nums = 20 crop = 20 img_dim = 256 examples = random.choices(range(latents.shape[0]), k=example_nums) collage = Image.new( "RGB", ((img_dim - crop * 2) * 5, (img_dim - crop * 2) * example_nums) ) for v, e in enumerate(examples): new_im = Image.new("RGB", (img_dim * 5, img_dim)) l = latents[e] main_obj = names[e][0].split("/")[-1] imgs = [os.path.join(IMAGE_LOCATION, main_obj + ".npy")] seen = [main_obj] compare_latents = latents - l.unsqueeze(0) compare_latents = (compare_latents ** 2).sum(-1) closest = torch.topk(compare_latents, 25, largest=False)[1][1:] for c in closest: obj = names[c][0].split("/")[-1] if obj in seen: continue seen.append(obj) imgs.append(os.path.join(IMAGE_LOCATION, obj + ".npy")) for i in range(5): im = Image.fromarray(np.load(imgs[i])) new_im.paste(im, (i * img_dim, 0)) new_im.save(f"{self.results_dir}/valid_{v}.png") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cut", type=float, default=0.33, help="The shared size of features in the GCN.", ) parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--vision_location", type=str, default=os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/", help="the location of the deformation prediction.", ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--encoding_size", type=int, default=200, help="size of the latent vector" ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--lr", type=float, default=0.0003, help="Initial learning rate." ) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument("--batch_size", type=int, default=16, help="Size of the batch.") parser.add_argument( "--val_grasps", type=int, default=-1, help="number of grasps to use during validation.", ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name." ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--use_touch", action="store_true", default=False, help="To use the touch information.", ) parser.add_argument( "--patience", type=int, default=70, help="How many epochs without imporvement before training stops.", ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_GCN_layers", type=int, default=20, help="Number of GCN layers in the mesh deformation network.", ) parser.add_argument( "--hidden_GCN_size", type=int, default=300, help="Size of the feature vector for each GCN layer in the mesh deformation network.", ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--epochs", type=int, default=1000, help="Number of epochs to use." ) parser.add_argument( "--pretrained", action="store_true", default=False, help="load the pretrained model", ) args = parser.parse_args() trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn # CNN block class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels, last=False): super().__init__() self.last = last self.double_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=5, padding=2, stride=2), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=5, padding=2), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=5, padding=2), ) self.activation = nn.Sequential( nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): x = self.double_conv(x) if not self.last: x = self.activation(x) return x # Model for predicting touch chart shape class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() # CNN CNN_layers = [] CNN_layers.append(DoubleConv(3, 16)) CNN_layers.append(DoubleConv(16, 32)) CNN_layers.append(DoubleConv(32, 32)) CNN_layers.append(DoubleConv(32, 64)) CNN_layers.append(DoubleConv(64, 128)) CNN_layers.append(DoubleConv(128, 128, last=True)) self.CNN_layers = nn.Sequential(*CNN_layers) # MLP layers = [] layers.append(nn.Sequential(nn.Linear(512, 256), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(256, 128), nn.ReLU())) layers.append(nn.Sequential(nn.Linear(128, 75))) self.fc = nn.Sequential(*layers) def predict_verts(self, touch): for layer in self.CNN_layers: touch = layer(touch) points = touch.contiguous().view(-1, 512) points = self.fc(points) return points # tranform the predicted shape into the reference frame of the sensro def transform_verts(self, verts, ref): pos = ref["pos"].cuda().view(-1, 1, 3).repeat(1, verts.shape[1], 1) rot = ref["rot"].cuda() verts = torch.bmm(rot, verts.permute(0, 2, 1)).permute(0, 2, 1) verts += pos return verts def forward(self, gel, ref_frame, verts): verts = verts + self.predict_verts(gel).view(-1, verts.shape[1], 3) verts = self.transform_verts(verts, ref_frame) return verts
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import torch from tqdm import tqdm import argparse from torch.utils.tensorboard import SummaryWriter import torch.optim as optim from torch.utils.data import DataLoader from pterotactyl.reconstruction.touch import model from pterotactyl.utility import utils from pterotactyl.utility import data_loaders import pterotactyl.objects as objects from pterotactyl import pretrained class Engine: def __init__(self, args): utils.set_seeds(args.seed) self.epoch = 0 self.best_loss = 10000 self.args = args self.last_improvement = 0 self.checkpoint_dir = os.path.join( "experiments/checkpoint/", args.exp_type, args.exp_id ) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) utils.save_config(self.checkpoint_dir, args) chart_location = os.path.join( os.path.dirname(objects.__file__), "touch_chart.obj" ) self.verts, self.faces = utils.load_mesh_touch(chart_location) self.verts = self.verts.view(1, self.verts.shape[0], 3).repeat( args.batch_size, 1, 1 ) def __call__(self): self.encoder = model.Encoder() self.encoder.cuda() params = list(self.encoder.parameters()) self.optimizer = optim.Adam(params, lr=self.args.lr) writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) train_loader, valid_loader = self.get_loaders() # evaluate if self.args.eval: self.load() with torch.no_grad(): self.validate(valid_loader, writer) return # train and validate else: for epoch in range(self.args.epochs): self.epoch = epoch self.train(train_loader, writer) with torch.no_grad(): self.validate(valid_loader, writer) self.check_values() # get the dataloaders def get_loaders(self): train_loader, valid_loader = "", "" # dataloader for training if not self.args.eval: train_data = data_loaders.mesh_loader_touch( self.args, set_type="recon_train" ) train_loader = DataLoader( train_data, batch_size=self.args.batch_size, shuffle=True, num_workers=16, collate_fn=train_data.collate, ) # dataloader for evaluation set_type = "test" if self.args.eval else "valid" valid_data = data_loaders.mesh_loader_touch(self.args, set_type=set_type) valid_loader = DataLoader( valid_data, batch_size=self.args.batch_size, shuffle=False, num_workers=16, collate_fn=valid_data.collate, ) return train_loader, valid_loader def train(self, data, writer): total_loss = 0 iterations = 0 self.encoder.train() for k, batch in enumerate(tqdm(data)): # initialize self.optimizer.zero_grad() sim_touch = batch["sim_touch"].cuda() ref_frame = batch["ref"] gt_points = batch["samples"].cuda() batch_size = gt_points.shape[0] # inference pred_verts = self.encoder( sim_touch, ref_frame, self.verts.clone()[:batch_size] ) loss = self.args.loss_coeff * utils.chamfer_distance( pred_verts, self.faces, gt_points, self.args.num_samples ) loss = loss.mean() total_loss += loss.data.cpu().numpy() # backprop loss.backward() self.optimizer.step() # log message = f"Train || Epoch: {self.epoch}, loss: {loss.item():.5f} " message += f"|| best_loss: {self.best_loss :.5f}" tqdm.write(message) iterations += 1.0 writer.add_scalars( "train", {self.args.exp_id: total_loss / iterations}, self.epoch ) def validate(self, valid_loader, writer): total_loss = 0 self.encoder.eval() num_examples = 0 for k, batch in enumerate(tqdm(valid_loader)): # initialize data sim_touch = batch["sim_touch"].cuda() ref_frame = batch["ref"] gt_points = batch["samples"].cuda() batch_size = gt_points.shape[0] # inference pred_verts = self.encoder( sim_touch, ref_frame, self.verts.clone()[:batch_size] ) # back prop loss = self.args.loss_coeff * utils.chamfer_distance( pred_verts, self.faces, gt_points, self.args.num_samples ) loss = loss.mean() num_examples += float(batch_size) total_loss += loss * float(batch_size) total_loss = total_loss / float(num_examples) # log print("*******************************************************") print(f"Total validation loss: {total_loss}") print("*******************************************************") if not self.args.eval: writer.add_scalars("valid", {self.args.exp_id: total_loss}, self.epoch) self.current_loss = total_loss # save the model def save(self): torch.save(self.encoder.state_dict(), self.checkpoint_dir + "/model") torch.save(self.optimizer.state_dict(), self.checkpoint_dir + "/optim") # check if the latest validation is better, save if so def check_values(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss self.best_loss = self.current_loss print(f"Saving Model with a {improvement} improvement in point loss") self.save() self.last_improvement = 0 else: self.last_improvement += 1 if self.last_improvement == self.args.patience: print(f"Over {self.args.patience} steps since last imporvement") print("Exiting now") exit() print("*******************************************************") # load the model def load(self): if self.args.eval and self.args.pretrained: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/touch/best/model" ) self.encoder.load_state_dict(torch.load(location)) else: self.encoder.load_state_dict(torch.load(self.checkpoint_dir + "/model")) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--limit_data", action="store_true", default=False, help="reduces the number of data examples", ) parser.add_argument( "--epochs", type=int, default=1000, help="Number of epochs to use." ) parser.add_argument( "--lr", type=float, default=0.0001, help="Initial learning rate." ) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument("--batch_size", type=int, default=64, help="Size of the batch.") parser.add_argument( "--num_samples", type=int, default=4000, help="Number of points in the predicted point cloud.", ) parser.add_argument( "--patience", type=int, default=70, help="How many epochs without imporvement before training stops.", ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name" ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group" ) parser.add_argument( "--pretrained", action="store_true", default=False, help="load the pretrained model", ) args = parser.parse_args() trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn as nn import torch import numpy as np from torch.nn.parameter import Parameter import torch.nn.functional as F from PIL import Image # basic CNN layer template def CNN_layer(f_in, f_out, k, stride=1, simple=False, padding=1): layers = [] if not simple: layers.append(nn.BatchNorm2d(int(f_in))) layers.append(nn.ReLU(inplace=True)) layers.append( nn.Conv2d(int(f_in), int(f_out), kernel_size=k, padding=padding, stride=stride) ) return nn.Sequential(*layers) # network for making image features for vertex feature vectors class Image_Encoder(nn.Module): def __init__(self, args): super(Image_Encoder, self).__init__() # CNN sizes cur_size = 3 next_size = 16 # layers for the CNN layers = [] layers.append( CNN_layer(cur_size, cur_size, args.CNN_ker_size, stride=1, simple=True) ) for i in range(args.num_CNN_blocks): layers.append(CNN_layer(cur_size, next_size, args.CNN_ker_size, stride=2)) cur_size = next_size next_size = next_size * 2 for j in range(args.layers_per_block - 1): layers.append(CNN_layer(cur_size, cur_size, args.CNN_ker_size)) self.args = args self.layers = nn.ModuleList(layers) # camera parameters f = 221.7025 RT = np.array( [ [ -7.587616579485257e-08, -1.0000001192092896, 0.0, -2.2762851159541242e-08, ], [-0.7071068286895752, 7.587616579485257e-08, -0.7071068286895752, 0.0], [0.7071068286895752, 0.0, -0.7071067690849304, 0.4242640733718872], ] ) K = np.array([[f, 0, 128.0], [0, f, 128.0], [0, 0, 1]]) # projection matrix self.matrix = torch.FloatTensor(K.dot(RT)).cuda() # defines image features over vertices from vertex positions, and feature mpas from vision def pooling(self, blocks, verts_pos): # convert vertex positions to x,y coordinates in the image, scaled to fractions of image dimension ext_verts_pos = torch.cat( ( verts_pos, torch.FloatTensor( np.ones([verts_pos.shape[0], verts_pos.shape[1], 1]) ).cuda(), ), dim=-1, ) ext_verts_pos = torch.matmul(ext_verts_pos, self.matrix.permute(1, 0)) ext_verts_pos[:, :, 2][ext_verts_pos[:, :, 2] == 0] = 0.1 xs = ext_verts_pos[:, :, 1] / ext_verts_pos[:, :, 2] / 256.0 xs[torch.isinf(xs)] = 0.5 ys = ext_verts_pos[:, :, 0] / ext_verts_pos[:, :, 2] / 256.0 ys[torch.isinf(ys)] = 0.5 full_features = None xs = xs.unsqueeze(2).unsqueeze(3) ys = ys.unsqueeze(2).unsqueeze(3) grid = torch.cat([ys, xs], 3) grid = grid * 2 - 1 # extract image features based on vertex projected positions for block in blocks: features = torch.nn.functional.grid_sample(block, grid, align_corners=True) if full_features is None: full_features = features else: full_features = torch.cat((full_features, features), dim=1) vert_image_features = full_features[:, :, :, 0].permute(0, 2, 1) return vert_image_features # Examines the projection of points into image space and displayes the image # This is only for debugging purposes def debug_pooling(self, img, points): # convert vertex positions to x,y coordinates in the image, scaled to fractions of image dimension ext_verts_pos = torch.cat( ( points, torch.FloatTensor( np.ones([points.shape[0], points.shape[1], 1]) ).cuda(), ), dim=-1, ) ext_verts_pos = torch.matmul(ext_verts_pos, self.matrix.permute(1, 0)) xs = ext_verts_pos[:, :, 1] / ext_verts_pos[:, :, 2] / 256.0 ys = ext_verts_pos[:, :, 0] / ext_verts_pos[:, :, 2] / 256.0 for xses, yses, i in zip(xs, ys, img): i = (255 * i.permute(1, 2, 0)).data.cpu().numpy().astype(np.uint8) for x, y in zip(xses, yses): x = int(x * 255) if x > 255: x = 255 if x < 0: x = 0 y = int(y * 255) if y > 255: y = 255 if y < 0: y = 0 i[x, y, 0] = 255.0 i[x, y, 1] = 0 i[x, y, 2] = 0 Image.fromarray(i).save("debug_img.png") print("Image of point projection has been saved to debug_img.png") print("press enter to continue") input() print("*" * 15) print() exit() def forward(self, img): x = img features = [] # layers to select image features from layer_selections = [ len(self.layers) - 1 - (i + 1) * self.args.layers_per_block for i in range(3) ] for e, layer in enumerate(self.layers): # if too many layers are applied the map size will be lower then then kernel size if x.shape[-1] < self.args.CNN_ker_size: break x = layer(x) # collect feature maps if e in layer_selections: features.append(x) features.append(x) return features # Class for defroming the charts into the traget shape class Deformation(nn.Module): def __init__( self, adj_info, inital_positions, args, return_img=False, pass_img=False ): super(Deformation, self).__init__() self.adj_info = adj_info self.initial_positions = inital_positions self.args = args self.return_img = return_img self.pass_img = pass_img # add image encoder and get image feature size if args.use_img: self.img_encoder_global = Image_Encoder(args).cuda() self.img_encoder_local = Image_Encoder(args).cuda() with torch.no_grad(): img_features = self.img_encoder_global( torch.zeros(1, 3, 256, 256).cuda() ) vert_positions = torch.zeros(1, 1, 3).cuda() input_size = self.img_encoder_global.pooling( img_features, vert_positions ).shape[-1] else: # if no image features fix the feature size at 50 input_size = 50 # add positional and mask enocoder and GCN deformation networks self.positional_encoder = Positional_Encoder(input_size) self.mask_encoder = Mask_Encoder(input_size) self.mesh_deform_1 = GCN( input_size, args, ignore_touch_matrix=args.use_img ).cuda() self.mesh_deform_2 = GCN(input_size, args).cuda() def forward(self, img, charts, img_features=None): # number of vision charts vc_length = charts["vision_charts"].clone().shape[1] # get image features if self.pass_img and img_features is not None: global_img_features, local_img_features = img_features elif self.args.use_img: global_img_features = self.img_encoder_global(img) local_img_features = self.img_encoder_local(img) else: global_img_features, local_img_features = [], [] ##### first iteration ##### # if we are using only touch then we need to use touch information immediately if self.args.use_touch and not self.args.use_img: # use touch information vertices = torch.cat( (charts["vision_charts"].clone(), charts["touch_charts"].clone()), dim=1 ) mask = torch.cat( (charts["vision_masks"].clone(), charts["touch_masks"].clone()), dim=1 ) positional_features = self.positional_encoder(vertices) mask_features = self.mask_encoder(mask) vertex_features = positional_features + mask_features # in all other setting we only use vision else: vertices = charts["vision_charts"].clone() mask = charts["vision_masks"].clone() positional_features = self.positional_encoder(vertices) mask_features = self.mask_encoder(mask) vertex_features = positional_features + mask_features # use vision information if self.args.use_img: img_features = self.img_encoder_global.pooling( global_img_features, vertices ) vertex_features += img_features # perfrom the first deformation update = self.mesh_deform_1(vertex_features, self.adj_info) # update positions of vision charts only vertices[:, :vc_length] = vertices[:, :vc_length] + update[:, :vc_length] ##### second loop ##### # add touch information if not already present if self.args.use_touch and self.args.use_img: vertices = torch.cat((vertices, charts["touch_charts"].clone()), dim=1) mask = torch.cat( (charts["vision_masks"].clone(), charts["touch_masks"].clone()), dim=1 ) mask_features = self.mask_encoder(mask) positional_features = self.positional_encoder(vertices) vertex_features = positional_features + mask_features # add image information if self.args.use_img: img_features = self.img_encoder_global.pooling(local_img_features, vertices) vertex_features += img_features # perfrom the second deformation update = self.mesh_deform_2(vertex_features, self.adj_info) # update positions of vision charts only vertices[:, :vc_length] = vertices[:, :vc_length] + update[:, :vc_length] ##### third loop ##### positional_features = self.positional_encoder(vertices) mask_features = self.mask_encoder(mask) vertex_features = positional_features + mask_features if self.args.use_img: img_features = self.img_encoder_global.pooling(local_img_features, vertices) vertex_features += img_features # perfrom the third deformation update = self.mesh_deform_2(vertex_features, self.adj_info) # update positions of vision charts only vertices[:, :vc_length] = vertices[:, :vc_length] + update[:, :vc_length] if self.return_img: return vertices, mask, [global_img_features, local_img_features] return vertices, mask # Graph convolutional network class for predicting mesh deformation class GCN(nn.Module): def __init__(self, input_features, args, ignore_touch_matrix=False): super(GCN, self).__init__() # self.ignore_touch_matrix = ignore_touch_matrix self.num_layers = args.num_GCN_layers # define output sizes for each GCN layer hidden_values = ( [input_features] + [args.hidden_GCN_size for _ in range(self.num_layers - 1)] + [3] ) # define layers layers = [] for i in range(self.num_layers): layers.append( GCN_layer( hidden_values[i], hidden_values[i + 1], args.cut, do_cut=i < self.num_layers - 1, ) ) self.layers = nn.ModuleList(layers) def forward(self, features, adj_info): if self.ignore_touch_matrix: adj = adj_info["origional"] else: adj = adj_info["adj"] # iterate through GCN layers for i in range(self.num_layers): activation = F.relu if i < self.num_layers - 1 else lambda x: x features = self.layers[i](features, adj, activation) if torch.isnan(features).any(): print(features) print("here", i, self.num_layers) input() return features # Graph convolutional network layer class GCN_layer(nn.Module): def __init__(self, in_features, out_features, cut=0.33, do_cut=True): super(GCN_layer, self).__init__() self.weight = Parameter(torch.Tensor(1, in_features, out_features)) self.bias = Parameter(torch.Tensor(out_features)) self.reset_parameters() self.cut_size = cut self.do_cut = do_cut def reset_parameters(self): stdv = 6.0 / math.sqrt((self.weight.size(1) + self.weight.size(0))) stdv *= 0.3 self.weight.data.uniform_(-stdv, stdv) self.bias.data.uniform_(-0.1, 0.1) def forward(self, features, adj, activation): features = torch.matmul(features, self.weight) # uf we want to only share a subset of features with neighbors if self.do_cut: length = round(features.shape[-1] * self.cut_size) output = torch.matmul(adj, features[:, :, :length]) output = torch.cat((output, features[:, :, length:]), dim=-1) output[:, :, :length] += self.bias[:length] else: output = torch.matmul(adj, features) output = output + self.bias return activation(output) # encode the positional information of vertices using Nerf Embeddings class Positional_Encoder(nn.Module): def __init__(self, input_size): super(Positional_Encoder, self).__init__() layers = [] layers.append( nn.Linear(63, input_size // 4) ) # 10 nerf layers + original positions layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 4, input_size // 2)) layers.append(nn.ReLU(inplace=True)) layers.append(nn.Linear(input_size // 2, input_size)) self.model = nn.Sequential(*layers) # apply nerf embedding of the positional information def nerf_embedding(self, points): embeddings = [] for i in range(10): if i == 0: embeddings.append(torch.sin(np.pi * points)) embeddings.append(torch.cos(np.pi * points)) else: embeddings.append(torch.sin(np.pi * 2 * i * points)) embeddings.append(torch.cos(np.pi * 2 * i * points)) embeddings = torch.cat(embeddings, dim=-1) return embeddings def forward(self, positions): shape = positions.shape positions = positions.contiguous().view(shape[0] * shape[1], -1) # combine nerf embedding with origional positions positions = torch.cat((self.nerf_embedding((positions)), positions), dim=-1) embeding = self.model(positions).view(shape[0], shape[1], -1) return embeding # make embedding token of the mask information for each vertex class Mask_Encoder(nn.Module): def __init__(self, input_size): super(Mask_Encoder, self).__init__() layers_mask = [] layers_mask.append(nn.Embedding(4, input_size)) self.model = nn.Sequential(*layers_mask) def forward(self, mask): shape = mask.shape mask = mask.contiguous().view(-1, 1) embeding_mask = self.model(mask.long()).view(shape[0], shape[1], -1) return embeding_mask # takes as input the touch information, and makes it a mart of the input mesh def prepare_mesh(batch, vision_mesh, args): s1 = batch["img"].shape[0] if args.use_touch: touch_info = batch["touch_charts"].cuda().view(s1, -1, 4) touch_charts = touch_info[:, :, :3] touch_masks = touch_info[:, :, 3:] # combine vision charts into a single mesh vision_charts = vision_mesh.unsqueeze(0).repeat(s1, 1, 1) vision_masks = 3 * torch.ones(vision_charts.shape[:-1]).cuda().unsqueeze(-1) charts = { "touch_charts": touch_charts, "vision_charts": vision_charts, "touch_masks": touch_masks, "vision_masks": vision_masks, } else: # combine vision charts into a single mesh vision_charts = vision_mesh.unsqueeze(0).repeat(s1, 1, 1) vision_masks = 3 * torch.ones(vision_charts.shape[:-1]).cuda().unsqueeze(-1) charts = {"vision_charts": vision_charts, "vision_masks": vision_masks} return charts
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import torch import numpy as np from tqdm import tqdm import argparse from torch.utils.tensorboard import SummaryWriter import torch.optim as optim from torch.utils.data import DataLoader from submitit.helpers import Checkpointable from pterotactyl.reconstruction.vision import model from pterotactyl.utility import utils from pterotactyl.utility import data_loaders import pterotactyl.objects as objects from pterotactyl import pretrained class Engine(Checkpointable): def __init__(self, args): # set seeds np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # set initial data values self.epoch = 0 self.best_loss = 10000 self.args = args self.last_improvement = 0 self.vision_chart_location = os.path.join( os.path.dirname(objects.__file__), "vision_charts.obj" ) self.results_dir = os.path.join("results", args.exp_type, args.exp_id) if not os.path.exists(self.results_dir): os.makedirs(self.results_dir) self.checkpoint_dir = os.path.join( "experiments/checkpoint/", args.exp_type, args.exp_id ) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) if not self.args.eval: utils.save_config(self.checkpoint_dir, args) def __call__(self) -> float: # compute mesh statistics self.mesh_info, self.initial_mesh = utils.load_mesh_vision( self.args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] # define the model and optimizer self.encoder = model.Deformation(self.mesh_info, self.initial_mesh, self.args) self.encoder.cuda() if not self.args.eval: params = list(self.encoder.parameters()) self.optimizer = optim.Adam(params, lr=self.args.lr, weight_decay=0) # logging information writer = SummaryWriter( os.path.join("experiments/tensorboard/", self.args.exp_type) ) # get data train_loader, valid_loaders = self.get_loaders() # evaluate of the test set if self.args.eval: self.load() with torch.no_grad(): self.validate(valid_loaders, writer) return # train and validate else: self.load() for epoch in range(self.epoch, self.args.epochs): self.epoch = epoch self.train(train_loader, writer) with torch.no_grad(): self.validate(valid_loaders, writer) self.check_values() # get dataloaders def get_loaders(self): train_loader, valid_loader = "", "" if not self.args.eval: # training dataloader train_data = data_loaders.mesh_loader_vision( self.args, set_type="recon_train" ) train_loader = DataLoader( train_data, batch_size=self.args.batch_size, shuffle=True, num_workers=16, collate_fn=train_data.collate, ) # evaluation dataloder set_type = "test" if self.args.eval else "valid" valid_data = data_loaders.mesh_loader_vision(self.args, set_type=set_type) valid_loader = DataLoader( valid_data, batch_size=self.args.batch_size, shuffle=False, num_workers=16, collate_fn=valid_data.collate, ) return train_loader, valid_loader def train(self, data, writer): total_loss = 0 iterations = 0 self.encoder.train() for k, batch in enumerate(tqdm(data, smoothing=0)): self.optimizer.zero_grad() # initialize data img = batch["img"].cuda() gt_points = batch["gt_points"].cuda() # for debugging , if you want to change the camera view, reach out to [email protected] # self.encoder.img_encoder_global.debug_pooling(img, gt_points) # self.encoder.img_encoder_global.debug_pooling(img, self.initial_mesh.unsqueeze(0).repeat(img.shape[0], 1, 1)) # inference with torch.no_grad(): charts = model.prepare_mesh(batch, self.initial_mesh, self.args) verts = self.encoder(img, charts)[0] loss = utils.chamfer_distance( verts, self.mesh_info["faces"], gt_points, num=self.args.number_points ) loss = self.args.loss_coeff * loss.mean() # backprop loss.backward() self.optimizer.step() # log message = f"Train || Epoch: {self.epoch}, loss: {loss.item():.2f}, b_ptp: {self.best_loss:.2f}" tqdm.write(message) total_loss += loss.item() iterations += 1.0 writer.add_scalars( "train_loss", {self.args.exp_id: total_loss / iterations}, self.epoch ) def validate(self, valid_loader, writer): total_loss = 0 self.encoder.eval() num_examples = 0 observations = [] names = [] for v, batch in enumerate(tqdm(valid_loader)): # initialize data names += batch["names"] img = batch["img"].cuda() gt_points = batch["gt_points"].cuda() batch_size = img.shape[0] # inference charts = model.prepare_mesh(batch, self.initial_mesh, self.args) ps = list(self.encoder.parameters()) ps = torch.cat([p.flatten() for p in ps]) verts = self.encoder(img, charts)[0] observations.append(verts) loss = utils.chamfer_distance( verts, self.mesh_info["faces"], gt_points, num=self.args.number_points ) loss = self.args.loss_coeff * loss.sum() # logs num_examples += float(batch_size) total_loss += loss message = f"Valid || Epoch: {self.epoch}, ave: {total_loss / num_examples:.4f}, b_ptp: {self.best_loss:.2f}" tqdm.write(message) if self.args.visualize and v == 5 and self.args.eval: meshes = torch.cat(observations, dim=0)[:, :, :3] names = [n[0] for n in names] utils.visualize_prediction( self.results_dir, meshes, self.mesh_info["faces"], names ) total_loss = total_loss / num_examples print("*******************************************************") print(f"Validation Accuracy: {total_loss}") print("*******************************************************") if not self.args.eval: writer.add_scalars("valid_ptp", {self.args.exp_id: total_loss}, self.epoch) self.current_loss = total_loss # save the model def save(self): torch.save(self.encoder.state_dict(), self.checkpoint_dir + "/model") torch.save(self.optimizer.state_dict(), self.checkpoint_dir + "/optim") np.save(self.checkpoint_dir + "/epoch.npy", np.array([self.epoch + 1])) # load the model def load(self): if self.args.eval and self.args.pretrained: if self.args.use_img: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_p/" ) else: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/v_t_g/" ) else: if self.args.finger: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_p/" ) else: location = ( os.path.dirname(pretrained.__file__) + "/reconstruction/vision/t_g/" ) vision_args, _ = utils.load_model_config(location) weights = location + 'model' self.mesh_info, self.initial_mesh = utils.load_mesh_vision( vision_args, self.vision_chart_location ) self.initial_mesh = self.initial_mesh.cuda() self.n_vision_charts = self.initial_mesh.shape[0] # define the model and optimizer self.encoder = model.Deformation( self.mesh_info, self.initial_mesh, vision_args ) self.encoder.cuda() self.encoder.load_state_dict(torch.load(weights)) else: try: self.encoder.load_state_dict(torch.load(self.checkpoint_dir + "/model")) self.optimizer.load_state_dict( torch.load(self.checkpoint_dir + "/optim") ) self.epoch = np.load(self.checkpoint_dir + "/epoch.npy")[0] except: return # check if the latest validation beats the previous, and save model if so def check_values(self): if self.best_loss >= self.current_loss: improvement = self.best_loss - self.current_loss print( f"Saving with {improvement:.3f} improvement in Chamfer Distance on Validation Set " ) self.best_loss = self.current_loss self.last_improvement = 0 self.save() else: self.last_improvement += 1 if self.last_improvement >= self.args.patience: print(f"Over {self.args.patience} steps since last imporvement") print("Exiting now") exit() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cut", type=float, default=0.33, help="The shared size of features in the GCN.", ) parser.add_argument( "--epochs", type=int, default=1000, help="Number of epochs to use." ) parser.add_argument( "--limit_data", action="store_true", default=False, help="use less data, for debugging.", ) parser.add_argument( "--finger", action="store_true", default=False, help="use only one finger." ) parser.add_argument( "--number_points", type=int, default=30000, help="number of points sampled for the chamfer distance.", ) parser.add_argument( "--seed", type=int, default=0, help="Setting for the random seed." ) parser.add_argument( "--lr", type=float, default=0.0003, help="Initial learning rate." ) parser.add_argument( "--eval", action="store_true", default=False, help="Evaluate the trained model on the test set.", ) parser.add_argument("--batch_size", type=int, default=16, help="Size of the batch.") parser.add_argument( "--val_grasps", type=int, default=-1, help="number of grasps to use during validation.", ) parser.add_argument( "--exp_id", type=str, default="test", help="The experiment name." ) parser.add_argument( "--exp_type", type=str, default="test", help="The experiment group." ) parser.add_argument( "--use_img", action="store_true", default=False, help="To use the image." ) parser.add_argument( "--use_touch", action="store_true", default=False, help="To use the touch information.", ) parser.add_argument( "--patience", type=int, default=70, help="How many epochs without imporvement before training stops.", ) parser.add_argument( "--loss_coeff", type=float, default=9000.0, help="Coefficient for loss term." ) parser.add_argument( "--num_CNN_blocks", type=int, default=6, help="Number of image blocks in the CNN.", ) parser.add_argument( "--layers_per_block", type=int, default=3, help="Number of image layers in each block in the CNN.", ) parser.add_argument( "--CNN_ker_size", type=int, default=5, help="Size of the image kernel in each CNN layer.", ) parser.add_argument( "--num_GCN_layers", type=int, default=20, help="Number of GCN layers in the mesh deformation network.", ) parser.add_argument( "--hidden_GCN_size", type=int, default=300, help="Size of the feature vector for each GCN layer in the mesh deformation network.", ) parser.add_argument( "--num_grasps", type=int, default=5, help="Number of grasps to train with. " ) parser.add_argument( "--visualize", action="store_true", default=False, help="visualize predictions and actions while evaluating", ) parser.add_argument( "--pretrained", action="store_true", default=False, help="load the pretrained model", ) args = parser.parse_args() trainer = Engine(args) trainer()
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random from glob import glob from tqdm import tqdm import numpy as np import torch from torchvision import transforms import pterotactyl.objects as objects import pterotactyl.object_data as object_data POINT_CLOUD_LOCATION = os.path.join( os.path.dirname(object_data.__file__), "point_cloud_info/" ) GRASP_LOCATION = os.path.join(os.path.dirname(object_data.__file__), "grasp_info/") TOUCH_LOCATION = os.path.join(os.path.dirname(object_data.__file__), "touch_charts/") IMAGE_LOCATION = os.path.join( os.path.dirname(object_data.__file__), "images_colourful/" ) DATA_SPLIT = np.load( os.path.join(os.path.dirname(objects.__file__), "data_split.npy"), allow_pickle=True ).item() OBJ_LOCATION = os.path.join(os.path.dirname(object_data.__file__), "object_info/") preprocess = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor()]) def get_finger_transforms(obj, grasp, finger): ref_location = os.path.join( GRASP_LOCATION, obj, str(grasp), f"{finger}_ref_frame.npy" ) touch_info = np.load(ref_location, allow_pickle=True).item() rot = touch_info["rot"] pos = touch_info["pos"] return torch.FloatTensor(rot), torch.FloatTensor(pos) # class used for obtaining an instance of the dataset for training touch chart prediction # to be passed to a pytorch dataloader class mesh_loader_touch(object): def __init__(self, args, set_type="train"): # initialization of data locations self.args = args self.set_type = set_type object_names = [ f.split("/")[-1].split(".")[0] for f in glob(f"{IMAGE_LOCATION}/*.npy") ] self.object_names = [] if self.args.limit_data: random.shuffle(object_names) object_names = object_names[:3000] for n in tqdm(object_names): if os.path.exists(POINT_CLOUD_LOCATION + n + ".npy"): if os.path.exists(GRASP_LOCATION + n): if n in DATA_SPLIT[self.set_type]: successful_touches = glob( os.path.join(GRASP_LOCATION, n, "*", "*_touch.npy") ) if self.args.limit_data: random.shuffle(successful_touches) successful_touches = successful_touches[:7] for touch in successful_touches: grasp_number = touch.split("/")[-2] finger_number = touch.split("/")[-1].split("_")[0] self.object_names.append([n, grasp_number, finger_number]) print(f"The number of {set_type} set objects found : {len(self.object_names)}") def __len__(self): return len(self.object_names) def standerdize_point_size(self, points): np.random.shuffle(points) points = torch.FloatTensor(points) while points.shape[0] < self.args.num_samples: points = torch.cat((points, points, points, points)) perm = torch.randperm(points.shape[0]) idx = perm[: self.args.num_samples] return points[idx] def __getitem__(self, index): object_name, grasp, finger = self.object_names[index] # meta data data = {} data["names"] = object_name, grasp, finger # hand infomation data["rot"], data["pos"] = get_finger_transforms(object_name, grasp, finger) # simulated touch information touch = np.load( os.path.join(GRASP_LOCATION, object_name, grasp, f"{finger}_touch.npy") ) data["sim_touch"] = ( torch.FloatTensor(touch).permute(2, 0, 1).contiguous().view(3, 121, 121) / 255.0 ) # point cloud information points = np.load( os.path.join(GRASP_LOCATION, object_name, grasp, f"{finger}_points.npy") ) data["samples"] = self.standerdize_point_size(points) return data def collate(self, batch): data = {} data["names"] = [item["names"] for item in batch] data["samples"] = torch.cat([item["samples"].unsqueeze(0) for item in batch]) data["sim_touch"] = torch.cat( [item["sim_touch"].unsqueeze(0) for item in batch] ) data["ref"] = {} data["ref"]["rot"] = torch.cat([item["rot"].unsqueeze(0) for item in batch]) data["ref"]["pos"] = torch.cat([item["pos"].unsqueeze(0) for item in batch]) return data # class used for obtaining an instance of the dataset for training chart deformation # to be passed to a pytorch dataloader class mesh_loader_vision(object): def __init__(self, args, set_type="train"): # initialization of data locations self.args = args self.set_type = set_type object_names = [ f.split("/")[-1].split(".")[0] for f in glob(f"{IMAGE_LOCATION}/*.npy") ] if self.set_type == "recon_train" or self.set_type == "auto_train": self.get_instance = self.get_training_instance else: self.get_instance = self.get_validation_instance self.object_names = [] # for debuggin use less data if args.limit_data: random.Random(0).shuffle(object_names) object_names = object_names[:2000] seed = 0 for n in tqdm(object_names): if os.path.exists(POINT_CLOUD_LOCATION + n + ".npy"): if os.path.exists(TOUCH_LOCATION + n): if n in DATA_SPLIT[self.set_type]: iters = ( 1 if ( self.set_type == "recon_train" or self.set_type == "auto_train" ) else 5 ) for _ in range(iters): self.object_names.append([n, seed]) seed += 1 print(f"The number of {set_type} set objects found : {len(self.object_names)}") def __len__(self): return len(self.object_names) def get_training_instance(self, index): obj, seed = random.choice(self.object_names) num_grasps_choice = random.choice(range(0, self.args.num_grasps + 1)) grasp_choices = [i for i in range(50)] random.shuffle(grasp_choices) grasps = grasp_choices[:num_grasps_choice] return obj, grasps def get_validation_instance(self, index): obj, seed = self.object_names[index] grasp_choices = [i for i in range(50)] if self.args.val_grasps >= 0 and self.args.eval: num_grasps_choice = self.args.val_grasps else: num_grasps_choice = random.Random(seed).choice( range(0, self.args.num_grasps + 1) ) random.Random(seed).shuffle(grasp_choices) grasps = grasp_choices[:num_grasps_choice] return obj, grasps # load object point cloud def get_points(self, obj): point_location = os.path.join(POINT_CLOUD_LOCATION, obj + ".npy") samples = np.load(point_location) np.random.shuffle(samples) gt_points = torch.FloatTensor(samples[: self.args.number_points]) return gt_points # load image of object def get_image(self, obj): img = torch.empty((1)) if self.args.use_img: img_location = os.path.join(IMAGE_LOCATION, obj + ".npy") img = torch.FloatTensor(np.load(img_location)).permute(2, 0, 1) / 255.0 return torch.FloatTensor(img) # load touch infomation from the object def get_touch_info(self, obj, grasps): touch_charts = torch.ones((1)) if self.args.use_touch: remaining = self.args.num_grasps - len(grasps) all_touch_charts = torch.FloatTensor( np.load(TOUCH_LOCATION + obj + "/touch_charts.npy") ).view(50, 4, 25, 4) if self.args.finger: touch_charts = all_touch_charts[grasps][:, 1] touch_charts = torch.cat((touch_charts, torch.zeros(remaining, 25, 4))) else: touch_charts = all_touch_charts[grasps] touch_charts = torch.cat( (touch_charts, torch.zeros(remaining, 4, 25, 4)) ) return touch_charts def __getitem__(self, index): obj, grasps = self.get_instance(index) data = {} # meta data data["names"] = OBJ_LOCATION + obj, grasps # load sampled ground truth points data["gt_points"] = self.get_points(obj) # load images data["img"] = self.get_image(obj) # get touch information data["touch_charts"] = self.get_touch_info(obj, grasps) return data def collate(self, batch): data = {} data["names"] = [item["names"] for item in batch] data["gt_points"] = torch.cat( [item["gt_points"].unsqueeze(0) for item in batch] ) data["img"] = torch.cat([item["img"].unsqueeze(0) for item in batch]) data["touch_charts"] = torch.cat( [item["touch_charts"].unsqueeze(0) for item in batch] ) return data # class used for obtaining an instance of the dataset for training chart deformation # to be passed to a pytorch dataloader class mesh_loader_active(object): def __init__(self, args, set_type="RL_train"): # initialization of data locations self.args = args self.set_type = set_type object_names = [ f.split("/")[-1].split(".")[0] for f in glob(f"{IMAGE_LOCATION}/*.npy") ] self.object_names = [] # for debuggin use less data if args.limit_data: random.Random(0).shuffle(object_names) object_names = object_names[:400] for n in tqdm(object_names): if os.path.exists(POINT_CLOUD_LOCATION + n + ".npy"): if n in DATA_SPLIT[self.set_type]: self.object_names.append(n) print(f"The number of {set_type} set objects found : {len(self.object_names)}") def __len__(self): return ( len(self.object_names) // self.args.env_batch_size ) * self.args.env_batch_size def get_instance(self, index): obj = self.object_names[index] num_grasps_choice = random.choice(range(0, self.args.num_grasps + 1)) grasp_choices = [i for i in range(50)] random.shuffle(grasp_choices) grasps = grasp_choices[:num_grasps_choice] return obj, grasps # load object point cloud def get_points(self, obj): point_location = os.path.join(POINT_CLOUD_LOCATION, obj + ".npy") samples = np.load(point_location) np.random.shuffle(samples) gt_points = torch.FloatTensor(samples[: self.args.number_points]) return gt_points # load image of object def get_image(self, obj): img = torch.empty((1)) if self.args.use_img: img_location = os.path.join(IMAGE_LOCATION, obj + ".npy") img = torch.FloatTensor(np.load(img_location)).permute(2, 0, 1) / 255.0 return torch.FloatTensor(img) def __getitem__(self, index): obj = self.object_names[index] data = {} # meta data data["names"] = OBJ_LOCATION + obj # load sampled ground truth points data["gt_points"] = self.get_points(obj) # load images data["img"] = self.get_image(obj) return data def collate(self, batch): data = {} data["names"] = [item["names"] for item in batch] data["gt_points"] = torch.cat( [item["gt_points"].unsqueeze(0) for item in batch] ) data["img"] = torch.cat([item["img"].unsqueeze(0) for item in batch]) return data
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random import os from PIL import Image import math import json import numpy as np import torch import torch.nn.functional as F import matplotlib.pyplot as plt from scipy.spatial.transform import Rotation as R import xml.etree.ElementTree as ET from scipy import ndimage from collections import namedtuple from pytorch3d.loss import chamfer_distance as cuda_cd from pytorch3d.ops.mesh_face_areas_normals import mesh_face_areas_normals from pytorch3d.ops.sample_points_from_meshes import _rand_barycentric_coords from pytorch3d.io.obj_io import load_obj, save_obj from pterotactyl.utility import pretty_render import pterotactyl.objects as objects def load_mesh_vision(args, obj): # load obj file verts, faces = load_mesh_touch(obj) # get adjacency matrix infomation adj_info = adj_init(verts, faces, args) return adj_info, verts # set seeds for consistency def set_seeds(seed): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) # normalizes symetric, binary adj matrix such that sum of each row is 1 def normalize_adj(mx): rowsum = mx.sum(1) r_inv = (1. / rowsum).view(-1) r_inv[r_inv != r_inv] = 0. mx = torch.mm(torch.eye(r_inv.shape[0]).to(mx.device) * r_inv, mx) return mx # defines the adjacecny matrix for an object def adj_init(verts, faces, args): # get generic adjacency matrix for vision charts adj = calc_adj(faces) adj_info = {} adj_info['origional'] = normalize_adj(adj.clone()) # this combines the adjacency information of touch and vision charts # the output adj matrix has the first k rows corresponding to vision charts, and the last |V| - k # corresponding to touch charts. Similarly the first l faces are correspond to vision charts, and the # remaining correspond to touch charts if args.use_touch: adj, faces = adj_fuse_touch(verts, faces, adj, args) adj = normalize_adj(adj) adj_info['adj'] = adj adj_info['faces'] = faces return adj_info # combines graph for vision and touch charts to define a fused adjacency matrix def adj_fuse_touch(verts, faces, adj, args): verts = verts.data.cpu().numpy() hash = {} number_of_grasps = args.num_grasps # find vertices which have the same 3D position for e, v in enumerate(verts): if v.tobytes() in hash: hash[v.tobytes()].append(e) else: hash[v.tobytes()] = [e] # load object information for generic touch chart if args.use_touch: chart_location = os.path.join( os.path.dirname(objects.__file__), "touch_chart.obj" ) sheet_verts, sheet_faces = load_mesh_touch(chart_location) sheet_adj = calc_adj(sheet_faces) # central vertex for each touch chart that will communicate with all vision charts central_point = 4 fingers = 1 if args.finger else 4 central_points = [central_point + (i * sheet_adj.shape[0]) + adj.shape[0] for i in range(fingers * number_of_grasps)] # define and fill new adjacency matrix with vision and touch charts new_dim = adj.shape[0] + (fingers * number_of_grasps * sheet_adj.shape[0]) new_adj = torch.zeros((new_dim, new_dim)).cuda() new_adj[: adj.shape[0], :adj.shape[0]] = adj.clone() for i in range(fingers * number_of_grasps): start = adj.shape[0] + (sheet_adj.shape[0] * i) end = adj.shape[0] + (sheet_adj.shape[0] * (i + 1)) new_adj[start: end, start:end] = sheet_adj.clone() adj = new_adj # define new faces with vision and touch charts all_faces = [faces] for i in range(fingers * number_of_grasps): temp_sheet_faces = sheet_faces.clone() + verts.shape[0] temp_sheet_faces += i * sheet_verts.shape[0] all_faces.append(temp_sheet_faces) faces = torch.cat(all_faces) # update adjacency matrix to allow communication between vision and touch charts for key in hash.keys(): cur_verts = hash[key] if len(cur_verts) > 1: for v1 in cur_verts: for v2 in cur_verts: # vertices on the boundary of vision charts can communicate adj[v1, v2] = 1 if args.use_touch: for c in central_points: # touch and vision charts can communicate adj[v1, c] = 1 adj[c, v1] = 1 return adj, faces # computes adjacemcy matrix from face information def calc_adj(faces): v1 = faces[:, 0] v2 = faces[:, 1] v3 = faces[:, 2] num_verts = int(faces.max()) adj = torch.eye(num_verts + 1).to(faces.device) adj[(v1, v2)] = 1 adj[(v1, v3)] = 1 adj[(v2, v1)] = 1 adj[(v2, v3)] = 1 adj[(v3, v1)] = 1 adj[(v3, v2)] = 1 return adj # sample points from a batch of meshes def batch_sample(verts, faces, num=10000): # Pytorch3D based code bs = verts.shape[0] face_dim = faces.shape[0] vert_dim = verts.shape[1] # following pytorch3D convention shift faces to correctly index flatten vertices F = faces.unsqueeze(0).repeat(bs, 1, 1) F += vert_dim * torch.arange(0, bs).unsqueeze(-1).unsqueeze(-1).to(F.device) # flatten vertices and faces F = F.reshape(-1, 3) V = verts.reshape(-1, 3) with torch.no_grad(): areas, _ = mesh_face_areas_normals(V, F) Ar = areas.reshape(bs, -1) Ar[Ar != Ar] = 0 Ar = torch.abs(Ar / Ar.sum(1).unsqueeze(1)) Ar[Ar != Ar] = 1 sample_face_idxs = Ar.multinomial(num, replacement=True) sample_face_idxs += face_dim * torch.arange(0, bs).unsqueeze(-1).to(Ar.device) # Get the vertex coordinates of the sampled faces. face_verts = V[F] v0, v1, v2 = face_verts[:, 0], face_verts[:, 1], face_verts[:, 2] # Randomly generate barycentric coords. w0, w1, w2 = _rand_barycentric_coords(bs, num, V.dtype, V.device) # Use the barycentric coords to get a point on each sampled face. A = v0[sample_face_idxs] # (N, num_samples, 3) B = v1[sample_face_idxs] C = v2[sample_face_idxs] samples = w0[:, :, None] * A + w1[:, :, None] * B + w2[:, :, None] * C return samples # implemented from: # https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py # MIT License # loads the initial mesh and returns vertex, and face information def load_mesh_touch(obj): obj_info = load_obj(obj) verts = obj_info[0] faces = obj_info[1].verts_idx verts = torch.FloatTensor(verts).cuda() faces = torch.LongTensor(faces).cuda() return verts, faces # returns the chamfer distance between a mesh and a point cloud def chamfer_distance(verts, faces, gt_points, num=1000, repeat=3): pred_points= batch_sample(verts, faces, num=num) cd, _ = cuda_cd(pred_points, gt_points, batch_reduction=None) if repeat > 1: cds = [cd] for i in range(repeat - 1): pred_points = batch_sample(verts, faces, num=num) cd, _ = cuda_cd(pred_points, gt_points, batch_reduction=None) cds.append(cd) cds = torch.stack(cds) cd = cds.mean(dim=0) return cd # saves a point cloud as a .obj file def save_points(file, points): location = f'{file}.obj' try: write_obj(location, points.data.cpu().numpy(), []) except: write_obj(location, points, []) # converts a voxel object to a point cloud def extract_surface(voxel): conv_filter = torch.ones((1, 1, 3, 3, 3)).cuda() local_occupancy = F.conv3d(voxel.unsqueeze( 0).unsqueeze(0), conv_filter, padding=1) local_occupancy = local_occupancy.squeeze(0).squeeze(0) # only elements with exposed faces surface_positions = (local_occupancy < 27) * (local_occupancy > 0) points = torch.where(surface_positions) points = torch.stack(points) points = points.permute(1, 0) return points.type(torch.cuda.FloatTensor) # saves a mesh as an .obj file def write_obj(filename, verts, faces): """ write the verts and faces on file.""" with open(filename, 'w') as f: # write vertices f.write('g\n# %d vertex\n' % len(verts)) for vert in verts: f.write('v %f %f %f\n' % tuple(vert)) # write faces f.write('# %d faces\n' % len(faces)) for face in faces: f.write('f %d %d %d\n' % tuple(face)) # makes the sphere of actions class get_circle(object): def __init__(self, num_points, rank=0): action_position = [] a = 4 * np.pi / float(num_points) d = math.sqrt(a) M_t = round(np.pi / d) d_t = np.pi / M_t d_phi = a / d_t sphere_positions = [] for i in range(0, M_t): theta = np.pi * (i + .5) / M_t M_phi = round(2 * np.pi * math.sin(theta) / d_phi) for j in range(0, M_phi): phi = 2 * np.pi * j / M_phi point = self.get_point(theta, phi) sphere_positions.append([theta, phi]) action_position.append(point) self.points = torch.stack(action_position) self.sphere_points = sphere_positions if num_points != self.points.shape[0]: print(f' we have {self.points.shape} points but want {num_points}') exit() def get_point(self, a, b): x = math.sin(a) * math.cos(b) y = math.sin(a) * math.sin(b) z = math.cos(a) return torch.FloatTensor([x, y, z]) # get the normal of a 3D traingle def normal_from_triangle(a, b, c): A = b - a B = c - a normal = np.cross(A, B) normal = normalize_vector(normal.reshape(1, 1, 3)) return normal.reshape(3) # normalizes a vector def normalize_vector(vector): n = np.linalg.norm(vector, axis=2) vector[:, :, 0] /= n vector[:, :, 1] /= n vector[:, :, 2] /= n return vector # combines 2 3D rotations and converts to a quaternion def quats_from_vectors(vec1, vec2): vec1 = np.array(vec1) vec2 = np.array(vec2) a, b = (vec1 / np.linalg.norm(vec1)).reshape(3), (vec2 / np.linalg.norm(vec2)).reshape(3) v = np.cross(a, b) c = np.dot(a, b) s = np.linalg.norm(v) if s == 0: s = 1 kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) rotation_matrix = np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s ** 2)) quat = R.from_matrix(rotation_matrix).as_quat() return quat # combines two quaternions def combine_quats(q1, q2): r1 = R.from_quat(q1).as_matrix() r2 = R.from_quat(q2).as_matrix() new_q = R.from_matrix(np.matmul(r1, r2)).as_quat() return new_q # converts a euler rotation to a rotation matrix def euler2matrix(angles=[0, 0, 0], translation=[0, 0, 0], xyz="xyz", degrees=False): r = R.from_euler(xyz, angles, degrees=degrees) pose = np.eye(4) pose[:3, 3] = translation pose[:3, :3] = r.as_matrix() return pose # adds redundent faces def add_faces(faces): f1 = np.array(faces[:, 0]).reshape(-1, 1) f2 = np.array(faces[:, 1]).reshape(-1, 1) f3 = np.array(faces[:, 2]).reshape(-1, 1) faces_2 = np.concatenate((f1, f3, f2), axis=-1) faces_3 = np.concatenate((f3, f2, f1), axis=-1) faces = np.concatenate((faces, faces_2, faces_3), axis=0) return faces # centers a pointcloud and scales to defined size def scale_points(points, scale = 1.): for i in range(3): points[:,i] -= points[:,i].min() points = points / points.max() points = points / scale for i in range(3): verts_range = points[:, i].max() points[:, i] -= verts_range / 2. return points # makes a urdf file pointing to a mesh def make_urdf(verts, faces, urdf_location): obj_location = urdf_location.replace('.urdf', '.obj') faces = add_faces(faces) save_obj(obj_location, torch.FloatTensor(verts), torch.LongTensor(faces), 4) blank_location = os.path.join(os.path.dirname(objects.__file__), 'blank.urdf') tree = ET.parse(blank_location) root = tree.getroot() root.attrib['name'] = 'object.urdf' root[0][2][1][0].attrib['filename'] = obj_location root[0][3][1][0].attrib['filename'] = obj_location tree.write(urdf_location) # loads a obj file and scales it def get_obj_data(obj_location, scale = 1.): obj_info = load_obj(obj_location) verts = obj_info[0].data.numpy() verts = scale_points(verts, scale) faces = obj_info[1].verts_idx.data.numpy() return verts, faces # converts a mesh to a voxel array by subdeviding the mesh def mesh_to_voxel(verts, faces, resolution): # maximum side lentghs of the subdevided triangles smallest_side = (1. / resolution) ** 2 # center the mesh and scales to unit verts_max = verts.max() verts_min = verts.min() verts = (verts - verts_min) / (verts_max - verts_min) - 0.5 # get all of the mesh triangles faces = faces.clone() v1 = torch.index_select(verts, 0, faces[:, 0]) v2 = torch.index_select(verts, 0, faces[:, 1]) v3 = torch.index_select(verts, 0, faces[:, 2]) # defined points as swt of all vertices points = torch.cat((v1, v2, v3)) while True: # get maximum side length of all traingles side_1 = (torch.abs(v1 - v2) ** 2).sum(dim=1).unsqueeze(1) side_2 = (torch.abs(v2 - v3) ** 2).sum(dim=1).unsqueeze(1) side_3 = (torch.abs(v3 - v1) ** 2).sum(dim=1).unsqueeze(1) sides = torch.cat((side_1, side_2, side_3), dim=1) sides = sides.max(dim=1)[0] # identify triangles which are small enough keep = sides > smallest_side if keep.sum() == 0: break # remove triangles which are small enough v1 = v1[keep] v2 = v2[keep] v3 = v3[keep] v4 = (v1 + v3) / 2. v5 = (v1 + v2) / 2. v6 = (v2 + v3) / 2. del (side_1, side_2, side_3, keep, sides) # add new vertices to set of points points = torch.cat((points, v4, v5, v6)) # add subdevided traingles to list of triagnles vertex_set = [v1, v2, v3, v4, v5, v6] new_traingles = [[0, 3, 4], [4, 1, 5], [4, 3, 5], [3, 2, 5]] new_verts = [] for i in range(4): for j in range(3): if i == 0: new_verts.append(vertex_set[new_traingles[i][j]]) else: new_verts[j] = torch.cat( (new_verts[j], vertex_set[new_traingles[i][j]])) v1, v2, v3 = new_verts del (v4, v5, v6, vertex_set, new_verts) del (v1, v2, v3) if points is None: return None # scales points points = ((points + .5) * (resolution - 1)).long() points = torch.split(points.permute(1, 0), 1, dim=0) points = [m.unsqueeze(0) for m in points] # set grid points to on if a point exists inside them voxel = torch.zeros((resolution, resolution, resolution)).cuda() voxel[points] = 1 return voxel # converts a voxel grid to a pointcloud def voxel_to_pointcloud(voxel): voxel = voxel.float() off_positions = voxel == 0 conv_filter = torch.ones((1, 1, 3, 3, 3)) surface_voxel = torch.zeros(voxel.shape).cuda() conv_filter = conv_filter.cuda() local_occupancy = F.conv3d(voxel.unsqueeze(0).unsqueeze(0), conv_filter, padding=1) local_occupancy = local_occupancy.squeeze(0).squeeze(0) surface_positions = (local_occupancy < 27) * (local_occupancy > 0) surface_voxel[surface_positions] = 1 surface_voxel[off_positions] = 0 points = torch.where(surface_voxel != 0) points = torch.stack(points).permute(1, 0).float() return points # implemented from: # https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py # MIT License def extract_ODMs(voxels): voxels = voxels.data.cpu().numpy() dim = voxels.shape[0] a, b, c = np.where(voxels == 1) large = int(dim * 1.5) big_list = [[[[-1, large] for j in range(dim)] for i in range(dim)] for k in range(3)] # over the whole object extract for each face the first and last occurance of a voxel at each pixel # we take highest for convinience for i, j, k in zip(a, b, c): big_list[0][i][j][0] = (max(k, big_list[0][i][j][0])) big_list[0][i][j][1] = (min(k, big_list[0][i][j][1])) big_list[1][i][k][0] = (max(j, big_list[1][i][k][0])) big_list[1][i][k][1] = (min(j, big_list[1][i][k][1])) big_list[2][j][k][0] = (max(i, big_list[2][j][k][0])) big_list[2][j][k][1] = (min(i, big_list[2][j][k][1])) ODMs = np.zeros((6, dim, dim)) # will hold odms for i in range(dim): for j in range(dim): ODMs[0, i, j] = dim - 1 - big_list[0][i][j][0] if big_list[0][i][j][0] > -1 else dim ODMs[1, i, j] = big_list[0][i][j][1] if big_list[0][i][j][1] < large else dim ODMs[2, i, j] = dim - 1 - big_list[1][i][j][0] if big_list[1][i][j][0] > -1 else dim ODMs[3, i, j] = big_list[1][i][j][1] if big_list[1][i][j][1] < large else dim ODMs[4, i, j] = dim - 1 - big_list[2][i][j][0] if big_list[2][i][j][0] > -1 else dim ODMs[5, i, j] = big_list[2][i][j][1] if big_list[2][i][j][1] < large else dim return ODMs # implemented from: # https://github.com/EdwardSmith1884/GEOMetrics/blob/master/utils.py # MIT License # use orthographic depth maps to do space carving def apply_ODMs(ODMs, dim): voxel = np.ones((dim, dim, dim)) a, b, c = np.where(ODMs > 0) for x, i, j in zip(a, b, c): pos = int(ODMs[x, i, j]) if x == 0: voxel[i, j, -pos:] = 0 if x == 1: voxel[i, j, :pos] = 0 if x == 2: voxel[i, -pos:, j] = 0 if x == 3: voxel[i, :pos, j] = 0 if x == 4: voxel[-pos:, i, j] = 0 if x == 5: voxel[:pos, i, j] = 0 voxel[ndimage.binary_fill_holes(voxel)] = 1 return torch.LongTensor(voxel).cuda() # aligns a pointcloud to the size of a mesh def realign_points(points, verts): points = points.float() verts = verts for i in range(3): points[:, i] = points[:, i] - ((points[:, i].max() + points[:, i].min()) / 2.) v_range = verts[:, i].max() - verts[:, i].min() p_range = points[:, i].max() + 1 - points[:, i].min() points[:, i] = points[:, i] * v_range / p_range return points # saves arguments for a experiment def save_config(location, args): abs_path = os.path.abspath(location) args = vars(args) args['check_point'] = abs_path config_location = f'{location}/config.json' with open(config_location, 'w') as fp: json.dump(args, fp, indent=4) return config_location # loads arguments from an experiment and the model weights def load_model_config(location): config_location = f'{location}/config.json' with open(config_location) as json_file: data = json.load(json_file) weight_location = data['check_point'] + '/model' args = namedtuple("ObjectName", data.keys())(*data.values()) return args, weight_location # for nicely visualizing dpeth images def visualize_depth(depth, max_depth=0.025): depth[depth > max_depth] = 0 depth = 255 * (depth / max_depth) depth = depth.astype(np.uint8) return depth # visualize the actions used by the policy def visualize_actions(location, actions, args): actions = actions.view(-1).long().data.cpu().numpy() circle = get_circle(args.num_actions) plt.hist(actions, bins=np.arange(0, args.num_actions+ 1 )) plt.title("actions histogram") plt.savefig(location + '/histogram.png') plt.close() array = np.zeros([args.num_actions * 2, args.num_actions * 4, 3]) for i in range(args.num_actions): x, y, z = circle.points[i] x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) for i in range(3): for j in range(3): array[x_co - 1 + i, y_co - 1 + j] += 1. for a in actions: x, y, z = circle.points[a] x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) for i in range(3): for j in range(3): array[x_co - 1 + i, y_co - 1 + j] += 1. array = array * 255. / array.max() if args.use_img: visible_location = os.path.join( os.path.dirname(objects.__file__), "visible.obj" ) seen_points = np.array(load_obj(visible_location)[0]) seen_points = seen_points / np.sqrt(((seen_points ** 2).sum(axis=1))).reshape(-1, 1) for point in seen_points: x, y, z = point x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) for i in range(5): for j in range(5): if array[x_co - 2 + i, y_co - 2 + j].sum() == 0: array[x_co - 2 + i, y_co - 2 + j] = (255, 127, 80) array[np.all(array == (0, 0, 0), axis=-1)] = (0, 204, 204) check_array = np.zeros([args.num_actions * 2, args.num_actions * 4]) for point in seen_points: x, y, z = point x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) for i in range(3): for j in range(3): check_array[x_co - 1 + i, y_co - 1 + j] = 100 on = 0. off = 0. for a in actions: x, y, z = circle.points[a] x = math.atan2(-x, y); x = (x + np.pi / 2.0) / (np.pi * 2.0) + np.pi * (28.670 / 360.0); y = math.acos(z) / np.pi; x_co = int(y * args.num_actions * 12 / (2 * np.pi)) y_co = int(x * args.num_actions * 24 / (2 * np.pi)) if check_array[x_co, y_co] > 0: on += 1 else: off += 1 print(f'percentage in vision is {on * 100 / (on+off):.2f} % for policy') else: array[np.all(array == (0, 0, 0), axis=-1)] = (0, 204, 204) array = array.astype(np.uint8) Image.fromarray(array).save(location + '/sphere_projection.png') # visualize the actions used by the policy def visualize_prediction(location, meshes, faces, names): data = {} meshes = meshes.data.cpu().numpy() faces = faces.data.cpu().numpy() locations = [] for n in names: n = '/'+ n.split('/')[-1] + '/' locations.append(location + n) if not os.path.exists(locations[-1]): os.makedirs(locations[-1]) data['locations'] = locations pretty_render.render_representations(locations, names, meshes, faces)
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import os os.environ["PYOPENGL_PLATFORM"] = "egl" import numpy as np import trimesh from scipy.spatial.transform import Rotation as R import pyrender from PIL import Image import torch from tqdm.contrib import tzip from pterotactyl.utility import utils class CameraRenderer: def __init__(self, cameraResolution=[512, 512]): self.W = cameraResolution[0] self.H = cameraResolution[1] self._init_pyrender() def _init_pyrender(self): self.scene = self._init_scene() self.objectNodes = [] self.handNodes = [] self._init_camera() self.r = pyrender.OffscreenRenderer(self.W, self.H) def _init_scene(self): scene = pyrender.Scene(ambient_light=[0.3, 0.3, 0.3]) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[0, -0.8, 0.3], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.8) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[0, 0.8, 0.3], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.8) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[-1, 0, 1], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.8) scene.add(light, pose=light_pose) light_pose = utils.euler2matrix( angles=[0, 0, 0], translation=[1, 0, 1], xyz="xyz", degrees=False ) light = pyrender.PointLight(color=np.ones(3), intensity=1.8) scene.add(light, pose=light_pose) return scene def _init_camera(self): camera = pyrender.PerspectiveCamera( yfov=60.0 / 180.0 * np.pi, znear=0.01, zfar=10.0, aspectRatio=1.0 ) cameraPose0 = utils.euler2matrix( xyz="xyz", angles=[0, 0, 0], translation=[0, 0, 0], degrees=True ) # Add camera node into scene cameraNode = pyrender.Node(camera=camera, matrix=cameraPose0) self.scene.add_node(cameraNode) self.scene.main_camera_node = cameraNode self.camera = cameraNode initial_matrix = R.from_euler("xyz", [45.0, 0, 180.0], degrees=True).as_matrix() self.update_camera_pose([0, 0.6, 0.6], initial_matrix) def update_camera_pose(self, position, orientation): """ Update digit pose (including camera, lighting, and gel surface) """ pose = np.eye(4) pose[:3, 3] = position pose[:3, :3] = orientation self.camera.matrix = pose def add_object(self, objTrimesh, position=[0, 0, 0], orientation=[0, 0, 0]): mesh = pyrender.Mesh.from_trimesh(objTrimesh) pose = utils.euler2matrix(angles=orientation, translation=position) objNode = pyrender.Node(mesh=mesh, matrix=pose) self.scene.add_node(objNode) self.objectNodes.append(objNode) def add_points(self, points, radius, colour=[0, 0, 0]): sm = trimesh.creation.uv_sphere(radius=radius) sm.visual.vertex_colors = colour tfs = np.tile(np.eye(4), (points.shape[0], 1, 1)) tfs[:, :3, 3] = points m = pyrender.Mesh.from_trimesh(sm, poses=tfs) objNode = pyrender.Node(mesh=m) self.scene.add_node(objNode) self.objectNodes.append(objNode) def remove_objects(self): for obj in self.objectNodes: self.scene.remove_node(obj) self.objectNodes = [] def render(self): colour, depth = self.r.render(self.scene) colour = np.clip((np.array(colour)), 0, 255).astype(np.uint8) colour = Image.fromarray(colour) return colour # renders the predicted mesh along with the ground truth mesh def render_representations(locations, names, meshes, faces): recon_face = utils.add_faces(faces) scene = CameraRenderer() message = "rendering the predicted objects" print("*" * len(message)) print(message) print("*" * len(message)) for verts, name, location in tzip(meshes, names, locations): ###### render mesh ####### mesh = trimesh.Trimesh(verts, recon_face) mesh.visual.vertex_colors = [228, 217, 111, 255] scene.add_object(mesh) img = scene.render() img.save(f"{location}/mesh.png") scene.remove_objects() ##### render point clouds ####### verts = torch.FloatTensor(verts).cuda() faces = torch.LongTensor(recon_face).cuda() points = ( utils.batch_sample(verts.unsqueeze(0), faces, num=100000)[0] .data.cpu() .numpy() ) scene.add_points(points, 0.01, [228, 217, 111]) img = scene.render() img.save(f"{location}/points.png") scene.remove_objects() ######## render real object ######### verts = np.load(name + "_verts.npy") faces = np.load(name + "_faces.npy") faces = utils.add_faces(faces) mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False) mesh.visual.vertex_colors = [228, 217, 111, 255] scene.add_object(mesh) img = scene.render() img.save(f"{location}/ground_truth.png") scene.remove_objects()
#Copyright (c) Facebook, Inc. and its affiliates. #All rights reserved. #This source code is licensed under the license found in the #LICENSE file in the root directory of this source tree. import os import numpy as np from tqdm import tqdm from glob import glob import random from pathlib import Path import torch import pterotactyl.object_data as object_data import pterotactyl.objects as objects from pterotactyl.utility import utils from pterotactyl.simulator.scene import sampler from pterotactyl.simulator.physics import grasping def make_data_split(): data_location = os.path.join( os.path.dirname(object_data.__file__), "initial_objects/*" ) split_destination = os.path.join( os.path.dirname(objects.__file__), "data_split.npy" ) object_files = glob(data_location) object_files = [o.split("/")[-1].split(".")[0] for o in object_files] object_files.sort() random.Random(0).shuffle(object_files) recon_train = object_files[:7700] auto_train = object_files[7700 : 2 * 7700] RL_train = object_files[2 * 7700 : 3 * 7700] valid = object_files[3 * 7700 : 3 * 7700 + 2000] test = object_files[3 * 7700 + 2000 : 3 * 7700 + 3000] dict = { "recon_train": recon_train, "auto_train": auto_train, "RL_train": RL_train, "valid": valid, "test": test, } np.save(split_destination, dict) # produces a pointcloud from the surface of an object def extract_points(verts, faces, dim=128, num_points=30000): verts = torch.FloatTensor(verts).cuda() faces = torch.LongTensor(faces).cuda() # converts the mesh to a voxel grid voxel = utils.mesh_to_voxel(verts, faces, dim) if voxel is None: return None # extracts orthographic depth maps from the voxel grid ODMs = utils.extract_ODMs(voxel) # reprojects the depth maps to a voxel grid to remove internal structure voxel = utils.apply_ODMs(ODMs, dim) # extracts a point cloud from the voxel grid points = utils.voxel_to_pointcloud(voxel) # aligns the pointcloud to the origional mesh points = utils.realign_points(points, verts.clone()) # make the point cloud of uniform size while points.shape[0] < num_points: points = torch.cat((points, points)) choices = np.random.choice(points.shape[0], num_points, replace=False) points = points[choices] return points # extract the object information from mesh def save_object_info(): data_location = os.path.join( os.path.dirname(object_data.__file__), "initial_objects/*" ) data_destination = os.path.join( os.path.dirname(object_data.__file__), "object_info/" ) if not os.path.exists(data_destination): os.makedirs(data_destination) object_files = glob(data_location) pbar = tqdm(object_files, smoothing=0.0) pbar.set_description(f"Saving object information for quick loading") for file in pbar: file_destination = data_destination + file.split("/")[-1].split(".")[0] # scale meshes and extract vertices and faces verts, faces = utils.get_obj_data(file, scale=3.1) np.save(file_destination + "_verts.npy", verts) np.save(file_destination + "_faces.npy", faces) # save the new object as a mesh and reference it in a urdf file for pybullet utils.make_urdf(verts, faces, file_destination + ".urdf") # extracts a point cloud from the object and saves it def save_point_info(): data_location = os.path.join( os.path.dirname(object_data.__file__), "object_info/*.obj" ) data_destination = os.path.join(os.path.dirname(object_data.__file__), "/") if not os.path.exists(data_destination): os.makedirs(data_destination) object_files = glob(data_location) pbar = tqdm(object_files, smoothing=0.0) pbar.set_description(f"Extracting surface point cloud") for file in pbar: destination = data_destination + file.split("/")[-1].split(".")[0] + ".npy" verts = np.load(file.replace(".obj", "_verts.npy")) faces = np.load(file.replace(".obj", "_faces.npy")) # extract the point cloud points = extract_points(verts, faces) if points is None: continue np.save(destination, points.data.cpu().numpy()) # simulates the graps of an object for all possible actions def save_simulation(): data_location = os.path.join( os.path.dirname(object_data.__file__), "object_info/*.obj" ) grasp_destination_dir = os.path.join( os.path.dirname(object_data.__file__), "grasp_info/" ) image_destination_dir = os.path.join( os.path.dirname(object_data.__file__), "images_colourful/" ) if not os.path.exists(grasp_destination_dir): os.makedirs(grasp_destination_dir) if not os.path.exists(image_destination_dir): os.makedirs(image_destination_dir) object_files = glob(data_location) simulation_infomation = {} # defines the sampling function for simulation s = sampler.Sampler(grasping.Agnostic_Grasp, bs=1, vision=True) pbar = tqdm(object_files, smoothing=0.0) pbar.set_description(f"Extracting grasp information") set = [0, 0, 0, 0] file_num = 0 for file in pbar: file_number = file.split("/")[-1].split(".")[0] grasp_destination = grasp_destination_dir + file_number + "/" image_destination = image_destination_dir + file_number + ".npy" batch = [file.replace(".obj", "")] statuses = [] try: s.load_objects(batch, from_dataset=True) except: continue # save an image of the object signals = s.sample( [0], touch=False, touch_point_cloud=False, vision=True, vision_occluded=False, ) img = signals["vision"][0] np.save(image_destination, img) for i in range(50): # simulate the object signals = s.sample( [i], touch=True, touch_point_cloud=True, vision=False, vision_occluded=False, ) status = signals["touch_status"][0] good = 0 for k in range(4): if status[k] == "touch": good += 1 for k in range(good): set[k] += 1 statuses.append(status) # extracts the touch information for each of the 4 fingers for j in range(4): instance_grasp_destination = os.path.join( grasp_destination, str(i), str(j) ) Path(instance_grasp_destination).mkdir(parents=True, exist_ok=True) if status[j] == "touch": touch_signal = ( signals["touch_signal"][0][j].data.numpy().astype(np.uint8) ) touch_points = signals["touch_point_cloud"][0][j] np.save(instance_grasp_destination + "_touch.npy", touch_signal) np.save(instance_grasp_destination + "_points.npy", touch_points) if status[j] != "no_intersection": ref_frame_pos = signals["finger_transfrom_pos"][0][j].data.numpy() ref_frame_rot_M = signals["finger_transform_rot_M"][0][ j ].data.numpy() ref_frame = {"pos": ref_frame_pos, "rot": ref_frame_rot_M} np.save(instance_grasp_destination + "_ref_frame.npy", ref_frame) s.remove_objects() file_num += 0.5 simulation_infomation[file_number] = statuses if __name__ == "__main__": save_object_info() save_point_info() save_simulation() make_data_split()
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import argparse import os import numpy as np import torch from human_body_prior.body_model.body_model import BodyModel from human_body_prior.tools.rotation_tools import aa2matrot, local2global_pose from tqdm import tqdm from utils import utils_transform def main(args, bm): for dataroot_subset in ["BioMotionLab_NTroje", "CMU", "MPI_HDM05"]: print(dataroot_subset) for phase in ["train", "test"]: print(phase) savedir = os.path.join(args.save_dir, dataroot_subset, phase) if not os.path.exists(savedir): os.makedirs(savedir) split_file = os.path.join( "prepare_data/data_split", dataroot_subset, phase + "_split.txt" ) with open(split_file, "r") as f: filepaths = [line.strip() for line in f] rotation_local_full_gt_list = [] hmd_position_global_full_gt_list = [] body_parms_list = [] head_global_trans_list = [] idx = 0 for filepath in tqdm(filepaths): data = {} bdata = np.load( os.path.join(args.root_dir, filepath), allow_pickle=True ) if "mocap_framerate" in bdata: framerate = bdata["mocap_framerate"] else: continue idx += 1 if framerate == 120: stride = 2 elif framerate == 60: stride = 1 else: raise AssertionError( "Please check your AMASS data, should only have 2 types of framerate, either 120 or 60!!!" ) bdata_poses = bdata["poses"][::stride, ...] bdata_trans = bdata["trans"][::stride, ...] subject_gender = bdata["gender"] body_parms = { "root_orient": torch.Tensor( bdata_poses[:, :3] ), # .to(comp_device), # controls the global root orientation "pose_body": torch.Tensor( bdata_poses[:, 3:66] ), # .to(comp_device), # controls the body "trans": torch.Tensor( bdata_trans ), # .to(comp_device), # controls the global body position } body_parms_list = body_parms body_pose_world = bm( **{ k: v for k, v in body_parms.items() if k in ["pose_body", "root_orient", "trans"] } ) output_aa = torch.Tensor(bdata_poses[:, :66]).reshape(-1, 3) output_6d = utils_transform.aa2sixd(output_aa).reshape( bdata_poses.shape[0], -1 ) rotation_local_full_gt_list = output_6d[1:] rotation_local_matrot = aa2matrot( torch.tensor(bdata_poses).reshape(-1, 3) ).reshape(bdata_poses.shape[0], -1, 9) rotation_global_matrot = local2global_pose( rotation_local_matrot, bm.kintree_table[0].long() ) # rotation of joints relative to the origin head_rotation_global_matrot = rotation_global_matrot[:, [15], :, :] rotation_global_6d = utils_transform.matrot2sixd( rotation_global_matrot.reshape(-1, 3, 3) ).reshape(rotation_global_matrot.shape[0], -1, 6) input_rotation_global_6d = rotation_global_6d[1:, [15, 20, 21], :] rotation_velocity_global_matrot = torch.matmul( torch.inverse(rotation_global_matrot[:-1]), rotation_global_matrot[1:], ) rotation_velocity_global_6d = utils_transform.matrot2sixd( rotation_velocity_global_matrot.reshape(-1, 3, 3) ).reshape(rotation_velocity_global_matrot.shape[0], -1, 6) input_rotation_velocity_global_6d = rotation_velocity_global_6d[ :, [15, 20, 21], : ] position_global_full_gt_world = body_pose_world.Jtr[ :, :22, : ] # position of joints relative to the world origin position_head_world = position_global_full_gt_world[ :, 15, : ] # world position of head head_global_trans = torch.eye(4).repeat( position_head_world.shape[0], 1, 1 ) head_global_trans[:, :3, :3] = head_rotation_global_matrot.squeeze() head_global_trans[:, :3, 3] = position_global_full_gt_world[:, 15, :] head_global_trans_list = head_global_trans[1:] num_frames = position_global_full_gt_world.shape[0] - 1 hmd_position_global_full_gt_list = torch.cat( [ input_rotation_global_6d.reshape(num_frames, -1), input_rotation_velocity_global_6d.reshape(num_frames, -1), position_global_full_gt_world[1:, [15, 20, 21], :].reshape( num_frames, -1 ), position_global_full_gt_world[1:, [15, 20, 21], :].reshape( num_frames, -1 ) - position_global_full_gt_world[:-1, [15, 20, 21], :].reshape( num_frames, -1 ), ], dim=-1, ) data["rotation_local_full_gt_list"] = rotation_local_full_gt_list data[ "hmd_position_global_full_gt_list" ] = hmd_position_global_full_gt_list data["body_parms_list"] = body_parms_list data["head_global_trans_list"] = head_global_trans_list data["position_global_full_gt_world"] = ( position_global_full_gt_world[1:].cpu().float() ) data["framerate"] = 60 data["gender"] = subject_gender data["filepath"] = filepath torch.save(data, os.path.join(savedir, "{}.pt".format(idx))) if __name__ == "__main__": parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--support_dir", type=str, default=None, help="=dir where you put your smplh and dmpls dirs", ) parser.add_argument( "--save_dir", type=str, default=None, help="=dir where you want to save your generated data", ) parser.add_argument( "--root_dir", type=str, default=None, help="=dir where you put your AMASS data" ) args = parser.parse_args() # Here we follow the AvatarPoser paper and use male model for all sequences bm_fname_male = os.path.join(args.support_dir, "smplh/{}/model.npz".format("male")) dmpl_fname_male = os.path.join( args.support_dir, "dmpls/{}/model.npz".format("male") ) num_betas = 16 # number of body parameters num_dmpls = 8 # number of DMPL parameters bm_male = BodyModel( bm_fname=bm_fname_male, num_betas=num_betas, num_dmpls=num_dmpls, dmpl_fname=dmpl_fname_male, ) main(args, bm_male)
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import math import os import random import numpy as np import torch from data_loaders.dataloader import load_data, TestDataset from human_body_prior.body_model.body_model import BodyModel as BM from model.networks import PureMLP from tqdm import tqdm from utils import utils_transform, utils_visualize from utils.metrics import get_metric_function from utils.model_util import create_model_and_diffusion, load_model_wo_clip from utils.parser_util import sample_args device = torch.device("cuda") ##################### RADIANS_TO_DEGREES = 360.0 / (2 * math.pi) METERS_TO_CENTIMETERS = 100.0 pred_metrics = [ "mpjre", "mpjpe", "mpjve", "handpe", "upperpe", "lowerpe", "rootpe", "pred_jitter", ] gt_metrics = [ "gt_jitter", ] all_metrics = pred_metrics + gt_metrics RADIANS_TO_DEGREES = 360.0 / (2 * math.pi) # 57.2958 grads metrics_coeffs = { "mpjre": RADIANS_TO_DEGREES, "mpjpe": METERS_TO_CENTIMETERS, "mpjve": METERS_TO_CENTIMETERS, "handpe": METERS_TO_CENTIMETERS, "upperpe": METERS_TO_CENTIMETERS, "lowerpe": METERS_TO_CENTIMETERS, "rootpe": METERS_TO_CENTIMETERS, "pred_jitter": 1.0, "gt_jitter": 1.0, "gt_mpjpe": METERS_TO_CENTIMETERS, "gt_mpjve": METERS_TO_CENTIMETERS, "gt_handpe": METERS_TO_CENTIMETERS, "gt_rootpe": METERS_TO_CENTIMETERS, "gt_upperpe": METERS_TO_CENTIMETERS, "gt_lowerpe": METERS_TO_CENTIMETERS, } ##################### class BodyModel(torch.nn.Module): def __init__(self, support_dir): super().__init__() device = torch.device("cuda") subject_gender = "male" bm_fname = os.path.join( support_dir, "smplh/{}/model.npz".format(subject_gender) ) dmpl_fname = os.path.join( support_dir, "dmpls/{}/model.npz".format(subject_gender) ) num_betas = 16 # number of body parameters num_dmpls = 8 # number of DMPL parameters body_model = BM( bm_fname=bm_fname, num_betas=num_betas, num_dmpls=num_dmpls, dmpl_fname=dmpl_fname, ).to(device) self.body_model = body_model.eval() def forward(self, body_params): with torch.no_grad(): body_pose = self.body_model( **{ k: v for k, v in body_params.items() if k in ["pose_body", "trans", "root_orient"] } ) return body_pose def non_overlapping_test( args, data, sample_fn, dataset, model, num_per_batch=256, model_type="mlp", ): gt_data, sparse_original, body_param, head_motion, filename = ( data[0], data[1], data[2], data[3], data[4], ) gt_data = gt_data.cuda().float() sparse_original = sparse_original.cuda().float() head_motion = head_motion.cuda().float() num_frames = head_motion.shape[0] output_samples = [] count = 0 sparse_splits = [] flag_index = None if args.input_motion_length <= num_frames: while count < num_frames: if count + args.input_motion_length > num_frames: tmp_k = num_frames - args.input_motion_length sub_sparse = sparse_original[ :, tmp_k : tmp_k + args.input_motion_length ] flag_index = count - tmp_k else: sub_sparse = sparse_original[ :, count : count + args.input_motion_length ] sparse_splits.append(sub_sparse) count += args.input_motion_length else: flag_index = args.input_motion_length - num_frames tmp_init = sparse_original[:, :1].repeat(1, flag_index, 1).clone() sub_sparse = torch.concat([tmp_init, sparse_original], dim=1) sparse_splits = [sub_sparse] n_steps = len(sparse_splits) // num_per_batch if len(sparse_splits) % num_per_batch > 0: n_steps += 1 # Split the sequence into n_steps non-overlapping batches if args.fix_noise: # fix noise seed for every frame noise = torch.randn(1, 1, 1).cuda() noise = noise.repeat(1, args.input_motion_length, args.motion_nfeat) else: noise = None for step_index in range(n_steps): sparse_per_batch = torch.cat( sparse_splits[ step_index * num_per_batch : (step_index + 1) * num_per_batch ], dim=0, ) new_batch_size = sparse_per_batch.shape[0] if model_type == "diffusion": sample = sample_fn( model, (new_batch_size, args.input_motion_length, args.motion_nfeat), sparse=sparse_per_batch, clip_denoised=False, model_kwargs=None, skip_timesteps=0, init_image=None, progress=False, dump_steps=None, noise=noise, const_noise=False, ) elif model_type == "mlp": sample = model(sparse_per_batch) if flag_index is not None and step_index == n_steps - 1: last_batch = sample[-1] last_batch = last_batch[flag_index:] sample = sample[:-1].reshape(-1, args.motion_nfeat) sample = torch.cat([sample, last_batch], dim=0) else: sample = sample.reshape(-1, args.motion_nfeat) if not args.no_normalization: output_samples.append(dataset.inv_transform(sample.cpu().float())) else: output_samples.append(sample.cpu().float()) return output_samples, body_param, head_motion, filename def overlapping_test( args, data, sample_fn, dataset, model, sld_wind_size=70, model_type="diffusion", ): assert ( model_type == "diffusion" ), "currently only diffusion model supports overlapping test!!!" gt_data, sparse_original, body_param, head_motion, filename = ( data[0], data[1], data[2], data[3], data[4], ) gt_data = gt_data.cuda().float() sparse_original = sparse_original.cuda().float() head_motion = head_motion.cuda().float() num_frames = head_motion.shape[0] output_samples = [] count = 0 sparse_splits = [] flag_index = None if num_frames < args.input_motion_length: flag_index = args.input_motion_length - num_frames tmp_init = sparse_original[:, :1].repeat(1, flag_index, 1).clone() sub_sparse = torch.concat([tmp_init, sparse_original], dim=1) sparse_splits = [sub_sparse] else: while count + args.input_motion_length <= num_frames: if count == 0: sub_sparse = sparse_original[ :, count : count + args.input_motion_length ] tmp_idx = 0 else: sub_sparse = sparse_original[ :, count : count + args.input_motion_length ] tmp_idx = args.input_motion_length - sld_wind_size sparse_splits.append([sub_sparse, tmp_idx]) count += sld_wind_size if count < num_frames: sub_sparse = sparse_original[:, -args.input_motion_length :] tmp_idx = args.input_motion_length - ( num_frames - (count - sld_wind_size + args.input_motion_length) ) sparse_splits.append([sub_sparse, tmp_idx]) memory = None # init memory if args.fix_noise: # fix noise seed for every frame noise = torch.randn(1, 1, 1).cuda() noise = noise.repeat(1, args.input_motion_length, args.motion_nfeat) else: noise = None for step_index in range(len(sparse_splits)): sparse_per_batch = sparse_splits[step_index][0] memory_end_index = sparse_splits[step_index][1] new_batch_size = sparse_per_batch.shape[0] assert new_batch_size == 1 if memory is not None: model_kwargs = {} model_kwargs["y"] = {} model_kwargs["y"]["inpainting_mask"] = torch.zeros( ( new_batch_size, args.input_motion_length, args.motion_nfeat, ) ).cuda() model_kwargs["y"]["inpainting_mask"][:, :memory_end_index, :] = 1 model_kwargs["y"]["inpainted_motion"] = torch.zeros( ( new_batch_size, args.input_motion_length, args.motion_nfeat, ) ).cuda() model_kwargs["y"]["inpainted_motion"][:, :memory_end_index, :] = memory[ :, -memory_end_index:, : ] else: model_kwargs = None sample = sample_fn( model, (new_batch_size, args.input_motion_length, args.motion_nfeat), sparse=sparse_per_batch, clip_denoised=False, model_kwargs=None, skip_timesteps=0, init_image=None, progress=False, dump_steps=None, noise=noise, const_noise=False, ) memory = sample.clone().detach() if flag_index is not None: sample = sample[:, flag_index:].cpu().reshape(-1, args.motion_nfeat) else: sample = sample[:, memory_end_index:].reshape(-1, args.motion_nfeat) if not args.no_normalization: output_samples.append(dataset.inv_transform(sample.cpu().float())) else: output_samples.append(sample.cpu().float()) return output_samples, body_param, head_motion, filename def evaluate_prediction( args, metrics, sample, body_model, sample_index, head_motion, body_param, fps, filename, ): motion_pred = sample.squeeze().cuda() # Get the prediction from the model model_rot_input = ( utils_transform.sixd2aa(motion_pred.reshape(-1, 6).detach()) .reshape(motion_pred.shape[0], -1) .float() ) T_head2world = head_motion.clone().cuda() t_head2world = T_head2world[:, :3, 3].clone() # Get the offset between the head and other joints using forward kinematic model body_pose_local = body_model( { "pose_body": model_rot_input[..., 3:66], "root_orient": model_rot_input[..., :3], } ).Jtr # Get the offset in global coordiante system between head and body_world. t_head2root = -body_pose_local[:, 15, :] t_root2world = t_head2root + t_head2world.cuda() predicted_body = body_model( { "pose_body": model_rot_input[..., 3:66], "root_orient": model_rot_input[..., :3], "trans": t_root2world, } ) predicted_position = predicted_body.Jtr[:, :22, :] # Get the predicted position and rotation predicted_angle = model_rot_input for k, v in body_param.items(): body_param[k] = v.squeeze().cuda() body_param[k] = body_param[k][-predicted_angle.shape[0] :, ...] # Get the ground truth position from the model gt_body = body_model(body_param) gt_position = gt_body.Jtr[:, :22, :] # Create animation if args.vis: video_dir = args.output_dir if not os.path.exists(video_dir): os.makedirs(video_dir) save_filename = filename.split(".")[0].replace("/", "-") save_video_path = os.path.join(video_dir, save_filename + ".mp4") utils_visualize.save_animation( body_pose=predicted_body, savepath=save_video_path, bm=body_model.body_model, fps=fps, resolution=(800, 800), ) save_video_path_gt = os.path.join(video_dir, save_filename + "_gt.mp4") if not os.path.exists(save_video_path_gt): utils_visualize.save_animation( body_pose=gt_body, savepath=save_video_path_gt, bm=body_model.body_model, fps=fps, resolution=(800, 800), ) gt_angle = body_param["pose_body"] gt_root_angle = body_param["root_orient"] predicted_root_angle = predicted_angle[:, :3] predicted_angle = predicted_angle[:, 3:] upper_index = [3, 6, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] lower_index = [0, 1, 2, 4, 5, 7, 8, 10, 11] eval_log = {} for metric in metrics: eval_log[metric] = ( get_metric_function(metric)( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ) .cpu() .numpy() ) torch.cuda.empty_cache() return eval_log def load_diffusion_model(args): print("Creating model and diffusion...") args.arch = args.arch[len("diffusion_") :] model, diffusion = create_model_and_diffusion(args) print(f"Loading checkpoints from [{args.model_path}]...") state_dict = torch.load(args.model_path, map_location="cpu") load_model_wo_clip(model, state_dict) model.to("cuda:0") # dist_util.dev()) model.eval() # disable random masking return model, diffusion def load_mlp_model(args): model = PureMLP( args.latent_dim, args.input_motion_length, args.layers, args.sparse_dim, args.motion_nfeat, ) model.eval() state_dict = torch.load(args.model_path, map_location="cpu") model.load_state_dict(state_dict) model.to("cuda:0") return model, None def main(): args = sample_args() torch.backends.cudnn.benchmark = False random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) fps = 60 # AMASS dataset requires 60 frames per second body_model = BodyModel(args.support_dir) print("Loading dataset...") filename_list, all_info, mean, std = load_data( args.dataset, args.dataset_path, "test", ) dataset = TestDataset( args.dataset, mean, std, all_info, filename_list, ) log = {} for metric in all_metrics: log[metric] = 0 model_type = args.arch.split("_")[0] if model_type == "diffusion": model, diffusion = load_diffusion_model(args) sample_fn = diffusion.p_sample_loop elif model_type == "mlp": model, _ = load_mlp_model(args) sample_fn = None else: raise ValueError(f"Unknown model type {model_type}") if not args.overlapping_test: test_func = non_overlapping_test # batch size in the case of non-overlapping testing n_testframe = args.num_per_batch else: print("Overlapping testing...") test_func = overlapping_test # sliding window size in case of overlapping testing n_testframe = args.sld_wind_size for sample_index in tqdm(range(len(dataset))): output, body_param, head_motion, filename = test_func( args, dataset[sample_index], sample_fn, dataset, model, n_testframe, model_type=model_type, ) sample = torch.cat(output, axis=0) instance_log = evaluate_prediction( args, all_metrics, sample, body_model, sample_index, head_motion, body_param, fps, filename, ) for key in instance_log: log[key] += instance_log[key] # Print the value for all the metrics print("Metrics for the predictions") for metric in pred_metrics: print(log[metric] / len(dataset) * metrics_coeffs[metric]) print("Metrics for the ground truth") for metric in gt_metrics: print(metric, log[metric] / len(dataset) * metrics_coeffs[metric]) if __name__ == "__main__": main()
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import json import os import random import numpy as np import torch from data_loaders.dataloader import get_dataloader, load_data, TrainDataset from model.networks import PureMLP from runner.train_mlp import train_step from runner.training_loop import TrainLoop from utils import dist_util from utils.model_util import create_model_and_diffusion from utils.parser_util import train_args def train_diffusion_model(args, dataloader): print("creating model and diffusion...") args.arch = args.arch[len("diffusion_") :] num_gpus = torch.cuda.device_count() args.num_workers = args.num_workers * num_gpus model, diffusion = create_model_and_diffusion(args) if num_gpus > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") dist_util.setup_dist() model = torch.nn.DataParallel(model).cuda() print( "Total params: %.2fM" % (sum(p.numel() for p in model.module.parameters()) / 1000000.0) ) else: dist_util.setup_dist(args.device) model.to(dist_util.dev()) print( "Total params: %.2fM" % (sum(p.numel() for p in model.parameters()) / 1000000.0) ) print("Training...") TrainLoop(args, model, diffusion, dataloader).run_loop() print("Done.") def train_mlp_model(args, dataloader): print("creating MLP model...") args.arch = args.arch[len("mlp_") :] num_gpus = torch.cuda.device_count() args.num_workers = args.num_workers * num_gpus model = PureMLP( args.latent_dim, args.input_motion_length, args.layers, args.sparse_dim, args.motion_nfeat, ) model.train() if num_gpus > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") dist_util.setup_dist() model = torch.nn.DataParallel(model).cuda() print( "Total params: %.2fM" % (sum(p.numel() for p in model.module.parameters()) / 1000000.0) ) else: dist_util.setup_dist(args.device) model.to(dist_util.dev()) print( "Total params: %.2fM" % (sum(p.numel() for p in model.parameters()) / 1000000.0) ) # initialize optimizer optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) nb_iter = 0 avg_loss = 0.0 avg_lr = 0.0 while (nb_iter + 1) < args.num_steps: for (motion_target, motion_input) in dataloader: loss, optimizer, current_lr = train_step( motion_input, motion_target, model, optimizer, nb_iter, args.num_steps, args.lr, args.lr / 10.0, dist_util.dev(), args.lr_anneal_steps, ) avg_loss += loss avg_lr += current_lr if (nb_iter + 1) % args.log_interval == 0: avg_loss = avg_loss / args.log_interval avg_lr = avg_lr / args.log_interval print("Iter {} Summary: ".format(nb_iter + 1)) print(f"\t lr: {avg_lr} \t Training loss: {avg_loss}") avg_loss = 0 avg_lr = 0 if (nb_iter + 1) == args.num_steps: break nb_iter += 1 with open( os.path.join(args.save_dir, "model-iter-" + str(nb_iter + 1) + ".pth"), "wb", ) as f: torch.save(model.state_dict(), f) def main(): args = train_args() torch.backends.cudnn.benchmark = False random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.save_dir is None: raise FileNotFoundError("save_dir was not specified.") elif os.path.exists(args.save_dir) and not args.overwrite: raise FileExistsError("save_dir [{}] already exists.".format(args.save_dir)) elif not os.path.exists(args.save_dir): os.makedirs(args.save_dir) args_path = os.path.join(args.save_dir, "args.json") with open(args_path, "w") as fw: json.dump(vars(args), fw, indent=4, sort_keys=True) print("creating data loader...") motions, sparses, mean, std = load_data( args.dataset, args.dataset_path, "train", input_motion_length=args.input_motion_length, ) dataset = TrainDataset( args.dataset, mean, std, motions, sparses, args.input_motion_length, args.train_dataset_repeat_times, args.no_normalization, ) dataloader = get_dataloader( dataset, "train", batch_size=args.batch_size, num_workers=args.num_workers ) # args.lr_anneal_steps = ( # args.lr_anneal_steps // args.train_dataset_repeat_times # ) * len( # dataloader # ) # the input lr_anneal_steps is by epoch, here convert it to the number of steps model_type = args.arch.split("_")[0] if model_type == "diffusion": train_diffusion_model(args, dataloader) elif model_type == "mlp": train_mlp_model(args, dataloader) if __name__ == "__main__": main()
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion # MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import functools import os import torch from diffusion import logger from diffusion.fp16_util import MixedPrecisionTrainer from diffusion.resample import create_named_schedule_sampler, LossAwareSampler from torch.optim import AdamW from tqdm import tqdm from utils import dist_util class TrainLoop: def __init__(self, args, model, diffusion, data): self.args = args self.dataset = args.dataset self.model = model self.diffusion = diffusion self.data = data self.batch_size = args.batch_size self.lr = args.lr self.log_interval = args.log_interval self.save_interval = args.save_interval self.resume_checkpoint = args.resume_checkpoint self.load_optimizer = args.load_optimizer self.use_fp16 = False self.fp16_scale_growth = 1e-3 self.weight_decay = args.weight_decay self.lr_anneal_steps = args.lr_anneal_steps self.step = 0 self.resume_step = 0 self.global_batch = self.batch_size self.num_steps = args.num_steps self.num_epochs = self.num_steps // len(self.data) + 1 self.sync_cuda = torch.cuda.is_available() self._load_and_sync_parameters() self.mp_trainer = MixedPrecisionTrainer( model=self.model, use_fp16=self.use_fp16, fp16_scale_growth=self.fp16_scale_growth, ) self.save_dir = args.save_dir self.overwrite = args.overwrite self.opt = AdamW( self.mp_trainer.master_params, lr=self.lr, weight_decay=self.weight_decay ) if self.resume_step and self.load_optimizer: self._load_optimizer_state() self.device = torch.device("cpu") if torch.cuda.is_available() and dist_util.dev() != "cpu": self.device = torch.device(dist_util.dev()) self.schedule_sampler_type = "uniform" self.schedule_sampler = create_named_schedule_sampler( self.schedule_sampler_type, diffusion ) self.eval_wrapper, self.eval_data, self.eval_gt_data = None, None, None self.use_ddp = False self.ddp_model = self.model def _load_and_sync_parameters(self): resume_checkpoint = self.resume_checkpoint if resume_checkpoint: self.resume_step = parse_resume_step_from_filename(resume_checkpoint) logger.log(f"loading model from checkpoint: {resume_checkpoint}...") self.model.load_state_dict( dist_util.load_state_dict( resume_checkpoint, map_location=dist_util.dev(), ) ) def _load_optimizer_state(self): main_checkpoint = self.resume_checkpoint opt_checkpoint = os.path.join( os.path.dirname(main_checkpoint), f"opt{self.resume_step:09}.pt" ) logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}") assert os.path.exists(opt_checkpoint), "optimiser states does not exist." state_dict = dist_util.load_state_dict( opt_checkpoint, map_location=dist_util.dev() ) self.opt.load_state_dict(state_dict) def run_loop(self): for epoch in range(self.num_epochs): print(f"Starting epoch {epoch}") for motion, cond in tqdm(self.data): motion = motion.to(self.device) cond = cond.to(self.device) self.run_step(motion, cond) self.step += 1 if epoch % self.save_interval == 0: self.save() if epoch % self.log_interval == 0: for k, v in logger.get_current().name2val.items(): if k == "loss": print("epoch[{}]: loss[{:0.5f}]".format(epoch, v)) print("lr:", self.lr) # Save the last checkpoint if it wasn't already saved. if (self.step - 1) % self.save_interval != 0: self.save() def run_step(self, batch, cond): self.forward_backward(batch, cond) self.mp_trainer.optimize(self.opt) self._step_lr() self.log_step() def forward_backward(self, batch, cond): self.mp_trainer.zero_grad() t, weights = self.schedule_sampler.sample(batch.shape[0], dist_util.dev()) compute_losses = functools.partial( self.diffusion.training_losses, self.ddp_model, batch, t, cond, dataset=self.data.dataset, ) losses = compute_losses() if isinstance(self.schedule_sampler, LossAwareSampler): self.schedule_sampler.update_with_local_losses(t, losses["loss"].detach()) loss = (losses["loss"] * weights).mean() log_loss_dict(self.diffusion, t, {k: v * weights for k, v in losses.items()}) self.mp_trainer.backward(loss) def _anneal_lr(self): if not self.lr_anneal_steps: return frac_done = (self.step + self.resume_step) / self.lr_anneal_steps lr = self.lr * (1 - frac_done) for param_group in self.opt.param_groups: param_group["lr"] = lr def _step_lr(self): # One-step learning rate decay if needed. if not self.lr_anneal_steps: return if (self.step + self.resume_step) > self.lr_anneal_steps: self.lr = self.lr / 30.0 self.lr_anneal_steps = False else: self.lr = self.lr for param_group in self.opt.param_groups: param_group["lr"] = self.lr def log_step(self): logger.logkv("step", self.step + self.resume_step) logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch) def ckpt_file_name(self): return f"model{(self.step+self.resume_step):09d}.pt" def save(self): def save_checkpoint(params): state_dict = self.mp_trainer.master_params_to_state_dict(params) logger.log("saving model...") filename = self.ckpt_file_name() if not os.path.exists(self.save_dir): os.makedirs(self.save_dir) with open( os.path.join(self.save_dir, filename), "wb", ) as f: torch.save(state_dict, f) save_checkpoint(self.mp_trainer.master_params) with open( os.path.join(self.save_dir, f"opt{(self.step+self.resume_step):09d}.pt"), "wb", ) as f: torch.save(self.opt.state_dict(), f) def parse_resume_step_from_filename(filename): """ Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the checkpoint's number of steps. """ split = filename.split("model") if len(split) < 2: return 0 split1 = split[-1].split(".")[0] try: return int(split1) except ValueError: return 0 def log_loss_dict(diffusion, ts, losses): for key, values in losses.items(): logger.logkv_mean(key, values.mean().item()) # Log the quantiles (four quartiles, in particular). for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()): quartile = int(4 * sub_t / diffusion.num_timesteps) logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch def update_lr_multistep( nb_iter, total_iter, max_lr, min_lr, optimizer, lr_anneal_steps ): if nb_iter > lr_anneal_steps: current_lr = min_lr else: current_lr = max_lr for param_group in optimizer.param_groups: param_group["lr"] = current_lr return optimizer, current_lr def train_step( motion_input, motion_target, model, optimizer, nb_iter, total_iter, max_lr, min_lr, device, lr_anneal_steps, ): motion_input = motion_input.to(device) motion_target = motion_target.to(device) motion_pred = model(motion_input) loss = torch.mean( torch.norm( (motion_pred - motion_target).reshape(-1, 6), 2, 1, ) ) optimizer.zero_grad() loss.backward() optimizer.step() optimizer, current_lr = update_lr_multistep( nb_iter, total_iter, max_lr, min_lr, optimizer, lr_anneal_steps ) return loss.item(), optimizer, current_lr
# Copyright (c) Meta Platforms, Inc. All Rights Reserved # Metric functions with same inputs import numpy as np import torch def pred_jitter( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): pred_jitter = ( ( ( predicted_position[3:] - 3 * predicted_position[2:-1] + 3 * predicted_position[1:-2] - predicted_position[:-3] ) * (fps**3) ) .norm(dim=2) .mean() ) return pred_jitter def gt_jitter( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): gt_jitter = ( ( ( gt_position[3:] - 3 * gt_position[2:-1] + 3 * gt_position[1:-2] - gt_position[:-3] ) * (fps**3) ) .norm(dim=2) .mean() ) return gt_jitter def mpjre( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): diff = gt_angle - predicted_angle diff[diff > np.pi] = diff[diff > np.pi] - 2 * np.pi diff[diff < -np.pi] = diff[diff < -np.pi] + 2 * np.pi rot_error = torch.mean(torch.absolute(diff)) return rot_error def mpjpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): pos_error = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1)) ) return pos_error def handpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): pos_error_hands = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1))[ ..., [20, 21] ] ) return pos_error_hands def upperpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): upper_body_error = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1))[ ..., upper_index ] ) return upper_body_error def lowerpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): lower_body_error = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1))[ ..., lower_index ] ) return lower_body_error def rootpe( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): pos_error_root = torch.mean( torch.sqrt(torch.sum(torch.square(gt_position - predicted_position), axis=-1))[ ..., [0] ] ) return pos_error_root def mpjve( predicted_position, predicted_angle, predicted_root_angle, gt_position, gt_angle, gt_root_angle, upper_index, lower_index, fps, ): gt_velocity = (gt_position[1:, ...] - gt_position[:-1, ...]) * fps predicted_velocity = ( predicted_position[1:, ...] - predicted_position[:-1, ...] ) * fps vel_error = torch.mean( torch.sqrt(torch.sum(torch.square(gt_velocity - predicted_velocity), axis=-1)) ) return vel_error metric_funcs_dict = { "mpjre": mpjre, "mpjpe": mpjpe, "mpjve": mpjve, "handpe": handpe, "upperpe": upperpe, "lowerpe": lowerpe, "rootpe": rootpe, "pred_jitter": pred_jitter, "gt_jitter": gt_jitter, } def get_metric_function(metric): return metric_funcs_dict[metric]
import os SMPL_DATA_PATH = "./body_models/smpl" SMPL_KINTREE_PATH = os.path.join(SMPL_DATA_PATH, "kintree_table.pkl") SMPL_MODEL_PATH = os.path.join(SMPL_DATA_PATH, "SMPL_NEUTRAL.pkl") JOINT_REGRESSOR_TRAIN_EXTRA = os.path.join(SMPL_DATA_PATH, "J_regressor_extra.npy") ROT_CONVENTION_TO_ROT_NUMBER = { "legacy": 23, "no_hands": 21, "full_hands": 51, "mitten_hands": 33, } GENDERS = ["neutral", "male", "female"] NUM_BETAS = 10
# MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved from diffusion import gaussian_diffusion as gd from diffusion.respace import space_timesteps, SpacedDiffusion from model.meta_model import MetaModel def load_model_wo_clip(model, state_dict): missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) if len(unexpected_keys) != 0: state_dict_new = {} for key in state_dict.keys(): state_dict_new[key.replace("module.", "")] = state_dict[key] missing_keys, unexpected_keys = model.load_state_dict( state_dict_new, strict=False ) assert len(unexpected_keys) == 0 assert all([k.startswith("clip_model.") for k in missing_keys]) def create_model_and_diffusion(args): model = MetaModel(**get_model_args(args)) diffusion = create_gaussian_diffusion(args) return model, diffusion def get_model_args(args): return { "arch": args.arch, "nfeats": args.motion_nfeat, "latent_dim": args.latent_dim, "sparse_dim": args.sparse_dim, "num_layers": args.layers, "dropout": 0.1, "cond_mask_prob": args.cond_mask_prob, "dataset": args.dataset, "input_motion_length": args.input_motion_length, } def create_gaussian_diffusion(args): predict_xstart = True steps = args.diffusion_steps # 1000 scale_beta = 1.0 timestep_respacing = args.timestep_respacing learn_sigma = False rescale_timesteps = False betas = gd.get_named_beta_schedule(args.noise_schedule, steps, scale_beta) loss_type = gd.LossType.MSE if not timestep_respacing: timestep_respacing = [steps] return SpacedDiffusion( dataset=args.dataset, use_timesteps=space_timesteps(steps, timestep_respacing), betas=betas, model_mean_type=( gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X ), model_var_type=( ( gd.ModelVarType.FIXED_LARGE if not args.sigma_small else gd.ModelVarType.FIXED_SMALL ) if not learn_sigma else gd.ModelVarType.LEARNED_RANGE ), loss_type=loss_type, rescale_timesteps=rescale_timesteps, )
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # Check PYTORCH3D_LICENCE before use import functools from typing import Optional import torch import torch.nn.functional as F """ The transformation matrices returned from the functions in this file assume the points on which the transformation will be applied are column vectors. i.e. the R matrix is structured as R = [ [Rxx, Rxy, Rxz], [Ryx, Ryy, Ryz], [Rzx, Rzy, Rzz], ] # (3, 3) This matrix can be applied to column vectors by post multiplication by the points e.g. points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point transformed_points = R * points To apply the same matrix to points which are row vectors, the R matrix can be transposed and pre multiplied by the points: e.g. points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point transformed_points = points * R.transpose(1, 0) """ def quaternion_to_matrix(quaternions): """ Convert rotations given as quaternions to rotation matrices. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotation matrices as tensor of shape (..., 3, 3). """ r, i, j, k = torch.unbind(quaternions, -1) two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3)) def _copysign(a, b): """ Return a tensor where each element has the absolute value taken from the, corresponding element of a, with sign taken from the corresponding element of b. This is like the standard copysign floating-point operation, but is not careful about negative 0 and NaN. Args: a: source tensor. b: tensor whose signs will be used, of the same shape as a. Returns: Tensor of the same shape as a with the signs of b. """ signs_differ = (a < 0) != (b < 0) return torch.where(signs_differ, -a, a) def _sqrt_positive_part(x): """ Returns torch.sqrt(torch.max(0, x)) but with a zero subgradient where x is 0. """ ret = torch.zeros_like(x) positive_mask = x > 0 ret[positive_mask] = torch.sqrt(x[positive_mask]) return ret def matrix_to_quaternion(matrix): """ Convert rotations given as rotation matrices to quaternions. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: quaternions with real part first, as tensor of shape (..., 4). """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") m00 = matrix[..., 0, 0] m11 = matrix[..., 1, 1] m22 = matrix[..., 2, 2] o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22) x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22) y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22) z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22) o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2]) o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0]) o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1]) return torch.stack((o0, o1, o2, o3), -1) def _axis_angle_rotation(axis: str, angle): """ Return the rotation matrices for one of the rotations about an axis of which Euler angles describe, for each value of the angle given. Args: axis: Axis label "X" or "Y or "Z". angle: any shape tensor of Euler angles in radians Returns: Rotation matrices as tensor of shape (..., 3, 3). """ cos = torch.cos(angle) sin = torch.sin(angle) one = torch.ones_like(angle) zero = torch.zeros_like(angle) if axis == "X": R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) if axis == "Y": R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) if axis == "Z": R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) def euler_angles_to_matrix(euler_angles, convention: str): """ Convert rotations given as Euler angles in radians to rotation matrices. Args: euler_angles: Euler angles in radians as tensor of shape (..., 3). convention: Convention string of three uppercase letters from {"X", "Y", and "Z"}. Returns: Rotation matrices as tensor of shape (..., 3, 3). """ if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: raise ValueError("Invalid input euler angles.") if len(convention) != 3: raise ValueError("Convention must have 3 letters.") if convention[1] in (convention[0], convention[2]): raise ValueError(f"Invalid convention {convention}.") for letter in convention: if letter not in ("X", "Y", "Z"): raise ValueError(f"Invalid letter {letter} in convention string.") matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1)) return functools.reduce(torch.matmul, matrices) def _angle_from_tan( axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool ): """ Extract the first or third Euler angle from the two members of the matrix which are positive constant times its sine and cosine. Args: axis: Axis label "X" or "Y or "Z" for the angle we are finding. other_axis: Axis label "X" or "Y or "Z" for the middle axis in the convention. data: Rotation matrices as tensor of shape (..., 3, 3). horizontal: Whether we are looking for the angle for the third axis, which means the relevant entries are in the same row of the rotation matrix. If not, they are in the same column. tait_bryan: Whether the first and third axes in the convention differ. Returns: Euler Angles in radians for each matrix in dataset as a tensor of shape (...). """ i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] if horizontal: i2, i1 = i1, i2 even = (axis + other_axis) in ["XY", "YZ", "ZX"] if horizontal == even: return torch.atan2(data[..., i1], data[..., i2]) if tait_bryan: return torch.atan2(-data[..., i2], data[..., i1]) return torch.atan2(data[..., i2], -data[..., i1]) def _index_from_letter(letter: str): if letter == "X": return 0 if letter == "Y": return 1 if letter == "Z": return 2 def matrix_to_euler_angles(matrix, convention: str): """ Convert rotations given as rotation matrices to Euler angles in radians. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). convention: Convention string of three uppercase letters. Returns: Euler angles in radians as tensor of shape (..., 3). """ if len(convention) != 3: raise ValueError("Convention must have 3 letters.") if convention[1] in (convention[0], convention[2]): raise ValueError(f"Invalid convention {convention}.") for letter in convention: if letter not in ("X", "Y", "Z"): raise ValueError(f"Invalid letter {letter} in convention string.") if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") i0 = _index_from_letter(convention[0]) i2 = _index_from_letter(convention[2]) tait_bryan = i0 != i2 if tait_bryan: central_angle = torch.asin( matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) ) else: central_angle = torch.acos(matrix[..., i0, i0]) o = ( _angle_from_tan( convention[0], convention[1], matrix[..., i2], False, tait_bryan ), central_angle, _angle_from_tan( convention[2], convention[1], matrix[..., i0, :], True, tait_bryan ), ) return torch.stack(o, -1) def random_quaternions( n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False ): """ Generate random quaternions representing rotations, i.e. versors with nonnegative real part. Args: n: Number of quaternions in a batch to return. dtype: Type to return. device: Desired device of returned tensor. Default: uses the current device for the default tensor type. requires_grad: Whether the resulting tensor should have the gradient flag set. Returns: Quaternions as tensor of shape (N, 4). """ o = torch.randn((n, 4), dtype=dtype, device=device, requires_grad=requires_grad) s = (o * o).sum(1) o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None] return o def random_rotations( n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False ): """ Generate random rotations as 3x3 rotation matrices. Args: n: Number of rotation matrices in a batch to return. dtype: Type to return. device: Device of returned tensor. Default: if None, uses the current device for the default tensor type. requires_grad: Whether the resulting tensor should have the gradient flag set. Returns: Rotation matrices as tensor of shape (n, 3, 3). """ quaternions = random_quaternions( n, dtype=dtype, device=device, requires_grad=requires_grad ) return quaternion_to_matrix(quaternions) def random_rotation( dtype: Optional[torch.dtype] = None, device=None, requires_grad=False ): """ Generate a single random 3x3 rotation matrix. Args: dtype: Type to return device: Device of returned tensor. Default: if None, uses the current device for the default tensor type requires_grad: Whether the resulting tensor should have the gradient flag set Returns: Rotation matrix as tensor of shape (3, 3). """ return random_rotations(1, dtype, device, requires_grad)[0] def standardize_quaternion(quaternions): """ Convert a unit quaternion to a standard form: one in which the real part is non negative. Args: quaternions: Quaternions with real part first, as tensor of shape (..., 4). Returns: Standardized quaternions as tensor of shape (..., 4). """ return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) def quaternion_raw_multiply(a, b): """ Multiply two quaternions. Usual torch rules for broadcasting apply. Args: a: Quaternions as tensor of shape (..., 4), real part first. b: Quaternions as tensor of shape (..., 4), real part first. Returns: The product of a and b, a tensor of quaternions shape (..., 4). """ aw, ax, ay, az = torch.unbind(a, -1) bw, bx, by, bz = torch.unbind(b, -1) ow = aw * bw - ax * bx - ay * by - az * bz ox = aw * bx + ax * bw + ay * bz - az * by oy = aw * by - ax * bz + ay * bw + az * bx oz = aw * bz + ax * by - ay * bx + az * bw return torch.stack((ow, ox, oy, oz), -1) def quaternion_multiply(a, b): """ Multiply two quaternions representing rotations, returning the quaternion representing their composition, i.e. the versor with nonnegative real part. Usual torch rules for broadcasting apply. Args: a: Quaternions as tensor of shape (..., 4), real part first. b: Quaternions as tensor of shape (..., 4), real part first. Returns: The product of a and b, a tensor of quaternions of shape (..., 4). """ ab = quaternion_raw_multiply(a, b) return standardize_quaternion(ab) def quaternion_invert(quaternion): """ Given a quaternion representing rotation, get the quaternion representing its inverse. Args: quaternion: Quaternions as tensor of shape (..., 4), with real part first, which must be versors (unit quaternions). Returns: The inverse, a tensor of quaternions of shape (..., 4). """ return quaternion * quaternion.new_tensor([1, -1, -1, -1]) def quaternion_apply(quaternion, point): """ Apply the rotation given by a quaternion to a 3D point. Usual torch rules for broadcasting apply. Args: quaternion: Tensor of quaternions, real part first, of shape (..., 4). point: Tensor of 3D points of shape (..., 3). Returns: Tensor of rotated points of shape (..., 3). """ if point.size(-1) != 3: raise ValueError(f"Points are not in 3D, f{point.shape}.") real_parts = point.new_zeros(point.shape[:-1] + (1,)) point_as_quaternion = torch.cat((real_parts, point), -1) out = quaternion_raw_multiply( quaternion_raw_multiply(quaternion, point_as_quaternion), quaternion_invert(quaternion), ) return out[..., 1:] def axis_angle_to_matrix(axis_angle): """ Convert rotations given as axis/angle to rotation matrices. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: Rotation matrices as tensor of shape (..., 3, 3). """ return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) def matrix_to_axis_angle(matrix): """ Convert rotations given as rotation matrices to axis/angle. Args: matrix: Rotation matrices as tensor of shape (..., 3, 3). Returns: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. """ return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) def axis_angle_to_quaternion(axis_angle): """ Convert rotations given as axis/angle to quaternions. Args: axis_angle: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. Returns: quaternions with real part first, as tensor of shape (..., 4). """ angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) half_angles = 0.5 * angles eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles] ) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48 ) quaternions = torch.cat( [torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 ) return quaternions def quaternion_to_axis_angle(quaternions): """ Convert rotations given as quaternions to axis/angle. Args: quaternions: quaternions with real part first, as tensor of shape (..., 4). Returns: Rotations given as a vector in axis angle form, as a tensor of shape (..., 3), where the magnitude is the angle turned anticlockwise in radians around the vector's direction. """ norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) half_angles = torch.atan2(norms, quaternions[..., :1]) angles = 2 * half_angles eps = 1e-6 small_angles = angles.abs() < eps sin_half_angles_over_angles = torch.empty_like(angles) sin_half_angles_over_angles[~small_angles] = ( torch.sin(half_angles[~small_angles]) / angles[~small_angles] ) # for x small, sin(x/2) is about x/2 - (x/2)^3/6 # so sin(x/2)/x is about 1/2 - (x*x)/48 sin_half_angles_over_angles[small_angles] = ( 0.5 - (angles[small_angles] * angles[small_angles]) / 48 ) return quaternions[..., 1:] / sin_half_angles_over_angles def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: """ Converts 6D rotation representation by Zhou et al. [1] to rotation matrix using Gram--Schmidt orthogonalisation per Section B of [1]. Args: d6: 6D rotation representation, of size (*, 6) Returns: batch of rotation matrices of size (*, 3, 3) [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. On the Continuity of Rotation Representations in Neural Networks. IEEE Conference on Computer Vision and Pattern Recognition, 2019. Retrieved from http://arxiv.org/abs/1812.07035 """ a1, a2 = d6[..., :3], d6[..., 3:] b1 = F.normalize(a1, dim=-1) b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 b2 = F.normalize(b2, dim=-1) b3 = torch.cross(b1, b2, dim=-1) return torch.stack((b1, b2, b3), dim=-2) def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: """ Converts rotation matrices to 6D rotation representation by Zhou et al. [1] by dropping the last row. Note that 6D representation is not unique. Args: matrix: batch of rotation matrices of size (*, 3, 3) Returns: 6D rotation representation, of size (*, 6) [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. On the Continuity of Rotation Representations in Neural Networks. IEEE Conference on Computer Vision and Pattern Recognition, 2019. Retrieved from http://arxiv.org/abs/1812.07035 """ return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
# MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import argparse import json import os from argparse import ArgumentParser def parse_and_load_from_model(parser): # args according to the loaded model # do not try to specify them from cmd line since they will be overwritten add_data_options(parser) add_model_options(parser) add_diffusion_options(parser) args = parser.parse_args() args_to_overwrite = [] for group_name in ["dataset", "model", "diffusion"]: args_to_overwrite += get_args_per_group_name(parser, args, group_name) # load args from model model_path = get_model_path_from_args() args_path = os.path.join(os.path.dirname(model_path), "args.json") assert os.path.exists(args_path), "Arguments json file was not found!" with open(args_path, "r") as fr: model_args = json.load(fr) for a in args_to_overwrite: if a in model_args.keys(): # Use the chosen dataset, or use the dataset that is used to train the model if a == "dataset": if args.__dict__[a] is None: args.__dict__[a] = model_args[a] elif a == "input_motion_length": continue else: args.__dict__[a] = model_args[a] else: print( "Warning: was not able to load [{}], using default value [{}] instead.".format( a, args.__dict__[a] ) ) return args def get_args_per_group_name(parser, args, group_name): for group in parser._action_groups: if group.title == group_name: group_dict = { a.dest: getattr(args, a.dest, None) for a in group._group_actions } return list(argparse.Namespace(**group_dict).__dict__.keys()) return ValueError("group_name was not found.") def get_model_path_from_args(): try: dummy_parser = ArgumentParser() dummy_parser.add_argument("model_path") dummy_args, _ = dummy_parser.parse_known_args() return dummy_args.model_path except Exception: raise ValueError("model_path argument must be specified.") def add_base_options(parser): group = parser.add_argument_group("base") group.add_argument( "--cuda", default=True, type=bool, help="Use cuda device, otherwise use CPU." ) group.add_argument("--device", default=0, type=int, help="Device id to use.") group.add_argument("--seed", default=10, type=int, help="For fixing random seed.") group.add_argument( "--batch_size", default=64, type=int, help="Batch size during training." ) group.add_argument( "--timestep_respacing", default="", type=str, help="ddim timestep respacing." ) def add_diffusion_options(parser): group = parser.add_argument_group("diffusion") group.add_argument( "--noise_schedule", default="cosine", choices=["linear", "cosine"], type=str, help="Noise schedule type", ) group.add_argument( "--diffusion_steps", default=1000, type=int, help="Number of diffusion steps (denoted T in the paper)", ) group.add_argument( "--sigma_small", default=True, type=bool, help="Use smaller sigma values." ) def add_model_options(parser): group = parser.add_argument_group("model") group.add_argument( "--arch", default="DiffMLP", type=str, help="Architecture types as reported in the paper.", ) group.add_argument( "--motion_nfeat", default=132, type=int, help="motion feature dimension" ) group.add_argument( "--sparse_dim", default=54, type=int, help="sparse signal feature dimension" ) group.add_argument("--layers", default=8, type=int, help="Number of layers.") group.add_argument( "--latent_dim", default=512, type=int, help="Transformer/GRU width." ) group.add_argument( "--cond_mask_prob", default=0.0, type=float, help="The probability of masking the condition during training." " For classifier-free guidance learning.", ) group.add_argument( "--input_motion_length", default=196, type=int, help="Limit for the maximal number of frames.", ) group.add_argument( "--no_normalization", action="store_true", help="no data normalisation for the 6d motions", ) def add_data_options(parser): group = parser.add_argument_group("dataset") group.add_argument( "--dataset", default=None, choices=[ "amass", ], type=str, help="Dataset name (choose from list).", ) group.add_argument( "--dataset_path", default="./dataset/AMASS/", type=str, help="Dataset path", ) def add_training_options(parser): group = parser.add_argument_group("training") group.add_argument( "--save_dir", required=True, type=str, help="Path to save checkpoints and results.", ) group.add_argument( "--overwrite", action="store_true", help="If True, will enable to use an already existing save_dir.", ) group.add_argument( "--train_platform_type", default="NoPlatform", choices=["NoPlatform", "ClearmlPlatform", "TensorboardPlatform"], type=str, help="Choose platform to log results. NoPlatform means no logging.", ) group.add_argument("--lr", default=2e-4, type=float, help="Learning rate.") group.add_argument( "--weight_decay", default=0.0, type=float, help="Optimizer weight decay." ) group.add_argument( "--lr_anneal_steps", default=0, type=int, help="Number of learning rate anneal steps.", ) group.add_argument( "--train_dataset_repeat_times", default=1000, type=int, help="Repeat the training dataset to save training time", ) group.add_argument( "--eval_during_training", action="store_true", help="If True, will run evaluation during training.", ) group.add_argument( "--log_interval", default=100, type=int, help="Log losses each N steps" ) group.add_argument( "--save_interval", default=5000, type=int, help="Save checkpoints and run evaluation each N steps", ) group.add_argument( "--num_steps", default=6000000, type=int, help="Training will stop after the specified number of steps.", ) group.add_argument( "--resume_checkpoint", default="", type=str, help="If not empty, will start from the specified checkpoint (path to model###.pt file).", ) group.add_argument( "--load_optimizer", action="store_true", help="If True, will also load the saved optimizer state for network initialization", ) group.add_argument( "--num_workers", default=8, type=int, help="Number of dataloader workers.", ) def add_sampling_options(parser): group = parser.add_argument_group("sampling") group.add_argument( "--overlapping_test", action="store_true", help="enabling overlapping test", ) group.add_argument( "--num_per_batch", default=256, type=int, help="the batch size of each split during non-overlapping testing", ) group.add_argument( "--sld_wind_size", default=70, type=int, help="the sliding window size", ) group.add_argument( "--vis", action="store_true", help="visualize the output", ) group.add_argument( "--fix_noise", action="store_true", help="fix init noise for the output", ) group.add_argument( "--fps", default=30, type=int, help="FPS", ) group.add_argument( "--model_path", required=True, type=str, help="Path to model####.pt file to be sampled.", ) group.add_argument( "--output_dir", default="", type=str, help="Path to results dir (auto created by the script). " "If empty, will create dir in parallel to checkpoint.", ) group.add_argument( "--support_dir", type=str, help="the dir that you store your smplh and dmpls dirs", ) def add_evaluation_options(parser): group = parser.add_argument_group("eval") group.add_argument( "--model_path", required=True, type=str, help="Path to model####.pt file to be sampled.", ) def train_args(): parser = ArgumentParser() add_base_options(parser) add_data_options(parser) add_model_options(parser) add_diffusion_options(parser) add_training_options(parser) return parser.parse_args() def sample_args(): parser = ArgumentParser() # args specified by the user: (all other will be loaded from the model) add_base_options(parser) add_sampling_options(parser) return parse_and_load_from_model(parser) def evaluation_parser(): parser = ArgumentParser() # args specified by the user: (all other will be loaded from the model) add_base_options(parser) add_evaluation_options(parser) return parse_and_load_from_model(parser)
# MIT License # Copyright (c) 2022 ETH Sensing, Interaction & Perception Lab # # This code is based on https://github.com/eth-siplab/AvatarPoser # Copyright (c) Meta Platforms, Inc. All Rights Reserved import os import cv2 import numpy as np import trimesh from body_visualizer.mesh.mesh_viewer import MeshViewer from body_visualizer.tools.vis_tools import colors from human_body_prior.tools.omni_tools import copy2cpu as c2c from tqdm import tqdm os.environ["PYOPENGL_PLATFORM"] = "egl" class CheckerBoard: def __init__(self, white=(247, 246, 244), black=(146, 163, 171)): self.white = np.array(white) / 255.0 self.black = np.array(black) / 255.0 self.verts, self.faces, self.texts = None, None, None self.offset = None @staticmethod def gen_checker_xy(black, white, square_size=0.5, xlength=50.0, ylength=50.0): """ generate a checker board in parallel to x-y plane starting from (0, 0) to (xlength, ylength), in meters return: trimesh.Trimesh """ xsquares = int(xlength / square_size) ysquares = int(ylength / square_size) verts, faces, texts = [], [], [] fcount = 0 for i in range(xsquares): for j in range(ysquares): p1 = np.array([i * square_size, j * square_size, 0]) p2 = np.array([(i + 1) * square_size, j * square_size, 0]) p3 = np.array([(i + 1) * square_size, (j + 1) * square_size, 0]) verts.extend([p1, p2, p3]) faces.append([fcount * 3, fcount * 3 + 1, fcount * 3 + 2]) fcount += 1 p1 = np.array([i * square_size, j * square_size, 0]) p2 = np.array([(i + 1) * square_size, (j + 1) * square_size, 0]) p3 = np.array([i * square_size, (j + 1) * square_size, 0]) verts.extend([p1, p2, p3]) faces.append([fcount * 3, fcount * 3 + 1, fcount * 3 + 2]) fcount += 1 if (i + j) % 2 == 0: texts.append(black) texts.append(black) else: texts.append(white) texts.append(white) # now compose as mesh mesh = trimesh.Trimesh( vertices=np.array(verts) + np.array([-5, -5, 0]), faces=np.array(faces), process=False, face_colors=np.array(texts)) return mesh """ # -------------------------------- # Visualize avatar using body pose information and body model # -------------------------------- """ def save_animation(body_pose, savepath, bm, fps=60, resolution=(800, 800)): imw, imh = resolution mv = MeshViewer(width=imw, height=imh, use_offscreen=True) faces = c2c(bm.f) img_array = [] for fId in tqdm(range(body_pose.v.shape[0])): body_mesh = trimesh.Trimesh( vertices=c2c(body_pose.v[fId]), faces=faces, vertex_colors=np.tile(colors["purple"], (6890, 1)), ) generator = CheckerBoard() checker_mesh = generator.gen_checker_xy(generator.black, generator.white) body_mesh.apply_transform( trimesh.transformations.rotation_matrix(-90, (0, 0, 10)) ) body_mesh.apply_transform( trimesh.transformations.rotation_matrix(30, (10, 0, 0)) ) body_mesh.apply_transform(trimesh.transformations.scale_matrix(0.5)) checker_mesh.apply_transform( trimesh.transformations.rotation_matrix(-90, (0, 0, 10)) ) checker_mesh.apply_transform( trimesh.transformations.rotation_matrix(30, (10, 0, 0)) ) checker_mesh.apply_transform(trimesh.transformations.scale_matrix(0.5)) mv.set_static_meshes([checker_mesh, body_mesh]) body_image = mv.render(render_wireframe=False) body_image = body_image.astype(np.uint8) body_image = cv2.cvtColor(body_image, cv2.COLOR_BGR2RGB) img_array.append(body_image) out = cv2.VideoWriter(savepath, cv2.VideoWriter_fourcc(*"DIVX"), fps, resolution) for i in range(len(img_array)): out.write(img_array[i]) out.release()
# MIT License # Copyright (c) 2022 ETH Sensing, Interaction & Perception Lab # # This code is based on https://github.com/eth-siplab/AvatarPoser # Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch from human_body_prior.tools import tgm_conversion as tgm from human_body_prior.tools.rotation_tools import aa2matrot, matrot2aa from torch.nn import functional as F def bgs(d6s): d6s = d6s.reshape(-1, 2, 3).permute(0, 2, 1) bsz = d6s.shape[0] b1 = F.normalize(d6s[:, :, 0], p=2, dim=1) a2 = d6s[:, :, 1] c = torch.bmm(b1.view(bsz, 1, -1), a2.view(bsz, -1, 1)).view(bsz, 1) * b1 b2 = F.normalize(a2 - c, p=2, dim=1) b3 = torch.cross(b1, b2, dim=1) return torch.stack([b1, b2, b3], dim=-1) def matrot2sixd(pose_matrot): """ :param pose_matrot: Nx3x3 :return: pose_6d: Nx6 """ pose_6d = torch.cat([pose_matrot[:, :3, 0], pose_matrot[:, :3, 1]], dim=1) return pose_6d def aa2sixd(pose_aa): """ :param pose_aa Nx3 :return: pose_6d: Nx6 """ pose_matrot = aa2matrot(pose_aa) pose_6d = matrot2sixd(pose_matrot) return pose_6d def sixd2matrot(pose_6d): """ :param pose_6d: Nx6 :return: pose_matrot: Nx3x3 """ rot_vec_1 = pose_6d[:, :3] rot_vec_2 = pose_6d[:, 3:6] rot_vec_3 = torch.cross(rot_vec_1, rot_vec_2) pose_matrot = torch.stack([rot_vec_1, rot_vec_2, rot_vec_3], dim=-1) return pose_matrot def sixd2aa(pose_6d, batch=False): """ :param pose_6d: Nx6 :return: pose_aa: Nx3 """ if batch: B, J, C = pose_6d.shape pose_6d = pose_6d.reshape(-1, 6) pose_matrot = sixd2matrot(pose_6d) pose_aa = matrot2aa(pose_matrot) if batch: pose_aa = pose_aa.reshape(B, J, 3) return pose_aa def sixd2quat(pose_6d): """ :param pose_6d: Nx6 :return: pose_quaternion: Nx4 """ pose_mat = sixd2matrot(pose_6d) pose_mat_34 = torch.cat( (pose_mat, torch.zeros(pose_mat.size(0), pose_mat.size(1), 1)), dim=-1 ) pose_quaternion = tgm.rotation_matrix_to_quaternion(pose_mat_34) return pose_quaternion def quat2aa(pose_quat): """ :param pose_quat: Nx4 :return: pose_aa: Nx3 """ return tgm.quaternion_to_angle_axis(pose_quat)
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion """ Helpers for distributed training. """ import socket import torch as th import torch.distributed as dist # Change this to reflect your cluster layout. # The GPU for a given rank is (rank % GPUS_PER_NODE). GPUS_PER_NODE = 8 SETUP_RETRY_COUNT = 3 used_device = 0 def setup_dist(device=0): """ Setup a distributed process group. """ global used_device used_device = device if dist.is_initialized(): return def dev(): """ Get the device to use for torch.distributed. """ global used_device if th.cuda.is_available() and used_device >= 0: return th.device(f"cuda:{used_device}") return th.device("cpu") def load_state_dict(path, **kwargs): """ Load a PyTorch file without redundant fetches across MPI ranks. """ return th.load(path, **kwargs) def sync_params(params): """ Synchronize a sequence of Tensors across ranks from rank 0. """ for p in params: with th.no_grad(): dist.broadcast(p, 0) def _find_free_port(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("", 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return s.getsockname()[1] finally: s.close()
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion # MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import numpy as np import torch as th from .diffusion_model import DiffusionModel def space_timesteps(num_timesteps, section_counts): """ Create a list of timesteps to use from an original diffusion process, given the number of timesteps we want to take from equally-sized portions of the original process. For example, if there's 300 timesteps and the section counts are [10,15,20] then the first 100 timesteps are strided to be 10 timesteps, the second 100 are strided to be 15 timesteps, and the final 100 are strided to be 20. If the stride is a string starting with "ddim", then the fixed striding from the DDIM paper is used, and only one section is allowed. :param num_timesteps: the number of diffusion steps in the original process to divide up. :param section_counts: either a list of numbers, or a string containing comma-separated numbers, indicating the step count per section. As a special case, use "ddimN" where N is a number of steps to use the striding from the DDIM paper. :return: a set of diffusion steps from the original process to use. """ if isinstance(section_counts, str): if section_counts.startswith("ddim"): desired_count = int(section_counts[len("ddim") :]) for i in range(1, num_timesteps): if len(range(0, num_timesteps, i)) == desired_count: return set(range(0, num_timesteps, i)) raise ValueError( f"cannot create exactly {num_timesteps} steps with an integer stride" ) section_counts = [int(x) for x in section_counts.split(",")] size_per = num_timesteps // len(section_counts) extra = num_timesteps % len(section_counts) start_idx = 0 all_steps = [] for i, section_count in enumerate(section_counts): size = size_per + (1 if i < extra else 0) if size < section_count: raise ValueError( f"cannot divide section of {size} steps into {section_count}" ) if section_count <= 1: frac_stride = 1 else: frac_stride = (size - 1) / (section_count - 1) cur_idx = 0.0 taken_steps = [] for _ in range(section_count): taken_steps.append(start_idx + round(cur_idx)) cur_idx += frac_stride all_steps += taken_steps start_idx += size return set(all_steps) class SpacedDiffusion(DiffusionModel): """ A diffusion process which can skip steps in a base diffusion process. :param use_timesteps: a collection (sequence or set) of timesteps from the original diffusion process to retain. :param kwargs: the kwargs to create the base diffusion process. """ def __init__(self, use_timesteps, **kwargs): self.use_timesteps = set(use_timesteps) self.timestep_map = [] self.original_num_steps = len(kwargs["betas"]) base_diffusion = DiffusionModel(**kwargs) last_alpha_cumprod = 1.0 new_betas = [] for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): if i in self.use_timesteps: new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) last_alpha_cumprod = alpha_cumprod self.timestep_map.append(i) kwargs["betas"] = np.array(new_betas) super().__init__(**kwargs) def p_mean_variance( self, model, *args, **kwargs ): # pylint: disable=signature-differs return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) def training_losses( self, model, *args, **kwargs ): # pylint: disable=signature-differs return super().training_losses(self._wrap_model(model), *args, **kwargs) def condition_mean(self, cond_fn, *args, **kwargs): return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) def condition_score(self, cond_fn, *args, **kwargs): return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) def _wrap_model(self, model): if isinstance(model, _WrappedModel): return model return _WrappedModel( model, self.timestep_map, self.rescale_timesteps, self.original_num_steps ) def _scale_timesteps(self, t): # Scaling is done by the wrapped model. return t class _WrappedModel: def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): self.model = model self.timestep_map = timestep_map self.rescale_timesteps = rescale_timesteps self.original_num_steps = original_num_steps def __call__(self, x, ts, sparse, **kwargs): map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) new_ts = map_tensor[ts] if self.rescale_timesteps: new_ts = new_ts.float() * (1000.0 / self.original_num_steps) return self.model(x, new_ts, sparse, **kwargs)
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion from abc import ABC, abstractmethod import numpy as np import torch as th import torch.distributed as dist def create_named_schedule_sampler(name, diffusion): """ Create a ScheduleSampler from a library of pre-defined samplers. :param name: the name of the sampler. :param diffusion: the diffusion object to sample for. """ if name == "uniform": return UniformSampler(diffusion) elif name == "loss-second-moment": return LossSecondMomentResampler(diffusion) else: raise NotImplementedError(f"unknown schedule sampler: {name}") class ScheduleSampler(ABC): """ A distribution over timesteps in the diffusion process, intended to reduce variance of the objective. By default, samplers perform unbiased importance sampling, in which the objective's mean is unchanged. However, subclasses may override sample() to change how the resampled terms are reweighted, allowing for actual changes in the objective. """ @abstractmethod def weights(self): """ Get a numpy array of weights, one per diffusion step. The weights needn't be normalized, but must be positive. """ def sample(self, batch_size, device): """ Importance-sample timesteps for a batch. :param batch_size: the number of timesteps. :param device: the torch device to save to. :return: a tuple (timesteps, weights): - timesteps: a tensor of timestep indices. - weights: a tensor of weights to scale the resulting losses. """ w = self.weights() p = w / np.sum(w) indices_np = np.random.choice(len(p), size=(batch_size,), p=p) indices = th.from_numpy(indices_np).long().to(device) weights_np = 1 / (len(p) * p[indices_np]) weights = th.from_numpy(weights_np).float().to(device) return indices, weights class UniformSampler(ScheduleSampler): def __init__(self, diffusion): self.diffusion = diffusion self._weights = np.ones([diffusion.num_timesteps]) def weights(self): return self._weights class LossAwareSampler(ScheduleSampler): def update_with_local_losses(self, local_ts, local_losses): """ Update the reweighting using losses from a model. Call this method from each rank with a batch of timesteps and the corresponding losses for each of those timesteps. This method will perform synchronization to make sure all of the ranks maintain the exact same reweighting. :param local_ts: an integer Tensor of timesteps. :param local_losses: a 1D Tensor of losses. """ batch_sizes = [ th.tensor([0], dtype=th.int32, device=local_ts.device) for _ in range(dist.get_world_size()) ] dist.all_gather( batch_sizes, th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device), ) # Pad all_gather batches to be the maximum batch size. batch_sizes = [x.item() for x in batch_sizes] max_bs = max(batch_sizes) timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes] loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes] dist.all_gather(timestep_batches, local_ts) dist.all_gather(loss_batches, local_losses) timesteps = [ x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs] ] losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]] self.update_with_all_losses(timesteps, losses) @abstractmethod def update_with_all_losses(self, ts, losses): """ Update the reweighting using losses from a model. Sub-classes should override this method to update the reweighting using losses from the model. This method directly updates the reweighting without synchronizing between workers. It is called by update_with_local_losses from all ranks with identical arguments. Thus, it should have deterministic behavior to maintain state across workers. :param ts: a list of int timesteps. :param losses: a list of float losses, one per timestep. """ class LossSecondMomentResampler(LossAwareSampler): def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001): self.diffusion = diffusion self.history_per_term = history_per_term self.uniform_prob = uniform_prob self._loss_history = np.zeros( [diffusion.num_timesteps, history_per_term], dtype=np.float64 ) self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int) def weights(self): if not self._warmed_up(): return np.ones([self.diffusion.num_timesteps], dtype=np.float64) weights = np.sqrt(np.mean(self._loss_history**2, axis=-1)) weights /= np.sum(weights) weights *= 1 - self.uniform_prob weights += self.uniform_prob / len(weights) return weights def update_with_all_losses(self, ts, losses): for t, loss in zip(ts, losses): if self._loss_counts[t] == self.history_per_term: # Shift out the oldest loss term. self._loss_history[t, :-1] = self._loss_history[t, 1:] self._loss_history[t, -1] = loss else: self._loss_history[t, self._loss_counts[t]] = loss self._loss_counts[t] += 1 def _warmed_up(self): return (self._loss_counts == self.history_per_term).all()
""" Logger copied from OpenAI baselines to avoid extra RL-based dependencies: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py """ # MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion # Copyright (c) Meta Platforms, Inc. All Rights Reserved import datetime import json import os import os.path as osp import sys import tempfile import time import warnings from collections import defaultdict from contextlib import contextmanager DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 DISABLED = 50 class KVWriter(object): def writekvs(self, kvs): raise NotImplementedError class SeqWriter(object): def writeseq(self, seq): raise NotImplementedError class HumanOutputFormat(KVWriter, SeqWriter): def __init__(self, filename_or_file): if isinstance(filename_or_file, str): self.file = open(filename_or_file, "wt") self.own_file = True else: assert hasattr(filename_or_file, "read"), ( "expected file or str, got %s" % filename_or_file ) self.file = filename_or_file self.own_file = False def writekvs(self, kvs): # Create strings for printing key2str = {} for (key, val) in sorted(kvs.items()): if hasattr(val, "__float__"): valstr = "%-8.3g" % val else: valstr = str(val) key2str[self._truncate(key)] = self._truncate(valstr) # Find max widths if len(key2str) == 0: print("WARNING: tried to write empty key-value dict") return else: keywidth = max(map(len, key2str.keys())) valwidth = max(map(len, key2str.values())) # Write out the data dashes = "-" * (keywidth + valwidth + 7) lines = [dashes] for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()): lines.append( "| %s%s | %s%s |" % (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val))) ) lines.append(dashes) self.file.write("\n".join(lines) + "\n") # Flush the output to the file self.file.flush() def _truncate(self, s): maxlen = 30 return s[: maxlen - 3] + "..." if len(s) > maxlen else s def writeseq(self, seq): seq = list(seq) for (i, elem) in enumerate(seq): self.file.write(elem) if i < len(seq) - 1: # add space unless this is the last one self.file.write(" ") self.file.write("\n") self.file.flush() def close(self): if self.own_file: self.file.close() class JSONOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, "wt") def writekvs(self, kvs): for k, v in sorted(kvs.items()): if hasattr(v, "dtype"): kvs[k] = float(v) self.file.write(json.dumps(kvs) + "\n") self.file.flush() def close(self): self.file.close() class CSVOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, "w+t") self.keys = [] self.sep = "," def writekvs(self, kvs): # Add our current row to the history extra_keys = list(kvs.keys() - self.keys) extra_keys.sort() if extra_keys: self.keys.extend(extra_keys) self.file.seek(0) lines = self.file.readlines() self.file.seek(0) for (i, k) in enumerate(self.keys): if i > 0: self.file.write(",") self.file.write(k) self.file.write("\n") for line in lines[1:]: self.file.write(line[:-1]) self.file.write(self.sep * len(extra_keys)) self.file.write("\n") for (i, k) in enumerate(self.keys): if i > 0: self.file.write(",") v = kvs.get(k) if v is not None: self.file.write(str(v)) self.file.write("\n") self.file.flush() def close(self): self.file.close() class TensorBoardOutputFormat(KVWriter): """ Dumps key/value pairs into TensorBoard's numeric format. """ def __init__(self, dir): os.makedirs(dir, exist_ok=True) self.dir = dir self.step = 1 prefix = "events" path = osp.join(osp.abspath(dir), prefix) import tensorflow as tf from tensorflow.core.util import event_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.util import compat self.tf = tf self.event_pb2 = event_pb2 self.pywrap_tensorflow = pywrap_tensorflow self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) def writekvs(self, kvs): def summary_val(k, v): kwargs = {"tag": k, "simple_value": float(v)} return self.tf.Summary.Value(**kwargs) summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()]) event = self.event_pb2.Event(wall_time=time.time(), summary=summary) event.step = ( self.step ) # is there any reason why you'd want to specify the step? self.writer.WriteEvent(event) self.writer.Flush() self.step += 1 def close(self): if self.writer: self.writer.Close() self.writer = None def make_output_format(format, ev_dir, log_suffix=""): os.makedirs(ev_dir, exist_ok=True) if format == "stdout": return HumanOutputFormat(sys.stdout) elif format == "log": return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix)) elif format == "json": return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix)) elif format == "csv": return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix)) elif format == "tensorboard": return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix)) else: raise ValueError("Unknown format specified: %s" % (format,)) # ================================================================ # API # ================================================================ def logkv(key, val): """ Log a value of some diagnostic Call this once for each diagnostic quantity, each iteration If called many times, last value will be used. """ get_current().logkv(key, val) def logkv_mean(key, val): """ The same as logkv(), but if called many times, values averaged. """ get_current().logkv_mean(key, val) def logkvs(d): """ Log a dictionary of key-value pairs """ for (k, v) in d.items(): logkv(k, v) def dumpkvs(): """ Write all of the diagnostics from the current iteration """ return get_current().dumpkvs() def getkvs(): return get_current().name2val def log(*args, level=INFO): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). """ get_current().log(*args, level=level) def debug(*args): log(*args, level=DEBUG) def info(*args): log(*args, level=INFO) def warn(*args): log(*args, level=WARN) def error(*args): log(*args, level=ERROR) def set_level(level): """ Set logging threshold on current logger. """ get_current().set_level(level) def set_comm(comm): get_current().set_comm(comm) def get_dir(): """ Get directory that log files are being written to. will be None if there is no output directory (i.e., if you didn't call start) """ return get_current().get_dir() record_tabular = logkv dump_tabular = dumpkvs @contextmanager def profile_kv(scopename): logkey = "wait_" + scopename tstart = time.time() try: yield finally: get_current().name2val[logkey] += time.time() - tstart def profile(n): """ Usage: @profile("my_func") def my_func(): code """ def decorator_with_name(func): def func_wrapper(*args, **kwargs): with profile_kv(n): return func(*args, **kwargs) return func_wrapper return decorator_with_name # ================================================================ # Backend # ================================================================ def get_current(): if Logger.CURRENT is None: _configure_default_logger() return Logger.CURRENT class Logger(object): DEFAULT = None # A logger with no output files. (See right below class definition) # So that you can still log to the terminal without setting up any output files CURRENT = None # Current logger being used by the free functions above def __init__(self, dir, output_formats, comm=None): self.name2val = defaultdict(float) # values this iteration self.name2cnt = defaultdict(int) self.level = INFO self.dir = dir self.output_formats = output_formats self.comm = comm # Logging API, forwarded # ---------------------------------------- def logkv(self, key, val): self.name2val[key] = val def logkv_mean(self, key, val): oldval, cnt = self.name2val[key], self.name2cnt[key] self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1) self.name2cnt[key] = cnt + 1 def dumpkvs(self): if self.comm is None: d = self.name2val else: d = mpi_weighted_mean( self.comm, { name: (val, self.name2cnt.get(name, 1)) for (name, val) in self.name2val.items() }, ) if self.comm.rank != 0: d["dummy"] = 1 # so we don't get a warning about empty dict out = d.copy() # Return the dict for unit testing purposes for fmt in self.output_formats: if isinstance(fmt, KVWriter): fmt.writekvs(d) self.name2val.clear() self.name2cnt.clear() return out def log(self, *args, level=INFO): if self.level <= level: self._do_log(args) # Configuration # ---------------------------------------- def set_level(self, level): self.level = level def set_comm(self, comm): self.comm = comm def get_dir(self): return self.dir def close(self): for fmt in self.output_formats: fmt.close() # Misc # ---------------------------------------- def _do_log(self, args): for fmt in self.output_formats: if isinstance(fmt, SeqWriter): fmt.writeseq(map(str, args)) def get_rank_without_mpi_import(): # check environment variables here instead of importing mpi4py # to avoid calling MPI_Init() when this module is imported for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]: if varname in os.environ: return int(os.environ[varname]) return 0 def mpi_weighted_mean(comm, local_name2valcount): """ Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110 Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean """ all_name2valcount = comm.gather(local_name2valcount) if comm.rank == 0: name2sum = defaultdict(float) name2count = defaultdict(float) for n2vc in all_name2valcount: for (name, (val, count)) in n2vc.items(): try: val = float(val) except ValueError: if comm.rank == 0: warnings.warn( "WARNING: tried to compute mean on non-float {}={}".format( name, val ) ) else: name2sum[name] += val * count name2count[name] += count return {name: name2sum[name] / name2count[name] for name in name2sum} else: return {} def configure(dir=None, format_strs=None, comm=None, log_suffix=""): """ If comm is provided, average all numerical stats across that comm """ if dir is None: dir = os.getenv("OPENAI_LOGDIR") if dir is None: dir = osp.join( tempfile.gettempdir(), datetime.datetime.now().strftime("agrol-%Y-%m-%d-%H-%M-%S-%f"), ) assert isinstance(dir, str) dir = os.path.expanduser(dir) os.makedirs(os.path.expanduser(dir), exist_ok=True) rank = get_rank_without_mpi_import() if rank > 0: log_suffix = log_suffix + "-rank%03i" % rank if format_strs is None: if rank == 0: format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",") else: format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",") format_strs = filter(None, format_strs) output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs] Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm) if output_formats: log("Logging to %s" % dir) def _configure_default_logger(): configure() Logger.DEFAULT = Logger.CURRENT def reset(): if Logger.CURRENT is not Logger.DEFAULT: Logger.CURRENT.close() Logger.CURRENT = Logger.DEFAULT log("Reset logger") @contextmanager def scoped_configure(dir=None, format_strs=None, comm=None): prevlogger = Logger.CURRENT configure(dir=dir, format_strs=format_strs, comm=comm) try: yield finally: Logger.CURRENT.close() Logger.CURRENT = prevlogger
""" This code started out as a PyTorch port of Ho et al's diffusion models: https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. """ # MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch import torch as th from diffusion.gaussian_diffusion import ( GaussianDiffusion, LossType, ModelMeanType, ModelVarType, ) class DiffusionModel(GaussianDiffusion): def __init__( self, **kwargs, ): super(DiffusionModel, self).__init__( **kwargs, ) def masked_l2(self, a, b): bs, n, c = a.shape loss = torch.mean( torch.norm( (a - b).reshape(-1, 6), 2, 1, ) ) return loss def training_losses( self, model, x_start, t, sparse, model_kwargs=None, noise=None, dataset=None ): if model_kwargs is None: model_kwargs = {} if noise is None: noise = th.randn_like(x_start) x_t = self.q_sample(x_start, t, noise=noise) terms = {} if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: terms["loss"] = self._vb_terms_bpd( model=model, x_start=x_start, x_t=x_t, t=t, clip_denoised=False, model_kwargs=model_kwargs, )["output"] if self.loss_type == LossType.RESCALED_KL: terms["loss"] *= self.num_timesteps elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: model_output = model(x_t, self._scale_timesteps(t), sparse, **model_kwargs) if self.model_var_type in [ ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE, ]: B, C = x_t.shape[:2] assert model_output.shape == (B, C * 2, *x_t.shape[2:]) model_output, model_var_values = th.split(model_output, C, dim=1) # Learn the variance using the variational bound, but don't let # it affect our mean prediction. frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) terms["vb"] = self._vb_terms_bpd( model=lambda *args, r=frozen_out: r, x_start=x_start, x_t=x_t, t=t, clip_denoised=False, )["output"] if self.loss_type == LossType.RESCALED_MSE: # Divide by 1000 for equivalence with initial implementation. # Without a factor of 1/1000, the VB term hurts the MSE term. terms["vb"] *= self.num_timesteps / 1000.0 target = { ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( x_start=x_start, x_t=x_t, t=t )[0], ModelMeanType.START_X: x_start, ModelMeanType.EPSILON: noise, }[self.model_mean_type] assert model_output.shape == target.shape == x_start.shape terms["rot_mse"] = self.masked_l2( target, model_output, ) terms["loss"] = terms["rot_mse"] + terms.get("vb", 0.0) else: raise NotImplementedError(self.loss_type) return terms
""" Helpers for various likelihood-based losses. These are ported from the original Ho et al. diffusion models codebase: https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py """ # MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion import numpy as np import torch as th def normal_kl(mean1, logvar1, mean2, logvar2): """ Compute the KL divergence between two gaussians. Shapes are automatically broadcasted, so batches can be compared to scalars, among other use cases. """ tensor = None for obj in (mean1, logvar1, mean2, logvar2): if isinstance(obj, th.Tensor): tensor = obj break assert tensor is not None, "at least one argument must be a Tensor" # Force variances to be Tensors. Broadcasting helps convert scalars to # Tensors, but it does not work for th.exp(). logvar1, logvar2 = [ x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) for x in (logvar1, logvar2) ] return 0.5 * ( -1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * th.exp(-logvar2) ) def approx_standard_normal_cdf(x): """ A fast approximation of the cumulative distribution function of the standard normal. """ return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) def discretized_gaussian_log_likelihood(x, *, means, log_scales): """ Compute the log-likelihood of a Gaussian distribution discretizing to a given image. :param x: the target images. It is assumed that this was uint8 values, rescaled to the range [-1, 1]. :param means: the Gaussian mean Tensor. :param log_scales: the Gaussian log stddev Tensor. :return: a tensor like x of log probabilities (in nats). """ assert x.shape == means.shape == log_scales.shape centered_x = x - means inv_stdv = th.exp(-log_scales) plus_in = inv_stdv * (centered_x + 1.0 / 255.0) cdf_plus = approx_standard_normal_cdf(plus_in) min_in = inv_stdv * (centered_x - 1.0 / 255.0) cdf_min = approx_standard_normal_cdf(min_in) log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) cdf_delta = cdf_plus - cdf_min log_probs = th.where( x < -0.999, log_cdf_plus, th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), ) assert log_probs.shape == x.shape return log_probs
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion """ Helpers to train with 16-bit precision. """ import numpy as np import torch as th import torch.nn as nn from diffusion import logger from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors INITIAL_LOG_LOSS_SCALE = 20.0 def convert_module_to_f16(l): """ Convert primitive modules to float16. """ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() def convert_module_to_f32(l): """ Convert primitive modules to float32, undoing convert_module_to_f16(). """ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): l.weight.data = l.weight.data.float() if l.bias is not None: l.bias.data = l.bias.data.float() def make_master_params(param_groups_and_shapes): """ Copy model parameters into a (differently-shaped) list of full-precision parameters. """ master_params = [] for param_group, shape in param_groups_and_shapes: master_param = nn.Parameter( _flatten_dense_tensors( [param.detach().float() for (_, param) in param_group] ).view(shape) ) master_param.requires_grad = True master_params.append(master_param) return master_params def model_grads_to_master_grads(param_groups_and_shapes, master_params): """ Copy the gradients from the model parameters into the master parameters from make_master_params(). """ for master_param, (param_group, shape) in zip( master_params, param_groups_and_shapes ): master_param.grad = _flatten_dense_tensors( [param_grad_or_zeros(param) for (_, param) in param_group] ).view(shape) def master_params_to_model_params(param_groups_and_shapes, master_params): """ Copy the master parameter data back into the model parameters. """ # Without copying to a list, if a generator is passed, this will # silently not copy any parameters. for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes): for (_, param), unflat_master_param in zip( param_group, unflatten_master_params(param_group, master_param.view(-1)) ): param.detach().copy_(unflat_master_param) def unflatten_master_params(param_group, master_param): return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group]) def get_param_groups_and_shapes(named_model_params): named_model_params = list(named_model_params) scalar_vector_named_params = ( [(n, p) for (n, p) in named_model_params if p.ndim <= 1], (-1), ) matrix_named_params = ( [(n, p) for (n, p) in named_model_params if p.ndim > 1], (1, -1), ) return [scalar_vector_named_params, matrix_named_params] def master_params_to_state_dict( model, param_groups_and_shapes, master_params, use_fp16 ): if use_fp16: state_dict = model.state_dict() for master_param, (param_group, _) in zip( master_params, param_groups_and_shapes ): for (name, _), unflat_master_param in zip( param_group, unflatten_master_params(param_group, master_param.view(-1)) ): assert name in state_dict state_dict[name] = unflat_master_param else: state_dict = model.state_dict() for i, (name, _value) in enumerate(model.named_parameters()): assert name in state_dict state_dict[name] = master_params[i] return state_dict def state_dict_to_master_params(model, state_dict, use_fp16): if use_fp16: named_model_params = [ (name, state_dict[name]) for name, _ in model.named_parameters() ] param_groups_and_shapes = get_param_groups_and_shapes(named_model_params) master_params = make_master_params(param_groups_and_shapes) else: master_params = [state_dict[name] for name, _ in model.named_parameters()] return master_params def zero_master_grads(master_params): for param in master_params: param.grad = None def zero_grad(model_params): for param in model_params: # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group if param.grad is not None: param.grad.detach_() param.grad.zero_() def param_grad_or_zeros(param): if param.grad is not None: return param.grad.data.detach() else: return th.zeros_like(param) class MixedPrecisionTrainer: def __init__( self, *, model, use_fp16=False, fp16_scale_growth=1e-3, initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE, ): self.model = model self.use_fp16 = use_fp16 self.fp16_scale_growth = fp16_scale_growth self.model_params = list(self.model.parameters()) self.master_params = self.model_params self.param_groups_and_shapes = None self.lg_loss_scale = initial_lg_loss_scale if self.use_fp16: self.param_groups_and_shapes = get_param_groups_and_shapes( self.model.named_parameters() ) self.master_params = make_master_params(self.param_groups_and_shapes) self.model.convert_to_fp16() def zero_grad(self): zero_grad(self.model_params) def backward(self, loss: th.Tensor): if self.use_fp16: loss_scale = 2**self.lg_loss_scale (loss * loss_scale).backward() else: loss.backward() def optimize(self, opt: th.optim.Optimizer): if self.use_fp16: return self._optimize_fp16(opt) else: return self._optimize_normal(opt) def _optimize_fp16(self, opt: th.optim.Optimizer): logger.logkv_mean("lg_loss_scale", self.lg_loss_scale) model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params) grad_norm, param_norm = self._compute_norms(grad_scale=2**self.lg_loss_scale) if check_overflow(grad_norm): self.lg_loss_scale -= 1 logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}") zero_master_grads(self.master_params) return False logger.logkv_mean("grad_norm", grad_norm) logger.logkv_mean("param_norm", param_norm) self.master_params[0].grad.mul_(1.0 / (2**self.lg_loss_scale)) opt.step() zero_master_grads(self.master_params) master_params_to_model_params(self.param_groups_and_shapes, self.master_params) self.lg_loss_scale += self.fp16_scale_growth return True def _optimize_normal(self, opt: th.optim.Optimizer): grad_norm, param_norm = self._compute_norms() logger.logkv_mean("grad_norm", grad_norm) logger.logkv_mean("param_norm", param_norm) opt.step() return True def _compute_norms(self, grad_scale=1.0): grad_norm = 0.0 param_norm = 0.0 for p in self.master_params: with th.no_grad(): param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2 if p.grad is not None: grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2 return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm) def master_params_to_state_dict(self, master_params): return master_params_to_state_dict( self.model, self.param_groups_and_shapes, master_params, self.use_fp16 ) def state_dict_to_master_params(self, state_dict): return state_dict_to_master_params(self.model, state_dict, self.use_fp16) def check_overflow(value): return (value == float("inf")) or (value == -float("inf")) or (value != value)
""" This code started out as a PyTorch port of Ho et al's diffusion models: https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. """ # MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion # MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import enum import math from copy import deepcopy import numpy as np import torch import torch as th from diffusion.losses import discretized_gaussian_log_likelihood, normal_kl def mean_flat(tensor): """ Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, scale_betas=1.0): """ Get a pre-defined beta schedule for the given name. The beta schedule library consists of beta schedules which remain similar in the limit of num_diffusion_timesteps. Beta schedules may be added, but should not be removed or changed once they are committed to maintain backwards compatibility. """ if schedule_name == "linear": # Linear schedule from Ho et al, extended to work for any number of # diffusion steps. scale = scale_betas * 1000 / num_diffusion_timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 return np.linspace( beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 ) elif schedule_name == "cosine": return betas_for_alpha_bar( num_diffusion_timesteps, lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, ) else: raise NotImplementedError(f"unknown beta schedule: {schedule_name}") def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t from 0 to 1 and produces the cumulative product of (1-beta) up to that part of the diffusion process. :param max_beta: the maximum beta to use; use values lower than 1 to prevent singularities. """ betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas) class ModelMeanType(enum.Enum): """ Which type of output the model predicts. """ PREVIOUS_X = enum.auto() # the model predicts x_{t-1} START_X = enum.auto() # the model predicts x_0 EPSILON = enum.auto() # the model predicts epsilon class ModelVarType(enum.Enum): """ What is used as the model's output variance. The LEARNED_RANGE option has been added to allow the model to predict values between FIXED_SMALL and FIXED_LARGE, making its job easier. """ LEARNED = enum.auto() FIXED_SMALL = enum.auto() FIXED_LARGE = enum.auto() LEARNED_RANGE = enum.auto() class LossType(enum.Enum): MSE = enum.auto() # use raw MSE loss (and KL when learning variances) RESCALED_MSE = ( enum.auto() ) # use raw MSE loss (with RESCALED_KL when learning variances) KL = enum.auto() # use the variational lower-bound RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB def is_vb(self): return self == LossType.KL or self == LossType.RESCALED_KL class GaussianDiffusion: """ Utilities for training and sampling diffusion models. Ported directly from here, and then adapted over time to further experimentation. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 :param betas: a 1-D numpy array of betas for each diffusion timestep, starting at T and going to 1. :param model_mean_type: a ModelMeanType determining what the model outputs. :param model_var_type: a ModelVarType determining how variance is output. :param loss_type: a LossType determining the loss function to use. :param rescale_timesteps: if True, pass floating point timesteps into the model so that they are always scaled like in the original paper (0 to 1000). """ def __init__( self, *, dataset, betas, model_mean_type, model_var_type, loss_type, rescale_timesteps=False, lambda_rcxyz=0.0, lambda_vel=1.0, lambda_pose=1.0, lambda_orient=1.0, lambda_loc=1.0, data_rep="rot", lambda_root_vel=0.0, lambda_vel_rcxyz=0.0, lambda_fc=0.0, ): self.dataset = dataset self.model_mean_type = model_mean_type self.model_var_type = model_var_type self.loss_type = loss_type self.rescale_timesteps = rescale_timesteps self.data_rep = data_rep if data_rep != "rot_vel" and lambda_pose != 1.0: raise ValueError( "lambda_pose is relevant only when training on velocities!" ) self.lambda_pose = lambda_pose self.lambda_orient = lambda_orient self.lambda_loc = lambda_loc self.lambda_rcxyz = lambda_rcxyz self.lambda_vel = lambda_vel self.lambda_root_vel = lambda_root_vel self.lambda_vel_rcxyz = lambda_vel_rcxyz self.lambda_fc = lambda_fc if ( self.lambda_rcxyz > 0.0 or self.lambda_vel > 0.0 or self.lambda_root_vel > 0.0 or self.lambda_vel_rcxyz > 0.0 or self.lambda_fc > 0.0 ): assert ( self.loss_type == LossType.MSE ), "Geometric losses are supported by MSE loss type only!" # Use float64 for accuracy. betas = np.array(betas, dtype=np.float64) self.betas = betas assert len(betas.shape) == 1, "betas must be 1-D" assert (betas > 0).all() and (betas <= 1).all() self.num_timesteps = int(betas.shape[0]) alphas = 1.0 - betas self.alphas_cumprod = np.cumprod(alphas, axis=0) self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) # calculations for diffusion q(x_t | x_{t-1}) and others self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) # calculations for posterior q(x_{t-1} | x_t, x_0) self.posterior_variance = ( betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) # log calculation clipped because the posterior variance is 0 at the # beginning of the diffusion chain. self.posterior_log_variance_clipped = np.log( np.append(self.posterior_variance[1], self.posterior_variance[1:]) ) self.posterior_mean_coef1 = ( betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) self.posterior_mean_coef2 = ( (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) ) def masked_l2(self, a, b): pass def q_mean_variance(self, x_start, t): """ Get the distribution q(x_t | x_0). :param x_start: the [N x C x ...] tensor of noiseless inputs. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :return: A tuple (mean, variance, log_variance), all of x_start's shape. """ mean = ( _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start ) variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) log_variance = _extract_into_tensor( self.log_one_minus_alphas_cumprod, t, x_start.shape ) return mean, variance, log_variance def q_sample(self, x_start, t, noise=None): """ Diffuse the dataset for a given number of diffusion steps. In other words, sample from q(x_t | x_0). :param x_start: the initial dataset batch. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :param noise: if specified, the split-out normal noise. :return: A noisy version of x_start. """ if noise is None: noise = th.randn_like(x_start) assert noise.shape == x_start.shape return ( _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def q_posterior_mean_variance(self, x_start, x_t, t): """ Compute the mean and variance of the diffusion posterior: q(x_{t-1} | x_t, x_0) """ assert x_start.shape == x_t.shape posterior_mean = ( _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = _extract_into_tensor( self.posterior_log_variance_clipped, t, x_t.shape ) assert ( posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] == x_start.shape[0] ) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, model_kwargs=None, ): """ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of the initial x, x_0. :param model: the model, which takes a signal and a batch of timesteps as input. :param x: the [N x C x ...] tensor at time t. :param t: a 1-D Tensor of timesteps. :param clip_denoised: if True, clip the denoised signal into [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. Applies before clip_denoised. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict with the following keys: - 'mean': the model mean output. - 'variance': the model variance output. - 'log_variance': the log of 'variance'. - 'pred_xstart': the prediction for x_0. """ B, C = x.shape[:2] assert t.shape == (B,) if model_kwargs is not None: model_output = model(x, self._scale_timesteps(t), sparse, **model_kwargs) else: model_output = model(x, self._scale_timesteps(t), sparse) if model_kwargs is not None: if ( "inpainting_mask" in model_kwargs["y"].keys() and "inpainted_motion" in model_kwargs["y"].keys() ): inpainting_mask, inpainted_motion = ( model_kwargs["y"]["inpainting_mask"], model_kwargs["y"]["inpainted_motion"], ) assert ( self.model_mean_type == ModelMeanType.START_X ), "This feature supports only X_start pred for mow!" assert ( model_output.shape == inpainting_mask.shape == inpainted_motion.shape ) model_output = (model_output * (1 - inpainting_mask)) + ( inpainted_motion * inpainting_mask ) if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: assert model_output.shape == (B, C * 2, *x.shape[2:]) model_output, model_var_values = th.split(model_output, C, dim=1) if self.model_var_type == ModelVarType.LEARNED: model_log_variance = model_var_values model_variance = th.exp(model_log_variance) else: min_log = _extract_into_tensor( self.posterior_log_variance_clipped, t, x.shape ) max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) # The model_var_values is [-1, 1] for [min_var, max_var]. frac = (model_var_values + 1) / 2 model_log_variance = frac * max_log + (1 - frac) * min_log model_variance = th.exp(model_log_variance) else: model_variance, model_log_variance = { # for fixedlarge, we set the initial (log-)variance like so # to get a better decoder log likelihood. ModelVarType.FIXED_LARGE: ( np.append(self.posterior_variance[1], self.betas[1:]), np.log(np.append(self.posterior_variance[1], self.betas[1:])), ), ModelVarType.FIXED_SMALL: ( self.posterior_variance, self.posterior_log_variance_clipped, ), }[self.model_var_type] model_variance = _extract_into_tensor(model_variance, t, x.shape) model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) def process_xstart(x): if denoised_fn is not None: x = denoised_fn(x) if clip_denoised: # print('clip_denoised', clip_denoised) return x.clamp(-1, 1) return x if self.model_mean_type == ModelMeanType.PREVIOUS_X: pred_xstart = process_xstart( self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) ) model_mean = model_output elif self.model_mean_type in [ ModelMeanType.START_X, ModelMeanType.EPSILON, ]: # THIS IS US! if self.model_mean_type == ModelMeanType.START_X: pred_xstart = process_xstart(model_output) else: pred_xstart = process_xstart( self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) ) model_mean, _, _ = self.q_posterior_mean_variance( x_start=pred_xstart, x_t=x, t=t ) else: raise NotImplementedError(self.model_mean_type) assert ( model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape ) return { "mean": model_mean, "variance": model_variance, "log_variance": model_log_variance, "pred_xstart": pred_xstart, } def _predict_xstart_from_eps(self, x_t, t, eps): assert x_t.shape == eps.shape return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps ) def _predict_xstart_from_xprev(self, x_t, t, xprev): assert x_t.shape == xprev.shape return ( # (xprev - coef2*x_t) / coef1 _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev - _extract_into_tensor( self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape ) * x_t ) def _predict_eps_from_xstart(self, x_t, t, pred_xstart): return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) def _scale_timesteps(self, t): if self.rescale_timesteps: return t.float() * (1000.0 / self.num_timesteps) return t def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute the mean for the previous step, given a function cond_fn that computes the gradient of a conditional log probability with respect to x. In particular, cond_fn computes grad(log(p(y|x))), and we want to condition on y. This uses the conditioning strategy from Sohl-Dickstein et al. (2015). """ gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) new_mean = ( p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() ) return new_mean def condition_mean_with_grad(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute the mean for the previous step, given a function cond_fn that computes the gradient of a conditional log probability with respect to x. In particular, cond_fn computes grad(log(p(y|x))), and we want to condition on y. This uses the conditioning strategy from Sohl-Dickstein et al. (2015). """ gradient = cond_fn(x, t, p_mean_var, **model_kwargs) new_mean = ( p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() ) return new_mean def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute what the p_mean_variance output would have been, should the model's score function be conditioned by cond_fn. See condition_mean() for details on cond_fn. Unlike condition_mean(), this instead uses the conditioning strategy from Song et al (2020). """ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) eps = eps - (1 - alpha_bar).sqrt() * cond_fn( x, self._scale_timesteps(t), **model_kwargs ) out = p_mean_var.copy() out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) out["mean"], _, _ = self.q_posterior_mean_variance( x_start=out["pred_xstart"], x_t=x, t=t ) return out def condition_score_with_grad(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute what the p_mean_variance output would have been, should the model's score function be conditioned by cond_fn. See condition_mean() for details on cond_fn. Unlike condition_mean(), this instead uses the conditioning strategy from Song et al (2020). """ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, p_mean_var, **model_kwargs) out = p_mean_var.copy() out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) out["mean"], _, _ = self.q_posterior_mean_variance( x_start=out["pred_xstart"], x_t=x, t=t ) return out def p_sample( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, const_noise=False, ): """ Sample x_{t-1} from the model at the given timestep. :param model: the model to sample from. :param x: the current tensor at x_{t-1}. :param t: the value of t, starting at 0 for the first diffusion step. :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param cond_fn: if not None, this is a gradient function that acts similarly to the model. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - 'sample': a random sample from the model. - 'pred_xstart': a prediction of x_0. """ out = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) noise = th.randn_like(x) # print('const_noise', const_noise) if const_noise: noise = noise[[0]].repeat(x.shape[0], 1, 1, 1) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 if cond_fn is not None: out["mean"] = self.condition_mean( cond_fn, out, x, t, model_kwargs=model_kwargs ) # print('mean', out["mean"].shape, out["mean"]) # print('log_variance', out["log_variance"].shape, out["log_variance"]) # print('nonzero_mask', nonzero_mask.shape, nonzero_mask) sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise return {"sample": sample, "pred_xstart": out["pred_xstart"]} def p_sample_with_grad( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, ): """ Sample x_{t-1} from the model at the given timestep. :param model: the model to sample from. :param x: the current tensor at x_{t-1}. :param t: the value of t, starting at 0 for the first diffusion step. :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param cond_fn: if not None, this is a gradient function that acts similarly to the model. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - 'sample': a random sample from the model. - 'pred_xstart': a prediction of x_0. """ with th.enable_grad(): x = x.detach().requires_grad_() out = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) noise = th.randn_like(x) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 if cond_fn is not None: out["mean"] = self.condition_mean_with_grad( cond_fn, out, x, t, model_kwargs=model_kwargs ) sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise return {"sample": sample, "pred_xstart": out["pred_xstart"].detach()} def p_sample_loop( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, dump_steps=None, const_noise=False, ): """ Generate samples from the model. :param model: the model module. :param shape: the shape of the samples, (N, C, H, W). :param noise: if specified, the noise from the encoder to sample. Should be of the same shape as `shape`. :param clip_denoised: if True, clip x_start predictions to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param cond_fn: if not None, this is a gradient function that acts similarly to the model. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :param device: if specified, the device to create the samples on. If not specified, use a model parameter's device. :param progress: if True, show a tqdm progress bar. :param const_noise: If True, will noise all samples with the same noise throughout sampling :return: a non-differentiable batch of samples. """ final = None if dump_steps is not None: dump = [] for i, sample in enumerate( self.p_sample_loop_progressive( model, shape, sparse=sparse, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, skip_timesteps=skip_timesteps, init_image=init_image, randomize_class=randomize_class, cond_fn_with_grad=cond_fn_with_grad, const_noise=const_noise, ) ): if dump_steps is not None and i in dump_steps: dump.append(deepcopy(sample["sample"])) final = sample if dump_steps is not None: return dump return final["sample"] def p_sample_loop_progressive( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, const_noise=False, ): """ Generate samples from the model and yield intermediate samples from each timestep of diffusion. Arguments are the same as p_sample_loop(). Returns a generator over dicts, where each dict is the return value of p_sample(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) if skip_timesteps and init_image is None: init_image = th.zeros_like(img) indices = list(range(self.num_timesteps - skip_timesteps))[::-1] if init_image is not None: my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] img = self.q_sample(init_image, my_t, img) if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = th.tensor([i] * shape[0], device=device) if randomize_class and "y" in model_kwargs: model_kwargs["y"] = th.randint( low=0, high=model.num_classes, size=model_kwargs["y"].shape, device=model_kwargs["y"].device, ) with th.no_grad(): sample_fn = ( self.p_sample_with_grad if cond_fn_with_grad else self.p_sample ) out = sample_fn( model, img, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, const_noise=const_noise, ) yield out img = out["sample"] def ddim_sample( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t-1} from the model using DDIM. Same usage as p_sample(). """ out_orig = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) if cond_fn is not None: out = self.condition_score( cond_fn, out_orig, x, t, model_kwargs=model_kwargs ) else: out = out_orig # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) sigma = ( eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(1 - alpha_bar / alpha_bar_prev) ) # Equation 12. noise = th.randn_like(x) mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps ) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 sample = mean_pred + nonzero_mask * sigma * noise return {"sample": sample, "pred_xstart": out_orig["pred_xstart"]} def ddim_sample_with_grad( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t-1} from the model using DDIM. Same usage as p_sample(). """ with th.enable_grad(): x = x.detach().requires_grad_() out_orig = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) if cond_fn is not None: out = self.condition_score_with_grad( cond_fn, out_orig, x, t, model_kwargs=model_kwargs ) else: out = out_orig out["pred_xstart"] = out["pred_xstart"].detach() # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) sigma = ( eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(1 - alpha_bar / alpha_bar_prev) ) # Equation 12. noise = th.randn_like(x) mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps ) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 sample = mean_pred + nonzero_mask * sigma * noise return {"sample": sample, "pred_xstart": out_orig["pred_xstart"].detach()} def ddim_reverse_sample( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t+1} from the model using DDIM reverse ODE. """ assert eta == 0.0, "Reverse ODE only for deterministic path" out = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x - out["pred_xstart"] ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) # Equation 12. reversed mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps ) return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} def ddim_sample_loop( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, dump_steps=None, const_noise=False, ): """ Generate samples from the model using DDIM. Same usage as p_sample_loop(). """ if dump_steps is not None: raise NotImplementedError() if const_noise: raise NotImplementedError() final = None for sample in self.ddim_sample_loop_progressive( model, shape, sparse=sparse, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, eta=eta, skip_timesteps=skip_timesteps, init_image=init_image, randomize_class=randomize_class, cond_fn_with_grad=cond_fn_with_grad, ): final = sample return final["sample"] def ddim_sample_loop_progressive( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, ): """ Use DDIM to sample from the model and yield intermediate samples from each timestep of DDIM. Same usage as p_sample_loop_progressive(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) if skip_timesteps and init_image is None: init_image = th.zeros_like(img) indices = list(range(self.num_timesteps - skip_timesteps))[::-1] if init_image is not None: my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] img = self.q_sample(init_image, my_t, img) if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = th.tensor([i] * shape[0], device=device) with th.no_grad(): sample_fn = ( self.ddim_sample_with_grad if cond_fn_with_grad else self.ddim_sample ) out = sample_fn( model, img, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, eta=eta, ) yield out img = out["sample"] def plms_sample( self, model, x, t, sparse=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, cond_fn_with_grad=False, order=2, old_out=None, ): """ Sample x_{t-1} from the model using Pseudo Linear Multistep. Same usage as p_sample(). """ if not int(order) or not 1 <= order <= 4: raise ValueError("order is invalid (should be int from 1-4).") def get_model_output(x, t): with th.set_grad_enabled(cond_fn_with_grad and cond_fn is not None): x = x.detach().requires_grad_() if cond_fn_with_grad else x out_orig = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) if cond_fn is not None: if cond_fn_with_grad: out = self.condition_score_with_grad( cond_fn, out_orig, x, t, model_kwargs=model_kwargs ) x = x.detach() else: out = self.condition_score( cond_fn, out_orig, x, t, model_kwargs=model_kwargs ) else: out = out_orig # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) return eps, out, out_orig alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) eps, out, out_orig = get_model_output(x, t) if order > 1 and old_out is None: # Pseudo Improved Euler old_eps = [eps] mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev) * eps ) eps_2, _, _ = get_model_output(mean_pred, t - 1) eps_prime = (eps + eps_2) / 2 pred_prime = self._predict_xstart_from_eps(x, t, eps_prime) mean_pred = ( pred_prime * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev) * eps_prime ) else: # Pseudo Linear Multistep (Adams-Bashforth) old_eps = old_out["old_eps"] old_eps.append(eps) cur_order = min(order, len(old_eps)) if cur_order == 1: eps_prime = old_eps[-1] elif cur_order == 2: eps_prime = (3 * old_eps[-1] - old_eps[-2]) / 2 elif cur_order == 3: eps_prime = (23 * old_eps[-1] - 16 * old_eps[-2] + 5 * old_eps[-3]) / 12 elif cur_order == 4: eps_prime = ( 55 * old_eps[-1] - 59 * old_eps[-2] + 37 * old_eps[-3] - 9 * old_eps[-4] ) / 24 else: raise RuntimeError("cur_order is invalid.") pred_prime = self._predict_xstart_from_eps(x, t, eps_prime) mean_pred = ( pred_prime * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev) * eps_prime ) if len(old_eps) >= order: old_eps.pop(0) nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) sample = mean_pred * nonzero_mask + out["pred_xstart"] * (1 - nonzero_mask) return { "sample": sample, "pred_xstart": out_orig["pred_xstart"], "old_eps": old_eps, } def plms_sample_loop( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, order=2, ): """ Generate samples from the model using Pseudo Linear Multistep. Same usage as p_sample_loop(). """ final = None for sample in self.plms_sample_loop_progressive( model, shape, sparse=sparse, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, skip_timesteps=skip_timesteps, init_image=init_image, randomize_class=randomize_class, cond_fn_with_grad=cond_fn_with_grad, order=order, ): final = sample return final["sample"] def plms_sample_loop_progressive( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, order=2, ): """ Use PLMS to sample from the model and yield intermediate samples from each timestep of PLMS. Same usage as p_sample_loop_progressive(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) if skip_timesteps and init_image is None: init_image = th.zeros_like(img) indices = list(range(self.num_timesteps - skip_timesteps))[::-1] if init_image is not None: my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] img = self.q_sample(init_image, my_t, img) if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) old_out = None for i in indices: t = th.tensor([i] * shape[0], device=device) if randomize_class and "y" in model_kwargs: model_kwargs["y"] = th.randint( low=0, high=model.num_classes, size=model_kwargs["y"].shape, device=model_kwargs["y"].device, ) with th.no_grad(): out = self.plms_sample( model, img, t, sparse=sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, cond_fn_with_grad=cond_fn_with_grad, order=order, old_out=old_out, ) yield out old_out = out img = out["sample"] def _vb_terms_bpd( self, model, x_start, x_t, t, sparse=None, clip_denoised=True, model_kwargs=None ): """ Get a term for the variational lower-bound. The resulting units are bits (rather than nats, as one might expect). This allows for comparison to other papers. :return: a dict with the following keys: - 'output': a shape [N] tensor of NLLs or KLs. - 'pred_xstart': the x_0 predictions. """ true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( x_start=x_start, x_t=x_t, t=t ) out = self.p_mean_variance( model, x_t, t, sparse=sparse, clip_denoised=clip_denoised, model_kwargs=model_kwargs, ) kl = normal_kl( true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] ) kl = mean_flat(kl) / np.log(2.0) decoder_nll = -discretized_gaussian_log_likelihood( x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] ) assert decoder_nll.shape == x_start.shape decoder_nll = mean_flat(decoder_nll) / np.log(2.0) # At the first timestep return the decoder NLL, # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) output = th.where((t == 0), decoder_nll, kl) return {"output": output, "pred_xstart": out["pred_xstart"]} def training_losses( self, model, x_start, t, sparse, model_kwargs=None, noise=None, dataset=None ): pass def _prior_bpd(self, x_start): """ Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element. """ batch_size = x_start.shape[0] t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl( mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 ) return mean_flat(kl_prior) / np.log(2.0) def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): """ Compute the entire variational lower-bound, measured in bits-per-dim, as well as other related quantities. :param model: the model to evaluate loss on. :param x_start: the [N x C x ...] tensor of inputs. :param clip_denoised: if True, clip denoised samples. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - total_bpd: the total variational lower-bound, per batch element. - prior_bpd: the prior term in the lower-bound. - vb: an [N x T] tensor of terms in the lower-bound. - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. - mse: an [N x T] tensor of epsilon MSEs for each timestep. """ device = x_start.device batch_size = x_start.shape[0] vb = [] xstart_mse = [] mse = [] for t in list(range(self.num_timesteps))[::-1]: t_batch = th.tensor([t] * batch_size, device=device) noise = th.randn_like(x_start) x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) # Calculate VLB term at the current timestep with th.no_grad(): out = self._vb_terms_bpd( model, x_start=x_start, x_t=x_t, t=t_batch, clip_denoised=clip_denoised, model_kwargs=model_kwargs, ) vb.append(out["output"]) xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) mse.append(mean_flat((eps - noise) ** 2)) vb = th.stack(vb, dim=1) xstart_mse = th.stack(xstart_mse, dim=1) mse = th.stack(mse, dim=1) prior_bpd = self._prior_bpd(x_start) total_bpd = vb.sum(dim=1) + prior_bpd return { "total_bpd": total_bpd, "prior_bpd": prior_bpd, "vb": vb, "xstart_mse": xstart_mse, "mse": mse, } def _extract_into_tensor(arr, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape)
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import numpy as np import torch import torch.nn as nn from model.networks import DiffMLP class MetaModel(nn.Module): def __init__( self, arch, nfeats, latent_dim=256, num_layers=8, dropout=0.1, dataset="amass", sparse_dim=54, **kargs, ): super().__init__() self.arch = DiffMLP self.dataset = dataset self.input_feats = nfeats self.latent_dim = latent_dim self.num_layers = num_layers self.dropout = dropout self.sparse_dim = sparse_dim self.cond_mask_prob = kargs.get("cond_mask_prob", 0.0) self.input_process = nn.Linear(self.input_feats, self.latent_dim) self.mlp = self.arch( self.latent_dim, seq=kargs.get("input_motion_length"), num_layers=num_layers ) self.embed_timestep = TimestepEmbeding(self.latent_dim) self.sparse_process = nn.Linear(self.sparse_dim, self.latent_dim) self.output_process = nn.Linear(self.latent_dim, self.input_feats) def mask_cond_sparse(self, cond, force_mask=True): bs, n, c = cond.shape if force_mask: return torch.zeros_like(cond) elif self.training and self.cond_mask_prob > 0.0: mask = torch.bernoulli( torch.ones(bs, device=cond.device) * self.cond_mask_prob ).view( bs, 1, 1 ) # 1-> use null_cond, 0-> use real cond return cond * (1.0 - mask) else: return cond def forward(self, x, timesteps, sparse_emb, force_mask=False): """ x: [batch_size, nfeats, nframes], denoted x_t in the paper sparse: [batch_size, nframes, sparse_dim], the sparse features timesteps: [batch_size] (int) """ emb = self.embed_timestep(timesteps) # time step embedding : [1, bs, d] # Pass the sparse signal to a FC sparse_emb = self.sparse_process( self.mask_cond_sparse(sparse_emb, force_mask=force_mask) ) # Pass the input to a FC x = self.input_process(x) # Concat the sparse feature with input x = torch.cat((sparse_emb, x), axis=-1) output = self.mlp(x, emb) # Pass the output to a FC and reshape the output output = self.output_process(output) return output class TimestepEmbeding(nn.Module): def __init__(self, d_model, max_len=5000): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer("pe", pe) def forward(self, timesteps): return self.pe[timesteps]
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch.nn as nn ############################### ############ Layers ########### ############################### class MLPblock(nn.Module): def __init__(self, dim, seq0, seq1, first=False, w_embed=True): super().__init__() self.w_embed = w_embed self.fc0 = nn.Conv1d(seq0, seq1, 1) if self.w_embed: if first: self.conct = nn.Linear(dim * 2, dim) else: self.conct = nn.Identity() self.emb_fc = nn.Linear(dim, dim) self.fc1 = nn.Linear(dim, dim) self.norm0 = nn.LayerNorm(dim) self.norm1 = nn.LayerNorm(dim) self.act = nn.SiLU() def forward(self, inputs): if self.w_embed: x = inputs[0] embed = inputs[1] x = self.conct(x) + self.emb_fc(self.act(embed)) else: x = inputs x_ = self.norm0(x) x_ = self.fc0(x_) x_ = self.act(x_) x = x + x_ x_ = self.norm1(x) x_ = self.fc1(x_) x_ = self.act(x_) x = x + x_ if self.w_embed: return x, embed else: return x class BaseMLP(nn.Module): def __init__(self, dim, seq, num_layers, w_embed=True): super().__init__() layers = [] for i in range(num_layers): layers.append( MLPblock(dim, seq, seq, first=i == 0 and w_embed, w_embed=w_embed) ) self.mlps = nn.Sequential(*layers) def forward(self, x): x = self.mlps(x) return x ############################### ########### Networks ########## ############################### class DiffMLP(nn.Module): def __init__(self, latent_dim=512, seq=98, num_layers=12): super(DiffMLP, self).__init__() self.motion_mlp = BaseMLP(dim=latent_dim, seq=seq, num_layers=num_layers) def forward(self, motion_input, embed): motion_feats = self.motion_mlp([motion_input, embed])[0] return motion_feats class PureMLP(nn.Module): def __init__( self, latent_dim=512, seq=98, num_layers=12, input_dim=54, output_dim=132 ): super(PureMLP, self).__init__() self.input_fc = nn.Linear(input_dim, latent_dim) self.motion_mlp = BaseMLP( dim=latent_dim, seq=seq, num_layers=num_layers, w_embed=False ) self.output_fc = nn.Linear(latent_dim, output_dim) def forward(self, motion_input): motion_feats = self.input_fc(motion_input) motion_feats = self.motion_mlp(motion_feats) motion_feats = self.output_fc(motion_feats) return motion_feats
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import glob import os import torch from torch.utils.data import DataLoader, Dataset from tqdm import tqdm class TrainDataset(Dataset): def __init__( self, dataset, mean, std, motions, sparses, input_motion_length=196, train_dataset_repeat_times=1, no_normalization=False, ): self.dataset = dataset self.mean = mean self.std = std self.motions = motions self.sparses = sparses self.train_dataset_repeat_times = train_dataset_repeat_times self.no_normalization = no_normalization self.motions = motions self.sparses = sparses self.input_motion_length = input_motion_length def __len__(self): return len(self.motions) * self.train_dataset_repeat_times def inv_transform(self, data): return data * self.std + self.mean def __getitem__(self, idx): motion = self.motions[idx % len(self.motions)] sparse = self.sparses[idx % len(self.motions)] seqlen = motion.shape[0] if seqlen <= self.input_motion_length: idx = 0 else: idx = torch.randint(0, int(seqlen - self.input_motion_length), (1,))[0] motion = motion[idx : idx + self.input_motion_length] sparse = sparse[idx : idx + self.input_motion_length] # Normalization if not self.no_normalization: motion = (motion - self.mean) / (self.std + 1e-8) return motion.float(), sparse.float() class TestDataset(Dataset): def __init__( self, name, mean, std, all_info, filename_list, normalize_sparse="none", ): self.name = name self.mean = mean self.std = std self.filename_list = filename_list self.normalize_sparse = normalize_sparse self.motions = [] self.sparses = [] self.body_params = [] self.head_motion = [] for i in all_info: self.motions.append(i["rotation_local_full_gt_list"]) self.sparses.append(i["hmd_position_global_full_gt_list"]) self.body_params.append(i["body_parms_list"]) self.head_motion.append(i["head_global_trans_list"]) def __len__(self): return len(self.motions) def inv_transform(self, data): return data * self.std + self.mean def __getitem__(self, idx): motion = self.motions[idx] sparse = self.sparses[idx] body_param = self.body_params[idx] head_motion = self.head_motion[idx] filename = self.filename_list[idx] return ( motion, sparse.unsqueeze(0), body_param, head_motion, filename, ) def get_mean_std_path(dataset): return dataset + "_mean.pt", dataset + "_std.pt" def get_motion(motion_list): # rotation_local_full_gt_list : 6d rotation parameters # hmd_position_global_full_gt_list : 3 joints(head, hands) 6d rotation/6d rotation velocity/global translation/global translation velocity motions = [i["rotation_local_full_gt_list"] for i in motion_list] sparses = [i["hmd_position_global_full_gt_list"] for i in motion_list] return motions, sparses def get_path(dataset_path, split): data_list_path = [] parent_data_path = glob.glob(dataset_path + "/*") for d in parent_data_path: if os.path.isdir(d): files = glob.glob(d + "/" + split + "/*pt") data_list_path.extend(files) return data_list_path def load_data(dataset, dataset_path, split, **kwargs): """ Collect the data for the given split Args: - For test: dataset : the name of the testing dataset split : test or train - For train: dataset : the name of the training dataset split : train or test input_motion_length : the input motion length Outout: - For test: filename_list : List of all filenames in the dataset motion_list : List contains N dictoinaries, with "hmd_position_global_full_gt_list" - sparse features of the 3 joints "local_joint_parameters_gt_list" - body parameters Nx7[tx,ty,tz,rx,ry,rz] as the input of the human kinematic model "head_global_trans_list" - Tx4x4 matrix which contains the global rotation and global translation of the head movement mean : mean of train dataset std : std of train dataset - For train: new_motions : motions indicates the sequences of rotation representation of each joint new_sparses : sparses indicates the sequences of sparse features of the 3 joints mean : mean of train dataset std : std of train dataset """ if split == "test": motion_list = get_path(dataset_path, split) mean_path, std_path = get_mean_std_path(dataset) filename_list = [ "-".join([i.split("/")[-3], i.split("/")[-1]]).split(".")[0] for i in motion_list ] motion_list = [torch.load(i) for i in tqdm(motion_list)] mean = torch.load(os.path.join(dataset_path, mean_path)) std = torch.load(os.path.join(dataset_path, std_path)) return filename_list, motion_list, mean, std assert split == "train" assert ( "input_motion_length" in kwargs ), "Please specify the input_motion_length to load training dataset" motion_list = get_path(dataset_path, split) mean_path, std_path = get_mean_std_path(dataset) input_motion_length = kwargs["input_motion_length"] motion_list = [torch.load(i) for i in tqdm(motion_list)] motions, sparses = get_motion(motion_list) new_motions = [] new_sparses = [] for idx, motion in enumerate(motions): if motion.shape[0] < input_motion_length: # Arbitrary choice continue new_sparses.append(sparses[idx]) new_motions.append(motions[idx]) if os.path.exists(os.path.join(dataset_path, mean_path)): mean = torch.load(os.path.join(dataset_path, mean_path)) std = torch.load(os.path.join(dataset_path, std_path)) else: tmp_data_list = torch.cat(new_motions, dim=0) mean = tmp_data_list.mean(axis=0).float() std = tmp_data_list.std(axis=0).float() with open(os.path.join(dataset_path, mean_path), "wb") as f: torch.save(mean, f) with open(os.path.join(dataset_path, std_path), "wb") as f: torch.save(std, f) return new_motions, new_sparses, mean, std def get_dataloader( dataset, split, batch_size, num_workers=32, ): if split == "train": shuffle = True drop_last = True num_workers = num_workers else: shuffle = False drop_last = False num_workers = 1 loader = DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, drop_last=drop_last, persistent_workers=False, ) return loader
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from setuptools import setup, find_packages with open('README.md', 'r') as f: long_description = f.read() with open('requirements.txt', 'r') as f: requirements = [line.strip() for line in f] setup( name='access', version='0.2', description='Controllable Sentence Simplification', long_description=long_description, long_description_content_type='text/markdown', author='Louis Martin <[email protected]>', url='https://github.com/facebookreasearch/access', packages=find_packages(exclude=['resources']), install_requires=requirements, )
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import wraps import multiprocessing import random import re from joblib import Parallel, delayed import torch from access.text import to_words from access.utils.helpers import (open_files, yield_lines, yield_lines_in_parallel, get_temp_filepath, delete_files, get_temp_filepaths) def apply_line_method_to_file(line_method, input_filepath): output_filepath = get_temp_filepath() with open(input_filepath, 'r') as input_file, open(output_filepath, 'w') as output_file: for line in input_file: transformed_line = line_method(line.rstrip('\n')) if transformed_line is not None: output_file.write(transformed_line + '\n') return output_filepath def replace_lrb_rrb(text): text = re.sub(r'-lrb-', '(', text, flags=re.IGNORECASE) text = re.sub(r'-rrb-', ')', text, flags=re.IGNORECASE) text = re.sub(r'-lsb-', '[', text, flags=re.IGNORECASE) text = re.sub(r'-rsb-', ']', text, flags=re.IGNORECASE) text = re.sub(r'-lcb-', '{', text, flags=re.IGNORECASE) text = re.sub(r'-rcb-', '}', text, flags=re.IGNORECASE) return text def replace_lrb_rrb_file(filepath): return apply_line_method_to_file(replace_lrb_rrb, filepath) def to_lrb_rrb(text): # TODO: Very basic text = re.sub(r'((^| ))\( ', r'\1-lrb- ', text) text = re.sub(r' \)((^| ))', r' -rrb-\1', text) return text def replace_back_quotes(text): return text.replace('`', "'") def replace_double_quotes(text): return text.replace("''", '"') def normalize_quotes(text): return replace_double_quotes(replace_back_quotes(text)) def to_lrb_rrb_file(input_filepath): return apply_line_method_to_file(to_lrb_rrb, input_filepath) def lowercase_file(filepath): return apply_line_method_to_file(lambda line: line.lower(), filepath) def concatenate_files(input_filepaths, output_filepath): with open(output_filepath, 'w') as output_f: for input_file in input_filepaths: with open(input_file, 'r') as input_f: for line in input_f: output_f.write(line) def split_file(input_filepath, output_filepaths, round_robin=False): if not round_robin: raise NotImplementedError('Splitting files is only implemented as round robin.') with open_files(output_filepaths, 'w') as files: # We write each line to a different file in a round robin fashion for i, line in enumerate(yield_lines(input_filepath)): files[i % len(output_filepaths)].write(line + '\n') def merge_files(input_filepaths, output_filepath, round_robin=False): if not round_robin: return concatenate_files(input_filepaths, output_filepath) with open(output_filepath, 'w') as f: for lines in yield_lines_in_parallel(input_filepaths, strict=False): for line in lines: if line is None: return f.write(line + '\n') def get_real_n_jobs(n_jobs): n_cpus = multiprocessing.cpu_count() if n_jobs < 0: # Adopt same logic as joblib n_jobs = n_cpus + 1 + n_jobs if n_jobs > n_cpus: print('Setting n_jobs={n_jobs} > n_cpus={n_cpus}, setting n_jobs={n_cpus}') n_jobs = n_cpus assert 0 < n_jobs <= n_cpus return n_jobs def get_parallel_file_pair_preprocessor(file_pair_preprocessor, n_jobs): if n_jobs == 1: return file_pair_preprocessor n_jobs = get_real_n_jobs(n_jobs) @wraps(file_pair_preprocessor) def parallel_file_pair_preprocessor(complex_filepath, simple_filepath, output_complex_filepath, output_simple_filepath): temp_complex_filepaths = get_temp_filepaths(n_jobs) temp_simple_filepaths = get_temp_filepaths(n_jobs) split_file(complex_filepath, temp_complex_filepaths, round_robin=True) split_file(simple_filepath, temp_simple_filepaths, round_robin=True) preprocessed_temp_complex_filepaths = get_temp_filepaths(n_jobs) preprocessed_temp_simple_filepaths = get_temp_filepaths(n_jobs) tasks = [ delayed(file_pair_preprocessor)(*paths) for paths in zip(temp_complex_filepaths, temp_simple_filepaths, preprocessed_temp_complex_filepaths, preprocessed_temp_simple_filepaths) ] Parallel(n_jobs=n_jobs)(tasks) merge_files(preprocessed_temp_complex_filepaths, output_complex_filepath, round_robin=True) merge_files(preprocessed_temp_simple_filepaths, output_simple_filepath, round_robin=True) delete_files(temp_complex_filepaths) delete_files(temp_simple_filepaths) delete_files(preprocessed_temp_complex_filepaths) delete_files(preprocessed_temp_simple_filepaths) return parallel_file_pair_preprocessor def word_shuffle(words, max_swap=3): noise = torch.rand(len(words)).mul_(max_swap) permutation = torch.arange(len(words)).float().add_(noise).sort()[1] return [words[i] for i in permutation] def word_dropout(words, dropout_prob=0.1): keep = torch.rand(len(words)) dropped_out_words = [word for i, word in enumerate(words) if keep[i] > dropout_prob] if len(dropped_out_words) == 0: return [words[random.randint(0, len(words) - 1)]] return dropped_out_words def word_blank(words, blank_prob=0.1): keep = torch.rand(len(words)) return [word if keep[i] > blank_prob else '<BLANK>' for i, word in enumerate(words)] def add_noise(sentence): words = to_words(sentence) words = word_shuffle(words, max_swap=3) words = word_dropout(words, dropout_prob=0.1) words = word_blank(words, blank_prob=0.1) return ' '.join(words)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import wraps from pathlib import Path import shutil import tempfile from imohash import hashfile from access.fairseq.base import fairseq_generate from access.preprocessors import ComposedPreprocessor, load_preprocessors from access.utils.helpers import count_lines def memoize_simplifier(simplifier): memo = {} @wraps(simplifier) def wrapped(complex_filepath, pred_filepath): complex_filehash = hashfile(complex_filepath, hexdigest=True) previous_pred_filepath = memo.get(complex_filehash) if previous_pred_filepath is not None and Path(previous_pred_filepath).exists(): assert count_lines(complex_filepath) == count_lines(previous_pred_filepath) # Reuse previous prediction shutil.copyfile(previous_pred_filepath, pred_filepath) else: simplifier(complex_filepath, pred_filepath) # Save prediction memo[complex_filehash] = pred_filepath return wrapped def get_fairseq_simplifier(exp_dir, reload_preprocessors=False, **kwargs): '''Method factory''' @memoize_simplifier def fairseq_simplifier(complex_filepath, output_pred_filepath): # Trailing spaces for markdown formatting print('simplifier_type="fairseq_simplifier" ') print(f'exp_dir="{exp_dir}" ') fairseq_generate(complex_filepath, output_pred_filepath, exp_dir, **kwargs) preprocessors = None if reload_preprocessors: preprocessors = load_preprocessors(exp_dir) if preprocessors is not None: fairseq_simplifier = get_preprocessed_simplifier(fairseq_simplifier, preprocessors) return fairseq_simplifier def get_preprocessed_simplifier(simplifier, preprocessors): composed_preprocessor = ComposedPreprocessor(preprocessors) @memoize_simplifier @wraps(simplifier) def preprocessed_simplifier(complex_filepath, output_pred_filepath): print(f'preprocessors={preprocessors}') preprocessed_complex_filepath = tempfile.mkstemp()[1] composed_preprocessor.encode_file(complex_filepath, preprocessed_complex_filepath) preprocessed_output_pred_filepath = tempfile.mkstemp()[1] simplifier(preprocessed_complex_filepath, preprocessed_output_pred_filepath) composed_preprocessor.decode_file(preprocessed_output_pred_filepath, output_pred_filepath, encoder_filepath=complex_filepath) preprocessed_simplifier.__name__ = f'{preprocessed_simplifier.__name__}_{composed_preprocessor.get_suffix()}' return preprocessed_simplifier
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import lru_cache import Levenshtein import numpy as np from access.resources.paths import FASTTEXT_EMBEDDINGS_PATH from access.resources.prepare import prepare_fasttext_embeddings from access.text import (to_words, remove_punctuation_tokens, remove_stopwords, spacy_process) from access.utils.helpers import yield_lines @lru_cache(maxsize=1) def get_word2rank(vocab_size=np.inf): prepare_fasttext_embeddings() # TODO: Decrease vocab size or load from smaller file word2rank = {} line_generator = yield_lines(FASTTEXT_EMBEDDINGS_PATH) next(line_generator) # Skip the first line (header) for i, line in enumerate(line_generator): if (i + 1) > vocab_size: break word = line.split(' ')[0] word2rank[word] = i return word2rank def get_rank(word): return get_word2rank().get(word, len(get_word2rank())) def get_log_rank(word): return np.log(1 + get_rank(word)) def get_lexical_complexity_score(sentence): words = to_words(remove_stopwords(remove_punctuation_tokens(sentence))) words = [word for word in words if word in get_word2rank()] if len(words) == 0: return np.log(1 + len(get_word2rank())) # TODO: This is completely arbitrary return np.quantile([get_log_rank(word) for word in words], 0.75) def get_levenshtein_similarity(complex_sentence, simple_sentence): return Levenshtein.ratio(complex_sentence, simple_sentence) def get_dependency_tree_depth(sentence): def get_subtree_depth(node): if len(list(node.children)) == 0: return 0 return 1 + max([get_subtree_depth(child) for child in node.children]) tree_depths = [get_subtree_depth(spacy_sentence.root) for spacy_sentence in spacy_process(sentence).sents] if len(tree_depths) == 0: return 0 return max(tree_depths)
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from abc import ABC from functools import wraps, lru_cache import hashlib from pathlib import Path import dill as pickle import re import shutil from nevergrad.instrumentation import var import numpy as np import sentencepiece as spm from access.feature_extraction import (get_lexical_complexity_score, get_levenshtein_similarity, get_dependency_tree_depth) from access.resources.paths import VARIOUS_DIR, get_data_filepath from access.utils.helpers import (write_lines_in_parallel, yield_lines_in_parallel, add_dicts, get_default_args, get_temp_filepath, safe_division, count_lines) SPECIAL_TOKEN_REGEX = r'<[a-zA-Z\-_\d\.]+>' PREPROCESSORS_REGISTRY = {} def get_preprocessor_by_name(preprocessor_name): return PREPROCESSORS_REGISTRY[preprocessor_name] def get_preprocessors(preprocessor_kwargs): preprocessors = [] for preprocessor_name, kwargs in preprocessor_kwargs.items(): preprocessors.append(get_preprocessor_by_name(preprocessor_name)(**kwargs)) return preprocessors def extract_special_tokens(sentence): '''Remove any number of token at the beginning of the sentence''' match = re.match(fr'(^(?:{SPECIAL_TOKEN_REGEX} *)+) *(.*)$', sentence) if match is None: return '', sentence special_tokens, sentence = match.groups() return special_tokens.strip(), sentence def remove_special_tokens(sentence): return extract_special_tokens(sentence)[1] def store_args(constructor): @wraps(constructor) def wrapped(self, *args, **kwargs): if not hasattr(self, 'args') or not hasattr(self, 'kwargs'): # TODO: Default args are not overwritten if provided as args self.args = args self.kwargs = add_dicts(get_default_args(constructor), kwargs) return constructor(self, *args, **kwargs) return wrapped def dump_preprocessors(preprocessors, dir_path): with open(Path(dir_path) / 'preprocessors.pickle', 'wb') as f: pickle.dump(preprocessors, f) def load_preprocessors(dir_path): path = Path(dir_path) / 'preprocessors.pickle' if not path.exists(): return None with open(path, 'rb') as f: return pickle.load(f) class AbstractPreprocessor(ABC): def __init_subclass__(cls, **kwargs): '''Register all children in registry''' super().__init_subclass__(**kwargs) PREPROCESSORS_REGISTRY[cls.__name__] = cls def __repr__(self): args = getattr(self, 'args', ()) kwargs = getattr(self, 'kwargs', {}) args_repr = [repr(arg) for arg in args] kwargs_repr = [f'{k}={repr(v)}' for k, v in sorted(kwargs.items(), key=lambda kv: kv[0])] args_kwargs_str = ', '.join(args_repr + kwargs_repr) return f'{self.__class__.__name__}({args_kwargs_str})' def get_hash_string(self): return self.__class__.__name__ def get_hash(self): return hashlib.md5(self.get_hash_string().encode()).hexdigest() def get_nevergrad_variables(self): return {} @property def prefix(self): return self.__class__.__name__.replace('Preprocessor', '') def fit(self, complex_filepath, simple_filepath): pass def encode_sentence(self, sentence, encoder_sentence=None): raise NotImplementedError def decode_sentence(self, sentence, encoder_sentence=None): raise NotImplementedError def encode_sentence_pair(self, complex_sentence, simple_sentence): if complex_sentence is not None: complex_sentence = self.encode_sentence(complex_sentence) if simple_sentence is not None: simple_sentence = self.encode_sentence(simple_sentence) return complex_sentence, simple_sentence def encode_file(self, input_filepath, output_filepath, encoder_filepath=None): if encoder_filepath is None: # We will use an empty temporary file which will yield None for each line encoder_filepath = get_temp_filepath(create=True) with open(output_filepath, 'w') as f: for input_line, encoder_line in yield_lines_in_parallel([input_filepath, encoder_filepath], strict=False): f.write(self.encode_sentence(input_line, encoder_line) + '\n') def decode_file(self, input_filepath, output_filepath, encoder_filepath=None): if encoder_filepath is None: # We will use an empty temporary file which will yield None for each line encoder_filepath = get_temp_filepath(create=True) with open(output_filepath, 'w') as f: for encoder_sentence, input_sentence in yield_lines_in_parallel([encoder_filepath, input_filepath], strict=False): decoded_sentence = self.decode_sentence(input_sentence, encoder_sentence=encoder_sentence) f.write(decoded_sentence + '\n') def encode_file_pair(self, complex_filepath, simple_filepath, output_complex_filepath, output_simple_filepath): '''Jointly encode a complex file and a simple file (can be aligned or not)''' with write_lines_in_parallel([output_complex_filepath, output_simple_filepath], strict=False) as output_files: for complex_line, simple_line in yield_lines_in_parallel([complex_filepath, simple_filepath], strict=False): output_files.write(self.encode_sentence_pair(complex_line, simple_line)) class ComposedPreprocessor(AbstractPreprocessor): @store_args def __init__(self, preprocessors, sort=False): if preprocessors is None: preprocessors = [] if sort: # Make sure preprocessors are always in the same order preprocessors = sorted(preprocessors, key=lambda preprocessor: preprocessor.__class__.__name__) self.preprocessors = preprocessors def get_hash_string(self): preprocessors_hash_strings = [preprocessor.get_hash_string() for preprocessor in self.preprocessors] return f'ComposedPreprocessor(preprocessors={preprocessors_hash_strings})' def get_suffix(self): return '_'.join([p.prefix.lower() for p in self.preprocessors]) def fit(self, complex_filepath, simple_filepath): for preprocessor in self.preprocessors: pass def encode_sentence(self, sentence, encoder_sentence=None): for preprocessor in self.preprocessors: sentence = preprocessor.encode_sentence(sentence, encoder_sentence) return sentence def decode_sentence(self, sentence, encoder_sentence=None): for preprocessor in self.preprocessors: sentence = preprocessor.decode_sentence(sentence, encoder_sentence) return sentence def encode_file(self, input_filepath, output_filepath, encoder_filepath=None): for preprocessor in self.preprocessors: intermediary_output_filepath = get_temp_filepath() preprocessor.encode_file(input_filepath, intermediary_output_filepath, encoder_filepath) input_filepath = intermediary_output_filepath shutil.copyfile(input_filepath, output_filepath) def decode_file(self, input_filepath, output_filepath, encoder_filepath=None): for preprocessor in self.preprocessors: intermediary_output_filepath = get_temp_filepath() preprocessor.decode_file(input_filepath, intermediary_output_filepath, encoder_filepath) input_filepath = intermediary_output_filepath shutil.copyfile(input_filepath, output_filepath) def encode_file_pair(self, complex_filepath, simple_filepath, output_complex_filepath, output_simple_filepath): for preprocessor in self.preprocessors: intermediary_output_complex_filepath = get_temp_filepath() intermediary_output_simple_filepath = get_temp_filepath() preprocessor.encode_file_pair(complex_filepath, simple_filepath, intermediary_output_complex_filepath, intermediary_output_simple_filepath) complex_filepath = intermediary_output_complex_filepath simple_filepath = intermediary_output_simple_filepath shutil.copyfile(complex_filepath, output_complex_filepath) shutil.copyfile(simple_filepath, output_simple_filepath) def encode_sentence_pair(self, complex_sentence, simple_sentence): for preprocessor in self.preprocessors: complex_sentence, simple_sentence = preprocessor.encode_sentence_pair(complex_sentence, simple_sentence) return complex_sentence, simple_sentence class FeaturePreprocessor(AbstractPreprocessor): '''Prepend a computed feature at the beginning of the sentence''' @store_args def __init__(self, feature_name, get_feature_value, get_target_feature_value, bucket_size=0.05, noise_std=0): self.get_feature_value = get_feature_value self.get_target_feature_value = get_target_feature_value self.bucket_size = bucket_size self.noise_std = noise_std self.feature_name = feature_name.upper() def get_hash_string(self): return (f'{self.__class__.__name__}(feature_name={repr(self.feature_name)}, bucket_size={self.bucket_size},' f'noise_std={self.noise_std})') def bucketize(self, value): '''Round value to bucket_size to reduce the number of different values''' return round(round(value / self.bucket_size) * self.bucket_size, 10) def add_noise(self, value): return value + np.random.normal(0, self.noise_std) def get_feature_token(self, feature_value): return f'<{self.feature_name}_{feature_value}>' def encode_sentence(self, sentence, encoder_sentence=None): desired_feature = self.bucketize(self.get_target_feature_value(remove_special_tokens(sentence))) return f'{self.get_feature_token(desired_feature)} {sentence}' def decode_sentence(self, sentence, encoder_sentence=None): return sentence def encode_sentence_pair(self, complex_sentence, simple_sentence): feature = self.bucketize( self.add_noise( self.get_feature_value(remove_special_tokens(complex_sentence), remove_special_tokens(simple_sentence)))) return f'{self.get_feature_token(feature)} {complex_sentence}', simple_sentence class LevenshteinPreprocessor(FeaturePreprocessor): @store_args def __init__(self, target_ratio=0.8, bucket_size=0.05, noise_std=0): self.target_ratio = target_ratio super().__init__(self.prefix.upper(), self.get_feature_value, self.get_target_feature_value, bucket_size, noise_std) def get_nevergrad_variables(self): return {'target_ratio': var.OrderedDiscrete(np.arange(0.4, 1 + 1e-6, self.bucket_size))} def get_feature_value(self, complex_sentence, simple_sentence): return get_levenshtein_similarity(complex_sentence, simple_sentence) def get_target_feature_value(self, complex_sentence): return self.target_ratio class RatioPreprocessor(FeaturePreprocessor): @store_args def __init__(self, feature_extractor, target_ratio=0.8, bucket_size=0.05, noise_std=0): self.feature_extractor = feature_extractor self.target_ratio = target_ratio super().__init__(self.prefix.upper(), self.get_feature_value, self.get_target_feature_value, bucket_size, noise_std) def get_nevergrad_variables(self): return {'target_ratio': var.OrderedDiscrete(np.arange(0.4, 1.4 + 1e-6, self.bucket_size))} def get_feature_value(self, complex_sentence, simple_sentence): return min(safe_division(self.feature_extractor(simple_sentence), self.feature_extractor(complex_sentence)), 2) def get_target_feature_value(self, complex_sentence): return self.target_ratio class LengthRatioPreprocessor(RatioPreprocessor): @store_args def __init__(self, *args, **kwargs): super().__init__(len, *args, **kwargs) class WordRankRatioPreprocessor(RatioPreprocessor): @store_args def __init__(self, *args, **kwargs): super().__init__(get_lexical_complexity_score, *args, **kwargs) class DependencyTreeDepthRatioPreprocessor(RatioPreprocessor): @store_args def __init__(self, *args, **kwargs): super().__init__(get_dependency_tree_depth, *args, **kwargs) class SentencePiecePreprocessor(AbstractPreprocessor): @store_args def __init__(self, vocab_size=10000, input_filepaths=None): self.vocab_size = vocab_size self.sentencepiece_model_path = VARIOUS_DIR / f'sentencepiece_model/sentencepiece_model_{self.vocab_size}.model' self.input_filepaths = input_filepaths if self.input_filepaths is None: self.input_filepaths = [ get_data_filepath('wikilarge', 'train', 'complex'), get_data_filepath('wikilarge', 'train', 'simple') ] self.learn_sentencepiece() @property @lru_cache(maxsize=1) def sp(self): ''' We need to use a property because SentencenPieceProcessor is cannot pickled > pickle.dumps(spm.SentencePieceProcessor()) ----> TypeError: can't pickle SwigPyObject objects ''' sp = spm.SentencePieceProcessor() sp.Load(str(self.sentencepiece_model_path)) return sp def get_hash_string(self): return f'{self.__class__.__name__}(vocab_size={self.vocab_size})' def learn_sentencepiece(self): if self.sentencepiece_model_path.exists(): return self.sentencepiece_model_path.parent.mkdir(parents=True, exist_ok=True) sentencepiece_model_prefix = self.sentencepiece_model_path.parent / self.sentencepiece_model_path.stem args_str = ' '.join([ f'--input={",".join([str(path) for path in self.input_filepaths])}', f'--model_prefix={sentencepiece_model_prefix}', f'--vocab_size={self.vocab_size}', ]) max_lines = 10**6 if sum([count_lines(filepath) for filepath in self.input_filepaths]) > max_lines: args_str += f' --input_sentence_size={max_lines} --shuffle_input_sentence=true' spm.SentencePieceTrainer.Train(args_str) def fit(self, complex_filepath, simple_filepath): # Args are not used self.learn_sentencepiece() def encode_sentence(self, sentence, encoder_sentence=None): # TODO: Do we really need to extract the tokens special_tokens, sentence = extract_special_tokens(sentence) encoded_sentence = ' '.join(self.sp.EncodeAsPieces(sentence)) if special_tokens != '': encoded_sentence = f'{special_tokens} {encoded_sentence}' return encoded_sentence def decode_sentence(self, sentence, encoder_sentence=None): return self.sp.DecodePieces(sentence.split(' '))
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import lru_cache import re from string import punctuation from nltk.tokenize.nist import NISTTokenizer from nltk.corpus import stopwords as nltk_stopwords import spacy # TODO: #language_specific stopwords = set(nltk_stopwords.words('english')) @lru_cache(maxsize=100) # To speed up subsequent calls def word_tokenize(sentence): tokenizer = NISTTokenizer() sentence = ' '.join(tokenizer.tokenize(sentence)) # Rejoin special tokens that where tokenized by error: e.g. "<PERSON_1>" -> "< PERSON _ 1 >" for match in re.finditer(r'< (?:[A-Z]+ _ )+\d+ >', sentence): sentence = sentence.replace(match.group(), ''.join(match.group().split())) return sentence def to_words(sentence): return sentence.split() def remove_punctuation_characters(text): return ''.join([char for char in text if char not in punctuation]) @lru_cache(maxsize=1000) def is_punctuation(word): return remove_punctuation_characters(word) == '' @lru_cache(maxsize=100) def remove_punctuation_tokens(text): return ' '.join([w for w in to_words(text) if not is_punctuation(w)]) def remove_stopwords(text): return ' '.join([w for w in to_words(text) if w.lower() not in stopwords]) @lru_cache(maxsize=1) def get_spacy_model(): model = 'en_core_web_sm' if not spacy.util.is_package(model): spacy.cli.download(model) spacy.cli.link(model, model, force=True, model_path=spacy.util.get_package_path(model)) return spacy.load(model) # python -m spacy download en_core_web_sm` @lru_cache(maxsize=10**6) def spacy_process(text): return get_spacy_model()(str(text))
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from itertools import product from pathlib import Path REPO_DIR = Path(__file__).resolve().parent.parent.parent EXP_DIR = REPO_DIR / 'experiments' RESOURCES_DIR = REPO_DIR / 'resources' DATASETS_DIR = RESOURCES_DIR / 'datasets' VARIOUS_DIR = RESOURCES_DIR / 'various' FASTTEXT_EMBEDDINGS_PATH = VARIOUS_DIR / 'fasttext-vectors/wiki.en.vec' MODELS_DIR = RESOURCES_DIR / 'models' BEST_MODEL_DIR = MODELS_DIR / 'best_model' LANGUAGES = ['complex', 'simple'] PHASES = ['train', 'valid', 'test'] def get_dataset_dir(dataset): return DATASETS_DIR / dataset def get_data_filepath(dataset, phase, language, i=None): suffix = '' # Create suffix e.g. for multiple references if i is not None: suffix = f'.{i}' filename = f'{dataset}.{phase}.{language}{suffix}' return get_dataset_dir(dataset) / filename def get_filepaths_dict(dataset): return {(phase, language): get_data_filepath(dataset, phase, language) for phase, language in product(PHASES, LANGUAGES)}